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How Many Eigenvalues of a R.andom Matrix are Real? 

Alan Edelman" 
Eric Kostlan t 
Michael Shubt 

August 19, 1992 

Abstract 

Let A be an n x n matrix whose elements are independent random variables with standard normal 
distributions. As 11 ..... 00, the expected number of real eigenvalues is asymptotic to J211/7r. We obtain 
a closed form expression for the expected numher of real eigenvalues for finite n, and a formula for the 
density of a real eigenvalue for finite n. Asymptotically, a real normalized eigenvalue >../..;n of such a. 
random matrix is uniformly distributed on the interval [-1,1]. Analogous, but strikingly different, results 
are presented for the real generalized eigenvalues. We report on numerical experiments confirming these 
results and suggesting that the assumption of normality is not important for the asymptotic results. 

1 Statements of Results 

Consider a random matrix whose elements are independent. random variables from a standard (mean zero, 

variance one) normal distribution. 

Here is one of our main result.s: 

ASYMPTOTIC NUMBER OF REAL EIGENVALUES. If En denot.es t.he expected number of real eigenvalues 
of an n by n random matrix, then 

I· En {f 1m - = -. 
"-00 ...;n 7r 

ASYMPTOTIC SERIES. As n - 00, 

E - (2;; (1- ~ __ 3_ 27 499 ~) ~ 
n - V -;- 811 128n2 + 1024113 + 32768114 + O( 115 ) + 2' 

Corollary 5.2 

Let A be a 50 X 50 random matrix. Figure 1 above plots normalized eigenvalues )./..j50 in the complex 

plane for fifty matrices. Thus t.here are 2500 dot.s in t.he figure. There are a number of striking features in 

the diagram. Firstly, nearly all t.he normalized eigenvalues appear to fall in the interior of the unit disk. 

This is Girko's circular law [12], which states that as n gets large, )./.,fii is uniformly distributed in the unit 

disk. It follows that the proportion of eigenvalues on t.he real line (also strikingly visible to the eye) must 

tend to 0 as n - 00. Our results show how fast t.his converges. 

"Department of Mathematics & Lawrence Berkeley Laboratory, University of Califomia, Berkeley, California 94720, 
edelmanCRmath. berkeley. edu, Supported by the Applied Mathemat.ical Sciences subprogram of the Office of Energy Research, 
U.S. Department of Energy under Contract DE-AC03-7(lSFOOOH8. 
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Figure 1: 2500 dots representing normalized eigenvalues of fifty random matrices of size n 
visible are the points on the real axis. 
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Figure 2: Histogram of normalized real eigenvalues for 2222 matrices of size 50 
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Figure 2 takes a closer look at t.he real eigenvalues again t.aking n = 50, but this time we took over 

2200 random matriceS, and hist.ogrammed the real normalized eigenvalues. Notice the data suggests that 
the density is nearly uniform on [-1,1]. The plotted curve is the exact densit.y for n = 50. This suggests 

ASYMPTOTIC DENSITY OF REAL EIGENVALUES. If An denotes a real eigenvalue of an n by n random 
matrix, then as n - 00, ).n/..,fti is uniformly distributed on the interval [-1,1]. 

Corollary 4.5 

which is the limit of 

PROBABILITY DENSITY FOR ).n. If ).n denotes a real eigenvalue of an n by n random matrix, then its 
probability density fn().) is given by 

Theorem 4.3 

A related function that we study closely is 

UNNORMALIZED DENSITY FOR An. Given a fixed matrix A we can define the empirical cumulative 
distribution function of its real eigenvalues: 

#( -oo,xl(A) == { number of real eigenvalues of A :::; x}. 

Let 
d 

Pn(X) = dx EA#(-oo.xl(A), 

where EA denotes expectation for random A. Then 

In fact, if A is any Lebesgue measurable set. of the real line, 

f Pn()')d)' = EA#A(A) == The expected number of real eigenvalues in A. 
}AEA 

Most simply put, Pn().) is a true density; it is the "expected number of eigenvalues per unit length" in 
an infinitesimal interval near ).. See Section 3. 

Unless otherwise stated, we omit. the distribution and simply use the term "random matrix" to denote 

a matrix with independent. standard normally dist.ributed elements. Other dist.ributions are considered in 
Section 8. Frequently, authors with access to comput.ers complet.e investigations of statistical quantities with 
an appendix of numerical values. We provide a Mathemat.ica expression for En below and merely list enough 

values of En to suggest a conjecture which turns out to be true. Table 1 tabulates En for n from 1 to 10 

and suggests a difference in the algebraic form of En for n even or odd. 

We see that a 10 by 10 random mat.rix can be expected to have fewer than 3 real eigenvalues. More 

striking is the observation that if n is even, En is a rational mult.iple of..../2, while if n is odd, En is one more 
than a rational multiple of..../2. We like to think of this as the "extra" real eigenvalue guaranteed to exist 

since n is odd. Also notice that. the denominat.ors in t.he rat.ios are always powers of 2. The observations 

above and many ot.hers may be derived from the exact formulas below. 
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n En 

1 1 1.00000 

2 ..J2 1.41421 

3 1 + !..J2 1.70711 

4 li..J2 1.94454 

5 1+ 13..}2 16 2.14905 

6 211 ..}2 
128 2.33124 

7 1 + 271..}2 
25G 2.49708 

8 1919..}2 
1024 2.65027 

9 1 2597..}2 
+ 2048 2.79332 

10 67843..}2 
32768 2.92799 

Table 1: Expected number of real eigenvalues 

EXACT FORMULAS FOR En. (Some not.at.ion is defined below the box.) 
If n is even, 

n/2-1 (4k _ 1)!! 

