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li,INTRODUCTION '
| In a previous paper [1]1, the author proposed a model fbr the
study of the recoverability of processes under the occurrence of failures. The
present paper improves the'resu1ts of the past paber. An exhaustive analysis
of the states, and trqnsitioﬁs between states (the TM of [1]) of a prpcéss is
is presented. A way of designing a Petri net, given the possible stateﬁ and
transitions in the system; is presented in section 2.

| Sectibn 3 presenté a study of the properties of a system whéh’ ‘
a fai]gré of type "1055 of token" occur. The general structure of a process,
in order to be recoverabie from that kind of failures, is giveh. This’work
shows:a.way'of designing recoverable processes. '

The processes studied in this paper are characterized by a Tlack

. of knowledge about the execution times of its parts. No assumption is made

about the times expehded by the events when they occur, or the relation between

these times.

! The contents of this work is a natural continuation of [1].

This. paper assumes that the reader is familiar with the concepts presented in [1].

The same definitions and notations are used.




- 2.1-

.2. THE PETRIlNET OF A GIVEN TOKEN MACHINE
[1] shows the importance of the Tokeh Machine (TM),‘ahd:itS'generalization
the ETM, in the algorithms that test if a process is recoverable uﬁder a given- .
failure.. This means that, for a better understand1ng of recoverab111ty, the proper-
ties Of the TM have to be studied. | , , ,
 The TM is defined from the Petr1 Net [1] In this Section, the properties~w
of the TM are studied, and the problem ofconstruct1ng a Petri- net corresponding

to a given TM is analysed.

- 2.1_GENERAL EXPLANATION

4

'Figure 1 shows a ™. The,pfob]em is howAtd bui]d a Petri.net so.that fts
T™ is the éne shown in figure 1. | B
| We can assﬁhe that the set of "conditfons" (or “p]aces") is given by the
Boolean union of all the characters of the states' names in‘the TM; In the example: |
{su (A U B)U(C U A)u(C U D)U(C.U B)U(B UD)U(BUB) UC} f
= { 5,A,B,C,D } |

Each state iﬁ the TW1correspohds to a possible state in the Petri net.

Each arc in the T™™ correépond to a po;sib]e transition in the Petri net. This means fhat
for each arc in the TM'there'is a bar in thé Petri net that can carry out thi§ . |
transitfon.,For example, arc 6 in figure 1 représénts-a transition from state- CD
to state CB. That is:. =~ o

| CD > CB
Figure 2 shOWS‘tHe two'possib]e ways of implementing this transition in the Petri net:
Arc 5 represent the transitfon: |
BD ~ BB
Fig&re 3 shows the possib]ekbars corresbonding to this'transition.f
One of the bars of figure 2, and one of figure 3 must be in the:

Petri net . But, the same bar is in figure 2(b) and in figure 3(b). In this case,



Figure 1 A Token Machine (T™)



(a)

(b)




- (a)

(b)

Figure 3 The ‘Possib]e.Imp]ementatiOns of the Transition BD -~ BB
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only one bar is sufficient to execute the arcs 6Aand 5 of the TM.Thé other possibilities
"are also legal, but, -two bars are requifed. |

"The example above shéws that a TM can be implemented by different Petri nets,
.with diferent number of bars. The - 'Petri net with the minimal number of bars

that implement a given TM is called the Minimal Petri Net (MPN) of the TM.

Arc 2 (figure 1) represent the transition:
AB -~ AC

Figure 4 shows the possible bars corresponding to this transition.Note that the bar |

in figure 4(b) can fire each time that B has a token. The states BC, BD, BB‘ are

legal states 1n-the TM. In this case, the bar in figure 4(b) can fire also the
following transitions: - : 3
G CC
BD -~ CD
BB - CB
But, since in.the TM,there are not arcs corresponding.to these transitiohs, they are
not‘a110wed in the Petri net. It means, only the bar of figure 4(a) can be used to

implement the arc 2 of figure 1.

The example above shows, that in the implementatioﬁ of a.Petri net

corresponding to a TM thére>exists two problems:

1. the Petri net is not uniqué. |

2. it 1is necessary to prevent unallowed transitions that can appear as side

effects of the implementation of allowed arcs;v 4

Arc 2 (figure 1) is an example of this last problem. The only possible way of
preventing unallowed. transitions is tp add conditions to the input set of the
bars that executé the a]]owed*conditions. In figure 4(a), the firing from B to C
is Timited by the condition A; But, if this approach is adopted for all the transitions,
the number of bars will increase unnecessarily, as show in figures 2(a) and 3(a).

In this case,two bars are needed instead of one.




(a)

®

Figure 4 The Possible Implementations of the Transition AB + AC
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In the following Sections fhe construction of the Petri net of a given TM

is formally studied.

