
UC Irvine
ICS Technical Reports

Title
A Study On Recoverability Of Processes

Permalink
https://escholarship.org/uc/item/3hw4g6s1

Author
Merlin, Philip M.

Publication Date
1974

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3hw4g6s1
https://escholarship.org
http://www.cdlib.org/

A STUDY

ON RECOVERABILITY OF PROCESSES

Philip M. Merlin

Technical Report #47

April 1974

Notice; This Material
may be protected
by Copyright Law
(Title 17 u.S.C)

Department of Information and Computer Science
University of California, Irvine

This work was supported by the National Science Foundation under
Grant GJ-1045.

ACKNOWLEDGEMENT

I would like to express my sincere thanks to Professor David J. Farber
for his excellent support and guidance.

1.1 -

1. INTRODUCTION

In a previous paper [1], the author proposed a model for the

study of the recoverability of processes under the occurrence of failures. The

present paper improves the results of the past paper. An exhaustive analysis

of the states, and transitions between states (the TM of [1]) of a prpcess is

is presented. A way of designing a Petri net, given the possible states and !

transitions in the system, is presented in section 2.

Section 3 presents a study of the properties of a system when

a failure of type "loss of token" occur. The general structure of a process,

in order to be recoverable from that kind of failures, is given. This work

shows a way of designing recoverable processes.

The processes studied in this paper are characterized by a lack

of knowledge about the execution times of its parts. No assumption is made

about the times expended by the events when they occur, or the relation between

these times.

^ The contents of this work is a natural continuation of [1].

This paper assumes that the reader is familiar with the concepts presented in [1].

The same definitions and notations are used.

- 2.1- • • .

2. THE PETRI NET OF A GIVEN TOKEN MACHINE

[1] shows the importance of the Token Machine (TM), and its generalization

the ETM, in the algorithms that test if a process is recoverable under a given

failure.. This means that, for a better understanding of recoverability, the proper

ties of the TM have to be studied.

The TM is defined from the Petri Net [1]. In this Section, the properties

of the TM are studied, and the problem of constructing a Petri net corresponding

to a given TM is analysed.

2.1 GENERAL EXPLANATION '

Figure 1 shows a TM. The problem is how to build a Petri net so that its

TM is the one shown in figure 1. i . -

We can assume that the set of "conditions" (or "places") is given by the

Boolean union of all the characters of the states' names in the TM. In the example:

{S U (A U B)U(C UA)U(C UD)U(C U B)U(B U D)U(B U B) U C} f

= { .S,A,B,C,D }

Each state in the TM corresponds to a possible state in the Petri net.

Each arc in the TM correspond to a possible transition in the Petri net. This means that

for each arc in the TM there is a bar in the Petri net that can carry out this

transition. For example, arc 6 in figure 1 represents a transition from state CD

to state CB. That is:.

CD -> CB

Figure 2 shows the two possible ways of implementing this transition in the Petri net.-

Arc 5 represent the transition:

BD BB

Figure 3 shows the possible bars corresponding to this transition.

One of the bars of figure 2, and one of figure 3, must be in the;

Petri net . But, the same bar is in figure 2(b) and in figure 3(b). In this case.

Figure 1 A Token Machine (TM)

(D o

e (a)

©

(b)

Figure 2 The Possible Implementations of the Transition CD ->.CB

© b
Q

(a)

0

(b)

Figure 3 The Possible Implementations of the Transition BD-> B'B

- 2.2-

only one bar is sufficient to execute the arcs 6 and 5 of the TM.The other possibilities

are also legal, but, two bars are required.

The example above shows that a TM can be implemented by different Petri nets,

with diferent number of bars. The Petri net with the minimal number of bars

that implement a given TM is called the Minimal Petri Net (MPN) of the TM.

Arc 2 (figure 1) represent the transition:

AB ^ AC .

Figure 4 shows the possible bars corresponding to this transition.Note that the bar

in figure 4(b) can fire each time that B has a token. The states BC, BD, BB are

legal states in the TM. In this case, the bar in figure 4(b) can fire also the

following transitions:

BC CC

BD ^ CD

BB -> CB

But, since in.the TM,there are not arcs corresponding to these transitions, they are

not allowed in the Petri net. It means, only the bar of figure 4(a) can be used to

implement the arc 2 of figure 1.

The example above shows, that in the implementation of a-Petri net

corresponding to a TM there exists two problems:

1. the Petri net is not unique.

2. it is necessary to prevent unallowed transitions that can appear as side

effects of the implementation of allowed arcs.

