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Abstract

Contrast transport models are widely used to quantify blood flow and transport in dynamic

contrast-enhanced magnetic resonance imaging. These models analyze the time course of

the contrast agent concentration, providing diagnostic and prognostic value for many biolog-

ical systems. Thus, ensuring accuracy and repeatability of the model parameter estimation

is a fundamental concern. In this work, we analyze the structural and practical identifiability

of a class of nested compartment models pervasively used in analysis of MRI data. We com-

bine artificial and real data to study the role of noise in model parameter estimation. We

observe that although all the models are structurally identifiable, practical identifiability

strongly depends on the data characteristics. We analyze the impact of increasing data

noise on parameter identifiability and show how the latter can be recovered with increased

data quality. To complete the analysis, we show that the results do not depend on specific

tissue characteristics or the type of enhancement patterns of contrast agent signal.

Author summary

In the last decades, study and quantification of tissue perfusion parameters related to

blood flow and transport have acquired a significant importance in the analysis of

dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). In fact, concentra-

tion time course data derived from DCE-MRI are essential elements for many computa-

tional biological applications, ranging from tumor grading assessment to prediction of

antiangiogenic treatment response. Contrast agent transport models have been developed

and widely used for the analysis of this data, providing diagnostic and prognostic value.

Thus, there is a need to ensure reliability and reproducibility of the transport model
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parameter estimations. Here we propose the analysis of structural and practical model

identifiability, combining artificial and real data to study the role of noise in parameter

estimation. The results provide a mathematical explanation for the lack of repeatability of

DCE-MRI quantification as well as emphasize the need for new DCE-MRI acquisition

protocols standards and quantification methods.

1 Introduction

Contrast agent transport models have been developed and used for decades in the analysis of

concentration time course data derived from dynamic contrast-enhanced magnetic resonance

imaging (DCE-MRI), and they are essential elements of many computational clinical applica-

tions [1–9]. DCE-MRI transport models are based on linear ordinary differential equations

with compartments describing the concentration of the contrast agent (CA) in tissue and vas-

culature. These models assume the compartments are well-mixed, i.e., contrast agent distrib-

utes evenly throughout the compartment instantaneously, such that contrast concentration is

only a function of time, and not space, within an individual voxel. Several models have been

formulated [10] based on different assumptions and simplifications to describe the blood–tis-

sue exchanges of the administered contrast agent between compartments. The kinetic parame-

ters derived from these models have been applied to a wide range of biological settings,

including cancer, and have provided compelling diagnostic and prognostic value [11] as well

as detecting early response to treatment [12].

Here we consider the structural and practical identifiability of four nested contrast trans-

port compartmental models frequently used to analyze DCE-MRI data. Identifiability is a fun-

damental property to create models able to capture the dynamics shown in the data with well-

determined parameters [13, 14]. The issue of model identifiability revolves around the ques-

tion of whether it is possible to use data to accurately and uniquely estimate parameters in the

model. Generally, the larger the number of compartments in a model, the higher the accuracy,

but at the cost of higher analysis complexity. Moreover, the more parameters are included, the

higher the probability of having a non-unique combination of model parameters that can

accurately characterize the dynamics, underpinning the concept of structural identifiability.

Therefore, there is a need to investigate how the kinetic parameters involved in the class of

nested models used in DCE-MRI analysis can be determined, and what affects their identifia-

bility, even in simple cases. Model identifiability becomes especially important for biological

systems due to the limited availability and quality of the data [15–17]. Moreover, the amount

and the quality of the data have a strong impact on the identifiability of some parameters and,

thus, on model outcomes and predictions.

Structural identifiability determines if the model structure is well-defined, however it is not

sufficient to ensure the robustness of model outcomes when dealing with experimental biolog-

ical data to inform the model. In fact, it does not guarantee successful parameter estimation

when, for instance, there is a limited amount or a quality of the experimental data, with large

measurement noise. This is where the study of practical identifiability takes importance and a

careful analysis of both types of identifiability becomes vital. In this work, we analyze the entire

family of nested contrast transport models from both structural and practical viewpoints. To

the best of our knowledge, few works in the literature have analyzed both structural and practi-

cal identifiability aspects of transport models used for DCE-MRI data, mainly focusing on the

practical identifiability and only for a subset of these models [18–23].
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This work is organized as follows. In Section 2, we describe the theoretical aspects of struc-

tural and practical identifiability, DCE-MRI data, and the class of considered models. Next, in

Section 3, we provide structural and practical identifiability analysis of the most complex

member of the family of models, the Leaky Tofts–Kety model, applied to glioblastoma brain

cancer data. We comment on the outcomes and implications in Section 4. Finally, in S1–S3

Text, we provide results concerning the nested family of sub-models as well as additional

breast cancer data.

2 Materials and methods

2.1 Ethics statement

The study of publicly available data and retrospective analysis of City of Hope patient data

were approved with a waiver of consent by the City of Hope Institutional Review Board, Proto-

col 15286.

2.2 Theory of nested DCE-MRI transport models

Compartmental models of contrast transport for DCE-MRI are constructed assuming that the

total tissue CA concentration Ct(t) can be modeled as the sum of the CA concentration in the

plasma space (PS) (Cp(t)) and in the extracellular extravascular space (EES) (Ce(t)), i.e.

CtðtÞ ¼ vpCpðtÞ þ veCpðtÞ ð1Þ

where ve and vp are the fractional EES and plasma volumes, respectively. The explicit descrip-

tion of the CA concentration in each of these compartments depends on the assumptions

made to estimate both Ce(t) and Cp(t) and, thus, on the chosen model, as illustrated in Fig 1A.

