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AI-enhanced reconstruction of the 12-
lead electrocardiogram via 3-leads with
accurate clinical assessment

Check for updates

Federico Mason 1,2,5, Amitabh C. Pandey 1,3,4,5, Matteo Gadaleta 1, Eric J. Topol 1,3,
Evan D. Muse 1,3 & Giorgio Quer 1

The 12-lead electrocardiogram (ECG) is an integral component to the diagnosis of a multitude of
cardiovascular conditions. It is performed using a complex set of skin surface electrodes, limiting its
use outside traditional clinical settings. We developed an artificial intelligence algorithm, trained over
600,000 clinically acquired ECGs, to explore whether fewer leads as input are sufficient to reconstruct
a 12-lead ECG. Two limb leads (I and II) and one precordial lead (V3) were required to generate a
reconstructed 12-lead ECG highly correlated with the original ECG. An automatic algorithm for
detection of ECG features consistent with acute myocardial infarction (MI) performed similarly for
original and reconstructed ECGs (AUC = 0.95). When interpreted by cardiologists, reconstructed
ECGs achieved an accuracy of 81.4 ± 5.0% in identifying ECG features of ST-segment elevation MI,
comparable with the original 12-lead ECGs (accuracy 84.6 ± 4.6%). These results will impact
development efforts to innovate ECG acquisition methods with simplified tools in non-specialized
settings.

With over 300 million being performed worldwide on an annual basis1, the
12-lead electrocardiogram (ECG) has established itself as a bedrock diag-
nostic in the assessment of cardiovascular disease2–5. Using an array of 10
individual skin-surface electrodes, a series of 12 different electrical signals is
arranged to assist in the diagnosis of multiple cardiopulmonary diseases.
Despite the advancements provided by vectorcardiography and other
recording techniques, including the Mason-Likar system, most clinical
diagnoses still rely on the standard 12-lead ECG, whose acquisition process
has not iterated to great degrees from its initial inception. It can be cum-
bersome, requiring special equipment available only at a hospital or clinic,
and specially trained individuals to perform and interpret the ECG.

Over the last several years, technological advancements made it pos-
sible tomonitor specific cardiac activity throughwearable devices including
smart watches, patch monitors and apps with improved quality and speed.
However, ECG monitoring in this setting is often limited to a single lead
(typically lead I) or few limb leads, which are inadequate for confidently
diagnosing abnormalities limited to specific myocardial regions, such as
acute myocardial infarction (MI)6. Since the specific patterns suggestive of
an acute MI may be reflected in the limb leads, the precordial leads, or a
combination of limb and precordial leads, current guidelines require the use
of a 12-lead standard ECG for clinical interpretation.

The 12 leads in a standard ECG are not fully independent and are
known to be in-part correlated7, thus over the last 30 years techniques have
beenproposed tosynthesize a full standardizedECGfroma limited lead set8.
While initial advancements in this field relied on linear transformation
models, the diffusion of artificial intelligence (AI) enabled the development
of more sophisticated approaches.

Prior studies have primarily relied on patient-specific models9 or have
been derived from limited datasets10,11, potentially limiting their general-
izability. In this study, our aim was the development of a reconstruction
algorithmwith the purpose of synthesizing a complete 12-lead ECG from a
limited subset of leads. To this end,we leveraged a large retrospective dataset
of clinically obtained 12-lead ECGs. Additionally, we assessed the clinical
utility of this reconstructed ECG involving three cardiologists, using ST-
elevation MI (STEMI) as a case study.

