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Preface

The nature of dark matter, the invisible substance whose gravitational pull holds
stars in their paths through galaxies and galaxies in their paths through the universe,
is one of the most profound mysteries of modern physics. It is a mystery that may
be at the center of a web of other mysteries, connected to physics that could explain
the matter-antimatter asymmetry of the universe and why gravity is so much weaker
than other fundamental forces. It is a mystery that has drawn hundreds of physicists
from all over the world to propose new theories and dream up intricate experiments
to search for answers. We, too, have been drawn into the community of physicists
trying to understand what dark matter is, and, if you’re reading this book, there’s a
good chance that you have been as well.

This book is intended to offer a broad introduction to one of the most intriguing
hypotheses proposed to explain dark matter: the idea that perhaps dark matter
is energy stored in a field composed of ultralight bosons. Such ultralight bosons
are ubiquitous features of many theories extending beyond the standard model of
particle physics, predicted to have nonzero masses far smaller than those of any
particles we have ever observed. Depending on the particular theory predicting their
existence, ultralight bosons can have many different properties, and thus require
a wide range of experimental techniques to explore the vast parameter space of
possibilities.

The last decade has seen a renaissance in both theoretical and experimental
research into ultralight bosonic dark matter fueled by new ideas from a wide variety
of disciplines: particle physics, astrophysics, cosmology, nuclear physics, atomic
physics, solid state physics, optics, and electronics. Because of the rapid pace of
new developments and the interdisciplinary nature of the research, the time is ripe
for an introductory book to cover the basic concepts needed to understand ultralight
bosonic dark matter and how to find it.

This book does not intend to be a comprehensive review covering all the work
in this vibrant field of research. Neither is this book filled with technical details or
complex theoretical derivations. Rather, this book is intended to be a starting point
for students and researchers new to our field, focusing on clearly explaining the most
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viii Preface

important ideas and fundamental principles. Each chapter features several questions
and problems (with solutions in the back of the book) that can facilitate self-study.

We sincerely hope that you find this book to be accessible and engaging, and
have as much fun reading it as we have had editing it!

Hayward, CA, USA Derek F. Jackson Kimball
Berkeley, CA, USA Karl van Bibber
May 2021
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Definitions of Commonly Used Acronyms
and Mathematical Symbols

See Tables 1 and 2.

Table 1 General mathematical symbols used and their meanings

Symbol Meaning

c Speed of light

ε0 Electric permittivity of vacuum

μ0 Magnetic permeability of vacuum

GN Newtonian constant of gravitation

H0 Hubble constant in the present era

h̄ Planck’s constant, h = 2πh̄

e Elementary charge

α = e2/(h̄c) Fine structure constant

kB Boltzmann constant

R∞ Rydberg constant

a0 Bohr radius

μB Bohr magneton

μN Nuclear magneton

GF Fermi constant

g Local acceleration due to the Earth’s gravity

me Electron mass

mp Proton mass

M� Solar mass

σi Pauli matrices, i = 1, 2, 3

γμ Dirac matrices, μ = 0, 1, 2, 3

γ5 Dirac matrix associated with pseudoscalars

�QCD QCD energy scale

QW Nuclear weak charge

ρdm Average dark matter energy density (in the Milky Way)

σ̂ Unit vector along spin

xiii



xiv Definitions of Commonly Used Acronyms and Mathematical Symbols

Table 2 Some acronyms and their meanings

Symbol Meaning

ABC processes Axio-recombination, bremsstrahlung, and Compton scattering

ADMX Axion Dark Matter Experiment

ALP Axionlike particle

ALPS Any Light Particle Search

AMELIE Axion Modulation hELIoscope Experiment

ARIADNE Axion Resonant InterAction DetectioN Experiment

BAO Baryon acoustic oscillations

BBN Big Bang nucleosynthesis

CASPEr Cosmic Axion Spin Precession Experiment

CAST CERN Axion Solar Telescope

CCD Charge coupled device

CDM Cold dark matter

CMB Cosmic microwave background radiation

DFSZ model Dine-Fischler-Srednicki-Zhitnitsky model

DM Dark matter

DNP Dynamic nuclear polarization

EDM Electric dipole moment

EMF Electromotive force

FSR Free spectral range

GNOME Global Network of Optical Magnetometers for Exotic physics searches

GPS Global Positioning System

HAYSTAC Haloscope At Yale Sensitive To Axion Cold dark matter

HEMT High Electron Mobility Transistor amplifier

HFET Heterojunction Field Effect Transistor

IAXO International AXion Observatory

JPA Josephson parametric amplifier

KSVZ model Kim-Shifman-Vainshtein-Zakharov model

LHC Large Hadron Collider

LIGO The Laser Interferometer Gravitational-Wave Observatory

LO Local oscillator

LSW Light-Shining-through-Wall

ly Light year

MACHOs Massive astrophysical compact halo objects

MAS Magic angle spinning
MOND MOdified Newtonian Dynamics

NMR Nuclear magnetic resonance

PBH Primordial black hole

PHIP Parahydrogen-induced polarization

PQ Peccei-Quinn

PSD Power spectral density

QCD Quantum chromodynamics

QFT Quantum field theory

QUAX QUest for AXions experiment

(continued)
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Table 2 (continued)

Symbol Meaning

RF Radio frequency

SEOP Spin-exchange optical pumping

SERF Spin-exchange-relaxation free

SHM Standard halo model

SPN Spin-projection noise

SQUID Superconducting Quantum Interference Device

SN Supernova

TE Transverse electric

TES Transition edge sensors

TM Transverse magnetic

UBDM Ultralight bosonic dark matter

UCN Ultra-cold neutron

VULF Virialized ultralight field

WIMP Weakly interacting massive particle

WISP Weakly interacting sub-eV particle

ZULF NMR Zero-to-ultralow field NMR



Units and Conversion Factors

In the search for ultralight bosonic matter, knowledge from all branches of physics
is required: from particle physics to atomic physics to astrophysics. For this reason,
it is common for researchers to switch between different systems of units that are
best suited for description of phenomena on vastly different scales, ranging from
the subatomic to the cosmological. Throughout this text, we adopt the standard
approach of our community and switch between different systems of units as
appropriate. In this section, we discuss common systems of units, conversion
factors, and typical values in order to help the reader navigate the calculations and
estimates presented throughout the text.

Three common systems of units are particularly useful in relating laboratory
experiments to theoretical calculations: SI units (abbreviated from the French
système international d’unités, the “International System of Units”), Gaussian or
CGS units (centimeters-grams-seconds), and natural units, where

h̄ = c = kB = ε0 = μ0 = 1. (1)

In natural units, often used by theorists, all quantities are measured in energy to
some power, and typically the unit of energy is chosen to be the electron volt (eV).
Conversion factors between the key base units of the natural, SI, and Gaussian/CGS
systems of units are presented in Table 3, from which the units of most other
quantities can be derived. (Another common system is Lorentz-Heaviside units,
discussed in Problem 5.1 of Chap. 5.)

There are many useful quantities that can be derived from the base units described
in Table 3. For example, the natural unit of force can be derived from dimensional
analysis:

[force] = [mass][length]
[time2] = (eV)(eV−1)

(eV−2)
= eV2 , (2)

where we use [· · · ] to denote the units. Using the conversion factors in Table 3,
force in units of eV2 can be converted to N or dyne. Table 4 presents approximate

xvii



xviii Units and Conversion Factors

Table 3 Conversion factors between key base units of natural, SI, and Gaussian/CGS systems

Quantity Natural SI CGS

Length eV−1 1.9732705× 10−7 m 1.9732705× 10−5 cm

Mass eV 1.7826627× 10−36 kg 1.7826627× 10−33 g

Time eV−1 6.5821220× 10−16 s 6.5821220× 10−16 s

Electric current eV 2.8494561× 10−3 A 8.5424545× 106 esu/s

Temperature eV 1.1604518× 104 K 1.1604518× 104 K

Table 4 Approximate conversion factors between key derived units of natural, SI, and Gaus-
sian/CGS systems.

Quantity Natural SI CGS

Energy eV 1.6× 10−19 J 1.6× 10−12 erg

Momentum eV 5.3× 10−28 kg·m
s 5.3× 10−23 g·cm

s

Angular momentum 1 1.05× 10−34 J · s 1.05× 10−27 erg · s
Force eV2 8.1× 10−13 N 8.1× 10−8 dyne

Power eV2 2.4× 10−4 W 2.4× 103 erg
s

Charge 1 1.9× 10−18 C 5.6× 10−9 esu

Electric field eV2 4.3× 105 V
m 14 statV

cm

Magnetic field eV2 1.4× 10−3 T 14 G

Electric potential eV 8.5× 10−2 V 2.8× 10−4 statV

Table 5 Approximate values of fundamental constants in natural, SI, and CGS units

Constant Symbol Natural SI CGS

Planck’s constant h̄ 1 1.05× 10−34 J · s 1.05× 10−27 erg · s
Elementary charge e

√
α ≈ 0.085 1.6× 10−19 C 4.8× 10−10 esu

Speed of light c 1 3.0× 108 m
s 3.0× 1010 cm

s

Gravitational constant GN 6.67×10−57 eV−2 6.67× 10−11 m3

kg·s2 6.67× 10−8 cm3

g·s2

Boltzmann constant kB 1 1.38× 10−23 J
K 1.38× 10−16 erg

K

Fermi constant GF 1.17×10−23 eV−2 1.44× 10−36 J
m3 1.44× 10−35 erg

cm3

conversion factors between various derived units useful for estimates; more precise
conversion factors can be calculated from the values presented in Table 3.

Note the convenient and intuitive fact that electric and magnetic fields have the
same units in the natural and Gaussian/CGS systems. Based on the conversion
factors described in Tables 3 and 4, the values of constants in the different systems
of units can also be derived (Table 5). For example, Planck’s constant h̄ can be
converted between the various systems of units using the conversion factors for
angular momentum.



Units and Conversion Factors xix

Atomic units, in which

e = me = h̄ = 1 , (3)

are convenient for calculating properties of atoms and molecules. The speed of
light in atomic units can be derived from the fine-structure constant, which, using
Gaussian units for electromagnetism, is given by

α = e2

h̄c
≈ 1

137
, (4)

and so c ≈ 137 au. Similarly, the unit of length is the Bohr radius:

a0 = h̄2

mee2
, (5)

which makes the units of electric and magnetic dipole moments ea0. Note, however,
the distinction between units and typical values: the typical size of an induced
electric dipole moment in an atomic system is ≈ ea0 = 1 au, whereas the typical
size of a magnetic dipole moment of an atom is ≈ μB ≈ (α/2)ea0 = α/2 au.
Table 6 presents many key quantities in atomic and Gaussian/CGS units.

At the other end of the scale, Planck units are often used in cosmology and
theoretical particle physics. In Planck units,

c = h̄ = 4πε0 = kB = GN = 1 . (6)

Table 6 Atomic units, their expressions, and approximate conversion factors to Gaussian/CGS
units

Quantity Expression CGS

Length a0 = h̄2
/(

mee
2
)

5.3× 10−9 cm

Mass me 9.1× 10−28 g

Time mea
2
0

/
h̄ 2.4× 10−17 s

Electric current eh̄
/(

mea
2
0

)
2.0× 107 esu/s

Energy h̄2
/(

mea
2
0

) = α2mec
2 4.4× 10−11 erg

Momentum h̄/a0 2.0× 10−19 g ·m/s

Angular momentum h̄ 1.05× 10−27 erg · s
Force h̄2

/(
mea

3
0

)
8.2× 10−3 dyne

Charge e 4.8× 10−10 esu

Electric field e/a2
0 1.7× 107 statV

cm

Magnetic field e/a2
0 1.7× 107 G
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Table 7 Expressions for key base units of Planck units and their approximate values in natural
and Gaussian/CGS systems

Quantity Expression Natural CGS

Length
√
h̄GN/c3 8.19× 10−29 eV−1 1.62× 10−33 cm

Mass
√
h̄c/GN 1.22× 1028 eV 2.18× 10−5 g

Time
√
h̄GN/c5 8.19× 10−29 eV−1 6.58× 10−16 s

Electric charge
√

4πε0h̄c 1 5.62× 10−9 esu

Temperature
√
h̄c5/(GNk

2
B) 1.22× 1028 eV 1.42× 1032 K

The central idea of Planck units is that constants from every branch of physics
are normalized to unity: c from special relativity, h̄ from quantum mechanics,
4πε0 from electromagnetism, kB from thermodynamics, and GN from gravitational
physics (general relativity). In fact, Planck’s system is another class of natural
units, similar to the natural units introduced at the start of this section (Tables 3, 4,
and 5), where gravity determines the unit of energy rather than the eV. The fact
that Planck units are another form of natural units is evident from Table 7, which
shows the expressions for base units in Planck, natural (eV), and Gaussian/CGS
systems: all Planck units are in terms of powers of the Planck energy (

√
h̄c5/GN ≈

1.22× 1028 eV).
Not only is it common to switch between different units, but frequently it is also

convenient to employ a mixture of different unit systems. An example of this is the
mass/energy density of dark matter in the Milky Way, ρdm. Usually in the literature,
the value of ρdm is given as ≈ 0.4 GeV/cm3, which uses a mixture of units so that
the numerical value of ρdm is ∼1. In CGS units, ρdm ≈ 7 × 10−25 g/cm3, and in
natural units, ρdm ≈ 3×10−6 eV4. A useful representation of the dark matter density
in astrophysical estimates is in units of solar masses per megaparsec (M�/Mpc3),
where M� ≈ 2× 1033 g and 1 Mpc ≈ 3× 1024 cm3, so ρdm ≈ 1016 M�/Mpc3.

The values and conversion factors presented in this section are derived from
values in The NIST Reference on Constants, Units, and Uncertainty (NIST Standard
Reference Database 121, 2019).



Chapter 1
Introduction to Dark Matter

Derek F. Jackson Kimball and Dmitry Budker

Abstract To set the stage for our study of ultralight bosonic dark matter (UBDM),
we review the evidence for the existence of dark matter: galactic and stellar
dynamics, gravitational lensing studies, measurements of the cosmic microwave
background radiation (CMB), surveys of the large-scale structure of the universe,
and the observed abundance of light elements. This diverse array of observational
evidence informs what we know about dark matter: its universal abundance, its
spatial and velocity distribution, and that its explanation involves physics beyond the
Standard Model. But what we know about dark matter is far outweighed by what we
do not know. We examine UBDM in the context of several of the most prominent
alternative hypotheses for the nature of dark matter: weakly interacting massive
particles (WIMPs), sterile neutrinos, massive astrophysical compact halo objects
(MACHOs), and primordial black holes (PBHs). Finally we examine some of the
key general characteristics of UBDM, including its wavelike nature, coherence
properties, and couplings to Standard Model particles and fields.

1.1 Why Do We Think There Is Dark Matter?

Scientists have long speculated that there may be imperceptible forms of matter
in the universe. Indeed, time and again forms of matter previously unknown have
been discovered: Galileo used the telescope to discover the moons orbiting Jupiter,
Chadwick irradiated a beryllium target to discover the neutron, Cowan and Reines
used a water tank surrounded with scintillators to directly observe the neutrino flux

D. F. Jackson Kimball (�)
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e-mail: derek.jacksonkimball@csueastbay.edu
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2 D. F. Jackson Kimball and D. Budker

from a nuclear reactor, and so on. But the story of “dark matter” as we understand
it today begins with early efforts by Kelvin, Poincaré, Öpik, Kapteyn, and Oort to
use the dynamics of the stars in the Milky Way to estimate the ratio of the mass of
luminous matter (stars) to the total mass of matter in the galaxy (see the historical
review [1] and the references therein).

While these early estimates [2, 3] found that stars dominated the mass in our local
solar neighborhood, Zwicky [4, 5] used observations of galaxy clusters to discover
that on much larger scales it appeared that dunkle Materie (German for dark matter)
was considerably more abundant than luminous matter. Zwicky analyzed the Coma
cluster, which had roughly a thousand galaxies distributed in a sphere of radius
R ≈ 106 ly. Each galaxy in the Coma cluster contained, on average, stars whose total
mass was M tot ∼ 109 M� (where M� is a solar mass), based on the mass/luminosity
ratio determined from stars in our local solar neighborhood. From this information,
the velocity dispersion of the galaxies can be predicted using the virial theorem

〈K〉 = −1

2
〈V 〉 , (1.1)

where 〈K〉 is the time-averaged kinetic energy of the galaxies and 〈V 〉 is the time-
averaged gravitational potential energy. This estimate yields a velocity dispersion
of

v ≈
√
GNM tot

R
≈ 105 m/s , (1.2)

where GN is the Newtonian constant of gravitation. However, the measured velocity
dispersion of the galaxies in the Coma cluster was ≈ 106 m/s, an order-of-
magnitude discrepancy. It was later discovered that galaxy clusters contain a halo of
hot gas with five times the mass of the stars [6, 7]: taking this into account reduced
but did not eliminate the discrepancy between the predicted and observed velocity
dispersion [8].

The next significant clues about the existence of dark matter came from
observations of galactic rotation curves, the rotational velocity v of galaxies’ stars
as a function of their distance r from the galactic center. The mass distribution
within galaxies can be inferred from the rotation curves, as discussed in Problem 1.1.
Pioneering observations of numerous galaxies by astrophysicists Vera Rubin, Kent
Ford, and others [9–13] showed that past the radius within which most of the
luminous matter is concentrated, the rotation curves are typically flat: v is relatively
independent of r (as seen in Fig. 1.1). This is in marked contrast to the expected
1/
√
r dependence of v on r if luminous matter alone is the source of the gravita-

tional pull holding outer stars in their orbits (see Problem 1.1). These rotation-curve
observations can be explained by the galactic masses being dominated by a spherical
halo of dark matter extending far beyond the luminous matter of galaxies.
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Fig. 1.1 Plot adapted from one of Rubin and Ford’s papers, Ref. [13], showing the rotational
velocity as a function of distance from the galactic centers (nuclei) of four different galaxies (NGC
7541, NGC 801, NGC 2998, and NGC 3672), all of which exhibit flat rotation curves

•? Problem 1.1 Galactic Rotation Curves

Consider a star in a circular orbit at the periphery of a galaxy of mass M , such
that most of the galaxy’s mass is contained within the star’s orbital radius R. How
does the star’s orbital velocity scale with R under these assumptions? Given that we
observe flat galactic rotation curves, what can we assume is the radial dependence
of the dark matter density?

Solution on page 305.

Gravitational lensing studies (see Refs. [14, 15] for reviews) considerably
strengthened the case for the existence of dark matter. Because a gravitational
field bends the otherwise straight-line trajectory of light, mass can distort the
images of distant astrophysical objects as light travels along geodesics from those
objects to the Earth. Since the images are distorted in predictable ways based on
general relativity, gravitational lensing offers an independent method to investigate
the distribution of mass in the universe. In 2006, Clowe et al. used gravitational
lensing to study the Bullet Cluster (1E0657-558) [16], a pair of galaxy clusters
that had merged ≈150 million years ago. Comparison of gravitational lensing to
observations of stars and hot x-ray emitting gas established that the mass distribution
of the Bullet Cluster does not coincide with the baryon distribution (Fig. 1.2). As
seen in Fig. 1.2, the baryonic matter (dominated by hot gas, imaged by detection
of x-ray emission) is clumped more closely together than the total mass of the
cluster (measured by gravitational lensing), which is centered about two widely
separated positions. Evidently when the two galaxy clusters merged, the baryonic
matter collided and heated up while the dark matter barely interacted at all: the dark
matter passed through the clusters without any observable effect, save that due to
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Fig. 1.2 Image of the Bullet Cluster (1E0657-558), adapted from Ref. [16], comparing x-ray
emission from hot gas [the background color map with increasing x-ray intensity scaling from
blue (low) to yellow/white (high)] to the mass distribution deduced from gravitational lensing
(green contour plot, where the outermost contour represents low mass density and the innermost
contours are highest density). The white horizontal line in the lower right represents a distance of
200 kpc at the position of the Bullet Cluster. The mass distribution is clearly different from the gas
distribution

gravity. This is strong evidence that dark matter is not ordinary baryonic matter, and
has been confirmed by further observations of other galaxy cluster mergers [17].

Measurements of the cosmic microwave background radiation (CMB) also point
to the existence of dark matter. The CMB is a photon gas permeating the universe
that essentially decoupled from baryonic matter≈400,000 years after the Big Bang.
This time, known as recombination,1 is when the universe had cooled to the point
where the first atoms formed. From the appearance of baryons until recombination,
the plasma of protons, electrons, and photons strongly interacted via Compton
scattering and formed a coupled photon-baryon fluid. Thus the photons and baryons
shared similar spatial patterns of density. After recombination the photons largely
decoupled from baryonic matter. This is because the interaction of light with neutral
atoms (integrated over all frequencies2) is strongly suppressed compared to the
interaction of light with free charged particles. The observed CMB photons are relics

1 The term recombination is somewhat misleading, since protons and electrons were not previously
“combined”—recombination is a historical name established prior to the widespread acceptance
of the Big Bang theory.
2 Although light can strongly interact with neutral atoms at particular resonance frequencies, such
resonant light-atom interactions produce spectral distortions of the CMB that are too small to detect
at present [18, 19].



1 Introduction to Dark Matter 5

that provide a picture of the photon-baryon fluid at the surface of last scattering (the
region of space a distance from which the photons from recombination have freely
travelled to reach the Earth today). The CMB photons impinge on the Earth nearly
uniformly from all directions and almost perfectly match a blackbody spectrum.
However, there are relatively small fluctuations in the temperature and polarization
of the CMB from different regions of the sky. The CMB fluctuations observed today
are imprints of the photon-baryon density distribution at the time of recombination
[20–22].

Based on the predictions of general relativity, cosmologists expect that the spatial
fluctuations of matter density δρm should grow linearly with the expansion of the
universe from the time of recombination up until the time at which δρm/ρm � 1.
More precisely, as long as δρm/ρm � 1, then δρm/ρm ∝ a, where a is the scale
factor (see Refs. [23–25] for derivations of this relationship). The scale factor a

relates the distance d(t) between objects in the universe at a time t to the distance
between the objects at the present time t0:

d(t) = ad(t0) (1.3)

and is related to the redshift z of light emitted from an object at time t by

a = 1

1+ z
. (1.4)

Thus as the universe expands, the density fluctuations grow: δρm/ρm ∝ a; or,
conversely, the density fluctuations observed at high redshift (z 
 1) should be
proportionally smaller: δρm/ρm ∝ 1/z.

An overdense region of space where δρm/ρm � 1 will undergo gravitational
collapse, forming regions of significant overdensity: the galaxies and galactic
clusters that we observe in the present epoch [26]. Recombination occurred at a
redshift of z ≈ 1100, and thus δρm/ρm has grown by a factor of ≈ 103 since
then. In order for the observed galaxy distribution throughout the universe to have
grown from the density fluctuations at the moment of recombination, δρm/ρm at
recombination should be at the level of a part per hundred3 [28]. Measurements
show, however, that the CMB is remarkably uniform throughout the sky (to more
than a part in≈105), reflecting a similarly uniform baryon density at recombination.
Thus galaxy formation could not possibly be seeded by the fluctuations in baryon
density at recombination: δρm/ρm would be only �10−2 today and matter would
still not have undergone gravitational collapse to form galaxies.

These apparently contradictory observations can be reconciled if the mass of
baryonic matter in the universe is small compared to the mass of a gas of nonrela-
tivistic (cold) dark matter particles that weakly interact with baryonic matter. This
cold dark matter (CDM) could have begun clumping long before recombination.

3 The first stars and galaxies appear at a redshift of z � 10 [27].
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Fig. 1.3 Plot of the angular anisotropy of the square of the CMB temperature fluctuations in terms
of multipole moments ∝ 〈|a
m|2〉 (averaged over m) and associated angular scale. Figure adapted
from Ref. [35]. The black dots with red error bars are data from the Planck satellite observations
and the green curve is the theoretical fit. The oval inset shows the Planck all-sky map of the
CMB intensity fluctuations. The agreement between theory and data from the Planck and WMAP
missions supports a flat universe whose matter density is dominated by CDM [32–34]

Thus by the time of recombination the CDM could have relatively large density
fluctuations, whereas the baryons were still nearly uniformly distributed at that point
in time [29]. The hot photon-baryon fluid would pass through the “clumpy” CDM
with relatively little perturbation (resembling the case of the Bullet Cluster discussed
above). Thus the photon-baryon fluid at recombination, and hence the CMB, exhibit
small fluctuations while the large density fluctuations of the CDM could seed the
formation of galaxies and give rise to the highly nonuniform distribution of matter
observed today [30, 31].

This description can be made quantitative by calculating and measuring the
variation of the CMB temperature δT (θ, φ) across the sky, where θ and φ indicate
the angular position. In terms of spherical harmonics Y
m(θ, φ):

δT (θ, φ) =
∑

,m

a
mY
m(θ, φ) , (1.5)

where a
m is the expansion coefficient of the CMB temperature associated with the
respective Y
m(θ, φ). Measurements of the angular anisotropy spectrum of the CMB
by the WMAP (Wilkinson Microwave Anisotropy Probe) and Planck missions [32,
33] agree with theoretical predictions based on a cosmology with a CDM-dominated
matter density [33, 34]. Data from the Planck mission are shown in Fig. 1.3.

The peaks in the plot of the angular anisotropy of the CMB temperature
fluctuations appearing at different 
 seen in Fig. 1.3 reveal both the underlying
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spacetime geometry of the universe and the baryon density [36], as we explain
below. The peaks in Fig. 1.3 are a result of the so-called baryon acoustic oscillations
(BAO). Baryonic matter falls into the gravitational potential wells created by
concentrations of CDM, but as the baryons fall into the potential wells and
the plasma density increases, the plasma heats up and generates pressure4 that
counteracts the gravitational pull. This causes the plasma to expand. These cycles
of compression and expansion of the strongly coupled baryon-photon fluid after the
Big Bang are the BAO.

There is an analogy between the dynamical effects of the BAO and the ripples
on the surface of a pond emanating from falling droplets of rain. When baryons fall
into the gravitational potential wells of the overdense regions of CDM, spherical
compression (sound) waves in the photon-baryon fluid are generated and propagate
outward. The speed of sound in the photon-baryon fluid is about half the speed
of light. As noted above, the initial gravitational collapse that begins the BAO is
seeded when δρm/ρm � 1 (where ρm is dominated by the CDM). This must happen
relatively soon after the Big Bang, and so these initial compression waves propagate
outward for tr ≈ 400,000 years until recombination, when atoms form and the light
of the CMB is released. The largest peak in Fig. 1.3 occurs at an angular scale of
θ ≈ 1◦ and 
 ≈ 220. This feature is determined by the distance these first ripples
of the BAO had travelled from the time since recombination s ≈ ctr/2 (the sound
horizon):

θ = s

d ls(z)
, (1.6)

where d ls(z) is the distance to the surface of last scattering, taking into account the
expansion of the universe from z ≈ 1100.

The relationship between the angular scale of the peaks in the anisotropy of
the CMB temperature fluctuations and the spatial scale of the baryon density
fluctuations at recombination can be distorted by the spacetime geometry of the
universe [36]. The overall spatial curvature of the universe could, in principle, be
open, closed, or flat: in an open universe, initially parallel light rays would propagate
along geodesics that diverge from each other; in a closed universe, initially parallel
light rays would propagate along geodesics that converge; and in a flat universe
(spatial curvature equals zero), initially parallel light rays would remain parallel
as they propagate (geodesics are straight lines). If the spacetime geometry of the
universe was open or closed, the spatial curvature would cause the observed θ

and 
 for the first peak in Fig. 1.3, corresponding to the spatial scale of the sound
horizon at the surface of last scattering, to be larger or smaller than observed. The
CMB measurements provide strong evidence for a flat universe (better than a part in
a thousand [32–34]). The higher order peaks in Fig. 1.3 show the relative importance

4 This pressure is what keeps the baryon-photon fluid density quite uniform in the early universe
even in the presence of regions with significant CDM overdensities.
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of the gravitational potential from the baryons themselves (which oscillates with
the photon-baryon fluid density as it compresses and expands) as compared to the
gravitational potential from the CDM which does not oscillate (due to negligible
interactions, there is no dark matter “pressure” to counterbalance gravity). The ratio
of dark matter density to baryon density derived from the CMB measurements is
consistent with the ratio found from the velocity dispersion of galactic clusters [8],
galactic rotation curves [13], and gravitational lensing studies [14, 15]. These topics
are discussed in more detail in Chap. 3, Sect. 3.2.1.

There is yet another line of reasoning suggesting that a significant fraction of
the mass of the universe is nonbaryonic: the primordial abundance of light elements
produced by the Big Bang [37]. Early work by Gamow and Alpher [38–40]5 showed
that light elements could be produced in the early universe via neutron capture. As
the production of elements in stars and supernovae was better understood, it became
apparent that, for example, deuterium (2H) in the interstellar medium could not
have been produced in stars but must be a relic of the Big Bang [41]. Today, this
process of Big Bang nucleosynthesis (BBN) is relatively well understood based
on the Standard Model of particle physics [37].6 The basic concepts of BBN are
described in the following tutorial.

Tutorial: Big Bang Nucleosynthesis (BBN)

A way to understand BBN is to follow particle reaction rates as the universe
expands and cools after the Big Bang. Nucleosynthesis begins about ten seconds
after the Big Bang. At this point in the evolution of the early universe, the energy
density was dominated by relativistic species: photons, electrons, positrons, and
neutrinos. Under these conditions the weak interaction rates were rapid compared
to the expansion rate and established thermal and chemical equilibrium between
neutron and proton densities via the reactions

n+ e+ ↔ p + ν̄e ,

n+ νe ↔ p + e− ,

n↔ p + e− + ν̄e .

In equilibrium the ratio between the neutron and proton densities (nn and np,
respectively) is given by the Boltzmann factor

5 This work includes the famous “α − β − γ ” paper [39] where Gamow added Hans Bethe to the
author list purely for humorous purposes.
6 Notable exceptions to the success of the BBN model are the lithium problems: the observed
abundance of 7Li is a few times smaller than the BBN predictions, and the observed abundance of
6Li is about three orders of magnitude higher than the BBN predictions [42].
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nn

np
= e−Enp/kBT , (1.7)

where Enp = (
mn −mp

)
c2 is the neutron-proton mass difference and T is

the temperature of the universe. As the universe continued to expand and cool,
eventually the weak interaction rates fell below the expansion rate, which resulted
in breaking of equilibrium: the universe was expanding too fast after this point for
neutrons and protons to maintain chemical equilibrium (this is known as freeze-out).
Specifically, freeze-out occurs when the reaction rate � becomes smaller than the
Hubble parameter H ,

H = ȧ

a
, (1.8)

where a is the scale factor introduced in Eqs. (1.3) and (1.4). If �  H , there is on
average less than one reaction over the age of the universe (≈ 1/H ).

The freeze-out temperature Tf ≈ 0.8 MeV/kB , for which H = �, is predicted
by the Standard Model (which describes the rates of the aforementioned weak
interactions that interconvert neutrons and protons) along with general relativity and
standard cosmology (which describes the expansion rate H ) and gives [37]

nn

np
= e−Enp/kBTf ≈ 1

6
. (1.9)

After freeze-out, nn/np continues to decrease because of β-decay of the neutrons.
The beginning of the nucleosynthesis chain with the production of deuterium (D)
is delayed because of photodissociation: the ratio of the baryon density to photon
density, nB/nγ , is so low that photodissociation of D exceeds its production. The
temperature at which nucleosynthesis begins can be found by comparing the rate of
D production,

�prod ≈ nBσ ncv , (1.10)

to D dissociation,

�dis ≈ nγ σ pdce
−ED/kBT , (1.11)

where nB and nγ are the baryon and photon densities, respectively, σ nc and σ pd are
the cross-sections for neutron capture and photodissociation, respectively, v is the
relative velocity between baryons, and ED ≈ 2.23 MeV is the deuterium binding
energy. The factor e−ED/kBT must be included in Eq. (1.11) since nγ /nB 
 1 and
thus �dis 
 �prod until kBT  ED: there is significant photodissociation due to the
high-energy tail of the thermal photon distribution.

When T becomes sufficiently low (at kBT ≈ 0.1 MeV), �dis drops below
�prod and deuterium is produced, starting the chain reaction that generates the light
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elements. From this point, most of the ratios of light element abundances can be
calculated from measured nuclear reaction rates and well-known Standard Model
physics [37], and agree well with observations (except for 6Li and 7Li as mentioned
in the footnote from the previous page).

End of Tutorial

The theory of BBN outlined in the above tutorial has just one free parameter:
the ratio of baryon density to photon density, nB/nγ , at the time of when the light
elements formed. Thus the measured ratios between abundances of 1H, 2H, 3He,
and 4He not only determine nB/nγ , but the consistency between the predicted ratios
of these abundances serves as a cross-check of the theory of BBN. There is good
agreement between theory and observations, validating the theory of BBN in the
standard Big Bang cosmology [43, 44] and precisely measuring the baryon density
produced by the Big Bang. As discussed above, from measurements of the CMB, we
know that the universe has a flat spacetime geometry, which in turn implies that the
total energy density measured now, ρ tot(t0), is equal to the critical density, ρcrit(t0),
for a flat universe [45]:

ρcrit(t0) = 3H 2
0

8πGN

, (1.12)

where H0 = H(t0) is the present value of the Hubble parameter. The total energy
density ρ tot(t0) includes contributions from both matter and an unexplained form
of energy known as dark energy7 (described in the standard Big Bang cosmology
by a cosmological constant �). The value of the dark energy density ρ� can be
determined from surveys of distant type Ia supernovae [51–53]. With the baryon
mass density ρB(t0) given by measurements and calculations of the relic density of
light elements [54], the density of nonbaryonic CDM can be determined:

ρCDM(t0) = 3H 2
0

8πGN

− ρB(t0)− ρ�(t0) . (1.13)

The amount of dark matter found from these considerations is consistent with that
found from other lines of reasoning: over 80% of the matter content of the universe
is dark.

Given the diversity of evidence for dark matter outlined above, not to mention
additional evidence from detailed modeling of the cosmological evolution of the
universe and galaxy formation [55], is there any possibility that dark matter does

7 The problem of the nature of dark energy is in some ways even more perplexing than the problem
of dark matter, and there may even be connections between explanations of the two phenomena
[46, 47]. The interested reader is referred to Refs. [48–50] for reviews.
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not exist? Historically, when the primary evidence for dark matter was derived from
the rotation curves of galaxies, a plausible alternative hypothesis to explain the data
was proposed by Milgrom [56, 57]: Modified Newtonian Dynamics (MOND). The
main idea of MOND is that rather than introducing new particles, the laws of physics
should be modified: if the nonrelativistic force due to gravity behaved as

F = ma2

a0
(1.14)

in the limit of very small accelerations a  a0 ≈ 10−10 m/s2, then the motion
of stars in galaxies could be understood without postulating the existence of dark
matter. MOND remained a viable alternative to dark matter for quite some time,
but in spite of valiant attempts to extend the theory [58], MOND struggles to
explain the combined observational evidence for dark matter derived from galactic
clusters, gravitational lensing, CMB measurements, and BBN without, ultimately,
introducing new particles [1, 59]. This is not to rule out the possibility that MOND
or variants on these ideas could account for some of the observations described
above. However, based on the multiple and distinct observations and calculations
supporting the dark matter hypothesis, it is difficult to envision a scenario without
some form of dark matter.

Nonetheless, one should keep in mind the complexity of the Standard Model
when imagining that but a single type of particle makes up all of the dark matter:
the plethora of known particles and fields in the Standard Model apparently
constitute less than a fifth of the matter in the universe. Furthermore, there is
always the possibility of discovering new physics that could significantly alter our
understanding of the case for dark matter. For instance, a nonzero mass of the photon
could partially explain the flat galactic rotation curves [60]. So while the evidence
for dark matter is compelling, one should not turn a blind eye to alternative theories.

1.2 What Do (We Think) We Know About Dark Matter?

In this section we consider in turn several crucial characteristics of dark matter
established by the observational evidence discussed in Sect. 1.1. Already we have
seen that multiple, independent observations provide a good understanding of the
total amount of mass in the form of dark matter in the universe. We also know that
the dark matter must either be stable or long-lived, since the evidence shows that
dark matter has been present and played a crucial role throughout the cosmological
history of the universe. Furthermore, dark matter:

1. is not predominantly any of the known Standard Model particles (without the
introduction of some new physics beyond the Standard Model),

2. is predominantly nonrelativistic (cold), and
3. is distributed in halos that extend well beyond the luminous matter of galaxies.
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The fundamental Standard Model constituents of matter are leptons and quarks.
The known stable, long-lived form of quarks are baryons: protons and bound
neutrons. The preponderance of observational evidence establishes that dark matter
is not made of such baryons. The baryonic content of the universe, as noted in
Sect. 1.1, is determined from measurements of the CMB and the abundance of light
elements produced by BBN, and establishes that dark matter cannot be ordinary
baryons. The only known stable charged lepton is the electron, which when free
interacts strongly with light: electrons can contribute significantly to dark matter
only if they are bound to nuclei in the form of atoms, in which case the constraint
on baryon density rules them out as a candidate. That leaves neutrinos.