En =..}2 L (4,(:)!!' 
k=1I 

while if n is odd, 
(n-l)/2 (4k _ 3)!! 

En = 1+..}2 L (4k-2)!!' 
k=1 

Alternatively, for both even and odd n, 

1 fi r(n + 1/2) 
En = 2 + V -; r(n) 2Fl(l, -1/2; n; 1/2) 

= ~ +..}2 2Fl(l, -1/2; n; 1/2) 
2 B(n, 1/2) 

= 1 - (_I)n + '2 p(l-n,t)(3) if n > l. 
2 V ~ n-2 ' 

Perhaps nicer yet, we have the generating function 

Theorem 5.1 and corollaries. 

In the formulas above we lise t.he Euler Bet.a fllnction, a Jacobi polynomial evaluated at three, and also the 

familiar double factorial (also known as t.he semifacl.orial) not.at.ion defined by 

II _ { 1 x 3 x 5 x ... x n if n is odd 
n .. - 2 x 4 x 6 x ... X n if n is even. 

By convention, O!! = (-1)" = 1. 

For the benefit of Mathematica users who may wish to compute En, 
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MATHEMATICA PROGRAM. 

e[nJ :=(1-(-1)An )/2 + Sqrt[2] JacobiP[n-2, l-n, 3/2, 3] 

Mathematica calculated En much fast.er using this formula t.han using our other formulas for En. For 

example, the above Mathematica program effortlessly comput.ed the expected number of real eigenvalues of 

a 100 by 100 random matrix: 

E100 = 75002314698289190681410505950979137956286758500731773968829~/2193. 
In Section 6, we consider the generalized eigenvalue problem 

where Ml and M2 are independent. and random. One might guess that quest.ions about generalized eigen­

values would be more difficult than corresponding quest.ions about eigenvalues, but in fact they are simpler. 

NUMBER OF REAL GENERALIZED EIGENVALUES. If E~ denot.es the expected number of real generalized 
eigenvalues of a pair of independent n by n random mat.rices, then 

EG = J7Tr«71 + 1)/2). 
n r(11/2) 

ASYMPTOTIC NUMBER OF REAL GENERALIZED EIGENVALUES. 

ASYMPTOTIC SERIES. As n --+ 00, 

I. E~ ~ 1m ;;;: = -2' 
n-(X) vn 

EG _ (im(I_ ~ _1 ___ 5 ___ 2_1_ 0 ~) 
n - V 2'" 4n + 32712 + 128n3 2048n4 + (715 ) • 

Theorem 6.1 and Corollary 6.1 

PROBABILITY DENSITY FOR REAL GENERALIZED EIGENVALUES. If A denotes a real generalized eigen­
value of a pair of independent. random matrices, t.hen its probabilit.y density fG (A) is given by 

that is, A obeys the standard Cauchy distribution. Equivalent.ly, atan(A) is uniformly distributed on 
[-~, ~]. Theorem 6.2 

Notice that the densit.y function of a real generalized eigenvalue does not depend on n. We could also define 

p~(A) in analogy to Pn(A), but t.his will not. be of use to us. 

2 Motivation, History, Background 

Eigenvalues of random mat.rices arise in many applications areas, perhaps the most well-known areas are 

nuclear physics, multivariate statistics, and as t.est, matrices for numerical algorit.hms. See [10] for references 

to some of these numerous applications. We strongly sllspect. that random eigenvalue models have been 
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considered in any area where eigenvalues have been considered. The subject is also a favorite for pure 

mathematicians because it touches on harmonic analysis, combinatorics, and integral geometry. 

The first investigation of the eigenvalues of real non-symmet.ric matrices with normally distributed entries 

began with Ginibre [11]. He attempted to calculat.e the probabilit.y dist.ribut.ion of the real eigenvalues under 

the assumption that some fixed number A: of them are real, but only succeeded in the case when all of the 

eigenvalues are reaP In Section 3.5 of [13], Girko derives formulas for the distribution of the eigenvalues 

under the same assumpt.ion that a fixed number are real. Unfort.unately, derivations are tedious and the text, 

at least in translation, contains sufficient.ly many typographical errors as to make the derivations difficult to 

check. 

Research into the analogous question for polynomials has been much more successful, as is well docu­

mented in [2]. For example, in the 1940s Kac [17,18]' considered an nth degree polynomial whose coefficients 

are independent standard normals. He derived an integral formula for the expected number of real roots 

and was able to show that there are, asymptotically as n -+ 00, (2/7r) log(n) real roots. Kostlan [19] was 

able to derive an integral formula for the expect.ed number of real roots of a polynomial with any central 

normal distribution using the Poincare formula of integral geometry. Furthermore, Kostlan [19], and Shub 

and Smale [24] were able to apply geometric methods to show that if the coefficient.s have independent central 

normal dist.ributions with variances equal t.o the binomial coefficients, then the expected number ofreal roots 

is exactly the square root of the degree. That. t.hese geomet.ric met.hods, unlike the purely analytic methods 

of Kac and ot.hers, give result.s for (even underdet.ermined) systems of equat.ions, demonstrates the power of 

integral geometry. 

Thus from the pure mathematics side, the problem of comput.ing the expected number of real eigenvalues 

grew out of an attempt t.o apply integral geometry to linear algebra. The ease with which integral geometry 

gives the expected number of real generalized eigenvalues (see Section 6) gave added hope that the problem 

of t.he expected number of real eigenvalues could be solved. 