2.2  FORMAL DEFINITIONS

2.2.1

2.2.2

2.2.3

2.2.4

.2.2.5

2.2.6

A bag is similar to a set but allows multiple instances of the same element.
A bag is unofdered, as a set is. A'bag is derioted with brackets, that is .

B=[a?b,a] is the bag B of two'instances of a and one instance of b.

The Union of a bag (U bag) is the set of elements T used to form the bag.
Example: U B = U [é,b,a]_= Ea,b] ‘ '

b

bag; is contained in bag, (baQT < Bagz) if there is in bag, an instance

for each instance of the é]ements in bagz.

Example: [a,b,a,b,b,c] < [a,a;a,b,c,c,b,b,d]
Two bags are. equal (bagI = bagz) if:
bag, < bag, . IR

and _; »“ bag2 < bagT

The sum of two bags (bag] + bagz) is a bag>compose by all the instances in

bagy and in bag,. _ , _
Example: [a,b,a] + [a,b,c,b] = [a,a,a,b,c,b,b] '

The substraction of two bags (bag] - bagz) is bagsg so that:

bag3 + bag2 =bag].

We do not deal with "negative elements", so that this operation is defined

only when bag2 < bag].



2.2.7

' 2.2.9

2.2.8
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A tr@nsitionvis an ordered.tub]e of two.bags. It means, ALPHA and BETA
are bags, and: -
t = ALPHA ~ BETA" , _
then t fs a transition. The right and left part of t are given by the
functionstgﬂ§_and LHS. It is: |

1. LHS(t)

ALPHA

2. RHS(t) = BETA

The Remainer of a transition (RE(bag] > bagé)) is the bag3 with the

maximal number of 1nstances of the elements so that:
1. bag3 < bag] ; and | 3
2. bagé < bag2

The Minimum of a transition (MIN(f])) is a transition t,, so that if

t] = bag] - bag2 5 thenf
1. LHS(t]) = bag] - RE(t])

2< RHS(t]) bag., - RE(t])
Note that LHS(t]) and RHS(tZ) have no elements in common.

By definition, any transition t is:

t = kE(t) +;LHS(MIN(t)) > RE(t) + éHS(MIN(t)5

EXAMPLE: ~ :
arc 5 of figure 1 can be denoted by:
| ty = [B,D] -~ [B,B] then:
1. LHS(tS) = [B,D]
2 RHS(t5) = [B,B]
3 RE(t5) = [B]
4. MIN(t.) = [D] + [B]



T

2.2.10

2.2.11

2.2.12

$2.2.13

'bi to C.
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‘A-Petri net (PN) is a directed graph defined by the quadkuplet [B,C,A,So],

where: ‘
B =[by,... .sb.] is a finite set of transition bars
C=lcysees wsc ] is a finite set of conditions
B and C are the nodes of the PN
A = [a],ﬂ.. .,aq] is a finite set of directed arcs. Each arc conect
e1ther a cond1t1on to a bar or a bar to a cond1t1on.
S0 = bag ‘ the elements of S0 are elements from C. That means

U (SO) <C; Sq is the initial distribution of

tokens in the conditions.C.

The Input Conditions of a bar (IC(bi)) is defined as a bag:
IC(bi) = bagi

The elements of bagi belong to C, it means:
U (bagi) <C

bagi_include'an instance of‘cj (i = 1,2,.. ,n) for each arc which conect.

. ¢, to bi

J

The Qutput Conditions of a bar (OC(b.)) is defined as a bag:

OC(b ) = bag

The e]ements of bag belongs to C, it means:
U (bagi) < C

bag, include an instance of ¢ (3 = 1,2,.. ,n) for each arc which conect

J ¢

A Lega] State (S ) of the PN is e1ther the bag S or a bag that is a poss1b1e
result of the firing algorithm (2 2.14).
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The Firing Algorithm

A'bar’bi can fire if IC(bi) < Sj (Sj is a legal state). If by fires, a

token is removed from each condition in IC(bi), and a token is’p1aced'iﬁ

each in each condition of OC(b%). THe new distribution of the tokens
.defines a new legal state SkL
Following the definitions, the new state is:

S = Sy = I6(by) -+ oc(by)

2.2.15 A Token Machine (TM) of a PN is defined as a tuple [S,T], where:

S = [S585500 +5...] (s @ §g§_of bags. S; belongs to S if and on]y: '
' - if Si is a Tegal state of the PN. S may be

finite or infinite, depending on the PN.

T = [t],tz, ..... ] 1is a set of transitions of the form

‘tk = Si - Sj . tk’belongs to T if and onle
Jif in state Si a ‘bar can fire bringing the

PN to the state Sj.