At first glance, neutrinos appear to be an intriguing dark matter candidate: they
only interact via the weak interaction (so they are indeed dark) and they are produced
as a thermal relic of the Big Bang [61–63]. However, Standard Model neutrinos
cannot be a substantial fraction of the dark matter for a reason related to the
second item in the above list of dark matter characteristics: dark matter must be
nonrelativistic (cold) rather than relativistic (hot) during the formation of structure
in the early universe. This point was alluded to in the discussion of the CMB
fluctuations in Sect. 1.1: only the cold dark matter (CDM) scenario can connect
the measured scale of density fluctuations at recombination seen in the CMB to the
observed large-scale structure of the matter in the universe in the present epoch. The
random thermal motion of hot dark matter would wash out the small-scale density
fluctuations needed to seed galaxy formation. When detailed cosmological models
and simulations are compared to extensive surveys of the distribution of galaxies in
the universe, it is clear that the observed universe matches the CDM scenario (see,
for example, Refs. [64–66]).8

It turns out, for this reason, that Standard Model neutrinos cannot be CDM.
Measurements of neutrino oscillations determine the differences between the
squares of the masses of neutrino flavors: the largest square of the mass difference

between neutrino flavors is 
(
mc2

)2 � 2.5× 10−3 eV2 [67]. Direct measurements
of the electron neutrino mass from beta-decay experiments set an upper limit of
mνec

2 � 2 eV [68–70], proving that in fact all the Standard Model neutrinos have
masses <10 eV. Neutrinos with masses <10 eV decouple from thermal equilibrium
in the early universe at a temperature where they are highly relativistic and thus
cannot be CDM [63].

Furthermore, the contribution of neutrinos to the overall mass-energy density of
the universe can be determined from BBN [71] and CMB measurements [32–34]
and turns out to be far too small to be the dominant component of dark matter. Yet

8 However, it should be noted that warm dark matter, something which is relativistic but not highly
relativistic, may make up some substantial fraction of the dark matter density [66].
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another argument against neutrinos being the dominant contribution to dark matter9

(and in fact any fermion with mass below ≈10 eV) is considered in Problem 1.2.

•? Problem 1.2 Minimum Mass of Fermionic Dark Matter

Derive a lower limit on the mass of a spin-1/2 fermionic dark matter candidate
based on the facts that (a) the average mass density of dark matter in the Milky Way
is ρdm ≈ 0.4 GeV/cm3 [73] and (b) the escape velocity of the Milky Way galaxy is
vesc ≈ 2× 10−3c [74].

Solution on page 306.

The third item on our list of dark matter characteristics concerns the distribution
of dark matter in galaxies. The distribution in our own Milky Way galaxy is of
particular interest for many of the experiments discussed in this text that seek
to directly measure nongravitational interactions of dark matter using Earthbound
detectors. As noted in Problem 1.1, dark matter must be distributed in a halo that
extends far beyond the luminous matter in galaxies (about 6–8 times the distance
from the galactic center as compared to luminous matter [75]). Presently, most
researchers assume that the galactic dark matter distribution is described by what
is known as the standard halo model (SHM) [76–78]. While there are certainly
some notable discrepancies between the SHM’s predictions and observations [79–
81], the SHM generally accounts well for galactic rotation curves within present
uncertainties. Using the SHM along with observations of stars’ rotation curves in
the Milky Way, a number of groups have estimated the dark matter energy density
in the vicinity of our solar system to be ρdm ≈ 0.3–0.4 GeV/cm3, with a model-
dependent uncertainty of about a factor of two [73, 82–84]. This corresponds to a
mass density equivalent to one hydrogen atom per a few cm3.

Dark matter particles are trapped within the gravitational potential well of the
Milky Way galaxy and in the SHM are assumed to be virialized10 but not thermal-
ized (since the absence of significant nongravitational interactions is assumed). The
SHM assumes that in the galactic rest frame the velocity distribution of dark matter
is isotropic with a dispersion v ≈ 290 km/s. The distribution of gravitationally
bound dark matter in the galaxy (Fig. 1.4) naturally has a cutoff above the galactic
escape velocity of vesc ≈ 544 km/s [74]; however, it should be noted that the speed
of dark matter particles can exceed the cutoff velocity in the local vicinity of massive
bodies due to gravitational acceleration, and there can also be a small fraction of

9 It should be noted that the argument presented in Problem 1.2 does not apply if somehow
neutrinos violate the spin-statistics theorem [72], in which case they may yet be a viable dark
matter candidate.
10 Although it should be recognized that there is evidence that fairly recently (within 1–2 billion
years) a number of smaller galaxies have merged with the Milky Way, and the stars and dark matter
from these galaxies have not had sufficient time to completely virialize [85, 86].
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Fig. 1.4 Probability
distribution function
describing the speed of dark
matter particles in the galactic
frame of the Milky Way
according to the SHM. There
is a cutoff at the escape
velocity of the galaxy
(vesc ≈ 544 km/s). Figure
courtesy of G. Blewitt
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unbound dark matter passing through the galaxy at velocities above vesc. Our solar
system moves through the dark matter halo with relative velocity with respect to the
galactic rest frame of ≈ 220 km/s ≈ 10−3c toward the Cygnus constellation. It is
important to note that the relative velocity of an Earthbound dark matter sensor also
has both daily and seasonal modulations due to Earth’s rotation about its axis and
orbit around the Sun: the Earth’s orbit creates a 10% modulation of the velocity and
the Earth’s rotation can create up to a 0.2% modulation [74, 87, 88].

A final characteristic, of keen interest for the experiments discussed in this
text, is the degree to which dark matter interacts nongravitationally. Some generic
upper limits on the strength of interactions between dark matter and Standard
Model particles and fields can be obtained from observations of the Bullet Cluster
and similar galaxy cluster mergers [17], as well as measurements of galaxies
and satellites of galaxies moving through dark matter halos [89] and constraints
on dissipation and thermalization within dark matter halos [90]. Based on this
evidence, nongravitational interactions (long-range and contact) between dark
matter particles are constrained to have an average scattering-cross-section-to-mass
ratio σ dm/mdm � 0.5 cm2/g ≈ 1 barn/GeV. This turns out to be similar to the
ratio of scattering-cross-section-to-mass ratios for nuclei. Thus, generically, from
astrophysical evidence it is difficult to say that the interaction strength between dark
and ordinary matter is “small.” Direct experimental searches for particular classes
of dark matter candidates, however, significantly constrain the interactions of such
particles with Standard Model constituents [91]. It is also relevant to note that dark
matter particles must be neutral (or have infinitesimal charge [92]) so that they do
not interact electromagnetically (otherwise dark matter would not be dark!).
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1.3 What Could Dark Matter Be?

There are a plethora of hypotheses about the nature of dark matter that span
an enormous range of parameter space. For example, the masses of dark matter
particle candidates range from 10−22 eV (fuzzy dark matter [93, 94]) up to 1021 eV
(WIMPzillas [95]); if dark matter particles have significant self-interactions, then
they can coalesce into composite objects with masses up to 1050 eV [96]. Several
review articles explore in detail many of these hypotheses (see Refs. [83, 97–100],
and, for amusement, Fig. 1.5). For brevity, here we highlight general principles and
a few of the most popular hypotheses and their current experimental status.

Dark matter hypotheses regarded as “theoretically well-motivated” usually share
several key attributes. The first is a plausible production mechanism that generates
an abundance matching the observed dark matter density in the universe. Of course,
as mentioned in Sect. 1.2, in order to match the observed density the dark matter
particles must be stable: long-lived compared to the age of the universe so that
they persist to the modern epoch. Another key attribute is that dark matter particles
proposed in well-motivated theories also solve some other mystery of modern
physics: multiple puzzles hint of their existence.

These attributes are exemplified by the hypothesis that has attracted the most
attention over the last several decades: the idea that dark matter consists of weakly
interacting massive particles (WIMPs). The WIMP hypothesis developed from the
observation that particles interacting via the weak interaction would be created
at just the right abundance to match the observed dark matter density [62, 102].
This is the so-called WIMP miracle. If the dark matter particles were thermally
produced in the early universe, meaning that they were created in equilibrium
with Standard Model particles via collisions at sufficiently high temperature, then
the interaction cross-section can be estimated from arguments similar to those
used to understand BBN (see the tutorial in Sect. 1.1). In the case of BBN, the

Fig. 1.5 Comical portrayal of the wide range of possible dark matter candidates and their masses
from the xkcd comic strip (https://xkcd.com/ ), not too far off from the actual state of affairs
at present. Actually, in some cases the cartoonist is a bit too conservative: for example, axions
can have masses as small as 10−12 eV [100] and axionlike particles (ALPs) could have masses
�10−22 eV [94, 101]
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weak-interaction-maintained equilibrium between neutrons and protons until the
universe cooled below the freeze-out temperature; analogously, there could be an
interaction that maintained equilibrium between Standard Model particles (SM) and
dark matter particles (χ ) through a process χχ ↔ SM in the early universe.11 As
the universe continued to cool after the Big Bang, kBT would become smaller than
mχc

2, where mχ is the dark matter particle mass, and the density nχ would scale as

e−mχc
2/(kBT ). The decline in the dark matter density as T decreased would halt at

a freeze-out temperature, leaving a relic density of dark matter—just like the relic
density of baryons in the BBN scenario. This process is described by the Boltzmann
equation [99]:

dnχ

dt
= −3H0nχ − 〈σχv〉

(
n2
χ − nχ(eq)2

)
, (1.15)

where σχ is the cross-section for χχ ↔ SM, v is the relative velocity between
particles, 〈· · · 〉 indicates the thermal average, and nχ(eq) is the dark matter density
in equilibrium. The first term on the right-hand side of Eq. (1.15) describes the
decrease in dark matter density due to the expansion of the universe while the second
term describes the creation and annihilation of dark matter from Standard Model
particles. The solution of Eq. (1.15) yields [97–99]

〈σχv〉 ≈ 6× 10−27 cm3/s

�dm
, (1.16)

where �dm = ρdm/ρcrit ≈ 0.22 is the ratio of the dark matter density to the critical
density for a flat universe. The estimate of 〈σχv〉 from Eq. (1.16) turns out to equal
the characteristic scale of the weak interaction if 10 GeV � mχc

2 � 1 TeV
[99]: hence the “WIMP miracle”—weakly interacting particles can be thermally
produced with a relic abundance matching the dark matter density. Furthermore,
WIMPs with such masses would be nonrelativistic at the freeze-out temperature
and thus would fit the CDM scenario.

It also turns out that many leading theories of physics beyond the Standard Model
predict new physics at the weak interaction scale. The key motivation for these
theories is the hierarchy problem: the mystery of why gravity is so feeble compared
to the other fundamental forces of nature, the strong and electroweak interactions.
In the framework of quantum field theory, the hierarchy problem can be reframed
in terms of the puzzle of the smallness of the Higgs-boson mass. The Higgs mass
is mHc2 ≈ 125 GeV, which can be compared to the natural mass scale of the
gravitational interaction, the Planck scale:

11 Notably, one of the intriguing facts about dark matter is that its density is actually quite similar
to the baryon density: there is only about five times more dark matter than ordinary matter as
opposed to orders of magnitude more or less, suggesting that perhaps baryons and dark matter
were produced by similar processes that equilibrate their densities in the early universe.
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Table 1.1 Examples of theories proposing WIMP dark matter candidates and related references

WIMP candidate Description References

Neutralino Lightest superpartner in many supersymmetric
models, a linear combinations of the photino,
higgsino, and Z-ino.

[103, 105]

Gravitino Superpartner of the graviton in supersymmetric
models, in many scenarios only interacts
gravitationally.

[106]

Little Higgs A ≈ TeV scalar WIMP predicted by an alternative
to supersymmetry’s solution of the hierarchy
problem.

[107, 108]

Kaluza-Klein excitation Compactified extra spatial dimensions, an
ingredient of string theory, have excited modes that
correspond to an infinite number of partners to
standard model particles; the lightest one is a
WIMP candidate.

[109, 110]

MPlc
2 =

√
h̄c

GN

≈ 1019 GeV. (1.17)

Quantum field theory predicts that the measured (physical) Higgs mass is given by

m2
H ≈ mH(0)2 +m2

H , (1.18)

where mH is from radiative corrections to the “bare” mass mH(0). The natural
scale of mH is the energy scale at which beyond-standard-model physics appears:
if there were no new physics until the Planck scale, m2

H ≈ MPl
2. Unless there is

a coincidental cancellation at a level of a part in 1034 between contributions to the
radiative correction term mH , the Higgs mass should be close to MPl. Since mH

is measured to be close to the weak scale, there should be beyond-standard-model
physics at the weak scale in order to set mHc2 ≈ 100 GeV.

Thus, many theories proposing WIMPs share both key attributes of a well-
motivated dark matter hypothesis: they give the correct dark matter abundance and
also solve another mystery of modern physics, in this case the hierarchy problem.12

Table 1.1 presents a list of some WIMP candidates and associated references.
Experiments have shown, however, that if the WIMP hypothesis is correct, the

story must not be so simple. If all of dark matter consisted of particles with masses
10 GeV � mχc

2 � 1 TeV that interacted with nuclei via the weak force with
unsuppressed couplings, they would have been experimentally observed decades

12 Supersymmetry [103] at the≈ TeV scale, one of the leading theories of WIMP dark matter, also
predicts a unification of the electromagnetic, strong, and weak coupling constants at the “Grand
Unification Theory” (GUT) scale of≈1016 GeV [104]. This is widely viewed as another tantalizing
theoretical hint of WIMP dark matter.
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ago. Cryogenic experiments searching for energy deposition from collisions of
WIMPs with nuclei, first proposed in the 1980s [111, 112], have been pursued
by a number of collaborations over the past decades. Despite several tantalizing
hints of detections,13 ultimately none of the experiments searching for WIMPs
has found evidence of WIMP dark matter. The resulting constraints from these
null experiments have become increasingly stringent, ruling out many of the most
attractive WIMP theories [119]. Similarly, searches for WIMP candidates at the
Large Hadron Collider (LHC) have placed tight constraints on many WIMP models
[120]. The situation has become increasingly dire for the WIMP hypothesis, and the
motivation to explore other explanations for the nature of dark matter has become
correspondingly stronger.

A hypothesis closely related to the WIMP paradigm is the suggestion that dark
matter might be sterile neutrinos. Perhaps there is a heavy neutrino species that does
not interact via the weak interaction but could be generated by mixing with standard
model neutrinos. The sterile neutrino hypothesis possesses the key attributes of
theoretically well-motivated dark matter candidate: there is a production mechanism
that can give a reasonable abundance (mixing with standard model neutrinos [121])
and sterile neutrinos can also solve a number of puzzles in neutrino physics, for
example, as a mechanism to generate the nonzero standard model neutrino mass
[122]. Because of the mixing with standard model neutrinos, sterile neutrinos can
decay into a photon and a lighter neutrino. Thus searches for x-rays from sterile
neutrino decay in nearby galaxies have been able to rule out a wide region of
sterile neutrino parameter space [123, 124]. Most of the rest of the sterile neutrino
parameter space is ruled out by its effect on small-scale structure in the universe
[125], although loopholes remain [126].

Another dark matter hypothesis that received considerable attention in the past
was the possibility that dark matter consists of massive astrophysical compact
halo objects (MACHOs): composite baryonic objects that are non-luminous, such
as planets, brown dwarfs, white dwarfs, neutron stars, and black holes. The term
MACHO was coined to contrast with the term WIMP, and MACHOs had the notable
advantage in that they were known to exist.14 However, it turns out that MACHOs
do not exist in sufficient abundance: today there is consensus that MACHOs do
not constitute a large fraction of the dark matter in the universe. One of the main

13 The most well-known, persistent, and controversial hint of a WIMP dark matter signal comes
from the DAMA/LIBRA collaboration’s reports of an annually modulated rate of scattering events
on top of a background [113]. WIMP scattering rates should exhibit annual modulation due to the
relative motion of the Earth with respect to the dark matter halo [88], and the DAMA/LIBRA uses
this annual modulation to identify possible WIMP signals. However, the measured WIMP mass and
coupling constants corresponding to the DAMA/LIBRA signals have been ruled out by a number
of other experiments [114, 115]. Independent experiments undertaken specifically to resolve this
controversy have recently ruled out the possibility that the DAMA/LIBRA results are evidence of
dark matter [116–118].
14 Along these lines, an alternative meaning of MACHO was suggested by astrophysicist Chris
Stubbs: maybe astronomy can help out!
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arguments against MACHOs as dark matter is the evidence discussed in Sects. 1.1
and 1.2 from CMB measurements and BBN that dark matter is nonbaryonic.
A second argument against MACHOs as dark matter comes from gravitational
microlensing studies [127]. If the dark matter halo consisted primarily of MACHOs
in the mass range of 10−7M� � M � 102M�, gravitational lensing of light from
visible stars by the MACHOs would cause a significant fraction of those stars (one
in a million) to exhibit transient variation of their apparent brightness. Large-scale
microlensing surveys have been able to constrain the contribution of MACHOs to
the dark matter mass content at �8% [127]. Importantly, these constraints apply not
only to MACHOs, but also to compact objects composed of nonbaryonic matter.

It should be noted that there are special, possibly baryonic, MACHO dark matter
candidates that evade the CMB and BBN bounds: primordial black holes (PBHs).
In the early universe, prior to BBN, there might be regions of space with energy so
dense that they gravitationally collapse into black holes [128]. This is in contrast to
black holes that are later produced as the end state of stellar evolution, and hence
subject to the CMB limits on baryon density at recombination and BBN limits at the
time of light element formation. The PBH mass is constrained to be �10−19M�,
otherwise the PBHs would have evaporated via Hawking radiation prior to the
present epoch [129]. Gravitational microlensing surveys constrain the PBH mass
to be �10−7M� [127].

This brings us, at last, to the dark matter hypothesis that is the subject of this
book: the idea that dark matter consists primarily of ultralight bosons.

1.4 Ultralight Bosonic Dark Matter

Ultralight bosonic dark matter (UBDM) is qualitatively quite different from the
dark matter particles considered in Sect. 1.3. WIMPs and sterile neutrinos are
particles with masses 
10 eV and the search methods are aimed at detecting
individual interactions of dark matter particles. In contrast, UBDM consists of
bosons with masses10 eV (hence ultralight) and the search methods are aimed at
detecting coherent effects of UBDM waves. This difference in search methodologies
arises from the fact that in order to match the observed dark matter density, the mode
occupation number of the ultralight bosons can be quite high (Problem 1.3). In this
case it is natural to treat UBDM as a classical field and take advantage of its coherent
wavelike properties. A useful analogy can be made with radio waves: an efficient
method of detection is to measure the electron current coherently driven by the radio
waves using an antenna, as opposed to detecting single photons.

•? Problem 1.3 Ultralight Bosonic Dark Matter Waves

Suppose that dark matter consists mostly of bosons with mass mbc
2 = 10−6 eV.

What are the Compton frequency and Compton wavelength of such bosons?
Recalling that the virialized velocity of dark matter in the Milky Way is ≈10−3c,
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what is the de Broglie wavelength λdB of such bosons? Given that the local dark
matter density is ρdm ≈ 0.4 GeV/cm3, estimate how many bosons occupy a volume
corresponding to λdB

3? Repeat these estimates for dark matter bosons with mass
mbc

2 = 10−12 eV.

Solution on page 307.

In the rest frame of the UBDM, the oscillation frequency of the UBDM field is
given by the Compton frequency,

ωc = mc2

h̄
. (1.19)

Of course, as noted in Sect. 1.2, in the SHM the dark matter particles are assumed
to be virialized in the gravitational potential well of the galaxy. This leads to a
random distribution of boson velocities. In the Milky Way, the characteristic width
of the distribution is v ≈ 10−3c, about equal to the velocity of our solar system
relative to the galactic rest frame. The spread in boson velocities gives rise to
frequency dispersion, since an observable UBDM field arises from interference
between a multitude of bosons with different velocities. Therefore an UBDM field
has a characteristic coherence time τ coh and coherence length Lcoh, as considered in
Problem 1.4.

•? Problem 1.4 Coherence of Ultralight Bosonic Dark Matter Fields

Given that the characteristic width of the UBDM velocity distribution in the Milky
Way is v ≈ 10−3c, derive τ coh and Lcoh for the UBDM field. Carry out numerical
estimates of τ coh and Lcoh for the boson masses considered in Problem 1.3 (mbc

2 =
10−6 eV and mbc

2 = 10−12 eV). What would be the corresponding Q-factor for
the UBDM in the Milky Way, Q = ω/ω?

Solution on page 308.

Since, if we assume UBDM is described by the SHM, the observable UBDM
field is the result of the interference of bosons with random velocities, its properties
undergo stochastic variation with characteristic time scale τ coh and length scale Lcoh.
Figure 1.6 shows a simulated virialized UBDM field over several coherence times.
The amplitude of the UBDM field, while relatively constant over time durations
t  τ coh, varies randomly on longer time scales. In fact, the stochastically varying
amplitude of a virialized UBDM field is described by the Rayleigh distribution,
which also describes the statistical properties of thermal (chaotic) light. As long as
an experiment measures the UBDM field for a time t 
 τ coh, the experimental
results can be interpreted based on the average dark matter properties. However, for
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Fig. 1.6 Simulated virialized
UBDM field φ(t). The inset
shows the coherent
oscillations of the UBDM
field over a time scale τ coh

extremely low-mass bosons it is impractical to measure for a time longer than τ coh.
For example, fuzzy dark matter [93, 94] with boson mass mbc

2 ≈ 10−22 eV would
have τ coh ≈ 4 × 1013 s (roughly a million years!). In such cases, the interpretation
of experiments must take into account the stochastic nature of UBDM [130].

It should be noted that the distribution of UBDM in the Milky Way may deviate
from the predictions of the SHM in various ways. There can be enhancement (or
suppression) of the local dark matter density due to formation of “clumps” or
streams [131]. A related possibility is that self-interactions or topological properties
of the UBDM field could lead to the formation of large composite structures such as
condensates [132], clusters [133], boson stars [134], or domain walls [135, 136].
A reasonable assumption is that the motion and distribution of such composite
structures are described by the SHM. On the other hand, some fraction of the UBDM
could become trapped in the local gravitational potential of the Earth or Sun [137],
creating a local halo where the UBDM density is enhanced. The fact that much is
unknown about the local dark matter density should be taken into account when
interpreting terrestrial experiments searching for UBDM.

One of the most well-motivated UBDM candidates from the perspective of
theory, according to the criteria developed in Sect. 1.3, is the axion [138, 139].
The existence of axions is predicted by a proposal to solve the so-called strong-CP
problem. CP refers to the combined symmetry with respect to charge-conjugation
(C), transformation between matter and anti-matter, and spatial inversion, i.e.,
parity (P ).15 The strong CP problem arises from a CP -violating term appearing
in the Lagrangian describing quantum chromodynamics (QCD) [140, 141]. The
magnitude of CP violation in the strong interaction caused by this term is governed
by a phase θ̄QCD. Experimentally, θ̄QCD is found to be vanishingly small: constraints
on the neutron electric dipole moment (EDM) imply that θ̄QCD � 10−10 [142]. This
creates a so-called fine-tuning problem, since θ̄QCD is an arbitrary phase in QCD
that could, in principle, take on any value from zero to 2π : the fact that θ̄QCD is
near zero seems to be an unlikely coincidence. A solution to the strong CP problem

15 A P -invariant interaction is said to possess chiral symmetry.
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was proposed by Roberto Peccei and Helen Quinn [143, 144]: perhaps θ̄QCD does
not possess a constant value, but rather evolves dynamically and naturally tends
to a value near zero due to spontaneous symmetry breaking (see Ref. [145] for an
intuitive explanation).16 In this model, the CP -violating θ̄QCD term is replaced by
a term in the QCD Lagrangian representing a dynamical field, and the quantum of
this field is a spin-0 particle known as the axion. Furthermore, there are a number
of plausible mechanisms to generate axions matching the observed abundance of
dark matter [146–151], and such axions naturally fit the CDM paradigm [100, 152]
(although, it is important to note as discussed in Chap. 3, Sect. 3.2, the CDM and
UBDM scenarios are not entirely equivalent and can, in principle, be distinguished).
The axion mass ma is quite small: upper limits based on astrophysical observations
are mac

2 � 10 meV [153], and in principle ma can be smaller than 10−12 eV [154].
Independent of the strong CP problem, ultralight spin-0 bosons are ubiquitous

features of many theories of physics beyond the Standard Model. For example,
axionlike particles (ALPs) appear in theories with spontaneous breaking of flavor
symmetry (familons [155, 156]), models with spontaneous breaking of chiral lepton
symmetry (arions [157]), and versions of quantum gravity (spin-0 gravitons [158–
161]). Axions and ALPs also generically arise in string theory as excitations of
quantum fields that extend into extra compactified spacetime dimensions [162], with
masses ranging all the way to mac

2 ≈ 10−33 eV [101]. Another ALP, known as
the relaxion, has been proposed to solve the hierarchy problem [163]. Axions and
ALPs have also been shown to offer a plausible mechanism to generate the matter-
antimatter asymmetry of the universe [164, 165].

The characteristic amplitude of the axion dark matter field is estimated in
Problem 1.5.

•? Problem 1.5 Axion Dark Matter Field Amplitude

Based on the fact that the axion field ϕ is described (ignoring self-interactions) by
the Lagrangian

L = 1

2

(
∂μϕ

)
∂μϕ − 1

2

(
mac

h̄

)2

ϕ2 , (1.20)

where ∂μ denotes the four-derivative and L has units of energy density, what are the
units of ϕ? What is the relationship between the time-averaged value of the square
of the axion field 〈ϕ2〉 and the average dark matter density in the galaxy ρdm?

Solution on page 308.

16 The underlying physics of the Peccei-Quinn solution to the strong CP problem is closely related
to the physics behind the Higgs mechanism endowing particles with mass in the Standard Model.
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Axions are also involved in a rather different CDM theoretical framework (see
[166, 167] and the references therein) that appears to be able to account for the
origin of dark matter and also explain a number of other puzzles, including the
baryon asymmetry of the Universe, the roughly similar abundance of luminous
and dark matter, the lithium anomalies in the BBN [168], etc. In this model, dark
matter consists of “nuggets” of some 1025 quarks at roughly the nuclear density
held together by an “axion domain wall.” The axion-quark-nugget model assumes
the existence of both nuggets containing quarks and “anti-nuggets” containing
antiquarks, such that the total number of quarks and antiquarks in the universe is
roughly the same, thus resolving the mystery of the matter-antimatter asymmetry.
The axion-quark nugget radius is on the order of 10−5 cm and, in contrast to most
other dark matter scenarios, the interactions of such a nugget with normal matter are
not feeble. For example, the cross-section for proton annihilation is on the order of
the geometrical cross-section of 3×10−10 cm2. The reason such nuggets are “dark”
is that they have an unusually small cross-section-to-mass ratio.

Spin-1 bosons form another class of UBDM candidates. There are twelve
fundamental spin-1 bosons in the Standard Model: the photon, the W± and Z

bosons, and the eight gluons. Generally speaking, a massless spin-1 boson appears
for any unbroken U(1) gauge symmetry.17 New massless spin-1 bosons are referred
to as paraphotons γ ′ [170] in analogy with photons, the quanta arising from the
U(1) gauge symmetry of electromagnetism. Of interest as dark matter candidates
are exotic spin-1 bosons that possess nonzero mass, as does the Z boson in the
Standard Model. A nonzero mass for such a hypothetical Z′ boson could arise from
the breaking of a new U(1) gauge symmetry. There are a plethora of theoretical
models predicting new Z′ bosons and theoretically motivated masses and couplings
to quarks and leptons extend over a broad range [171]. Z′ bosons that do not directly
interact with Standard Model particles (and therefore reside in the so-called hidden
sector) are commonly referred to as hidden photons [170]. Like axions and ALPs,
ultralight spin-1 bosons could plausibly be produced with the correct abundance to
be the dark matter [172–174]. The characteristic magnitudes of the hidden electric
and magnetic fields are estimated in Problem 1.6.

•? Problem 1.6 Dark Electromagnetic Fields

Equating the average dark matter density ρdm to the energy density in the hidden
electric field E′ (given by an analog to standard electromagnetism) yields:

ρdm ≈ 1

8π

(
E′

)2
. (1.21)

17 Such symmetries arise quite naturally, for example, in string theory [169] and other Standard
Model extensions. U(1) refers to the unitary group of degree 1, the collection of all complex
numbers with absolute value 1 under multiplication.
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Because the hidden photons have nonzero mass, there is a rest frame of the hidden
photons for which there is only a hidden electric field oscillating at the Compton
frequency. The hidden magnetic field is given by the relativistic transform of E′
when there is relative motion between an observer and the hidden photons

B′ ≈ v

c
E′ . (1.22)

Using Eqs. (1.21) and (1.22), the local dark matter density ρdm ≈ 0.4 GeV/cm3,
and the characteristic relative velocity of Earth with respect to the dark matter halo
of v ≈ 10−3c, estimate E′ and B′.

Solution on page 309.

Ultralight bosons can couple to Standard Model particles and fields through a
number of distinct portals [175] as discussed in Chap. 2. A spin-0 bosonic field
ϕ can directly couple to fermions in two possible ways: through a scalar vertex or
through a pseudoscalar vertex [176–178]. In the nonrelativistic limit (small fermion
velocity and momentum transfer), a fermion coupling to ϕ via a scalar vertex acts as
a monopole and a fermion coupling to ϕ via a pseudoscalar vertex acts as a dipole.
This can be understood from the fact that in the particle’s center of mass frame,
there are only two vectors from which to form a scalar/pseudoscalar quantity: the
spin s and the momentum p (since the field ϕ is a scalar), so either the vertex does
not involve s (monopole coupling) or if it does, it depends on s · p, which is a
P -odd, pseudoscalar term. Hence the pseudoscalar interaction of ϕ is the source of
new dipole interactions that are manifest as spin-dependent energy shifts. The scalar
interaction gives rise to apparent variations of fundamental constants [175]. Spin-
0 fields can also couple to the electromagnetic field:18 a number of experiments
exploit this coupling to search for conversion of axions into photons in strong
magnetic fields. As suggested by the original theoretical motivation for the axion,
the Peccei-Quinn solution of the strong CP problem [143, 144], axions couple to
the gluon field and can generate EDMs along the spin direction [182]. Analogously
to photons, spin-1 bosons can generate spin-dependent energy shifts and can also
mix with the electromagnetic field [175]. These distinct portals for observing the
effects of UBDM offer a variety of possibilities for direct detection, discussed in
detail in the subsequent chapters of this book.

18 In general, pseudoscalar particles such as axions can be produced by the interaction of two
photons via a process known as the Primakoff effect [179] (discussed in Chaps. 2–5), and
consequently an axion interacting with an electromagnetic field can produce a photon via the
inverse Primakoff effect [180]; see also the review [181].
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1.5 Conclusion

There is a strong case for the existence of dark matter: multiple independent
astrophysical observations point to a consistent model where over 80% of the
matter in the universe is dark. But the fundamental nature of dark matter is a
complete mystery. A wide range of theories of physics beyond the Standard Model
suggest there may exist heretofore undiscovered ultralight bosons with the right
characteristics to explain the mystery of dark matter. In the following chapters,
the rich and interesting physics of UBDM and the diverse array of experiments
searching for evidence of its existence are explored.
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Chapter 2
Ultralight Bosonic Dark Matter Theory

Derek F. Jackson Kimball, Leanne D. Duffy, and David J. E. Marsh

Abstract The basic theoretical concepts motivating the hypothesis that dark matter
may consist of ultralight spin-0 or spin-1 bosons are explored. The origin of bosons
with masses 1 eV from spontaneous and explicit symmetry breaking is illustrated
with examples. The origins and characteristics of nongravitational couplings or
“portals” between ultralight bosons and Standard Model particles and fields are
considered, with particular attention paid to the cases of the axion-photon and axion-
fermion interactions. Theoretical motivations for the existence of ultralight bosons,
besides as an explanation of dark matter, are examined, with particular focus on the
Peccei-Quinn solution to the strong CP problem (resulting in the QCD axion) and a
dynamical solution to the hierarchy problem (the “relaxion” hypothesis, based on a
particular axion-Higgs coupling in the early universe). Mechanisms for non-thermal
production of ultralight bosonic dark matter are examined.

2.1 Introduction

This book explores the hypothesis that dark matter consists predominantly of
ultralight bosons. In this chapter we discuss the theoretical motivation for the
ultralight bosonic dark matter (UBDM) hypothesis and the testable predictions
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derived from it, considering a number of relevant examples along the way. At the
outset several questions naturally arise:

• If we suppose that dark matter is a bosonic field, how do we describe that from a
theoretical perspective?

• Why would such bosons be “ultralight”—with masses 1 eV/c2?
• How could such ultralight bosonic matter interact with known Standard Model

particles and fields?
• Why should one expect that there exist bosons beyond those already discovered

(e.g., photons, gluons, W and Z-bosons, and the Higgs boson)?
• How could ultralight bosons be created in the early universe in sufficient

abundance to match the dark matter density observed today?

2.2 Bosonic Field Lagrangians

From the perspective of both classical and quantum field theory (QFT), a common
place to begin trying to understand the physics of a new particle is to write down the
Lagrangian (or more specifically, the Lagrangian density L) of the corresponding
field. The following several sections draw heavily from textbooks on QFT, such as
Refs. [1–5], which offer more detail and further explanation of many of the key
points addressed. Let us start by assuming we are dealing with a scalar field φ(r, t);
the quantum excitations of the scalar field φ̂(r, t) are spin-0 bosons.1 This choice is
motivated both by simplicity and because axions and axionlike particles (ALPs),
some of the most prominent dark matter candidates, are spin-0 bosons. Further
motivation for considering scalar fields is derived from the discovery of the Higgs
boson [6, 7], proving that elementary spin-0 bosons do indeed exist in nature [8].

The Lagrangian L describing the scalar field will naturally depend on the rate of
change of φ in time, ∂0φ = ∂φ/∂t , and the derivative of φ with respect to the spatial
coordinates, ∇φ. (In this chapter we will use natural units where h̄ = c = 1, see the
discussion of units and conversion factors in the prefatory material at the beginning
of this text.) We require thatL be Lorentz invariant, so we will build our Lagrangian
from the four-derivative of φ,

∂μφ = ∂φ

∂xμ
=

(
∂

∂t
,∇

)
φ , (2.1)

=
(
∂φ

∂t
,
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
, (2.2)

which is manifestly Lorentz invariant. In the following we use the Einstein
summation convention for repeated indices, with Greek indices such as μ running
from 0 → 3, where 0 indicates the time-like component and 1, 2, and 3 are the
spacelike components. The metric tensor describing flat spacetime is

1 The “hat” on the scalar field denotes that we treat φ̂ as an operator.
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gμν =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ = diag [1,−1,−1,−1] , (2.3)

which takes contravariant (upper) indices to covariant (lower) indices: xμ = gμνx
ν .

For simplicity, motivated at least in part by the principle of Occam’s razor, we
will also want to choose a form of L that depends on the lowest order of derivatives
possible.2 Since L is a scalar and ∂μφ is a four-vector, at a minimum we must use
the inner product of the four-derivatives of φ, and so our first guess at L is

L = 1

2
∂μφ∂μφ = 1

2

(
∂μφ

)2
, (2.4)

= 1

2

∂2φ

∂t2
− 1

2
(∇φ)2 , (2.5)

where the factor of 1/2 is included to simplify future results, and we use the
metric for flat spacetime. In analogy with the Lagrangian from classical mechanics
describing particles, the term (1/2)

(
∂μφ

)2 is often associated with a “kinetic”
energy of the field.

So what can we learn from our guess for L about the properties of φ? By using
Eq. (2.4) in the Euler–Lagrange equation,

∂L
∂φ

− ∂μ

(
∂L

∂
(
∂μφ

)
)
= 0 , (2.6)

noting that

∂L
∂φ

= 0 (2.7)

and

∂L
∂

(
∂μφ

) = ∂μφ , (2.8)

we find from Eq. (2.6) that

∂μ∂
μφ = ∂2φ

∂t2 −∇2φ = 0 . (2.9)

2 In principle, theories with higher-order derivatives are possible, but are associated with non-
local effects and causality violation. Models involving such higher-order derivatives include, for
example, theories of modified gravity (see, e.g., Ref. [9]).
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Note that Eq. (2.9) shows that jμ = ∂μφ is a conserved current, since ∂μj
μ =

0. The conservation of the current jμ is a consequence of the continuous shift
symmetry of the Lagrangian under the transformation φ → φ+ constant, a result of
Noether’s theorem [10].