From the applied mathematics side, we wished to respond to a question by Shiu-Hong Lui [20] who was 

testing homotopy methods to find the eigenvalues and eigenvectors of a general real matrix using random 

test matrices. Random matrices are often used to t.est. algorithms because of the small effort involved in 

producing t.hem. As an example, the eigenvalues of random matrices are computed in the LAPACK test 

suite [4] though LAPACK makes no effort to count. t.he number of eigenvalues that are real. 

3 Eigenvalue Inflation 

We begin by defining a process that. might. be called eigenvalue inflation because it inverts the usual numerical 

process known as eigenvalue deflation. Let An be any real n - 1 by n - 1 matrix, v be any unit n-vector 

such that Vn ~ 0, and W = (WI ... wn ) be any n - 1 dimensional row vector. We can "inflate" the set of 

eigenvalues of A by building t.he n by n mat.rix 

A == H(v) ( 

WI 

Ao (1) 

Wn_1 

Here H(v) is the linear operat.or that exchanges v and en = (0 0 ... 0 If. For definiteness, let H(v) denote 

reflection across the internal angle bisector of v and en. In numerical linear algebra, reflections of the sort 

1 TillS is an extremely rare event for n lint t.oo small. It OCClll'S with probability 2-n(n-l)/4, a fact that will be derived in 
an upcoming paper. 
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that exchange an arbitrary vector v wit.h en are usually called Householder reflections, they are orthogonal 

and symmetric see [14]. 

If we make a change of variables from A to v, A, wand An, t.he following lemma tells us how to integrate. 

Lemma 3.1 Let A be a Lebesgue me(lsurable subset oj the n:a.1 lille, let #A(A) denote the number 0/ real 

eigenvalues 0/ A in A, and let J(>', v, AD, w) denote the Jacobian 0/ tht trans/or'mation defined in (1). Further 

let r denote the density function (Radon-Nikodym derivlltillt:) of any measure that is absolutely continuous 

with respect to Lebesgue measure. We then have 

1 #A(A)r(A)dA = ], J(v,>.,w,Ao) r(A(>',w,Ao,v» dS(v) d>' dw dAo, (2) 
A IJ,AeA,w,Ao 

where dS( v) is the standaT'd (H aar) measure on the unit spher'e, and wheT'e dA, dA, dw and dAo are standard 

Lebesgue meaSUT·es. In particular, the expected number of r.t:al eigenvalues is 

En == 1 #lR(A)r(A)dA = ], J(v,>.,w,Ao) r(A(>.,w,Ao,v» dS(v) d>' dw dAo, (3) 
A v,AJU},A u 

Proof It is easy to see that as Ao varies over all n - 1 by n - 1 matrices, w varies over !Rn - 1 , and v varies 

over the unit hemisphere in !Rn , every mat.rix A is covered exactly k times, where k is the number of real 

eigenvalues of A in A, unless A falls on the set. (of measure zero) of matrices with an eigenvector v where 

Vn = 0 or the set (of measure zero) of mat.rices with multiple eigenvalues. 

Lemma 3.2 The Jacobian of the tmns/oT"TTwtion definnJ in (Jj is 

J(v, >., tv, Ao) = I det.(Ao - AI)I. 

Proof The proof requires calculation of some different.ials near fixed >., v, Ao, and w so that we omit the 

dependence of H on v etc. In the following, matrices and vectors of differential quantities are in bold face 

Roman letters so as to distinguish them from the not.ation for Lebesgue measure. 

Notice that vT dv= 0 so that HT dv, which is also t.he last. column of HT dH, has the form (dYl ... dYn-l O)T. 

The element of surface area in this rotat.ing coordinate syst.em, dS = dy1dY2" .dYn-t. is the natural element 

of surface area on the unit sphere. See Muirhead [22, p.63] for a slightly similar treatment in a more general 

setting. 

Let M denote H AH. Since H2 = I, we have H dH= -dHH. Therefore A = H M Hand dA=dHM H + 

HdMH + H MdH or HdAH =dM+(HdH)M - M(HdH). It. follows that if we omit the last component 

of the last column of H dAH we obtain (Ao - AI) ( d~l ). The other elements of H dAH contain 

cJYn-1 
differential forms composed of the corresponding element of dM and t.he ely;. Taking exterior products of 

the differential forms of the n 2 components using standard techniques, we see that 

completing the derivation. 

1\ dAij = I det(Ao - >'1)1 dS(v) d>' liw dAo, 
ij 

This derivation in terms of differentials almost. hides the action on the tangent spaces. To be precise, 

consider the tangent space at. en and ask how does that map to the tangent space at A in directions orthogonal 

to A. A perturbation theory argument would derive a relationship from 
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with the assumption that e;' w = 0 and e;' y = 0, A quick calculat.ion shows that the relationship between 

the last n - 1 component.s of w as a function of those of y is given by >"1 - Ao, This is more informative than 

saying the Jacobian is I det.(>"I - An)!, because it. giyes a dear int.erpretation to the matrix itself. 
We now specialize t.o the case when t.he matrix A has independent. st.andard normally distributed elements, 

or, in other words, where r(A) = (271')-,,2/2exp(_~ E:'.i=l ali)' 

Theorem 3.1 

= { (n_l~I:;( / ) I det(An - >"I)I [(271')-1/2 exp( --2
1 

>..2)d>"] [(27T)-(n-l)2/2 eXP(--2
1 I: (aO);j)dAO] , 

J>'EII.,Ao 2 n 2 i,j=1 

and where dA, d>" and dAo are standard Lebesgue meas1tT'es, For clarity, we have placed Gaussian measures 

in brackets, 

Proof By Lemma 3,1 and Lemma 3.2, it is clear t.hat. t.he variables v and ware independent of >.. and 