Results
Dataset curation and categorization
We considered a working dataset with 627,842 ECGs from 277,174 unique
individuals. In particular, 33.66% of the ECGs were recorded from indivi-
duals 18–60 years old, 16.75% are associated with non-White individuals,
and 47.73% were from female individuals. Normal sinus rhythm was
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present in 56.88% of the ECGs, while the rest was characterized by some
form of arrythmia, with sinus, atrial, and ventricular arrhythmias present in
26.06%, 17.12%, and 7.31% of the ECGs, respectively. Cardiac conduction
disorders were present in 30.71% of the ECGs, while 25.91% presented a
repolarization abnormality in the ST segment or T wave. Ventricular
hypertrophy, deviations of the cardiac axis and ischemia were present in
7.51%, 14.72%, and 10.27% of the ECGs, respectively (Table 1).

Focusing on the subset of ECGs associated with myocardial infarction
(MI), 47.40% of the data had signs of past MI, while 18,509 ECGs (2.94%)
present evidence of acuteMI. Regarding the anatomical location of the acute
MI, we had 8.21% anterior, 0.37% septal, 5.83% lateral, 5.26% anteroseptal,
6.31% anterolateral, 4.08% inferolateral, 32.22% inferior/posterior, and
40.90% unspecified (Supplementary Table 1).

12-lead reconstruction algorithm
The reconstruction algorithm’s performance was assessed in terms of mean
squared error (MSE) and coefficient of determination (R2) between the
original precordial leads and those synthesized by the algorithm.When the
algorithm used only two limb leads as input, performance was relatively
poor with MSE = 0.0247 ± 0.0002mV2 and R2 = 53.72 ± 0.18%. Adding a
single precordial lead in input significantly improved the reconstruction
accuracy, with the best performance observed using lead V3,
MSE = 0.0127 ± 0.0001mV2 and R2 = 72.98 ± 0.14%. Replacing lead V3
with either lead V2 or lead V4 resulted in a slight decrease in reconstruction
accuracy (Fig. 1).

Examples of reconstructed signals with input lead I, II and V3 are
reported in the supplement (Supplementary Fig. 1).

Classification using the reconstructed signal
The classification algorithm’s accuracy was evaluated using three distinct
versions of 12-lead ECG, obtained using as input: the original 12-lead ECG
(Original), the 12-lead ECG reconstructed from two limb leads (I+ II), and
the 12-lead ECG reconstructed from limb leads and precordial lead (I+
II+V3). The area under the operating characteristic curve (AUC) for the
classification algorithm with input I+ II+V3 was AUC= 0.95, which is
equivalent to the performance obtained using the original 12-lead ECG,
while the AUC with the I+ II version as input was considerably lower
(Fig. 2).

Performance of both reconstruction and classification algorithms are
reported for all the demographic and clinical features described, (Table 1)
focusing also on the different types of MI in the working dataset (Supple-
mentary Table 1).

Clinical assessment of the reconstruction algorithm
The cardiologists involved in the clinical interpretation of our framework
were able to correctly discriminate between the presence or absence of ECG
features consistentwithST-segment elevationMI (STEMI) in84.6 ± 4.6%of
the cases whenusing the original ECGs, 81.4 ± 5.0% of cases whenusing the
I+ II+V3 version, and 75.5 ± 5.5% of cases when using the I+ II version,
showcasing the importance of one precordial lead for the reconstruction.
The specificity remainedconsistently at 100% inall cases.Thismeans that all
ECGs identified with features of STEMI, including those generated syn-
thetically, were confirmed as possible STEMI cases. The sensitivity was
68.7 ± 8.5% for the original 12-leadECG, 62.4 ± 8.8% for the synthetized 12-
leadECGwith I+ II+V3, and51.3 ± 9.0% for the synthetized12-leadECG
with I+ II (Fig. 3).

The results showed that the ability to identify ECG features consistent
with STEMI from a synthesized 12-lead ECG (I+ II+V3) is not inferior to
the one obtained from the original ECG with a margin of error of 10%
(p-value = 0.026).