2.2.16 A live PN is a PN thaf:
1. fpr each'ci in C exist at least one element in S in which
¢, is included and
'2. for each bar b in‘B exist ét least one state in S in which

bi can fire.

2.3 FORMAL ANALYSIS
| Suppose that a finite TM is giVen. The problem is to find a PN so
that its TM is the given one. We Timit our work to Tlive PN's (definition 2.2.16).

Since the PN is 1live, each of its conditions is represented at
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least in bne-of the states of the TM.:In this_case, the set of conditions of the PN

is given by:

_ Now, it is necessary to find the set of bars and the set of ‘arcs,
so that: | |
1. A1l the transitions of T are implemented.
2. Only the transitions of T are imp]emenfed.

The following theorems will help to attain this goal.

2.3.1 THEOREM

If exist a transition t; = S, - S; so that MIN(t;) = a > b

. and a bar be so that:

1. IC(b,) = a + x ' (x is a bag)

b+ x-

2. QC(be)
3. Xx < RE(t) .

then, t1 is executed by b].

PROOF :

By definition 2.2.9:

{ : Si

33

Since is given that x < RE(t;) then from (2.3.1:1):

a+RE(t) (2.3.1.1)
b + RE(t]) (2.3.].2)

a + X< Si.
‘and: IC(be) < Si
By definition of the firing algorithm (2.2.14), in state S; the bar b, can

fire and the new state is:

Sk = Si - IC(be) + OC(be)




2.3.2

° }

e

THEOREM

-28-

and after replacement of IC(be) and OC(bé) from the conditions of the
theorem, and S, from (2.3.1.1): .

S, =a*tRE(t;) -a-x+b+x=b+RE(t) . (2.3.1.3)
Comparing'(2.3.1.2) and (2.3.1;3): |

A

Q.E.D.

If there is one transition t; =S, -+ Sj S0 that'MIN(t]) =a-+b,

there is not another transition t, so that MIN(t]) = MIN(tZ) and =
: : i

LHS(t,) = S, .

PROOF :

If, b =555 exi;ts

and: MIN(t)-=a~>b then
by definition (2.2.9): RE(t;) =S, - a -
Cand: S;=b+RE(t)) =S, +b-a - C(2.3.2.1)

Suppose that there gxiétﬁf >té =S, > Sk

and: _ MIN(t-I) =a->b then

By definition (2.2.9): RE(t;) = S5 - a

and | Sk,= b - RE(tZ) = Si +b-a | (2.3.2.2)
Comparing (2.3.2.1) and (2.3.2.2):

thus: - ty =t
This means, t; and t, are the same transition.

Q.E.D.



2.3.3

2.3.4

THEOREM

If the transition te = S; > Sy is executed by the bar b, then:
(1) IC(be) < S_i

(2) S; = S5

- IC(b,) + OC(bé)‘

PROOF:

(1) If t is executed by be; then the firing algorithm (2.2.14) have to be
applied to S; for the bar b,. It means: |

IC(be) < S%

(2) After b, fires in state S;» the new has to be the new state in
the firing algorithm: f . |
S; = S; - IC(by) + occbe)lh

THEOREM '

If the transition tk = Si > Sj is executed by the bar be then:
(1) $; - RE(tk) < IC(be)
(2) Sj - RE(tk) < OC(be)

PROOF :

From theorem (2.3.3) .

. Sj = S_i - IC(be) + OC(be)
or: Sj + IC(be) = Si + OC(be)' (2.314.I) 5
If we denote LHS(MIN(tk)) = a and RHS(MIN(tk)) = b, then by definition (2.2.9):
S; = a +RE(t,) ’ _ | - (2.3.4.2)
and: Sj =b + RE(tk) B (2.3.4.3)

replacing (2.3.4.2) and (2.3.4.3) in (2.3.4.1) yields:
b + RE(tk) + IC(be) =a + RE(tk) + OC(be)
and this means that:

b + IC(b,) = a + 0C(b,)
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But, by definition 2.2.9 a and b have no common. elements. So that; all
" the e]ements,of'i a - hqye to be.inc]uded in {C(be), and ai]:th;“é?eaéhts Of‘
b in OC(be). It means: . | | - o

a < IC(be)
and: b < OC(be)
and replacing a and b from (2.3.4.2) and (2.3.4.3) then:

S; - RE(t}) < IC(b,)
and: S5 - RE(ty) < 0¢(b,)

1 Q.E.D.

THEOREM

If transitipns ty =85S and  t, = Sip > sz are implemented

Jl
by the same bar (say be), then MIN(t]) = MIN(tZ).
PROOF:
Suppose that: MIN(t]) = ay > b]
and: MIN(tZ) = a, > b2-

If transition t] is executed by the bar be’ then by theorem 2.3.4:

| Si] - RE(t]) < IC(be)
This means; that there exists a bag X1 such that:

IC(be)'= Si] - RE(t]).+ X7 ' (2.3.5.])