Equation (2.9) is a wave equation for φ and thus has solutions of the form

φ(r, t) = ϕ0e
i(k·r−ωt) , (2.10)

where ϕ0 is the amplitude of this particular mode of the scalar field, ω is the
frequency, and k is the wave vector. In natural units, the frequency ω is equivalent to
the energy E of φ, as can be derived by applying the energy operator Ê = i(∂/∂t)

to φ(r, t). Similarly, the wave vector k is equivalent to the momentum p of φ, as
can be derived by applying the momentum operator p̂ = −i∇ to φ(r, t).

Substituting Eq. (2.10) into Eq. (2.9), we obtain the dispersion relation

ω2 = |k|2 , (2.11)

or, equivalently,

E = |p| . (2.12)

What does Eq. (2.12) imply about our scalar field φ? One of the key ideas of QFT
is that particles can be interpreted as quantum excitations of fields. The dispersion
relation (2.12) thus implies that if the field φ has zero momentum, |p| = 0, then it
has zero energy, E = 0, which means the particles associated with φ have zero rest
mass (m = 0). Note that, in fact, these considerations also apply to classical fields.
The dispersion relation for a classical field defines a “mass” based on the curvature
of the dispersion around |k| = 0.

But in order to match the astrophysical observations discussed in Chaps. 1 and 3,
the particles associated with φ must behave as cold dark matter and thus cannot be
massless. To get a theory of particles with mass, we need to modify the Lagrangian
density (2.5) so that there is some energy “cost” to having a non-vacuum field value.
This can be done by adding to our Lagrangian a potential energy term that depends
on φ such that

L = 1

2

(
∂μφ

)2 − 1

2
m2φ2 , (2.13)

where, again, the factor m2/2 is chosen to obtain the correct units and with future
results in mind, and the potential energy term has a minus sign since the Lagrangian
is the kinetic minus the potential energy (thus the larger the field φ, the larger the
potential energy). To show that our theory describes massive particles, we can re-
derive the dispersion relation using L from Eq. (2.13). Since now
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Fig. 2.1 Plot comparing the
dispersion relation for a
massless boson (red line)
based on Eq. (2.12) with that
for a massive boson (blue
curve) based on Eq. (2.17). A
key feature of the massive
boson is the energy cost for
zero-momentum excitations
of the field, shown by the
nonzero intercept of the
dispersion curve on the
energy axis

∂L
∂φ

= −m2φ , (2.14)

the Euler–Lagrange equation (2.6) gives

(
∂μ∂

μ +m2
)
φ = 0 , (2.15)

which is the Klein–Gordon equation. The solutions of the Klein–Gordon equa-
tion (2.15) are also of the form

φ(r, t) = ϕ0e
−i(Et−p·r) , (2.16)

but with the dispersion relation

E2 = |p|2 +m2 , (2.17)

which shows that if the field φ has zero momentum, |p| = 0, then it has energy
equal to the rest mass of the associated particle E = m. Thus the Lagrangian in
Eq. (2.13) describes a relatively simple model for massive particles that could be
dark matter.

Figure 2.1 compares the dispersion relation for massless particles derived from
Eq. (2.4) to that for massive particles derived from Eq. (2.13). Already we can note
an interesting feature of the scalar field that will be repeatedly referenced throughout
this text, namely that a nonrelativistic bosonic field, for which |p|  m, oscillates
at the Compton frequency: ω ≈ m.
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2.3 Why New Bosons Might Be Ultralight

So far, from the considerations in Sect. 2.2, we have from Eq. (2.13) a model of a
scalar field whose particles have mass m. But, as discussed in Chap. 1, the UBDM
hypothesis suggests that the dark matter particles have masses � 0.1 eV (and even
perhaps as small as m ∼ 10−22 eV!), a small value compared to most known
Standard Model particles with nonzero masses.3 This invites the question: from a
theoretical perspective, why might we expect new bosons to be ultralight? One of the
main motivations for postulating the existence of new bosons with ultralight masses
comes from the physics of spontaneous symmetry breaking, which we explore in
this section.

Let us reconsider our model Lagrangian for the scalar field,

L = 1

2

(
∂μφ

)2 − V (φ) , (2.18)

where we designate V (φ) as the potential energy density term. In Eq. (2.13), we
chose V (φ) = m2φ2/2, but in principle we could try other potentials and investigate
the consequences. In fact, this is a familiar approach used throughout physics: one
might imagine that the true potential describing nature is some complicated function
of φ, but one can always Taylor expand such a function:

V (φ) =
∞∑
n=0

cn

n!φ
n , (2.19)

where cn are constants. As long as the series converges, the first few terms of the
Taylor expansion (2.19) may offer a reasonable approximation for V (φ). With this
in mind, let us consider the following potential:

V (φ) = μ2

2
φ2 + λ

4!φ
4 , (2.20)

where λ is a constant. In Eq. (2.20) we take only the first two terms with even powers
of φ from the expansion (2.19) to keep V (φ) symmetric about φ = 0, so that V (φ)

is invariant under the transformation φ0 →−φ0. Also note that truncating the series
at the φ4 term is convenient as it makes the theory renormalizable (see, for example,
chapter 31 of Ref. [1]). The potential described by Eq. (2.20) is shown in the plot
on the top in Fig. 2.2. The minimum of this potential at φ = 0 corresponds to the
vacuum state of the field and the quantum excitations of φ are bosons with mass
m = μ, as can be seen in the limit where φ  1, in which case V (φ) → μ2φ2/2
and thus matches the potential from Eq. (2.13).

3 Neutrinos, of course, have nonzero but comparatively small masses: the sum of the three different
mass eigenstates for neutrinos is � 0.1 eV [11].
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Fig. 2.2 The purple plot on the top shows a quartic scalar field potential V (φ) with a positive
quadratic term [Eq. (2.20)], the blue plot on the bottom shows V (φ) with a negative quadratic term
[Eq. (2.21)]

What if instead we construct a potential

V (φ) = −μ2

2
φ2 + λ

4!φ
4 , (2.21)

where the quadratic term is negative instead of positive? Then we get a shape of the
potential as shown in the plot on the bottom in Fig. 2.2. Now there are two minima of
the field at φ �= 0 (Problem 2.1). This means that the ground state of the field, which
will be one of the two minima, breaks reflection symmetry and is not invariant under
the transformation φ0 → −φ0 (whereas, crucially, V (φ) still possesses reflection
symmetry). This illustrates the essence of spontaneous symmetry breaking and
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shows how the vacuum expectation value of the field acquires a nonzero amplitude
(see Problem 2.1).

•? Problem 2.1 Vacuum Field and Boson Mass in Spontaneous Symmetry
Breaking

Solve for the minima of the potential V (φ) described by Eq. (2.21). These are
the two possible vacua or “vacuum expectation values” of the field φ, both of
which are nonzero. Thus the field φ has the property that even when there are no
bosons present, the field is nonzero, possibly with relatively large amplitude. This
is in contrast to the more familiar case of the electromagnetic field whose vacuum
expectation value is zero, so that where there are no photons present the average
electromagnetic field is zero. Also find the new mass of the boson.

Solution on page 309.

Still we have not yet seen why bosons associated with the field φ might be
ultralight. Let us introduce a new model, this time with two different scalar fields,
α(r, t) and β(r, t). We construct a potential for these two scalar fields similar to
that from Eq. (2.21):

V (α, β) = −μ2

2

(
α2 + β2

)
+ λ

4!
(
α2 + β2

)2
. (2.22)

The potential V (α, β), plotted in Fig. 2.3, possesses what is known as a global
SO(2) symmetry: it is invariant with respect to rotations in the α-β plane. It is
a global symmetry because in order to maintain invariance with respect to the
transformation, the fields at all points in spacetime must be rotated in the same way
in the α-β plane. The label SO(2) for the symmetry originates from group theory:
“SO” refers to the special orthogonal group, namely the group of all orthogonal
matrices4 whose determinants = 1 (this condition is what makes this subgroup of
all orthogonal matrices “special”). SO(2) is the special orthogonal group of 2 × 2
matrices, equivalent to the group of rotations about a point in two dimensions.

Now, instead of two potential minima as in the case of V (φ) from Eq. (2.21)
(see Problem 2.1), there are an infinite number of minima on a ring of radius
ρ0 =

√
α2 + β2 = √

6μ2/λ centered at (α = 0, β = 0). This is seen by writing
Eq. (2.22) in terms of u = α2 + β2,

V (u) = −μ2

2
u+ λ

4!u
2 , (2.23)

4 An orthogonal matrix is a matrix whose inverse equals its transpose.
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Fig. 2.3 Plot of the potential
V (α, β) from Eq. (2.22)

and then finding the minimum with respect to u:

[
∂V

∂u

]

u=umin

=− μ2

2
+ λ

12
umin = 0 (2.24)

⇒ umin = 6μ2

λ
. (2.25)

What happens when this system undergoes spontaneous symmetry breaking?
Suppose the system “falls into” a particular ground state of the system. Without loss
of generality, let us choose the ground state (α = α0 =

√
6μ2/λ, β = β0 = 0).

In order to investigate small perturbations around this particular field minimum, we
can re-write the Lagrangian in terms of the variables

ᾱ ≡ α − α0 = α −
√

6μ2

λ
, (2.26)

β̄ ≡ β − β0 = β , (2.27)

noting that

∂μᾱ = ∂μα , (2.28)

∂μβ̄ = ∂μβ . (2.29)

The Lagrangian with the potential from Eq. (2.22), written in terms of ᾱ and β̄, is
given by

L = 1

2

(
∂μᾱ

)2 + 1

2

(
∂μβ̄

)2 + μ2

2

[
(ᾱ + α0)

2 + β̄2
]
− λ

4!
[
(ᾱ + α0)

2 + β̄2
]2

,

(2.30)
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which is equivalent to

L =1

2

(
∂μᾱ

)2 + 1

2

(
∂μβ̄

)2 + 3

2

μ4

λ
− μ2ᾱ2 − μ

√
λ

6
ᾱ3 − λ

4! ᾱ
4

− λ

4! β̄
4 − μ

√
λ

6
ᾱβ̄3 − λ

12
ᾱ2β̄2 .

(2.31)

•? Problem 2.2 Lagrangian for Two Scalar Fields

Derive Eq. (2.31) from Eq. (2.30).

Solution on page 310.

The physics described by L is unchanged by resetting the zero of the potential,
so the constant term in Eq. (2.31), 3μ4/(2λ2), can be subtracted. As a first
approximation, let us consider only small amplitude field excitations and therefore
neglect terms higher than second order in the fields ᾱ, β̄:

L ≈ 1

2

(
∂μᾱ

)2 + 1

2

(
∂μβ̄

)2 − μ2ᾱ2 . (2.32)

The part of the Lagrangian describing the ᾱ field has a form analogous to Eq. (2.13)
and thus represents a field whose quantum excitations are bosons of mass m = √2μ.
The part of the Lagrangian describing the β̄ field has a form analogous to Eq. (2.4)
and thus represents a field whose quantum excitations are massless bosons. The m =
0 excitations of the β̄ field are known as Goldstone bosons [12], massless bosons
appearing whenever a continuous symmetry, in this case SO(2), is spontaneously
broken (a consequence of Goldstone’s theorem [13]). The reason that the β̄ bosons
are massless can be intuited from the shape of the potential plotted in Fig. 2.3, shown
in an “overhead” view in Fig. 2.4. Small excitations of the β̄ field (indicated by the
double-headed purple arrow in Fig. 2.4) around the ground state (indicated by the
purple dot in Fig. 2.4) occur essentially without any increase in potential energy,
as they are along the ring of minima in the “trough” of the potential V (α, β). In
contrast, excitations of the ᾱ field are perpendicular to the double-headed purple
arrow in Fig. 2.4, where the potential resembles that of a simple harmonic oscillator,
corresponding to the massive bosons associated with the potential of Eq. (2.13).

So far, our model based on the potential from Eq. (2.22) shows no indication
of an ultralight field: rather we have one field (ᾱ) that has an arbitrary mass and
another field (β̄) that is massless. The appearance of an ultralight field requires one
more ingredient in our model: explicit symmetry breaking on top of the spontaneous
symmetry breaking. By explicit symmetry breaking we mean that the global SO(2)
symmetry of the potential V (α, β) of Eq. (2.22) is itself broken, so that V (α, β) is
no longer symmetric with respect to rotations in the α-β plane. In theories proposing
ultralight bosons, such explicit symmetry breaking occurs due to, for example, non-
perturbative effects in quantum chromodynamics (QCD), leading to so-called “soft”
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Fig. 2.4 Overhead view of
the potential V (α, β) from
Eq. (2.22). The purple dot
indicates the (arbitrary)
ground state after
spontaneous symmetry
breaking at (α = α0 =√

6μ2/λ, β = β0 = 0). The
double-headed purple arrow
indicates small perturbations
of the β field around
β = β̄ = 0, requiring
approximately zero energy as
seen from Eq. (2.32). Thus
the quantum excitations of
the β field are massless
bosons, a consequence of
Goldstone’s theorem

explicit breaking of the symmetry (where “soft” refers to the fact that the symmetry
is restored at high energy scales), or even effects associated with quantum gravity
(which is generically expected to violate global symmetries), see the reviews [14–
19] for further discussion. For the purposes of our present investigations, let us
invoke explicit symmetry breaking of the potential by “tilting” V (α, β) toward the
original vacuum state from the spontaneously broken symmetry (α0, β0) by adding
the term

Vε = −ελα3
0α (2.33)

to the potential of Eq. (2.22), so the Lagrangian is now

L = 1

2

(
∂μα

)2 + 1

2

(
∂μβ

)2 + μ2

2

(
α2 + β2

)
− λ

4!
(
α2 + β2

)2 + ελα3
0α . (2.34)

In Eqs. (2.33) and (2.34), ε  1 is a small parameter characterizing the symmetry
breaking. Figure 2.5 shows a plot of the potential (the tilt is greatly exaggerated so
as to be clearly visible).

The explicit symmetry breaking due to Vε shifts the minimum of the potential
with respect to α, as seen in Problem 2.3.

•? Problem 2.3 Explicit and Spontaneous Symmetry Breaking

Keeping only terms to first order in ε, verify that the minimum of the potential in
Eq. (2.34), namely

V (α, β) = −μ2

2

(
α2 + β2

)
+ λ

4!
(
α2 + β2

)2 − ελα3
0α , (2.35)
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Fig. 2.5 Plot of the potential
from Eq. (2.34), showing
explicit symmetry breaking.
The potential is tilted toward
the original vacuum state
(α0, β0) identified in Fig. 2.4

occurs at

α = α0(1+ 3ε) , (2.36)

β = 0 , (2.37)

where, as before, α0 =
√

6μ2/λ. Thus in order to investigate small perturbations
around this particular field minimum, the Lagrangian (2.34) can be re-written in
terms of the variable

ā = α − α0(1+ 3ε) . (2.38)

By writing L in terms of ā, keeping only first order terms in ε and second order or
smaller terms in the fields ā and β, and also appropriately resetting the zero of the
potential (allowing all constant terms to be subtracted), show that the potential (2.35)
can be approximated as

V (ā, β) ≈ μ2ā2 + 3εμ2β2 . (2.39)

Solution on page 311.

Based on Eq. (2.39), the Lagrangian for the fields resulting from both sponta-
neous and explicit symmetry breaking can be approximately described as

L = 1

2

(
∂μā

)2 + 1

2

(
∂μβ

)2 − μ2ā2 − 3εμ2β2 , (2.40)

which shows that due to the explicit symmetry breaking, the β field has acquired a
small mass ∝ √ε,

m2
β ≈ 6εμ2 . (2.41)
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Thus β represents the sought-after ultralight bosonic field: the quantum excitations
of the β field are commonly known as a pseudo-Goldstone bosons or pseudo-
Nambu-Goldstone bosons (pNGBs in the literature, see, for example, Ref. [12]).5

In order to connect our somewhat simplistic model to more realistic UBDM
scenarios, it is useful to re-parameterize the descriptions of the explicit and
spontaneous symmetry breaking. We can associate a characteristic energy scale f

with the spontaneous symmetry breaking based on the depth of the potential [see,
e.g., Eqs. (2.23) and (2.25)],

|V min| ∼ μ4

λ2 ∼ f 4 , (2.42)

where we note that V (α, β) represents an energy density and thus, in natural units,
is proportional to the fourth power of energy. The energy scale � describing the
explicit symmetry breaking can be characterized by the associated part of the
potential [Eq. (2.33)], namely

|Vε | ≈ ελα4
0 ∼ ε

μ4

λ
∼ �4 . (2.43)

The mass of the β boson [Eq. (2.41)] can now be re-written in terms of f and �:

m2
β ∼ εμ2 ∼

(
ε
μ4

λ

)
×

(
λ

μ2

)
, (2.44)

∼ �4

f 2 . (2.45)

Since the mass of the β boson scales as m ∼ �2/f , if f 
 � (which corresponds
to ε being small), as is the case in many beyond-the-Standard-Model theories
incorporating such effects, then indeed the new boson can be ultralight. Note that we
have an additional symmetry restored in the limit where ε → 0, namely the SO(2)
symmetry, and thus we say that the ultralight mass of the pseudo-Goldstone boson
is “technically natural.”

Specific models of ultralight bosons suggest particular values for the spontaneous
symmetry breaking scale f and the explicit symmetry breaking scale �. For
example, the spontaneous symmetry breaking might occur at the Planck scale, in
which case f ∼ 1028 eV. A possible source of (soft) explicit symmetry breaking
arises from the strong interaction, in which case the explicit symmetry breaking
scale is given by the QCD confinement scale (the energy scale above which
calculations of the strong coupling constant diverge), i.e., � ∼ 108 eV. Employing

5 Goldstone bosons resulting from spontaneous symmetry breaking are massless, while pseudo-
Goldstone bosons, possessing relatively small but nonzero masses, result from the combination of
spontaneous and explicit symmetry breaking as considered here.
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these energy scales in Eq. (2.45) gives a boson mass of m ∼ 10−12 eV, which is
much, much lighter than any Standard Model boson with nonzero mass.

Tutorial: Spontaneous and Explicit Breaking of the U(1) Symmetry of a
Complex Scalar Field

In this tutorial, we offer another example elucidating the origin of an ultralight
bosonic field from the combination of spontaneous and explicit symmetry breaking.
Instead of the two real scalar fields α and β considered above, let us consider a
single complex scalar field ϕ, where we can make the correspondence:

ϕ = α + iβ . (2.46)

Then the Lagrangian corresponding to the potential in Eq. (2.22) can be written as

L = 1

2

(
∂μϕ

)†(
∂μϕ

)+ μ2

2
ϕ†ϕ − λ

4!
(
ϕ†ϕ

)2
. (2.47)

Next we can re-parametrize the complex field using polar coordinates:

ϕ = ρeiθ , (2.48)

which yields a new form for the Lagrangian (2.47):

L = 1

2

(
∂μρ

)2 + 1

2
ρ2(

∂μθ
)2 + μ2

2
ρ2 − λ

4!ρ
4 . (2.49)

Note that the Lagrangian described by Eqs. (2.47) and (2.49) exhibits a global U(1)
symmetry for ϕ, namely that a global transformation ϕ → ϕeiθ

′
has no effect on

L. U(1) refers to the one-dimensional unitary group, i.e., complex numbers with
magnitude = 1, and so the U(1) symmetry is a symmetry with respect to rotations
in the complex plane. The correspondence between rotations in the complex plane
for ϕ and rotations in the real α-β plane is a consequence of the fact that U(1) is
isomorphic to SO(2).

Similarly to the case of the two real-valued fields α and β, minima of the potential
occur in a ring with radius ρ = ρ0 =

√
6μ2/λ. Let us assume that the U(1)

symmetry is spontaneously broken such that ρ → ρ0 and θ → 0. Then we can
re-write the Lagrangian in terms of ρ̄ = ρ − ρ0, which, after some algebra, yields

L = 1

2

(
∂μρ̄

)2 + 1

2
ρ2

0

(
∂μθ

)2 − μ2ρ̄2 − λ

6
ρ0ρ̄

3 − λ

24
ρ̄4 +

(
ρ̄2

2
+ ρ0ρ̄

)(
∂μθ

)2
,

(2.50)



2 Ultralight Bosonic Dark Matter Theory 45

Fig. 2.6 Schematic diagram showing the effect of explicit symmetry breaking due to a tilt by an
angle ε of the quartic potential for the complex scalar field ϕ (see Figs. 2.3 and 2.5 for illustrations
of the analogous case for two real scalar fields, with and without tilt, respectively). The edge of
the disk represents the ring of minima with respect to ρ at ρ ≈ ρ0 (radius ρ0 shown by the solid
blue line). If the potential is tilted by an angle ε, the potential acquires a θ-dependence given by
(∂V/∂α)δα (illustrated by the solid vertical red line). Here the solid purple radial line indicates a
particular value of ϕ = ρ0e

iθ , α = Re(ϕ), δα ≈ ρ0(cos θ − 1) (illustrated by the dashed red line),
and ∂V/∂α = −εμ2ρ0

where in Eq. (2.50) we have dropped all constant terms, since they have no effect on
the physics. Note that in Eq. (2.50), the terms independent of θ and linear in ρ̄ have
cancelled out, similarly to the derivation of Eq. (2.31) discussed in Problem 2.2.
Retaining only second order or lower terms in ρ̄ and θ , we obtain

L ≈ 1

2

(
∂μρ̄

)2 + 1

2
ρ2

0

(
∂μθ

)2 − μ2ρ̄2 , (2.51)

which is analogous to Eq. (2.32). Note that θ = β/ρ0 ∼ β/f , where f is the
spontaneous symmetry breaking scale defined in Eq. (2.43).

Next, we introduce explicit symmetry breaking by tilting the potential appearing
in the Lagrangian (2.49) by an angle ε toward θ = 0. Figure 2.6 illustrates the
parametrization of the explicit symmetry breaking. The tilt by ε causes the potential
to acquire a θ -dependence. For ϕ = ρ0e

iθ , the real part of the field is Re(ϕ) = α =
ρ0 cos θ . The minimum of the tilted potential is at θ = 0, and so the change in the
potential with respect to the minimum is given by

δV (θ) = ∂V

∂α
δα = εμ2ρ2

0(1− cos θ) , (2.52)

where δα = −ρ0(1− cos θ). Including this term in the Lagrangian (2.51), we have

L ≈ 1

2

(
∂μρ̄

)2 + 1

2
ρ2

0

(
∂μθ

)2 − μ2ρ̄2 − εμ2ρ2
0(1− cos θ) . (2.53)
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As a final step, to connect this result to the form of the potential most commonly
encountered in the literature on UBDM, we use the relationships outlined in
Eqs. (2.42), (2.43), and (2.45), along with the correspondence noted earlier, θ ∼
β/f , to write:

V (β) = m2
bf

2
[

1− cos

(
β

f

)]
= �4

[
1− cos

(
β

f

)]
. (2.54)

V (β) can be expanded about β = 0 to give

V (β) ≈ 1

2
m2

bβ
2 ≈ 1

2

�4

f 2 β
2 , (2.55)

which can be compared to the β2 term in Eq. (2.40).

End of Tutorial

2.4 Portals Between the Dark Sector and the Standard Model

The next major question we will address is how ultralight bosonic fields can interact
nongravitationally with Standard Model particles and fields. To develop some
intuition about such interactions, let us begin by continuing to work with our simple
model of an ultralight bosonic field developed in Sect. 2.3. From a QFT perspective,
interactions between two different fields arise when terms appear in the Lagrangian
involving both fields as factors. In this way we can investigate interactions between
the α (or ā) and β fields analyzed in Sect. 2.3. While the approximate Lagrangian of
Eq. (2.40) has no such terms, they appear if we expand the Lagrangian of Eq. (2.34)
to third order in the products of the fields, as shown in Problem 2.4.

•? Problem 2.4 Interactions Between Two Scalar Fields

Using the results from the solution to Problem 2.3, expand the potential of
Eq. (2.34) to third order in the products of the fields, thereby deriving two new
“interaction” terms:

V int(ā, β) = λ

6
α0ā

3 + λ

6
α0β

2ā . (2.56)

Solution on page 313.
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The constant factor in front of the terms in Eq. (2.56) represents the coupling
constant g characterizing the strength of the interaction between the fields (or the
self-interaction in the case of the ā3 term). The coupling constant can be re-written
in terms of the spontaneous symmetry breaking scale f :

g = λα0

6
= 1√

6

μ2

f
∼ μ2

f
. (2.57)

Accounting for the interaction terms gives a new approximate Lagrangian,

L ≈ 1

2

(
∂μā

)2+ 1

2

(
∂μβ

)2−μ2ā2−3εμ2β2+ 1√
6

μ2

f
ā3+ 1√

6

μ2

f
β2ā . (2.58)

Equations (2.57) and (2.58) highlight another important generic feature of
ultralight bosonic fields that makes them good candidates to be dark matter: the
coupling to other particles and fields generally scales as 1/f , so if the symmetry
breaking scale is at a very large energy, such as the grand unified theory (GUT)
scale (f ∼ 1025 eV = 1016 GeV) or Planck scale (f ∼ 1028 eV = 1019 GeV),
nongravitational interactions of the ultralight bosons are strongly suppressed,
consistent with astrophysical observations as discussed in Chaps. 1 and 3, and also
consistent with the results of the many null experiments described throughout this
book.

2.4.1 Interactions Between Ultralight Bosonic Fields and
Standard Model Particles

If terms describing the Standard Model particles and fields and their interactions
are incorporated into the Lagrangian, along with terms describing ultralight bosonic
fields, a variety of interaction terms are possible [20]. Many of the couplings studied
both in the experiments discussed in this book, as well as in numerous theories
of beyond-the-Standard-Model physics, are listed in Table 2.1 (note that the list
of couplings is not exhaustive6). If dark matter consists primarily of ultralight
bosonic fields, these possible nongravitational interactions can be classified into a

6 The couplings listed in Table 2.1 only include operators up to a certain dimension (see discussion
in Ref. [20]). Also, Table 2.1 is compiled assuming a particular basis for the fermions, other bases
permit different forms of the couplings. For axions, in particular, it is significant that the fermion
interactions generate the other axion interactions via the chiral anomaly, called an “anomaly”
because it is a case where a classical symmetry of the Lagrangian does not map to a quantum
symmetry for the corresponding Lagrangian. In the low temperature limit (where T is well below
the QCD phase transition temperature ∼200 MeV), the gluon interaction generates the axion mass
via soft explicit breaking of the chiral symmetry due to mixing with pions as described in the
tutorial at the end of Sect. 2.5.1. In the high temperature limit, the axion mass is generated via
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Table 2.1 Couplings of ultralight bosonic fields to Standard Model particles and fields.
Examples of ultralight bosons include scalars φ, axions (or axionlike particles, ALPs) a, and
dark/hidden photons, described by a vector potential Xμ and field strength Fμν . Standard Model
particles include Higgs bosons h, gluons Gμν , photons Fμν , and fermions ψ . The dual gluon
field tensor is denoted G̃μν and the dual electromagnetic tensor is denoted F̃ μν , and Aμ is the
photon vector potential. General terms from the Standard Model are denoted by Osm. Note that
because the Lagrangian is real-valued, the operators must take the appropriate form depending
on whether the considered fields are real or complex. The usual Dirac matrices are denoted γμ
and γ5 = −iγ0γ1γ2γ3, and σμν = (i/2)[γ μ, γ ν ]. The rightmost column list the chapters of
the present book in which experiments probing such effects are discussed. Table adapted from
Refs. [20] and [24]

Spin Type Operator Interaction Chapters

0 Scalar φh†h Higgs portal 8, 10

0 Scalar φnOsm (n = 1, 2) Dilaton 8, 10

0 Scalar φ†∂μφψ
†γ μψ Current-current 8, 10

0 Pseudoscalar aGμνG̃μν Axion-gluon 6

0 Pseudoscalar aFμνF̃μν Axion-photon 4, 5, 7, 9

0 Pseudoscalar
(
∂μa

)
ψ†γ μγ5ψ Axion-fermion 6, 8, 10

1 Vector Xμψ
†γ μψ Minimally coupled 8

1 Vector FμνFμν , AμXμ Photon-hidden-photon mixing 7

1 Vector Fμνψ†σμνψ Dipole interaction 6, 8, 10

1 Axial vector Xμψ
†γ μγ 5ψ Minimally coupled 6, 8, 10

few different phenomenological “portals” between the Standard Model and the dark
sector [24], where the portals can be classified by the physical effects the UBDM
generates in experiments. In this section, for illustrative purposes, we analyze a few
of these different interactions and portals.

Before analyzing particular cases, though, let us consider some general features
of the interactions listed in Table 2.1. The first column of Table 2.1 lists the
spin of the boson. Here we consider spin-0 (as discussed in Sects. 2.2 and 2.3)
and spin-1 bosons, encompassing the majority of presently studied beyond-the-
Standard-Model theories.7 The second column considers the parity symmetry
(P ) of the interaction. Parity is the symmetry with respect to spatial inversion
(reflection of coordinate axes through the origin): under spatial inversion, P -
odd quantities change sign (pseudoscalars and vectors) and P -even quantities are
invariant (scalars and axial vectors). Parity symmetry is among the key discrete
symmetries characterizing interactions, others include time-reversal (T ) and charge-

instantons [21, 22]. For further discussion of the chiral anomaly and instantons, see, e.g., Ref. [2].
For the dilaton, the interactions are defined in the Einstein conformal frame [23].
7 The limitation to bosons with spin≤ 1 is due in part to the fact that at present there are unresolved
theoretical questions concerning the validity, naturalness, and allowed interactions for spin-2 fields
with nonzero mass [20]. Presently there is no known effective field theory for bosons with spin≥ 3
that is valid above the boson mass [20].
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conjugation (C).8 The discrete symmetry properties of an interaction inform the
nature of the experiment necessary to observe signatures of particular classes of
UBDM candidates.

2.4.2 Axion-Photon Interaction

Let us begin by considering one of the most widely studied UBDM interactions,
the axion-photon coupling. The axion-photon coupling is used to convert axions or
ALPs into photons in the presence of strong magnetic fields. This is the technique
at the heart of the microwave cavity haloscopes described in Chap. 4, the axion
helioscopes searching for axion/ALP emission from the Sun described in Chap. 5,
axion/ALP searches with “dark matter radios” using lumped-element resonators
described in Chap. 7, and light-shining-through-walls experiments discussed in
Chap. 9. The fourth row of Table 2.1 describes an operator involving factors of both
a spin-0 pseudoscalar axion (ALP) field a and the product of the electromagnetic
field tensor (Faraday tensor) Fμν with the dual field tensor F̃μν . The Faraday tensor
Fμν is given by [30]

Fμν = ∂μAν − ∂νAμ (2.59)

=

⎛
⎜⎜⎝

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎞
⎟⎟⎠ , (2.60)

where Aμ is the four-potential and Ei and Bi are the electric and magnetic field
components in the Cartesian basis. The dual field tensor is given by

F̃αβ = 1

2
εαβμνF

μν, (2.61)

where εαβμν is the Levi-Civita totally antisymmetric tensor. We note the general
structure of the operator for the axion-photon interaction, one factor of the ultralight
bosonic field a, and two factors of the photon field. This structure is similar to the
interaction terms studied in Problem 2.4, seen perhaps most clearly by writing the
operator in terms of the four-potential Aμ:

aFμνF̃μν = aεμναβ
(
∂μAν∂αAβ

)
, (2.62)

8 Famously, Wu et al. [25] discovered that the weak interaction violated parity conservation in
1957, and later in 1964 Christenson, Cronin, Fitch, and Turlay [26] discovered violation of
the combined CP symmetry. Observations of atomic parity violation [27–29] were crucial in
establishing the existence of parity-violating neutral weak currents mediated by the Z-boson.
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showing that indeed this term represents an interaction between an axion and two
photons.

The term in the Lagrangian describing the axion-photon interaction is

Laγ γ = gγ

4

α

π

a

fa
FμνF̃μν = gaγ γ

4
aFμνF̃μν , (2.63)

where gγ is a dimensionless model-dependent coupling factor, α is the fine structure
constant, fa is the spontaneous symmetry breaking scale for the axion/ALP field,
and gaγ γ = gγ α/(πfa) is the axion-photon coupling constant. Note that the axion-
photon coupling is proportional to 1/fa , exhibiting the characteristic suppression
derived in Eqs. (2.57) and (2.58). The form of the Lagrangian in terms of the electric
field E and magnetic field B is

Laγ γ = gγ
α

π

a

fa
E · B ≈ gaγ γ aE · B . (2.64)

•? Problem 2.5 Axion-Photon Interaction

Derive Eq. (2.64).

Solution on page 314.

In experiments, the magnetic field B appearing in Eq. (2.64) is generated in the
laboratory by, for example, current circulating in a superconducting coil, and the
electric field E represents the field of the resultant photon generated from the axion.
The conversion of axions into photons in a magnetic field is known as the inverse
Primakoff effect [31–33], illustrated by the Feynman diagram in Fig. 2.7.

One method to calculate the observable physical consequences resulting from
the axion-photon interaction is to apply the Euler–Lagrange equation to the
Lagrangian describing electromagnetism plus the axion-photon Lagrangian of
Eq. (2.63), namely

L = −1

4
FμνFμν − JμAμ + gaγ γ

4
aFμνF̃μν , (2.65)

where Jμ is the electromagnetic current and Aμ is the gauge potential. The Euler–
Lagrange equation in this case produces a version of Maxwell’s equations that
includes the effects of an axion field, as discussed in Refs. [32–35]:

∇ ·E = ρ + gaγ γB ·∇a , (2.66)

∇ · B = 0 , (2.67)
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a gaγγ γ

γ∗

Fig. 2.7 Feynman diagram illustrating the inverse Primakoff effect, where an axion a is converted
into a real photon γ by interacting with a virtual photon γ ∗ sourced by a magnetic field (a
virtual photon is one that does not need to satisfy the energy-momentum relationship or “on-shell”
dispersion equation, see discussion in Refs. [1–5]). The axion-photon interaction is parameterized
by the axion-photon coupling constant gaγ γ , see Eqs. (2.63) and (2.64)

∇ ×E = −∂B

∂t
, (2.68)

∇ × B = ∂E

∂t
+ J + gaγ γ

(
E ×∇a − ∂a

∂t
B

)
, (2.69)

where ρ is the charge density and J is the electric current density.
Physical observables that can be searched for in experiments can be derived

from these modified Maxwell’s equations. (A similar approach for understanding
hidden photon experiments is described in detail in Chap. 7.) Consider, for example,
a region of vacuum (ρ = 0 and J = 0) bounded by a perfect conductor in the
shape of an infinite cylinder with radius R. Inside this cylindrical region, a magnetic
field B0 is applied along the cylinder axis (ẑ), such that B = B0z for r ≤ R

and B = 0 for r > R. Further, let us assume that the Compton wavelength
of the axion (equal to 1/ma in natural units, where ma is the axion mass) is
large compared to the cylinder dimensions, maR  1. This is the case for “dark
matter radio” experiments (discussed in Chap. 7) that search for UBDM candidates
whose Compton wavelengths are so large that construction of resonant cavities is
impractical. In such cases the axion de Broglie wavelength is also large compared
to the cylinder dimensions, meaning that the spatial gradient of the axion field can
be neglected in this treatment (∇a ≈ 0). To analyze this system, we differentiate
between the total magnetic field B and the induced fields E and B from the axion-
photon interaction, such that B = B0 + B. With these assumptions, noting that
B0 
 B, the modified Maxwell’s equations become

∇ · E = 0 , (2.70)

∇ · B = 0 , (2.71)
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∇ × E = −∂B
∂t

, (2.72)

∇ × B = ∂E
∂t
− gaγ γ

∂a

∂t
B0 . (2.73)

Taking the curl of Eq. (2.73), and making use of the identity

∇ × (∇ × B) = ∇(∇ · B)− ∇2B , (2.74)

as well as Eqs. (2.71) and (2.72), we find

−∇2B = ∂

∂t

(
−∂B

∂t

)
− gaγ γ

∂a

∂t
(∇ × B0) = −∂2B

∂t2 , (2.75)

where we used the fact that ∇ × B0 = 0. A similar approach yields

−∇2E = −∂2E
∂t2

+ gaγ γ
∂2a

∂t2
B0 , (2.76)

and so we arrive at the wave equations

∇2B− ∂2B
∂t2 = 0 , (2.77)

∇2E− ∂2E
∂t2 = −gaγ γ

∂2a

∂t2 B0 . (2.78)

As discussed in Sect. 2.2, if axions are the dark matter, they are nonrelativistic
and thus manifest as a field oscillating at the Compton frequency ma . As noted
in Chap. 1, the axion field has a relatively long coherence time, so a good initial
model for the axion field is

a(r, t) = a0e
i(k·r−mat) , (2.79)

where k is the wave vector. Taking into account the cylindrical symmetry of the
cavity and the boundary condition that the electric field parallel to the conducting
surface at r = R is zero, the wave equations (2.77) and (2.78) are solved by

E(r, t) = gaγ γ a0e
−imatB0

(
1− J0(mar)

J0(maR)

)
, (2.80)

B(r, t) = igaγ γ a0e
−imatB0φ̂

(
J1(mar)

J1(maR)

)
, (2.81)

where Jn(x) is the is the nth order Bessel function of the first kind [36, 37], and
where we have used the fact that eik·r ≈ 1. For mar ≤ maR  1, the Bessel
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functions can be approximated by the lowest order terms in their Taylor expansion,
and so

E(r, t) ≈ gaγ γ a0e
−imatB0

(
m2

aR
2 −m2

ar
2
)
, (2.82)

B(r, t) ≈ igaγ γ a0e
−imatB0φ̂(mar) . (2.83)

Note that in this case, the magnitude of the induced electric field is suppressed
compared to that of the magnetic field by a factor of ≈ maR  1.