Ao and also they are independent of each other, Thus we can readily integrate out the v and w terms: 

It! dS(v) = ~Vol(sn-l) = 7Tn/2/r(n/2) (where 8"-1 denot.es t.he unit sphere in ~n), and Iw exp(-~ Ewl) = 
(271')(,.-1)/2, From these equations and the previous two lemmas t.he theorem is immediate, 

Taking A to be ~, we learn that 

Corollary 3.1 
71'1/2 

En = 2(n-l)/2r(n/2) EAu.>.1 det.(Ao - >..I)I, 

where the E denotes expectation atIlT the tJUriabies in the subscripts, 

Definition 3.1 Let Dn- 1 (>..) = EAo I det.( Au - >..I) L whcT'(: tltt: l!xpt:cted value is taken over all n - 1 by n - 1 

matrices Ao with indepwdent standar'd Iwr'mlllly distr'ibuteti elements, Also define 

From the discussion above, all of t.hese quant.it.ies are related st.at.istically to expectations concerning the 

real eigenvalues of a random matrix: 

Pn(>") = lim ! (expected number of eigenvalues in [>.. - ~/2, >.. + ~/2)). 
~ .... o~ 

Therefore, 

{ Pn(>..)d>.. 
J>'EII. 

(4) 

represents the expected number of eigenvalues in A; E,. is the expected number of real eigenvalues (i.e. the 

expected number of eigenvalues in ~); In(>") is t.he derivat.ive of the cumulative distribution function of the' 

real eigenvalues, It is sometimes called a condensed (ic:nsity function, in cont.rast to join densities [2]. Since we 

consider all the real eigenvalues t.o be ident.ical, f,,(>,) is not.hing more than t.he marginal (probability) density 

function of a single real eigenvalue, In t.he next t.wo sections we obtain explicit closed-form expressions for 

p,.(>..), En and fn(>"), 
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4 Density Computation 

The computation of the density of a real eigenvalue of an n by n random matrix proceeds by evaluating 

Dn - 1 = EAo(1 det(An - '\1)1) where Ao is an n - 1 by n - 1 random matrix first in terms of objects known 
as zonal polynomials2 , and t.hen in t.erms of more elementary functions. 

For simplicity we calculate Dn instead of Dn- 1 . Let. A be an n by n random matrix. From Theorem 

10.3.7 of [22, p.447], we learn that 

D (,\) - E (I d t(A _ '\1)1) - 2
n

/
2r«n + 1)/2) F (_!.~. _ ,\2 I ) 

n - A e - Vi 1 1 2' 2' 2 n· 

This is a hypergeometric function of a matrix argument. not. in the sense of applying a Taylor series to the 

matrix (which would yield a mat.rix), but. rather it is a more complicat.ed object that yields a scalar [22]. 

We introduce the following abbreviat.ion: 

Definition 4.1 

It is not. generally known when hypergeomet.ric funct.ions wit.h a scalar matrix argument can be written 

as a finite sum of hypergeometric functions wit.h scalar arguments. Gupta and Richards [16] have explored 

when certain hypergeometric functions of a scalar matrix argument. can be written as infinite sums of simpler 

expressions. In our case, Fn('\) can be writ.ten in t.erms of incomplete gamma functions. 

Theorem 4.1 

We postpone the proof of t.his t.heorem until t.he end of t.his section. 

Corollary 4.1 The generating function of thc Fn(.~) is givcn by 

Switching the order of summat.ion and integration, the generat.ing function can be written as a sum of two 

integrals. These integrals are easy t.o evaluat.e. 

In the previous section we established that 

Thus 

(5) 

Using t.he duplication formula [1, 6.1.18] t.o rewrite f(n) in t.he second term of the formula in Theorem 4.1 

and then combining with (4) and (5) proves t.he following two corollaries. 

2Zonal polynomials arise ill grOllp I'epreselltat,joll theory and the stlldy of related hyergeometric fWlctions [22]. 
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Corollary 4.2 The expected number' of eigenvalues 011 tht; ird/Tval [a, b) is equal to 

16 (_1_ [f(n - 1, A2)] IAn
-

I lc->.'/2 [,«rt - 1)/2, A2/2)]) dA. 
a .,f2-i r(n - 1) + r(n/2)2n/2 r«n - 1)/2) 

Corollary 4.3 If An denotes a real eigenvalue of an n by n 7'andom matr'ix, then its marginal probability 

density fn(A) is given by 

The probability density for the normalized eigenvalue x = A/Vfi, is gn(x) = ..fiifn(xVTi}. We wish to 

understand t.he limiting behavior of t.his function as n becomes large. 

Corollary 4.4 For all real values of x, 

Furthermore, tlte functions Yn(x) converge in tlte LP norms for aliI::; p < <Xl. 

Proof First. we analyze point.wise convergence. We will show in Corollary 5.2 that 

I· En vr 1m ;;;:; = -. 
n-oo yn 7r 

(6) 

Furt.hermore [1, 6.5.34), 

lim f(m + Q, my) = 1 _ lim ,(m + Q, my) = 1/2 y = 1 
{ 

1 0::;y<1 

m ..... oo f(m+Q) m ..... oo f(m+u) 0 y> 1 
(7) 

and, using Stirling's (asympt.otic t.o equalit.y) inequality 

(8) 

we can easily establish that. 