Arc 2 (figure 1) is ah example of this last problem. The only possible way of

preventing unallowed.transitions is to add conditions to the input set of the

bars that execute the allowed conditions. In figure 4(a), the firing, from B to C

is limited by the condition A. But, if this approach is adopted for all the transitions,

the number of bars will increase unnecessarily, as show in figures 2(a) and 3(a).

In this case,two bars are needed instead of one.

(a)

©

(b)

§>

Figure 4 The Possible Implementations of the Transition AB -> AC

- 2.3 -

In the following Sections the construction of the Petri net of a given TM

is formally studied.

2.2 FORMAL DEFINITIONS

2.2.1 A bag is similar to a set but allows multiple instances of the same element.

A bag is unordered, as a set is. A bag is denoted with brackets, that is

B=[a,b,a] is the bag B of two instances of a and one instance of b.

2.2.2 The Union of a bag (U bag) is the set of elements used to form the bag.

Example: U B •= U [a,b,a] = ['a,b]

I

2.2.3 bag-j is contained in bag^ (bag| < bagg) if there is in bagg an instance

for each instance of the elements in bag2.

Example: [a,b,a,b,b,c] < [a,a,a,b,c,c,b,b,d]

2.2.4 Two bags are, equal (bag-^ = bag2) if:

bag^ < bag2 ^

and bag2 < bagy

.2.2.5 The sum of two bags (bag.j + bag2) is a bag compose by all the instances in

bag| and'in bag2.

Example: [a,b,a] + [a,b,c,b] = [a,a,a,b,c,b,b]

2.2.5 The substraction of two bags (bag-j - bag2) is bag^j so that:

bag2 + bag2 =bag^

We do not deal with "negative elements", so that this operation is defined

only when bag2 < bag-j.

- 2.4 -
I

2.2.7 A transition is an ordered tuple of two bags. It means, ALPHA and BETA

are bags, and:

t = ALPHA -V BETA

then t is a transition. The right and left part of t are given by the

functions RHS and LHS. It is:

1. LHS(t) = ALPHA

2. RHS(t) = BETA

2.2.8 The Remaine.r of a transition (RE(baqi -> bag2)) is the bag^ with the

maximal number of instances of the elements so that:

1. bag^ < bag-j ; and .

2. bag^ < bag2

2.2.9 The Minimum of a transition (MIN(t-j)) is a transition tg, so that if

t^ = bag-j bag2 ; then:

1. LHS(t^) = bag^ - RE(t^)

2. RHS(t^) = bag2 - RE(t^)

Note that LHS(t^) and RHS(t2) have no elements in common.

By definition, any transition t is:

t = RE(t) +,LHS(MIN(t)) -> RE(t) + RHS(MIN(t))

EXAMPLE:

arc 5 of figure 1 can be denoted by:

tg = [B,D] -> [B,B] ; then:

1. LHS(t5) = [B,D]

2. RHS(t5) = [B,B]

3. RECtg) = [B]

4. MIN(tJ = [D] -> [B]
•0

- 2.5 -

2.2.10 APetri net (PN) is a directed graph defined by the quadruplet [B,C,A,Sq],
where:

B= [b^,... is a finite set of transition bars

C=,Cc-] c^] is a finite s^ of conditions

B and C are the nodes of the PN

A= [a^,... .ja^] is a finite set of directed arcs. Each arc conect
either a condition to a bar or a bar to a condition.

Sq = bag the elements of Sq are elements from C. That means

U(Sq) < C ; Sq is the initial distribution of

tokens in the conditions C.
I - -

2.2.11 The Input Conditions of a bar (IC(b^)) is defined as a bag:

IC(b^.) = bag^.

The elements of bag^. belong to C, it means:

U (bag^.) < C

bag. include an instance of c. (j = 1,2,.. ,n) for each arc which conect
'' J

, c. to b. .
J I

2.2.12 The Output Conditions of a bar (OC(b^.)) is defined as a bag: '

OC(b^.) = bag.

The elements of bag^ belongs to C, it means: ,= '

U (bag^.) < C

bag. include an instance of c. (j = 1,2,.. ,n) for each arc which conect

b. to c. .
' J

2.2.13 ALegal State (S^.) of the PN is either the bag Sq or a bag that is a possible

result of the firing algorithm (2.2.14).

- 2.6 -

2.2.14 The Firing Algorithm

A bar b. can fire if IC(b.) < S. (S. is a legal state). If b. fires, a
- I J J I

token is removed from each condition in IC(b^.), and a token is placed in

each in each condition of OC(b^.). The new distribution of the tokens

defines a new legal state Sj^.

Following the definitions, the new state is;

\ = S. - IC(b.) + OC(b.)

2.2.15 A Token Machine (TM) of a PN is defined as a tuple [S,T], where:

S = [S-j ,82] is a set of bags. S^. belongs to S if and only

if S^. is a legal state of the PN. S may be

finite or infinite, depending on the PN.