Discussion
In the present study, we designed a novel AI algorithm for the recon-
struction of a full 12-lead ECG from two limb leads only (I and II) or two
limb leads and a single precordial lead (I, II, and V3). We assessed the

accuracy of the reconstructed 12-lead ECG by using an automatic detection
model, trained to classify ECG records according to the evidence of acute
MI. The detection model was equally effective with input of an original 12-
lead or reconstructed (I+ II+V3) ECG. This result provides initial evi-
dence that I+ II+V3 leads may be sufficient for reconstructing a 12-lead
ECG towards the identification of acute MI.

We also showed that the ECGs reconstructed by our AI algorithm can
be effectively interpreted by a cardiologist for diagnosing STEMI, with a
limited performance reduction with respect to the standard 12-lead ECGs.
In this test, as seen in earlier findings12, sensitivity was relatively low for both
the original and reconstructed 12-lead ECGs. This could be attributed to the
cardiologists’ assessment of the ECGswithout additional information about
the patient and their lack of prior knowledge regarding the elevated pre-
valence of STEMI cases in the dataset (50%). Consequently, theymight have
been more cautious in diagnosing these ECGs as STEMI. While larger
multi-site clinical trials are needed to confirm this initial evidence, these
results are a promising step towards the use of this algorithmwhen a 12-lead
ECG is not available.

This study builds on our previous work that proposed an AI archi-
tecture for the analysis of single-lead ECGs13–15. Several approaches in the
literature attempted to reconstruct a full 12-lead ECG, e.g., leveraging the
correlation among different leads included using linear transformation
matrices8,16, or temporal-basedmodels17,18. However, most of these previous
works designed an individualized algorithm19, which, in turn, limits the
effectiveness of the proposed application. Lead interdependency varies from
individual to individual and, thus, more advanced models are needed to
shape the relation between limb and precordial leads. Herein lies the
strength of supervised techniques that can approximate complex functions
by learning from a large amount of labeled data, enabling the definition of
new tools for synthetizing ECGs from partial information.

A first example of AI for ECG reconstruction exploited a feed-forward
neural network (FNN) system to generate a full 12-lead ECGusing the limb
leads combined with V2 as input9. More sophisticated techniques were also
proposed, including convolutional neural networks (CNNs)10 and long
short term memory (LSTM) models11, both suitable tools for processing
time-series like anECGsignal.Notably,CNNsprovidedhigh-quality results
for the identification of atrial fibrillation and other rhythm-related
abnormalities20, or for the automatic detection of STEMI from limb leads
only21.

Despite these solutions to identify heart diseases in an automatic
manner22–24, the reconstruction of a 12-lead ECG represents a fundamental
step towards detection of acute coronary syndrome, specifically STEMI, that
can be effectively verified by a cardiologist. Previous research that exploited
AI for this goal was based on limited-size datasets (a few hundred records),
not suitable for the training of complex learning models9,10,25. In other stu-
dies, data from the same patient was used both in training and testing,
affecting generalizability11,26.

Our results suggest that it is possible to reconstruct a 12-leadECG from
the measurement of a limited set of 1 precordial and 2 limb leads, and that
the synthetized signal can be used by a cardiologist for the detection of
STEMI. While most of previous investigations assumed that septal lead V2
is the most important precordial lead8, we have shown that measuring
anterior lead V3 provides the best accuracy for the reconstruction. This
findingmay be attributed to the central position of V3, resulting in stronger
correlations not only with anterior lead V4 but also with septal and lateral
leads. Our study highlighted how the reconstructed 12-lead ECG is not only
useful for an automatic algorithm in the identification of acuteMI, but it can
alsobe interpreted by cardiologists andused to identify STEMI.Considering
that the required input can be obtained using commercial sensors without
the need for a complete 12-lead ECG, this solution becomes particularly
valuable in scenarios where acquiring a full 12-lead ECG is impractical. This
is especially relevant in settings such as care facilities with limited resources
or remote locations lacking clinical infrastructures.