(9) 

Combining (6), (7) and (9), we est.ablish t.he desired pointwise convergence. Using element.ary calculus one 

can show that for all y ~ 0 and m ~ 1/2, 

?rn-l m-my' < l-y y- e _ e (10) 

Furthermore, the Gaussian continued fraction for t.he incomplet.e gamma function [15, 8.358] shows that for 

Y> Q - 1, 
e-YyU 

r ( Q, y) ::; ---'---:­
y+u-1 

Using (6), (8), (10) and (11), it is not hard to show t.hat. for all sufficiently large n, 

Yn(x) ::; c l
- Ixl . 

(11) 

Thus by the dominated convergence theorem, t.he sequence {!In} converges in the LP norm for all 1 ::; p < <Xl. 

Since Ll convergence of uellsities implies convergence in dist.ribution, we have at once another corollary. 
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Figure 3: Densit.y of normalized eigenvalues for n = 5,10,20,50,100,200. The bigger n is the closer it 
resembles the uniform density on [-1,1]. 

Corollary 4.5 If An denotes a real cigentJalue of an n by n T·l/.ndom matT1x, then as n -+ 00, the normalized 

eigenvalue An / fo converges in distribution to a T"lwdom tmri(lble uniformly distributed on the interval [-1, 1]. 

Figure 3 illustrates the convergence t.o t.he uniform densit.y. 

Proof of Theorem 4.1: Following Muirhead, we begin by considering ordered partitions K. of an integer k 

The (confluent) hypergeometric function of a mat.rix argument. is defined as 

( ) ~ xk '"' (a)" 
1F1 a; b; xl = L kT L (b)" C,,(I), 

k=O " 

where 
n 

(a)" = I1(a- (i - 1)/2h" 
i=l 

(a)k = a(a + 1) ... (a + k - 1) = f(a + k)/f(a) 

and the zonal polynomial [22, p.237] is 

TIn (2k· - 2k· - i +J') 
C,,(I) = 22k k!(n/2)" i<i71 '.,. 1 . I TIi=l (2k, + n - l). 

Observe that 

(12) 

However, since (-lh = 0 unless k = 0 or I, (-t)" = () IInl<~ss 1 ~ k2 ~ k3 ~ .. , ~ kn ~ O. In other words, 

we are only interested in partitions where possibly only t.he first. component is not 0 or 1. 
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We now focus on F"P) - F,,-l Pl. Since C"(I,,)/(n/2),, is iudependent of n, the only difference between 

the expansion for F" and F,,-l is the summation over part.it.ions with exactly n non-zero components. To 

be precise, we may restrict our attention t.o partit.ions of t.he form 

Io~=(k-n+l,~, k2::n. 
,,-1 

We see from (12) that 

and that. 

C,,(I,,) 2k 1 Ilj=2(2(k - n + 1) - 2 - 1 + j) Ilj=3U - 2)! 
(n/2)"k = 2 k. (2(k _ n + 1) + n - I)! Il:~2(2 + n - i)! 

_ 2kkl {(2k - n - 1)!/(2k - 2n)!} [17:12 
i! 

- 2. ( k )'Il"'1 2 . - 71. + 1. ;=1 l. 

-22k k l (2k-n-l)! 
- . (2k - 7t + 1)!(2A~ - 2n)!n!(n - 1)!' 

Therefore, 

F,,(,\) _ F,.-l('\) = 1 ~ (-1/2lk_,,+1(2k - n - 1)!22k (_,\2 /2l. (13) 
(71. - 1)!( _2),,-1 ~ (2~: - n + 1)!(U~ - 2n)! 

Letting 1 = k - nand not.ing 

we can rewrite (13) as 

2" (,\2)" DO (->..'l"/2)1 
F,,(,\) - F,,-l('\) = f(n) "2 L: 1!(21 + 71. + 1)(21 + 71.) 

1=0 

2" (,\2)11 [00 (_,\2/2)1 CXi (_,\2/ 2)/] 
=f(n) "2 ~/!(2/+n)-~/!(2/+n+l) 
= 2,,-1 (,\:4)(,,-1)/2 [('\2)1/2 00 (_1)/(,\2/2)/+,,/2 _ 00 (-1)/(,\2/2)/+(,,+1)/2] 

r(n) 2 2 L: 1!(1 + 71./2) L: I![I + (71. + 1)/2] 
1=0 1=0 

_ 2,,-1 (,\2)(,,-1)/2 [('\2)1/2 ~ ,\2 _ 71. + 1 '\2] 
- r( 71.) 2 2 ,( 2' 2) ,( 2 '2) 

_ 2,,-1 (,\2)"/2 ~ ,\2 _ 2,,-2 (,\2)<,,-1)/2 71. _ 1 ,\2 (,\2)"-1 2,,-le->.'/2 
- f(n) 2 ,( 2' 2) r(n - 1) 2 ,( 2 '2) + 2 r(n)' 

To calculate F,,('\), we sum the preceding formula over n. The first two t.erms of the formula telescope 

and it is only the last term t.hat must. be summed. However 

" (,\2)k-1 2k-1e->.'/2 _ ->.'/2 " p 2)k-1 _ e+>"/2r(n,,\2) f; 2 f(~~) - e t; f(k) - f(n) . 

Thus we see that 

as required. 
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5 Expected Number of Real Eigenvalues 

To calculate the expected number of real eigenvalues, we need only perform the integration indicated in 

Corollary 4.2, taking the interval to be [-00,00]. The int.egrals involved may be found in classical references 
(e.g. [15, 6.455]). This produces a closed-form expression for En in terms of t.he Gaussian hypergeometric 

function: 

En = ffr(nr(n~/2) [n-1+ ~ 2FI(1,n-1/2;(n+ 1)/2;1/2)]. 