Based on the above analysis, it is evident that the axion field is a source term
that can, in principle, generate measurable electromagnetic energy via the inverse
Primakoff effect. Experiments searching for axion and ALP dark matter using the
axion-photon coupling are discussed in detail in Chaps. 4, 5, and 9, and the closely
related case of dark matter radio searches for hidden photons is discussed in Chap. 7.

2.4.3 Axion-Fermion Interaction

A number of experiments search for couplings between axions/ALPs and fermions,
for example, the Cosmic Axion Spin Precession Experiment (CASPEr, see
Ref. [38]) and the QUest for AXions experiment (QUAX, see Ref. [39]) discussed
in Chap. 6 and the Global Network of Optical Magnetometers to search for Exotic
physics (GNOME, see Refs. [40, 41]) described in Chap. 10, as well as experiments
searching for long-range interactions between fermions mediated by axions or
ALPs (such as the Axion Resonant InterAction Detection Experiment, ARIADNE,
see Ref. [42]), discussed in Chap. 8.

One possible axion-fermion interaction is described by the Lagrangian term

Laff = gf

fa

(
∂μa

)
ψ†γ μγ5ψ , (2.84)

where gf is a dimensionless model-dependent coupling factor and ψ†γ μγ5ψ is
the axial-vector current for a Standard Model fermion f. The Hamiltonian Haf
describing this interaction can be calculated from the Euler–Lagrange equations
according to

Hafψ = −γ0

[
∂Laff

∂ψ† − ∂μ

(
∂Laff

∂
(
∂μψ†

)
)]

, (2.85)

= − gf

fa
γ0γ

μγ5ψ
(
∂μa

)
. (2.86)

The Dirac matrices can be evaluated according to
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γ0γ
μγ5 = (γ0γ0γ5,−γ0γ1γ5,−γ0γ2γ5,−γ0γ3γ5) , (2.87)

= (γ5,−�1,−�2,−�3) , (2.88)

= (γ5,−�) , (2.89)

where the parentheses enclose a list of the individual components of γ0γ
μγ5,

evident from the definition γ μ = (γ0, γ1, γ2, γ3), and where

� =
(

σ 0
0 σ

)
, (2.90)

with σ being the Pauli spin matrices, and where we have employed the identities

γ0γ0 = 1 (2.91)

and

γ0γiγ5 = �i . (2.92)

Thus the HamiltonianHaf appearing in Eq. (2.86) can be written as

Hafψ = − gf

fa
(γ5,−�)ψ∂μa , (2.93)

= − gf

fa

(
γ5ψ

∂a

∂t
+ (�ψ) ·∇a

)
, (2.94)

and taking the nonrelativistic limit, in which the spacelike component is much larger
than the time-like component, Eq. (2.94) becomes

Haf ≈ − gf

fa

S

|S| ·∇a , (2.95)

where S is the fermion spin and |S| is the spin magnitude. It is important to note that
not only does Haf generate an interaction between spins and the spatial gradient of
the axion field but also an interaction between spins who are moving with respect
to an axion field, since the momentum operator p = −i∇. This effect is known as
the “axion wind” interaction and is a consequence of the fact that the field gradient
is frame-dependent. The axion gradient interaction (encompassing the effects of
spatial gradients and the wind interaction) is searched for in experiments such as
CASPEr (the Cosmic Axion Spin Precession Experiment [43–45]) and GNOME
(the Global Network of Optical Magnetometers for Exotic physics searches [40, 41,
46]) as discussed in Chaps. 6 and 10, respectively.
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2.5 Theoretical Motivations for Ultralight Bosons

As noted in Chap. 1, theoretically well-motivated dark matter candidates have
additional hints of their existence beyond just the evidence for dark matter. In other
words, well-motivated dark matter candidates also solve other mysteries of physics.
One of the most prominent examples of such a UBDM candidate is the axion, which
originally emerged from an elegant solution to the strong CP problem [47, 48], the
mystery of why CP -violating nuclear electric dipole moments are many orders of
magnitude smaller than nominally predicted by quantum chromodynamics (QCD).
As a consequence this particular ultralight boson is known as the QCD axion.
A variety of other theories have emerged predicting similar axionlike particles
(ALPs) [19]. One example such is the relaxion, proposed to solve the hierarchy
problem [49], the question of why the Higgs boson mass is so much lighter than the
Planck mass (or, in other words, why the electroweak interaction so much stronger
than gravity). Axions and ALPs also offer a mechanism to explain the asymmetry
between matter and antimatter in the universe [50, 51]. Attempts to unify general
relativity and quantum field theory, such as string theories, generically predict the
existence of axions, ALPs and other spin-0 bosons [52, 53] as well as spin-1 bosons
such as dark or hidden photons [54, 55]. The key takeaway is that ultralight bosons
are well-motivated from a wide variety of theoretical perspectives. In this section we
explore the basic ideas behind some illustrative examples of ultralight bosons, the
QCD axion, the relaxion, and axions arising from the extra dimensions appearing in
string theory.

2.5.1 Peccei-Quinn Solution to the Strong CP Problem and
the QCD Axion

The QCD axion is a natural consequence of the solution to the strong CP problem
first proposed by Peccei and Quinn [47, 48, 56, 57]. The strong CP problem is
related to the non-observation of a permanent electric dipole moment (EDM) of the
neutron [58] and various nuclei [59] (such as 199Hg, which gives the best constraint
at present [60]). The magnitude of the neutron EDM dn is predicted by the Standard
Model to be [61–64]

|dn| ∼ 10−16θ̄QCD e · cm , (2.96)

where θ̄QCD is a CP -violating parameter appearing in the Lagrangian for the strong
interaction. θ̄QCD is a phase angle that, in principle, can take on any value, so, based
on “naturalness” its value (modulo 2π ) should nominally be θ̄QCD ∼ 1. Thus the
Standard Model nominally predicts a neutron EDM of |dn| ∼ 10−16 e·cm. However,
the current experimental limit on the neutron EDM is [58]

|dn| < 1.8× 10−26 e · cm , (2.97)
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which leads to the conclusion that
∣∣θ̄QCD

∣∣ � 2× 10−10 (the 199Hg EDM constraint
[60] suggests a similar limit [65, 66]). One may wonder if θ̄QCD is simply a very
small number by accident. However, the observable θ̄QCD actually arises from two
contributions to the Standard Model. For these two contributions to cancel with such
precision would be unnatural.

The first of these contributions is the θ parameter, which appears in a term in the
QCD Lagrangian:

Lθ = θ
αs

8π
G(a)

μν G̃
(a)μν , (2.98)

where αs ∼ 1 is the coupling constant for the gluon field, G(a)
μν is the gluon field

strength tensor (where a = 1, 2, . . . , 8 indicate the eight gluon color charges),
and G̃(a)μν = (1/2)εμναβG(a)

αβ is the dual gluon field strength tensor (the gluon
field strength tensor is analogous to the Faraday tensor for electromagnetism, see,
for example, Refs. [2, 3]). Note that G

(a)
μν G̃

(a)μν violates CP symmetry, just as
FμνF̃μν ∝ E · B does for electromagnetism (as seen from the fact that E · B
is P - and T -odd). The θ parameter is associated with the QCD vacuum state
|θ〉 parametrized by the angle 0 ≤ θ < 2π (see Refs. [14, 16] for further
discussion). However, it turns out that the angle θ is not invariant with respect to
chiral transformation (i.e., parity transformation or helicity exchange) for nonzero
quark masses.

While in the limit of massless quarks, QCD would possess a chiral symmetry,
such a symmetry is broken by the Adler-Bell-Jackiw anomaly [67, 68] if the
quark masses are nonzero. For massive quarks, QCD physics is invariant under the
following transformation of the quark fields and masses, qi and mi , respectively,
and the vacuum parameter θ :

qi → eiαiγ5/2 , (2.99)

mi → e−iαimi , (2.100)

θ → θ −
N∑
i=1

αi , (2.101)

where αi are the phases of the N quark fields.9 While θ is thus not an invariant of
QCD, the combination

θ̄QCD ≡ θ − arg
(
detMq

) = θ − arg

(
N∏
i=1

mi

)
(2.102)

9 Note that Eq. (2.101), a rotation of the fermion determinant, is highly nontrivial: for more detailed
discussion see Refs. [14–17] and for a pedagogical treatment see Ref. [5].
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is invariant and thus observable (Mq is the quark mass matrix, see Refs. [2, 69] for
definition and discussion). The strong CP problem is the question of why θ̄QCD is
so small. Given that θ describes the QCD vacuum and that quark masses are due
to the Higgs mechanism, a naive estimate for such a phase parameter is that it is of
order one. Therefore the observed exceedingly small θ̄QCD is unnatural.

The Peccei-Quinn solution to the strong CP problem allows θ̄QCD to be small
in a natural way, by promoting it to a dynamical variable that naturally relaxes
to zero, at the minimum of a potential. To do this, the Standard Model must be
extended with the introduction of additional degrees of freedom, while preserving
the existing symmetries of the Standard Model. To achieve this, Peccei and Quinn
[47, 48] introduced a global, chiral U(1) symmetry, now known as the Peccei-Quinn
(PQ) symmetry, U(1)PQ (see the tutorial at the end of Sect. 2.3 involving the U(1)
symmetry). This symmetry is spontaneously broken at some scale, fa , a parameter
of the model, and the resulting pseudo-Nambu-Goldstone boson is the axion.

The way in which the required additional degree of freedom is introduced is
model-dependent. Peccei and Quinn originally tied the symmetry breaking scale to
the electroweak scale, but this resulted in an axion with a mass and couplings that
would have been observed in experiments, and thus this original axion model was
rapidly ruled out. Other axion models were quickly proposed that resulted in a much
lighter axion with small couplings to Standard Model particles. The nature of these
couplings made these axions difficult to detect, and thus they are sometimes called
“invisible” axion models.

Here, we will review the Peccei-Quinn-Weinberg-Wilczek (PQWW) axion
model [47, 48, 56, 57]. The original Peccei-Quinn proposal was implemented using
two Higgs doublets hu and hd , which, respectively, couple to the up-type quarks
with isospin +1/2, and the down-type quarks with isospin −1/2. The quark masses
are then generated from the following Yukawa couplings to the neutral components
of the Higgs fields

Lm = yui u
†
Lih

0
uuRi + ydi d

†
Lih

0
ddRi + h.c., (2.103)

where for N total quarks, there are N/2 up-type quarks, ui , and N/2 down-type
quarks, di , subscripts L and R denote left and right quark chirality, respectively, and
the yi are the Yukawa couplings to the quark type denoted by the superscript. Peccei
and Quinn chose the Higgs potential to be

V (hu, hd) = −μ2
uh

†
uhu + μ2

dh
†
dhd +

∑
i,j

(
Aijh

†
i hih

†
j hj + Bijh

†
i hjh

†
j hi

)
,

(2.104)
where the coefficient matrices (Aij ) and (Bij ) are real and symmetric, and the sum
is over the two types of Higgs fields. The UPQ(1) invariance is manifested as the
Lagrangian, L ≡ Lm + V , is invariant under the following transformations:

ui → e−iαuγ5ui (2.105)
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di → e−iαdγ5di (2.106)

hu → ei2αuhu (2.107)

hd → ei2αd hd . (2.108)

Under the transformations (2.105)–(2.108), by applying Eqs. (2.101) and (2.102)
one finds that θ̄QCD is also transformed according to

θ̄QCD → θ̄QCD −N(αu + αd) . (2.109)

In this model, when the Universe cools to the electroweak symmetry breaking
scale, the neutral Higgs acquire vacuum expectation values,

〈h0
u〉 = vue

iPu/vu (2.110)

〈h0
d〉 = vde

iPd/vd , (2.111)

where Pu and Pd are the Nambu-Goldstone fields. One linear combination of these
fields becomes the longitudinal component of the Z-boson, Z, as per standard
electroweak symmetry breaking, and the other combination is the axion field, a:

Z = Pu cosβv − Pd sinβv (2.112)

a = Pu sinβv + Pd cosβv . (2.113)

Using Eqs. (2.110) through (2.113) gives the following for the quark masses in
Eq. (2.103):

−Lm = mu
i u

†
Lie

(i sinβv/vu)auRi +md
i d

†
Lie

(i cosβv/vd )adRi + h.c. , (2.114)

where the quark masses are mu
i = yui vu and md

i = ydi vd .
Using the quark transformations of Eqs. (2.105) and (2.106) with Eq. (2.109),

the axion dependence can be removed from the quark mass terms. The change in
θ̄QCD due to the transformation of Eq. (2.109) can be absorbed by a redefinition of
the axion field. This end result is that the θ̄QCD parameter of QCD is replaced by
the axion field a. That is, a static parameter required to have a single value, which
is not necessarily small, is replaced by a dynamical field. When given a potential,
this dynamical field will relax to the minimum of the potential, providing a natural
explanation for CP conservation in the Standard Model.

Tutorial: Mass of the QCD Axion

The axion mass, ma , depends on the value of the axion decay constant, fa , via
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ma � 6× 10−6 eV

(
1012 GeV

fa

)
. (2.115)

This was first derived using the methods of current algebra by Weinberg [56], and
by Bardeen and Tye [70], although Bardeen and Tye used the name “higglet” for the
axion at this early stage of its study. Note that as in Eq. (2.45), the mass of the axion
is ∝ 1/fa .

The axion mass can be determined by considering the chiral effective Lagrangian
at low energies for axions and pions. This may be written as

Lπa = 1

2
∂μa

′∂μa′ + f 2
π

4
Tr

[
∂μU

†(π)∂μU(π)
]

+�3
QCD Tr

[
MqU(π)e−ia′/(2fa) + h.c.

]
, (2.116)

where �QCD ∼ 200 MeV is the QCD confinement scale (which gives rise to the
explicit symmetry breaking for the QCD axion, and is thus roughly equivalent to
the � discussed in Sect. 2.3), the pion triplet is represented by the field π , and

U(π) = exp

(
iπ · σ
fπ

)
, (2.117)

with fπ as the pion decay constant, 93 MeV, and σ are the Pauli matrices. The third
term in Eq. (2.116) describes the explicit breaking of chiral symmetry for pions and
axions and works in much the same way as the breaking of the U(1) symmetry
discussed in the tutorial at the end of Sect. 2.3 and illustrated in Fig. 2.6. Therefore
�QCD plays a role analogous to the � discussed in Sect. 2.3. The origin of this
symmetry breaking term is discussed in further detail in Refs. [71, 72] and can also
be understood in analogy with the theory of antiferromagnetism [12].

The physical axion and neutral pion fields can be evaluated by expanding around
the minimum of the potential arising from explicit symmetry breaking, assuming
two light quarks [56, 71, 72], to give

π0
phys = π0 + md −mu

md +mu

fπ

2fa
a′ + O

(
f 2
π

f 2
a

)
(2.118)

aphys = a′ − md −mu

md +mu

fπ

2fa
π0 + O

(
f 2
π

f 2
a

)
, (2.119)

and the corresponding masses for these fields are then

m2
π0 = �3

QCD
mu +md

f 2
π

+ O
(
f 2
π

f 2
a

)
(2.120)
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m2
a = �3

QCD
mumd

f 2
a (mu +md)

+ O
(
f 2
π

f 2
a

)
(2.121)

≈ f 2
πm

2
π

f 2
a

mumd

(mu +md)2
. (2.122)

With the accepted values of mπ , fπ , mu, and md , the axion mass is as given in
Eq. (2.115).

This tutorial computed the axion mass using chiral perturbation theory in QCD,
which is valid for temperatures far below the QCD phase transition (technically,
a cross over), T  �QCD ≈ 200 MeV. At high temperatures, the axion mass
becomes temperature dependent, i.e., ma = ma(T ). The temperature dependence
can be estimated using the so-called instanton methods, where the canonical “dilute
instanton gas approximation” leads to [73, 74]:

ma ∝ T −4 . (2.123)

Non-perturbative lattice QCD methods can interpolate through the QCD phase
transition between the two regimes, see Ref. [75]. As we will see, the temperature
dependence of the axion mass plays an important role in determining the UBDM
relic density in this model.

The power of temperature in the relation Eq. (2.123) depends on the particle
content of the Standard Model. The power T −4 is valid in a limited regime, and
changes at higher temperatures where there are more effectively massless particles.
A generic ALP does not obtain its mass from QCD. If the ALP mass comes, for
example, from a strongly coupled “hidden sector” based on, but not equivalent to,
the Standard Model, then the temperature dependence can be found via methods
described in, for example, Ref. [76].

End of Tutorial

2.5.2 The Hierarchy Problem and the Relaxion

One of the greatest mysteries of theoretical physics is the hierarchy problem: why is
gravity is so much weaker than all other forces? At the heart of this problem is the
question of why the observed Higgs mass (mh ≈ 125 GeV) is so much lighter than
the Planck mass (MPl ∼ 1019 GeV), for one would expect that quantum corrections
would cause the effective Higgs mass to be closer to the Planck scale [77–79].
Attempts to solve the hierarchy problem include, for example, supersymmetry [80]
and large (sub-mm) extra dimensions [81, 82]. Graham et al. [49] propose that
instead the hierarchy problem can be solved by dynamic relaxation of the effective
Higgs mass from the Planck scale to the electroweak scale in the early universe.
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The dynamics are driven by inflation and a coupling of the Higgs boson to a spin-0
particle dubbed the relaxion. The relaxion could, in principle, be the QCD axion or
an ALP [49] and could also constitute the dark matter [83–85]. (although it should
be noted that there are issues with fine-tuning in some models [86].)

The basic idea is that inflation in the early universe causes the relaxion field to
evolve in time, and because of the coupling between the relaxion and the Higgs,
the effective Higgs mass evolves as well. The coupling between the relaxion and
the Higgs generates a periodic potential for the relaxion once the Higgs’ vacuum
expectation value (VEV) becomes nonzero. When the periodic potential barriers
become large enough, the time evolution of the relaxion halts and the effective mass
of the Higgs settles at its observed value. The electroweak symmetry breaking scale
is a special point in the evolution of the Higgs mass. This explains why the Higgs
mass eventually settles at the observed value: relatively close to the electroweak
scale and far from the Planck scale.

Following the discussion of Refs. [49, 87], let us suppose that the dynamics of
the Higgs h and a relaxion ϕ are governed by a potential of the form

Vr(ϕ, h) = �3gϕ − 1

2

(
�2 − g�ϕ

)
|h|2 + ε�3

ch cos (ϕ/f ) , (2.124)

where � is the “ultraviolet cutoff” of the effective field theory (the energy scale
beyond which the theory is no longer valid), g is a coupling parameter, �c is the
energy scale at which soft explicit symmetry breaking for the relaxion occurs (�c ∼
�QCD for the QCD axion), and f is the spontaneous symmetry breaking scale for the
relaxion. The first term in Eq. (2.124), �3gϕ, is the leading order term of a Taylor
expansion of the relaxion potential arising due to the g-coupling. The second term in
Eq. (2.124) gives the effective mass mh of the Higgs since it is of the form m2

h|h|2/2
[see, for example, the discussion surrounding Eq. (2.13)], so

m2
h ≈ g�ϕ −�2 . (2.125)

The third term in Eq. (2.124), ε�3
ch cos (ϕ/f ), describes the periodic potential for

the relaxion arising from explicit symmetry breaking (for example, due to QCD
effects). A sketch of the potential Vr(ϕ, h) is shown in Fig. 2.8.

Now suppose that in the very early universe during inflation, the relaxion field
starts with a large value, ϕ � �/g (indicated by the rightmost faded red dot
in Fig. 2.8). It is energetically favorable for ϕ to decrease, and so, under certain
conditions, the relaxion field will “slowly roll” down the potential (as indicated by
the dashed green arrow and subsequent less faded red dots appearing to the left in
Fig. 2.8). The rolling can be slow due to Hubble friction, which arises from the term
3H(t)∂ϕ/∂t appearing in the equation of motion for a scalar field in an expanding
universe, where H(t) is the Hubble parameter (as discussed in Sect. 2.6.1). As
long as the Hubble friction is sufficiently large so that the dynamics are in the
overdamped regime, then ϕ reaches a “terminal velocity” and the dynamics are
independent of the initial conditions. When the evolution of ϕ reaches the critical
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Fig. 2.8 Plot of the relaxion potential Vr(ϕ, h) and illustration of the dynamics. The relaxion
field ϕ starts at a relatively large value (shown by the faded red dots) and then “slowly rolls”
down the potential (as indicated by the green dashed arrow), decreasing in amplitude, which in
turn decreases mh according to Eq. (2.125). When the Higgs’ vacuum expectation value becomes
nonzero at the onset of spontaneous symmetry breaking at mh = 0 (marked by the dashed purple
line), the amplitude of the periodic potential for ϕ increases. Shortly after spontaneous symmetry
breaking occurs the potential wells become too deep and ϕ becomes trapped in a local minimum
(shown by the leftmost red dot marked by the red arrow), which sets the scale of mh at a value
 �, far from the Planck scale

point ϕ = �/g where mh = 0, spontaneous symmetry breaking occurs (via
mechanisms analogous to those discussed in Sect. 2.3), and the Higgs develops a
nonzero vacuum expectation value 〈h〉. As ϕ decreases further, 〈h〉 grows and the
amplitude of the periodic potential for ϕ grows as well. When the periodic potential
barriers become sufficiently large, the relaxion will settle into a local minimum (as
indicated by the leftmost red dot marked with a red arrow in Fig. 2.8). Again the
“slow rolling” condition caused by Hubble friction is important to trap ϕ in the
local minimum.

The crucial point is that the local minimum where ϕ settles is close to where
mh ≈ 0, far from � and the Planck scale, thereby offering a possible dynamical
solution to the hierarchy problem.

2.5.3 UBDM from Extra Dimensions

String theory [88] provides a ubiquitous font of inspiration for new and exotic
physics, and the case of UBDM scenarios is no exception. String theory dictates
that physics takes place not in the usual four dimensions of spacetime, but in ten. In
general relativity (GR) the geometry of the extra dimensions of spacetime should be
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described by new functions in the metric tensor, which themselves depend on space
and time. Furthermore, the curvature of space itself gravitates and carries energy.
The extra dimensions of spacetime in string theory must be small enough such that
we have not noticed them. However, since the curvature of these extra dimensions
can change from place to place, we might feel the gravitational influence of these
changes. This is one way in which string theory realizes UBDM, giving rise to scalar
moduli and pseudoscalar axions.

Let us look at a simple example, which occurs in string theory, but also in any
theory with extra spacetime dimensions (such as Kaluza–Klein theory [89, 90],
Randall–Sundrum theory [91, 92], and various higher dimensional supergravity
theories [93]). Consider the case with spacetime being D-dimensional, given by
(3+1) dimensional flat Minkowski space (the manifoldM4), with coordinates t, x,
and one extra compact dimension (the manifold S1, topologically the circle), with
coordinate θ around it. In GR, this is specified by the metric:

ds2 = −dt2 + dx2 + ρ(x, θ, t)2L2dθ2 . (2.126)

The dimensionless scalar function ρ specifies how the radius of the “circle” varies
compared to a reference length scale L (the typical size of the extra dimension,
which should be small). ρ can vary along the circle’s circumference as θ changes,
and is also a function of space and time in “our” dimensions of Minkowski space.
The field ρ is known as the radion. Such a situation is possible to picture if we
imagine that space is a single dimension like a tightrope, and ρ describes how the
cross section of the tight rope varies along its length. If we walk along the tightrope,
we cannot see the change in ρ, but a small creature like an ant could, by circling the
rope. We may, however, indirectly notice a change in the thickness of the rope, its
texture, or some other property.

General relativity tells us that the physics of the theory described by Eq. (2.126)
is determined by the Einstein–Hilbert action:

S = MD−2
D

2

∫
dtd3xLdθ

√−gDRD , (2.127)

where D is the total number of spacetime dimensions, MD is the D-dimensional
reduced Planck mass, gD is the D-dimensional metric determinant, and RD is the
D-dimensional Ricci scalar.

Without going into the details, all we need to know is that the Ricci scalar is a
function which is second order in derivatives of the metric components, in this case
ρ. The θ dependence of ρ can be found by expanding in terms of the eigenfunctions
of S1, in this case leading simply to a Fourier series:

ρ(x, θ, t) =
∑
n

ρn(x, t) cos (nθ) . (2.128)
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The components ρn are four dimensional scalars known as the Kaluza–Klein
“tower.” It is now possible, if a little cumbersome, to analytically perform the
integral dθ in Eq. (2.127), leaving an action that is second order in derivatives of
the scalar fields ρn. This process of doing the integral over the compact coordinates,
in this case θ , goes under the fancy name of “dimensional reduction”—but it is
simply an integral of a series expansion.

A little thought should convince you that derivatives with respect to θ in the
Ricci scalar pull down powers of n for n > 0. Thus the modes in the tower with
n > 0 have terms in the action like (n2/L2)ρ2

n: this looks like a mass term for ρn,
which is large if L is small. Thus, for low energy physics we typically neglect the
higher modes in the Kaluza–Klein tower. The lowest order solution with n = 0 is
simply a theory quadratic in derivatives of ρ0, i.e., we have the action of a massless
scalar field! In other words, in our four dimensional Minkowski space, we “see” the
change in size of the extra dimension as we move from place to place and in time as
the changing value of a massless scalar field.

Including more physics, the field ρ0 can also pick up a small mass, like in the
examples of small “explicit symmetry breaking” discussed in previous sections,
giving a perfect arena for UBDM to emerge. In a more complex example, we could
envisage extra dimensions with weird and wonderful topologies beyond S1. In this
case we require many fields like ρ to describe the compact space, and these fields
are called moduli. Our metric, Eq. (2.126), made a particular symmetry assumption
with no “off-diagonal” components. If we include these, as in the original Kaluza–
Klein theory, we obtain new vector fields (i.e., hidden photons) in four dimensions.
In string theory, there can be many hundreds of such fields. Finally, if we add
supersymmetry and other string theory physics into the mix, then we end up not just
with scalars but also with pseudoscalar ALPs and many other weird and wonderful
fields that “come along for the ride.”

2.6 Non-thermal Production of UBDM

As discussed previously, due to the very small mass of UBDM candidates, cold
populations that can provide all the dark matter of the Universe must be created
out-of-equilibrium. If thermally produced [94], such particles will have too high
a kinetic energy to serve as cold dark matter. Cold populations of UBDM can be
produced via a non-equilibrium process known as vacuum misalignment [95–98].
When inflation causes the UBDM field to be homogeneous within our horizon,
vacuum misalignment is the dominant production mechanism for UBDM particles.
If the UBDM candidate is the product of a phase transition which occurs after
inflation, the production of the UBDM particle from cosmic strings and domain
walls must also be considered (which is, in essence, another form of vacuum
misalignment, but for the UBDM field as a whole).
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2.6.1 Vacuum Misalignment

The essence of the vacuum misalignment mechanism is that the initial value of the
field is different from the minimum of the field’s potential, the vacuum expectation
value. When this occurs, the field can oscillate around the minimum of the potential,
and the energy density in the oscillating field is the UBDM. This process is
commonly called vacuum misalignment, as the initial value of the field is misaligned
with the potential minimum. (The process is also referred to as vacuum realignment
in the literature.)

On large scales, the Universe is known to be isotropic, homogeneous, and
expanding, which means it can be described by a Friedmann–Robertson–Walker
(FRW) metric, i.e.,

− ds2 = −dt2 + R2(t)dx · dx , (2.129)

where (t, x) are co-moving coordinates and R(t) is the scale factor. For a scalar
field, φ, with an effective potential, V (φ), the equation of motion can be derived
by writing the Lagrangian using the FRW metric instead of the metric for flat
spacetime, yielding:

(
∂2

∂t2 + 3
Ṙ(t)

R(t)

∂

∂t
− 1

R2(t)
∇2

)
φ(t, x)+ ∂V

∂φ
= 0 . (2.130)

In the case of the hidden photon dark matter candidate, we will shortly discuss
that the spatial parts of the vector boson field obey an equation of this form.
Equation (2.130) is the equation of a harmonic oscillator in an FRW spacetime.
When the field is homogeneous over the scale of interest, the spatial derivative in
Eq. (2.130) can be neglected. Identifying the Hubble parameter, H(t) = Ṙ(t)/R(t)

(determined from the energy density of radiation in the early universe), the resulting
equation is

(
∂2

∂t2 + 3H(t)
∂

∂t

)
φ(t, x)+ ∂V

∂φ
= 0 . (2.131)

When the condition

3

2
H(t)


√
1

φ

∂V

∂φ
(2.132)

is met, the field is overdamped and does not oscillate. Essentially, one wavelength of
the field does not fit inside the horizon, and the field is thus “frozen in” and unable
to oscillate. When the potential meets the criterion
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3

2
H(t) �

√
1

φ

∂V

∂φ
, (2.133)

a wavelength of the field is contained within the horizon, and it becomes free to
oscillate. The energy in these oscillations is determined by the initial condition,
which is the displacement, or misalignment, of the field from the potential minimum
(see discussion in the tutorial at the end of Sect. 2.3, where the potential develops a
periodic dependence on the phase angle θ describing the bosonic field due to explicit
symmetry breaking). We denote this angle θi , which corresponds to a field value
φi . The field can relax so that the rms value is zero, and the vacuum is effectively
realigned.

2.6.2 Vector Field Misalignment

For a vector UBDM candidate arising from kinetic mixing, a phase transition does
not occur and a cold population of hidden photons can be entirely produced by
vacuum misalignment. While this mechanism was originally discussed in terms of
the axion [95–97], we will cover the hidden photon here first, as it is a more simple
case. That the spatial component of a light vector boson can also satisfy Eq. (2.131)
and result in a cold population was first discussed in Ref. [98].

The hidden photon field, Xμ, will be uniform over the scale of the horizon after
inflation, with an initial random value. As it is spatially uniform, ∂iXμ ∼ 0, and the
resulting equation of motion is [98]

(
∂2

∂t2 + 3H(t)
∂

∂t

)
Xi (x)+m2

γ ′Xi (x) = 0 (2.134)

with the mass term giving an effective potential when mγ ′ �= 0. When the condition
of Eq. (2.133) is met and H(t) ∼ mγ ′ , the field can begin to oscillate and act as cold
dark matter.

A simple bound on mγ ′ can be obtained by requiring that the particle’s Compton
wavelength permit structure formation on kiloparsec scales [98, 99]. Then the
requirement that 1 kpc < h̄/

(
mγ ′vesc

)
, where vesc is the escape velocity of the

structure, gives a bound mγ ′c2 ≥ 1.7 × 10−24 eV. More detailed bounds can be
obtained from considering decays, interactions of the hidden photon with other
particles, and experimental observations [98]. Further discussion is in Chap. 3.
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2.6.3 Scalar Field Misalignment

For scalar (or pseudoscalar) fields that occur as the pseudo-Nambu-Goldstone
boson, such as axions and ALPs, there are two temperature scales that govern
the non-equilibrium production mechanisms of the particles in the early Universe.
These are the temperature at which spontaneous symmetry breaking occurs, TSB ,
and the temperature at which the boson field acquires an effective potential, T eff.
For the QCD axion, TSB is the temperature at which the Peccei-Quinn symmetry is
spontaneously broken, TPQ. In addition to vacuum misalignment, other topological
effects may contribute to the cold population of axions in the Universe, depending
on the relationship between TPQ and the inflationary reheating temperature, TR . For
ALPs from string models, TSB is the Kaluza–Klein scale,10 generally assumed to be
far above the inflationary reheating temperature. Thus, for ALPs it is commonly
accepted that vacuum misalignment is the method by which a potential ALP dark
matter population is produced in the early Universe.

In the scalar cases, at TSB , a global chiral symmetry is spontaneously broken, and
the phase can take on any value, θi . If TSB > TR , a value of the initial misalignment
angle in one region of space can be inflated such that the misalignment angle has the
same value everywhere within the horizon. In this case, non-equilibrium production
of the scalar particles is similar to that of a cold population of hidden photons
occurring due to vacuum misalignment as discussed in Sect. 2.6.2. For axions, if
TPQ < TR , fluctuations in local temperature mean that spontaneous symmetry
breaking will be seeded at different locations within the horizon, and each location
will select a different value of φi . At the interface of regions with different φi ,
topological axion strings and domain walls will occur. These are not observed, so we
surmise that they have decayed via the various available channels. In the following,
we will discuss vacuum misalignment in detail, similar to Ref. [100], and touch on
the other production mechanisms. A more in-depth discussion of axion cosmology
is given by Ref. [101]. In the following, we will refer to the axion, but the discussion
also applies to ALPs.

The second temperature scale for the axion, T eff, is when a significant mass term
for the axion arises. The chiral anomaly couples the axion to the gauge field, and the
gauge field instantons induce a potential and hence a mass for the axion through soft
explicit symmetry breaking (following the basic ideas discussed in Sect. 2.3). This
occurs at the scale when the quark-gluon plasma condenses to hadrons. We denote
this time t1 and at this temperature, mat1 ∼ 1 [95–97]. Note that TQCD � 1 GeV.
For ALPs from string theory, similar non-perturbative effects create a potential for
the ALP and, consequently, a mass.

When ma becomes significant, the axion field gains an effective periodic
potential, analogous to that described by Eq. (2.54),

10 The Kaluza–Klein scale is the energy scale associated with the size of the compactified or
“curled-up” extra dimensions in string theory [88].
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V (φ) = m2
a(T )f

2
a

(
1− cos

(
φ

fa

))
= m2

a(T )f
2
a (1− cos θ) , (2.135)

where θ = φ/fa . At low temperatures, the axion mass is given by Eq. (2.115)

ma � 6× 10−6 eV

(
1012 GeV

fa

)
,

as discussed in the tutorial at the end of Sect. 2.5.1. At higher temperatures—while
the potential is effectively “turning on”—the axion mass has a temperature depen-
dence (which can be calculated using lattice QCD, see discussion in Ref. [75]).

Using the effective potential given by Eq. (2.135) with Eq. (2.131), the equation
of motion governing the axion field dynamics is

(
∂2

∂t2
+ 3H(t)

∂

∂t

)
φ(t, x)+m2

a(T (t))fa sin θ = 0 . (2.136)

The dependence of temperature on time in the early universe is discussed in Chap. 3.
Using Eq. (2.136), the density of cold axions can be estimated as follows. For small
oscillations near θ = 0, sin θ ≈ θ and

(
∂2

∂t2 + 3H(t)
∂

∂t

)
φ(t, x)+m2

a(t)φ(t, x) = 0 . (2.137)

At temperatures above T eff, θ is approximately constant, and ma can be neglected.
When mat1 ∼ 1, the field begins to oscillate, which corresponds to the time [101]

t1 � 2× 10−7 s

(
fa

1012 GeV

) 1
3

(2.138)

and

T eff � 1 GeV

(
1012 GeV

fa

) 1
6

. (2.139)

Alignment of the field will occur on the order of the same timescale, and thus its
momentum is on the order of

pa(t1) ∼ 1

t1
. (2.140)

If fa ∼ 1012 GeV, then ma ∼ 6 μeV, and the field momentum will be pa ∼
10−9 eV. From this estimate, it is easily seen that the initial momentum of a
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population of axions from vacuum misalignment is much less than the axion mass,
thus the population is nonrelativistic, or cold.