In these scenarios, ECG reconstruction tools could facilitate early
diagnosis of active disease, potentially reducing the time for medical
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intervention. Besides, using amore agile system, as the one presented in this
paper, may be beneficial in triage situations or in other time-sensitive set-
tingswith increased patient volume. In such cases, the use of a reconstructed
signal couldpromptlyprovide essential information for initial assessment or
ongoing management of patients’ conditions, increasing the efficiency of
clinical practices.

This work (and similar studies) represents a step towards the transi-
tioning from brick-and-mortar clinical facilities to remote, direct-to-
participant healthcare accessible to everyone. This is now possible using
more accurate sensor technologies, the use of AI algorithms to learn from
massive datasets and reproduce clinical-level signals, and the ubiquitous

connectivity that enables rapid and constant two-way communication from
remote locations to the clinic27–29. The potential of digital technologies lies in
their capacity to bring healthcare closer to individuals at any time, even
when accessing a clinical facility may be challenging.

Using a limited number of leads to capture the essential information of
a 12-lead ECG has the potential to facilitate the diagnosis of ischemia,
arrhythmias, and other heart-related conditions. Solutions like the one
proposed in this study may enable medical examinations, such as cardiac
stress tests, to be performed in a home setting, making the health system
more agile, especially in combination with the other possibilities offered by
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Fig. 1 |Distributions ofmean square error and coefficient of determination in 12-
lead ECG reconstruction. Boxplot of the mean squared error (MSE) and the
coefficient of determination (R2) distribution according to various input config-
urations for the reconstruction of a 12-lead ECG. Thewhite line in themiddle of each
box represents the distribution median, the box edges are the 25th and 75th

percentiles, while the boxwhiskers are the 5th and 95th percentiles. TheMSE is given
by the sum of the squared difference between the original ECG values and those
reconstructed by the designed algorithm. Instead, the R2 represents the fraction of
variance of the original ECGs captured by the reconstruction model and is inde-
pendent of the actual scale of the data.

Fig. 2 | Receiver operating characteristics curves for acute MI detection. Receiver
operating characteristic (ROC) curves for acute MI detection according to various
input configurations. The ROC curve depicts the performance of the detection
system while varying the discrimination threshold between sensitivity and specifi-
city. In our case, the sensitivity, also known as true positive ratio, corresponds to the
probability that anECG is diagnosed as acuteMI, conditioned on the fact the original
signal was labeled as acute MI. Instead, the specificity, also known as true negative
ratio, corresponds to the probability that an ECG is not diagnosed as acute MI,
conditioned on the fact that original signal was not labeled as acute MI.

Fig. 3 | Detection accuracy of the original and reconstructed ECGs in clinical
validation. Sensitivity, specificity and accuracy obtained during the clinical vali-
dation of the proposed reconstruction model. The sensitivity, also known as true
positive ratio, corresponds to the probability that an ECG is diagnosed as STEMI,
conditioned on the fact the original signal presents STEMI evidence. The specificity,
also known as true negative ratio, corresponds to the probability that an ECG is
diagnosed as not-STEMI, conditioned on the fact that the original signal does not
present STEMI evidence. Finally, the accuracy is given by the ratio between the
number of correct diagnoses and the total number of ECGs analyzed.
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telemedicine. The reconstruction of a 12-lead ECGmay serve as a valuable
tool also in a hospital setting, preempting the need for a technician, reducing
the time required to record the standard ECG leads and offering a pre-
liminary diagnosis procedure during emergency room admissions or
ambulance transports.