We wish to rewrite En in various forms, each form having its own advantages. The above form was not 

included in the first section of this paper, because we found it unenlightening. In principle, manipulations of 

Gaussian hypergeometric functions should be able t.o prove t.he equality of any two formulas for En. However, 

it is easier to check formulas for En by computing t.heir generat.ing functions and then comparing them to 

the result in the following theorem. 

Theorem 5.1 Tlte generating function of tlte En is gi1Jt!n by 

~ En z" = z(1 - z + z.J2="i.Z) . 
f;:o (1 - z)2(1 + z) 

Proof Using the generating function for Fn (Corollary 4.1), we can easily produce the generating function 

for the p,. and int.egrate it. t.o produce t.he generat.ing funct.ion appearing in this theorem. 

The following corollary will be convenient. for comput.ing t.he asymptotic character of En for large n. 

Corollary 5.1 In tet·ms of Gaflssian Itypcrgcomctr·ic functions, 

E - ~ [f r(n + 1/2) F (1 -1/2. .1/2) _ ~ '2 2Fl(1, -1/2; n; 1/2) 
n - 2 + V -; r(71) 2 I, ,11, - 2 + v:o! 8(n, 1/2) . 

Proof Observe that [15, 9.111] 

V2 2Fl(1, -1/2; n; 1/2) = (n - 1) 11 (1 - t)"-2v'2=t dt. 

Interchanging summat.ion and int.egrat.ion, we can t.herefore writ.e t.he generat.ing function for the postulated 

En as a single integral. This integral will evaluat.e t.o an algebraic function. We then compare this with the 

generating function in Theorem 5.1. 

Corollary 5.2 We lta1Je tlte asymptotic set·ies 

{2;; ( 3 3 27 499 1) 1 
En = V -;- 1 - 8n - 128712 + 1024n3 + 32768n4 + 0(n5 ) + 2 

as n -> 00. 

Proof The standard series for t.he hypergeomet.ric function serves as an asymptotic formula for large n since 

n appears in the denominat.or. An asympt.otic formula for r(n + 1/2)/r(n) can be found in [25,43:6:10]. 

Corollary 5.3 If n is e1Jen, 

< ,./2-1 (4k _ I)!! 
En =..J2 I: (4k)!!' 

k=O 

wltile if n is odd, 
(n-l)/2 (4~~ _ 3)!! 

E,.=I+V2 L (4k-2)!!" 
k=1 
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Proof Using Corollary 5.1, t.he Gauss recursion formulas for Gaussian hypergeometric functions give 

1 r(n - 3/2) (2n - 5)!! 
-/2(En - En - 2) = .;;Tr(n _ 1) = (2n - 4)!!· 

Thus it is elementary to est.ablish this corollary by induction. 

Corollary 5.4 For n > 1, 

E - 1 - (-1)" + '2 p(1-"'~)(3) 
n - 2 y L, ,,-2 . 

Proof The Jacobi polynomials are Gaussian hypergeomet.ric functions. To be precise [15, 8.962.1], 

(l-n,il) (" 4f(n + 1/2) ( / / ( )/ ) 
Pn-2 '(z)= -1) ;;;'{ )2FI2-n,32;52; z+1 2. 

3y 1l"l n - 1 

Rewrite the postulat.ed En using t.his formula, and t.hen proceed as in Corollary 5.1, or as in Corollary 5.3. 

6 Real Generalized Eigenvalues 

A "generalized eigenvalue" of the pair of mat.rices (MI' M 2 ) (or of the pencil MI - AM2 ), is defined to be a 

solution A to the equation 

In this section we show how symmetry can be used to obt.ain the expected number of real generalized 

eigenvalues and their densit.y. 

Theorem 6.1 If E~ denotes the expt:c1ed number of rcal gC7I.(:m/izcd eigenvalues of a pair of independent n 

by 11 random matrices, then 

EG = .;;Tr((n + 1)/2) 
" r( 71/2) 

Since t.he asympt.ot.ic series of t.he Euler Bet.a function is known [25, 43:6:10] we have an immediate 

corollary. 

Corollary 6.1 We havt: lht: asymptotic series 

as n ~ 00. 

Theorem 6.2 If A denotes a real gener·alized eigenvalut: of (l pair· of independent random matrices, then its 

probability density fG(A) is given by 
G 1 

f (A) = 7T(1+A~)' 
that is, A obeys the standar·d Cauchy distr·ibutio1t. Equivale.ntly, atan(A)· is uniformly distributed on [-~, ~]. 

Since a standard Cauchy random variable can be defined as t.he ratio of two independent standard normals, 

it seems appropriate to call the random mat.rix M = Mil MI a "(standard) Cauchy matrix." Clearly the 

eigenvalues of M are just. the generalized eigenvalues of t.he pair (1111, M 2 ) and thus the expected number of 

real eigenvalues of an n by n Cauchy matrix is equal to 

.;;Tf((n + 1)/2) 
f(n/2) 
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and a real eigenvalue of a Catlchy matrix is Cauchy. 

We now prove these results. A straight forward calculation using J acobians would be possible here, but 

we prefer to use the more elegant tools of integral geometry. When trying to find an application of integral 

geometry to some subject, one first asks is if t.here are nat.ural compact sets associated with that subject. A 
candidate for linear algebra (although there are others wort.h investigating) is the set of singular matrices. 

Unfortunately, this set is not compact, so we replace it with t.he following. 

Definition 6.1 Let ~n denote the set of all n by n singular' matT'ices of Frobenitls norm one. 

Following standard notation, the Frobenius norm of a mat.rix A is defined as IIAIIF == JE ali' In the 

language of algebraic geomet.ry, ~n is a real algebraic subvariet.y of dimension n 2 - 2 of the unit sphere 
sn'-1 in !Rn'. 