The question of whether or not a sufficient number of axions are produced to
account for all the dark matter in the Universe can be addressed by estimating the
energy density. Expanding around the potential minimum, this density is

ρ = f 2
a

2

(
θ̇2 +m2

a(t)θ
2
)

. (2.141)

The virial theorem gives

〈θ̇2〉 = m2
a〈θ2〉 = ρ

f 2
a

. (2.142)

The energy density of these nonrelativistic axions (for the given potential) scales
with the expansion of the Universe (see Problem 3.1) as

ρ ∝ ma(t)

R3(t)
. (2.143)

For the initial misalignment angle, θi , the energy density in coherent axion
oscillations is

ρi = 1

2
m2

a(t1)f
2
a θ

2
i =

1

2
m2

a(t1)φ
2
i . (2.144)

Given matter dominated expansion of the Universe until today, the axion density
scales with Eq. (2.143), to give today’s average axion density,

ρ0 ∼ ρi
ma(t0)

ma(ti)

R3(ti)

R3(t0)
, (2.145)

or

ρ0 ∼ 1

2
f 2
a

ma

t1

R3(t1)

R3(t0)
φ2
i , (2.146)

using Eq. (2.144) and mat1 ∼ 1. The initial misalignment angle, θi , has a single
value if TPQ is greater than the inflationary reheat temperature, TR . In the case
when TPQ < TR , φi can have several different values within the horizon, and
additionally, higher-order modes of Eq. (2.136) can be occupied. Under these
circumstances, Eq. (2.146) gives the correct expression for the zero-momentum
mode if we replace θi with its average within the horizon, expected to be O(1).
Using Eqs. (2.115), (2.138), and (2.139), and assuming ma(T ) ∝ T −4, the energy
density in axions from this population today is
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�a ∼
(

fa

1012 GeV

) 7
6

. (2.147)

For TPQ > TR and θi ∼ 1, this gives the cold axion population today. For TPQ <

TR , it is expected that there is an equal contribution from the sum of all higher-
order modes, and possible contributions from string and wall decay. A thorough
discussion of all these contributions can be found in Ref. [101].
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Chapter 3
Astrophysical Searches and Constraints

David J. E. Marsh and Sebastian Hoof

Abstract Starting from the evidence that dark matter (DM) indeed exists and
permeates the entire cosmos, various bounds on its properties can be estimated.
Beginning with the cosmic microwave background and large-scale structure, we
summarize bounds on the ultralight bosonic dark matter (UBDM) mass and
cosmic density. These bounds are extended to larger masses by considering galaxy
formation and evolution and the phenomenon of black hole superradiance. We then
discuss the formation of different classes of UBDM compact objects including
solitons/axion stars and miniclusters. Next, we consider astrophysical constraints
on the couplings of UBDM to Standard Model particles, from stellar cooling
(production of UBDM) and indirect searches (decays or conversion of UBDM).
Throughout, there are short discussions of “hints and opportunities” in searching
for UBDM in each area.

3.1 Astrophysical Search Channels

Astrophysics and cosmology, as outlined in Chap. 1, give convincing evidence that
dark matter (DM) exists in the form of new particles beyond the Standard Model
of particle physics. The space of possible theories in Chap. 2, even for the subclass
of ultralight bosonic DM (UBDM) models considered in this book, is vast. Beyond
the basic fact of the existence of DM, astrophysics can be used to reign in this vast
theoretical parameter space, with a view to direct detection and measurement of
model parameters.

The most basic astrophysical route to constrain UBDM is via the relic density.
There are three channels for UBDM production:
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1. Coherent field oscillations

(a) Vacuum realignment
(b) Topological defect decay

2. Thermal production
3. Non-thermal production by direct decay

Without going into the specifics (see Ref. [1]), it suffices to say that only channel 1
produces UBDM with the required properties as outlined in Chap. 1. Production
channels 2 and 3 produce hot DM, or indeed dark radiation, each of which is strongly
constrained by the CMB anisotropies [2, 3].

In channel 1a (vacuum realignment), the UBDM relic density is a function of
two parameters, (m, φi), where φi is the initial field displacement, i.e., the location
of the field in its potential relative to the minimum at “the initial time” (in practice,
at the end of inflation). In this scenario, the initial field displacement is taken to be
completely uniform throughout space, this state of affairs having been arranged by
the same mechanism that causes the large-scale observed homogeneity of the cosmic
microwave background (CMB), inflation, or otherwise. The correct relic abundance
can be achieved across many orders of magnitude, covering all the masses of
interest (10−33 eV, 10−1 eV) for φi ≤ Mpl .1 For an axion-like particle (ALP),
the fundamental parameter from theory is fa : the scale of spontaneous symmetry
breaking, also called the axion decay constant. The parameter θi , defined via
φi ≡ θifa , is the initial angle that the axion field takes (recall that the axion is
the phase of a complex field). At early times, the axion possesses a shift symmetry,
φ → φ + constant, and thus θi has no preferred value and can be considered a free
random variable (although very small values or values very close to π are considered
fine-tuned). Because θi is undetermined, there is a wide range of allowed values for
the fundamental parameters (m, fa) consistent with the required relic density. In
particular, in this channel, large values of the decay constant at the grand unified
scale (∼ 1016 GeV) or the reduced Planck scale (∼ 1018 GeV) are allowed.

Production via channel 1b (topological defect decay) is possible only for UBDM
that is a Goldstone boson of a spontaneously broken global symmetry (the “Kibble-
Zurek mechanism” [4, 5] described in Sect. 3.3.2). In particular, it applies to the
QCD axion and other ALPs, where topological strings and domain walls are formed
when the global U(1) symmetry is spontaneously broken. If symmetry breaking
occurs after inflation, then the defects cannot be smoothed out and inflated away,
and the axion field takes on a very inhomogeneous distribution (in contrast to
the case of vacuum realignment). The defects later decay when non-perturbative
effects give the ALP a mass. This process must be simulated using classical
lattice field theory and has only been studied in detail for the QCD axion [6–
8]. Large numerical uncertainties related to extrapolation to physical couplings

1 Mpl = 1/
√

8πGN is the reduced Planck mass, related to the mass scale given in Table 7 of the
“Units and Conversions” section by the factor of

√
8π coming from Einstein’s equation in general

relativity.
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prevent an agreed estimation of the relic density. The correct relic abundance can
be achieved within numerical and model uncertainty (extrapolation, domain wall
number, explicit symmetry breaking) for all values of fa � 1012 GeV [9].

The production mechanism channel 1b works for fa < Tmax, where Tmax is the
maximum thermalization temperature of the Universe, and the bound arises since
defects only form if symmetry breaking occurs during the ordinary thermal history
of the Universe. Tmax is bounded from above due to observational constraints on the
theory of inflation. In particular, HI , the inflationary Hubble rate, is bounded from
above by the fact that tensor-type CMB anisotropies have relative amplitude r � 0.1
compared to scalar-type perturbations leading to the constraint HI � 1014 GeV.
HI sets the temperature of the Universe during inflation to be the Gibbons–Hawking
temperature, TGH = HI/2π . The maximum thermalization temperature could
actually be larger than this, which can easily be seen from the Friedmann equation
during radiation domination, 3H 2M2

pl = π2g�T
4/30, where the quantity g� counts

the effective number of relativistic degrees of freedom [10]:

g� = 7

8

∑
i∈fermions

gi

(
Ti

T

)4

+
∑

i∈bosons

gi

(
Ti

T

)4

, (3.1)

where gi is the degrees of freedom of species i (e.g., two polarizations for the
photon) and Ti is the temperature of species i, and T is the photon bath temperature.
The value of g� at very high temperatures is bounded from below by the Standard
Model contribution, g�,SM = 106.75. H monotonically decreases, and so Hmax =
HI . If reheating after inflation is instantaneous and 100% efficient, we find an
upper bound for Tmax � 8× 1015 GeV. ALPs with values of fa larger than this
upper bound on Tmax cannot be produced by mechanism 1b and must be produced
by mechanism 1a. The observational lower bound on Tmax arises from demanding
successful Big Bang nucleosynthesis, Tmax � 1 MeV. For values of fa in this very
large range of allowed Tmax values, it is not determined whether ALPs are produced
by mechanism 1a or 1b, either being possible depending on the model of inflation
and reheating.

There are various astrophysical search channels we can use to constrain
UBDM:

1. Gravitational probes
2. “Indirect detection”

(a) Production of UBDM (e.g., in stars or from background radiation)
(b) Decay/conversion of existing UBDM

Gravitational probes are the most general form of constraints on UBDM and give
us powerful bounds on the key parameters of mass and density (both cosmic and
local), which are important for the design of direct DM searches. Indirect detection
depends on the UBDM interactions with ordinary matter: null results provide
baseline constraints on couplings to which laboratory searches are compared, and
anomalous results give hints for promising regions of parameter space to search.
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In this chapter, unless stated otherwise, we use natural units where h̄ = c = kB =
1 and express all quantities in electronvolts (eV). We use the Einstein summation
convention for repeated indices. Roman indices i, j , etc. run from 1 to 3, while
Greek indices μ, ν, etc. run from 0 to 3, with zero labelling the time-like direction.
In relativity, we distinguish covariant (lower) and contravariant (upper) indices, with
the metric being responsible for raising and lowering: xμ = gμνx

ν .

3.2 Gravitational Probes of UBDM

The goal of this section is to assess the validity of UBDM as a model of DM. Since
all current observations are consistent with cold dark matter (CDM, defined as a
pressureless fluid), the bounds we estimate on the UBDM mass m can be thought
of as answering the question: “is UBDM observationally equivalent to CDM?” The
answer to this question depends on the observable and leads to lower bounds on m

(and upper bounds on the UBDM density if we allow for multi-component DM).
In order to derive our bounds, we must specify the ways in which UBDM is not
equivalent to CDM. These differences further suggest astrophysical phenomena
that could distinguish between UBDM and CDM in the future, possibly providing
evidence for one model over the other.

3.2.1 The CMB and Linear Structure Formation

Considering how the gravitational effects of DM dominate the formation of structure
in the Universe, one can derive bounds on the UBDM properties from the theory
of cosmological structure formation in general relativity [11]. Consider a flat,
homogeneous, and isotropic spacetime described by the Friedmann–Robertson–
Walker metric:

g = diag[−1, a(t)2, a(t)2, a(t)2] . (3.2)

The scale factor is a(t), which obeys Friedmann’s equation for the Hubble rate
H(t) = ȧ/a:

H(t)2 = 8πGN

3
ρ̄ , (3.3)

where ρ̄ is the total, spatially averaged, energy density. ρ is composed of photons,
“baryons” (by convention in cosmology, we do not separately consider the small
mass density of electrons), neutrinos, DM, and the cosmological constant or dark
energy. Objects “on the Hubble flow,” i.e., feeling negligible local gravitational
potentials, appear to recede from an observer at the origin with a velocity vH =
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Fig. 3.1 The evolution of cosmic quantities as a function of scale factor or temperature. We
show the evolution of the Hubble parameter (red line, left axis) and the comoving Hubble
radius (blue line, right axis) together with various relevant cosmological events. The blue shaded
area approximately encompasses the large-scale structure (LSS) of the Universe, while grey shaded
areas indicate where QCD axion (with fa ∈ [106 GeV, 1018 GeV]) and fuzzy dark matter (FDM)
start to become dynamical. Note that the temperature scale on the top is not exactly regular due to
the scaling with the number of relativistic degrees of freedom for entropy, g�,S . The quantity g�,S
gives the number of effective relativistic degrees of freedom contributing to the entropy density;
g�,S takes the same form as Eq. (3.1) with the fourth powers replaced by cubes (see, e.g., Ref. [10],
Chap. 3)

Hr r̂ , where r and r̂ are the distance and direction from the observer to the object,
respectively. We begin with a Newtonian approximation to cosmology (see, e.g.,
Ref. [12]). Consider an observer at the origin and a single particle of UBDM on the
Hubble flow. The UBDM de Broglie wavelength is λH = 1/(mv) = 1/(mHr),
which gives the radial position uncertainty, r . A net gravitational force in the
positive direction along the line of centres between the observer and the UBDM
requires r � r ⇒ r � (mH)−1/2, which defines a critical separation rcrit =
(mH)−1/2. On average, UBDM separations larger than rcrit undergo gravitational
clustering, and those smaller than it do not.

The cosmological horizon size is approximated by the Hubble length scale RH =
H−1. In order for UBDM to have any inhomogeneous gravitational effect within this
radius requires rcrit < RH . We show the cosmological evolution of H = R−1

H , and
the related comoving Hubble radius (aH)−1, as functions of temperature and scale
factor in Fig. 3.1. The bounds and other cosmological events mentioned in what
follows can often be read off directly from that figure, and we will occasionally
highlight this fact going forward.
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Evaluating the Hubble length scale today, and using that H0 = 100h km s−1

Mpc−1 = 2.13 × 10−33 eV × h (where h is the dimensionless Hubble parameter
with approximate observed value h ∼ 0.7), we arrive at our first bound on the
UBDM mass:

m > 1.5× 10−33 eV×
(

h

0.7

)
(size of the observable universe). (3.4)

UBDM violating this bound does not cluster within our cosmological horizon, is
thus indistinguishable from the cosmological constant, and will not concern us in
this book.2

Assuming that UBDM constitutes the entirety of the DM, we can extend the
bound to any redshift of interest where we know that DM exerted a discernible
gravitational effect by simply substituting the Hubble parameter at that redshift.
For temperatures below about 1 MeV, we can use the expression for the Hubble
parameter [11]:

H(z) = H0E(z) = H0

√
�� +�m

[
(1+ z)3 + (1+ z)4

1+ zeq

]
, (3.5)

where the second equality defines the energy function E(z). The quantities �m and
�� are the density parameters of matter and the cosmological constant, defined as
the density divided by the critical density, i.e., �i = ρ̄i/ρcrit and ρcrit = 3M2

plH
2
0 .

The last term in the brackets arises from the radiation energy density, which is
defined relative to the matter density via the redshift of matter–radiation equality,
zeq. The epoch of matter-radiation equality can be found via the relative redshifting
of matter and radiation components: ρm(1+ zeq)

3 = ρr(1+ zeq)
4, with the density

parameters defined today. CMB observations fix zeq ≈ 3390, and it is thus slightly
earlier in cosmic history than decoupling, zdec ≈ 1100.

The baryon acoustic oscillations (BAO, see Sect. 1.1) observed in the CMB
and galaxy surveys like the Sloan Digital Sky Survey [15] require that DM was
gravitationally relevant at and before matter–radiation equality: if it were not,
because baryons are coupled to the photons at early times and perturbations in them
cannot grow in the radiation era, the amplitude of galactic fluctuations on scales of
order 1 Mpc would not be consistent with the amplitude and scale dependence of
the CMB anisotropies. Again assuming that UBDM is all the DM and substituting

2 Very light scalar fields that are homogeneous on the scale of the cosmological horizon provide
models for dark energy. The simplest such models are described by a canonical kinetic term in
the Lagrangian, and a scalar potential V (φ), and are known as “quintessence” [13]. An ultralight
bosonic field with a mass less than the bound from Eq. (3.4) is one such very simple model,
with V (φ) = m2φ2/2. More complex models invoke different potentials, or more fields, or even
generalize the kinetic term, at which point they cross over into theories of “modified gravity” and
“beyond Horndeski” scalar–tensor theory [14].
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H(zeq), we arrive at the tighter bound (cf. Fig. 3.1):

m > 1.6× 10−28 eV×
(

h

0.676

) (
�m

0.311

)1/2 (
1+ zeq

3390

)3/2

(matter–radiation equality) , (3.6)

where we have neglected the small contribution of �� at equality and taken
reference parameters from the CMB+BAO combination in Ref. [3].3

The matter–radiation equality bound, Eq. (3.6), is the UBDM equivalent of
saying that DM is not “hot” [16]: gravitational clustering is required before matter–
radiation equality in order for bottom-up hierarchical structure formation (rather
than top-down fragmentation) of galaxies, consistent with observations of extremely
high redshift galaxies. We could progress further with such estimates (and we will
in due course), but now we must make our model more precise.

Tutorial: The Growth of Cosmic Structure

The challenge in cosmological perturbation theory [17] is to compute the transfer
function, TX(t, k) for the mode evolution of each cosmological species X (baryons,
photons, neutrinos, dark matter) with Fourier wavenumber k, which fully specifies
linear evolution of cosmological fields from Gaussian initial conditions. That is,

ζX(k, t) = ζX,i(k)TX(t, k)ξX , (3.7)

where ζX,i(k) is the initial condition of the field and ξX is a Gaussian random field
defining the initial correlation functions of the field ζX.

The codes CAMB [18] and CLASS [19] are the standards for numerical computa-
tion for CDM (and many other things), while AXIONCAMB [20]4 can be used for
UBDM that is a real scalar field with the self-interaction potential approximated by
V (φ) = m2φ2/2. This tutorial gives a brief overview of the most relevant aspects
of cosmological perturbation theory for UBDM constraints.

Cosmological perturbation theory deals with the evolution of fluctuations relative
to a homogeneous and isotropic background. Background quantities are labeled
with an overbar, since they represent the spatial average, and thus depend only on
cosmic time t . The perturbation modes have spatial dependence captured by their
wavenumber, and perturbations at the initial time all have relative amplitude much
less than one with respect to the background quantities. The fields ζ of interest
are the components of the energy momentum tensor, written as T 0

0 = −(ρ̄ + δρ),
T i

j = (P̄ + δP )δij + �i
j , ikiT 0

i = (ρ̄ + P̄ )θ , which defines the energy density, ρ,

3 Using these reference parameters further assumes that UBDM is sufficiently CDM-like that we
can use the standard CMB parameters (which are derived under the assumption of �CDM).
4 Available at https://github.com/dgrin1/axionCAMB.

https://github.com/dgrin1/axionCAMB
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pressure, P , and heat flux, θ = ∇ ·v, and we assume anisotropic stresses �i
j vanish.

This gives the fields δX = δρX/ρ̄X and θX, while pressure is typically described in
terms of a sound speed, c2

s = δP/δρ.
Next, perturb the metric from Eq. (3.2), and switch to conformal time, τ , via

dt = adτ . The Newtonian gauge considers only scalar metric perturbations:

g = a2diag[−(1+ 2�), 1− 2�, 1− 2�, 1− 2�] . (3.8)

The potential � is the usual Newtonian potential, and � is the curvature perturba-
tion: they are equal in the non-relativistic limit. The energy momentum tensor is
coupled to the metric degrees of freedom by the Einstein equation:

Gμν = 8πGNTμν , (3.9)

where Gμν is the Einstein tensor, and it depends on the metric potentials and their
derivatives. This is the dynamical equation determining the evolution of the metric.

The equation of motion for the UBDM field with self-interaction potential V (φ)

is

�φ − ∂φV = 0 , (3.10)

where the d’Alembertian (�) is

� = 1√−g ∂μ
√−ggμν∂ν , (3.11)

where g and gμν are the metric determinant and the inverse of the metric,
respectively. Setting V = 1

2m
2φ2 for simplicity, this leads to the equations of motion

for the UBDM background field, φ̄, and fluctuation mode δφk:

φ̄′′ + 2Hφ̄′ + a2m2φ̄ = 0 , (3.12)

δφ′′k + 2Hδφ′k + (m2a2δφk + k2)δφk = (� ′ + 3�′)φ̄′ − 2m2a2�φ̄ , (3.13)

where primes denote derivatives with respect to conformal time, and H = a′/a =
aH . For the UBDM field, we find T μν = δS/(δgμν) by variation of the action with
respect to the metric tensor, giving

T μν = gμα∂αφ∂
νφ − gμν

[
1

2
gαβ∂αφ∂βφ + V (φ)

]
. (3.14)

Working to first order in the metric perturbations and δφ, and with potential V =
m2φ2/2, the components are
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ρ̄ = 1

2
a−2(φ̄′)2 + 1

2
m2φ̄2 , (3.15)

P̄ = 1

2
a−2(φ̄′)2 − 1

2
m2φ̄2 , (3.16)

δρ = a−2[φ̄′δφ′k −�(φ̄′)2] +m2φ̄δφk , (3.17)

δP = a−2[φ̄′δφ′k −�(φ̄′)2] −m2φ̄δφk , (3.18)

(ρ̄ + P̄ ) θ = a−2ik2φ̄′δφk . (3.19)

•? Problem 3.1 Background Evolution of UBDM

Assuming a single-fluid Universe with constant equation of state w satisfying
ρ̇ = −3H(1 + w)ρ, first solve Friedmann’s equation, Eq. (3.3), for a(t) and thus
H(t). Then, change variables in Eq. (3.12) to physical time dt = adτ . Substituting
your solution for H(t), derive the solution for φ̄(t) (you may use exact functions
or asymptotic methods). Given that the energy density and pressure of UBDM are
ρ̄ = 1

2 φ̇
2+V (φ) and P̄ = 1

2 φ̇
2−V (φ), derive the behaviour of the equation of state

for UBDM, wUBDM = P̄ /ρ̄. What is the asymptotic value of wUBDM for m  H

and 〈w〉 for m 
 H (brackets denote period average)? Repeat this exercise for a
λφ4 potential. Comment on the results for wUBDM in relation to the approximate
UBDM mass bounds above.

Solution on page 315.

CDM is defined as a collisionless and uncoupled fluid, wc = c2
c = 0. Baryons

have a sound speed c2
b �= 0 (computed from the evolution of the baryon temperature)

and an equation of state wb = 0 (on average the baryons have negligible pressure)
and are coupled to photons via Thomson scattering. The photon equation of
motion is derived from the Boltzmann equation, which is expanded in Legendre
polynomials to capture the dependence on the angle between the momentum
coordinate on phase space and the wavevector. The hierarchy of moment equations
is labeled by the order (l) of the Legendre polynomial: the zeroth moment gives
the equation of motion for the density, the first, for the velocity, the second, for the
anisotropic stress, and so on (a recursion relation can be used to approximately close
the hierarchy above some lmax). Truncating this Boltzmann hierarchy at the velocity
moment, the photons resemble a fluid with w = c2

s = 1/3, collisionally coupled
to the baryons. We consider perturbations to the energy density δX = δρX/ρ̄X and
heat flux θX, defined via ρ̄X(1 + wX)θX = ikj δ(T 0

j )X, where (T μ
ν)X is the X

energy momentum tensor.
Let us now consider a number of limits of the full equations of motion, which can

be found in Ref. [17]. At early times, photons have enough energy to keep hydrogen
and other atoms ionized, giving rise to a large free electron density. Thus, the
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photons and baryons are tightly coupled by Thomson scattering and can be treated
as a single fluid with θγ = θb. Considering only sub-horizon modes (k 
 aH ), and
using the Poisson equation and the ii pressure component of the Einstein equation,
Eq. (3.9), the photon fluid at early times obeys the equation of motion:

δ′′γ +
(
c2
s,γ k

2 − 16π

3
GNa

2ργ

)
δγ = 4πGNa

2
∑
i

(1+ c2
i )ρiδi , (3.20)

where the photon sound speed is cs,γ = 1/
√

3 (speed of pressure perturbations in
a gas of photons in thermodynamic equilibrium). At very early times, all ρi in the
driving term on the right-hand side can be neglected. Then, this equation has sound
wave solutions for k > (16πGNa

2ργ )
1/2 = √6aH . This defines the Jeans scale of

the photon–baryon fluid, which is of order the comoving horizon size. Perturbations
with wavelength shorter than the Jeans scale undergo coherent, pressure supported
oscillations. Perturbations with wavelength longer than the Jeans scale grow due to
gravitational instability. The sound waves prevent the formation of gravitationally
bound structures in the photon–baryon fluid and lead to BAO. At recombination
temperatures of around 0.2 eV (redshift z ≈ 1100) [10], the energy of the ambient
photon fluid is no longer sufficient to keep neutral hydrogen from forming. At this
time, the free electron density drops to zero, the photon–baryon fluid decouples, and
the sound wave stalls. This sound horizon for the BAO is given by

rs =
∫ t0

0

dt

a
cs,b ≈ 1√

3

∫ tdec

0

dt

a
, (3.21)

where cs,b is the baryon sound speed in the plasma, t0 is the time today, and trec
is the time at recombination when cs,b drops rapidly from cs,γ to zero. The BAO
scale leads to oscillations in the CMB angular power spectrum, which we have seen
already in Chap. 1. The gauge invariant temperature anisotropy of the CMB is given
by5

δT

T
=

∫ τ0

0

[
μ̇

(
�+ δγ

4
+ n̂ · vb + 2�̇

)]
e−μdτ , (3.22)

where μ is the Thomson scattering opacity, vb is the baryon velocity, n̂ is a unit
vector giving the sky position, and the integral is along the line of sight. The four
terms in Eq. (3.22) correspond, respectively, to the gravitational redshift, the photon
anisotropy, and the Doppler effect, and the final term gives rise to the integrated
Sachs–Wolfe effect, which is an additional form of gravitational redshift.

5 This equation ignores the effect of gravitational lensing along the line of sight. This second-order
effect is important at high multipoles and is sensitive to the UBDM sound speed and structure
growth; see Refs. [21, 22].



3 Astrophysical Searches and Constraints 83

Decoupling occurs at a redshift zdec ≈ 1100, which gives the angular scale of
the first CMB acoustic peak. The driving term on the right-hand side of Eq. (3.20) is
dominant for z < zeq ≈ 3400, corresponding to angular scales slightly smaller than
the first peak, including the second and the third peak. Thus, the relative heights
of these peaks can be used to measure the matter content and its behaviour near
matter–radiation equality.

How do UBDM perturbations evolve? The first transition in behaviour is in the
equation of state, which becomes zero (i.e., pressureless) shortly after H(aosc) = m

(this defines the value of the scale factor aosc when the background UBDM field,
φ̄, begins to undergo coherent oscillations, see Problem 3.1). Prior to this time, the
UBDM is relativistic and perturbations cannot grow.6 For H  m, the UBDM
perturbations, Eq. (3.13), can be approximated as a fluid with sound speed [24]:7

c2
UBDM =

k2/4m2a2

1+ k2/4m2a2
. (3.23)

The non-relativistic limit of this expression is derived later on in this chapter from
the Schrödinger–Poisson equation, see Sect. 3.2.2 and Problem 3.2.

Now compare the behaviour of UBDM and CDM+baryons for sub-horizon
modes in the matter-dominated era. The baryon sound speed can be neglected after
decoupling, so CDM and baryons can be combined into a single pressureless fluid.
In the sub-horizon k 
 aH , super-Compton k  m limit, the CDM+baryon and
UBDM fluids obey the coupled equations of motion:

δ̈c+b + 2Hδ̇c+b = − k2

a2 �, (3.24)

δ̈UBDM + 2Hδ̇UBDM + k4

4m2a4 δUBDM = − k2

a2 �, (3.25)

k2

a2 � = 4πGN(ρ̄c+bδc+b + ρ̄UBDM δUBDM) . (3.26)

Setting ρ̄UBDM = 0 and substituting the Poisson equation, Eq. (3.26), into Eq. (3.24)
give the solution δc+b = A+(k)a + A−(k)a−3/2. The growing mode initial
conditions set A−(k) = 0, and the inflationary initial conditions and matter transfer
function fix A+(k). Due to the zero pressure and sound speed of CDM, all the k-
dependence in the solution is fixed by the initial conditions, and the dynamics are
scale invariant.

6 For an axion-like potential, the equation of state is w = −1 prior to aosc. For a scalar field with
potential V = m2φ2/2 + λφ4, the equation of state is w = 1/3 at early times for large φ initial
conditions. For a complex scalar, the early time equation of state is w = 1 due to the conserved
charge and Goldstone mode [23]. In each case, perturbations are suppressed relative to pressureless
CDM.
7 This expression is exact in the UBDM comoving gauge. Additional terms due to the gauge
transformation to a standard gauge, e.g., Newtonian or synchronous, decay on sub-horizon scales
as all gauge artifacts do in cosmological perturbation theory [20].
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Now, consider a UBDM-dominated Universe by taking ρ̄c+b = ρ̄b  ρ̄UBDM
(i.e., no CDM and treating the baryons as sub-dominant) in Eq. (3.25) and again
substituting the Poisson equation. The substitution of the Poisson equation gives
rise to a negative contribution on the left-hand side proportional to δUBDM, which
drives growth of δUBDM, while the positive contribution from the sound speed term
leads to acoustic oscillations. The sign of the term proportional to δUBDM depends on
k and as such different modes evolve differently. That is, we find Eq. (3.25) exhibits
a Jeans scale, kJ , separating growing/decaying and oscillating modes. The exact
solution for pure UBDM is δUBDM = A+(k)D+(k, a)+A−(k)D−(k, a), where the
growth functions are

D+(k, a) = 3
√
a

k̃2 sin
(

k̃2√
a

)
+

[
3a
k̃4 − 1

]
cos

(
k̃2√
a

)
, (3.27)

D−(k, a) =
[

3a
k̃4 − 1

]
sin

(
k̃2√
a

)
− 3

√
a

k̃2 cos
(

k̃2√
a

)
. (3.28)

k̃ = k/
√
mH0. (3.29)

Consider the evolution of three wavenumbers in the pure UBDM case: the
horizon size, k� = aH , the Jeans scale, kJ = a

√
Hm, and the Compton scale,

kc = ma. The Compton scale defines relativistic modes where c2
UBDM = 1; kc

increases with time, and more modes become non-relativistic. If k� < kc, then a
mode is non-relativistic when it enters the horizon and behaves as CDM (“long
modes”). If a mode is relativistic when it enters the horizon (“short modes”), then the
sound speed cannot be neglected, and modes will not grow until the later time when
the Jeans wavenumber enters the horizon. The evolution of these three modes is
illustrated in Fig. 3.2. All modes intersect at the time aosc, which defines the special
mode km, the horizon size when the UBDM background becomes non-relativistic.
All k < km evolve similarly to CDM. All k > km have suppressed growth.

The scale that determines suppression of growth compared to CDM is the Jeans
scale at matter–radiation equality. Using Eq. (3.25) in the pure UBDM limit with
cUBDM ≈ k2/4m2a2, substituting the Poisson equation, and solving for kJ where
the effective mass term in the oscillator equation for the overdensity vanishes, we
find

kJ,eq = 9.0

(
3390

1+ zeq

)1/4 (
�UBDM

0.12

)1/4 ( m

10−22 eV

)1/2
Mpc−1 . (3.30)

Recall that by definition CDM has zero sound speed. Thus, CDM possesses no
Jeans scale (the growing mode solution above is scale invariant), and we see that
UBDM is only equivalent to CDM exactly in the limit m → ∞. In practice, they
are equivalent as long as kJ does not play a role in any observation.

An observable related to the matter clustering is the matter power spectrum
defined by 〈δm(k1)δm(k2)〉 = (2π)3δD(k1 − k2)P (k), where δm is the total
matter (baryon+CDM+UBDM+neutrino) overdensity, and δD is the Dirac delta
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Fig. 3.2 Evolution of scales for linear perturbations with m = 10−26 eV. The Jeans scale,
Compton scale, and horizon scale all intersect at aosc when the field begins to oscillate. This
defines the scale of power suppression as the comoving horizon size at this time, km = aoscHosc =
RH (aosc.)

−1. Due to the slow evolution of kJ with a and the logarithmic growth of density
perturbations during the radiation epoch, the suppression scale is also approximated by the Jeans
scale at matter–radiation equality. Adapted from Ref. [25]

distribution. The presence of the sound speed and consequent Jeans scale for UBDM
leads to a suppression of P(k) relative to CDM at large wavenumbers. A fit for the
relative suppression in P(k) for UBDM with V (φ) = m2φ2/2 versus CDM is [26]

PUBDM(k) = TUBDM(k)2PCDM , (3.31)

TUBDM(k) = cos x3
J (k)

1+ x8
J (k)

, (3.32)

xJ (k) = 1.61
( ma

10−22 eV

)1/18 k

kJ,eq
. (3.33)

For the mixed CDM-UBDM system, the behaviour of P(k) can also be derived [27,
28]: perturbations with k > km experience a finite amplitude suppression which
increases with the ratio �UBDM/�m.

End of Tutorial

As we have just seen in the above tutorial, two effects distinguish UBDM from
other ingredients in the �CDM model: (1) the background expansion rate, H(z),
driven by the transition in the equation of state wUBDM at the epoch aosc, and (2) the
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growth of perturbations, driven by the gradient energy in the Klein–Gordon equation
and manifested as an effective sound speed, c2

UBDM.
Depending on the value of aosc, the change in H(z) affects different CMB

multipoles. This can be understood by considering Eqs. (3.20) and (3.21) in the
tutorial. First, consider UBDM violating the bound from Eq. (3.6). We know such
UBDM must be a sub-dominant component of the DM. How does the CMB tell
us this? Such UBDM changes the expansion rate after matter–radiation equality.
This changes the distance to the surface of last scattering and the angular size of
the BAO in the CMB: it moves the first acoustic peak from its observed position

 ≈ 200. This can be compensated by a change in the value of the Hubble constant,
H0. After such a compensation, there is a residual integrated Sachs–Wolfe effect,
which differs from �CDM. If w �= 0 in the post-recombination Universe, then
the gravitational potential �̇ �= 0 into Eq. (3.22). Due to the fact that the equation of
state wUBDM �= 0,−1 (the two available equations of state in �CDM), the evolution
of � is different in the presence of a small contribution of UBDM, and the shape of
the 
 < 200 CMB multipoles is very sensitive to the value of �UBDM.8

Now, consider UBDM satisfying the bound given by Eq. (3.6). The change in
the expansion rate compared to �CDM now occurs during the radiation dominated
epoch. The horizon size at the time aosc was smaller than one degree on the sky,
corresponding to multipoles 
 > 200, i.e., the higher acoustic peaks. UBDM
changes the distance scales for sound waves in the photon–baryon plasma and alters
the radiation driving term by changing the relative densities of matter (including
UBDM) and radiation. These effects change the relative heights of the CMB
acoustic peaks. An additional effect occurs in the diffusion damping (Silk damping)
at larger multipoles, since the diffusion scale depends on the expansion rate during
the radiation era.

Due to the abovementioned effects, the CMB is sensitive to the relative con-
tribution of �UBDM(aosc). However, any fluid component with w < 1/3 becomes
increasingly sub-dominant to the radiation at early times (as is the case for axion-like
UBDM) and so �UBDM decreases moving deeper into the radiation era.9 Because
of this decrease in ρUBDM/ργ , the CMB is unable to distinguish between axion-like
UBDM and CDM for aosc � 10−5 [29]. Plugging z = 105 in Eq. (3.5) and requiring
m > H(zosc) give the bound (see Fig. 3.1)

m > 2.6× 10−25 eV (primary CMB anisotropies) , (3.34)

using the same reference parameters as Eq. (3.6). UBDM effects on the CMB
are illustrated in Fig. 3.3. A detailed study of these effects on the Planck CMB
anisotropies constrains axion-like UBDM violating Eq. (3.34) [but satisfying
Eq. (3.4)] to be at most a few percent of the total DM density [20, 22, 29]. We

8 This is one of the ways the CMB is used to constrain the equation of state of dark energy.
9 A complex scalar with w = 1, 1/3 prior to aosc increases its energy density relative to radiation at
early times. The effect in the expansion rate is similar to adding additional neutrino species, which
are also strongly constrained by the CMB [23].



3 Astrophysical Searches and Constraints 87

105

106

2 (
+

1)
C

T
T
/(

2π
)

[(μ
K

)2 ]

10−24 eV
10−25 eV
10−26 eV
10−27 eV
CDM

500 1000 1500 2000 2500
Multipole

0

R
es

id
ua

ls

Fig. 3.3 UBDM effects on the CMB temperature power spectrum. UBDM changes the expansion
rate compared to CDM in the early radiation dominated epoch, z � 3000, which affects the
damping of the BAO, visible through the heights of the power spectrum peaks at large multipoles.
By eye, it is clear that the Planck data strongly exclude UBDM with m ≤ 10−26 eV. Combining
the temperature data with polarization, lensing, and cross-correlations [22] tightens the bound to
be roughly consistent with our estimate, Eq. (3.34). On the other hand, UBDM with m ≥ 10−24 eV
is indistinguishable from the black best-fit CDM curve. Note that this plot rescales the y-axis in
the upper panel by one power of 
 compared to the usual convention, to enhance the visibility of
high-
 features, and that the x-axis begins at 
 = 50, since the large scales are not sensitive to this
particular physics

have spent a considerable time deriving what will turn out to be a rather weak lower
bound on m. However, this bound is extremely rigorous in practice, in a way that
our later bounds are not. The bound expressed in Eq. (3.34) relies only on linear
physics and on the extremely well understood statistics of the CMB that give us our
most rigorous evidence for the existence of DM in the first place.

UBDM Hints: Precision Cosmology and ALPs from the GUT Scale

The realignment production mechanism of ALPs gives the relic density �a as a
function of mass and initial field value, φi . Taking φi to be near the GUT scale,
φi ∈ [1015, 1017] GeV gives a DM relic density compatible with the observed
value �dh

2 ≤ 0.12 for all masses m � 10−18 eV. At lower masses, a sub-
dominant population is predicted, with the fraction of ALP DM saturating at around
0.1%. Upcoming cosmological surveys, including lensing tomography and intensity
mapping, will greatly increase the sensitivity to sub-dominant components of the
DM. The CMB is a 2D probe, and the number of modes measured with a cosmic
variance precision is 
2

max. An intensity mapping survey is 3D, measuring in the
line-of-sight redshift direction, and thus has many more modes. The combination
of a next generation CMB survey like the Simons Observatory or CMB-S4 with
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an intensity mapping survey by the Square Kilometre Array [30] or HIRAX [31]
could make significant inroads into the GUT scale predictions [25], as will next
generation Lyman-α forest surveys (see below) and “pulsar timing arrays” [32, 33].
These forecasted opportunities are shown as open regions in Fig. 3.5.