The designed algorithm is based on data recorded through con-
ventional 12-lead ECGs, where only lead I, II, and V3 are considered as
input of the reconstruction algorithm. The measurements are indeed
performed by highly trained clinical personnel in a hospital system, thus
the challenges linked to different recording systems, potentially more
prone to inaccuracies, performed by non-clinical personnel outside of a
clinical setting, are yet to be evaluated. Furthermore, the dataset is
sourced exclusively from a single hospital system, with a good gender
balance (percentage of female is 50.39%) but a higher representation of
White individuals (with a ratio of 4:1 compared to non-White indivi-
duals). The rate of ECGs diagnosed with acute MI is higher among non-
White individuals (4.17%) in comparison to White individuals (2.69%).
Although there is currently no substantial evidence indicating sig-
nificant disparities in ECG interpretation based on race, further inves-
tigation with data from individuals with diverse demographic
characteristics is needed to exclude this potential bias. Additionally, the
proposed reconstruction framework should be evaluated in a multi-site
study, where different ECG systems are included, and potentially it
should be re-trained accordingly. Finally, despite the promising out-
comes of this study, comprehensive validation through a prospective
clinical trial is necessary to evaluate the real-world performance and
clinical utility of reconstructed ECG signals.

These results illustrate the fidelity of a fully reconstructed 12-lead ECG
using two limb leads (I and II) and one precordial lead (V3), which could be
collected using a simple mobile sensing platform, promoting future inno-
vation. Such algorithms and technology may be used outside of a clinical
setting, allowing for time-sensitive STEMI diagnoses, thereby potentially
facilitating prompt emergency procedures.

Methods
Study population
This work was based on an initial dataset of 1,718,909 de-identified ECG
performed in-clinic, collected from 554,120 unique individuals from 2008 –
2019 using the Scripps Health GEMUSE system (GE Healthcare, Chicago,
IL). All ECGs were exported in their raw form and processed in a stan-
dardized manner for the retrospective analysis. The duplicate ECGs (i.e.,
identical ECGs recorded multiple times), the ECGs from individuals
<18 years and those associated with corrupted data were excluded. For the
training and evaluation of all the algorithms, we considered a subset of the
data, namely the working dataset, with 627,842 ECGs, which were obtained
considering all available ECGs with a diagnosis of MI in the ECG
(n = 313,921), and an equal number of non-MI ECGs selected at random
(Supplementary Fig. 2).

Ethical considerations
The protocol for this project was reviewed and approved by the Scripps
Office for the Protection of Research Subjects (IRB-20-7504). A consent
waiver was granted as all ECGs have already been performed at the time of
this project, and there were no changes to the care the individuals have
already received.

Dataset description
Each element in the dataset was composed of 12 electrical signals of length
10 s, recorded with a sampling frequency of 250 or 500Hz. All signals were
resampled at a frequency of 250 Hz. The ECG leads were divided into two
classes: limb (I, II, III, aVR, aVL, aVF) and precordial (V1, V2, V3, V4, V5,
V6) leads. Limb leads are linearly dependent, all six limb leads can be
obtained by measuring only two of them30. The relationships between limb
leads are detailed in the following equations.

III ¼ II � I ð1Þ

Fig. 4 | 12-lead ECG reconstruction algorithm
architecture. The architecture of the 12-lead ECG
reconstruction algorithm includes two modules.
The upper module takes limb I and II as input and
exploits a linear combination to generate the limb
leads. The lower module takes lead I, II and V3 as
input, and exploits a Neural Network (NN) archi-
tecture to generate the precordial leads. Particularly,
the NN architecture is organized into three different
sections, each including a different number of resi-
dual convolutional NN (ResCNN) blocks. The first
section includes three ResCNN blocks with the
function of extracting the features of each of the
input leads. The second section includes a single
ResCNN block receiving the aggregated lead feature
as input and returning a unique multi-dimensional
vector as output. In the last section, the same vector
is processed through six independent ResCNN
blocks, each of which returns a different precordial
lead of the reconstructed signal. The aggregated
output of the two modules returns the 12-lead ECG.
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aVL ¼ I � III
2

ð2Þ

aVR ¼ � I þ II
2

ð3Þ

aVF ¼ II þ III
2

ð4Þ

Each element of the dataset was associated with an automatic diag-
nosis, revised by the clinician who analyzed and finalized the ECG
recording. These diagnoses were utilized to run a textmining algorithm and
define a set of labels for each element. The labels described the ECG from a
clinical point of view, considering the cardiac conduction and other struc-
tural features of the signal (Supplementary Table 2).