T = [t-j ,t2,] is a set of transitions of the form

t|̂ = S^- Sj . t|̂ belongs to T if and only

if in state S^. a bar can fire bringing the

PN to the state S..
J

2.2.16 A live PN is a PN that:

1. for each c^. in C exist at least one element in S in which

c^. is included and

2. for each bar b^ in B exist at least one state in S in which

b^. can fire.

2.3 FORMAL ANALYSIS

Suppose that a finite TM is given. The problem is to find a PN so

that its TM is the given one. We limit our work to live PN's (definition 2.2.16).

Since the PN is live, each of its conditions is represented at

- 2.7 -

least in one of the,states of the TM. In this case, the set of conditions of the PN

is given by:
n

C = U(E S.)
i=l ^

Now, it is necessary to find the set of bars and the set of arcs,

so that:

1. All the transitions of T are implemented.

2. Only the transitions of T are implemented.

The following theorems will help to attain this goal.

2.3.1 THEOREM

If exist a transition t-j = S^. so that MIN(ti) = a b;

and a bar b so that:
e

1. IC(bg) = a + X (x is a bag)

2. OC(bg) = b + X

3. X< RE(t^) ;

then, t-j is executed by b-j.

PROOF:

By definition 2.2.9:

= a + RE(t^) (2.3.1.1)

S. = b + RE(tJ (2.3.1.2)
J '

Since is given that x < RE(t^) then from (2.3.1*1):

a + X< S^.

and: IC(bg) <3.

By definition of the firing algorithm (2.2.14), in state the bar b^ can

fire and the new state is:

S,^ = S. - IC(bg) + OC(bg)

2.8

and after replacement of IC(bg) and OC(bg) from the conditions of the

theorem, and S\. from (2.3.1.1):

S|̂ = a + RE(t^) - a - X+ b + X= b + RE(t^) (2.3.1.3)

Comparing (2.3.1.2) and (2.3.1.3):

= V ;

Q.E.D.

2.3.2 THEOREM

If there is one transition t-, = S. -> S. so that MIN(t,) = a -> b ,
^ I I /"

there is not another transition t2 so that MIN(ti) = MIN(t2) and

LHS(t2) =S. . ' .
PROOF:

If, ^1 ~ ^i exists

and: MIN(t-j) = a -> b then

by definition (2.2.9): RE(ti) = S^. - a

and: ^ + RE(t^) = S^. + b - a (2.3.2.1)

Suppose that there exists: t2 " S|̂

and: MIN(t-j) = a b then

By definition (2.2.9): RE(t^) =5^. - a

and = S^. + b - a (2.3.2.2)

Comparing (2.3.2.1) and (2.3.2.2):

^ S = S

thus: ^1 " ^2

This means, ti and t2 are the same transition.

Q.E.D.

- 2.9 -

2.3.3 THEOREM

If the transition tj^ = S^. -> S. is executed by the bar b^ then:

(1) IC(bg) < S.

(2) S. = S. - IC(bg) + OC(bg)
J

PROOF:

(1) If t|̂ is executed by b^, then the firing algorithm (2.2.14) have to be
applied to S^. for the bar b^. It means:

IC(be) < S.

(2) After b^ fires in state S^., the new has to be the new state in

the firing algorithm: ,

Sj. = S. - IC(bg) + OCCbg)

2.3.4 THEOREM

If the transition t. = S. -> S. is executed by the bar b^ then:
K I J G

(1) S. - RE(t^) < IC(bg)

(2) S. - RE(t^) < OC(bg) ^

PROOF:

From theorem (2.3.3):

S. = S. - IC(bg) + OC(bg)

or: S. + IC(b) = S. + OC(b) (2.3.4.1)
J C I c

If we denote LHS(MIN(t|̂)) = a and RHS(MIN(t|̂)) = b, then by definition (2.2.9):

S. = a +;RE(t|̂) (2.3.4.2)

and: S^. =b + RE(tj^) (2.3.4.3)

replacing (2.3.4.2) and (2.3.4.3) in (2.3.4.1) yields:

b + RE(tj^) + IC(bg) = a + RE(t^) + OC(bg)

and this means that:

b + IC(bg) = a + OC(bg)

- 2.10 -

But, by definition 2.2.9 a and b have no common, elements. So that, all

the elements of a have to be included in IC(bg), and all the elements of

b in OC(b^). It means:
C

. a < IC(bg)
and: b < OC(bg)

and replacing a and b from (2.3.4.2) and (2.3.4.3) then:

S. - RE(t^) < IC(bg)
and: S. - RE(t^) < OC(bg)

Q.E.D.

