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SUMMARY

Cancers display significant heterogeneity with respect to tissue of origin, driver mutations and 

other features of the surrounding tissue. It is likely that individual tumors engage common 

patterns of the immune system—here ‘Archetypes’—creating prototypical non-destructive tumor 

immune microenvironments (TME) and modulating tumor-targeting. To discover the dominant 

immune system archetypes the UCSF Immunoprofiler Initiative (IPI) processed 364 individual 

tumors across 12 cancer types using standardized protocols. Computational clustering of flow 

cytometry and transcriptomic data obtained from cell sub-compartments uncovered dominant 

patterns of immune composition across cancers. These archetypes were profound insofar as they 

also differentiated tumors based upon unique immune and tumor gene-expression patterns. They 
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also partitioned well-established classifications of tumor biology. The IPI resource provides a 

template for understanding cancer immunity as a collection of dominant patterns of immune 

organization and provides a rational path forward to learn how to modulate these to improve 

therapy.

Graphical Abstract

INTRODUCTION

Pathologists have long recognized that tumors are infiltrated by cells of both the innate and 

adaptive arms of the immune system and thereby mirror inflammatory conditions arising 

in non-neoplastic environments (Dvorak, 1986). Indeed, tumors are complex environments 

where malignant cells interact with both immune and nonimmune cells to form the complex 

cellular network of the tumor microenvironment (TME) (Hanahan and Weinberg, 2011). 

Cancer immunotherapy has revolutionized cancer care by acting directly on the TME and re-

engaging the anti-tumor immune response (Iwai et al., 2005; Leach et al., 1996). However, 

the biology of the immune microenvironment opposing these therapies is incompletely 

understood (Hugo et al., 2016; Spranger, 2016) and many patients experienced minimal or 

no clinical benefit from immunotherapies. A deeper understanding of the diversity of the 

immune microenvironment across human malignancies is critical to the improvement of 
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immunotherapy treatment strategies (Binnewies et al., 2018; Gajewski et al., 2013; Gotwals 

et al., 2017; Hegde et al., 2016).

To date, the combination of The Cancer Genome Atlas (TCGA) (Cancer Genome Atlas 

Network, 2015) and deconvolution technique base on gene expression from bulk tissue such 

as CIBERSORT (Aran et al., 2017; Chen et al., 2018; Newman et al., 2015) have established 

a foundational but low resolution landscape of the TME across human tumors (Bindea et 

al., 2013; Gentles et al., 2015; Mlecnik et al., 2016; Rooney et al., 2015; Thorsson et al., 

2018). More recently, single-cell RNA sequencing (scRNA-seq) technologies have been 

increasingly applied to define the diversity of TME in a single cancer type (Azizi et al., 

2018; Goswami et al., 2020; Lavin et al., 2017; Zhang et al., 2019) or focus on a single 

immune cell compartment (Cheng et al., 2021; Gueguen et al., 2021; Oh et al., 2020; Zhang 

et al., 2020; Zilionis et al., 2019). The identification of recurrent motifs in the immune 

system at a higher resolution and spanning multiple cancer types is still lacking.

It is now well understood that complex coordination of immune cell states is required 

to achieve important tissue functions such as wound healing, tissue homeostasis or viral 

clearance (Mujal and Krummel, 2019). Rather than focusing on the state of a single cell 

type, a given immune response can be conceived as a collection of cell subsets and specific 

immune cell pairings linked with function allowing us to define “immune archetypes”. For 

response to therapy, a strong archetypal relationship between immune cell subsets such as 

cDC1, CD8 T cells and NK cells (Barry et al., 2018; Böttcher et al., 2018) or cDC2 and 

CD4 conventional and regulatory T cells (Binnewies et al., 2019; Bosteels et al., 2020) have 

been previously identified in specific tumor types and viral infection. Tumors have also been 

described as ‘Hot’ (immune infiltrated) or ‘Cold’ (sparsely infiltrated) with variations in 

stromal content (Bagaev et al., 2021). However, these are likely incomplete delineations and 

whether they are associated with tumor biology and granular immune cell composition is 

still unclear (Chen and Mellman, 2017).

In this study, we leveraged a unique dataset composed of both cell type compositional and 

transcriptomic data from 364 fresh surgical specimens across 12 tumor types to identify 

conserved tumor immune archetypes. We used an unsupervised clustering approach based 

on tumor specific immune gene signatures, benchmarked against ‘ground truth’ cell type 

composition data from flow cytometry, to identify and validate 12 unique tumor immune 

archetypes that were also identified in the TCGA dataset. These archetypes, discovered 

with only ten features, differentially aggregated other cell types that were not part of 

the discovery features, and delineate immune and tumor transcriptomic programs across 

different tissue type. They and these data thus provide an unprecedented resource to study 

cancer immunity and cancer targets to improve response to immunotherapy.

RESULTS

A Pan-Cancer High-Dimensional Study of Dominant Immune Composition.

The UCSF Immunoprofiler Initiative (IPI) collected fresh surgical specimens from 12 

distinct tissues of origin using an unbiased approach, i.e., agnostic of tumor type, stage, and 

grade (Figure 1A, Supplementary Table 1). We performed standardized processing of 364 
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individual tumor specimens including rapid digestion into single cell suspension for immune 

phenotyping using multi-parametric flow cytometry (flow panels, see STAR methods). 

To identify patterns of gene expression within six broadly defined cell populations, we 

also performed cell sorting for bulk RNA-sequencing including compartments denoted: 

1. “Live”: All viable cells at the time of sorting, 2. “Tconv”: sorted conventional 

CD4+ and CD8+ T cells, 3. “Treg”: CD25+ CD4+ (enriched for regulatory) T cells, 4. 

“Myeloid”: Lymphocyte-negative HLA-DR+ (enriched for myeloid) cells, 5. “Stromal”: 

CD45− CD44+Thy1+ cells, and 6. “Tumor”: all other CD45− cells (Figure 1B and S1A 

left, and see STAR methods for full sort descriptions and potential caveats).This approach 

was chosen over single-cell RNA sequencing because greater read depths capture weaker 

transcripts and because this technology was an immature technology at the start of the 

program.

Because they are the basis for many previous single-cancer type studies, we initially focused 

upon the abundance of three major cell types in the TME by flow cytometry (hereafter 

“3-feature” or “3-f”), namely total α/β T cells (Tcell feature), myeloid cells (Myeloid 

feature) and non-immune CD45−, CD44+, Thy1+ stromal cells (CD44+ CD90+ Stroma 

feature) (Figure S1A left and supplementary table 2). Consistent with previous descriptions 

(Bagaev et al., 2021; Mandal et al., 2016; Thorsson et al., 2018; Varn et al., 2017) the cell 

abundances for these three cell types, plotted as a score (Figure 1B, and extended method) 

for each tumor type show tremendous heterogeneity across and within tumors from different 

tissues, suggesting the need for a tumor classification that goes beyond tissue of origin 

(Figure 1C).

Taking advantage of a distinguishing feature of our cohort which have linked compositional 

flow cytometry and RNAseq data, we discovered and then validated a set of gene signatures 

that would allow us to infer and compare compositional data from external RNAseq-only 

datasets such as TCGA. We used differential gene expression (DGE) analysis on high 

quality RNA seq data from sorted tumor associated T cell, myeloid and stromal cells 

characterized by well separated clusters of transcriptomic profiles revealed by K-means 

clustering (Figure S1A- right). We defined unique gene signatures for the Tcell, Myeloid 

and CD44+ CD90+ Stroma features, comprised of 25, 29 and 21 genes respectively, and 

used this to generate a compositional score where a high value corresponded with high 

cell abundancy in the tumor specimen analyzed (Figure 1D and Figure S1B ). Use of this 

score, when applied to RNAseq data from the live RNAseq compartment in a validation 

cohort showed high concordance with the cell type frequencies obtained via flow cytometry, 

independent of tissue of origin (Spearman correlation 0.91,0.90 and 0.94 of T cell, Myeloid, 

and Stromal, respectively) (Figure 1D). Moreover, rank ordering of tumor from different 

tissues by these gene scores showed similar trends, and strong correlations across individuals 

to those obtained by flow cytometric measurements (Figure 1C/S1D and 1E).

Our signatures for intra-tumoral composition significantly outperformed signatures derived 

from cell lines ( e.g. CIBERSORT Figure S1C) when compared to the ‘ground-truth’ of 

flow cytometric composition data. We presume this improvement results from our data being 

taken from cells directly collected from fresh tumor tissue as opposed to cell lines or isolated 

samples (Aran et al., 2017; Newman et al., 2015). When we applied our gene signatures to 
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RNA-seq data from 4341 TCGA tumor specimens RNA-seq data, we found that the median 

score for each tumor type between datasets for the majority of the tissues surveyed was 

similar, suggesting that the abundancies we describe by tumor type ( e.g. Figure 1C) extend 

beyond our sample processing protocol (Figure S1E). The exceptions to this were for lung 

(LUNG), liver (HEP), Glioblastoma (GBM) and pancreatic (PDAC) tumors (Figure S1E), 

this may be due to incomplete or different methods of sampling or patient-selection variation 

between the cohorts; thus, in the remainder of this analysis, we did not consider these cancer 

type when making additional comparisons.

Unsupervised Clustering of 3-Features, Independent of Tissue of Origin

We performed unsupervised clustering, using the Louvain community detection algorithm 

on a K nearest-neighbor (KNN) weighted graph, on 3 features, Tcell, Myeloid and CD90+ 

CD44+ Stromal scores for all 260 samples with a “Live” bulk RNAseq compartment 

(Supplementary Table S2). The clustering was visualized using UMAP, both on the IPI 

and TCGA cohorts (Figure 2A/E and STAR methods). The optimal clustering parameters 

were evaluated by minimizing the Davies Bouldin Index (DBI) (Davies and Bouldin, 

1979), a metric that assesses the ratio of the intra-cluster distance to inter-cluster distance 

(Figure S2A-B and STAR methods) and in both cohorts this resulted in six clusters. In 

the IPI cohort, this separated two immune rich clusters (termed immune rich (IR) and 

immune stromal rich (IS)) defined by high expression of Tcell and Myeloid features and 

differentiated by Stromal enrichment in IS. This similarly differentiated two Immune desert 

(ID) clusters (Immune Desert and Immune Stromal Desert) defined by low expression of 

Tcell and Myeloid features, and again differentiated by enrichment of CD44+ CD90+ stroma 

within the Immune Desert cluster. Finally, we also identified clusters with enrichment in 

only one immune feature, namely the Tcell Centric (TC) and Myeloid Centric (MC) features 

(Figure 2B-D and Figure S2C left). Application of our gene scores to the TCGA cohort also 

produced six clusters when minimizing the DBI and these cluster corresponded to the six 

clusters found in the IPI cohort (Figure 2E-F and Figure S2C-D).

To provide validation of the flow cytometry data, we ran immunofluorescence assays 

on tissues collected from a subset of the IPI tumor surgical specimens. Consistent with 

expectation, we observed that samples taken from immune rich clusters (1-3) had the 

highest CD45+ infiltration, while immune desert samples had the lowest (Figure 2G-H 

and Figure S2G-L). Myeloid Centric (MC) clusters were similar to the immune desert 

clusters for overall CD45+ infiltration as assessed by immunofluorescence (Figure 2G-H 

and Figure S2G-L). However, MC clusters presented an intermediate CD45+ cells frequency 

when measured by flow cytometry. Overall, we observed significant correlation between the 

frequency of immune cells among all cells versus among viable cells after tissue dissociation 

(Figure S2F). The discrepancy between flow cytometry and immunofluorescence observed 

in MC archetype may represent a modest preferential recovery of immune cells during 

tissue dissociation for MC tumors. Future analyses of spatial dimensions may reveal paired 

infiltration patterns i.e. T cell plus or minus myeloid or ‘excluded’ versus ‘infiltrated’ (Galon 

et al., 2006; Mlecnik et al., 2016). This will involve considerable orthogonal analyses due to 

the intrinsic complexity of diverse tissue morphologies e.g. lung versus colon.