The CA concentration for the plasma compartment, Cp(t), is assumed to be not affected by

local transport and it is given by the empirical vascular input function (VIF):

CpðtÞ ¼ VIFðtÞ: ð2Þ

The dynamics of the VIF are characterized by a sharp uptake, followed by a peak value, and

then a washout dynamic (Fig 1B). Several techniques have been proposed to measure the VIF

[10, 24]. Here we consider two different estimation methods. First, we consider a population-

based analytical expression of the VIF, commonly referred to as the Parker VIF [25], and sec-

ond we estimate the VIF directly from the MRI signal [26]. The Parker VIF uses a mixture of 2

Gaussians plus an exponential modulated by a sigmoid function:

VIFðtÞ ¼
X2

n¼1

An

sn

ffiffiffiffiffiffi
2p
p exp ð� ðt � TnÞ

2
=2s2

nÞ þ
a expð� btÞ

1þ expð� lðt � tÞÞ
ð3Þ

Here An, Tn, and σn are the scaling constants, centers, and widths of the nth Gaussian, α and β
are the amplitude and decay constant of the exponential, and l and τ are the width and center

of the sigmoid, respectively. For the second method, VIF estimation is performed by drawing a

region of interest (ROI) on a major vessel in the tissue and directly quantifying the contrast

agent concentration, assuming the CA bolus arrives simultaneously to the entire tissue of

interest. Population-based VIFs are widely used in DCE-MRI due to their simplicity and the

fact that they do not require additional measurements, though they may ignore inter-subject

variability. In contrast, the accuracy of individual-based VIFs derived from estimations of the

CA concentration in large vessels depends on MRI characteristics, which may contribute to

identifiability issues, as will become apparent through our analysis.
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For the evolution of the CA concentration in the EES compartment, and, thus, to derive the

expression for Ct(t), we analyze a class of nested compartmental models consisting of the

Patlak model (PM), Tofts–Kety (TK) and its extended version (eTK), and the Leaky Tofts–

Kety (LTK) model. The Patlak model, firstly introduced in [27], represents the simplest tissue

uptake model and it assumes that CA diffuses from the PS to the EES at a rate governed by the

forward transfer constant Ktrans. It neglects the reflux from the EES back into the plasma space

due to the assumption on low permeability and short measuring time. Thus, the concentration

into the EES compartment varies according to

ve
dCe

dt
¼ KtransCp ð4Þ

Fig 1. Models and data. (A) Schematic illustrations of the four nested transport models from simple (Patlak) to complex (Leaky Tofts–Kety):

the contrast agent concentration Ct(t) is evaluated using the functions Cp(t), the CA concentration in the plasma compartment, which is

assumed to be given by the arterial input function, and Ce(t), for the CA concentration in the EES space. The rate of forward and backward

volume transfer and the fractional EES and plasma volumes are the quantities Ktrans, ve, vp, and λ. For each model, the involved parameters are

listed in brackets. (B) Different enhancement patterns of CA signal: Type I—persistent curve—is a progressive increasing intensity signal; Type II

—plateau curve—is characterized by an initial peak followed by a relatively constant enhancement; Type III—wash-out curve—refers to a sharp

uptake followed by an enhancement decrease over time. (C) Examples of Type I (right plot) and Type III (left plot) enhancement curves

obtained from breast and brain tumors, respectively.

https://doi.org/10.1371/journal.pcbi.1012106.g001

PLOS COMPUTATIONAL BIOLOGY Identifiability analysis of contrast transport models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012106 May 15, 2024 4 / 22

https://doi.org/10.1371/journal.pcbi.1012106.g001
https://doi.org/10.1371/journal.pcbi.1012106


and, assuming that the initial concentration in the EES is zero (Ce(0) = 0), from Eq (1), the tis-

sue CA concentration is given by

CtðtÞ ¼ vpCpðtÞ þ Ktrans

Z t

0

CpðtÞdt ð5Þ

To overcome the low permeability hypothesis of the Patlak model the Tofts–Kety model was

introduced in [28, 29]. The TK model accounts for bidirectional transfer of the contrast agent

from the plasma to the EES compartment at rates governed by the forward transfer constant

Ktrans and the reverse constant Kep ¼
Ktrans�

ve
, respectively. However, it ignores the intravascular

(plasma) compartment contribution (i.e., vp� 0). The dynamics of the CA concentration in

the EES compartment are described by

ve
dCe

dt
¼ Ktrans Cp �

Ce

ve

� �

: ð6Þ

The transfer constant Ktrans now has a different physiologic interpretation, depending on the

balance between capillary permeability and blood flow: in high-permeability situations, Ktrans

is equal to the blood plasma flow per unit volume of tissue; in low permeability scenarios, Ktrans

is equal to the permeability surface area product between blood plasma and the EES, per unit

volume of tissue [29]. Under the assumption that vp� 0 and setting the initial concentration

in the EES to zero (Ce(0) = 0), we can derive from Eq (1) the expression of the tissue CA con-

centration as

CtðtÞ ¼ Ktrans

Z t

0

CpðtÞ exp ð� Kepðt � tÞÞdt: ð7Þ

The hypothesis of tissue being weakly vascularized (vp� 0) may be invalid in some situations,

especially in the case of highly vascular tumors. Thus, a modification of the TK model was pro-

posed in [30]. Known as the extended Tofts–Kety model, it includes the vascular contribution

vpCp(t) to the overall CA tissue concentration, maintaining the same dynamics shown in Eq

(6) for the EES concentration Ce(t):

CtðtÞ ¼ vpCpðtÞ þ Ktrans

Z t

0

CpðtÞ exp ð� Kepðt � tÞÞdt : ð8Þ

The TK and eTK models have experienced some problems to obtain reliable estimation for the

involved parameters when the data depict a persistent uptake curve (Type I) [31]. The PM

model, with its assumption on unidirectional flux from the plasma to the EES compartment, is

able to overcome this issue, but assuming a negligible reflux from the EES back into the plasma

space is not realistic, especially in the high permeability regime [32]. The Leaky Tofts–Kety

(LTK) model was introduced to address this issue [31]. The LTK model, also known as Leaky

Tracer Kinetic model (LTKM), adds an additional compartment, the leakage compartment, to

the already described plasma and permeable compartments. The permeable space and the

leakage space are considered subcompartments of the EES region. The former assumes a bidi-

rectional exchange between plasma and EES, while the latter considers a unidirectional flow

from which the contrast, at a concentration CL(t), does not flow back into the vasculature.