2.3.5 THEOREM

If transitions t-j - S^j-j ->• S^-j and t^ =S..2 3^2 are implemented
by the same bar (say b^), then MIN(t^) = MIN(t2).

PROOF:

Suppose that: MIN(ti) = a-] b^

and: MIN(t2) = ^2 ^2

If transition t-j is executed by the bar b^, then by theorem 2.3.4:

S.^ - RE(t^) < IC(bg)

This means, that there exists a bag x-j such that:

IC(bg) = S.-^ - RE(t^) + x^ (2.3.5.1)

Thus from theorem 2.3.3 and. replacement of IC(b):

OC(bg) =Sj, - S,, + IC(be) =Sj, - S„ +S„ - RE(t,) + X,

OC(b^) » Sj, - RE(tp +*1 . (2.3.5.2)

and by definition 2.2,9:

Sil " *^^^^1^ " ^1 (2.3.5.3)
Sji - RE(t^) =b^ (2.3.5.4)

2.11 -

Replacing (2.3.5;3) in (2.3.5.1) and (2.3.5.4) in (2.3.5.2)':

IC(.bg) = a^ + x-j

and: OC(bg) =

In the same way for transition t2:

IC(bg) = + x^ = a2 + X2 (2.3.5.5)

OC(bg) = b^ + x^ = b2 •+ X2 . (2.3.5.6)

By the definition of equality, it means:

a-j + x^ < a2 + X2

and: b^ + x-j' < b2 + X2 .

This means that:

I

x-j. <a2 + X2

and: x^ <b2 + X2

But, by the defintion of MIN(t2) (definition 2.2.9) a2 and b2 have no common

elements. This means that no elements of x^ are included in both, a2 and b2.
Thus, X"! is included in X2, or in other words:

x^ < X2

But, from equations (2.3.5.5) and (2.3.5.6) in the same way:

X2 < X-J

so that, from the definition of equality (2.2.4):

X2 = Xi

and from (2.3.5.5) and (2.3.5.6) then:

^1 " ®2

and: *^1 "^2 Q.E.D.

- 2.12 -

2.3.6 DISCUSSION

From theorem 2.3.5, it turns out that transitions with different

"minimal transition" must be implemented by different bars. This means that the

set of transitions can be divided into different groups, each group having the same

minimal transition. Each group is implemented independently of the others.

Suppose the members of a group are:

t. = S. S. ; (p=l,2 r) then
V V

and the minimal transition for all the members of the group is:

MIN(t.) = a b •, (p=l,2,... .r)
•P

Theorem 2.3.1 shows that each member of this group can be implemented by a bar bp
thus:

1. IC(b) = a + X (2.3.6.1)
r r

2. OC(b) = b + X (2.3.6.2) '
r r •

3. x„ <RE(t.) (2.3.6.3)P Kp

Theorem 2.3.4 shows that this is the only way to implement them. As shown -

above, there is a certain freedom in the election of the Xp. This means that

the members of each group can be implemented in different: ways, leading to

different PN's. The same Xp can be chosen for different transitions (in the same
group). Iin_ this case, the same bar executes several transitions. In general, the

number of bars that implement the group is equal to the number of different Xp's

chosen for this group. A trivial case is:

Xp =0 ; (p=1.2 r)
then, the entire group is implemented by only one bar.

At this point, we know how to implement, al1 the transitions

corresponding to a certain group. The remaining problem is to implement only the

- 2.13 -

transitions existing in the given TM. After an x is chosen for equations (2.3.6.1),
r

(2.3.6.2) and (2.3.6.3), by definition of the firing algorithm, bar b can fire in
P

all the states that:

IC(bp) < s.
By theorem ?.3.5jall the transitions executed by bp have the same minimum:

a b

and by theorem 2.3.2, in each state can be only one transition with minimal:

a ->• b . Thus, when the machine is in state S. , then b will execute only legal
P ^

transitions, and when the machine is in the state:

^ •'p) ' (P=^ '2, r)
if bp fires, it will execute an illegal transition. So, in order to prevent illegal

transitions, Xp has to satisfy the condition:

IC(bp) =a + Xp .</ ; for all S. (2.3.6.4)

(Note: X </ y means x is not included in y or, alternatively, it is not true that
X < y)

In order to implement al1 the transitions of the group, and only all

the transitions of this group, it is necessary to find a set [x^], subset of the
bag [Xp], so that:

^p^q >q < (2.3.6.5)

and Vp V,^ (k M'p) => a + x^ </ ~ (2.3.6.6)

Note that it is enough to check (2.3.6.6) for the states that include a. If

S|̂ does not include a, (2.3.6.6) is satisfied independently on x^.