Combes et al. Page 6

Cell. Author manuscript; available in PMC 2023 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Given the importance of chemokines in recruitment of immune cells, we sought to determine 

whether these archetypes had unique chemokine gene-expression signatures that might 

corroborate their classification. We first derived a single gene signature score applied to 

the live compartment, based on 39 chemokines (Nagarsheth et al., 2017), and found a 

high score in immune rich clusters and a low score in immune desert cluster in both the 

IPI and TCGA cohorts (Figure 2K-L and Figure S2E). Two exceptions stood out using 

the pan-chemokine measure: Tcell and Myeloid Centric clusters showed decreased and 

increased pan-chemokine scores, respectively (Figure 2K-L). We thus examined chemokines 

individually, using hierarchical clustering of the median chemokine expression amongst the 

tumors of each archetype, and identified sets of chemokines associated with each cluster 

(Figure 2M-N). For instance, the three T cell enriched clusters are enriched in either 

chemokines expressed by T cell (XCL1, XCL2, CCL4) or T cell attracting chemokines 

(CXCL13, CCL5). Other archetypes had their own pattern of differentially expressed 

chemokines and these were broadly consistent with their composition. Immune desert 

clusters typically had a few unique and specific chemokines expressed. The overall patterns 

observed on a chemokine-by-chemokine basis for the six archetypes was similar between 

IPI and TCGA (Figure 2N), with a few exceptions such as CCL1, CCL11 and CCL27. 

These results demonstrate that a 3-feature scoring of tumor tissue identifies six unique 

clusters defined by a different degree of immune infiltration and expression of distinct sets 

of chemokines.

Distribution of 3-feature Archetypes by Cancer Type and outcome

3-feature based clustering demonstrated a heterogenous distribution of tumor types among 

the different clusters, although some cancer type, such as Kidney and Melanoma had 

significant biases (Figure 3A and Figure S3A). Taking advantage of the large clinical 

dataset available in the TCGA cohort, we sought to broadly assess whether these simple 

archetypal classifications had a relationship to prognosis. Agnostic to the tissue of origin, 

the overall survival at 5 years analyzed by multivariate regression is significantly better for 

the immune rich archetype compared to all the others (p-value 3.9E−11) with a general trend 

in outcome that tracks with overall immune infiltration (Figure 3B). To extend this analysis 

and focus within tumor types, we analyzed distributions of archetypes in both IPI and TCGA 

and assessed the outcome in individual cancer (Figure 3C and Figure S3B-D). While the 

relative composition of archetypes by tissue of origin were broadly similar in both cohorts, 

there was some variation e.g. heavily ‘Tcell Centric’ bias in Melanoma in IPI cohort can 

appear as a combination of ‘IR’ or ‘IS’ in TCGA. Furthermore, archetypical classification 

in some tumor types such as melanoma, kidney, bladder, and colorectal appear to stratify 

survival outcome, trends were weaker within other individual cancer type. This variability 

prompted us to consider that these coarse-grained 3-feature archetypes may not capture the 

full range of immune cell heterogeneity in tumors. Measurement by flow cytometry of Treg 

density and CD4+/CD8+ conventional T cell ratio confirmed our assumption as we observed 

variability within each archetype (Figure 3D-E).

Developing A 6-Feature Archetype Definition

Using flow cytometry data, we again grouped tumors by cancer type to assess variation in 

regulatory T cells (Treg) in live cells and CD4+ or CD8+ conventional T cell frequencies 
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in T cells, both between and within tumor types (Figure 4A) (supplementary table 3). 

Repeating our previous methodology (Figure S1), we used DGE between the Treg RNAseq 

compartment and the other cell sorted RNAseq compartments to generate Treg gene 

signature composed of 9 genes, (Figure S4A) that was highly similar to other published 

signatures (Arce Vargas et al., 2018; Plitas et al., 2016; Zemmour et al., 2018). To isolate 

a signature for CD8 versus CD4 within our Tconv RNAseq compartment, we used the 

flow data to identify samples rich in CD4 or CD8 conventional T cells and performed 

DGE between them (Figure S4B and STAR methods). Notably, most of the identified 

genes have been previously associated with CD4+/CD8+ conventional T cell identity (e.g., 

CD8A, IL7R) or tissue residency (e.g., VCAM1, BACH2) (Richer et al., 2016; Savas et 

al., 2018) (Figure S4B). Assessment of a validation cohort (samples that were not used 

to generate the features scores) showed very high correlations (Spearman correlation Treg 

:0.86, CD4:0.97 and CD8:0.98, respectively), with population abundances measured by flow 

cytometry. Again, these correlations were significantly better than those obtained using 

CIBERSORT (Figure S4C). Unsupervised clustering of all samples using the CD4 and CD8 

feature signature genes within our Tconv RNAseq revealed the existence of at least 3 distinct 

groups of tumors across cancer type: CD8-biased tumors, CD4-biased tumors and a large 

population that was mixed for both these signatures (Figure 4B).

Using these scores, we next performed 6-feature clustering (Figure 4C and Figure S4D-F). 

DBI optimization yielded eight clusters and analysis by alluvial plot revealed that the two 

new clusters formed are mostly a subdivision of the previous coarse Immune Rich and 

Immune Stromal Rich archetypes, now delineated by CD4 to CD8 ratio (Figure 4D-E and 

Figure S4E). This increase in feature granularity also resulted in some specimens shifting 

within the classification. For example, some Tcell Centric samples now shifted to being 

considered “Immune-rich:CD4” because of their profound high CD4 score, Furthermore, 

this analysis revealed that the 3-feature cluster of ‘Immune Stromal Desert’ was relatively 

CD8 rich whereas the ‘Immune Desert’ favored CD4 cells. CD45 densities remain high for 

the immune rich tumors (Figure S4G). Assessing chemokine gene expression showed that 

this re-clustering dramatically segregated chemokine gene expression in the Immune Rich 

archetype and further refined the chemokine expression found amongst the other archetypes 

(Figure 4F and Figure S4H)

Mapping T Cell Exhaustion and Myeloid Subset Heterogeneity In 6-Feature Archetypes

Exhaustion in T cells (Tex) represents a transcriptional state for T cells that arises in 

cancers and chronic viral infections and is characterized by progressive loss of effector 

functions, high and sustained inhibitory receptor expression, and acquisition of a distinct 

transcriptional program (Blank et al., 2019). We used the Tconv RNA-seq compartment to 

identify genes that showed the highest correlation with CTLA4, PDCD1, HAVCR2, CD38 

and LAG3, previously identified exhaustion markers. We identified 11 such genes, which 

included TOX, a transcription factor recently described as key driver of T cell exhaustion 

(Beltra et al., 2020; Khan et al., 2019; Scott et al., 2019) (Figure S4I and STAR methods). 

We then benchmarked this gene signature score against the abundance of CD4+, CD8+ 

and the sum of both CD4+ and CD8+ T cells co expressing CTLA4, PD-1 and CD38 as 

markers of Tex (Figure S4J). This Tex gene score best mirrored the flow-cytometry-based 
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abundance of CTLA-4+/PD-1+ cells within the combined CD8+ and CD4+ compartments 

(Figure S4K). Using this Tex gene signature score we observed enrichment of exhaustion 

in CD8 biased archetypes including the immune desert (ID) archetype (Figure S4L-M) and 

together with low MHC I expression by the tumor cells in these archetypes (Figure S4N).

In addition to T cell exhaustion, we also sought to assess myeloid heterogeneity in our 

tumor landscape, widely known to be variable in tissues. We thus probed the abundance 

of mononuclear phagocytes (MNP) subsets including monocytes (Mo), macrophages (Mp), 

classical dendritic cells (cDC2, cDC1) and plasmacytoid dendritic cells (pDCs) for each 

archetype using flow cytometry (Figure S4O). This revealed that, despite, slight enrichment 

between archetypes e.g., of cDC2 over cDC1 in IR CD4 Bias, the cDC1/cDC2 ratio, 

monocyte, and macrophage densities were highly variable within each of the 6-feature 

archetypes. (Figure 4G and Figure S4P).

10-Feature Archetype Definition

The complexity of the MNP identity and plasticity has complicated efforts to determine 

which populations are beneficial or subversive to the anti-tumor response (Broz et al., 2014; 

Etzerodt et al., 2020; Gubin et al., 2018). To assess myeloid diversity and density across all 

samples, we generated a scRNAseq sub-study of sorted tumor associated MNP to identify 

specific gene signatures for the principal MNP subsets (Figure S5A). Following removal of 

non-MNP cellular contaminants, we found 5 unique clusters from 3,880 input cells (Figure 

S5B). Using DGE between each cluster, we identified unique 5 gene signatures for each 

subset (Figure S5C). Most of the genes identified have been previously associated with 

their respective MNP subsets such as VCAN, TREM2, CD1C, CLEC9A and LAMP5 in 

monocytes, macrophages, cDC2, cDC1 and pDCs, respectively (Binnewies et al., 2018; 

Cheng et al., 2021; Combes et al., 2017; Molgora et al., 2020; Sancho et al., 2009). To 

validate these signatures across individuals and tissue types we performed a similar analysis 

on 11 fresh resected tumors across 3 tissue types, Melanoma, Head and Neck and Kidney 

(Figure S5D). We confirmed that the same 5 gene signatures, that we observed in our 

initial melanoma sample, uniquely identified the MNP subsets independent of the tumor 

type (Figure S5D-E). A sixth cluster characterized by high expression of FSCN1, CCR7 

and LAMP3 was also detected in this dataset (Figure S5E). This specific gene expression 

signature has been recently associated with a distinct cDC transcriptomic/activation state 

(provisionally named ‘cDC3’) characterized by high expression of regulatory molecules 

such as PD-L1 and highly correlated with Treg abundance in the tumor (Cheng et al., 2021; 

Maier et al., 2020; Mulder et al., 2021; Zhang et al., 2019). However, due to the absence 

of specific markers in our antibody panel to validate the presence of this subset by flow 

cytometry we could not include this population subset in our MNP features scores.

Gene signature scores for these MNP subsets were generated in bulk RNAseq for tumor 

associated myeloid cells and validated against cellular abundance by flow cytometry. The 

correlation of each MNP subset feature score across all cancer type were highly correlated 

(Spearman correlation of 0.86, 0.91, 0.93, 0.94 and 0.94 for Monocytes, Macrophages, 

cDC2, cDC1 and pDC, respectively) (Figure S5F and STAR methods). Again, when we 
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analyzed the distributions of these five MNP subset features scores by cancer type, a high 

heterogeneity was apparent (Figure 5A and Figure S5G).

Thus, we repeated the unsupervised clustering after adding four MNP subset features 

including macrophages, monocytes and the two types of classical dendritic cells to the 

previous six features (Supplementary Table 3). The resulting clustering (hereafter “10-

feature” or “10-f”) produced 12 unique tumor immune archetypes after DBI minimization, 

with no bias toward specific archetypes found between scores calculated from flow and 

scores calculated directly from RNAseq (Figure 5A and Figure S5H-J). As previously 

observed when adding T cell subsets, the addition of the four MNP measures subdivided 

preexisting immune archetypes but did not increase those by 16-fold as could occur if these 

were randomly assorted (Figure 5B-C). MNP inclusion also resulted in some specimens 

shifting between MC and ID archetypes, driven by strong monocytes or macrophages 

enrichment.