Now let the pair (M1, M2 ) be a pair of random mat.rices. If we replace M1 with MdIlMIIIF, and we 

replace M2 with M2/IIM2I1F, t.he matrices M1 and M2 remain independent, and each is uniformly distributed 
on sn2-l. The generalized eigenvalue equation may he rewrit.t.en 

det[cos(O)M1 + sin(O)M2 ] = o. 

Real generalized eigenvalues correspond to (pairs of ant.ipodal) intersections of ~n with the great circle 

{cOS(O)Ml +sin(O)M2} in sn'-1. 
Thus when we consider real generalized eigenvalues of t.he random pair (Ml' M 2 ), we are considering 

intersections of ~n wit.h random great. circles in S,,'-1. From the choice of probability measure for the 

pair (M1' M2), it is not hard to show that t.he random circles have the standard (Haar) measure. This is 
a classical set up for integral geomet.ry. We wish to know t.he expected number of intersections of a fixed 

variety and a random variet.y. Here the fixed variet.y is ~n, and the random variety is the random circle 

determined by Ml and M 2 • 

Lemma 6.1 (Poincare) Let V be a variety in sm of tiiml:1lsion TTl -1. The expected number of intersections 

of V and a random great circle (with the normaliztxj H(HlI' measur'e) is equal to twice the volume of V divided 

by the volume of sm-1. 

This formula and its generalizations appear in int.egral geometry hooks such as [23]. Poincare's formula 

reduces the problem of calculat.ing t.he expected number of real generalized eigenvalues to finding the volume 

of ~n. 

The set ~n was studied by Demmel [3] and Edelman [8] in the cont.ext of studying the probability 

that a numerical analysis problem is difficult .. In part.icular, t.hey investigated the probability distribution 

of Demmel's scaled condition number K.D(M) == IIMIIFIIM- 1 112. Computing the volume of ~n reduces to 

computing the asymptotics of the probability t.hat K.D > 0' as U - 00: 

Let Vf(~n) be the volume of an i neighborhood of ~n in sn'-l. Clearly, 

By the definition of the Demmel condition number "D, 

Edelman [8, Corollary 2.2] has shown that 

. -1 2r«u + 1)/2)r(n2/2) 
!:'i1J i Prob[K.D > l/i] = f(n/2)r«n2 _ 1)/2) . 
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We conclude that 
. 21Tn"/~f«(n + 1}/2} 

Vol(An} = f(n/2}r«n2 _ 1}/2}' 

Dividing this by the volume of sn'-2 gives t.he expect.ed number of real generalized eigenvalues. 

We now deduce the density function of a real generalized eigenvalue. For this we do not normalize Ml 
and M 2 . Rather, we consider the pair (MI' M 2 ) to be a collection of n2 bivariate normals. Since each of these 

bivariate normals is invariant under rot.at.ion, we can readily see t.hat. (cos( 0), sine 0)) is uniformly distributed 

on the unit circle. Since A = - tan(O), we have immediat.e1y tha.t A is Cauchy. 

7 Numerical Experiments 

Fairly early into our investigation, we had some notion t.hat the expect.ed number of real eigenvalues must 

be roughly 0.8y1n from numerical simulat.ions. We were lat.er pleased t.o learn that this 0.8 was the number 

J2/1T. 
With the investigat.ion complet.ed, we can now provide t.he numerical experiments alongside the exact 

theoret.ical results. The numerical experiment.s were performed using the newly released LAPACK eigenvalue 

algorithms which we ran on 64 processors of the CM-5 parallel supercomputer. We are pleased to report 

that t.he LAPACK algorithm on the CM-5 computed reslllt.s consist.ent with our theorems: 

Expected number of real eigenvalues: CM-5 Experiments using LAPACK on 64 processors 

n trials experimental En t.heoretical En minutes 
80 640 7.6 7.603 1 
160 640 10.7 10.569 7 
320 640 14.9 14.756 51 
640 128 20.8 20.673 82 
900 64 24.5 24.427 107 

We used the CM-5 in what. is somet.imes called "embarrassingly parallel mode" because each individual 

matrix never crossed any processor boundaries. Indeed, a 900 by 900 double precision real matrix is about 

the largest that. can fit on anyone processor. The results of the comput.at.ions were sent to the CM-5's host 

using the CM-5's message passing language CMMD. 

In order t.o save some comput.ing time, rat.her than working with a dense matrix with normally distributed 

elements, we defined random upper Hessenberg mat.rices A with exactly the same eigenvalue distribution as 

a matrix wit.h normally dist.ribut.ed elements. This upper Hessenberg matrix is defined by 

{

normally dist.ributed 
aij is distribut.e~ like Xn- j 

i~j 
i=j-l 
otherwise 

To prove that. this random matrix does indeed have the same eigenvalue distribution, simply consider the 

standard reduction to upper Hessenberg form using Householder matrices as described in books such as 

[14]. The subdiagonal is merely t.he length of the column below it. which is a X dist.ribution, the appropri­

ate elements are zeroed out. creating Hessenberg form, and t.he remainder of t.he matrix remains normally 

distribut.ed because of the orthogonal invariance. 

8 Extensions to Other Distributions 

Mehta [21, Conjectures 1.2.1 and 1.2.2] conjectures from extensive numerical experience that the statistical 

properties of matrices with independent ident.ically dist.ributed entries behave as if they were normally 
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distribut.ed as n -+ 00. Mehta focuses on the symmet.ric or Hermit.ian cases, but surely the idea is quite 

general. 