In general, the following cases may exist:

1. Only one set [Xp] that satisfies (2.3.6.5) and (2.3.6.6). In this
case, there exists only one PN corresponding to the given TM.

2. Several sets [XpD that satisfy (2.3.6,5) and (2.3.6.6). In this case,-

- 2. 14

there exists several PN's corresponding to the given tM.

3- There are no [x^] that satisfy also (2.3'6.5) and (2.3.6.6). In this
case, there is not a PM corresponding to the given TM. Note that there

not exits a set [x^] that satisfy (2.3.6.5) and (2:3.6.6) if and only
if there is a state S, .,(k ^ i) included in a state S. .

K p 1 .

The two following theorems proof this statement.

2.3.7 THEOREM ,

If: Vp (k ^ ip) => S. </ (2.3.7.1)

then exist at least one set [x^] that satisfy (2.3.6.5) and (2.3.6.6,)
PROOF:

Suppose that the elements of [x^] are chosen SMQh that: -

THEN:

Xq = Xp = RE(t^) (2.3.7.2)

(1) by definition, the elements of x^ satisfy (2.3.6.5)
(2) but, by (2.3.7.2):

" q = p

and:

a + x = a + x = a + RE(t.) = S.
^ P Kp 'p

and replacing S. in (2.3.7.1) then the result is (2.3.6.6). Q.E.D. -
P

- a ' Q .. E 0 J

2.3.8 THEOREM

If there exists at least on k, (k / ip)j such that for Some 1

then, there does not exist aset [x^: such that the conditions (2.3.6.5) and

(2,3,6.6) are satisfied.

- 2.14.1 -

PROOF:

Suppose that exist an element of k, say kl, such that:

S. < S,, (2.3.8.1)
^pl

Suppose that there exist a set such that (2.3.6.5) and (2.3.6.6)

are satisfied. Applying (2.3,6,6) for kl and for pi the result is:

Vq (kl f ip-]) =>-• a + Xq <!

But, since kl / Ip] is "True", then it is also true that

Vq a t S|̂ ,

If, for all q, S.does not include a + x , then since S. is includedKl q ipi

in S|̂ ^ (2.3.8.1) there exists:

Vq a + X </ S .
'pi

This means that:

Vq x„. y S,
'pi

Vq Xq -4 S^. - a (2.3.8.2)

Since by definition 2.2.9:

S. - a = RE(t.) (2.3.8.3)
'pi V

Replacing (2.3.8.3) in (2.3.8.2), there exist that:

Vq x^ <5/ RE(t.) (2.3.8.4)
^ >1

But (2.3.8.4) contradicts (2.3.6.5). Therefore, set Cx J doeS: not exist. Q'..E.D.
. M

- 2.15 -

2.4 EXAMPLES

The previous theorems (2.3.7 and 2.3.8) gives the necessary and

sufficient conditions so that a group of transitions can be implemented. Thus the

Tm can be implemented by a PN, if and only if all of its groups can be implemented.

Depending in the properties wanted in the PN (minimal number of

bars, some special configuration, etc.), there exists several algorithms to choose the

elements of.the sets [x^] (when such sets exist). One possibility, as shown in
theorem 2.3.7, is to choose x = x. = RE(t.) . But, this solution gives a lararge

number of bars. In the following examples, some possibilities are shown.

(1) First, the implementation of the TM of figure 1 is shown: The

groups of transitions are shown in table 1.

group

1

2

3

4

mimima1

transition

S ^ AB

B C

A ^ D

D B

BB -> C

For group 1:

TABLE 1

transition

S ^ AB

AB -> AC

AB BD
AC CD

DB BB

DC ^ BC

BB -> C

IC(b^) = [S] + x

RE(t)

0

A

B

C

B

C

0

0 is chosen. Then;5ince no states outside the group include S, x=

IC(b') = [S]

OC(b') = [A,B]

I\

Figure 5 A PN that Implement the TM of Figure 1

- 2. 16

For group 2:

IC(b^) = [B] + X

The states outside the group that include B are: BD, BB, BG.

If X = [A] , conditions (2.3.6.5) and (2.3.6.6) are satisfied. Thus:

IC(b^) = [A,B]

OC(b^) = DA,C]

For group 3:

IC(b^) = [A] + X

Since no states outside the group include A, x = is chosen.Then:

IC(b5) = EA]

OC{b^) = ED]

Also for groups 4 and 5 , x = 0 is chosen in. the same way.

The corresponding PN is shown in figure 5.

(2) In the following example we will try implementing a PN that

has the TM shown in figure 6. The groups of transitions are given in table 2.