3.2.2 Schrödinger–Poisson Equations

The UBDM condensate10 coupled to general relativity obeys the Einstein–Klein–
Gordon equations, derived from variation of the relevant fundamental action. In the
non-relativistic limit (the Newtonian approximation), for all forms of UBDM (be
they ALPs, real, or complex scalars), these equations reduce to the Schrödinger–
Poisson equations (SPEs):

iψ̇ + ∇
2

2m
ψ −m�ψ + λGP

m
|ψ |2ψ = 0 , (3.35)

∇2� = 4πGNm
2

(
|ψ |2 −

∫
d3x|ψ |2

)
, (3.36)

where we are using the convention that the Newtonian potential is dimensionless,
and the field ψ has canonical mass dimension one such that the average number
density is

n̄ = m

∫
d3x|ψ |2 . (3.37)

The subtraction of the background density in the Poisson equation follows from
the background-perturbation split of the Einstein equations on the Friedmann
background.

Equations (3.35) and (3.36) are a nonlinear Schrödinger equation for the UBDM
condensate, with Gross–Pitaevski self-coupling λGP, which can be computed from
the relativistic self-interaction potential, V . The SPEs fully describe the nonlinear,
non-relativistic, structure formation in most astrophysical environments at low
redshifts (a 
 aosc, L 
 1/m, v  1, �  1), i.e., the gravitational structure
of UBDM at the coherence scale. One should avoid letting the name “Schrödinger”
cause confusion; these equations have nothing quantum about them: ψ is not a
probability density, and there is no measurement problem or wavefunction collapse.
The SPEs are simply the non-relativistic limit of the classical field equations, valid
whenever the particle number is large: they are the UBDM equivalent of Maxwell’s
equations.

10 In the sense that all classical fields can be thought of as condensates.
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•? Problem 3.2 Derivation of the Schrödinger–Poisson Equations for UBDM

Take the metric from Eq. (3.8) in the non-relativistic limit (� = �) on a non-
expanding background (a = 1). Evaluate the d’Alembertian, Eq. (3.11), to first
order in �. Substitute the ansatz:

φ = 1

m
√

2

(
ψeimt + ψ∗e−imt

)
, (3.38)

into the Klein–Gordon equation with potential V (φ) = m2φ2/2 + λφ4. In the
Wentzel–Kramers–Brillouin (WKB) limit, ψ̇/(mψ)  1, and making the non-
relativistic approximations k/m  1 and �̇/m  1, show that the complex field
amplitude ψ obeys the Schrödinger equation, Eq. (3.35). Now, take the general form
of the stress energy tensor, Eq. (3.14), and show that in the same limits ρ = |ψ |2
at leading order and hence that the Poisson equation, Eq. (3.36), is obeyed for the
overdensity δρ.

Solution on page 318.

An instructive change of variables on the SPEs makes use of the Madelung
transformation, ψ = √

ρeiθ /m to write the wave function as a fluid with density
ρ and velocity v = ∇θ . Substitution into the SPEs yields the continuity and Euler
equations:

δ̇UBDM + a−1vUBDM · ∇δUBDM = −a−1(1+ δUBDM)∇ · vUBDM , (3.39)

v̇UBDM + a−1 (vUBDM · ∇) vUBDM = −a−1∇(�+Q)−HvUBDM , (3.40)

where Q ≡ − 1

2m2a2

∇2√1+ δUBDM√
1+ δUBDM

. (3.41)

The continuity and Euler equations differ from those of CDM by the presence of the
so-called “quantum pressure” Q—a misleading term, as it is neither quantum nor
a pressure. Expanding these equations to first order in δUBDM and going to Fourier
space, one can verify that they are equivalent to the fluid equation, Eq. (3.25), for
pure UBDM: in the non-relativistic and linearized limit, the quantum pressure and
sound speed are equivalent.

For UBDM, the SPEs replace the normal Newtonian dynamics of particle DM.
Solving gravitational collapse and dynamics in generality requires methods of
solution of nonlinear partial differential equations. The challenge in this system is
the non-local interaction from the Newtonian potential, the wide range of scales in
gravitational collapse, and the need to accurately resolve the phase of the field ψ in
low-density and large cosmic voids. Common numerical methods include lattice
field theory (discretizing derivatives in real space), spectral methods (numerical
Fourier analysis), or finite elements (alternative real space discretizations). A public
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code is PYULTRALIGHT [34]. Particle-based hydrodynamics using Eqs. (3.39)–
(3.41) is also useful on some scales, but it fails to resolve interference fringes (as can
be seen from the coordinate singularity in Q when ρ → 0) and vortex lines, which
appear generically in complex fields (the fluid has ∇ × v = 0). On scales larger
than the UBDM de Broglie wavelength, standard Newtonian particle mechanics
is accurate, e.g., the public code GADGET [35]. The convergence of the SPEs to
the ordinary collisionless limit of CDM on super-de Broglie scales can be shown
rigorously via the Schrödinger–Vlasov correspondence [36–38] and is well known
in the field of quantum hydrodynamics [39].

A kinetic description of the SPEs begins by writing the field ψ using the Wigner
distribution (see, e.g., Ref. [40]), which describes the occupation probability of
modes k. This distribution function obeys a collisional Boltzmann equation, with
scattering timescale [41]:

τgr ≈
√

2

12π3

mv6

G2
Nn̄

2 log�
, (3.42)

where v is the typical speed in the system (i.e., the virial velocity) and log� =
log(rmax/rmin) is the Coulomb scattering logarithm for rmin and rmax the minimum
and maximum length scales in the problem, respectively. This gravitational scatter-
ing timescale governs the time over which wave-like effects cause UBDM to depart
dynamically from CDM.

In addition to the scattering timescale, solution of the SPEs leads to UBDM
having distinctive effects on scales of order the de Broglie wavelength. There are
three important consequences:

1. Transient “quasi-particle” fluctuations
2. Formation of long-lived self-bound objects
3. Interference fringes

We discuss the first in Sect. 3.2.3 and the second in Sect. 3.3.1. Interference fringes
are observed prominently in numerical simulations of galactic filaments composed
of UBDM with m ≈ 10−22 eV [42, 43], though the observational consequences are
at present unclear.

3.2.3 Galaxies and Nonlinear Structure

The scale of suppression described by Eq. (3.30) can be converted into a DM halo
mass by considering the average DM density in a sphere with radius of one-half
wavelength, RJ = π/kJ,eq:
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M0

M�
= 5.9× 109

(
�UBDMh2

0.12

)1/4 (
h

0.676

) (
1+ zeq

3390

)3/4 (
m

10−22 eV

)−3/2

.

(3.43)
Halos that are significantly more massive than M0 will have the same abundance as
in a CDM universe, while halos much lighter than M0 are largely absent. Our esti-
mate for M0 from inspection of the linear equations of motion is within a factor of
two of the suppression scales found in N -body simulations of nonlinear cosmolog-
ical structure formation: Ref. [44] finds M0 = 1.9× 1010 M� (m/10−22 eV)−4/3,
where the different scaling with m results from using the half-mode of the transfer
function Eq. (3.32), T (k1/2) = 1/2, instead of the Jeans scale. The half-mode is
always at k < kJ since T (k) decreases below k1/2, and T (kJ ) = 0. It is possible
for structures to form at the half-mode, though they will have suppressed number
with respect to CDM. The Jeans scale represents the absolute limit below which no
structures form and corresponds to lower mass halos. Thus, using the Jeans scale
gives more conservative limits on m.

How can we constrain UBDM using our estimate for M0? In hierarchical
structure formation, low-mass halos form first, i.e., at high redshift. Halos with low
masses can be identified at high redshift from the light emitted by the galaxies that
they host, which is in the form of UV flux from stars, which in turn ionizes hot
gas. An approximate relationship between UV flux and halo mass can be derived
by so-called abundance matching. One assumes that there is a one-to-one mapping
between UV magnitude, MAB (the “AB system” for defining magnitude), and halo
mass. This can be found assuming that the number of UV sources at some redshift z,
nUV(z), statistically matches the number of DM halos, nh(z). The matching depends
on the observations used to calibrate it and monotonicity of each function. Current
observations (e.g., Ref. [46]) are largely consistent with monotonicity (however, see
Ref. [48]), which is consistent with all sources being in halos with mass above M0.
In this case, all the halos we observe are formed on scales far from the Jeans scale,
and so the relationship between UV magnitude, MAB , and halo mass, Mh(MAB),
is as in Fig. 3.4 (computed from simulations of CDM with no Jeans scale). The
limiting magnitude of the Hubble Ultra Deep Field UV luminosity function at z = 8
is MAB,lim ≈ −18, which we read off from Fig. 3.4 as giving a limiting halo mass
of Mh ≈ 1010M�. Demanding M0 > Mh(MAB,lim), we find the bound:

m > 0.7× 10−22
(
�UBDMh2

0.12

)1/6 (
h

0.676

)2/3 (
1+ zeq

3390

)1/2

eV

(high redshift galaxies) . (3.44)

The estimate given in Eq. (3.44) agrees favourably with complete analyses of similar
data [44, 49, 50].

Another important bound to consider is from the Lyman-α forest flux power
spectrum. This observable traces the matter power spectrum, P(k), on quasi-linear
scales at high redshifts. It can be used to infer the existence of a UBDM Jeans scale.
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Fig. 3.4 “Abundance matching” between halo mass, Mh, measured in solar masses (M�), and UV
magnitude, MAB , assuming CDM, evaluated at different redshifts, z. Taken from Ref. [45]. Filled
circles show the limiting magnitudes for the Hubble Ultra Deep Field observation [46], while
stars are for the future James Webb Space Telescope [47]. The dotted lines represent power law
extrapolation from the simulations, while the shaded region denotes the cooling limit below which
galaxies cannot form efficiently

Current observations see no evidence for such a Jeans scale and thus show that the
UBDM de Broglie wavelength must be correspondingly small.

The light from distant quasars is absorbed by neutral hydrogen (HI) along the line
of sight. The differing optical thickness of dense clouds of HI leads to a “forest”
of absorption features: the optical depth for the absorption traces the HI density
and (since HI clouds lie in gravitational potential wells) the total matter density
including DM. A survey of cosmological quasars can then be used to estimate
the matter power spectrum by correlation of the absorption feature. For example,
HIRES/MIKE covers k as large as kmax ≈ 50hMpc−1 [51].11 The data are well
described by CDM with no evidence for a suppression of power, and so we can
derive an approximate bound on the UBDM mass. Using Eq. (3.30) with the quoted
kmax gives the bound (cf. Fig. 3.1):

11 We convert from Lyman-α units for k in s km−1 to the more standard Mpc−1 by multiplication
with H0(1+ z). For reviews and discussions of the Lyman-α forest as a probe of the matter power
spectrum, see Refs. [52–55].
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m > 1.5× 10−21 eV (Lyman-α forest) , (3.45)

which again agrees well with the result derived from more careful analysis [56, 57].
Caution is advised with all our estimates on UBDM mass bounds in this section,

since they assume that the observations agree perfectly with CDM and thus that on
scales observed UBDM can be treated as such. Strong self-interactions of UBDM
also change these bounds and any other bound based on the suppression of structure
formation relative to CDM. A particular example of this is an ALP with large initial
field displacement. The ALP potential is V (φ) = f 2

a m
2[1 − cos(φ/fa)]. An initial

displacement θ = φ/fa = π − δθ with small δθ leads to large self-interactions at
early times, and the field is near an unstable local maximum of the potential. This
tachyonic instability12 in the evolution of δ leads to an increase in the UBDM power
spectrum relative to CDM on scales close to the Jeans scale [58]. A displacement
δθ ≈ 0.02 is sufficient to evade the bound described by Eq. (3.45) and allow m ≈
10−22 eV to fit the Lyman-α power spectrum as well as CDM, while a value δθ ≈
0.003 leads to a better fit than CDM [59]. The tuned values of δθ require smaller fa
to get the correct relic abundance than in the harmonic approximation, which could
make direct detection of this type of tuned UBDM easier by increasing the matter
couplings.

UBDM displays dynamics distinct from CDM on scales of order the de Broglie
wavelength. A complete description of the effects of sub-de Broglie physics requires
numerical simulation. However, analytical understanding is possible in varying
degrees of complexity, which has largely been developed in recent years (see, e.g.,
Refs. [54, 60–64]). We will give only the simplest description useful for estimates.

UBDM in a gravitational potential well has a coherence length, L ∼ -λdB =
1/mv (h̄/mv in physical units), and coherence time, τ ∼ 1/mv2, where v is
the characteristic velocity. The heuristic picture of a wave distribution with these
properties is one of the quasi-particles of size L and lifetime τ . The quasi-particle
mass is

Mqp ∼ -λ3
dBρ̄ , (3.46)

where ρ̄ is the average local density in a volume encompassing a large number of
quasi-particles (i.e., in the solar neighbourhood, 0.4 GeV cm−3). Two-body relax-
ation between quasi-particles leads to the relaxation time (see Problem 3.3) [54]:

trelax ∼ 1010

log�

( m

10−22 eV

)3
(

v

100 km s−1

)2 (
R

5 kpc

)4

yr , (3.47)

where the Coulomb logarithm in the quasi-particle picture is log� = log(R/-λdB).
On timescales longer than trelax, UBDM departs from the SHM (in the sense that the

12 A potential is said to have a tachyonic region if V ′′(φ) < 0, i.e., a local maximum, and negative
effective mass squared.



94 D. J. E. Marsh and S. Hoof

density distribution is not time-independent) due to heating and cooling. Note the
similarity of the relaxation time, Eq. (3.47), to the gravitational scattering timescale,
Eq. (3.42), in the kinetic picture if we substitute v2 = GNmn̄R2.

Heating and cooling on the timescale trelax can be observed if a tracer population
of stars with mass mt is present in the UBDM halo (when the gravitational potential
due to DM is dominant, stars are tracer particles). For mt  Mqp, heating
dominates, while for mt 
 Mqp, cooling dominates. Let us estimate Mqp for
some systems of interest. In the solar neighbourhood, ρ̄ ≈ 0.4 GeV cm−3 =
107 M� kpc−3 and v ≈ 100 km s−1 ⇒ -λ = 0.2(10−22 eV/m) kpc, which gives
Mqp ≈ 7 × 104(10−22 eV/m)3M�. In the solar neighbourhood, tracers are stars
with mt ∼ 1M�, and the transition from heating to cooling occurs for UBDM
mass m ≈ 4 × 10−21 eV, with lighter masses giving rise to heating. The Milky
Way in fact possesses a “thick disk” of old stars [65], and this has been argued to
provide evidence that in fact DM is composed of UBDM in this so-called fuzzy
DM regime [54, 64] (for more information, see the “Fuzzy Dark Matter Hints”
box below). On the other hand, if heating is too efficient, then the disk will be
destroyed completely. Demanding that the relaxation time is shorter than the age of
the Universe, i.e., 1010 years, and applying Eq. (3.47), we find

m � 10−22 eV (Milky Way disk heating) , (3.48)

which agrees with more accurate modelling [64].
A very strong bound from UBDM heating can be derived by considering

the existence of the old, centrally located star cluster in the ultrafaint dwarf
galaxy Eridanus II. Observations [66, 67] indicate that the DM density is ρ̄ =
0.15M� pc−3, and the velocity dispersion is σv = 6.9+1.2

−0.9 km s−1. For UBDM, this
gives Mqp = 3(10−19 eV/m)3M�, implying that heating dominates for masses m �
10−19 eV. The star cluster has a half-light radius of rh = 13 pc, an estimated age
t ∼ 1010 years, and is close to the centre of Eridanus II. Using Eq. (3.47), replacing
R with the half-light radius (since the star cluster is approximately centrally
located), substituting for the characteristic velocity v the velocity dispersion σv ,
taking log� ∼ O(1), and demanding that the star cluster is stable on the timescale
of its age, we obtain the bound:

m � 10−19 eV (Eridanus II) , (3.49)

which again agrees very favourably with a more rigorous treatment [63].
Based on the present analysis, the bound from Eridanus II does not, however,

apply for m � 10−21 eV, where the fluctuation timescale becomes longer than
the star cluster orbital period, and potential fluctuations become adiabatic. Another
time-dependent feature of UBDM halos becomes important at m � 10−21 eV: the
central soliton (see Sect. 3.3.1) undergoes a random walk on scales of order its own
radius (which is much larger than the star cluster radius in this case) due to collisions
with the quasi-particles in the halo. This again leads to star cluster disruption and
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could exclude m ≈ 10−22 eV from the Eridanus II star cluster stability. However,
the Milky Way tidal potential may lead to sufficient tidal stripping of the quasi-
particle atmosphere to quell this random walk and leave m ≈ 10−22 eV safe from
this bound [68].

•? Problem 3.3 Relaxation of UBDM

The timescale for gravitational two-body relaxation (diffusion of a body’s velocity
caused by gravitational interaction in two-body close encounters) of particles with
mass m moving with velocity v in a host of mass M with radius R can be written
as [65]

trelax = 0.1
R

v

M

m log�
. (3.50)

Use this to derive the relaxation timescale, trelax, in Eq. (3.47).

Solution on page 321.

UBDM Hints: Fuzzy Dark Matter

We have seen a large variety of constraints on UBDM with mass m � 10−22 eV
from cosmic large-scale structure. We have also seen how heating in Eridanus II
excludes the range 10−21 eV � m � 10−19 eV, and we will see shortly that black
hole superradiance excludes 10−19 eV � m � 10−16 eV. There is only one strong
bound in the range just above 10−22 eV coming from the Lyman-α forest flux power
spectrum. This bound is sensitive to aspects of astrophysical modelling and, in
particular, can be relaxed if the baryon temperature evolves non-monotonically or if
significant ionizing photons are produced outside of galactic halos, e.g., in filaments
(however, see the recent Ref. [69]). Another possible window is afforded by the
Eridanus II bounds around 10−21 eV, where the statistical modelling is uncertain,
and Eridanus II can survive sandwiched between orbital resonances. If either of
these bounds (Ly-α or Eridanus II) can be relaxed, then there are some hints that
DM may in fact be UBDM with masses between about 10−22 eV and 10−21 eV, the
so-called fuzzy dark matter (FDM) model (cf. Fig. 3.1). These hints include:

• The Milky Way “thick disk”: FDM just outside the bound given in Eq. (3.48)
can help explain the old thick disk in our galaxy [64].

• Suppressed high-z galaxy formation: The redshift of reionization is known to
be around zreion ≈ 8. This relatively low value is naturally explained by FDM,
which suppresses formation of galaxies at z � 8.

• Solitons and galactic cores: Solitons in FDM halos (see Sect. 3.3.1) may help
explain cored density profiles in dwarf galaxies without baryonic feedback
[42, 70].
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• Relic density: The relic density is naturally explained by an FDM ALP with fa
close to the GUT scale, as expected in certain string compactifications.

Each hint provides a method to search for FDM. Furthermore, the FDM mass range
corresponds to field oscillation frequencies of order one inverse month, making it
challenging, but not impossible, to search for via direct detection.

3.2.4 Black Hole Superradiance

In the following, we adopt different units: so-called geometric units where GN =
c = 1.

Spinning black holes (BHs) are described by the Kerr metric, which has two
parameters: mass, M , and dimensionless spin, aJ = J/M ∈ [0, 1]. In “Boyer–
Linquist” coordinates, the line element is13

ds2
Kerr = −

(
1− 2Mr

�

)
dt2 − 4MaJ r sin2 θ

�
dtdφ + �


dr2 +�dθ2

+ (r2 + a2
J )

2 − a2
J sin2 θ

�
sin2 θdφ2 , (3.51)

� ≡ r2 + a2
J cos2 θ , (3.52)

 ≡ r2 + a2
J − 2Mr , (3.53)

r± ≡ M ±
√
M2 − a2

J . (3.54)

rergo ≡ M +
√
M2 − a2

J cos2 θ , (3.55)

where we use spherical polar coordinates. The zero solutions of Eq. (3.53) define
the two horizons r±: an inner Cauchy (causal) horizon at r− and the outer physical
event horizon at r+. The “ergoregion” is defined as radii smaller than rergo, where
g00 = 0 (the coefficient of dt2 in the line element). If an object enters the ergoregion
between r+ < r < rergo and ejects some mass which falls into the event horizon,
then the object will emerge from the ergoregion with a larger energy than it went in
with, and the BH will lose a small amount of energy in the form of mass and spin.
This is known as the Penrose process.

A wavepacket has a finite extent and can “eject” part of itself into the BH
if it passes through the ergoregion and overlaps with the event horizon. If the
wave is trapped near the BH, then this process continually extracts energy from

13 An accessible introduction to general relativity can be found in Ref. [71].
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the BH, growing the wavepacket amplitude and becoming “superradiant.” The
process only ends when the ergoregion has shrunk small enough to remove the
overlap (ultimately, the process must stop if aJ = 0, i.e., a Schwarzschild BH
with no ergoregion). Such a situation is in fact realized naturally for a massive
bosonic field. Gravitational bound states trap the field near the BH, and the
hydrogen-like wavefunctions overlap with the superradiant region between the
ergosphere and the event horizon. The field in question must be bosonic in order
that the wavepacket energy levels can continue to be filled as energy is extracted.
“Black hole superradiance” (BHSR) for bosonic fields is discussed in detail in
Refs. [72, 73].

Consider a scalar field near a Kerr BH. Just like in the tutorial on cosmic structure
above, the field obeys the Klein–Gordon equation, Eq. (3.10), except that now the
d’Alembertian (�) should be evaluated with the metric from Eq. (3.51). Let us write
the field as

φ =
∑

,α

e−iωt+iμϕS
μ(θ)ψ
μ(r)+ h.c. , (3.56)

where S
μ(θ) are the spheroidal harmonics (eigenfunctions of the Laplacian on the
surface of a spheroid, respecting the axial symmetry of the Kerr spacetime). To avoid
confusion, we have labeled the magnetic quantum number μ and the azimuthal
angle ϕ. The Klein–Gordon equation can then be reduced to a time-independent
Schrödinger equation for the radial eigenfunctions ψ
μ, with eigenvalue ω. The BH
provides a background potential V (r, ω), which possesses a barrier separating the
bound states from the horizon, and a potential well with size of order the boson
Compton wavelength, 1/m. The system resembles a hydrogen atom with effective
fine structure constant αeff ≡ GNM , where we temporarily reinstated GN .

The existence of superradiant solutions is determined by the imaginary part of
the eigenvalue ω, which leads to growth of the occupation number of the mode ψ
μ.
The superradiant rate is �SR ∝ α4
+4

eff m, and numerically it is found to be maximized
around αeff ∼ 1. This gives an approximate criterion for BHSR:

m ∼ 8πM2
pl

M
= 1.33× 10−10 eV

(
1M�
M

)
. (3.57)

For BHSR to be effective, the superradiant timescale should be longer than any
timescale of relevance for the BH, e.g., accretion. If BHSR is effective, then the
BH will lose spin. Thus, large observed values of aJ will be disfavoured if a boson
exists satisfying Eq. (3.57).

Astrophysical observations indicate the existence of BHs across a wide range
of masses, from those formed by collapse of stars at the Chandrasekhar limit
M ≈ 1.4M�, to the supermassive BHs (SMBHs) at the centres of galaxies. The
spins of BHs can also be estimated, using X-ray spectroscopy of the accretion
disk or by measurement of the gravitational waveform in the inspiral phase of
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binary systems. Detectable spins are generally large, aJ � 0.5. Assuming that
these large values would be disfavoured by a boson satisfying Eq. (3.57), we can
estimate exclusions on UBDM. First, consider the stellar BHs, and assume a full
spectrum of observations from the Chandrsekhar mass to the LIGO inspiral masses
M ≈ 30M� [74]. This excludes UBDM for

4× 10−12 eV < m < 8× 10−11 eV (stellar BHs) . (3.58)

Next, consider SMBHs. The lightest currently known SMBH is in NGC4051, with
mass M ≈ 1.9× 106M�, while the Event Horizon Telescope has imaged the BH at
the centre of M87 and determined the mass M ≈ 6.5× 109M�. Again, assuming a
continuous spectrum in between, we can exclude the range of UBDM masses:

2× 10−20 eV < m < 7× 10−17 eV (supermassive BHs) . (3.59)

These estimates agree somewhat favourably with more accurate treatments of BHSR
modelling and BH population statistics (e.g., Ref. [75]).

To obtain the more accurate picture, the bosonic field equations on the Kerr
background should be solved numerically. The oscillation timescale of the field is
τ ∼ 1/m. For real scalar fields, the gravitational pressure oscillates with a frequency
2m, sourcing oscillations of the metric potentials on a timescale faster than the
superradiant timescale. This makes brute force numerical solution challenging, but
many approximation methods are available.

BHSR also works for massive spin-one and spin-two fields (which are also
UBDM candidates). The superradiant timescales can be vastly different, and specific
treatments are necessary. Reference [76] considers spin-one vectors which have
much smaller instability rates and thus weaker constraints. Reference [77] considers
spin-two fields, which possess a particular mode mimicking the spin-zero case and
thus have similar constraints. A significant difference occurs for complex fields.
Due to the underlying U(1) symmetry and conserved particle number, the complex
vector Aμ field does not source oscillations in the metric potentials with frequency
m. This greatly simplifies the numerical task and has allowed direct simulation of
superradiance with these so-called Proca fields [78]. The simulations are important
because they include nonlinear back-reaction of the superradiant cloud on the Kerr
spacetime and demonstrate that BHSR occurs in this more realistic setting.

One known “showstopper” for BHSR is the so-called “Bosenova” caused by
attractive quartic self-interactions, which shut off the instability and prevent growth
of the scalar cloud. The self-interaction term in the potential is Vint = λφ4/4!, for
some coupling constant λ. As the cloud grows, this term can become as large as the
other terms in the energy budget. At this time, the scalar cloud collapses and super-
radiance is shut off. This introduces a new timescale into the problem and practically
gives rise to a maximum λ above which the superradiance rate is sub-dominant to
the Bosenova rate and no spin extraction can occur. Numerical simulations [79]
determine the maximum cloud occupation number before Bosenova occurs [80]:
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NBose ∼ 150
n4

αeffλ
= 5× 1078 n4

α3
eff

(
M

10M�

)2 (
fa

Mpl

)2

, (3.60)

where n is the energy level of the occupied cloud and Mpl is the reduced Planck
mass. In the last equality, we assumed that the scalar potential is of the ALP form
V (φ) ∝ − cos(φ/fa), giving λ = m2/f 2

a . Using this formula for stellar mass BHs,
Ref. [80] finds that BHSR is shut off for fa � 1013 GeV; for SMBHs, this turns out
to be fa � 1016 GeV.

Any UBDM interactions can compete with superradiance and possibly shut it off.
Examples include interactions between the cloud and the Standard Model particles
in the BH environment or the ALP interaction gaγ γ , which leads to stimulated
decay of the cloud [81, 82]. Of course, both “showstoppers” (Bosenova and axion–
photon interactions) also predict new observables in the form of emission from BH
regions for UBDMs of particular masses. Finally, we note that the superradiance
phenomenon need not be limited strictly to BHs and can occur also near stars and
neutron stars [83]—even though the astrophysical uncertainties are far greater.

•? Problem 3.4 Estimating Superradiance Properties of UBDM

A simple way to estimate the relevance of BHSR is to inspect terms in the action,

S =
∫

d4x
√−g

[
M2

pl

2
R − 1

2
(∂φ)2 − 1

2
m2φ2 + λ

4!φ
4

]
, (3.61)

where R is the Ricci scalar of the Kerr background metric g and m, λ, and φ are the
UBDM mass, (dimensionless) self-coupling, and field value, respectively. Note that
it is useful to reinstate Mpl (or GN ) for this exercise. Assuming a suitable setup in
which superradiance indeed occurs, estimate both the superradiance and Bosenova
conditions, i.e., Eqs. (3.57) and (3.60). Note the similarity between your estimate of
NBose and Eq. (3.60) when λ = m2/f 2

a .

Solution on page 322.

UBDM Hints: LIGO and the QCD Axion

The exclusion estimates, Eqs. (3.58) and (3.59), assumed continuous BH distri-
butions between the minimum and maximum values. In reality, the distributions
are of course incomplete. In fact, this can serve as a discovery tool for UBDM.
If light bosons with particular masses exist, then the observed BH mass and spin
distribution should contain forbidden regions, and astrophysical BHs should cluster
along superradiant “trajectories” in the (m, aJ ) plane. Gravitational wave observa-
tions will, over time, provide a very complete survey of this plane. Furthermore,
superradiant clouds emit their own gravitational waves due to level transitions and
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annihilation. From these effects, the LIGO observatory provides a discovery channel
for UBDM with 10−13 eV � m � 10−12 eV [84]. This region is disfavoured by
current measurements of BH spins, but the excluded region is determined by the
uncertainty on BH masses with a small number of measurements. Thus, there is the
possibility to make discoveries with precise measurements and greater statistics. The
accessible mass region for LIGO corresponds to the QCD axion with fa ∼ Mpl . For
the proposed GW detectors in lower frequency bands corresponding to higher mass
BHs (e.g., Laser Interferometer Space Antenna, LISA), discovery potential moves
to lower UBDM masses.

3.2.5 Summary of Gravitational Constraints

Current constraints on UBDM mass and cosmic density from the CMB, galaxy
formation, relaxation, and black hole superradiance are combined in Fig. 3.5, along
with a selection of forecasts for upcoming surveys. They cover an astonishing
24 orders of magnitude in mass and place sub-percent constraints on the density
parameter. We caution that the limits apply strictly only to scalar UBDM with
wUBDM = −1 in the early Universe and negligible self-interactions, e.g., ALPs
and similar cases. However, the limits apply by order of magnitude to all UBDMs,
particularly if they come from non-relativistic effects where model dependence is
less important. In addition to the effects discussed in detail, we also show projections
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Fig. 3.5 Summary of gravitational constraints (shaded) on UBDM and forecasts (open) for
upcoming surveys. Constraints assume a real scalar with potential V (φ) = m2φ2/2, see text
for clarification on generalizing the bounds. CMB: cosmic microwave background [22, 85], PTA:
pulsar timing array [32], BHSR: black hole superradiance [75], Ly-a: lyman alpha forest [86, 87],
and SKA-IM: Square Kilometre Array intensity mapping [25]. Adapted from Ref. [88]
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for the measurement of pulsar timing arrays (PTAs) with the Square Kilometre
Array [32]. Current bounds from this technique [33] are not yet at the O(1) level
for �UBDM and so do not appear.

3.3 Axion Compact Objects

ALP UBDM can form two different types of gravitationally bound objects which
are distinct from ordinary DM galactic halos. These objects, miniclusters and axion
stars, are interesting phenomenologically since they are far denser than galactic
halos. They can thus have observational effects as sources of enhanced DM decay
and conversion, gravitational lensing, or be observed in direct detection experiments
if they happen to pass through the Earth.

3.3.1 Axion Stars

There exist several classes of (pseudo-)solitonic solutions to the Einstein–Klein–
Gordon equations. These solutions go by many names and have been discovered
and rediscovered many times. They date back to Wheeler’s idea of a “geon”: a wave
confined to a finite region by gravity, thus mimicking a lump of matter. Ruffinni
and Bonnazola [89] found explicit “boson stars” as time-independent fixed particle
number state solutions for a complex scalar field coupled to general relativity: these
are true solitons, stabilized by the existence of the conserved U(1) scalar field
charge. Solutions also exist for a real scalar field. However, in this case, there is no
conserved charge, and instead the solutions have a time-dependent metric and are
known as “oscillitons” [90]. We could continue with the soliton bestiary for some
time, but instead we will focus on the most well-motivated class of these objects:
axion stars.14

First, consider the fully relativistic case. We are interested in time-dependent
solutions for a scalar field coupled to general relativity. A public code is
GRCHOMBO [91].15 Like all stars, axion stars are stabilized by a balance between
attraction (gravity and axion quartic self-interactions) and repulsion (gradient
pressure and higher order interactions).16 Initial conditions are found solving the
boundary value problem on the initial spacetime volume (hypersurface) and evolved
forward in time to investigate their stability. The solutions are a two-parameter

14 To continue the bestiary just a little further, solutions are named for all scalar fields: inflaton
stars, moduli stars, Higgs stars, etc.
15 http://www.grchombo.org/.
16 The axion potential is V (φ) = m2f 2

a [1− cosφ/fa)]. Taylor expanding this we find that the φ4

term is attractive, while higher order terms alternate in sign.

http://www.grchombo.org/
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family in mass, M , and axion decay constant, fa , giving a “phase diagram” that can
be explored numerically [92].

The structure of the axion star phase diagram is easy to understand. As the mass
of the star increases, the central value of the field φ0 also increases. There are
two possible instabilities, and which wins depends on fa . For large fa , the self-
interactions can be neglected. Now, the ordinary GR lore applies: collapse to a BH
at large mass. At low fa , the axion has strong self-interactions, and these also drive
collapse. Collapse increases φ0 further until higher order repulsive interactions take
over and expel relativistic axions from the collapsing core in an “axion nova” [93],
which occurs at critical mass Mnova = 10.4Mplfa/mg4, where g4 is the coefficient
of quartic interactions equal to unity for a cosine potential. For small fa , the
restoring interactions become important earlier during collapse and bring the star
back to a stable configuration with only slightly lower mass than before the nova.
As fa increases, it takes more and more of the mass of the star to contract and reach
the repulsive core, thus expelling a larger mass in the nova and reducing the mass
of the stable remnant. The two types of instability are divided by a particular value
of fa . As fa → ∞, oscillatons and boson stars are found to be unstable when
φ0 ∼ Mpl (this defines the “Kaup mass,” M ∼ M2

pl/m), while self-interactions
become important when φ0 ∼ fa , and so the boundary between the two unstable
regions occurs for fa ∼ Mpl . A third phase boundary exists between the nova and
BH regions, which simulations have found to be fractal in structure [94]. It is not
clear this boundary could be reached by any astrophysical process, and so it is likely
only a mathematical curiosity. The “triple point” between all three phases is found
numerically to be near (M, fa) = (2.4M2

pl/m, 0.3Mpl), where M is the “Arnowitt–

Deser–Misner” mass [95].17

Non-relativistic axion stars are far simpler to study: in the non-relativistic limit,
the real scalar field possesses an effective conserved particle number. In this case,
the solutions are simply referred to as solitons and the results apply generically
to UBDM in the non-relativistic limit. Solitons are stationary waves of the form
ψ(r, t) = Mplχ(mr)e−iγmt , where χ is a dimensionless function giving the radial
profile, and γ is the energy eigenvalue. An important property of the SPEs (see
Sect. 3.2.2) is their scaling symmetry:

(t, x, ψ,�)→ (λ−2t, λ−1x, λ2ψ, λ2�) , (3.62)

where λ is the scale parameter (not to be confused with the quartic interaction
strength in Sect. 3.2.4). The boundary value problem normalized to χ(0) = 1,
λ = 1, can be solved numerically and the results are fit by eigenvalue γ = −0.692λ2

and radial density profile:

17 Due to coordinate transformations, mass is not a straightforward quantity to define in general
relativity (indeed, sometimes it is not defined). The Arnowitt–Deser–Misner mass is defined in the
Hamiltonian formulation of general relativity and is essentially the conserved mass measured in
the infinite future.
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ρsol(r)

m2M2
pl

= χ2(mr) = 1

[1+ (0.230mr)2]8 . (3.63)

These solutions are the ground state of the SPEs. They are a balance of the nonlinear
and non-local gravitational force in the Poisson equation and the dispersive effect
of the gradient energy term in the Schrödinger equation. Soliton dynamics can be
studied using the numerical methods already discussed. In the limit of vanishing
self-interactions, the soliton solutions are a one-parameter family given by the mass,
M . Thanks to the scaling symmetry, we only need to find the solution once and then
scale it using λ (see Problem 3.5).

How might axion stars form in astrophysical environments? Two mechanisms
are seen in simulation of the SPEs. Which occurs depends on the scale, R, of the
gravitational fluctuations compared to the de Broglie wavelength:

• Direct collapse: R ∼ λdB (e.g., Ref. [42])
• Kinetic condensation: R 
 λdB (e.g., Ref. [41])

Direct collapse leads to rapid formation of axion stars on the gravitational free-
fall time and by definition occurs in the smallest objects near to the cut-off scale
of gravitational fluctuations, i.e., M ∼ M0, Eq. (3.43). This mechanism leads to an
axion star in the centre of all DM halos close to the cut-off scale. If all mergers of
this first generation are complete up to the largest scale of halos observed, then the
numerically determined relationship between the star mass, M�, and the halo mass,
M , is

M� ∝
(
M

M0

)1/3

M0 , (3.64)

where the constant of proportionality can be found in Ref. [96] and depends on
the definition of M0. This relationship is believed to derive from a combination of
the virial theorem, equilibrium between the soliton and its gravitationally bound
“atmosphere,” and universal mass growth in the merger history of solitons [97].
Slow growth of solitons by accretion leads to significant scatter in the relation.18

The direct collapse mechanism is particularly relevant to the formation of
solitonic cores in dwarf galaxies in the FDM regime (see hint box above) and the
formation of axion stars in miniclusters (discussed below). Axion stars formed by
this mechanism are in virial equilibrium with their environment for t < trelax and
do not change appreciably in mass over such scales. The surrounding halo is a hot
“atmosphere” for the star. The constant interaction with the halo causes the star to
undergo radial oscillations at the normal mode frequencies [100].