Analyzing the 12 archetypes produced in 10-f clustering, we found that generally both IR 

and ID sub-archetypes were distinguished by distinct pairings of T cell and myeloid subsets 

but that these pairings varied. Specifically, the monocyte/macrophage ratio demarcates two 

different IR CD8 bias archetypes where Treg abundance is generally higher in macrophage-

enriched tumor specimen (Figure 5D-F and 5O-Q). One archetype, IR CD4 biased, is 

differentiated from its IR CD8 counterparts by enrichment in cDC2 vs cDC1 (Figure 5D 

and 5R-T). However, such correlation between CD4/CD8 and cDC2/cDC1 ratios is only 

observed among IR archetypes and not in archetypes containing high stromal densities 

(Figure 5G-I and 5R-T).

The relationship between monocytes/macrophages and T cell subsets composition also 

differed significantly amongst the 12 archetypes (Figure 5D-N). In IS (Figure 5H), CD8 

abundance is opposed to Macrophage abundance, but in ID, both CD4 and CD8 rich 

sub-archetypes are equivalently enriched in macrophages and monocytes (Figure 5N, 5P 

and 5T). TC (Tcell centric) archetypes are characterized by a positive correlation between 

Treg and Macrophage abundance (Figure 5J-L and 5P-Q). This discordance between the 

abundances of macrophages and other immune cells in different archetypes could suggest 

that a generalized Macrophage score does not capture critical heterogeneity in macrophage 

phenotypes or that macrophages and T cells may engage in additional as-yet-undiscovered 

relationships that regulate their numbers.

Defining Immune Gene Expression Pattern Across 10-Feature Archetypes

Focusing on the 12 tumor archetypes identified by 10-f clustering, we examined associations 

with cell abundances and gene sets that were not used for clustering. Significant archetype-

specific enrichment was found for gene sets that define intra-tumor NK cells in IR based 

on published signatures (Barry et al., 2018) and these were confirmed by flow cytometry 

measurement, while ISR were enriched in gene sets defining Mast cells (Cheng et al., 2021) 

(Figure 6A and S6B-C). Plasma cells, defined by enrichments of IgG genes, were enriched 

in T cell Centric Macrophage bias tumors whereas B cell measured by proteomic and 

transcriptomic expression (MS4A1; CD20) were most prevalent in T cell Centric DC rich 

(Chen et al., 2020; van Galen et al., 2019) (Figure 6A and S6D). These may correspond to a 
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prevalence for tertiary lymph nodes in those archetypes although we did not observe higher 

DC frequencies in those tumor specimens (Figure S5J). An archetype-specific immune 

composition pattern again correlated with specific enrichment of groups of chemokine 

transcripts (Figure 6B). Notably, chemokines with specificity for families of chemokine 

receptors now frequently co-clustered within the 10-f archetypes.

We next used the myeloid RNAseq compartment to explore the level of expression of 

genes previously associated to tumor-infiltrating MNP, namely ‘M1’, ’M2’, ‘DC’ and ‘Co-

stimulatory molecules’ (Biswas et al., 2013; Cassetta et al., 2019; Cheng et al., 2021; Maier 

et al., 2020; Roberts et al., 2016). Despite the heterogeneity in individual gene expression 

associated to ‘M1’ and ‘M2’ macrophage phenotype among archetypes we observed a 

general enrichment in ‘M2’ genes in IS archetypes (Figure 6C). On the other hand, ‘DC’ and 

‘Co-Stim’ associated genes were highly expressed in the Tcell Centric DC rich archetype 

but LAMP3, FCSN1 and CCR7 expression (typically indicative of the “cDC3” state) did 

not appear coordinated across archetypes (Figure 6C). This may indicate a heterogeneity of 

dendritic cell transcriptomic states between archetypes.

To further elucidate the heterogeneity found in myeloid function we combined the myeloid 

‘signature’ gene sets with a selection of 12 other gene sets highly linked to subsets of 

Treg, Tconv, B cell, plasma cells, and NK cells and performed hierarchical clustering 

of these genes sets based on their median expression in the archetypes. The gene sets 

were evaluated in different RNAseq compartments corresponding to their appropriate cell 

type, namely ‘Th1’ genes in the Tconv RNAseq compartment, ‘M1’ genes in the myeloid 

RNAseq compartment and ‘Treg homing’ in the Treg RNAseq compartment (Figure 6D 

and Supplementary table 3). Combining the gene sets in this way revealed distinct immune 

signatures for each archetype (Figure 6D). For instance, while the IR CD8 macrophage bias 

archetype was enriched in genes associated with the type 1 response (IFNG, TNF, IL1B) 

both in Tconv and MNP compartments, both IS and ID CD8 archetypes were characterized 

by their unique combination of upregulated gene expression associated to T cell exhaustion 

(PDCD1, CTLA4, ENTPD1) together with ‘M2’ like macrophages (PDCD1L2, CD163, 

CD274, and MRC1). This analysis also identified putative gene expression interactions 

present in the same archetype across cell types, such as high CCR2 expression by Tregs 

in an archetype rich in monocytes, which are known producers of the CCR2 ligand, CCL2 

(Loyher et al., 2018; Mondini et al., 2019) (Figure 6D). Taken together, this demonstrated 

that the 12 tumor immune archetypes found in 10-f analysis also identifies a unique 

combination of cell composition and transcriptomic profiles.

Notably, certain immune populations remained more variable across the archetypes. For 

instance, neutrophils were mostly uncorrelated although there was a slight and statistically 

insignificant rise in neutrophil infiltration in archetypes with low immune infiltration 

(Figure S6A and S6E). A gene signature previously associated to stimulatory dendritic cells 

abundance and better outcome in Melanoma patients is slightly enriched in archetypes with 

high total immune infiltration (Barry et al., 2018). Exhaustion signature is enriched in both 

immune rich and immune desert archetypes (Figure S6A and S6F-G). Thus, while the 12 

immune archetypes from 10-f analysis identify dominant combinations of cell types and 
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transcriptomic profiles present in tumors, other cell types may also be independently layered 

within and across this apparently conserved biology.

10-Feature Tumor Archetypes Tie Closely to Tumor Biology and Disease Outcome

Finally, we sought to examine the relationship of 10-f archetypes to the phenotype of the 

tumor cells themselves. As previously shown for the coarse archetypes, 10-f archetypes 

are diverse in their tissue of origin; however, some tumor types remain highly represented 

within an archetype (e.g., Kidney: Immune Rich CD8, Melanoma: T cell centric archetypes) 

(Figure 7A and Figure S7). Regardless of the frequent intra-cancer heterogeneity, we 

observed a strong relationship between tumor proliferative capacity, measured by the 

fraction of tumor cells which were Ki67+ as measured by flow, and immune desert and 

myeloid centric archetypes (Figure 7B).

Based on this we assembled gene signatures for various aspects of tumor biology to 

determine whether immune features mapped to tumor biology. Expression of cell cycle 

associated genes indicated enhanced tumor cell proliferative capacity in ID archetypes, 

consistent with the Ki67 data (Figure 7C). Conversely, IR and ISR tumors were enriched 

in other transcriptomic programs such as Interferon-Stimulated Genes ISG, Senescence or 

Epithelial-mesenchymal Transition (EMT) related genes (Kinker et al., 2020; Muñoz et al., 

2019; Wiley et al., 2017) and only some immune deserts were highly enriched in fibrosis 

associated genes (Figure 7C).

Without pre-selection of genes from previous literature, we performed DGE and then 

hierarchical clustering using the most differentially expressed genes, between archetypes 

on the sorted tumor RNAseq compartment (Figure 7D). Within the 12 sets of differential 

genes, we noted some discernable patterns, for example increased IFNG expression in tumor 

cells from the IR CD8 Macrophage archetype, concordant with increased type 1 response in 

immune cells from the same archetype.

To define gene signatures that we could assess in TCGA, we queried our sorted live 

compartment to find genes that correlated with each archetype (Figure 7E). This identified 

unique gene signatures for each of the 12 archetypes, within which we observed both 

immune (e.g. LAYN, CTLA4, CSF1, CCL19) and non-immune (CRHBP, PTGFR, HSPA2, 

MTCL1) related genes. Applying these signatures to the TCGA dataset, we found that 

the tumor archetypes identified in our IPI dataset were retrieved with a similar relative 

composition of archetypes by cancer type in KIRC, CRC, LUAD, HNSC, BLCA or with 

a slight shift between archetypes from the same coarse archetype (i.e. : ID CD4 Bias to 

IR CD8 bias) in GYN and SKCM (Figure S7A-K). Additionally, we observed a similar 

distribution of archetypes in both cohorts when looking at clinical correlates such as tumor 

stage, grade, and metastatic status (Figure S7L-N). This suggests that our archetypes can be 

identified in independent datasets and the predictive potential of these signatures for rapid 

classification of patients in both primary and metastatic tumors independent of tumor grade 

and stage.

Finally, survival analysis of the different tumor archetypes identified in the TCGA dataset 

for each cancer type separately showed that better outcomes may be cancer type specific, 
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and each cancer type may have a different type of TME promoting the best immune 

response (Figure S7A-K). However, when survival analysis was performed across tumors 

using a multivariate survival regression, we detected significant outcome differences 

between archetypes that have similar T cell subset enrichment regardless of the tissue 

of origin (Figure 7F). For instance, in IR CD8 archetypes the apparent enrichment in 

monocytes over macrophages (Pink archetype versus Red) is associated to better survival 

(Median survival:3354 days) and more so when compared to ID and IS CD8 biased 

archetypes (p-value 1.55E-12) (Figure 7F top). Conversely, in archetypes with no significant 

bias between CD4 and CD8 T cell, TC archetypes characterized by an enrichment of 

Macrophages over monocytes displayed the higher median survival (2456 days, p-value 

1.17E-6) while in archetypes with CD4 T cell bias no significant outcome difference 

between archetypes was detected regardless of myeloid biases (p-value 3.01E-1) (Figure 

7F middle and bottom). This indicates that tumor archetypes provide a template to study 

different subtypes of anti-tumor immune response in a variety of primary human cancers. 

Finally, our study represents an initial framework—one certain to be refined—to understand 

how tumor archetypes relate to other biological contexts (Supplementary table 6) and how to 

best modulate these archetypes depending on their specific immune context.

DISCUSSION

In this study, we present a holistic survey of dominant immune archetypes across 12 cancers 

from different tissues using fresh surgical tumor specimen from 364 patients. Empowered by 

complementary profiling assays we were able to discover 12 distinct immune archetypes that 

span cancer types. Each archetype is made up of a unique combination of cell composition

—some used to derive the cluster, but many that are learned from it—and immune and 

tumoral transcriptomic phenotypes.

Starting with just 10 independent cell compositional features, unsupervised clustering 

revealed only 12 distinct clusters whereas 10 independently assorting binary variables might 

have produced 210 or 4096. While more work will need to be done to ensure that this is 

not due to a lack of sampling, this implies that some combinations of cell densities may not 

exist in the TME of solid tumors. This is partly in line with previous work which identified 

between four and six immune subtypes spanning multiple tumor types in TCGA using 

mainly immune cell fractions from deconvolution analysis of all tissue bulk RNA-seq data 

and knowledge-based immune gene expression signatures (Bagaev et al., 2021; Thorsson 

et al., 2018). Notably, similar dominant immune pathways are also revealed in our analysis 

such as the IFN pathway or the imbalance between T cell and MNP subsets. However, these 

similarities go beyond immune related features. We also identified stromal frequency as a 

key distinctive feature in the tumor classification across tissues that subdivides both immune 

rich and immune desert archetypes. Additional features may partly explain our higher 

number of archetypes, but it may also lie in the power of a dataset that has large numbers 

of members and spans a diverse spectrum of cancers. Nevertheless, our progressive analysis 

from three coarse features through more granular definitions of T cells and MNP subsets 

suggest that it is the intersection of these 10 features that seem to arrive at a stable view 

of the major archetypes. However, further refinement and discovery is required especially 
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in immune deserts where the paucity of overall immune cells likely decreases our ability to 

resolve differences using only these 10 measurements.