TABLE 2

Group minimal transition RE(t)

1 A B A ^ B 0

2 • A ^ C A ^ C 0~

3 B -> CD B -> CD 0

4 C ^ BE C -> BE 0

5 C •> E CD ^ ED D

6 B ^ D BE ^ DE E

7 DE ^ F DE -V F 0

For group 6: IC(b^) = [B] + x
and: x < E

e>

Figure 6 A Token Machine (TM)

2.17 -

It means, x is or 0 or E. But B is a legal state, outside the group 6. Theorem

2.3.8 shows that this case is impossible to implement.since group 6 is implemented

by:

IC(b®) = [B]

or; IC(b®) = [B,E]
(these are the only possibilities), it also will implement a transition from B to

D, and this is as transition that does not exist in the TM.

- 3.1

3. THE TM AND THE LOSS OF A TOKEN

In this section, the structure of the TM's which are recoverable

from a failure of type "loss of a token" is studied. The results of this section

yields a better understanding of the concept "recoverable", and the design of

recoverable processes. Note that if the TM of a recoverable process is designed,

then the structure of the process can be found (in terms of a PN), using the

tools developed in section 2.

This work deals only with failures of type "loss of a token", as

defined in ClU. The same ideas are applicable to other kinds of failures.

In cm, the definition of "legal states" of a process is given as

the states of the correspondent TM. "Illegal states" are defined as the states,

different of the legal states, in which the PN can be after the occurrence of a

failure. In [13, it is also pointed out that a PN with finite TM is recoverable

from a given failure if: '

1, the number of illegal states is finite, "

2, there are no terminal illegal states, and

3, there are no directed loops including only illegal states.

The following sections examine how these conditions are reflected

in the TM, and what is the general structure of the TM such that the conditions'

are satisfied.' .

3.1 The states after a failure

In this section, the possible illegal states are examined. The

set of al1 the possible illegal states after the occurrence of a failure (of type

"loss of token") is found.

^•I'l Definitions and properties

We suppose that F is the name of the failing condition. This means

- 3.2

token in F may disapear. The set S of all the states in the TM are divided in

two groups:

1. = [S. 1 S. V F]

2. = [S. 1 S. , < F]

1 2
By definition, S and S have no common elements, and:

S =

2
A failure can occur only when the TM is in one of the states of the set S . In the

states of s\ F does not exist (does not hold tokens), so that it can not loss one.

In order to simplify the notation, the two following definitions

are introduced:

1. A^. is defined as:

Ai =S2 - F
2

The states of the set S can be denoted as:

= A. + F

2. The function #(a,bagl) is defined as the number of instances of the

elements a in the bag bagl.

2The transitions exiting from the states S^. can be divided into the

three following groups: |

1 J .cl 11. t^ - S.-S. ! ,

2. t^ =S? ; and if t^ is executed by the bar b^ then
#(F,S^) =#(F,IC(bg))

3 2 2 33. t|̂ = S^. ; and' there exists a bar b^ that execute t|̂ such that

3.3 -

#(F,S^) >#(F,IC(bg))

2 3.For t|̂ and tj^, the relation between the number of instances of F in the

initial state and in the input conditions of the bar that executes the

transition is given explicitly by the definitions above. As shown in the

following, for t. , this relation is given implicitly by its definition.

By definition, Fis not included in s] . By definitions 2.2.8 and 2.2.9,
J

1 21

then:

#(F,S^) =#(F,LHS(MIN(t[)))

and if t|| is implement by bar b^, from theorem 2.3.4(1) and definition 2.2.14:

LHS(MIN(t^)) < IC(bg) <

so that: #(F,S^) =#(F,IC(bg)) (3.1.1.1)

3.1.2 The possible states after a failure

2Suppose that the TM is in state S^. = A^ + F. If while in this

state a failure occurs, then TM will go to state A^.. In the following steps, we

assume that the PN is in state A^. ., and , the bars that can fire, in this situation

will be studied. When the machine is in state A.j + F then the set of all the bars

are divided.in four exclusive groups:

lo b^; bars that fire transitions of type t||.
o

2, b ; bars that fire transitions of type tf,

3 33. b ; bars that fire transitions of type tj^ and

4. b"^ ; bars that can not fire

- 3.4

3.1.2.1 THEOREM

Bars of type b can not fire in state ,

PROOF:

Suppose that is a bar of type b\ (3.1.1.1) shows that:

#(F,A. +F) =#(F,IC(b^))

It means, in A^. there are less instances of F than in IC(bg). In other words;

IG(b^). </ A.

and this contradict the firing algorithm in 2.2.14, so that b^ can not fire in A^.,

and thus not for any

3.1.2.2 THEOREM

PROOF:

2Bars of type b can not fire in state A^..