Through our own extensive numerical experienc.e, we st.rongly believe t.hat any eigenvalue property of 

most any well-behaved distribut.ion can be modeled by t.he normal distribut.ion. Below are some numerical 

experiments performed on matrices whose entries came from the uniform dist.ribution on [-1,1] and also the 

discrete distribution {-I, I}. N ot.ice that bot.h of t.hese measures have mean zero and finite variance. Though 

we have not tested this, we suspect that. these are t.he crucial hypotheses. As indicated in the caption, our 

CM-5 was upgraded to 128 processors before running these experiments. 

Expected number of real eigenvalues: CM-5 Experiments using LAPACK on 128 processors 

uniform distribution 

n trials experiment.al En minut.es 
80 3200 7.6 3.5 
160 3200 10.6 24.5 
320 3200 14.9 191 
640 896 21.1 412 
900 384 24.6 499 

Expected number of real eigenvalues: CM-5 Experiments using LAPACK on 128 processors 

discrete distribution {-I, I} 

n trials experiment.al E,. minutes 
80 3200 7.5 3.3 
160 3200 10.5 24.1 
320 3200 14.8 188 
640 640 20.8 308 
HOO 384 24.7 500 

17 



Acknowledgements 
We would like to thank Shiu Hong Lui for piquing our int.erest. in t.his problem as well as Zhimin Yan who 
encouraged us to carry t.hrough a zonal polyncllnial solut.ion t.o our problem. We further wish to thank the 
authors and architects of LAPACK, Matlab, and t.he CM-5 supercomputer without which such extensive 
experimentation would not have been possible. 

References 

[1] M. Abramowitz and LA. Stegun, IJandbook of MatlJematical Functions, Dover Publications, New York, 
1965. 

[2] A.T. Bharucha-Reid and M. Sambandham, Random PolYIJomials, Academic Press, New York, 1986. 

[3] J .W. Demmel, The probabilit.y that. a numerical analysis problem is difficult, Math. Compo 50 (1988), 
449-480. 

[4] J.W. Demmel and A. McKenney, A test. mat.rix generat.ion suit.e, Argonne National Lab, MCS-P69-0389 
and LAPACK working not.e 9. Available from netlib(/)na-net.ornl.govor xnetlib. 

[5] A. Edelman, Eigenvalues and condition numbers of random mat.rices, SIAM J. Matrix Anal. Appl. 9 
(1988), 543-560. 

[6] A. Edelman, Eigenvalues and Condition Numllers of Random Matrices, PhD thesis, Department of Math­
emat.ics, MIT, 1989. 

[7] A. Edelman, The distribut.ion and moment.s of t.he smallest eigenvalue of a random matrix of Wishart 
type, Linear Alg. Appl. 159 (1991) 55-80. 

[8] A. Edelman, On t.he dist.ribut.ion of a scaled condit.ion number, MatlJematics of Computation 58 (1992), 
185-190. 

[9] A. Edelman, Random matrix eigenvalues meet nUll1cricailillear algebra, SIAM News 24 (November 1991), 
11. 

[10] A. Edelman, Bibliography of Random Eigenvalue Lit.erat.ure, available electronically by anonymous FTP 
from math. berkeley. edu in t.he directory /pub/ edelman. 

[11] J. Ginibre, Statist.ical ensembles of complex, quat.emion and real mat.rices, J. Math. Phys. 6 (1965), 
440-449. 

[12] V.L. Girko, Circular law, Theory Proh. AJlp/. 29 (1984),694-706. 

[13] V.L. Girko, Theory of Random Determinants, Kluwer Academic Press, Boston, 1990. 

[14] G.H. Golub and C.F. van Loan,Matrix Computations, Second Edition, Johns Hopkins University Press, 
Baltimore, 1989. 

[15] I.S. Gradshteyn and I.M. Ryzhik Table of Integrals, Series and Products, Corrected and Enlarged 
Edition, Academic Press, New York, 1980. 

[16] R.D. Gupta and D.S.P. Richards, Hypergeometric functions of scalar matrix argument are expressible 
in terms of classical hypergeometric functions, SIAM J. Math. Anal. 16 (1985),852-858. 

[17] M. Kac, On the average number of real root.s of a random algebraic equation, Bull. Am. Math. Soc. 49 
(1943), 314-320 and 938. 

[18] M. Kac, On the average number of real root.s of a random algebraic equation (II), Proc. London Math. 
Soc. 50 (1948), 390-408. 

[I!)] E. Kostlan, On the dist.ribut.ion of the root.s of random polynomials, in Fr.om Topology to Computation: 
Proceedings of the Smalefest edited by M.W. Hirsch, J. Marsden and M.Shub, Springer Verlag, New 
York. 

18 



[20] S.H. Lui, private communicat.ion, 1!:l92. 

[21] M.L. Mehta, Random Matrices, Academic Press, New York, 1991. 

[22] R.J. Muirhead, Aspects of Multivariate Statistical Theory, John Wiley &, Sons, New York, 1982. 

[23] L.A. Santalo, Integral Geometry and Geometric Prol,allijity, Volume 1 of Encyclopedia of Mathematics 
and Its Applications, Addison-Wesley, Reading, 1976. 

[24] M. Shub and S. Smale, Complexit.y of Bezout's Theorem II: Volumes and Probabilities, Proceedings of 
MEGA 92, to appear. 

[25] J. Spanier and K.B. Oldham, An Atlas of Functions, Hemisphere Publishing, Washington, 1987. 

19 



LA~NCEBERKELEYLABORATORY 

UNIVERSITY OF CALIFORNIA 
1ECHNICAL INFORMATION DEPARTMENT 

BERKELEY, CALIFORNIA 94720 

~....:-
--. 