As previously shown by others, in a single cancer type or in tumor mouse models, the 

TME can be coarsely categorized into immune rich and immune desert areas (Bagaev 

et al., 2021; Duan et al., 2020; Galon and Bruni, 2019; Mariathasan et al., 2018). Our 

analysis revealed that the tumor immune archetypes subdivide this broad classification and 

identify distinct immune networks for each archetype with unique relationships amongst 

cell densities and chemokine networks. While IR archetypes are characterized by patterns 

previously described in Melanoma, Head and Neck or Breast malignancies—such as a 

correlation between CD8+ T cells, cDC1 ratio and NK cell abundance (Barry et al., 2018; 

Salmon et al., 2016) or between CD4+ T cell and cDC2 (Binnewies et al., 2019; Michea et 

al., 2018)—other archetypes implicate different immune cell networks such as the apparent 

enrichment of plasma cells and Tregs in TC archetype. That particular co-association was 

previously shown to support the plasma cell residency in bone marrow and the presence 

of both cell types together associated with better response to immune checkpoint blockade 

therapy in sarcoma (Glatman Zaretsky et al., 2017; Petitprez et al., 2020). It is tempting to 

propose that tumors hijack specific immune archetypes that originate for use in a completely 

different setting (Supplementary table 6).

This idea is perhaps also suggested by the distinct patterns of chemokine expression 

identified for each tumor immune archetype. For example, while IR CD8 archetypes are 

defined by a CXCL9, CXCL10, CXCL11/CXCR3 axis which resembles the biology of 

an ongoing chronic viral infection (Metzemaekers et al., 2017), ID CD8 Macrophage bias 

archetype is defined by a strong expression of chemokines binding CX3CR1, which is an 

axis essential in settings of immune surveillance and homeostasis (Gerlach et al., 2016). 

Further work is certainly needed to profile the vast array of other immune niches in 

homeostasis and immune responses, to test how these linked cell states are conserved across 

tissue and disease; the increasing availability of multi-omics resources will be an important 

step forward (Mulder et al., 2021; Reynolds et al., 2021).

Tumor-specific genetics and mutational burden have been proposed to be key for anti-tumor 

immunity in multiple cancers (Brown et al., 2014; Ghosh et al., 2021; Goodman et al., 

2017). However, further investigation on extrapolating immune gene signature across TCGA 

cohort showed no correlation between gene expression and mutational burden in any cancer 

type (Bagaev et al., 2021; Spranger et al., 2016). Conversely, we demonstrated that immune 

tumor archetypes are associated with tumor proliferation, diverse tumor transcriptomic 

programs and overall survival. Studying the synergy between immune archetypes and tumor 

mutational profile, may further elucidate the importance of tumor mutational burden in 

anti-tumor immune response (Berger et al., 2018; Quigley et al., 2018).

In summary, our comprehensive characterization of the TME across many human solid 

cancer types reveals the existence of common and reproducible immune archetypes defined 

by distinct cell networks. To facilitate usage of our data for the wide research community, 

we will provide access to transcriptomic and compositional data for each archetype 

(datalibrary.ucsf.edu/public-resources). It is still unclear whether improving tumor cure 
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rates will be based on the enhancement of a specific archetype, and the expansion of 

this classification in metastatic tumors as well as in animal models may help to test this 

(Maynard et al., 2020). Moreover, it will be important to expand this analysis to the 

peripheral immune system as well as biopsies before and after immunotherapies in order 

to define the relationship between ‘dominant’ and ‘reactive’ tumor immune archetype across 

tumor types (Bi et al., 2021; Grünwald et al., 2021). Furthermore, there will undoubtedly be 

many additional ways to explore this dataset and discover patterns of immune and cancer 

biology. In this sense, the IPI dataset and the accompanying curation by these archetypal 

assignments can now serve as a rich resource to gain deeper understanding of cancer 

immunity in patients and therefore serve as a framework to direct immunotherapies to the 

most relevant biology.

Limitation of the Study:

There are a few caveats to note that impose limitations on this study that endeavors to 

define the dominant tumor immune archetypes across many tumor types. First, we used 

a single standardized processing approach regardless of the tumor type which was not 

ideal but necessary due to the limited quantity of available tumor tissue. Nevertheless, both 

simple immunofluorescence and identification of archetype specific chemokine expression 

program would appear to support that we reliably recovered cells across tissues, but some 

archetypes such as the myeloid centric appear to be more impacted (Figure 2H-I) and further 

investigation of the spatial landscape of the tumor immune archetypes would be needed. 

In the future, a combination of multiplexed imaging technologies such ion beam imaging 

(MIBI) (Angelo et al., 2014; Keren et al., 2018) and single-cell spatial transcriptomics 

(Asp et al., 2019; Hu et al., 2020) will help mitigate this issue and enable analysis. In this 

way, archetype-discovery will play an important role in selecting tissues containing similar 

biology for studies.

Second, we focused our study on 10 major tumor associated immune cell types across 

a wide variety of human cancer types, and this potentially biases analyses to dominant 

tumor archetypes because we only examine pre-defined cell populations. Interestingly, 

we demonstrated that the archetypes defined by these 10 features often correlate with 

enrichment of immune cell types that were not part of the clustering (Figure 6A). However, 

some other populations previously described as important for the tumor immune response, 

such as neutrophils, γδ T cells (Coffelt et al., 2015; Wellenstein et al., 2019) or specific 

transcriptomic states of cDCs (Barry et al., 2018; Cheng et al., 2021; Lopes et al., 2021; 

Maier et al., 2020) were unable to be analyzed or appeared to be variable within archetypes 

(Figure 6C and S6). Future work using single-cell omics across tumor types – not only 

transcriptomic based due to the sensitivity of some of those cell types – will be critical. The 

combination of single-cell profiling in the context of immune archetypes would determine 

if the 12 tumor archetypes identified in our study can be further subdivided or if the 

cell subsets identified using these technologies generally align with our current landscape 

(Cheng et al., 2021; Oliveira et al., 2021; Slyper et al., 2020; Zhang et al., 2020).

Finally, using the IPI cohort we developed archetype specific gene signatures that enabled 

us to explore the association with disease outcome on a larger scale in the TCGA cohort. 
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The two cohorts present important differences in term of demographics, tissue histology and 

patient clinical history. Therefore, an extension of this work on a bigger cohort with the 

addition of clinical trials designed to demonstrate the benefits of targeting tumor archetypes 

would be incredibly important.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact: Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Matthew F. Krummel 

(matthew.krummel@ucsf.edu).

Materials availability: This study did not generate new unique reagents.

Data and Code availability: Single-cell RNA-seq and bulk RNAseq data have been 

deposited at GEO and are publicly available as of the date of publication. Accession 

numbers are listed in the key resource table. Microscopy and flow data reported in this 

paper will be shared by the lead contact upon request.

All original code has been deposited at GitHub and is publicly available as of the date of 

publication. DOIs are listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human tumor collection of the UCSF Immunoprofiler Initiative (IPI)—Tumor 

samples for the Immunoprofiler was transported from various cancer operating rooms 

(ORs) as well as from outpatient clinics. All patients consented by the UCSF IPI clinical 

coordinator group for tissue collection under a UCSF IRB approved protocol (UCSF IRB# 

20-31740). Samples were obtained after surgical excision with biopsies taken by Pathology 

Assistants to confirm the presence of tumor cells. Patients were selected without regard to 

prior treatment. Freshly resected samples were placed in ice-cold PBS or Leibovitz’s L-15 

medium in a 50 mL conical tube and immediately transported to the laboratory for sample 

labeling and prepare either the whole tissue for digestion into single-cell suspension or a part 

of the tissue was sliced and preserved for imaging analysis. All Clinical information on the 

different patient of the cohort can be found in supplementary table S1.

Assembling Cohorts

UCSF Immunoprofiler initiative (IPI): An initial set of 427 bulk RNAseq patient samples 

in the live compartment were evaluated based on an in-house metric, the EHK score, that 

serves as a measure of data quality. Each sample is given a score of 0 through 10 depending 

on the number of EHK genes that are expressed above a precalculated minimum threshold. 

The threshold was learned from our data by examining the expression distributions of EHK 

genes and validated using the corresponding distributions in TCGA. A score of 10 represents 

the highest quality data where 10 out of 10 EHK genes are expressed above the minimum 
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threshold. Filtering for samples with an EHK score of EHK8, EHK9 and EHK10 reduced 

the sample set to 298 patient samples. The sample set was then filtered to remove all 

adjacent normal samples and all biological replicates, reducing the sample set further to 

260 samples. These 260 patient samples are the IPI cohort along with 199 overlapping tcell 

compartment samples and 189 myeloid compartment samples.

TCGA: Tumor RNAseq counts and TPM along with curated clinical data for 13 cancer 

types (Bladder urothelial carcinoma (BLCA), Colon adenocarcinoma (COAD), glioblastoma 

multiforme (GBM), Head and Neck squamous cell carcinoma (HNSC), Kidney renal clear 

cell carcinoma (KIRC), Liver hepatocellular carcinoma (LIHC), Lung adenocarcinoma 

(LUAD), Ovarian serous cystadenocarcinoma (OV), Pancreatic adenocarcinoma (PAAD), 

Sarcoma (SARC), Skin Cutaneous Melanoma (SKCM), Uterine Corpus Endometrial 

Carcinoma (UCEC), Uterine Carcinosarcoma (UCS)), from the Toil recompute (Vivian et 

al., 2017) data in the TCGA Pan-Cancer (PANCAN) cohort, were downloaded from the 

UCSC Xena browser(Goldman et al., 2020). The initial set of 4677 tumor samples was 

filtered down to include primary solid tumors and metastatic sample types (sample type 

codes = 01 & 06) only, to parallel the IPI cohort sample types as accurately as possible. This 

reduced the patient sample set to 4341 tumor samples.

METHOD DETAILS

Human tissue digestion and Multiparametric Flow Cytometry staining and 
sorting—Tumor or metastatic tissue was thoroughly chopped with surgical scissors and 

transferred to GentleMACs C Tubes (Miltenyi Biotec) containing 20 uL/mL Liberase TL (5 

mg/ml, Roche) and 50 U/ml DNAse I (Roche) in RPMI 1640 per 0.3 g tissue. GentleMACs 

C Tubes were then installed onto the GentleMACs Octo Dissociator (Miltenyi Biotec) 

and incubated for 45min according to the manufacturer’s instructions. Samples were then 

quenched with 15 mL of sort buffer (PBS/2% FCS/2mM EDTA), filtered through 100 

um filters and spun down. Red blood cell lysis was performed with 175 mM ammonium 

chloride if needed.

Cells were then incubated with Human FcX (Biolegend) to prevent non-specific antibody 

binding. Cells were then washed in DPBS and incubated with Zombie Aqua Fixable 

Viability Dye (Thermo). Following viability dye, cells were washed with sort buffer and 

incubated with cell surface antibodies mix diluted in the BV stain buffer (BD Biosciences) 

following manufacturer instruction for 30 minutes on ice in the dark and subsequently fixed 

in either Fixation Buffer (BD Biosciences) or in Foxp3/Transcription Factor Staining Buffer 

Set (eBioscience) if intracellular staining was required.