Thus, for the LTK model, the overall CA tissue concentration is given by

CtðtÞ ¼ vpCpðtÞ þ veCpðtÞ þ CLðtÞ :

The contrast agent in the permeable compartment Ce(t) evolves following Eq (6), while the

PLOS COMPUTATIONAL BIOLOGY Identifiability analysis of contrast transport models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012106 May 15, 2024 5 / 22

https://doi.org/10.1371/journal.pcbi.1012106


rate of contrast change in the leakage space can be read as

dCL

dt
¼ lCp : ð9Þ

Here, λ is the volume transfer constant from the plasma compartment to the leakage compart-

ment. Assuming that the initial concentration in the EES and leakage compartments are zero

(CL(0) = Ce(0) = 0), then the CA tissue evolution is given by

CtðtÞ ¼ vpCpðtÞ þ Ktrans

Z t

0

CpðtÞ exp ðKepðt � tÞÞdtþ l
Z t

0

CpðtÞdt: ð10Þ

In summary, the main differences between these models are the directional flows for the

CA exchange between the plasma space, the extravascular extracellular space, and eventually

the leakage space. The Patlak model is a unidirectional model which assumes CA transfer from

EES to PS is negligible due to low permeability and short measurement time [27]. The Tofts–

Kety model assumes that the CA diffuses from, and returns to the PS, and the vascular

(plasma) compartment contribution is negligible [28]. This assumption of tissue being weakly

vascularized is overcome with the extended Tofts model, which includes the vascular contribu-

tion to the tissue concentration [30]. Finally, the Leaky Tofts–Kety model extends the eTK,

adding an additional leakage compartment with unidirectional flow for disease applications

such as gliomas, where slow accumulation of CA from neighboring voxels is common [31]. In

all models where the vascular component is considered, it is assumed that the concentration of

the contrast agent within the vasculature is not affected by local transport, (i.e. it is an empiri-

cal forcing function), and that the difference between the empirical vascular input function

and the local tissue concentration is the primary driver of transport between tissue and

vasculature.

2.3 Data

Two DCE-MRI scans were used in this study. A brain scan was obtained from a patient with

pathology-confirmed diagnosis of glioblastoma who underwent MRI at City of Hope National

Medical Center. The T1-weighted brain DCE-MRI scan was acquired as follows: TR = 5.1ms,

TE = 2.1ms, variable flip angle, with field of view 240mm x 240mm, matrix size 128x128 and

image size 256 x 256 with 12 slices with slice thickness 6mm, and a temporal resolution of 6.03

seconds with 32 dynamic phases and 3 baseline images prior to contrast administration. A

breast DCE-MRI scan was obtained from the Quantitative Imaging Network (QIN) BREAST-

02 study, UPN-01. The image acquisition details for the breast MRI can be found in the docu-

mentation for the BREAST-02 study [33, 34]. In both cases, a variable flip angle (VFA) scan

was acquired for direct contrast agent quantification [35]. The VFA scan was used to calculate

the baseline T1 relaxation, T10, of the tissue, which is used for calculating the local contrast

agent concentration [36].

2.4 Identifiability analysis

Identifiability analysis is a fundamental mathematical tool used to assess a model’s capability

to describe data with unique determined parameters. It focuses on whether it is possible to

identify a unique vector of parameter values for a given model structure, or whether multiple

parameter values will fit the data equally well. It is important to distinguish between structural
identifiability, which concerns how the model structure itself affects the possible unique identi-

fication of the involved parameters, and practical identifiability, which is based on the analysis

of the model’s ability to estimate parameters from the data with adequate precision.
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Structural non-identifiability implies practical non-identifiability: in fact, if a model is not

structurally identifiable, then the quality of the data collected does not matter; it will not be

possible to uniquely estimate parameters in practice. The converse, however, is not true. Struc-

tural identifiability implies practical identifiability only when there is availability of infinitely

resolved data, with zero measurement noise. However, even if the model structure theoretically

allows parameters to be estimated, one still needs to have the appropriate data to achieve prac-

tically identifiable parameters.