Thds from theorem 2.3.3 and. replacement of IC(be):

0C(bg) = S5y = S4q + Ic(b,) = Sgp - Sip * Sqp - RE(E) + xg

L 0clby) = Sy - RE(E) + x, o (2.3.5.2)
and by definition 2.2,9:

Sy - RE(t) = g (2.3.5.3)

1 RE(t7) = by | | | (2.3.5.4)
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Replacing (2.3.5:3) in (2.3.5.1) and (2.3.5.4) in (2.3.5.2)3

IC(be) At Xy

and: 'OC(be)_— b] t Xy

In the same way for transition tzt ‘

‘IC(be)

a] + x] o+ x2

4

+ X

1 2

OC(be) b] + X =.b o

By the definition of equality, it means:

ap F X <2y X
and; b] + x]'< b2 + x2.
This means that:

X1 kaz + Xy

and: xl_-<b2 + x2

(2.3.5.5)

~ (2.3.5.6)

‘But, by the defintion of MIN(t,) (definition 2.2.9) a, and bzihave no common

elements. This means thaf no e]eménts of xj éré included in thh, 32 énd b2,

Thus, Xy {s inc]&ded in Xos OF in other words:

X-l <X2

But, from equations (2.3.5.5) and (2.3.5.6) in the same way:

Xp < Xy

so.that, from the definition of equality (2.2.4):

Xy = X
and from (2.3.5.5) and (2.3.5.6) then:

a1 = 3

and: b] = b2

q.E.D.



2.3.6 DISCUSSION

From theorem 2.3.5, 1t furns out that transitions with different
"minimal transition" must be 1mp1emented by different bars. Thig mééns'that:tﬁe
set of transitions can be divided ihto different groups, each group havin§ the same
minimal transition. Each group is implemented independent]y @f the others.
Suppose the members of a group are:
t, =S, -8, ; (p=1,2,... .r) then
and the minimal transition for all the members of the group is:
MIN(tklp) —as+b g (p=1,z,.._.' r) | .

Theorem 2.3.1 shows that each member of this group can be implemented by a bar bp

thus: =
1. IC(bp) =a + xp . (2.3.6.1) .
Z. = + .3.6. '
OCKbp) b Xp . (2.3.6.2)
3. %, <RE(tkp) ) (2.3.6.3)

Theorem_2.3.4 shows that this is the“oﬁ]y way to implement them. As shoth’f“f
above, there is a bergé{ﬁ freedom in the election of the xp. . This means tH%%i ‘
the members of each group can be implemented in different. ways, leading to-'-WVM
different PN's. The same xp can be chosen for different transitions (in the same
group). In this case, the same bar executes several transitions. In general, the
number of»bars that implement the group is equal to the number of different xp's
chosen for this group. A trivial case is:

X, = ] 3 (p=1,2,..... r)

then, the entire group is 1mp1emented by only one bar.

At this point, we know how to implement all the transitions

corresponding to a certain group. The remaining problem is to implement only the



transitions existing in the given TM. After an xp is chosen for.equations (2.3.6.1),
(2.3.6.2) and (2.3.6:3), by definition of the firing algorithm, bar{bp can fire-in
all the states Si that: | ' ‘ |
IC(bp) < S5

By theorem 2.3.5, all the transitions executed by bp heve the same minimum:

a—>b
and by theorem 2.3.2, in each state Si can be only one transition with minimal:
a->b. Thue, when the machine 1S<in state S , then bp w1]1 execute only 1ega1
transitions, and when the mach1ne is in the state:

S, (k # 1 ) 3 (p=1,2,..... r)
if bp fires, 1t will execute an illegal transition. So?,iﬁ order to brevent-iTlegai
transitions, Xp has to satisfy the cond1t1on '

IC(bp) =3 + Xpeﬁf Sk ; for all Sk_# 81.p (2.3.6.4)
(Note: x < y means x is not included in y or, a]ternati?e]y, it is not true that

X <y) .
In order to implement gll_the transitions of the group, and only all

the transitions of this group, it is necessary to find a set [xq], subset of the
bag [xp], so that:

vy 3 X < RE(t, (2.3.6.5)

, )
P¥q g '

and 4 Vq ¥, | (k # ip) => g + xq-‘4 Sk : (2.3.6.6) .
Note that it is enough to check (2.3.6.6) for the states Sk that include a. If

Sk-does not include a, (2.3.6.6) is satisfied independently on xq.

In general, the following cases may exist: 4
1. Only one set [xq] that satisfies (2.3.6.5) and (2.3.6.6). 1In this
case, there exists only one PN corresponding to the given TM.