Cell sorting for bulk RNA sequencing

Bulk RNAseq
compartment Gating Strategy Potential Caveats

All viable cells ‘Live’ 
compartment

All cells Viability dye 
negative LIVE/DEAD™ 
Fixable Aqua Dead Cell 

Stain Cat:L34957

This was perfromed after tissue enzymatic digestion and allow 
us to sequence only viable cells after isolation. Therefore it 

is slighty different than bulk RNAseq from whole tissue prior 
diggestion as it was done in the TCGA dataset.
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Bulk RNAseq
compartment Gating Strategy Potential Caveats

Conventional CD4+ 
and CD8+ T cells 

compartment

CD4+ and CD8+ 
Tconv: CD45+, CD3+, 
CD4+, CD8+, CD25− 

CD19/20−, CD56−

Using this gating strategy we aimed to enrich for both 
Conventional CD4+ and CD8+ T cells but we don't separate 

CD4+ and CD8+

Regulatory CD4+ T 
cells compartment

Treg:CD45+, CD3+, 
CD4+, CD8−, CD25+, 

CD19/20−, CD56−

Using this gating strategy we aimed to enrich for Tregulatory 
T cells using CD25 expression but as we can't use FOXP3 

for sorting unpermeabilised viable cell this compartment may 
contain some activated CD4+ T cells.

Myeloid cells 
compartment

CD45+, CD3−, CD19−, 
CD20− CD56− HLA− 

DR+

Using this gating strategy we aimed to enrich for tumor 
associated myeloid cell however this compartment may contain 
plasma cells which would have down-regulate CD19/20 but still 

express HLA-DR

Cd44+ CD90 stromal 
cells compartment CD45−, CD44+, CD90+

Using this gating strategy we aimed to enrich for one type of 
stromal cells however this gating strategy doesn't encompass all 

stromal cell subtype present in tumor

CD45− Tumor cell 
compartment CD45−, CD44−, CD90−

Using this gating strategy we aimed to enrich for tumor cells 
however this gating strategy is permessive and this compartment 

may contain other tumor associated non immune cell types

For cell sorting single cell suspension was stained with cell surface antibodies mix diluted in 

BV stain buffer (BD Biosciences) following manufacturer instruction for 30 minutes on ice 

in the dark and subsequently washed three time and resuspended in of sort buffer (PBS/2% 

FCS/2mM EDTA) after filtering in 100um filter (thermo). When possible, a maximum of 6 

different tumor associated cell subsets were sorted with a BD FACSAria Fusion into 1.5mL 

Eppendorf tubes containing 150ul of lysis buffer used for mRNA extraction (Invitrogen). 

The 6 different tumor associated cell types between 5000 and 50000 cells were sorted 

based their protein expression profile as describe here: ‘live cells’ all cells negative for the 

viability dye; Tconv: negative for viability dye CD45+ CD3+ CD19− CD56− CD25−; Treg: 

negative for viability dye CD45+ CD3+ CD19− CD56− CD4+ CD25+ ; Myeloid: negative 

for viability dye CD45+ CD3− CD19− CD56− HLADR+; CD90+ CD44+ Stroma: negative 

for viability dye CD45− CD44+ CD90+; Tumor: negative for viability dye CD45− CD44− 

CD90−. Names of the different sorted populations were given based on the presumptive 

populations, and we accepted that both due to slight sorting contamination and due to 

the limits of antibodies to completely ‘define’ a population, that other populations would 

occasionally infiltrate these e.g., some ‘activated’ CD4 cells express CD25 and might 

infiltrate this RNA sample.

Cell sorting for single-cell RNA sequencing of the tumor associated 
mononuclear phagocytic cells.—For the discovery cohort scRNA-seq, live CD3-

CD19/20-CD56- SSC-A dim CD16 dim (to exclude neutrophils) cells were sorted from 

a melanoma involved draining LN on a BD FACSAria Fusion. For the discovery cohort the 

same sorting strategy was applied to melanoma, kidney and head and Neck primary tumors. 

After sorting, cells were pelleted and resuspended at 1x10e3 cells/ul in 0.04%BSA/PBA 

and loaded onto the Chromium Controller (10X Genomics). Samples were processed for 

single-cell encapsulation and cDNA library generation using the Chromium Single Cell 3’ 

v2 Reagent Kits (10X Genomics). The library was subsequently sequenced on an Illumina 

HiSeq 4000 (Illumina). All samples were sequenced at 25,000 reads per cell.
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Imaging Staining and Acquisition—H&E slides were prepared in Leica Autostainer 

XL; slides stained in hematoxylin (Thermo Scientific Shandon Instant Hematoxylin cat. 

6765015) for 7 minutes and in Eosin (Thermo Scientific Shandon Instant Eosin-Y Alcoholic 

cat. 531946) for 20 seconds. Immunofluorescence (IF) staining was performed on the 

Ventana Discovery Ultra autostainer using Discovery reagents (Ventana Medical Systems) 

according to the manufacturer’s instructions, except as noted. After deparaffinization, 

antigen retrieval was performed with Cell Conditioning 1 (CC1) solution (cat. 950-124) 

for 64 minutes at 95°C. Primary antibody CD45 (D9M8I by CST #13917), was incubated 

for 20 minutes at 36°C. Secondary antibodies (cat. 760-149) were incubated for 12 minutes. 

Endogenous peroxidase was inhibited by Discovery Inhibitor (cat. 760-4840) for 8 minutes 

and non-specific binding blocked with Goat block (cat. 760-6008) for 4 minutes. The 

primary antibody was visualized with Discovery Rhodamine 6G Kit (cat. 760-244). Finally, 

slides were counterstained with DAPI (Akoya cat. FP1490) for 8 minutes. IF slides were 

scanned in a whole slide scanner AxioScan.Z1 (Zeiss) with Plan-Apochromat 20x/0.8 M27 

objective and images were captured by Orca-Flash 4.0 v2 CMOS camera (Hamamatsu). 

Filters used for specific fluorophores are: Spectral Gold (Semrock) filter was used for 

Rhodamine 6G and 87 HE DAPI (Zeiss) for DAPI. H&E slides were scanned in brightfield 

with the same objective and a HV-F202SCL CCD camera (Hitachi).

Bulk RNA-Sequencing

Library Preparation: The mRNA was isolated via DynaBeads Direct, then converted into 

amplified cDNA using Tecan Ovation RNA-Seq System V2 kit, following the manufacturer 

protocol. The dsDNA went through tagmentation, amplification and clean up with AMPure 

XP beads steps, using the Illumina Nextera XT DNA Library Prep Kit. Quality control 

analysis was performed on the resulting pooled libraries with the Agilent Bioanalyzer HS 

DNA chip to assess fragment size distribution and concentration.

Sequencing: The pooled libraries were then sequenced via single-read MiSeqMiniSeq to 

check if more than 10 percent of the reads aligned to coding regions and contained more 

than 1,000 unique reads in total. Sequencing efficiency was determined by protein-coding 

read fractions. The protein-coding read fractions were then used to normalize libraries for 

high depth sequencing with the goal of obtaining an average of 10M protein-coding reads 

per sample. These libraries were submitted the UCSF Center for Advanced Technology for 

100bp paired end (PE100) sequencing on the HiSeq4000.

Bioinformatic Data Processing

Bulk RNAseq: The RNAseq reads were first aligned to reference of rRNA and 

mitochondrial rRNA using BWA-mem to deplete the dataset of any remaining rRNA. The 

remaining reads were aligned to the Ensembl GRCh38.85 transcriptome build using STAR 

(Dobin et al., 2013). Gene expression was computed from the alignments in counts and TPM 

(transcripts per million) using RSEM (Li and Dewey, 2011).

QC of Bulk RNAseq: QC of the of the RNAseq was done to identify any swapped 

samples. DEG was performed on all pairs of the tcell, myeloid, treg, stroma and tumor 

compartments. The top 500 genes by p value were identified for each DEG pair giving 
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5000 genes which were reduced to 2171 genes after removing redundant genes. Principal 

component analysis (PCA) was done on the mean-centered and scaled logCPM (log counts 

per million) of the counts of these genes. K-means clustering was performed on the first 

4 principal components with K=5. This yielded 5 clusters that were mostly made up of 

one compartment. Any samples that clustered with a different compartment were considers 

swaps except for the tumor compartment which we assumed would be promiscuous.

Data pre-processing of 10x Genomics Chromium scRNA-seq data:  Feature-barcode 

matrices were obtained for sample by aligning the raw fastqs to GRCh38 reference genome 

(annotated with Ensembl v85) using the Cellranger count. Raw feature-barcode matrices 

were loaded into Seurat 3.1.5 (Stuart et al., 2019) and genes with fewer than 3 UMIs were 

dropped from the analyses. Matrices were further filtered to remove events with greater 

than 20% percent mitochondrial content, events with greater than 50% ribosomal content, or 

events with fewer than 100 total genes. The cell cycle state of each cell was assessed using 

a published set of genes associated with various stages of human mitosis(Dominguez et al., 

2016).

Data quality control and Normalization for scRNA-seq data:  The filtered count 

matrices were normalized, and variance stabilized using negative binomial regression via 

the scTransform method offered by Seurat (Hafemeister and Satija, 2019). The effects of 

mitochondrial content, ribosomal content, and cell cycle state were regressed out of the 

normalized data to prevent any confounding signal. The normalized matrices were reduced 

to a lower dimension using Principal Component Analyses (PCA) and the first 30 principal 

coordinates per sample were subjected to a non-linear dimensionality reduction using 

UMAP reduction. Clusters of cells sharing similar transcriptomic signal were identified 

using the Louvain algorithm, and clustering resolutions varied between 0. 6 and 1.2 based on 

the number and variety of cells obtained in the datasets.

Data integration and Batch correction for the scRNA seq validation dataset: The 

individual processed objects per library were normalized, and variance stabilized using 

negative binomial regression via the scTransform method offered by Seurat (Hafemeister 

and Satija, 2019). Counts matrices were merged into a single Seurat object and the batch (or 

library) of origin was stored in the metadata of the object. The log-normalized counts were 

reduced to a lower dimension using PCA and the individual libraries were aligned in the 

shared PCA space in a batch-aware manner (Each individual library was considered a batch) 

using the Harmony algorithm (Korsunsky et al., 2019). The resulting Harmony components 

were used to generate a batch corrected UMAP, and to identify clusters of transcriptionally 

similar cells across each of the 11 samples. The 5 Genes signature identified in the discovery 

dataset from the melanoma tumor sample was used to identify monocytes, macrophages, 

cDC2 and cDC1 respectively.

Single Cell RNAseq intra-sample heterotypic doublet detection:  All libraries were 

further processed to identify heterotypic doublets arising from the 10X sample loading. 

Processed, annotated Seurat objects were processed using the DoubletFinder package 

(McGinnis et al., 2019). Briefly, the cells from the object are modified to generate artificial 

Combes et al. Page 20

Cell. Author manuscript; available in PMC 2023 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



duplicates, and true doublets in the dataset are identified based on similarity to the artificial 

doublets in the modified gene space. The prior doublet rate per library was approximated 

using the information provided in the 10x knowledgebase (https://kb.10xgenomics.com/hc/

en-us/articles/360001378811) and this was corrected to account for homotypic doublets 

using the per-cluster numbers in each dataset.

Imaging bioinformatics: Each image was processed and analyzed in Imaris v9.5 (Bitplane 

Inc.). We first applied a median filter with size 3x3x1 to every channel of the image. The 

background of each channel was then subtracted using a filter width of 100um. Next, we 

used the Spots function to detect cell nuclei in the DAPI channel. We then applied a binary 

threshold on the max intensity of the CD45 channel to classify each spot as positive or 

negative for CD45.

We then cropped out a 650um x 650um section containing the tumor border from each 

histological image. This same section of tissue was found in the immunofluorescence image 

by looking for tissue features shared between the Immunofluorescence (IF) and histological 

images. Using the CD45 counts described above, two representative images from each 

immune class were selected.