2.4.1 Theory for structural identifiability analysis. Consider a dynamical system

_x ¼ f ðt;xðtÞ;uðtÞ; θÞ

yðtÞ ¼ hðxðtÞ;uðtÞ; θÞ

(

ð11Þ

where xðtÞ 2 Rn
represents the state variables, yðtÞ 2 Rm

the measurable output (e.g., the

data), h(�) the function that maps the states x to the observations y, uðtÞ 2 Rr the external

input function (in our case the vascular input function), and θ 2 Rq the set of constant param-

eters. The dynamical system is structurally identifiable if each element θi of the vector θ is

structurally identifiable. This means that each of these elements can be uniquely determined

from a given input u(t) and a measurable output y(t), i.e.,

yðxðtÞ; uðtÞ; θÞ ¼ yðxðtÞ; uðtÞ; θ0Þ ) yi ¼ y
0

i 8i ¼ 1; ::; q

Alternatively, one element θi of the parameter vector θ is structurally non-identifiable if vary-

ing its value does not necessarily alter the model trajectory y, as these changes can be compen-

sated for by varying other parameters. In particular, a model is defined to be structurally

identifiable if all of its parameters are structurally identifiable [37]. A large variety of methods

exist to assess structural identifiability of a system, from the Laplace transform [38], Taylor

series expansion [39], seminumerical approaches [40, 41], differential algebra [42–44], and

numerical algebraic geometry [45], among others (for reviews of some of these approaches, see

Refs. [16, 46, 47]). Due to the simple structure of the nested models considered in this analysis

and described in Section 2.2, we apply a differential algebra approach. This approach is conve-

nient for linear compartmental models because of the reduced number of state variables (i.e.,

Ct(t)) and the direct relationship between state variables and observations (which actually

coincides for this class of nested models). Further, this approach directly allows for testing

identifiability, obtaining simple forms of possible identifiable combinations of the parameters,

and identifying reparameterizations of the model when it is structurally non-identifiable.

2.4.2 Theory of practical identifiability. As already briefly explained, a parameter that is

structurally identifiable may still be practically non-identifiable. This issue arises frequently if

the quantity and/or quality of the experimental data is insufficient. Assessing the practical

identifiability of a model (or a parameter) is fundamental in obtaining reliable parameter esti-

mations and, thus, for ensuring good model prediction capabilities. While the notion of practi-

cal identifiability is not uniquely defined in the literature, we consider a definition based on

the concept of profile likelihoods and confidence intervals [48]. Using this framework, we eval-

uate the agreement between the experimental data and the observable predicted by our set of

nested models choosing as Maximum Likelihood Estimator (MLE) the objective (or cost)

function defined as:

MLEðθÞ ¼
1

s2

XN

i¼1

ðyDi � yMi ðxðtiÞ; uðtiÞ; θÞÞ
2
:

Here, N is the number of time points ti available from the data, yDi are the CA data values at
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time ti, yMi ðxðtiÞ; uðtiÞ; θÞ is the CA value at time ti predicted by the model with the estimation

θ of the parameter vector, and σ is the standard deviation of the noise of the data. In particular,

this standard deviation is estimated as the inverse of the Signal-To-Noise (SNR) ratio of the

data [21]. The state variable x(t) represents the CA concentration Ct(t) and u(t) is the vascular

input function. The parameter vector θ̂ used to evaluate the practical identifiability of the

model is given by

θ̂ ¼ arg min½MLEðθÞ� :

To determine the confidence interval of the estimated set of parameter θ̂, we consider the pro-

file likelihood (PL) method. To build the profile likelihood plot, the idea is to choose one

parameter θi, vary its value around the maximum likelihood estimate ŷ i, and re-optimize the

remaining parameters. Thus, the profile likelihood is given by

PLðyiÞ ¼ min
yj6¼i
½MLEðθÞ�:

Then, the confidence intervals (CI) of estimated parameters are defined as

CIPLðyiÞ ¼ fyijPLðyiÞ � MLEðθ̂Þ þ Dag

where Δα represents the α-th quantile of the chi squared (χ2) distribution with k = 1 degrees of

freedom for a point-wise confidence interval [37, 49]. Thus, given the optimal value ŷ i of one

parameter, defining the confidence interval to a confidence level α implies that the true value

ŷ i of the parameter is located within this interval with probability α. When this confidence

interval is finite, then a parameter θi is practically identifiable. Otherwise, if the confidence

region is infinitely extended, although the numerical algorithm finds a unique minimum θ̂,

then the parameter is practically non-identifiable. Precisely, we analyze the profiles of the

MLEðθ̂Þ versus each parameter θi. The choice of a least squares function for the MLE is equiva-

lent to working with an additive Gaussian noise measurement model with constant variance.

We point out the reader that the assumption of additive Gaussian noise may not be the more

appropriate under certain conditions, especially for data close to zero. We highlight that other

choices of measurement error model may be considered in order to relax this assumption of

additive Gaussian noise (see [50] for a recent review on the topic). In any case, the method of

the profile likelihood analysis here implemented holds when different measurement models

are used.

A structurally non-identifiable parameter is characterized by a flat profile likelihood,

whereas the profile likelihood of a practically non-identifiable parameter may have a mini-

mum, but does not have a well-defined confidence level α for increasing and/or decreasing val-

ues of θi. Instead, for an identifiable parameter the profile likelihood exceeds such threshold in

both directions of θi. Fig 2 shows an illustrative example of likelihood profiles. Practical iden-

tifiability as determined by profile likelihoods methods are standard methods for determining

the unique parametrization of a real-world model-data pairing. We refer the interested reader

to [37] for a detailed primer on profile likelihoods and practical identifiability. Profile likeli-

hood-based confidence intervals are often used in biological applications to ensure that there

is sufficient data and data quality to assume the validity of the model [14, 51–54]. With respect

to other methods for determining confidence intervals, this particular method allows for asym-

metric intervals that are invariant under re-parametrizations of the model. The analysis per-

formed here refers to univariate likelihood profiles, where we are considering only one target

parameter. For the reader convenience, it is worthy to mention that other options are available
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when pairs (or more) target parameters are considered. In particular, in this cases bivariate or

higher-order profiles can be generated and studied [53].