Kinetic condensation gives rise to axion star formation in regions much larger
than the de Broglie wavelength, for example, in the solar neighbourhood for

18 Very recently some authors have even found a different best-fit exponent [98, 99], and numerical
convergence may also play a part. The issue is not yet resolved at the time of writing.
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the QCD axion. The scattering timescale thermalizes the distribution function
on timescales of order τgr, Eq. (3.42), and at this time the local ground state is
found in the form of an axion star which condenses spontaneously. Axion stars
formed in this way continue to grow over time as they swallow up matter from the
environment, with M ∝ (t/τgr)

p. The index p is to be determined numerically
and will evolve slowly in time with the wave distribution function. The growth
process will eventually slow down when the star grows a gravitationally bound
“atmosphere,” at which point it should enter a local virial equilibrium solution close
to Eq. (3.64).

Despite progress in our understanding of the formation and growth of axion
stars, at the time of writing their abundance and galactic distribution is not fully
understood even in benchmark models. The problem is partly one of scale: we do
not know the mass above which the relation Eq. (3.64) breaks down and halos have
no central soliton, but instead grow many small solitons in the kinetic regime.

Axion stars have a host of possible phenomenological consequences:

• Galactic cores: Solitons composed of Fuzzy DM with m ∼ 10−22 eV may help
explain flat central densities in Milky Way dwarf satellites (tracer stars reside
within the soliton) [42, 70] or central mass excesses (tracer stars outside the
soliton). See hint box above for more details.

• Direct detection: The passage of axion stars through Earth, though rare, will
greatly enhance the signal in a direct search and could be identified using a coor-
dinated network of detectors like the Global Network of Optical Magnetometers
for Exotic physics searches (GNOME) and GPS.DM [101, 102].

• Indirect detection: The high axion density creates a larger radio signal from
decay and conversion of axions into photons (see Sect. 3.4.2). Cataclysmic
signals could arise if the stars can reach the critical mass for an axion nova or
stimulated decay due to interactions.

• Relativistic axion stars: If dense enough axion stars can be formed, they may
show up as “Exotic Compact Objects” in gravitational wave detectors [103] and
multi-messenger astronomy [104].

3.3.2 Miniclusters

A second special class of UBDM compact objects is formed by the process of
spontaneous symmetry breaking, if this occurs during the normal course of thermal
evolution of the Universe (as opposed to during the initial conditions epoch,
inflation, or otherwise). The Peccei–Quinn (PQ) phase transition (see Chap. 2)
occurs when the temperature of the Universe drops below approximately fa . Recall
that we write the complex PQ field as ϕ = Reiθ , and spontaneous symmetry
breaking occurs when the field R takes on a vacuum expectation value. The
following scenario applies specifically to ALPs where the field R is heavy and
unstable (such that it decays at late times), while the field θ is initially massless
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but acquires a mass hierarchically smaller than the mass of R and at some time
much later than the time of PQ symmetry breaking.

When PQ symmetry breaking occurs, R takes on a non-zero vacuum expectation
value, and thus θ must also be specified. Since the axion field is massless at
symmetry breaking, the only terms in the Lagrangian are proportional to ∂θ ,
meaning there can be no preferred value for θ . The axion thus takes on a random
value on essentially all scales. Imagine a pencil falling over from its point: in the
absence of an external preference, the pencil falls in a random direction specified by
an angle, θ , with the θ = 0 axis arbitrary.

First, consider the simpler two-dimensional case, illustrated in Fig. 3.6. Because
the PQ field is a continuous function (as all fields must be), for any random
configuration of a complex field, there will be points in space around which θ makes
a complete wrapping. At the wrapped point, the axion field θ is undefined (imagine
shrinking the circle to a point: at the point, the circle must have zero size, and θ

takes every value at once). The only way that this can be possible is if R = 0 at
the wrapped point. The point in the complex field space where the radial coordinate
is zero indeed has undefined phase. As long as the complete windings of θ persist,
then at the centre of these windings R must remain at the origin, and thus symmetry
breaking cannot happen. When the potential is V (ϕ) = λ(|ϕ|2−f 2

a /2)2, this implies
that the potential at the origin is V (0) = λf 4

a /4, and this is the value of the potential
at the centre of a point around which θ wraps.

In fact, in three dimensions, θ cannot wrap just a single point or else the field
would be discontinuous. The field must wrap continuous one-dimensional lines
(either infinitely long or in closed loops) known as cosmic strings, and in this
particular case as axion strings, or global strings (since the symmetry breaking is
of a global U(1)).19 This leads to the existence of PQ strings: continuous one-
dimensional structures around which θ makes complete windings and where the
radial field is pinned at R = 0. The strings are a class of topological soliton:
localized field configurations stabilized by the topology of the field space. The
formation mechanism is known as the Kibble–Zurek mechanism and is observed
experimentally in condensed matter phase transitions with the same symmetries, for
example, the transition from normal fluid to superfluid helium [4, 5].

What happens to the axion field? The equation of motion for the axion field in
Fourier space is

¨̃
θk + 3H ˙̃θk + (k2/a2 +m(T )2)θ̃k = 0 , (3.65)

19 This is generic for complex fields in three spatial dimensions. It is a topological property.
Complex fields have symmetry group U(1) of rotations in the complex plane, i.e., loops. The
mapping of U(1) onto R3 (Euclidean 3-space) is expressed by the first homotopy group π1(R

3).
This group is not the empty set, i.e., it is non-trivial, which can be seen by noting that R3 is the
universal cover of T 3, the 3-torus, and π1(T

n) = Zn. This last can be seen since one cannot shrink
circles on tori to points continuously, and there are n distinct circles wrapping T n.
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Fig. 3.6 Formation of axion strings from spontaneous symmetry breaking. The complex plane of
the PQ field ϕ is illustrated in the upper right corner with the radius marked where R takes the
vacuum expectation value and the circle along which the axion field is defined. When spontaneous
symmetry breaking occurs, this circle is mapped onto the coordinates in the real plane, (x, y). The
complex phase of the field (i.e., the value of the axion field) is shown by the orientation of the
arrow. Complete wrappings of the field lead to defects where the phase is not defined. In this two-
dimensional case, the defects are points, and in three dimensions, they are lines, i.e., strings. In the
centre of the string, the PQ field has 〈ϕ〉 = 0 and the potential takes the value indicated by the
colour bar. Damping of sub-horizon modes k > aH in Eq. (3.65) smooths fluctuations on length
scales L ∼ H−1

where we are careful to distinguish between the field θ and the mode function θ̃k:
θ̃k = 0 does not imply θ = 0 as a preferred value, only that the mode k is absent
from its spectrum and thus gradients of θ on the spatial scale 1/k are small. At early
times, the QCD axion mass, m(T ), is vanishingly small compared to H and can be
neglected.

Imagine initially that all modes are populated with some amplitude (for example,
the inflationary fluctuations of the PQ field), and then the field configuration far from
any string is allowed to evolve. Any mode “inside the horizon” has k2 
 a2H 2.
These modes will undergo damped oscillation and decay in amplitude. Modes larger
than the horizon, k2  a2H 2, remain pinned to their initial value by the friction

term (coefficient of ˙̃θk) in Eq. (3.65) given by 3H (Hubble friction). Thus, high
frequency modes decay and low frequency modes remain static, smoothing the field
on scales of order the horizon size.20 Around any string, the axion field is wound
θ ∈ (−π, π ], and so we have O(1) variation of the field on horizon size patches
around the string. String formation is sketched in Fig. 3.6. Furthermore, numerical
simulations indicate that string dynamics enter into a scaling solution with O(1)
strings per horizon volume.

20 Note that the mode function θ̃k decaying to zero does not imply a preference for the axion field
θ to move to zero: in the massless limit, the shift symmetry prevents any such preference.
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Strings decay when the axion mass becomes relevant to the mode evolution.
Recall first that during cosmological expansion, temperature, T , always decreases
as time, t , increases. Second, recall that the axion mass and the Hubble rate H are
both decreasing functions of T . The mass term (coefficient of θ̃k) in Eq. (3.65) is
comparable to the friction term when m(T ) ≈ H(T ). The axion mass term defines
a preferred value for the field, θ = 0, which is exactly why the PQ mechanism
solves the strong-CP problem. Equation (3.65) is just a damped harmonic oscillator,
and so the mode functions for all k < aH (not just the short wavelength modes
inside the horizon) will begin to oscillate when m(T ) ≈ H(T ), defining the special
temperature Tosc. Now, everywhere, the axion field is making harmonic oscillations
about zero. There are thus no longer regions around which it makes a complete and
continuous winding. The axion field everywhere has an average value of zero (but
importantly of course nonzero variance and energy density). This means that the
radial mode is no longer required to take the value R = 0 along the strings. The
axion field is everywhere defined, the radial field is not pinned, and it can undergo
symmetry breaking at the string locations, i.e., the strings decay (or “unwind”).

At this time, the axion field has a well specified distribution: in every horizon-
size patch, it has O(1) fluctuations, while on larger scales it is uncorrelated. The
power spectrum, P(k), is flat (white noise) for k  a(Tosc)H(Tosc) = kJ (Tosc) and
cut off by the Jeans scale for k 
 a(Tosc)H(Tosc). The normalization of the power
spectrum is fixed by the variance, which should match the variance of the uniform
distribution for θ , 〈θ2〉 = π2/3. Just prior to a(Tosc), the axion equation of state is
w ≈ −1, and so the fluctuations in θ do not source any curvature perturbations in the
metric:21 this is what is meant by the term isocurvature. It is this particular power
spectrum (white noise isocurvature, withO(1) variance, truncated at the horizon size
at Tosc), which gives rise to the structures known as axion miniclusters as a remnant
of string decay [105]. Figure 3.7 shows a snapshot from numerical simulation of the
axion field after string decay [106], and miniclusters are located using a threshold
based on spherical collapse under gravity [107].

The mass scale of miniclusters is the same as the mass scale of ordinary axion
halos: it is fixed by the Jeans scale when field oscillations begin, Eq. (3.43), but
now for very different values of the reference parameters. However, because of
the large amplitude of these isocurvature fluctuations (variance of order unity),
axion miniclusters begin to collapse earlier than ordinary DM halos and there is
a significant nonlinear structure formation before matter–radiation equality.22 The

21 Intuitively, this can be understood because if w = −1 exactly, then this is equivalent to a
cosmological constant, which is constant in space and time, and thus cannot source a spatially
varying curvature.
22 Contrast this to the evolution of large-scale inhomogeneities seen in the CMB and the
inflationary “adiabatic” mode. These perturbations have small amplitude and a red slope in the
power spectrum leading to smaller amplitude fluctuations on small scales. These fluctuations
undergo logarithmic growth at early times in the radiation era, which is important to seed galaxy
formation and is one of the pieces of evidence for DM discussed in Chap. 1. However, due to the
existence of a free-streaming scale/Jeans scale for particle DM models, there is, in general, no
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Fig. 3.7 Initial conditions for minicluster formation. After string decay, the axion field has large
density perturbations, which subsequently collapse into the objects known as miniclusters. The
figure shows a small patch of results from the numerical simulations of Ref. [106], which used
lattice field theory methods to solve the equations of motion for the complex Peccei–Quinn
field in the absence of gravity. The large hierarchies involved necessitate further approximations,
and different simulation methods are not currently in precise agreement for the spectrum of
perturbations extrapolated to physical values of the particle masses and couplings. Miniclusters
are identified at different redshifts using a threshold derived from spherical collapse under
gravity [107]

density of any DM halo is related to the background density at the time when it first
collapses and leaves the Hubble flow. Thus, miniclusters are denser than ordinary
halos and may survive repeated mergers up to the present day. Let us consider the
phenomenology of these low-mass dense objects.

First, we need the minicluster mass which we estimate from the number density
of axions within the comoving cosmological horizon at the time when field
oscillations begin. We find Tosc in the usual way, setting H(Tosc) = A1ma(Tosc).23

Now, we need to calculate the horizon volume. Take the volume of rotation of the

nonlinear structure formation during the radiation era. For WIMPs with m � 1 TeV, structure
formation in the adiabatic mode begins at z ≈ 500 with the formation of Earth mass, 10−6M�,
halos [108].
23 A1 is simply a constant of proportionality to account for ambiguity defining Tosc and its later use
in analytical formulae for the evolution of the energy density. Our earlier choices, e.g., Eq. (3.4),
set A1 = 1, physically assuming structure formation begs when the de Broglie wavelength is
equal to the Hubble length, H−1. Many authors choose A1 = 3 when estimating the relic density.
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spherical wave with comoving wavenumber kosc = a(Tosc)H(Tosc) over one-half
wavelength:

V (k) =
∫

d3xj0(kr) = 4π

(ak)3

∫ π

0
dy y sin(y) = 4π2

(ak)3 ≡
VH

(ak)3 . (3.66)

This defines the Hubble volume VH . Alternative definitions are the cubic volume,
V (k) = (ak)−3, and the spherical volume of one-half wavelength V (k) =
4
3π(π/ak)

3. The expected minicluster mass is simply MMC = V (aosckosc)�aρcrit.
We compute MMC(Tosc) using the Friedmann equation to fix kosc, 3H 2M2

pl =
(π2/30)g�T 4, and conservation of entropy to write a(T ) ∝ T −1g�S (normalized
using the CMB measurement of zeq). The result is well fit by

MMC(Tosc) = 9.2× 10−13 VH

(
Tosc

2 GeV

)−3

S
(

log10

(
Tosc

GeV

))
M� , (3.67)

S(x) ≡ 0.5[1+ tanh 4(x − 8.2)] + 1.3[1+ tanh 4(8.2− x)] , (3.68)

where S(x) is an activation function that accounts for the behaviour of g� and g�,S
in the Standard Model (dominantly the quark–hadron phase transition) and has
only been roughly fit here using the results for g� from Ref. [109]. Note that this
expression is valid for any ALP with minicluster-like initial conditions.

From the QCD axion ma,QCD(T ) dependence based on lattice QCD in Ref. [110],
Tosc(ma,QCD) is well fit by24

Tosc(ma,QCD) = 2

(
ma,QCD

100A1 μeV

)0.165

GeV , (3.69)

over the range of interest (broadly 10−5 eV ≤ ma,QCD ≤ 10−3 eV) for the relic
density in this scenario (see also Fig. 3.1). For smaller axion masses, there is an
O(1) change in the constant at the front of Eq. (3.69), while the power law remains
approximately the same.

Now, we would like to know the minicluster density profile. Kolb and
Tkachev [111] wrote down the equation of motion for spherical collapse of an
isolated top-hat density profile, with initial overdensity δ, in an expanding Universe
dominated by radiation. The perturbation first grows in size as the Universe expands.
It then turns around and collapses. Spherical collapse formally leads to a density
singularity. However, in real collapses below the threshold for BH formation,
aspherical perturbations lead to virialization (equilibrium between average kinetic

This ambiguity in the use of Tosc leads to significant uncertainty in analytical minicluster mass
estimates, which can only be resolved by fitting results of numerical simulations.
24 For the present purposes, a simple power law m ∝ T −4, matched to the zero-temperature result
ma,QCD ≡ ma,QCD(0) = 5.72 μeV(1012GeV/fa) at TQCD = 140 MeV, is accurate enough.
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and gravitational potential energy expressed by the virial theorem, see, e.g.,
Ref. [112]), and the collapsed object becomes self-supported with a finite average
density. Virialization occurs when the radius of the perturbation is half of the turn-
around radius. Using this information, one can compute the overdensity of the
spherical system at the time of virialization. A numerical solution of the ordinary
differential equation for spherical collapse gives the final average overdensity:25

〈ρf 〉 = 140ρ̄eqδ
3(1+ δ). (3.70)

Assuming the minicluster has a constant density, the radius is then calculated to be

RMC =
(

3MMC

4〈ρf 〉
)1/3

. (3.71)

Using ρ̄eq = 2× 1014M�kpc−3,

RMC = 3× 10−10 kpc
1

δ(1+ δ)1/3

(
Tosc

2GeV

)−1

. (3.72)

To make more use of this result, we need to know the minicluster radial profile,
ρ(r). Collapse of isolated density perturbations is self-similar and leads to a power
law density profile with no preferred scale. Miniclusters are not isolated, and
the formation proceeds much like ordinary DM halos, leading to Navarro–Frenk–
White (NFW) profiles [114–116]. It is then natural to associate the radius RMC with
the NFW scale radius. If the initial distribution of δ could be measured, one would
know the mass and size distribution of miniclusters.

In reality, the problem of miniclusters is far more complex than the simple story
given here. Firstly, miniclusters do not have one fixed mass. Structure formation
always proceeds hierarchically, and there is a mass function of miniclusters. This
can be computed numerically via N-body simulation or semi-analytically from the
initial power spectrum [107, 116–118]. The mass function takes on a power law
spreading over many orders of magnitude around MMC. Secondly, the distribution
of δ in initial conditions is not uniquely defined. Numerical thresholding using the
spherical collapse results allows some progress to be made [107], but the results
still require calibration to N-body simulation. Unfortunately, N-body simulations
cannot currently resolve the scale radius on all relevant scales and are not large
enough to capture the rarest, densest, and thus most phenomenologically interesting
miniclusters.

Finally, just like other UBDM halos, when the effects of the gradient energy (the
UBDM de Broglie wavelength) are included, miniclusters have been shown to form

25 For the more standard case during matter domination, which applies to ordinary DM halos,
see, e.g., Ref. [113]. In the standard case, the equations can be solved analytically, leading to the
well-known result that the virial overdensity 〈ρf 〉/ρ̄ ≈ 200, independent of δ.
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central axion stars [119]. Axion stars in miniclusters follow approximately the same
core–halo mass relation, Eq. (3.64), as an ordinary halo. For the QCD axion, the
resulting axion stars are on very different mass scales for the UBDM particle mass
and the halo mass than the reference FDM values in Eq. (3.64).

The minicluster power spectrum, mass function, size function, and central axion
stars can all be used to constrain the QCD axion and ALPs in the post-inflation PQ
symmetry breaking scenario. Some examples include:

• Microlensing and femtolensing [120–122] (see Problem 3.5 below)
• Radio signals from minicluster–neutron star collisions [123–125]
• The CMB isocurvature power spectrum and large-scale structure [126, 127]

•? Problem 3.5 Microlensing Constraints on UBDM

Show that the scaling symmetry, Eq. (3.62), is a symmetry of the SPEs. Use this
relationship and the profile, Eq. (3.63), to write down the mass–radius relation
in units of solar masses (M�) and kiloparsecs. The Subaru Hyper Suprime Cam
(HSC) microlensing survey of M31 probes PBHs in the range of 10−11M� to
10−6M� [128]. The Einstein radius for gravitational microlensing is RE =
2[GM�x(1 − x)ds]1/2, where d is the distance from the observer to the lens, ds
is the distance from the observer to the source, and x = d/ds . Compare the axion
star radius to RE with x = 1/2 and ds = 770 kpc and the distance to M31. What
UBDM particle masses could be probed by HSC lensing due to axion stars?

Now, consider the mass–radius relation for miniclusters with initial overdensity
δ, Eq. (3.72), and the minicluster mass relation, Eq. (3.68). What range of the
(Tosc, δ) parameter space can be probed by microlensing?

Solution on page 323.

3.4 Indirect Detection of UBDM

3.4.1 Stellar and Supernova Energy Loss

In this section, we consider only constraints on axion-like couplings, i.e., pseu-
doscalar, anomalous, or shift symmetric (see Chap. 2). Analogous bounds can of
course be derived for scalar and dilaton-like couplings. Axions are pseudoscalars,
and their couplings to fermions depend on the orientation of the spin, while
couplings of scalar particles do not. The spin dependence can lead to suppression of
interactions, since macroscopic bodies are not in general strongly polarized. Being
unsuppressed by spin effects, scalar constraints are often stronger. More details on
some of the calculations are given in Chap. 5.
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First and foremost, it is extremely important to remember that the constraints and
effects we discuss in this section apply independently of whether the axion is (a
large fraction of) the DM. The axions considered here are produced from Standard
Model particles in stellar plasmas. They interact only very weakly and have a long
mean-free path inside the plasma. Thus, stars are effectively transparent to axions,
and the axions escape, allowing an additional cooling channel for the star. This
changes the evolution of stars: in simple terms, it alters the progression of stars along
the Hertzsprung–Russell (HR) diagram of stellar luminosity versus temperature.
The relationship between the mass, age, and temperature of stars is thus different
than in the Standard Model. Stellar physics is generally very well understood in
terms of Standard Model physics alone and can be simulated using a code such as
MESA [129], which can be modified to include axion-induced cooling [130]. For
more details, see Refs [10, 131, 132].

Stars, including the Sun, can produce axions by the Primakoff process: photons
inside the star convert into axions in the ambient magnetic and electric fields of the
particles (electrons and nuclear ions) in the plasma. The rate for this process is

�γ→a =
g2
aγ γ T κ

2
s

32π

[(
1+ κ2

s

4E2

)
ln

(
1+ 4E2

κ2
s

)
− 1

]
, (3.73)

where E is the photon energy, T is the temperature, and κs is the screening length.
In the Debye–Hückel approximation, we have

κ2
s =

4πα

T

⎛
⎝ne +

∑
j

Z2
j nj

⎞
⎠ , (3.74)

where ne is the free electron density, and nj is the density of the j th nuclear ion of
charge Zj . In a neutral medium with ne = nj = 0, the Primakoff rate goes to zero,
since there is no background field to facilitate conversion.

Photon energies are distributed thermally, and the temperature varies with stellar
radius. Kinematically, we require E ≥ m to produce an axion. Typical stellar interior
temperatures are in the kiloelectron volt range, which gives the typical energy of
the emitted axions, and approximately the maximum axion mass where this cooling
channel is allowed. The luminosity in axions needs to be computed for a given stellar
model. Applying this to the Sun gives La = 1.85×10−3(gaγ γ /10−10 GeV−1)2L�.
It is this solar luminosity in axions that helioscope experiments try to detect (see
Chap. 5). We can derive a crude bound by demanding that the solar axion luminosity
must be less than unity, since the evolution of the Sun is well described by emission
dominantly in photons, i.e., Lγ,Sun = 1L� by definition. Thus,

gaγ γ < 2.3× 10−9 GeV−1 (luminosity of the Sun) . (3.75)
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The bound in Eq. (3.75) can be improved by considering the statistics of
populations of stars. The best understood case is for horizontal branch (HB) stars in
globular clusters. Stars in globular clusters are all of a similar age and differ in their
masses. The distribution of the stars gives an HR diagram that can be compared to
models. The observable is the ratio of HB stars to red giant branch (RGB) stars,
R, determined by placing stars on a colour–magnitude diagram. In the Standard
Model, this ratio is a function of the primordial helium abundance, YHe, stellar
mass, and metallicity. Globular clusters are old systems, with ages in the range
of 10 billion years. This gives a small range of available stellar masses and
metallicities, which have a negligible effect on R. The value of YHe can determined
observationally by measurement of extragalactic H II regions which gives YHe =
0.2449 ± 0.0040 [133], which is consistent with the predictions of standard BBN
and the CMB measurement of the baryon abundance [3]. Reference [134] reports a
measured average value of R = 1.38 from 39 globular clusters, consistent with the
Standard Model prediction.

With a given stellar evolution model, it is possible to compute the effect of
the axion–photon coupling, gaγ γ , and the axion–electron coupling, gaee, on R.
At present, there are two different models in the literature for the functional
dependence, and each is presented in Ref. [135]. The specific forms are not
enlightening, so we simply quote the bounds (derived in Ref. [136]). In both cases,
the additional cooling channel lowers R compared to the Standard Model prediction
leading to a degeneracy in the combined constraints, with the maximum value of one
coupling only allowed when the other is strictly zero. Setting one coupling to zero,
and fixing YHe = 0.25, the individual bounds are

gaγ γ < 4.95 (9.56)× 10−11 GeV−1 (95% CL, HB/RGB stars) , (3.76)

gaee < 2.95 (3.53)× 10−13 (95% CL, HB/RGB stars) , (3.77)

where the number in brackets refers to the bound using the alternative model for R,
which we see introduces an O(1) shift in the bound on gaγ γ . For the constraints in
the combined parameter space, see Refs. [135, 136].

Supernova SN1987A provides an important bound on the axion nuclear cou-
plings, gaNN and gd . During the core collapse process, a proto-neutron star is
formed, the gravitational field of which traps neutrinos and causes them to be
emitted over a delayed period of time. This model explains the duration of the burst
of two dozen observed neutrinos coincident with SN1987A. Axion emission due to
nuclear bremsstrahlung:

N +N → N +N + a (gaNN coupling) , (3.78)

N + γ → N + a (gd coupling) (3.79)
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would compete with neutrino emission and cool SN1987A too rapidly, shortening
the neutrino burst, unless the total energy loss rate from either axion nuclear process
obeys the bound εa � 1019 erg g−1s−1 = 7.2× 10−18 eV.

For the first process, the cooling rate per unit mass is [132]

εa = 1

ρ

(
CN

2fa

)2
nN

4π2

∫ ∞

0
dω ω4Sσ =

(
CN

2fa

)2
T 4

π2mN

F , (3.80)

where ρ is the mass density of the supernova, nN is the nucleon number density, ω
is the axion angular frequency, and Sσ is the spin density structure function, which
accounts for the fact that axions couple only to the nuclear spins. The coupling CN

is the nucleon coupling weighted as C2
N = YnC

2
n + YpC

2
p, where Yn and Yp are the

neutron and proton abundances, estimated as Yp = 0.3 and Yn = 1 − Yp = 0.7 at
the relevant epoch in the supernova.

The spin density structure function is non-trivial to compute but can be estimated
using various approximations. The last equality in Eq. (3.80) defines the dimension-
less function F from the integral of Sσ , which is estimated to be of order unity,
and allows a simple estimate of the bound given the supernova internal temperature
T ≈ 30 MeV. A recent analysis found the more accurate bound [137]

CN

2fa
< 1.3× 10−9GeV−1 (SN1987A neutrino burst) , (3.81)

a factor of approximately four weaker than the estimate with F = 1. The same
analysis found an O(1) effect from the modelling of supernova temperature and
density profiles. The bound from SN1987A on CN/fa is particularly important for
the QCD axion, since this couplings is always present, and so the bound can be cast
as a model-independent constraint on the QCD axion mass. We use that C2

KSVZ =
0.066 ⇒ CKSVZ = 0.257, leading to

ma,QCD � 0.06

(
0.257

CN

)
eV (SN1987A neutrino burst) . (3.82)

For the second process, εa is approximated by

εa = �

Vρ
≈ 〈Eγ 〉nNnγ 〈σv〉

ρ
, (3.83)

where ni are the reactant number densities, 〈Eγ 〉 is the average photon energy, ρ
is the supernova mass density, and 〈σv〉 is the thermally averaged cross section.
The nuclear number density and supernova mass density are known, and the other
parameters are fixed in terms of the internal temperature, T . To estimate the bound
on gd , Ref. [138] approximates the cross section as 〈σv〉 = g2

dT
2, leading to

gd < 4× 10−9 GeV−2 . (3.84)
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UBDM Hints: Anomalous White Dwarf Cooling

White dwarfs (WDs) are stellar remnants whose electron-degenerate cores are
supported by Fermi pressure against gravitational collapse. Their internal densities
are relatively high as their masses are typically comparable to the mass of the
Sun (∼ 0.6M�), while their radii are of the order of the Earth’s radius [139]. They
cannot replenish their internal energy and therefore continuously cool down over
time.

The evolution of WDs can be altered by introducing additional cooling channels.
These can be provided by weakly interacting particles that efficiently carry away
energy after being created in, and escaping from, the WD’s core. A useful observable
to infer the resulting additional cooling rate is the so-called period increase in
variable WDs. These are WDs that periodically change in brightness over time
as they pulsate due to non-radial excitations, called “gravity modes” (see, e.g.,
Ref. [140]), with potentially multiple pulsation periods associated with different
coexisting sub-modes. For cooling WDs, the periods of their pulsations, !, tend to
increase over time with a rate !̇ = d!/dt that can approximately be calculated via

!̇

!
≈ −1

2

Ṫ

T
+ Ṙ

R
≈ −1

2

Ṫ

T
, (3.85)

where T and R are the internal temperature and radius of the WD, respec-
tively [141]. The change in radius can usually be neglected for the observed
low-luminosity dwarfs [142]. Axions and ALPs induce an energy loss that is
proportional to g2

aee since axion–electron interactions dominate in the high-density
electron-degenerate interior of the WDs [143, 144]. The resulting decrease in
temperature, and therefore the additional contribution to the period increase in
Eq. (3.85), is hence also proportional to g2

aee.
Measurements of an anomalous period change can thus be used to estimate the

associated axion–electron coupling. From the 250 known variable WDs [145], this
has so far only been done for G117-B15A [146–150], R548 [148, 151], L19-2 [152],
and PG 1351+489 [153]. The reason for this small fraction is that measuring the
period change is very difficult: while the periods for the WDs listed here are of the
order of a few minutes, their (inherently dimensionless) period changes, !̇, are less
than about 10−13 in magnitude.

The left panel of Fig. 3.8 shows how the measured period increases in G117-
B15A (blue line and shading) compared to theoretical prediction from simulating
WD evolution with and without axions (red data points). To illustrate the depen-
dence on the axion–electron coupling, we show the theoretical prediction as a
function of g2

aee.
The right panel of Fig. 3.8 shows the one-dimensional profile likelihoods for the

four WDs listed above. Combining these likelihoods hints at an additional cooling
channel corresponding to an axion–electron coupling of a few times 10−13 at more
than 3σ confidence level [135, 136, 155].
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Fig. 3.8 Cooling hints in white dwarfs. Left: comparison of the predicted and measured period
change as a function of axion–electron coupling squared for the WD variable G117-B15A (data
from Refs. [150, 154]). Right: overview of the likelihood functions for different WD vari-
ables (reproduced from Ref. [136])

In addition to difficulties of observing the period change, there are a number
of uncertainties involved in the modelling of WDs and their pulsations. Multiple
challenges in quantifying the statistical and systematic uncertainties in WD mod-
elling remain, such as the modelling of the transition from the main sequence to the
WD phase. More details on WD modelling can be found in Refs. [150–153]. It is
therefore not yet clearly established whether the cooling hints are due to systematics
or indicate the presence of new physics—be it in form of a weakly interacting
particle or a completely different astrophysical cooling channel.

A recent more general review of pulsating WDs can be found in Ref. [140].
Apart from the period increase discussed here, the WD luminosity function can also
be used to probe the evolution of WDs and be seen as a hint for ALPs [156, 157].

3.4.2 Axion–Photon Conversion

In the presence of a magnetic field, axions convert into photons, and vice versa, by
the Primakoff and inverse Primakoff process (see Chaps. 2, 4, and 5). This leads
to constraints on the axion–photon coupling from any astrophysical environment
penetrated by a magnetic field. In the following, we briefly mention some important
instances.

Axions produced during supernova SN1987A can escape from the supernova
event. These axions are subsequently converted back into visible photons in the form
of gamma rays by the magnetic field of the Milky Way. This process would have led
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to a gamma ray burst coincident with SN1987A, which was not observed [158].
This places constraints on the axion mass and coupling at 95% CL [159]:

gaγ γ < 5× 10−12 GeV−1 (for ma � 10−9 eV) . (3.86)

The bound gets rapidly worse at higher masses due to loss of coherence of the axion
field on the scale of the galactic magnetic field and the resulting reduced photon
fluence. The bound has an O(1) dependence on the precise model of the galactic
magnetic field.

Axion–photon conversion also occurs in the intergalactic medium and leads to
modulation of the X-ray spectra of active galactic nuclei (AGN) and quasars (see,
e.g., Refs [160, 161]). The modulation can be modelled statistically with a stochastic
model for cluster magnetic fields. The strongest bound arises from the observation of
a single source, NGC1275, by the Chandra satellite, which observed no modulations
and sets the 3σ limit [162, 163]

gaγ γ < 6− 8× 10−13GeV−1 (for ma � 10−12 eV) . (3.87)

Still further bounds can be derived from axion–photon conversion on cos-
mological scales. The conversion of CMB photons by Mpc scale primordial
magnetic fields leads to CMB spectral distortions (i.e., departure from a black
body spectrum) [164, 165]. Since the cosmic background explorer (COBE) satellite
determined the CMB to be the most perfect black body in the Universe [166],
any departures from perfection caused by axion–photon conversion are strongly
constrained. On the other hand, the origin and spectrum of large-scale primordial
cosmic magnetic fields is highly uncertain (e.g., Ref. [167]). Thus, bounds are given
relative to the amplitude of the magnetic field power spectrum averaged on cosmic
length scales, AB =

√〈B2〉, as

gaγ γ � 10−14 GeV−1
(

1 nG

AB

)
(for ma � 10−12 eV) . (3.88)

These bounds can be improved by up to two orders of magnitude by future CMB
spectral measurements.
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57. V. Iršič, M. Viel, M.G. Haehnelt, J.S. Bolton, G.D. Becker, Phys. Rev. Lett. 119, 031302

(2017)
58. U.H. Zhang, T. Chiueh, Phys. Rev. D 96, 063522 (2017)
59. K.H. Leong, H.Y. Schive, U.H. Zhang, T. Chiueh, Mon. Not. Roy. Astron. Soc. 484, 4273

(2019)
60. B. Bar-Or, J.B. Fouvry, S. Tremaine, Astrophys. J. 871, 28 (2019)
61. A.A. El-Zant, J. Freundlich, F. Combes, A. Halle, Mon. Notices Royal Astron. Soc. 492, 877

(2020)
62. L. Lancaster, C. Giovanetti, P. Mocz, Y. Kahn, M. Lisanti, D.N. Spergel, J. Cosmol. Astropart.

Phys. 2020, 001 (2020)
63. D.J.E. Marsh, J.C. Niemeyer, Phys. Rev. Lett. 123, 051103 (2019)
64. B.V. Church, P. Mocz, J.P. Ostriker, Mon. Not. Roy. Astron. Soc. 485, 2861 (2019)
65. J. Binney, S. Tremaine, Galactic Dynamics: Second Edition (Princeton University Press,

Princeton, 2008)
66. T.S. Li, et al., Astrophys. J. 838, 8 (2017)
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Chapter 4
Microwave Cavity Searches

Maria Simanovskaia, Gianpaolo Carosi, and Karl van Bibber

Abstract The axion “haloscope” technique is a well-established method to search
for dark matter axions with a resonant microwave cavity and has excluded axion
models over several frequency ranges with unparalleled sensitivity. This chapter
describes the basics of microwave cavity searches, including overviews of the main
experimental components and details on the figure of merit for these searches.

4.1 Historical Introduction

By the early 1980s it was realized that a low mass axion would be a compelling
dark matter candidate; the excellent agreement of theory and data for the neutrino
signal seen from the Type-II supernova SN1987A a few years later providing an
upper mass bound of ∼ 60 meV [1].1 Problematically, however, the axion-photon
coupling for the QCD axion associated with those masses was so extremely small
as to preclude conventional accelerator- or reactor-based searches by many orders
of magnitude.

1 Initially, a lower mass bound of 6 µeV was set by overclosure arguments. Subsequent theoretical
developments have eased that lower bound (see, for example, Refs. [2–4]), making the experimen-
talists’ work harder; see the review of current theory in Chap. 3.
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This conundrum was potentially solved by Pierre Sikivie in a seminal paper
in 1983, where he showed that axions constituting the galactic halo dark matter
could be detected by their resonant conversion to photons in a microwave cavity
permeated by a magnetic field [5]. While the signal expected was extraordinarily
weak, sensitivity estimates based on the technology of large-volume, high-field
superconducting magnets, high-quality-factor cavities and ultralow noise amplifiers
of that time appeared to make detection of the QCD axion very nearly within reach.
Two early pilot experiments were soon mounted, one at the University of Florida
(UF) [6] and the other at Brookhaven National Laboratory (BNL) by a Rochester-
BNL-Fermilab (RBF) collaboration [7] providing experimental validation for that
optimism, and setting limits on the axion-photon coupling gaγ γ within a factor
of 10–100 of the model band. A watershed moment for the field was a workshop
convened at BNL by Adrian Melissinos of the University of Rochester on April 13–
14, 1989 [8] that brought together forty scientists and engineers, including experts in
low-noise receivers, microwave resonators and superconducting magnets, to study
whether projections of those technologies supported the idea of actually reaching the
QCD model band and whether planning for a large-scale experiment was warranted
at that time. The answer was unequivocally yes, and an R&D collaboration was
formed from among the participants, opening the path to what has become a three-
decade, world-wide effort on microwave cavity experiments and variations on the
theme. These in turn have not only been beneficiaries but also drivers of technology
development, particularly in quantum metrology.