QUANTIFICATION & STATISTICAL ANALYSIS

Analysis using 3 Features – Tcell, Myeloid, CD90+ CD44+ Stroma

Gene Signature: Gene signatures for each of the features (Supplementary Table 4) were 

generated by performing differential gene expression (DEG) analysis, between the different 

sorted RNAseq compartments, using edgeR(Robinson et al., 2010), limma (Ritchie et al., 

2015) and Voom (Law et al., 2014), a function of limma that modifies RNAseq data for use 

with limma. Expression counts for all EHK10 samples in each of the compartments (tcell, 

myeloid, stroma, treg and tumor) were selected to ensure the DEG analysis was done using 

the highest quality data. The median adjusted p-value for these DEGs were values much less 

than 1.00 x 10−55 across all comparisons. For the Tcell feature gene signature, DEG analysis 

was done between the tcell compartment and the stroma, myeloid, and tumor compartments 

separately. The intersection of the top 50 genes by log fold change (logFC) for each of 

these three comparisons was designated the Tcell feature gene signature. Similarly, a CD90+ 

CD44+ Stroma feature gene signature was designated as the intersection between DEG 

comparisons of the stroma compartment versus the myeloid, tumor and tcell compartments. 

For the Myeloid feature gene signature, it was necessary to use the top 100 genes by logFC 

from the DEG between the myeloid compartment and tcell compartment to compensate for 

the fact that myeloid cells are more auto fluorescent and thus more likely to contaminate 

the tcell compartment sort. The stroma and tumor compartments are sorted from CD45- and 

are less likely to experience this issue. The process of feature gene signature selection for 

each of the three features was visualized with volcano plots that showed the DEG results 

and Venn diagrams that showed the intersection of the top genes from each DEG and the 

resulting feature gene signature.

Flow Score: The flow scores for the flow cytometry population ratios were calculated by 

scaling the ratios from 1-100. This was done by calculating the percentile rank of each 
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population ratio relative to the other population ratios. For example, a percentile rank of 65 

means that that 65% of the population ratios are below that ratio. This array of percentile 

ranks was then further transformed to percentile ranks to increase the spread in the scores. 

Boxplots were generated to visualize the scores by cancer type using Seaborn a python 

plotting module.

Gene Signature Score: The feature gene signature scores were calculated using an m x n 

matrix where m represented the TMM (Robinson and Oshlack, 2010) normalized logCPM 

(log2 counts per million) expression of the feature signature genes and n represented the 

selected sample set. TMM normalization is a method that adjusts library size so samples can 

be compared, since sequencing depth can differ between samples.

The expression of each gene was converted to percentile ranks across the samples using the 

SciPy (Virtanen et al., 2020) Python module.

E P

where: E = m x n matrix of gene expression

P = m x n matrix of gene expression percentile ranks across samples

A score was generated for each sample n follows:

Scoren = percentile(Average(Pn))

where: Pn = column n of P corresponding to sample n

(The second percentile transformation was employed to increase the spread between the 

scores). Boxplots were generated to visualize the distribution of feature scores by cancer 

type with statistical analysis between archetypes performed using the statannot python 

package. We used the Mann-Whitney test between two archetypes, as we could not 

assume normal distributions, with the Bonferroni correction for multiple comparisons. The 

significance levels were annotated on the boxplots using the P-Value annotation legend 

below.

Annotation P-Value Range

ns 5.00e-02 < p <= 1.00e+00

* 1.00e-02 < p <= 5.00e-02

** 1.00e-03 < p <= 1.00e-02

*** 1.00e-04 < p <= 1.00e-03

**** p <= 1.00e-04

For the IPI gene signature scores for the Tcell, Myeloid, CD90+ CD44+ Stroma were 

calculated using the live compartment. For the TCGA cohort the gene signature scores for 

the Tcell, Myeloid and CD90+ CD44+ Stroma features were calculated for all tumor type. 
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Cross-Whisker plots, that show the median value, the interquartile range (IQR) in both the 

x and y directions and the identity line, were made to compare the median Tcell, Myeloid 

and CD90+ CD44+ Stroma feature scores in the IPI cohort with the TCGA cohort. Based 

on the Cross-Whisker plots only the BLCA, COAD, UCS, UCEC, OV, HNSC, KIRC, SARC 

and SKCM, cancer type were used for further analysis as their, median scores per tumor 

type appeared to correlate well with the IPI patient samples. The rationale behind including 

only tumor type that correlated well with IPI was to ensure that further analysis in TCGA 

would have extrapolated relevance in the IPI patient samples. The excluded cancer type lack 

of correlation with IPI patient samples could be attributed to variety of reasons that cannot 

be easily controlled, e.g. technical variability in upstream processing steps and cohort race 

differences due to local demographic biases.

Gene Signature Score Validation: Based on the assumption that the flow cytometry 

population ratios represent the true feature abundance in the patient sample, correlation 

between flow cytometry population ratios and feature gene signatures were used to 

validate the feature gene signatures. On average 9 to 10 samples per cancer type, that 

had both flow cytometry data and RNAseq data in the relevant compartments, were 

selected (Supplementary Table 3). There were fewer samples selected in PDAC (Pancreatic), 

PNET(Neuroendocrine) and GBM(Glioblastoma) cancer type as there were not many 

representative samples for theses cancer in the IPI cohort. Correlation plots were generated 

using the scores and their corresponding flow population ratios and the Spearman’s rho was 

calculated for each of the correlations.

Additionally, the Tcell and Myeloid feature samples were submitted to 

CIBERSORT(Newman et al., 2015). The TPMs of all protein coding genes of the samples 

were input as the mixture file, the built in LM22 gene signatures were used and quantile 

normalization was disabled as this was the recommended setting for RNAseq data. The 

CIBERSORT score used for the Tcell feature was the summation of the T cells CD8, T 

cells CD4 naïve, T cells CD4 memory resting, T cells CD4 memory activated, T cells 

follicular helper, T cells regulatory (Tregs) and T cells gamma delta cell type relative 

fractions. The CIBERSORT score used for the Myeloid feature was the summation of the 

Macrophages M0, Macrophages M1, Macrophages M2, Dendritic cells resting, Dendritic 

cells activated, Mast cells resting, Mast cells activated, Eosinophils and Neutrophils cell 

type relative fractions. Correlation plots were generated using these CIBERSORT scores and 

their corresponding flow population ratios and the Spearman’s rho was calculated for each 

of the correlations.

Clustering: The feature gene signature scores in the IPI cohort were clustered using 

SCANPY (Wolf et al., 2018) a Python-based toolkit. The feature clustering was done in 

three steps. In the first step, a neighborhood graph was constructed using the k-nearest 

neighbors (KNN) algorithm with Euclidean distances. In the second step, the neighborhood 

graph was clustered using the Louvain method (Blondel et al., 2008), a community detection 

algorithm that maximizes network modularity. In the third step, the resulting clustering was 

evaluated using the Davies Bouldin Index (DBI) (Davies and Bouldin, 1979), a metric that 

assesses the ratio of the intra-cluster distance to inter-cluster distance. The lower the DBI 
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the better the separation between clusters, the more compact the samples within clusters 

and hence the better the clustering. The clustering steps were repeated incrementally over 

values of n between 3 to 300 for the nearest neighbors for KNN. At each iteration of n, the 

values for the resolution parameter for Louvain clustering were varied between 0.3 to 2 in 

0.1 increments. The formula below was used to optimize the nearest neighbor and resolution 

parameters for final cluster selection.

min[DBI(Clustern, res)]

Where: n = [3,4,5…,300] (KNN nearest neighbor)

res = [03,0.4,0.5…,2] (resolution)

In the TCGA cohort the feature signature score clustering was done as above except for 

the values for the range of n for KNN which was 3-1,500 as the number of samples in the 

TCGA cohort were greater.

The final clustering selections were given archetype labels based on the prevalence and 

distributions of the features within the cluster which were visualized as violin plots of 

all clusters in each feature. Both the IPI and TCGA final clustering selections had six 

clusters and hence six archetypes. The final clustering selection (IPI-was visualized as 

UMAP (McInnes et al., 2018), a dimensionality reduced projection of the clustering. The 

min-dist UMAP parameter, which is the minimum distance between points, controls how 

close together points are placed in the low-dimensional space of the UMAP was set as of 

0.25. Population flow proportions and phenotype gene signatures were overlayed on the 

UMAP clustering.

Univariate survival analysis on the TCGA data was performed per cancer type and 

multivariate survival regression was performed across all cancer types using cancer types 

as a covariates using lifelines. Pie charts were made to compare the archetype abundance per 

tumor type between IPI and TCGA. Additionally, 3D plots of IPI score and TCGA score 

visualized the distribution of the unclustered scores.

Phenotype Gene Signatures: The Chemokine gene signature (Supplementary Table 5) was 

a selection of 39 chemokines (Nagarsheth et al., 2017) of interest and was evaluated in 

the live compartment to generate a score. Hierarchical clustered heatmaps were made to 

assess chemokine expression in archetypes. The median TPM expression per archetype 

of each of the 39 chemokines in the Chemokine gene signature were clustered using 

the Euclidean distance metric and the Ward linkage method. A bubble plot was made to 

compare the median TPM expression of Chemokine gene signature genes in IPI and TCGA 

in each archetype. The bubble size represented values of the median TPM in each archetype 

transformed to a z-score.
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Analysis using 6 Features – Tcell, Myeloid, CD90+ CD44+ Stroma, CD4, CD8, 
Tregs

Gene Signature – CD4, CD8 and Tregs: CD4 high and CD8 high samples were identified 

based on the flow proportion of (CD4+, CD25−, FOXP3−) / CD3+ and (CD8+, CD4−) / 

CD3+ respectively. There were nine samples that were both EHK10 in the tcell compartment 

of RNAseq and had a (CD4+, CD25−, FOXP3−) / CD3+ flow proportion greater than 60%, 

these were labeled CD4 high. Similarly, there were 12 samples that were EHK10 in the tcell 

compartment of RNAseq that had a (CD8+, CD4−) / CD3+ flow proportion greater than 

60%, these were labeled CD8 high. The CD4 gene signatures were generated by performing 

DEG analyses using edgeR and voom on the tcell compartment counts of CD4 high samples 

versus CD8 high samples. The top 50 genes by adjusted P-value were selected and all 

genes within this gene set that had a positive logFC were designated the CD4 feature gene 

signature. The same was done for the CD8 feature gene signature except the DEG was CD8 

high samples versus CD4 high samples (Supplementary Table 4). A hierarchical clustered 

heatmap was made using the CD4 and CD8 gene signature logCPM values for all tcell 

compartment patient samples. The logCPM values were mean-centered and scaled prior to 

clustering using the Euclidean distance metric and the Ward linkage method.

The Treg feature gene signature followed all the same steps as the Tcell feature gene 

signature but with four DEG comparisons instead of three, the treg compartment versus 

the tcell, myeloid, stroma and tumor compartments. The resulting intersection of these four 

comparisons was designated the Treg feature gene signature.

Gene Signature Score: Gene signature scores for the three new features were calculated 

as described above for three features. The CD4 and CD8 gene signatures were evaluated in 

the tcell compartment and the Treg gene signature was evaluated in the live compartment. 

Correlation between flow cytometry population ratios and feature gene signatures were 

plotted used to validate the feature gene signatures.

Calculated Score for Missing Data: The IPI cohort consists of 260 patient samples that 

all have a live compartment sequenced. However, there are only 199 overlapping patient 

samples with the tcell compartment sequenced. Since the CD4 and CS8 gene signature score 

were evaluated in the tcell compartment a need for a method to calculate scores for missing 

data was warranted. Gene signature scores were calculated for missing patient samples by 

leveraging the fact that there was very high correlation between gene signatures scores 

and their corresponding flow population ratios. For example, the correlation between the 

Tcell gene signature score and the CD3+ / live population ratio from flow cytometry had 

a Spearman’s rho of 0.91. The missing scores were calculated by modeling the correlation 

using linear regression and using the regression equation and the flow population ratios to 

calculate the score. Of the 61 missing tcell compartment samples 5 did not have flow data.