In addition to the profile likelihood, we also analyze the compensating profiles of the model

parameters. These are obtained by perturbing one parameter θi around its maximum likeli-

hood estimate ŷ i and plotting the variation of the re-optimized parameters versus the per-

turbed θi value. This analysis demonstrates how a non-identifiable parameter (whether

structural or practical), may be compensated for by variations of other parameters. The small

dimensionality of our systems allows us to use the described method for the analysis proposed

in Section 3.2. We analyze the practical identifiability for the family of nested models described

in Section 2.2 using a self-implemented code in Matlab based on the Particle Swarm algorithm

for global optimization [55, 56]. The codes used for the analysis proposed in these notes are

available in the corresponding GitHub repository: https://github.com/mconte93/Practical_

Identifiability.git.

3 Results

Here we analyze the results concerning structural and practical identifiability of the most com-

plex of the nested models, the LTK model described in Section 2.2.

3.1 Structural identifiability of the LTK model

Following the formalism of the differential algebra approach described in Section 2.4.1, model

(10) can be rewritten as

ve _x1 ¼ Ktrans u �
x1

ve

� �

_x2 ¼ lu

y ¼ vex1 þ vpuþ x2

8
>>>>><

>>>>>:

ð11Þ

where y is the observable concentration of the contrast agent in the tissue Ct(t), u(t) is the

external input given by the concentration of contrast agent in the plasma compartment (i.e.,

Cp(t) in (2)), x1 and x2 are the state variables for the CA concentration into the EES and leakage

Fig 2. Illustrative example of profile likelihood for an identifiable parameter and structurally and practically non-identifiable parameters.

https://doi.org/10.1371/journal.pcbi.1012106.g002
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compartment, respectively. Differentiating the last equation in system (11) and plugging inside

the first two equations of (11), we obtain the differential equation for y(t) of the form

_y þ a1yþ a2uþ a3 _u þ a4v ¼ 0 ð12Þ

where v is defined as v ¼
R t

0
uðtÞdt and the coefficients ai are given by

a1 ¼
Ktrans

v2
e

a2 ¼ � Ktrans �
Ktrans

v2
e

� l

a3 ¼ � vp

a4 ¼ �
Ktrans

v2
e

l

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð13Þ

We observe that a2, a3, a4 < 0, while a1 > 0. Solving system (13) for the four parameters of the

LTK model provides the following expressions:

Ktrans ¼
a4

a1

� a1 � a2

ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffia4

a2
1

� 1 �
a2

a1

r

vp ¼ � a3

l ¼ �
a4

a1

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð14Þ

For ve to be well-defined we need a2 �
a4

a1

� a1, which always holds as the four parameters of

the LTK model are positive. From this analysis, we can conclude that LTK model is structurally

identifiable. The structural identifiability of the nested PM, TK, and eTK models has also been

analyzed and details are provided in S1 Text. Moreover, for the reader’s convenience, in S2

Text we provide an example of a structurally non-identifiable model obtained by modifying

the LTK model structure and changing the connections among the compartments.

3.2 Practical identifiability of the LTK model

Practical identifiability is performed using the method described in Section 2.4.2 and results

are compared with the analytical results obtained in Section 3.1 regarding parameter structural

identifiability. Precisely, we study the effect of varying the noise characteristics of the

DCE-MRI data used for estimating the VIF and CA concentration on the accuracy of the iden-

tification of the model parameters. Each analysis is performed on the three characteristic

enhancement patterns observed in CA evolution [10] (Fig 3). As shown in Fig 1B, CA time-

enhancement curves are classified into three types: Type I—persistent curve—a progressive sig-

nal intensity increase (Fig 1C, right plot); Type II—plateau curve—is characterized by an ini-

tial peak followed by a relatively constant enhancement; Type III—wash-out curve—refers to a

sharp uptake followed by an enhancement decrease over time (Fig 1C, left plot). We consider

two different tissues to study the role of the tissue characteristics on model identifiability. In

both tissues, we replicate the analysis for the three different CA time-enhancement curves. We

report results on the Glioblastoma multiforme (GBM) brain tumor data in the main text.
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Results for the breast cancer data are presented in S3.1 Text. For practical identifiability analy-

sis we distinguish between the following three cases of study (referring to the rows of Fig 3).

(AA). The first case is referred to as Artificial-Artificial. Here, we consider an artificial VIF

given analytically by Eq (3) and three artificial data sets. These are generated by run-

ning forward simulations of the LTK model, given by Eq (10), with the parameter val-

ues listed in Table 1, and replicate the three CA time-enhancement curves. In

particular, these artificial data sets represents noise-free experimental data. Thus, in

this case, there is no noise in the VIF or in the data which could affect the parameter

identifiability. For the VIF we set A1 = 48.54 mM × s, A2 = 18.64 mM × s, σ1 = 3.378 s,

σ2 = 7.92 s, T1 = 10.2276 s, T2 = 21.9 s, α = 1.05 mM, β = 0.0028 s−1, l = 0.6346 s−1, and τ
= 28.98 s.

Fig 3. Best fitting of CA evolution signal obtained with the LTK model (10). The three types of CA time-enhancement curves

(columns) for the three cases of study (AA), (RA), and (RR) (rows). The last row (RR) is CA time course data from the GBM DCE-MRI.

Similar results for the breast cancer dataset are provided in Fig C in S3.1 Text.

https://doi.org/10.1371/journal.pcbi.1012106.g003

PLOS COMPUTATIONAL BIOLOGY Identifiability analysis of contrast transport models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012106 May 15, 2024 11 / 22

https://doi.org/10.1371/journal.pcbi.1012106.g003
https://doi.org/10.1371/journal.pcbi.1012106


(RA). The second case is referred to as Real-Artificial. Here, we consider a real estimation of

the VIF directly from DCE-MRI data by drawing a ROI around a major vessel, and

three artificial data sets. These are obtained by running forward simulations of the LTK

model, given by Eq (10), with the parameter values listed in Table 2 and the real VIF.