- 2. Several sets [xq] that satisfy (2.3.6.5) and (2.3.6.6). In this case,
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there exists several PN's éorrespondfng to the given TM.

There are no [xq] thdt_satiéfy also (2.3.6.5) and (2:3}676). IhAfhis
case, there is not a PM corresponding to the giveanM.' Note that thére
not e%{ts a set [xq] that;éfisfy (2.3.6;5) and (2:3.6.6) 1f‘and only

if there is a state Sy 5(k #'ip) included in a state S; -

The two following theorems proof this statement. P |
2.3.7 THEQREM .
If: Vp ¥k (k # 1p) => Si f/ Sk ' (2.3.7.1)7

P

then exist at Teast one set [xq] that satisfy (2.3.6.5) and (2.3.6.6)
PROOF : -

Suppose that the elements of [xq] are chosen such that:

(2.3.7.2)
THEN: _ - |
(1) by defjnition, the eiements of Xq satisf} ké;3;é.5)
(2) but, by (2.3.7.2): |
q=p
and: S o : | -

a + Xq = @ + X, f a+ RE(tkp) = S1.p o

and replacing S_i in (2.3.7.1) then the result is (2.3.6;6). Q.E.D.

P

' 2.3.8 THEOREM

If there exists at least on k, (k #.jp),.such that for somq'iﬁ;

ﬁhen, there does not exist a set [xq] such that the conditions (2.3.6.5) and -

{2.3.6.6) are satisfied.
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PROOF:

Suppose that exist an element of k, say ki, such that:

S. < S (2.3.8.1)

1p1 k1 -

Suppose that there exist a set Exq] such that (2.3.6.5) and (2.3.6.6)

are satisfied. Applying (2.3.6.6) for k1 and for pl the result-is:

¥q (k1 # ipj) = a’+ xq_ 7 Siq

But, since ki f'ipl is "True", then it is also true that

¥q a + xq: 4 Sk]

If, for all a, Sk]'does not include a + xq, then since Si is included N

pl, |
in Sk] (2.3.8.1) there exists:
| ¥qg a+ x_. 4. S,
o b1
This means that:
Vg - x_. ¢S, -a - (2.3.8.2).
q- 1 |
pl -
Since by definition 2.2.9: °
Si -a= RE('c‘< ) (2.3.8.3)
pl "pl
Replacing (2.3.8.3) in (2.3.8.2), there exist that:
¥q xq. < RE(tk ) : (2.3.8.4)

pl

But (2.3.8.4) contradicts (2.3.6.5). Therefore, set Exq] does. not exist. QuE.D.



2.4 EXAMPLES

The previous theorems (2.3.7 and 2.3.8) gives the neéessary and
sufffcient conditions so that a group of transitions can be implemented. Thus'the
‘Tm can be impiemented by a PN, if and only if all of its groups can be implemented.

Depending in the properties wanted in the PN (minimal number of
bars, some special configuration, etc.), there exists several algorithms to choose the
elements of .the sets [xq] (when sugh - sets exist). One possibility, as shown in
theorem 2.3.7, is to choose xq = xp.= RE(tkp) . But, this solution gives a ]arge
number of bars, In the following examples, some possibilities are shown.-*

(1) Fifst, the implementation of the TM of figure 1 is shown. The

groups of transitions. are shown in table 1.

TABLE 1
group mimimal transition RE(t)
transition
B ' S ~ AB S > AB 9
2 B~C AB ~ AC A
3 A-D AB ~ BD B
T AC -~ CD c
4 D+~B DB -+ BB B
' DC - BC C
5 BB -+ C | BB+ C p
For group 1:

1c(b') = [S] + x
since no states outside the group include S, x=f is chosen. Then:
1c(b') = [s]

[A,B]

oc(b)



Figure 5 A PN that Implement the TM of Figure 1 . "
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For group 2:
1¢(b?) = [B] + x

The states outside the group that include B are: BD, BB, BC.

If x = [A] , conditions (2.3.6.5) and (2.3.6.6) are satisfied. Thus:
1c(b%) = [A,B]
| 0c(b%) = [A,C]-
For'groug 3:
1c(b%) = [A] + x
- Since no states outside the group include A, x = @ is chosen.Then: |
c(v’) = (Al |
0c(b%) = D]

Also for groups 4 and 5 , x = @ is chosen in the same way.
The corresponding PN is shown in figure 5.

(2) 1In the following example we will try implementing a PN that

has the TM shown in figure 6. The groups of transitions are given-in table 2.