In addition to describing the overall dataset, the clinical labels were
used to identify the ECGs associated with a suspected diagnosis of acuteMI.
In this regard, we observe that a diagnosis ofMImust be confirmed by other
clinical information besides the features provided by an ECG.However, this
limitation does not compromise the validity of our results since the goal is to
design an automatic algorithm to be used in conjunction with clinical
decision-making and not instead of it.

We divided the working dataset into three mutually exclusive subsets,
whichwere then used as training (n = 438,843), validation (n = 93,984), and
testing (n = 95,015) data for our analysis. The proportion between MI and
non-MI labels was maintained in each subset, ensuring that approximately
half of the ECGs used for the training were associated with evidence of MI.
Moreover, in cases wheremore than one ECGwas associatedwith the same
individual, all of the ECGs for that individual were grouped into the same
subset.

Algorithm architecture
The main goal of this work was the design of a reconstruction algorithm to
produce a 12-lead ECG from a subset of the signal leads. The algorithmwas
based on an AI architecture leveraging residual convolutional neural net-
works (ResCNNs). The architecture could take any combination of the
signal leads, whether limb or precordial, as input, while consistently pro-
ducing the full 12-lead ECG as output. The input leads were processed
according to a feature scaling approach31, whichpreserves themathematical
differences among different data. Each lead was mapped in the interval
between 0 and 1, in order to facilitate the learning phase of the algorithm.
Weconsidered aminimumandmaximumvalueof -2.5 and2.5mVfor each
lead, where values >2.5mV were mapped to 1, while values lower than
-2.5 mV were mapped to 0.

The algorithm architecture was organized into three sections. The first
included three independent ResCNN blocks, each taking a single lead as
input and returning the lead features as output, which were encoded in
multi-dimensional vectors of 2500 samples and 32 channels. In the second
section, the lead features were aggregated and processed through an
ResCNN block returning a multi-dimensional vector of 2500 samples and
192 channels as output. Finally, the third section included six independent
blocks, each receiving a copy of the aggregated features and computing one
of the six precordial leads of the reconstructed ECG. Although the input
leads are normalized within 0 and 1, the output of the reconstruction
architecture is unrestricted and directly provided inmillivolts (mV) (Fig. 4).

Additional details on the design of the learning architectures are pro-
vided in the supplement (Supplementary Note 1).

To evaluate the accuracy of the reconstructed signals, we designed a
separate classification algorithm to automatically detect acuteMI froma 12-
lead ECG. The architecture of the classification algorithm received eight
leads (I+ II andV1-V6) as input. Each leadwas encoded as a vector of 2500
samples, with values normalized between 0 and 1. In the first step of the
architecture, these vectors were processed individually, obtaining eight
multi-dimensional vectors of 2500 samples and 32 channels. In the second
section, features were aggregated and processed through a single ResCNN
block returning a single-dimensional vector of 128 values. In the last section,
a feedforward neural network transformed this vector into a single scalar
value, which is processed through a sigmoid function. The final output
represented the probability of acute MI (Fig. 5).

Algorithm training and evaluation
During the training phase, the reconstruction algorithmwas encouraged to
minimize the mathematical distance between the original precordial leads
and the precordial leads generated by the learning architecture, considering
R2 as the loss function. During the testing phase, we assessed the perfor-
mance of the reconstruction algorithm in terms of MSE and R2. The MSE
quantified the average squared difference between the original precordial
leads and those reconstructedwith our approach. Instead, R2was utilized to
assess how effectively the reconstructed signal captures the variance of the
original signal, regardless of its amplitude. In the case of a perfect recon-
struction, we would obtain MSE = 0 mV2 and R2 = 100% (Supplementary
Note 2).