This real VIF includes noise, as compared to the analytic expression for the artificial
VIF as in the (AA) case.

(RR). The last case is referred to as Real-Real. Here, we consider both a real estimation of the

VIF and a real evolution of the contrast agent in the tissue. We analyze data from a

GBM brain tumor and a breast cancer MRI dataset.

The three CA time-enhancement curves used in (AA), (RA), and (RR) cases are shown in

Fig 3 (continuous black lines) together with the corresponding model fits obtained with the

LTK model (10) (dashed red lines). The particle swarm (PS) method is used to estimate param-

eter values for fitting the three curve types and in the three cases of study (AA), (RA), and

(RR). Values of fitted parameters are collected in Table A in S3 Text.

Recalling the methodology described in Section 2.4.2, we analyze profile likelihood and

confidence levels for each of the parameters involved in the LTK model, in the three cases of

study (AA), (RA), and (RR), and for the three types of CA time-enhancement curves. Here, we

report the results for the Type I enhancement curve, as the LTK model was introduced with

the aim of solving the issues of PM, TK, and eTK models concerning parameter estimation for

persistent uptake CA profile. Results concerning Type II and Type III time-enhancement

curves are collected in Figs A and B in S3 Text. Moreover, we show the results for Ktrans and λ
parameters. Ktrans is the only parameter appearing in all nested models analyzed in this study,

thereby allowing for a direct comparison of the results obtainable with the different models. λ
is a novel parameter from the LTK model, thus it is important to analyze its identifiability.

Fig 4 shows the results concerning practical identifiability of the parameter Ktrans for the

LTK model and Type I time-enhancement curve. The columns of Fig 4 refer to the three cases

of study (AA), (RA), and (RR). From Section 3.1, we know that Ktrans is a structurally identifi-

able parameter, i.e., it is possible to uniquely determine its value from the given model struc-

ture. When we consider a completely artificial data set, obtained with the parameter values

collected in Table 1 and the population-based analytical expression of the VIF given in (3), the

complete absence of noise in the data and in the VIF allows us to accurately recover Ktrans. In

Table 2. Parameter values used for the synthetic data set in the (RA) case of study.

Type Ktrans (s−1) ve vp λ (s−1)

I 0.0025 0.9 0.05 0.001

II 0.009 0.5 0.1 0.001

III 0.008 0.001 0.9 0

https://doi.org/10.1371/journal.pcbi.1012106.t002

Table 1. Parameter values used for the synthetic data set in the (AA) case.

Type Ktrans (s−1) ve vp λ (s−1)

I 0.0025 0.9 0.05 0.01

II 0.009 0.5 0.1 0.001

III 0.03 0.5 0.1 0.001

https://doi.org/10.1371/journal.pcbi.1012106.t001
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the (AA) case, the profile likelihood shows a well-defined parabola, with a unique minimum in

the optimal value K̂ trans. Zooming around this minimum, we observe a finite confidence region

around K̂ trans for the 95% confidence level. Analyzing the (RA) case (second column), we

notice that K̂ trans represents a local minimum for the profile likelihood and it is not possible to

identify a lower bound for the confidence regions for both 95%, 80%, and 68%, i.e., it is not

possible to define a finite confidence interval. Thus, Ktrans is practically non-identifiable in this

case. Moreover, from the compensating profiles in the region where the profile likelihood is

almost flat (left side with respect to K̂ trans), we notice ve and λ compensating for varying Ktrans.

In contrast, the optimal value estimated for vp does not significantly changes with respect to

Ktrans variation. This is in line with the results in (13), where we can notice how vp does not

have any relation with Ktrans. In the (RR) case, Ktrans is not practically identifiable, evident

from the flat likelihood profile, which makes it not possible to identify a lower or upper bound

of a confidence region with respect to the optimal value K̂ trans.

Similar observations can be made from the results of Fig 5, where practical identifiability of

the parameter λ for the LTK model and Type I time-enhancement curve is analyzed. As for Fig

4, columns of Fig 5 refer to the three cases (AA), (RA), and (RR). From the structural identifia-

bility analysis of Section 3.1, we know that λ is a structurally identifiable parameter, thus, it is

possible to uniquely identify its value from the model structure. For the completely artificial

data set used in (AA), we are able to accurately identify λ. The profile likelihood in the first

subplot of Fig 5 shows a well-defined parabola with a unique minimum in the optimal value l̂,

Fig 4. Ktrans practical identifiability for LTK model and Type I enhancement curve. Top row: profile likelihood and confidence

levels at 68%, 80%, and 95% for the parameter Ktrans in the (AA), (RA), and (RR) case for the Type I enhancement curve. Inset in the

first subplot shows a zoom of the region around the best-fitted value K̂ trans (red marker). Bottom row: compensating profiles of the

parameters ve, vp, and λ with respect to variation of Ktrans around its best-fitted value. Variation of ±50% around the optimal value of

Ktrans are considered. Two colors are for two different y-axis: black curves refer the left y-axis and red curves to the right y-axis.

Different line styles are used to distinguish curves referring to the same y-axis. For each curve, the name of the corresponding

parameter is indicated above the line in the same color.

https://doi.org/10.1371/journal.pcbi.1012106.g004
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around which a finite confidence region for the 95% confidence level can be determined (as

shown in the zoomed inset). Analyzing the RA and RR cases (second and third columns), we

notice that the profile likelihood is characterized by flat regions for which it is not possible to

identify a lower or upper bound for 95%, 80%, and 68% confidence levels. Thus, λ is not practi-

cally identifiable in these more realistic cases. Looking at the corresponding compensating

profiles, we observe that vp estimation is not influenced by λ variation, while ve and Ktrans show

variability in response to λ. This result is reasonable in relation to the results in (14): the

expression for vp is independent from the other parameters, whereas Ktrans, ve, and λ expres-

sions depends on common coefficients (i.e., a1, a2, and a4).