Group

TABLE 2
minimal ' transition RE(t)
A~B A+ B ’ ]
A +C A-C @
B -+ CD B+ CD 1]
C -~ BE C - BE [/}
C-+E CD - ED D
B~+D BE > DE E
DE -~ F DE > F i
6y _
For group 6: Ic(b”) = [B] + x

and: .- X < E

(



Figure 6 A Token Machine (TM)




It means, x is or 9§ or E. But B is a legal state, outside the group 6. Theorem

2.3.8 shows fhat this case is impossible to implement.since group 6 is 1mp]emented'

by:

[B,E] |

(these are the only possibilities), it also will implement a transition from B to

| 1¢(b°)
or: : 1c(b%)

D, and this is a:. transition that does not-exist in the TM.



3. THE TM AND THE LOSS OF A TOKEN.

In this section, the structuré of the TM's which are recoverable
from a failure of type "loss of a foken" is studied. The results of this section
yields a better underétanding of the concept "recoverable", and the design of
recoverable processes. Note that if the TM of a recoverable process is designed,
then the structure of the process can be found (in terms of a PN), using the
tools developed in section 2. |
This work déa]s only with failures of type "loss of a token", as
defined in [1]. The same ideas are applicable to othér kinds of failures.
| In [1], the definition of "legal states" of a process 1s-given as
the states of the correspondent TM. "I]]éga] states" are defined as the states,
different of the legal states, in which the PN can be after the occurrence of a
failure. In [1], it is also pointed out that a PN with finite TM is recoverable
from a given failure if: - o
1. the number of illegal states is finite,
2, there are no terminal illegal states, and
3. there are no directed Toops including only illegal states. ‘
The fo]]ow{ng sections examine how these conditions a;é ;ef]éctedr
in the TM, and what is the general structure of the TM such that the conditions’
are satisfied.- ‘ |

|

3.1 The states after a fdilure

In this section, thé possible illegal states are examined. The
set of all the possible illegal states after the occurrence of a failure (of type

"loss of token") is found.

3.1.1 Definitions and properties

We suppose that F is the name of the failing condition. This means, &



- 3.2 -

token in F may disapear. The set S of all the states in the TM are divided in

two groups:

1ost=0s; | s, ¢ Fl
2 _re
2, §° = [Si -|, S; . < F]
By definition, S1 and S2 have no common elements, and:
s=s!+s?

2

A failure can occur only when the TM is in one of the states of the set S°. In the

states of S], F does not exist (does not hold tdkens), so that it can not loss one.

In order to sinp]ify‘the notation, the two following definitions
are.introduced: ' : ' o e
1. Ai is defined as: | -
i i o .
The sfates-df the set 52 can be denoted as:
,S§ %'Ai_+ F,‘A |
2. The function #(a,bagl) is defined as the number of instances of the

elements a in the bég bagi.v

The transitions exiting from the states S? can be divided into the

three following groups: . ) \
| |
!

1.2 1
1. t, = Si—osj
s 422282 . 2 . : , o
et =Sy ~»sj » and if t, is executed by the bar b, then
#(F,55) = #(F,IC(b,))
3. ¢2 0c2 . | . ' . 3
3.t =S5 mwsj ; and there exists a bar b, that execute t, such that



2 .
#(F,s5) > #(F,Ic(b,))

For ti and tg, the relation between the number of instances of F in the -

initial state and in the input conditions of the bar that executes the
transition is given éxp]icit]y by the definitions above. As shown in the

following, for tl, this re]afjon;js given'img]icitly by its definition.

e e o g e B S

~ R — ot pa—— S Sec

By definition, F is not included in S; . By definitions 2.2.8 and 2.2.9,
ifs’ 1

1
ty

= g2l
i %

then; -

#(F,sf) = #(F,LHS(MIN(tl)))

éhd 1f.tl is implement by bar be’ from theorem 2.3.4(1) and definition 2.2.14: .

. 1 2
LHS(MIN(tk)) < IC(be) < Si

so that: #(F,S5) = #(F,IC(b,)) - (3.1.1.1)

3.1.2 The possible states after a failure

Suppose that the TM is in state S? = A.i + F. If while in th{é N
state a failure occurs, then TM will go fo state Ai' In the following steps, we
assume that the PN is in state Ai" and , the barsvthat can fire in this situation
will be studied. When the machine is in state Ai + F then the set of all the bars

are divided in four exclusive groups:
1, b]; bars that fire transitions of type t];

2, b2; bars that fire transitions of type ti,

3. b3; bars that fire transitions of type tg and

4

4. b ; bars that can not fire

Camlh ooam om0 . P " v g e wmm e




3.1.2.1 THEOREM

Bars of type b' can not fire in state Ai“

" PROOF:
Suppose that bl is a bar of type b]. (3.1.1.1) shows thét:

#(F,A; + F) = #(F,IC(b)))

\,

It means, in Ai there are leés instances of F than in IC(bl).- Ih other words:

IG(bl)_ y A%

1

and this contradict the firing algorithm in 2.2.14, so that be

1

can not fire in Ai'

and thus not for any b

3.1.2.2 THEOREM‘ |

Bars of type b canuggg_fire in state Ay
PROOF: | .
Suppose that bg is a bar of tybe b2. Following the definition of

transitions of type tﬁ (section 3.1.1): .
#(F,A; + F) = #(F,IC(b2))

and then the proof continues as in the pfévious‘theorem:‘

3.1.2.3 THEOREM

Bars of type b3 can fire in state Ai'
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PROOF :

Supposé that bg'is a ‘bar of type b3. If bg can fire in Ai + F . then:
3
o)

IC(b)) < A, +F - (3.1.2.3.1)

But by definitioh'of transitions of type ti the number of instances of F in

A; + F is greater than those instances in IC(bg). This means that the number of

instances of F in A; s equal or greater than those instances in IC(bS). But, by
(3.1.2.3.1), the instances of the other elements of Ai are also included in IC(bg),
thus |

and the firing algorithm can be applied.

3.1.2.4 THEOREM
Bars of type b* can not fire in statevAi.

PROOF: |
4 . 4 s 4 . .-
Suppose that be is a bar of type b'. By definition, be can not fire in

Ai + F. It means, the firing algorithm can not be applied. The firing algorithm
can not be applied only if:: ,

o 4 _
IC(be) </ A; + F

but: Ay <Ay + F

. 4
.Theni' IC(be) < A;

a

and the firing algorithm also can not be applied for bg in state Ai and thus

not for any b4.

Since b3 has been shown to be the only type of bar that can fire in Ai’
we will now consider some properties of transition executed by b3

3.1.2.5 THEOREM

If bar bg,Aof type b3, implements the transition:

3 _ .
) = A+ Fohy 4 F

R
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3 _
ty = Ay > Ay

PROOF:

By theorem 2.3.3(2), if bz implements the transition_tf thenr

o 3 3
Ay + F = A+ F - IC(b3) + 0c(bY)
or: . A, = A, - IC(b3) + 0C(bS) | (3.1.2.5.1)
. . 2 . ] e . e . 3 [3 . [

But by theorem 3.71.2.3, bg can also fire:in state A]. Subpose that in state A] s
bg_executes the “transition:

1755

Then, by theorem 2.3.3(2):

S, = A 3) +oc?) o (3.1.2.5.2)

j 1" IC(b

Comparing (3.1.2.5.1) and (3.1.2.5.2):

S. = A

;=A QE.D.

3.1.2.6 THEOREM _ ‘
If A], A2 and'A] + F are legal states in a TM, and if there exists a

t. = A] > A

i 2
‘then there also exits CE o
- ot = A FF oA+ F
PROOF: -
If: ' s ti = A] > A2 -
then there exists a bar be’ and by theorem 2.3.3: ,
IC(b,) < A o - (3.1.2.6.1)
and: | A2 = A] - IC(be) + OC(be) (3.1.2.6.2)

Since (3.1.2.6.1) also exist.
IC(be). < Aj tF |
This means that the firing algorithm can be:applied-for bar bé in State?A] + F:

tj‘= A] + F » Sj
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but, by the firing algorithm:

Sj = A] + F - IC(be) +50C(be) (3.1.2.6.3)

Comparing (3.1.2.6.3) and (3.1.2.6.2):

S;= A, *F

From (3.1.2.6.2):

F(F,10(by)) < #(F.A;)

or: #(F,IC(be)) < #(F,A] + F)
and by definition, the transition tj:.
tj = A] + F > A2 + F |
is of type ti. ‘ ‘ Q.E.D.

3.1.2.7 DISCUSSION

| The previous theorems show that,after a failure the PN can execute
only transitions implemented by the bars of the group b3, corresponding to
transitions of the group'ti.-
If: ot = A HF A, T
it was shown (theorem 3.1.2.5) that there exits the transition:

A, > A

1 2 ,
Theorem 3.1.2.6 shows that all the transitions from AT have a correspondent ti

transition from A] +.F . This means that there is one-to-one correspondence between gll_‘
the transitions from,A] and all the transitioné of type ti from A] + F. The same
properties hold for.all the states Ai' _ | '

After the transition from A1 the PN is in state Az..But,
the machine can arrive to A2 also if the PN is 1in state A2~+ F and then -there occurs the
failure. This means that the previous theorems,arezappiiabJe when the PN is 1n.A2. Ih
other wofdé, from A2 exits only transitions corresponding to- the transitiohs'of type
ti exiting from A2 + F. Thus; after the ocurrence of a failure the PN execute

only transitions between the states of the group Ai' This procedure can be
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continued until:
1. either it arrives to a Ai’ that correspond tu a lcgai state Ai + F that
does not have exiting transitions of type ti. In this case, there are

no transitions exiting from Ai' Ai is a terminal state.
2. or a loop of states Ai (k= 1,2,...,r) is executed. This loop corresponds
' k
to a Toop of transitions of type tg between the states Ai + F.
k

3.2 The structure of the recoverab]é TM'S"

o

As shown in reference [ 1], the conditions for recoverability are:

Q ].; the numbér of 111e§a] states is fihife, | |
2. there are no terminal illegal state; and
3. there are no directed loops including only illegal étates.