2 2Suppose that b^ is a bar of type b . Following the definition of
2transitions of type tj^ (section 3.1.1):

#(F,A. + F) = #(F,IC(b2))

and then the proof continues as in the previous theorem.

3.1.2.3 THEOREM

3
Bars of type b can fire in state A^..

3.5 -

PROOF:

3 3 3Suppose that is a bar of type b . If b can fire in A. + F . then:
e e 1

IC(bg) < A. + F (3.1.2.3.1)

3But by definition of transitions of type tj^ the number of instances of F in

A. + F is greater than those instances in IC(bg). This means that the number of

instances of F in A^ is equal or greater than those instances in IC(bp). But, by
"" O(3.1.2.3.1), the instances of the other elements of A^. are also included in IC(bg),

thus ,

IC(b^), < A.
and the firing algorithm can be applied.

3.1.2.4 THEOREM

4Bars of type b can not fire in state A^..

PROOF:

Suppose that b^ is a bar of type b'̂ . By definition, b^ can not fire in
A^. + F. It means, the firing algorithm can not be applied. The firing algorithm

can not be applied only if;

IC(b^) </ A. +F

but: <^^i + ^

Then: IC(b'̂) V A.
, ^ e 1

O .

and the firing algorithm also can not be applied for in state A. and thus
S 1

A

not for any b . •

3Since b has been shown to be the only type of bar that can fire in A^.,
we will now consider some properties of transition executed by b^.

3.1.2.5 THEOREM

3 3If bar bg, of type b , implements the transition:

t^ =A^ +F A2 +F

PROOF:

or:

- 3.6 -

t2 - A-i Ag

3 ?By theorem 2.3.3(2), if implement& the transition t-| then;
3x ,

.3^ ^ n.^/u3A2 = A^ - IC(b^) + OC(bp (3.1.2.5.1)

3But by theorem 3.1.2.3, b^ can also fire in state A-j. Suppose that in state A-j
3

b executes the transition:

A,^Sj
Then, by theorem 2.3.3(2):

Sj =A^ - IC(b^) +OC(b^) (3.1.2.5.2)
Comparing (3.1.2.5.1) and (3.1.2.5.2):

S. = A, Q.E.D.
J '

3.1.2.6 THEOREM

If A-], A2 and A^ + F are legal states in a TM, and if there exists a

t. A^ -> A2

then there also exits a: ,.,
tjj = Ai + F^ A2 + F

PROOF:

If: t^. A-j -> A2

then there exists a bar b^, and by theorem 2.3.3:

IC(bg) < A^ (3.1.2.6.1)

and: A2 = A^ - IC(bg) + OC(bg) (3.1.2.6.2)

Since (3.1.2.6.1) also exist,

IC(bg). < A^ + F

This means that the firing algorithm can be.applied -for bar b in state'A, + F:
G I

t. = A-i + F S.
j ' j

- 3.7

but, by the firing algorithm:

Sj = + F - IC(bg) +;.OC(bg) (3.1.2.6.3)

Comparing (3.1.2.6.3) and (3.1.2.6.2):

Sj = Aj + F

From (3.1.2.6.2):

#(F,IC(bg))._< #(F,A^)

or: #(F,IC(bg)) < #(F,A^ + F) '

and by definition, the transition t.:

tj " ^1 + F^ A2 + F

is of type t^. Q.E.D.

3.1..2.7 DISCUSSION

The previous theorems show that,after a failure, the PN can execute
3

only transitions implemented by the bars of the group b , corresponding to

3
transitions of the group tj^.

If: t^ - A"! +F A2 +F
it was shown (theorem 3.1.2.5) that there exits the transition:

^1 ^2
3

Theorem 3.1.2.6 shows that al1 the transitions from A-j have a correspondent tj^

transition from A-j +.F . This means that there is one-to-one correspondence between all
3

the transitions from A-j and all the transitions of type tj^ from A-j + F. The same

properties hold for all the states A^.

After the transition from A-j the PN is in state A2. But,

the machine can arrive to A2 also if the PN is in state A2 + F and then there occurs the

failure. This means that the previous theorems ,are;appliab:le when the RN is in Ag. In

other words, from only transitions corresponding to"the transitions of type

3
t|̂ exiting from A2 + F. Thus, after the ocurrence of a failure the PN execute

only transitions between the states, of the group A,j. This procedure can be

- 3.8 -

continued until:

lo either it arrives to a , that correspond tu a legal state A^. + F that
3

does not have exiting transitions of type tj^. In this case, there are

no transitions exiting from A^., A^. is a terminal state.