Observation 1. For reader convenience, we point out that it is reasonable to obtain different
optimal estimations for Ktrans in the different analyzed cases (AA, RA, RR), as moving from AA
to RA and, then, RR case, we are changing the VIF and the DCE data on which the inverse prob-
lem is performed.

To specifically analyze the influence of the noise in both the data and the individual-based

estimation of the VIF function, derived directly from the DCE-MRI data, we perform two dif-

ferent tests, whose results are shown in Figs 6 and 7. We first analyze the impact of increasing

the noise in the VIF function, mimicking the process that leads from the AA to the RA case. In

fact, the individual-based estimations of the VIF are characterized by a predefined level of

noise that is not present in the analytical VIF estimations. To this aim, we define three different

amplitudes for the noise-only signal, corresponding to the 5%, 10%, and 15%, respectively, of

Fig 5. Leakage (λ) practical identifiability for LTK model and Type I enhancement curve. Top row: profile likelihood and

confidence levels at 68%, 80%, and 95% for the parameter Kλ in the (AA), (RA), and (RR) case for the Type I enhancement curve.

Inset in the first subplot shows a zoom of the region around the best-fitted value l̂ (red marker). Bottom row: compensating profiles

of the parameters Ktrans, ve, and vp with respect to variation of λ around its best-fitted value. Variation of ±50% around the optimal

value of λ are considered. Two colors are for two different y-axis: black curves refer the left y-axis and red curves to the right y-axis.

Different line styles are used to distinguish curves referring to the same y-axis. For each curve, the name of the corresponding

parameter is indicated above the line in the same color.

https://doi.org/10.1371/journal.pcbi.1012106.g005
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Fig 6. Study on the noise effect on parameter practical identifiability in the LTK model. Top row: Artificial VIF obtained from the

analytical expression (Eq (3)) by adding a noisy signal with increased amplitudes. No noise VIF (first subplot) is the artificial VIF used in

the (AA) case, while 5%, 10%, and 15% noise VIF (second to fourth subplots) are obtained by adding noise to the noise-free VIF. Bottom

row: profile likelihood and confidence levels at 68%, 80%, and 95% for the parameter Ktrans for a Type I enhancement curve obtained by

repeating the study on Ktrans with the increasing noisy VIF illustrated in the top row. Red markers indicate the best-fitted value K̂ trans.

https://doi.org/10.1371/journal.pcbi.1012106.g006

Fig 7. Study on the smoothing effect on parameter practical identifiability for the LTK model. Top row: CA profile obtained from the

GBM data in a Type I enhancement curve by smoothing the data using a moving average method with different values of the smoothing

factor γ, i.e., γ = 0.05 (second column), γ = 0.1 (third column), and γ = 0.15 (fourth column). The original GBM data (first column) are the

same used in the (RR) case. Bottom row: profile likelihood and confidence levels at 68%, 80%, and 95% for the parameter Ktrans obtained by

repeating the study on Ktrans with the smoothed data illustrated in the top row.

https://doi.org/10.1371/journal.pcbi.1012106.g007
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the noise-free VIF at every element. These amplitudes allow to control the amount of noise.

Then, we define the noise-only signal in the form a standard normal distribution. Finally, we

add the noise-only signal adjusted with the corresponding amplitude to your original noise-

free VIF. This creates the noisy VIF used in the study. More details can be found in the avail-

able code. Fig 6 shows the results of this analysis for the parameter Ktrans and Type I time-

enhancement curve. Analogous results can be obtained for the other parameters and enhance-

ment profiles. The first column, the no noise case, replicates the same results shown in the first

column of Fig 4, i.e., the practical identifiability of Ktrans with a confidence level of 95%.

Increasing the noise in the VIF, up to 5%, we observe that Ktrans is still practically identifiable,

but with a lower confidence level (80%). Considering higher levels of noise of the VIF (10% or

15%), the practical identifiability of the parameter is no longer guaranteed, as the confidence

region bounds become no longer finite for the considered confidence levels. This supports the

conclusion that increasing noise in the VIF decreases the confidence level of parameter iden-

tifiability, justifying the differences in the results between (AA) and (RA) cases in Figs 4 and 5.

To analyze the influence of the noise in CA data on the parameter identifiability and, thus,

mimicking the process that leads from the RR to the RA case, we perform a second test based

on data smoothing. Starting from the CA time evolution data from the GBM dataset for a

Type I time-enhancement curve, we use a moving average method with different values for the

smoothing factor γ. Precisely, the method is based on the moving average technique that slides

a window along the data, computes the mean of the points inside of each window, and replaces

each data point with the average of the neighboring data points defined within the span. The

window size is fixed and heuristically determined by the algorithm depending on the input

data, while γ 2 [0, 1] adjusts the level of smoothing by scaling the window size. Values of γ
near 0 produce smaller moving window sizes, resulting in less smoothing, while values near 1

produce larger moving window sizes, resulting in more smoothing. Fig 7 summarizes the

results of this analysis. The first column, referring to the original GBM data, replicates the

same results shown in the last column of Fig 4, i.e., Ktrans is not practically identifiable, with an

almost flat profile likelihood. However, moving from left to right in Fig 7, the higher the value

of the smoothing factor γ, i.e., the smoother the data, the less flat the corresponding profile

likelihood. In particular, the last column of Fig 7, referring to γ = 0.15, shows the practical

identifiability of Ktrans can be recovered for the confidence level of 68%. We would not expect

to obtain a higher confidence level for Ktrans. These results justify the conclusion that high lev-

els of noise in the data decrease the confidence level of parameter identifiability, in line with

the previous shown results for RA and RR case in Figs 4 and 5.