Clusterin: The feature gene signature scores for the six features were clustered as described 

above. The final clustering selections had eight clusters and hence eight archetypes. The 

final clustering was visualized as a UMAP. Population flow proportions and phenotype gene 

signatures were overlayed on the UMAP clustering.

Combes et al. Page 25

Cell. Author manuscript; available in PMC 2023 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Phenotype Gene Signatures: Hierarchical clustered heatmaps were made to assess 

chemokine expression in archetypes. The median TPM expression per archetype of each 

of the 39 chemokines in the Chemokine gene signature were clustered using the Euclidean 

distance metric and the Ward linkage method.

Analysis using 10 Features – Tcell, Myeloid, CD90+ CD44+ Stroma, CD4, CD8, 
Tregs, Macrophages, Monocytes, cDC1, cDC2

Gene Signature – Macrophages, Monocytes, cDC1 and cDC2: Gene signatures were 

generated from the discovery single cell RNAseq on tumor associated mononuclear 

phagocytes (MNP) dataset using a melanoma tumor sample. Gene signatures were generated 

using the FindMarkers/FindAllMarkers functions in Seurat. The genes that were considered 

significant had a log-fold change greater than 0.4, an adjusted p value less than or equal 

to 0.05 (based on Bonferroni correction) and were expressed in at least 35% of the groups. 

Cluster marker genes were identified as the top upregulated genes of the DEGs between 

clusters and curated based on their log-fold change as well as low expression by the 

other clusters. The different subsets of mononuclear phagocytic cells were identified by 

comparing cluster marker genes with public sources referenced in the text. The list of the 

different genes for each subset is listed in (Supplementary Table 4)

Gene Signature Score: Gene signature scores for the four new features were calculated 

as described above for three features. The gene signatures were evaluated in the myeloid 

compartment Correlation between flow cytometry population ratios and feature gene 

signatures were plotted used to validate the feature gene signatures.

Calculated Score for Missing Data: Of the of 260 patient samples that all have a live 

compartment sequenced there were only 189 overlapping patient samples with the myeloid 

compartment sequenced. The same method used to calculate missing data scores for the 

CD4 and CD8 gene signatures was used for missing data in the Macrophage, Monocyte, 

cDC1 and cDC2 gene signature. Of the 71 missing myeloid compartment samples 15 did not 

have flow data.

Clustering: The feature gene signature scores for the 10 features were clustered as 

described above. The final clustering selections had 12 clusters and hence 12 archetypes. 

The final clustering was visualized as a UMAP. Population flow proportions and phenotype 

gene signatures were overlayed on the UMAP clustering. Alluvial plots were made using 

RAWgraphs (Mauri et al., 2017) to visualize the stability of clusters as the clustering 

progressed from six features to ten features.

Phenotype Gene Signatures: Phenotype gene signatures (Supplementary Table 5) were 

used to further characterize the immune archetypes obtained by clustering feature scores 

generated from the feature gene signatures. The phenotype gene signatures were assembled 

from standard gene signatures, derived from analysis of IPI samples or curated from gene 

sets found in literature.

The Tcell Exhaustion gene signature was generated by correlating the expression of all 

protein coding genes in EHK10 samples from the tcell compartment with the expression of 

Combes et al. Page 26

Cell. Author manuscript; available in PMC 2023 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



five genes, CTLA4, PDCD1, CD38, HAVCR2 and LAG3, a subset of a published T cell 

exhaustion gene signature (B et al., 2018). The top 50 genes by Spearman’s rho for each of 

the five correlations were selected as gene sets and genes that fell in the intersection of at 

least four of these gene sets were designated as the Tcell Exhaustion feature gene signature. 

The Spearman’s rho of the CTLA4, PDCD1, CD38, HAVCR2 and LAG3 against the Tcell 

Exhaustion gene signature genes with additional known exhaustion genes were plotted on 

heatmap to illustrate the gene signature selection criteria.

The ISG, Senescence, EMT, Fibrosis, Cell Stress DNA damage, Cell Cycle G1-S and Cell 

Cycle G2-M genes signatures were from literature (Kinker et al., 2019, munoz dp et al, 

wiley cd et al). A bubble plot was made to visualize the median TPM expression per 

archetype in the tumor compartment. The bubble size and color represented values of the 

median TPM in each archetype, transformed to a z-score.

The NK cell gene signature was from literature (Barry et al., 2018), the B cells gene 

signature was from (Chen et al., 2020; van Galen et al., 2019) , the Plasma cells gene 

signature was from (Chen et al., 2020; van Galen et al., 2019) and the Mast cell signature 

was from (Cheng et al., 2021). A bubble plot was made to visualize the median TPM 

expression per archetype in the live compartment. The bubble size and color represented 

values of the median TPM in each archetype, transformed to a z-score.

The Th1, Th2, Th17, Trm and Tex gene signatures were from (Kumar et al., 2017; Savas et 

al., 2018; Zhou et al., 2009)(Bengsch et al., 2018).

The Resting Tregs, Suppressive Tregs, Tissue Homing Tregs, Treg Activation, Treg 

Cytokines, Treg Metabolism were from (Arce Vargas et al., 2018; Ephrem et al., 2013; 

Plitas et al., 2016; Zemmour et al., 2018)

The M1, M2 and Costimulatory molecule gene signatures were from (Biswas et al., 2013; 

Cassetta et al., 2019; Maier et al., 2020; Roberts et al., 2016). A bubble plot was made to 

visualize the median TPM expression per archetype in the myeloid. The bubble size and 

color represented values of the median TPM in each archetype, transformed to a z-score.

The MHC Class I gene signature was from HGNC ( https://www.genenames.org). The ISG 

gene signature was from (Combes et al., 2021). A box plot was made to visualize the scores 

per archetype that were calculated in the live compartment.

A hierarchical clustered heatmap was made to visualize the Th1, Th2, Th17, Trm, Tex, 

Resting Tregs, Suppressive Tregs, Tissue Homing Tregs, Treg Cytokines, Treg Activation, 

Treg Metabolism, NK cells, Plasma cells, B cells, M1, M2, Costimulatory molecule, and 

ISG gene signature gene expression. These genes for each of the phenotype gene signatures 

were assessed different RNAseq compartments as described above. The median TPM 

expression per archetype of each of the genes in the gene signatures were clustered using 

correlation distance metric and the average linkage method.
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Immune Archetype Gene Signatures

Live: Archetype gene signatures were generated by DEG analysis, between the live 

compartment counts of samples in each of the 12 archetypes, using limma and Voom. The 

intersection between the top 3000 genes by logFC of each of 11 DEGs per archetype was 

assigned as an initial gene signature. If the initial gene signatures had less than 20 genes 

it was designated as the archetype gene signature. Otherwise, the archetype gene signature 

was designated as the top 20 genes with both the lowest coefficient of variation (CV) of the 

log10(TPM+0.001) expression and non-zero expression in at least 80% of the samples in the 

archetype. A hierarchical clustered heatmap was made to visualize archetype gene signature 

gene expression. The median TPM expression per archetype of each of the genes in the gene 

signatures were clustered using correlation distance metric and the average linkage method.

Tumor: Archetype gene signatures were generated by DEG analysis, between the combined 

tumor and epcam compartment counts of samples in each of the 12 archetypes, using edgeR 

and Voom. The intersection between the top 100 genes by logFC of each of 11 DEGs per 

archetype was assigned as an initial gene signature. If the initial gene signatures had less 

than 10 genes it was designated as the archetype gene signature. Otherwise, the archetype 

gene signature was designated as the top 10 genes with both the lowest coefficient of 

variation (CV) of the log10(TPM+0.001) expression and non-zero expression in at least 

80% of the samples in the archetype. A hierarchical clustered heatmap using correlation 

distance metric and the average linkage method was made for the median TPM expression 

per archetype of each of the genes in the gene signatures.

Live Archetype Gene Signature Score: Using TCGA data, a gene signature score for each 

archetype was calculated using the gene signature score method above. Each sample has 12 

scores for each archetype. Each sample was assigned to the archetype for which it had the 

highest score and if the highest score was tied between archetypes, the sample was excluded 

from the analysis.

Univariate survival analysis was performed per cancer type and multivariate survival 

regression was performed across all cancer types using cancer types as a covariates. The 

analysis was done using lifelines (Davidson-Pilon), a survival analysis Python library. If an 

archetype had less than fifteen representative samples, it was excluded from analysis. Pie 

charts were made to compare the archetype abundance per cancer type between IPI and 

TCGA.

ADDITIONAL RESSOURCES

To facilitate usage of our data for the wide research community, we will provide access 

to transcriptomic and compositional data for each archetype: https://datalibrary.ucsf.edu/

public-resources.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• UCSF Immunoprofiler Initiative is a set of human tumors with multimodal 

linked data.

• Clustering upon 10 features identifies 12 unique tumor Archetypes spanning 

cancer types.

• Each Archetype concentrates similarities in additional immune and tumor 

features.

• Dominant archetypes aid in tumor classification and identifying therapeutic 

targets.

Tumors can be extremely heterogenous across multiple parameters. By identifying and 

classifying recurrent immune features across 12 different tumor types, a framework is 

provided towards understanding tumor immunity as well as identifying broad as well as 

common therapeutic targets.
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Figure 1: Generation and validation steps of T cells, Myeloid cells and Stromal cells features 
from solid tumors using flow cytometry and bulk RNA-sequencing.
A. Details of the Immunoprofiler initiative (IPI) cohort tumor samples collection, color-

coded by anatomical region and annotated with case numbers of bulk-RNA sequencing of 

viable cells sorted from fresh surgical tumor specimens and total number of samples with 

flow cytometry data. B. Description of the processing pipeline for digesting fresh tumor 

specimens into single cell suspension, submitting to multi-parametric flow cytometry for 

immune phenotyping and cell sorting into six different cell population compartments (live 

(viable cells), tcell (conventional T cells), treg (T regulatory cells), myeloid (myeloid cells, 

stroma (CD90+ CD44+ stromal cells), and tumor (tumor cells). C. Box and whisker plots 

of flow score for T cells (n=200), Mononuclear phagocytes (n=159), and Stromal cells 

(n=121) based on population percent in tumor specimens measured by flow cytometry (see 

Supplementary table S2 for details by cancer type). D.-Left-Gene score calculation method 

Combes et al. Page 38

Cell. Author manuscript; available in PMC 2023 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(see STAR methods).-Right-Correlation plots of Tcell, Myeloid and CD90+ CD44+ Stroma 

gene signature scores, for each tumor specimens, against their corresponding flow score (See 

Fig Supp 1 and STAR protocol) color-coded according to the tumor types shown in 1C. 

E. Cross-whisker plots comparing median Tcell, Myeloid and CD90+ CD44+ Stroma gene 

signature scores by tumor type to the median flow score, color-coded according to the tumor 

types shown in 1C, with the interquartile range on both axes.
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Figure 2: Identification of coarse immune archetypes in solid tumors using Louvain clustering on 
two independent datasets.
A,E. UMAP display using KNN and Louvain clustering of tumor immune archetypes 

using Tcell, Myeloid and CD90+ CD44+ Stroma features to cluster patients in the IPI 

(A) and TCGA (E) cohorts. Each dot represents a single patient. B,F. UMAP overlays 

of the Tcell, Myeloid and CD90+ CD44+ Stroma features in the IPI (B) and TCGA 

(F) cohorts. C. Violin plots of Tcell, Myeloid and CD90+ CD44+ Stroma features for 

each cluster/archetype in IPI cohort. D. Table summarizing the six cluster/archetypes with 

descriptions based on the level of the Tcell, Myeloid and CD90+ CD44+ Stroma features. 