The previous section shows that after the occurrence of a failure
the illegal states are Ai’ corresponding td Tegal stateS'Ai + F. Since thjs
work deals only with finite TM's, the number of legal states is finite. It
means the number of illegal states (the number of different Ai) is also
finite;- Condition (1)-of recoverabi]it} is always satisfied for tHe:ca§e—6f -
"loss of a token." : R | |

In order to satisfy condition.(2), all the terminal states have

to be legal. This.implies that if Ai + F is a legal state, and there are no

transitions of type ti exiting from Ai + F, then, Ai has to be'a Tegal state.
Condition (3) for recoverability points out that Toops of only
illegal states are not allowed. If, in the TM, there exists loops of étates

Ai + F, connected by transitions of type ti, then, after a failure, there

exists corresponding Toops of states Ai' In order to satisfy condition 3, ' _
b at least one of the Ai states of each loop has to be a legal state. But, |

if a state is legal, all the successors of this state aré legal
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(definition 2.2.13 and 2.2.14). Thus, all the loops of states Ai’ connected
by traﬁéitions of type ti have to be ]egal and the successors of the states
Ai in the loop afe also legal.
By definjtion, the difference between ti ahd tg is given by-

the imb]ementation, that is, by theAnumber of instances of F in IC(b). But
fﬁom the properties of the TM it is possible, for certain cases, to distinguish
between them directly from the TM. The following properties are derived from
the theorms and definitions in the previous sections:

1. If A1, A2 and A] + F are Tegal states,‘and if exist ti = A] - A2,

then there exists a tj = Ai + F > A2 + F, and tj is of type tg

(this property is proved in theorem 3,1.2,6)

2. If there exists a transition tj = A] + F > A2 + F, and'if A] is also

a legal state, and the transition A].+ A2 does not exist, then, tj-is

a transition of type ti.

(this property can be proved from the theorems of section 2 and definition
of transitions of type tE.)

3. If there exists a transition ij =Ap+F> A, +F, and if Ai is not a
Tega] state, then transition tj can be imp]ementedlas either of type
ti or tio ' .
(this property can be proved from the theorems of section 2 and definitions

of transitions of type ti and tg )

The previous properties show that the decision of whether a transition is

ti or ti may be made, in part, by the designer of the system.
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3.2.1 RECAPITULATION

A finite TM is recoverable under-a loss of a token from condition

F if and only if:

. PR
1. if Ai + F is a legal state without exiting transitions of type tk’ then
Ai is a legal state in the TM.
2. if A, + F (j=1,2...,r) are legal states connected in a directed loop
T . .
J A
- .3
by transitions of type ti, and exist a path of transition of type tk from -

the states Ai to the states Ai + F (w=r+1,r+2,....,p), then, the states
J : W

A, (§=1,2,..... p) are legal states.

As shown above, exist a one to one correspondence between all the transitions from

the states A;  and the transitions‘ti from the A;  + F states.
i i

3.2.2 EXAMPLES
Figure 7 shows an example of a TM. The TM -has no lToops of states
including F. From state FC there does not exist transitions to other states that include

i. -In other words the

F. Thus, there does not exiét exit transitions from FC of type t
™ is reCOverab]e'if C is ‘a“terminal:state.-:Figure 8 shows the corresponding PN. The
PN was constructed using the tools developed in-section 2. in order to demonstrate
the existence of recoverability, figure 9 shows the corresponding ETM (%he ET™M
is defined in reference [1]). - - E

Figure 10 shows an example of a TM with loops of transitions of
type ti. The TM is recoverable. The corresponding PN fs shown in figure 11.

Figure 12 shows other example of recoverable TM. Figure 13 shows

the corresponding PN, and figure 14 shows the ETM.
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Figure 7 A Recoverable TM
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Figure 8 A PN for the TM of Figure 7



Figure 9 The ETM for the PN of Figure 8




Figure -]O A Recoverable TM




Figure 11 A PN for the TM of Figure 10
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- Figure 12 A Recoverable TM




Figure 13 A PN for the TM of Figure 12




Figure 14 The ETM of the PN of Figure 13

o
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Compare figures 10 and 12. The left Toop in both TM's
are equal. But, the transitions are tg or’tE depending in the other states-

(states Ai) of the system.
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