4 Discussion

In this work, we have carried out a formal and in-depth study of the structural and practical

identifiability of a well-known class of transport models widely used for the analysis of

DCE-MRI data, with the aim of showing the impact of specific data characteristics on intrinsic

features of these models. We focused on the LTK model, which accounts for the different

aspects that are separately included in other members of the nested family of compartmental

models under investigation. However, analysis for the entire nested family has been also car-

ried out and the corresponding results are shown in the S1 Text.

In Sections 3.1 and S1.1 Text, we analyzed structural model identifiability, showing how in

all PM, TK, eTK, and LTK models it is possible to define a unique parametrization that identi-

fies the parameters through the given inputs, i.e., CA concentration Ct(t) and vascular input

function VIF. As a matter of completeness, in S2 Text, we also described an additional trans-

port model of the same class—namely the mLTK model—which is not structurally identifiable,
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but for which a structurally identifiable reparametrization can be defined. Then, in Section 3.2

and S1.2 Text, we used the method based on profile likelihood and confidence intervals to

study practical identifiability of the nested family of models in three different scenarios,

accounting for different levels of noise and construction of the data, and for different CA time-

enhancement profiles. In fact, studying the practical identifiability of a model with respect to

the data at hand is crucial for ensuring well-determined model predictions, as these are often

used in systems biology research and quantitative image analysis.

The obtained results show how the entire class of transport models for DCE-MRI analysis,

from PM to LTK, is structurally identifiable, i.e., they have an intrinsic mathematical structure

that allows for a unique identification of the parameters and, thus, reproducible and accurate

outcomes. However, practically this would happen only in the ideal case of dealing with a very

large amount of data with zero noise. Our findings for both the LTK model (discussed in Sec-

tion 3.2) and the nested PM, TK, and eTK models (discussed in S1.2 Text) reveal how practical

parameter and, thus, model identifiability is affected by the quality of the data: the more noisy

the data and/or the individual-based VIF function, the lower the confidence levels of identifia-

bility of the different parameters. This is evident from the change in the shape of the profile

likelihood transforming from a parabola-like shape in the (AA) case to a flat shape in the (RR)

case, shown in Figs 4 and 5, and A (in S1.2 Text) for Type I contrast enhancement curve. The

same changes in the profile likelihood shapes are observed for Type II (Fig A in S3 Text) and

Type III (Fig B in S3 Text) contrast enhancement curves. These results support the observation

that model identifiability is not attributed to a specific contrast agent dynamic, but rather to

the characteristics of the data from which the enhancement curves are obtained. Moreover, the

further analysis concerning the impact of noise and data smoothness on model identifiability,

whose results are summarized in Figs 6 and 7, show how modifying the data directly affects on

the profile likelihood shape (from a parabola to a flat profile and vice versa). In fact, results

highlights how reducing the VIF noise or obtaining smoother data profiles (e.g. with higher

temporal resolution) allows for recovery of parameter identifiability and, thus, increasing the

reliability of the derived parameter values. Concerning limitations, all our results have been

obtained using a global optimization procedure, which is based on a fixed discrete sampling of

the parameter space and does not work perfectly with respect to real-world noisy data. Thus,

possible extensions of this work might focus on comparing the performances of different opti-

mizes, either in terms of parameter estimations, by varying the sampling frequency in parame-

ter space, or algorithm efficiency.

The analysis proposed here is of significant importance considering the wide use of

DCE-MRI data in research [10, 57] and, thus, the need for ensuring reliability and reproduc-

ibility of transport model results [58]. DCE-MRI has been shown to be associated with tumor

angiogenesis and may be used to assess glioma grading [59–64], predict genetic mutation sta-

tus of brain tumors [65–67], distinguish pseudoprogression from true progression in glioblas-

tomas [68, 69], and predict response to antiangiogenic treatment [70]. The parameter Ktrans, in

fact, as a marker for tumor microvascular permeability from DCE analysis, could help to pre-

dict treatment response in glioblastoma [71]. Moreover, DCE-MRI parameters in a breast can-

cer study have been reported to be associated with microvessel density which is a marker for

angiogenesis [72]. However, variability in DCE acquisition (e.g. in scan duration) and imaging

analysis with various transport models may produce diverging results, which makes repeatabil-

ity a challenging issue and hinders its wider adaptation for both clinical practice and research

[58, 73]. Prospective longitudinal clinical trials, preferably in a multicenter setting with stan-

dardized imaging techniques and quantification of DCE parameters, are needed to validate the

utility of transport parameters as imaging biomarkers for treatment response and survival

prediction.

PLOS COMPUTATIONAL BIOLOGY Identifiability analysis of contrast transport models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012106 May 15, 2024 17 / 22

https://doi.org/10.1371/journal.pcbi.1012106


In this light, understanding model and data issues and limitations allows for a more con-

scious use of the results obtainable with them. Our results provide a mathematical explanation

for the lack of repeatability of DCE-MRI quantification between clinical sites, as it has been

previously reported [74]. As we have shown that practical identifiability improves with increas-

ing SNR, we emphasize the need for image acquisition standards to increase the quality of

imaging data and therefore reliability of parameter estimations such as the standards proposed

by the Quantitative Imaging Biomarkers Alliance (QIBA) [75]. As DCE-MRI acquisition pro-

tocols and quantification methods continue to rapidly develop [76], it is important to ensure

rigor in model fitting and analysis.
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