2. or a loop of states A. (k= l,2,...,r) is executed. This loop corresponds
^k

3to a loop of transitions of type t between the states A. + F.

3.2 The structure of the recoverable TM's

As shown in reference [1], the conditions for recoverability are:

1.- the number of illegal states is finite,

2. there are no terminal illegal states and

3. there are no directed loops including only illegal states.

The previous section shows that after the occurrence of a failure

the illegal states are A^., corresponding to legal states A^. + F. Since this

work deals only with finite„TM's, the number of legal states is finite. It

means the number of illegal states (the number of different A^.) is also

finite. Condition (1) of recoverability is always satisfied for the case of .

"loss of a token."

In order to satisfy condition (2), all the terminal states have

to be legal. This implies that if A^. + F is a legal state, and there are no
3

transitions of type tj^ exiting from A^. + F, then, A^. has to be a legal state.

Condition (3) for recoverability points out that loops of only

illegal states are not allowed. If, in the TM, there exists loops of states
3

A^. + F, connected by transitions of type tj^, then, after a failure, there

exists corresponding loops of states A^.. In order to satisfy condition 3,

at least one of the A^. states of each loop has to be a legal state. But,

if a state is legal, all the successors of this state are legal

3,9 "

(definition 2.2.13 and 2.2.14). Thus, all the loops of states , connected
3

by transitions of type t|̂ have to be legal and the successors of the states

A^. in the loop are also legal.
2 3By definition, the difference between tj^ and tj^ is given by

the implementation, that is, by the number of instances of F in IC(b). But

from the properties of the TM it is possible, for certain cases, to distinguish

between them directly from the TM. The following properties are derived from

the theorms and definitions in the previous sections:

1. If Ap A2 and A-j + F are legal states, and if exist t^. = ^
3

then there exists a t^ = A^ + F->• A2 + F, and tj is of type tj^

(this property is proved in theorem 3.1.2,6)

• 2. If there exists a transition t^ = A-] + F-> A2 + F, and if A-j is also

a legal state, and the transition A-j -> A2 does not exist, then, tj is
2a transition of type tj^.

(this property can be proved from the theorems of section 2 and definition

of transitions of type tj^.)

3. If there exists a transition t^ = A-j + F^ A2 + F, and if is not a

legal state, then transition t- can be implemented as either of type

or t|^.

(this property can be proved from the theorems of section 2 and definitions

2 3of transitions of type tj^ and tj^ ^

The previous properties show that the decision of whether a transition is

2 3t|̂ or tj^ may be made, in part, by the designer of the system.

- 3.10 -

3o2„l RECAPITULATION

A finite TM is recoverable under a loss of a token from condition

F if and only if:
3

1. if A^. + F is a legal state without exiting transitions of type tj^, then

A^ is a legal state in the TM.

2. if A. + F (j=l,2.o=,r) are legal states connected in a directed loop

' '3 3by transitions of type and exist a path of transition of type tj^ from
the states A. to the states A. + F (w=r+l,r+2,....,p), then, the states

j w

A^_ (j=l,2 p) are legal states.
3

As shown above, exist a one to one correspondence between al1 the transitions from

the states A. and the transitions't? from the A. + F states,
•'j " 'j

3.2.2 EXAMPLES

Figure 7 shows an example of a TM. The TM has no loops of states

including F. From state FC there does not exist transitions to.other states that include

F. Thus, there does not exist exit transitions from FC of type t^. 'In other words the
TM is recoverable if C is a'terminaTstate.--Figure 8 shows the corresponding EN. The

PN was constructed using the tools developed in section 2. In order to demonstrate

the existence of recoverability, figure 9 shows the corresponding ETM (the ETM
i

is defined in reference [1]).

Figure 10 shows an example of a TM with loops of transitions of
3

type tj^. The TM is recoverable. The corresponding PN is shown in figure IT.

Figure 12 shows other example of recoverable TM. Figure 13 shows

the corresponding PN, and figure 14 shows the ETM.

Figure 7 A Recoverable TM

b

-JL i).

Figure 8 A PN for the TM of Figure 7

/

V

Figure 9 The ETM for the PN of Figure 8

Figure 10 A Recoverable TM

Figure 11 A PN for the TM of Figure 10

FPc

Figure 12 A Recoverable TM

Figure 13 A PN for the TM of Figure 12

Figure 14 The ETM of the PN of Figure 13

- 3.11 -

Compare figures 10 and 12. The left loop in both TM's

3 2are equal. But, the transitions are tj^ or t|̂ depending in the other states

(states A^) of the system.

References

[1] Merlin, P.M. Recoverability of Processes. Technical Report #44;
Department of Information and Computer Science;

-University of California; Irvine; 92664; February 1974.