The goal of the classification algorithmwas to associate each ECG to a
label denoting the presence or absence of acute MI. Hence, during the
training phase, the algorithm was trained to minimize the cross-entropy
(CE) between the true labels of the data and the labels predicted by the
learning architecture. During the testing phase, we evaluated the

Fig. 5 | AcuteMI detection algorithm architecture.
The architecture of the acuteMI detection algorithm
is organized into three different sections. The first
section includes eight residual convolutional neural
network (ResCNN) blocks extracting the features of
each of the eight input leads. The second section
includes a single ResCNN block receiving the
aggregated lead feature as input and returning a
unique multi-dimensional vector as output. In the
last section, the vector obtained is processed through
a Feed-Forward Neural Network (FNN) and, finally,
a sigmoid function, returning the probability of
detecting an acute MI.
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performance of the classification algorithm by calculating theAUC for each
input configuration (Supplementary Note 3).

Seeking to understand which information most affects the output of
the learning architecture, we implemented the Shapley additive explanation
(SHAP) algorithm32, one of the most common explainable AI method, to
assess the importance of each input lead for the reconstruction task (Sup-
plementary Note 4).

Cardiologist interpretation of the reconstructed ECGs
To assess the interpretability of the reconstructed signal, three board-
certified cardiologists were asked to analyze a set of multiple ECGs,
including both original and synthetized signals, identifying the ECG con-
sistent with a STEMI diagnosis. In determining the sample size for the
clinical interpretation of our system, we hypothesized that a cardiologist’s
accuracy in assessing the original ECGs and the signals reconstructed from
the limb leads was 95% and 90%, respectively. Therefore, we considered a
sample of 238 ECGs, with 119 of them showing indications of STEMI, while
the remaining 119 comprised normal ECGs or exhibited other non-MI
abnormalities. The correct diagnoses of these data were verified by two
expert cardiologists (not involved in the test) before the test, who analyzed
all the ECGs and agreed on the correct label.

Using our reconstruction algorithm, we generated three versions for
each of the selected ECGs. The first version was the original 12-lead ECG
(Original), the second version was the 12-lead ECG synthetized by our
reconstruction algorithm considering two limb leads (I+ II) as input, and
the third version was the synthetized 12-lead ECG considering limb leads
and precordial lead (I+ II+V3) as input. For each ECG, each of the three
versions (I+ II, I+ II+V3, andOriginal) was randomly assigned to one of
the three cardiologists, so that each cardiologist was evaluating 238 ECGs,
without knowingwhich of themwere original 12-leadECG, andwhichwere
synthetized.

The ECGs were presented one by one using MyDataHelps, an online
platform provided by CareEvolution. After enrolling to the platform, each
cardiologist was asked to examine the 238 assigned ECGs, associating to
each signal a diagnosis among: “STEMI”, “non-STEMI”, and “Unable to
determine”. The cardiologist could complete the test at their own pace,
interrupting it at their own will.

Comparing the answers of the cardiologists with the original data
labels, we estimated the detection accuracy, sensitivity, and specificity,
associated with each input configuration of the reconstruction algorithm
(I+ II, I+ II+V3, and Original). We then proved the non-inferiority of
the I+ II+V3 system with respect to the original ECG using an unpooled
z-test and considering 10% as margin of error. We considered the z-test’s
outcome statistically significant if associated with a p-value < 0.05. The
p-value is the probability of observing a given event given that the null
hypothesis is true; in ourwork, the null hypothesis is that the accuracy of the
I+ II+V3 system is >10% lower than that obtained when using the ori-
ginal ECGs as input. Hence, a smaller the p-value corresponds to stronger
evidence that I+ II+V3 does not lead to relevant performance
degradation.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
This study is retrospective, and it does not generate any new data. The
existing data present a risk of re-identification preventing its sharing
according to approved IRB. Questions regarding data access should be
addressed to the corresponding author.

Code availability
The full code used to develop the learning algorithms is available at: https://
github.com/scripps-research/ecg_reconstruction.
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