G,H. Representative Immunofluorescence of tumor specimens using CD45 (red) and DAPI 

Combes et al. Page 40

Cell. Author manuscript; available in PMC 2023 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(blue) staining for each cluster/archetype (G) and respective quantification of immune 

cell frequency (H). I,J. Box and whisker plot (I) and UMAP overlay (J) of immune cell 

frequency using flow cytometry. K,L. Box and whisker plot (K) and UMAP overlay (L) of 

a pan chemokine phenotype gene signature score. M. Heatmap and hierarchical clustering 

of median chemokine gene expression per cluster/archetype identified in IPI cohort. N. 

(top) Bubble plot of median chemokine gene expression by cluster/archetype identified in 

the IPI (green) and TCGA (violet) cohorts. (bottom) Bar plots of median Log TPM gene 

expression of each chemokine in the IPI (green) and TCGA (violet) cohorts. The colors used 

correspond to the archetypes presented in in Fig. 2D.
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Figure 3: Coarse immune archetypes are independent of tissue origin and associated to overall 
survival.
A. Left-UMAP display, and graph-based clustering of 3-feature tumor immune archetypes 

color-coded by tumor type-Right stacked bar plot of the tumor type distribution for 3-feature 

archetypes. B. Kaplan-Meier overall survival curves for each immune tumor archetype 

identified in the TCGA cohort. C. (Left) Pie charts representing distributions of each 

archetype by cancer type in the IPI (top) and TCGA (bottom) cohorts. (Right) Kaplan-Meier 

overall survival curve for each immune tumor archetype identified in the TCGA cohort for 

Kidney renal clear cell carcinoma (KIRC), Skin cutaneous melanoma (SKCM), Sarcoma 
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(SARC) and Colon adenocarcinoma (COAD). D. Box and whisker plot of CD4+ regulatory 

T cells frequency in tumor measured by flow cytometry for each cluster/archetype identified 

in 3-feature archetypes. E. Box and whisker plot of log2 CD4+ to CD8+ conventional T cell 

frequency ratio in tumor measured by flow cytometry for each cluster/archetype in 3-feature 

archetypes.
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Figure 4: Inclusion of T cell subset features subdivide immune archetypes by CD4 to CD8 ratio.
A. Box and whisker plots of feature gene signature scores for CD4+ regulatory T cells 

(Treg feature) out of the live compartment, CD4+ and CD8+ conventional T cells (CD4 

and CD8 features) out of the tcell compartment of patients in the IPI cohort. B. Heatmap 

and hierarchical clustering of CD4 (yellow) and CD8 (blue) feature genes’ normalized 

expression, for patients in the tcell compartment. C. (Left) UMAP display and graph-based 

clustering of tumor immune archetypes using Tcell, Myeloid, CD90+ CD44+ Stroma, CD4, 

CD8 and Treg features to cluster patients in the IPI cohort. Each dot represents a single 

patient. (Right) Table summarizing the eight cluster/archetypes with descriptions based on 

the abundance of the Tcell, Myeloid CD90+ CD44+ Stroma, CD4, CD8 and Treg features. 

D. Box and whisker plot of log2 CD4+ to CD8+ conventional T cell feature gene signature 

score ratio in tumor for each of the clusters/archetypes identified with 6-feature clustering. 

E. Alluvial plot depicting how cluster/archetype membership perpetuates or subdivides from 

3 to 6-feature clustering. F. Heatmap and hierarchical clustering of the median chemokine 

gene expression for each cluster/archetype identified in the 6-feature clustering. G. Box and 

whisker plot of log2 cDC2 to cDC1 ratio (top) and Mono to Macs ratio (bottom) measured 

by flow cytometry for each cluster/archetype identified.
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Figure 5: Single-cell RNA sequencing-derived myeloid signatures refines immune archetypes.
A. (Left)Box and whisker plots for the Macrophages, Monocytes, cDC1 and cDC2 features, 

calculated in the myeloid compartment, from the IPI cohort. (Right) UMAP display and 

graph-based clustering of tumor immune archetypes using Tcell, Myeloid, CD90+ CD44+ 

Stroma, Treg, CD4, CD8, Macrophages, Monocytes, cDC1 and cDC2 features to cluster 

patients in the IPI cohort. B. Alluvial plot depicting how cluster/archetype membership 

perpetuates or subdivides from 6 to 10-feature clustering. C. (Left) Schematic of a 

“phylogeny” of the cluster/archetypes as they progressed from 3-feature to 6-feature to 

10-feature clustering. D-N. Scatter plots of different features defining the twelve clusters/

archetypes identified in the IPI cohort. O, R. UMAP overlay of Macrophages (Macs) and 
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Monocytes (Mono) (O) and classical dendritic cell type 1 (cDC1) and 2 (cDC2) feature 

scores (R) for each cluster/archetype identified by 10-feature clustering. P, Q, S, T. Box and 

whisker plot of Ln Mono to Macs ratio (P), Treg feature gene score (Q) Ln cDC2 to cDC1 

ratio (S) Ln CD4 to CD8 conventional T cells ratio (T) for each cluster/archetype identified.
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Figure 6: Each tumor archetype is defined by a unique combination of immune gene expression 
pattern
A. Bubble plot of NK cells (natural killer cells), B cells, plasma cells and Mast cells 

associated gene expression in the live compartment grouped by clusters/archetypes identified 

in the IPI cohort using 10-feature clustering. B. Heatmap and hierarchical clustering of 

the median chemokine gene expression of all chemokines in the Chemokine phenotype 

signature, grouped by cluster/archetype. C. Bubble plot of gene expression in Macrophages 

(M1, M2) and Dendritic cells (Co-Stim, DC) function in the myeloid compartment, grouped 

by cluster/archetypes in the IPI cohort. D. Heatmap and hierarchical clustering of the median 

gene expression of B cells (all viable RNAseq compartment), NK cells (all viable RNAseq 

compartment), plasma cells (all viable RNAseq compartment) T cells phenotypes (Tconv 
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RNAseq compartment, T regs(Treg RNAseq compartment), macrophages and dendritic cells 

function (Myeloid RN Aseq compartment) grouped by cluster/archetype in IPI cohort.
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Figure 7: Immune archetypes tie closely to tumor biology and disease outcome.
A. A. Left-UMAP display and graph-based clustering of tumor immune archetypes using 

10-feature clustering color-coded by tumor type. Each dot represents a single patient. 

Right-stacked bar plot of the tumor type distribution for 10-feature immune archetypes. B. 

UMAP overlay (Left) and box and whisker plot (Right) of tumor proliferation measured by 

frequency of Ki67+ CD45− cells by flow cytometry in the IPI cohort. C. Bubble plot of the 

median gene expression, in the tumor compartment, of gene sets associated with previously 

identified tumor transcriptional programs grouped by cluster/archetypes in the IPI cohort. 

D,E. Heatmap and hierarchical clustering of immune archetype gene signatures median 

expression in the tumor compartment (D) and the live compartment (E) in the IPI cohort. 
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F. Multivariate survival regression of overall survival in the TCGA cohort for each immune 

archetype after multivariate analysis using gene signatures in (E), split by T conventional 

subset enrichment). Median survival (MS) and p-value associated with each survival curve 

are noted.
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Key Resource Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Streptavidin BV421 Biolegend 405226

anti-human CD45 APC/e780 (clone HI30) Thermo Fisher 47-0459-42

anti-human CD3e PerCP/e710 (clone OKT3) Thermo Fisher 46-0037-42

anti-human HLA-DR BUV395 (clone G46-6) BD Biosciences 564040

anti-human CD56 BUV737 (clone NCAM16.2) BD Biosciences 564448

anti-human CD4 PE/Dazzle 594 (clone S3.5) Biolegend 100455

anti-human CD8a BV605 (clone RPA-T8) Biolegend 301039

anti-human CD127 BV650 (clone HIL-7R-M21) BD Biosciences 563225

anti-human CD38 AF700 (clone HIT2) Biolegend 303523

anti-human CD25 APC (clone 2A3) BD Biosciences 340939

anti-human CD45RO PE (clone UCHL1) BD Biosciences 561889

anti-human PD-1 BV786 (clone EH12) BD Biosciences 563789

anti-human ICOS BV711 (clone DX29) BD Biosciences 563833

anti-human FoxP3 PE/Cy7 (clone 236A/E7) Thermo Fisher 25-4777-41

anti-human CTLA-4 BV421 (clone BNI3) BD Biosciences 565931

anti-human/mouse/rat Ki67 AF488 (clone SolA15) Thermo Fisher 11-5698-82

anti-human CD19 PerCP/e710 (clone H1B19) Thermo Fisher 45-0199-42

anti-human CD20 PerCP/e710 (clone 2H7) Thermo Fisher 45-0209-42

anti-human CD56 PerCP/e710 (clone CMSSB) Thermo Fisher 46-0567-42

anti-human CD64 BUV737 (clone 10.1) BD Biosciences 564425

anti-human CD11c AF700 (clone 3.9) Thermo Fisher 56-0116-42

anti-human CD16 BV605 (clone 3G8) Biolegend 302039

anti-human CD273/PDL2 BV650 (clone MIH18) BD Biosciences 563844

anti-human/mouse TREM2 APC (clone 237920) R&D Systems FAB17291A

anti-human CD304 PE (clone 12C2) Biolegend 354503

anti-human CD1C/BDCA-1 PE/Cy7 (clone L161) Biolegend 331515

anti-human CD197 BV421 (clone G043H7) Biolegend 353207

anti-human BDCA-3 FITC (clone AD5-14H12) Miltenyi 130-098-843

anti-human PDL1 BV786 (clone MIH1) BD Biosciences 563739

anti-human CD14 BV711 (clone M5E2) Biolegend 301837

 

Bacterial and Virus Strains

 

 

Biological Samples

Human tumor samples UC San Francisco IRB # 20-31740
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

N/A

 

Critical Commercial Assays

N/A

 

Deposited Data

All bulk RNAseq data for the IPI cohort and single cell 
RNAseq data previously unpublished

This paper GSE184398

Single cell RNAseq data from melanoma invaded 
lymph node.

Binnewies et al GSE125680

Single cell RNAseq data from Renal Clear cell 
carcinoma

Argüello et al GSE159913

GitHub UCSF DSCO_LAB Github https://github.com/UCSF-DSCOLAB/
pan_cancer_immune_archetypes

Experimental Models: Cell Lines

N/A

 

Experimental Models: Organisms/Strains

N/A

 

Oligonucleotides

N/A

 

Recombinant DNA

N/A

 

Software and Algorithms

Python (2.7.15 & 3.7.2) (Rossum, 1995) https://www.python.org

Pandas (0.24.1,1.0.5) (McKinney, 2010) https://pandas.pydata.org/

Seaborn (0.9.0, 0.10.1) (Waskom et al., 2020) https://seaborn.pydata.org

Matplotlib (2.2.3, 3.2.2) (Hunter, 2007) https://matplotlib.org

Lifelines (Davidson-Pilon et al., 2020) https://lifelines.readthedocs.io/en/latest/

Scanpy 1.5.1 (Wolf et al., 2018) https://scanpy.readthedocs.io/en/stable

SciPy (Virtanen et al., 2020) https://www.scipy.org/

BWA-mem (Li, 2013) http://bio-bwa.sourceforge.net/

RSEM (Li and Dewey, 2011) http://deweylab.biostat.wisc.edu/rsem/
README.html

Imaris v9.5 https://imaris.oxinst.com/

STAR (Dobin et al., 2013)

limma (Ritchie et al., 2015) https://bioconductor.org/packages/release/bioc/
html/limma.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

edgeR (Robinson et al., 2010) https://bioconductor.org/packages/release/bioc/
html/edgeR.html

voom (Law et al., 2014) https://www.rdocumentation.org/packages/
limma/versions/3.28.14/topics/voom

R (R Development Core Team, 
2010)

https://www.r-project.org/

Other
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