4.2 Detection Principles

Microwave cavity searches rely on the axion’s coupling to two photons through
the inverse Primakoff effect (see Ref. [9] and Sect. 2.4.2). In a resonant microwave
cavity immersed in a magnetic field, axions interact with the virtual photons of the
magnetic field and convert to an oscillating electromagnetic field with a frequency
νa corresponding to the axion mass ma as νa ≈ mac

2/h. The resonant conversion
condition is that the axion mass is within the bandwidth of the microwave cavity at
its resonance frequency. Since the axion mass is unknown, the cavity resonance
frequency must be tuned to access a range of axion masses. As the resonance
frequency of the cavity is tuned, the electromagnetic field inside the cavity is
measured by a small probe antenna inserted in the cavity, which is in turn coupled
to an ultralow noise preamplifier. There is an ongoing effort to maximize the axion
signal power while reducing the background system noise in order to maximize the
frequency search rate.

A standard detection schematic is illustrated in Fig. 4.1. The axion field a

interacts with the virtual photons γ ∗ of the magnetic field and converts into a
measurable oscillating electromagnetic field γ when the axion mass ma is within
the bandwidth of the cavity resonance frequency νc. The width of the axion signal
is expected to be νa ≤ 10−6 νa , and the bandwidth of the cavity resonance
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Fig. 4.1 Simplified axion detection schematic of microwave cavity searches. Much like an AM-
radio, the high frequency axion signal is mixed down to audio frequencies by mixing with a local
oscillator maintained at a fixed offset frequency from the cavity frequency. This allows for much
lower digitization rates. The cartoon power spectrum shows a sample axion signal above the noise

frequency is determined by that resonance mode’s quality factor. To measure the
power inside the cavity, an inserted coaxial antenna probes the longitudinal electric
field. Ultralow noise amplifiers boost the signal to a level where it can be properly
mixed down to a lower frequency with a local oscillator and then the phase and
power information can be digitally recorded. Finally, a Fourier transform is applied
to the time-dependent signal resulting in a frequency-dependent power spectrum.
Axion candidate frequencies are identified as signals above a target threshold and
are revisited during a rescanning process to confirm if they are a persistent signal or
statistical noise.

Several collaborations are implementing this axion detection method. These
include, but are not limited to, the Axion Dark Matter eXperiment (ADMX), the
Haloscope At Yale Sensitive To Axion Cold dark matter (HAYSTAC), the Center for
Axion and Precision Physics (CAPP) Ultra Low Temperature Axion Search in Korea
(CULTASK), and the CryOgenic Resonant Group Axion CoNverter (ORGAN).
These modern experiments, derived from the early pilot experiments of the RBF
and UF collaborations, use similar detection techniques but have unique designs
and mostly operate over different frequency ranges.

4.2.1 Signal Power

The signal power in a microwave cavity search can be derived by solving the
equations of motion for the electromagnetic field coupled to the axion in the case
of a resonant microwave cavity permeated by a static magnetic field and the axion
field [10]. It is determined by a combination of theoretical parameters describing
axion physics and measurable parameters describing the experimental apparatus in
the equation

Psig =
(
g2
aγ γ

h̄3c3 ρ

m2
a

)
×

(
1

μ0
B2

0ωcVCmn
Q0
β

(1+ β)2

1

1+ (2νa/νc)
2

)
,

(4.1)
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where the factors in the first set of parentheses involve theoretical parameters
set by nature and the factors in the second set of parentheses are experimental
parameters. Theoretical parameters include the model-dependent coupling constant
gaγ γ , local dark matter density ρ ≈ 0.45 GeV cm−3 (commonly used in axion
searches [11] and consistent with recent measurements [12]), and the axion mass
ma . The coupling constant itself has units of GeV−1 and can be further expressed
as gaγ γ = gγ α/(πfa) = gγ αma/(π · 0.006 GeV2) where the dimensionless gγ
changes between classes of models. Representative values are gγ = −0.97 for
the Kim–Shifman–Vainshtein–Zakharov (KSVZ) [13, 14] family of models and
gγ = 0.36 for the Dine–Fischler–Srednicki–Zhitnitsky (DFSZ) [15, 16] family of
models. The relevant experimental parameters are external magnetic field strength
B0, cavity resonance frequency ωc = 2πνc, cavity volume V , mode-specific
cavity form factor Cmn
 (often, C010), unloaded quality factor Q0, cavity coupling
parameter β (β = 1 corresponds to critical coupling, β < 1 is undercoupled, and
β > 1 is overcoupled), and cavity linewidth νc.

Typical values for the HAYSTAC detector are B0 = 9 T, ωc = 2π 5 GHz,
V = 1.5 L, C010 = 0.5, QL = 104, β = 2, νa ≤ 5 kHz, and νc =
νc/QL = ωc/ (2πQL), where QL is the cavity loaded quality factor defined by
QL = Q0/ (1+ β). Altogether, the expected power for these parameters at the
axion–photon coupling set by the KSVZ family of models is Psig ≈ 10−24 W.

•? Problem 4.1 Axion to Photon Production Rate

The ADMX experiment searches for dark matter axions with DFSZ scale coupling
to photons and consists of a B0 = 7.6 T magnet, a cavity system with V = 150 L,
C010 = 0.45, Q0 = 180,000, and typical β = 2. Assuming the existence of a
3.3 µeV dark matter axion with DFSZ coupling (gγ = 0.36) at a typical local density
of ρ = 0.45 GeV cm−3 what is the average number of photons emitted from the
cavity every second when it is tuned to the correct frequency?

Solution on page 326.

4.2.2 Noise Considerations

For any phase-insensitive linear receiver the system noise temperature Tsys may be
written

kBTsys = hνNsys = hν

(
1

ehν/kBT − 1
+ 1

2
+NA

)
, (4.2)

where the three additive contributions correspond, respectively, to a blackbody pho-
ton gas in equilibrium with the cavity at temperature T , the zero-point fluctuations
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of the photon field, and the input-referred added noise of the receiver. The latter two
terms combine to form the standard quantum limit (SQL), with NA ≥ 1/2 [17].

The Dicke radiometer equation [18] combines the expected signal power with
the system noise temperature to form the signal-to-noise ratio Σ :

Σ = Psig

kBTsys

√
τ

νa
, (4.3)

where τ is the integration time, and νa is the expected linewidth of the axion.
There is an active effort in the microwave cavity search community working

to increase expected signal power and decrease system noise temperature rather
than integrating for longer to improve Σ . Increasing the applied magnetic field or
improving cavity performance (volume, quality factor, or form factor) increases
the expected signal power, as suggested by Eq. (4.1). To decrease system noise
temperature, the experiments are cooled to temperatures as low as possible and
state-of-the-art amplifier technologies are implemented.

4.2.3 Scan Rate

Because the mass, and hence the oscillation frequency, of the axion is unknown,
resonant microwave cavity searches must scan over a wide range of frequen-
cies. Therefore, the ultimate figure of merit is the scan rate, which incorporates
the expected signal power and noise considerations, and quantifies how quickly
searches can scan through different frequencies at a given sensitivity

R ≡ dν

dt
≈ 4

5

QLQa

�2

(
g2
aγ γ

h̄3c3ρa

m2
a

)2

×
(

1

h̄μ0

β

1+ β
B2

0VCmn


1

Nsys

)2

. (4.4)

Most of these terms are recognizable from the expression of the signal power in
Eq. (4.1). Using typical values for HAYSTAC, to achieve the benchmark KSVZ
sensitivity gKSVZ, the scan rate of the first run would have been approximately
40 MHz/yr. Since the scan rate scales as the fourth power of the coupling constant,
the scan rate would have been 640 MHz/yr to achieve twice the KSVZ sensitivity
2gKSVZ.

Improving the scan rate allows us to search through a mass range more quickly,
but we are still limited by the tuning range of the cavity and amplifier electronics.
The frequency range we can probe depends on the resonance frequency of the
microwave cavity. In general, higher-frequency cavities have a smaller volume and
therefore suffer from a smaller expected signal power as well as an increase in
operational complexity due to a higher resonance mode density. New cavity designs
are being developed that expand the accessible frequency range while improving
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sensitivity. This requires investigating various geometries using electromagnetic
simulations, prototypes, and microwave testing.

4.3 Resonant Microwave Cavities

A resonant microwave cavity supports many modes with various electric and
magnetic field profiles. Microwave cavity searches generally focus on one resonant
mode and use a cavity design that optimizes the mode of interest for the figure of
merit within a frequency tuning range while preserving mode purity.

The figure of merit of a cavity resonant mode is determined by the scan rate
R (Eq. 4.4), which is partially composed of cavity geometry and resonant mode
characteristics. The components include the quality factor Q, which quantifies
losses, the form factor Cmn
, which describes the alignment of the resonant mode
electric field to the external magnetic field, and the cavity volume V . The scan rate
depends on these quantities as

R ≡ dν

dt
∝ QC2

mn
 V
2. (4.5)

The volume in the cavity figure of merit involves the internal cavity space through
which electric fields penetrate. The volume generally decreases with increasing
frequency, which is one of the main challenges in designing higher-frequency
cavities. The HAYSTAC cavity, shown in Fig. 4.2, is a closed cylindrical volume
of 5.08 cm radius and 25.4 cm length with one tuning rod of 2.54 cm radius that can
be rotated off center.

4.3.1 Resonant Cavity Modes

The resonant modes present in a cavity are characterized by their electromagnetic
field profiles that obey the Maxwell equations and the usual boundary conditions.
The Maxwell equations in vacuum, assuming that the electric and magnetic fields
have time dependence e−iωt , reduce to

∇ ×E (ρ, φ, z) = i
ω

c
B (ρ, φ, z)

∇ × B (ρ, φ, z) = −iμε ω
c

E (ρ, φ, z)

∇ ·E (ρ, φ, z) = 0

∇ · B (ρ, φ, z) = 0,

(4.6)
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Fig. 4.2 HAYSTAC
copper-coated stainless steel
resonant microwave cavity
tunable over the frequency
range 3.6–5.8 GHz. The top
cover is not shown

where E is the electric field and B is the magnetic field. At a perfect electric
conductor (PEC) surface, the tangential electric fields and normal magnetic fields
vanish, the tangential component of magnetic field is related to the surface current
density j s , and the normal component of electric field is related to the surface
charge density ρs . These boundary conditions are, respectively, summarized in the
following equations:

n̂×E = 0

n̂ · B = 0

n̂×H = j s

n̂ ·D = ρs,

(4.7)

where n̂ is the vector normal to the PEC surface s.
The solutions to these equations and boundary conditions describe the resonant

modes present in a cavity. The modes include transverse magnetic (TM), transverse
electric (TE), and transverse electric and magnetic (TEM) modes. TM modes are
characterized by a transverse magnetic field and longitudinal electric field, TE
modes are characterized by a transverse electric field and longitudinal magnetic
field, and TEM modes are characterized by a transverse electric and magnetic field.
TEM modes only exist in structures with a central conductor. Characteristics of the
three types of resonant modes are summarized in Table 4.1.

Each TE and TM mode is classified by three numbers m, n, and 
 that describe
the variation in the azimuthal, radial, and longitudinal directions, respectively. For
example, the TM020 and TM011 modes have one extra radial node and longitudinal
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Table 4.1 Resonant mode descriptions, assuming that the ẑ direction is along the length of the
cavity

Mode type Description

Transverse magnetic (TM) Bz = 0 everywhere;
boundary condition Ez (r = s) = 0

Transverse electric (TE) Ez = 0 everywhere;
boundary condition ∂Bz

∂n
(r = s) = 0

Transverse electromagnetic (TEM) Ez = 0 and Bz = 0 everywhere

node, respectively, in the electric field compared to the TM010 mode. For an empty
cylindrical cavity of radius rcavity and height hcavity, the resonant frequencies of the
TMmn
 modes are given by

ωTMmn
 = c√
με

√
x2
mn

r2
cavity

+ 
2π2

h2
cavity

, (4.8)

where m, 
 = 0, 1, 2, . . ., n = 1, 2, 3, . . ., c is the speed of light, μ is the
permeability, ε is the permittivity, and xmn is the nth root of the Bessel function
of the first kind Jm (x). The resonant frequencies of the TEmn
 modes are given by

ωTEmn
 = c√
με

√
(x′mn)

2

r2
cavity

+ 
2π2

h2
cavity

, (4.9)

where m = 0, 1, 2, . . ., n = 1, 2, 3, . . ., 
 = 1, 2, 3, . . . and x′mn is the nth root of
the derivative of the Bessel function of the first kind J ′m (x).

Some of the resonant modes can be tuned in frequency by moving rods inside
cylindrical cavities and some have approximately stationary resonance frequencies
upon changing the position of the rod. Since the TE frequencies are primarily
determined by the length of the cavity, they do not change significantly when the
central conductor moves or changes in size.

•? Problem 4.2 Cavity Resonance Frequencies

For an empty cylindrical cavity of radius 5.0 cm, what is the frequency of the TM010
mode? Find the number of TE modes within 1.0 GHz of the TM010 mode for cavity
heights of 5.0 cm, 10.0 cm, and 20.0 cm.

Solution on page 326.
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4.3.2 Quality Factor

As suggested in Eq. (4.5), the cavity figure of merit scales as the quality factor Q.
The quality factor is a property of each resonant mode in the cavity and is given by
the ratio of the stored energy U to the dissipated power Pd in the cavity, multiplied
by the resonant mode frequency ω:

Q = ω
U

Pd

. (4.10)

The stored energy in the cavity is proportional to the square of the electric field
integrated over the cavity volume filled with material of dielectric constant ε:

U = 1

2
ε

∫

cavity volume
|E|2 dV. (4.11)

The power loss in the cavity is proportional to the square of the magnetic field
integrated over the metallic surfaces inside the cavity:

Pd = ωμ δ

4

∫

cavity surfaces
|H |2 dA, (4.12)

where μ is the magnetic permeability of the metallic cavity surfaces, and the skin
depth δ is the distance that electric fields are allowed to penetrate into the metallic
surfaces. The classical skin depth is given by

δ =
√

2

ωμσ
, (4.13)

where σ is the conductivity of the metallic surface. Conductivity improves with
decreasing temperature, and the classical skin depth is expected to improve as well.
However, at sufficiently low temperatures, the skin depth reaches an asymptote. In
HAYSTAC, cooling the cavities from room temperature to 4 K gives an improve-
ment of the quality factor by approximately a factor of four at a frequency around
1 GHz. For comparison, the conductivity improves by a factor of over a hundred
in that temperature range. The classical description becomes invalid when the skin
depth decreases below the electron’s mean free path. In this regime, the skin depth
depends on the electron density instead of the normal conductivity. This anomalous
skin depth [19] is given by

δa =
(√

3 c2mevF

8π2ωne2

)1/3

, (4.14)
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where me is the electron mass, vF is the Fermi velocity, n is the conduction electron
density, and e is the electron charge [20].

The quality factor is determined primarily by the material and geometry of
the cavity and can also vary greatly between resonant modes. Materials with a
higher conductivity typically have smaller skin depths and therefore higher quality
factors. The desire to have higher conductivity motivates making or plating the
cavities with oxygen-free high-conductivity (OFHC) copper and annealing them for
further conductivity improvement. Superconducting materials are appealing but the
thickness of the superconductor must be kept small enough to prevent lossy vortices
from forming in the strong magnetic field. This technology is being explored by the
ADMX, CAPP, and QUAX experiments (the latter of which is further described in
Chap. 8 [21, 22]),

4.3.3 Form Factor

The form factor is a measure of how well the electric field of a resonant mode aligns
with the applied external magnetic field. It is given by

Cmn
 =
(∫

cavity volume E · B0 dV
)2

B2
0 V

∫
cavity volume εr |E|2 dV

, (4.15)

where V is the cavity volume not occupied by a metallic object and filled with
material of dielectric constant ε = ε0εr . Note that if the cavity is partially filled
with a dielectric material, εr varies in space.

The form factor is maximized when E · B0 integrated over the volume is
maximized. Since the applied magnetic field for microwave cavity searches is
commonly in the ẑ direction, all resonant modes without electric field components
in the ẑ direction have form factors that are identically zero, and many TM modes
have portions of their field that cancel out, thereby lowering their integrated form
factor to near zero.

•? Problem 4.3 Form Factor of an Annular Cavity

Compare the form factor of the TM010-like mode and the form factor of the TM030-
like mode in an annular cavity. Assume that the magnetic field B0 is in the ẑ

direction and the electric field of the TM0n0-like mode in an annular cavity with
cavity radius rcavity, rod radius rrod, and height hcavity can be described by

Ez (ρ) ∼ sin k0 (ρ − rrod) , where k0 = πn

rcavity − rrod
. (4.16)

Solution on page 327.



4 Microwave Cavity Searches 133

4.3.4 Tuning and Mode Density

Quality factor, form factor, and volume quantitatively describe the behavior of
interest of a single resonant mode at a given frequency. These quantities give a
general sense of performance across a tuning range, but if the range is full of
intruder modes, it will be interrupted. A TM mode resonance frequency decreases
when a rod rotates away from the center of the cavity. In comparison, the TE
mode resonance frequency does not change significantly. When the TE and TM
mode frequencies approach each other, the two modes mix, producing two hybrid
modes, in analogy with two-level mixing in quantum mechanics [23]. If the mode
of interest hybridizes significantly, it will be difficult or impossible to interpret the
results of the experiment, thus leading to a notch in frequency coverage of the
experiment. Mode density is difficult to quantify, but it is a key consideration for
cavity design. The problem of mode density worsens for cavities of too large an
aspect ratio hcavity/rcavity; practically one is constrained to stay with cavity designs
of hcavity/rcavity ∼ 5 or lower.

4.3.5 Multiple Cavity Systems

A cavity’s TM010 frequency scales inversely to the radius and thus the volume,
assuming a constant length-to-radius aspect ratio, decreases as V ∝ ν−3 in going to
higher frequencies. For a fixed magnet solenoid volume one can simply increase the
number of cavities N each with their own independent receiver chains which can
then combine their powers statistically for a

√
N improvement to the $ of a single

cavity. However, one can also take advantage of the coherent nature of the axion
signal to recover this volume more efficiently by co-adding the in-phase voltage
signals of multiple frequency-locked cavities. The axion signal, though it has an
unknown global phase, will generate the same, in-phase, signal in each cavity. The
voltages from each cavity can thus be combined in phase to provide N × Va output
voltage. The noise power from each cavity would be added incoherently providing
an added noise level of

√
N×Vnoise. Squaring these to get power we see that we can

get a signal-to-noise enhancement of N × $single cavity [24, 25]. The price that one
pays in such a scheme is the added complexity of controlling all the cavity systems
so that they are within a linewidth of the other cavities.

4.3.6 Testing Cavities

Before incorporating the resonant microwave cavity in the detector, it must be
thoroughly studied and characterized. Changing the cavity geometry (for example,
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Fig. 4.3 Bead perturbation technique setup

by moving a tuning rod) changes the mode frequencies. Mode maps track these
changes by showing mode frequencies at each cavity geometry change.

A vector network analyzer measures reflection and transmission of microwave
signals in the frequency range of interest. When the coaxial antennas couple
to a resonant mode, more signal is transmitted. By measuring the scattering
parameters between two ports either through transmission (S12, S21) or reflection
(S11, S22), the frequencies and quality factors of resonant modes in the cavity
can be measured. All measurements are done with weak coupling to the coaxial
antennas to minimize perturbations due to the antenna presence in the cavity.
Scattering parameter measurements give information on the frequencies and quality
factors of resonant modes, but not on their electric field distribution. To get insight
on the resonant mode electric field distribution, the cavity is probed by pulling
a relatively (compared to the cavity size) small bead through the length of the
cavity and measuring the resonance frequency at each step. An example setup and
bead pull measurement are shown in Fig. 4.3. The presence of the bead inside the
cavity perturbs the electromagnetic field and shifts the resonance frequency by a
magnitude proportional to the square of the strength of the electric field at the bead
location [26]. If the bead is only slightly perturbing the electric field, the expected
frequency shift is given by

ω

ω
= − (ε − 1)

2

Vbead

Vcav

E(r)2
〈
E(r)2

〉
cav

, (4.17)

where Vbead and Vcav are the volumes of the bead and cavity, respectively [27]. This
bead perturbation technique, which is commonly used in the microwave engineering
community, allows the resonant mode to be identified, to determine whether the
mode is significantly hybridized, and to ensure that the cavity is properly aligned.
This is essential to confirming that the cavity form factor corresponds to its
calculated value.
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4.4 Amplifiers

The current microwave cavity axion experiments are establishing limits on the axion
that correspond to signals with powers on the order of 10−24 W, or equivalently
on the order of one axion-to-microwave-photon conversion per second. Achieving
sensitivity to such small signals depends critically on the equivalent system noise
temperature T sys and thus requires the state-of-the-art ultralow noise detectors.

The first-generation RBF and UF experiments, and the ADMX experiment for its
first several years of operation, utilized High Electron Mobility Transistor amplifiers
(HEMTs). Noise added by HEMTs decreases with temperature down to a minimum
of a few Kelvin when cooled to liquid helium temperatures, but plateaus before
reaching the SQL. Since the scan rate in Eq. (4.4) is inversely proportional to T sys

2,
decreasing the system noise temperature would significantly decrease the amount of
time it would take to scan through the axion parameter space accessible by resonant
cavity searches.

•? Problem 4.4 The Standard Quantum Limit

What is the noise temperature of the standard quantum limit for 700 MHz? What
about for 6 GHz?

Solution on page 327.

Amplifiers presently in use are operating at or near a system noise temperature
corresponding to the SQL, and recently a squeezed-vacuum state receiver has been
employed to circumvent the SQL [28].

4.4.1 Quantum-Limited Amplifiers

Unlike the HEMT noise temperature that plateaus at a few Kelvin, the noise
temperature of amplifiers based on DC superconducting quantum interference
devices (SQUIDs) decreases roughly linearly as the physical system temperature
decreases to around 0.1 K [29]. SQUIDs are naturally applied to low frequencies,
but replacing the input coil with a tunable microstrip resonator enables operation of
SQUIDs up to 1 GHz [30]. Using SQUIDs provides the ability to drive the system
noise temperature close to the SQL while introducing the challenge of magnetic
shielding. Since they are sensitive to magnetic flux, experiments must magnetically
shield them from the high magnetic fields permeating the resonant microwave
cavity.

SQUIDs can operate up to a few GHz, but the axion parameter space extends to
higher frequencies. Josephson parametric amplifiers (JPAs) are naturally resonant
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devices designed to operate in the 2–12 GHz range. A JPA is a nonlinear LC
circuit, with the inductance provided by an array of SQUIDs [31]. Like the SQUID,
the JPA must be carefully magnetically shielded. To give the scale of shielding,
in HAYSTAC, the magnetic shielding is composed of a second superconducting
magnet coil to negate the field from the main magnetic in the region of the
quantum amplifiers, passive persistent coils, and ferromagnetic and superconducting
shields [32]. Ultimately successful operation of JPAs in HAYSTAC required that
the remnant field be reduced to a level corresponding to much less than one flux
quantum in the region of the device. Although these amplifiers offer improved noise
performance at a range of frequencies, they are limited by the SQL.

4.4.2 Sub-quantum Limited Amplifiers

During initial operation, HAYSTAC operated the JPA as a low-noise phase-
insensitive linear amplifier subject to the SQL. To overcome the SQL, experiments
can borrow from developments in quantum measurement technology to manipulate
the noise in the system. In microwave cavity experiments, an antenna measures
a voltage that is proportional to the electric field inside the cavity and can be
decomposed into components

V̂ = X̂ cosωct + Ŷ sinωct, (4.18)

where ωc is the cavity resonance frequency, and X̂ and Ŷ are quadratures of the
cavity field. The variances of the quadratures have a minimum uncertainty limit
of σ 2

X̂
σ 2
Ŷ
≥ 1/4. JPAs can squeeze the vacuum state to increase uncertainty in

one quadrature while decreasing it in the other. To decrease the system noise
temperature below the SQL, experiments can implement vacuum squeezing by
operating two JPAs in a phase-sensitive mode (the amplifier applies different gains
to the two quadratures). In this operation, one JPA prepares the microwave cavity
in a squeezed-vacuum state before amplifying with a second JPA that is 90◦ out
of phase. Then, the noise is decreased in the measured quadrature increasing the
signal-to-noise ratio [33]. Implementing a squeezed-state receiver (SSR) allowed
HAYSTAC to enhance the scan rate by a factor of 1.9 [28]. The benefit of using
an SSR is limited by the cable transmissivity and lossy microwave components, so
future efforts will work to improve the connections in the system.

4.5 Operational Experiments

Since the initial experiments in the 1980s, several microwave cavity searches have
excluded axion parameter space while updating their cavity and amplifier designs
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Fig. 4.4 Excluded parameter space by microwave cavity searches. The dashed lines represent the
KSVZ and DFSZ models and the yellow band describes their uncertainty

Table 4.2 Summary of representative values from selected microwave cavity searches

Experiment Time Frequency Volume Amplifier Magnet TSYS/TSQL

RBF [7]/UF [34] 1985–1990 2.5 GHz 5 L HEMT 6 T/8 T 100–200

ADMX @ LLNL [35] 1995–2010 0.6 GHz 200 L HEMT,
SQUID

7.6 T 50–100

ADMX @ UW [36] 2016-
present

0.8 GHz 150 L SQUID,
JPA

7.6 T 10

CAPP [37] 2019-
present

1.6 GHz 3.5 L HEMT 8 T 12

HAYSTAC I [38] 2015–2018 6 GHz 1.5 L JPA 9 T 2

HAYSTAC II [28] 2019-
present

4 GHz 1.5 L SSR 8 T <1

to probe various axion mass ranges. The parameter space that has been excluded by
the various microwave cavity searches is shown in Fig. 4.4.

Table 4.2 compares representative values of microwave searches. The ratio of
system noise temperature to the SQL has improved with developments in cooling
and amplifier technology over the years. Although the technological advances have
been impressive, more innovation is needed to probe the vast axion parameter space
available for microwave cavity searches.
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Chapter 5
Solar Production of Ultralight Bosons

Julia K. Vogel and Igor G. Irastorza

Abstract This chapter will spotlight axions produced in the core of the Sun. A
first focus will be put on the production mechanism for axions in the solar interior
through coupling of axions to photons via the Primakoff effect as well as their
interactions with electrons. In addition to the axion production, the axion-to-photon
conversion probability is a crucial quantity for solar axion searches (also referred
to as helioscopes) and determines the expected number of photons from solar
axion conversion that are detectable in a ground-based search. After these basic
considerations, the helioscope concept will be detailed, and past, current, and future
experimental realizations of axion helioscopes will be discussed. This includes
the analysis used to aim at axion detection and upper limit calculations in case
no signal above background is detected in experimental data. For completeness,
alternative approaches other than traditional helioscopes to search for solar axions
are discussed.

5.1 Production of Axions in the Sun

5.1.1 Solar Models and the Origin of Solar Axions

Axions can be produced in the core of stars via the Primakoff effect [1], which
converts axions to photons and vice versa in strong electromagnetic fields as
shown in the Feynman graphs of Fig. 5.1. In the extremely hot and dense core
of the Sun—the closest celestial axion source to Earth—the two-photon coupling
of pseudoscalars allows for the conversion of blackbody (BB) photons into axions.
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γ∗

γ a γ

γ∗

a

e, Zee, Ze �B

Fig. 5.1 Left: Feynman diagram of the Primakoff effect in the solar interior. Photons can be
converted into axions in the electric field of the charged particles in the plasma. Right: in a
laboratory magnetic field, the axion couples to a virtual photon from the transverse component
of the magnetic field via the inverse Primakoff effect

The BB photons in this case have energies in the keV range. The virtual photon is
hereby provided by the strong electromagnetic field, originating from the charged
particles in the plasma. In nonrelativistic conditions, the Primakoff effect is relevant,
since in this case, electrons and nuclei can be considered heavy in comparison to the
energies of the surrounding photons. Therefore, the differential cross section here
(not taking into account recoil effects) is given by [2]

dσγ→a

d�
= g2

aγ γ Z
2α

8π

|pγ × pa|2
q 4

, (5.1)

where the axion and photon energies are considered equal and the momentum
transfer is given by q = pγ−pa with pγ and pa being the momentum of the photon
and the axion, respectively. The axion-to-photon coupling constant is represented by
gaγ γ , Z is the atomic number, and α denotes the fine-structure constant. The cutoff
of the long-range Coulomb potential in vacuum for massive axions is given by the
minimum required momentum transfer

qmin = m2
a

2Ea

, (5.2)

for the axion mass being small compared to its energy (ma  Ea), yielding a total
cross section of

σγ→a = Z2g2
aγ γ

[
1

2
ln

(
2Ea

ma

)
− 1

4

]
. (5.3)

The cutoff of the long-range Coulomb potential in a plasma is the consequence of
screening effects resulting in an additional factor in the differential cross section
such that
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dσγ→a

d�
= g2

aγ γ Z
2α

8π

|pγ × pa|2
q 4

q 2

κ2 + q 2
. (5.4)

The Debye–Hückel scale κ represents screening effects via [3]

κ2 = 4πα

T�

∑
j

Z2
j nj , (5.5)

with T� describing the temperature in the solar core plasma and nj is the number
density of charged particles carrying the charge Zje. Near the center of the Sun,
the Debye–Hückel scale κ ≈ 9 keV. The total scattering cross section taking into
account this modification was calculated by Raffelt [3, 4]. Under the assumption of a
nonrelativistic medium and negligible recoil effects, an expression for the transition
rate �γ→a can be obtained by summing over all target species of the medium

�γ→a =
T�κ2g2

aγ γ

32π2

|pγ |
Eγ

∫
d�

|pγ × pa|2
q 2

(
q 2 + κ2

) . (5.6)

Angular integration then yields [4]

�γ→a =
T�κ2g2

aγ γ

32π

pγ

Eγ

⎧⎨
⎩

[(
pγ + pa

)2 + κ2
] [(

pγ − pa

)2 + κ2
]

4pγ paκ2

× ln

[(
pγ + pa

)2 + κ2

(
pγ − pa

)2 + κ2

]
−

(
p2
γ − p2

a

)2

4pγ paκ2 ln

[(
pγ + pa

)2

(
pγ − pa

)2

]
− 1

⎫
⎪⎬
⎪⎭
, (5.7)

where pγ = |pγ | and pa = |pa | are the absolute values of the photon and axion
momenta, respectively. For the Sun, the effective mass of the photon in the medium,
i.e., the plasma frequency ωp, is small. Typically, it is around 0.3 keV, while the
solar core temperature is T� = 15.6 × 106 K = 1.3 keV, leading to typical photon
energies of about 3T� ≈ 4 keV. We therefore neglect the plasma frequency in the
following, and photons will be treated as massless. Recoil effects can be ignored,
such that Eγ = Ea in the photon-to-axion conversion and pγ = Eγ = Ea and
pa =

√
E2
a −m2

a can be assumed, simplifying Eq. (5.7) to

�γ→a =
T�κ2g2

aγ γ

32π

{(
m2

a − κ2
)2 + 4E2

aκ
2

4Eapaκ2
ln

[
(Ea + pa)

2 + κ2

(Ea − pa)
2 + κ2

]

− m4
a

4Eapaκ2
ln

[
(Ea + pa)

2

(Ea − pa)
2

]
− 1

}
. (5.8)
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For axion masses small compared to the axion energy, i.e., pa ≈ Ea , the next to last
term tends to zero and the above equation reduces further to

�γ→a =
T�κ2g2

aγ γ

32π

[(
1+ κ2

4E2

)
ln

(
1+ 4E2

κ2

)
− 1

]
. (5.9)

The differential axion flux expected at Earth is then simply the convolution of the
transition rate with the distribution of blackbody photons of the Sun followed by an
integration using a standard solar model

d�a (Ea)

dEa

= 1

4πd2�

∫ R�

0
d3r

1

π2

E2
a

eEa/T − 1
�γ→a, (5.10)

where an average distance to the Sun of d� ≈ 1.50× 1013 cm can be assumed. Van
Bibber et al. [5] were the first to derive an approximate formula by including the
standard solar model developed by Bahcall et al. [6] in 1982. Raffelt and Serpico
revised the early results using an updated solar model [7] by fitting the following
function to the solar data:

d�a(Ea)

dEa

= A

(
Ea

E0

)β

e−(β+1)Ea/E0 , (5.11)

where A is a normalization factor, E0 corresponds to the average axion energy 〈Ea〉,
and β is related to higher moments of energy. The best fit is obtained as

d�a(Ea)

dEa

= 6.020× 1010 (g10)
2 (Ea/keV)2.481

e((Ea/keV)/1.205)

[
cm−2s−1keV−1

]
, (5.12)

with an accuracy at the 1% level for energies in the 1–11 keV range and g10 defined
as

g10 = gaγ γ

10−10 GeV−1
. (5.13)

The average axion energy is 〈Ea〉 = 4.2 keV, and the maximum of the axion
energy distribution is expected to be around 3 keV. Note that this is the case for
KSVZ axions (hadronic axions, proposed by Kim [8], Shifman et al. [9]), for which
the Primakoff production mechanism dominates. For the Dine–Fischler–Srednicki–
Zhitnitsky (DFSZ) model axions [10, 11], with axion-electron interaction present
at tree level, for which “ABC processes” (axio-recombination, bremsstrahlung, and
Compton scattering) dominate, the peak is shifted toward lower energies.1 The total
axion flux for hadronic models is then proportional to g2

10 as

1 See Chap. 2 and Sect. 5.1.2 for details.
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Fig. 5.2 Solar axion flux on Earth. The coupling of axions to photons here is assumed to be
gaγ γ = 10−12 GeV−1, the interaction strength with electrons gaee = 10−13. For a typical KSVZ
(hadronic model, see Chap. 2 for details on axion models), the Primakoff effect is the dominant
component and the differential axion flux is represented by the blue line, while for the DFSZ
model, in which axions and electrons interact at tree level, the various components of the ABC
flux take over (red lines): FF = free-free (bremsstrahlung), FB = free-bound (axio-recombination),
and BB = bound-bound (axio-deexcitation). The black line is the total ABC flux. Please note that
to show ABC and Primakoff spectra in the same plot, the latter has been multiplied by a factor of
50. Figure from Ref. [12]

�a = 3.75× 1011 (g10)
2 cm−2 s−1. (5.14)

The axion luminosity for the standard solar model is

La = 1.85× 10−3 (g10)
2 L�, (5.15)

where L� refers to the solar photon luminosity. No major updates to the solar
models have been made since then, so these predictions still hold. Figure 5.2 shows
the differential solar axion flux for hadronic and non-hadronic axion models.

When using an imaging device—such as an X-ray telescope—to detect photons
from axion-to-photon conversion, as common in solar axion search experiments
(referred to as helioscopes), a helpful approach is to consider the differential axion
flux as an apparent surface luminosity ϕa (Ea, r) of the solar disk. This implies
that the flux (for g10 = 1) is calculated per unit surface area of the apparent 2-
dimensional solar disk. It is a function of the axion energy Ea and a dimensionless
radial coordinate r (0 ≤ r ≤ 1), representing the radius normalized to the solar
radius R�. The apparent surface luminosity ϕa (Ea, r) can be formulated as [13]
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Fig. 5.3 Contour plot of the axion surface luminosity of the Sun resulting from the Primakoff
effect as a function of energy and dimensionless radial coordinate r . The units, in which the flux
is given, are axions/(cm2·s·keV) per unit surface area on the solar disk. Here, g10 = 1 has been
assumed

ϕa (Ea, r) = R3�
2π3d2�

∫ 1

r

ds
s√

s2 − r2
Ea k fB�a→γ (5.16)

and is given in units of cm−2 s−1 keV−1 per unit surface area; d� is the average
distance of Earth from the Sun as in Eq. (5.10), s represents the radial position in
the Sun, determining physical quantities, such as temperature and density, and k

is the wavenumber. fB = (
eEa/T� − 1

)−1 denotes the Bose-Einstein distribution.
In Fig. 5.3, the axion surface luminosity as seen on Earth is shown as a function
of axion energy Ea and radial coordinate r . Only Primakoff conversion has been
taken into account here (hadronic models), but a similar plot can also be derived
for non-hadronic models, in which axions also significantly interact with electrons.
The color scale is given in units of axions/(cm2·s·keV) per unit surface area on
the solar disk. This shows that most axions originate from the inner 20% of the
solar radius. Furthermore, the axion flux is expected to be largest at energies around
3 keV for hadronic axions. Figure 5.4 illustrates the energy dependence of the axion
surface luminosity for several radial coordinates obtained by integration up to the
corresponding values of r . The total axion flux at Earth can be obtained from the
apparent surface luminosity ϕa (Ea, r) using

�a = 2π
∫ 1

0
dr r

∫ ∞

ωp

dE ϕa (Ea, r) , (5.17)

where ωp is again the plasma frequency.
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Fig. 5.4 Solar axion surface
luminosity depending on
energy for various values of
the radial coordinate r . It has
been derived by integrating
up to different values of r .
Here, the same units as in
Fig. 5.3 have been used.
Credit: J. Ruz
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Fig. 5.5 Different processes responsible for axion production in the Sun, including both the
Primakoff process and the ABC processes. Figure from Ref. [12]

5.1.2 Non-Primakoff Solar Axions

In non-hadronic models, like the DFSZ models (see Chap. 2), axions couple with
electrons at tree level. This coupling allows for additional mechanisms of axion
production in the Sun, namely: atomic axio-recombination and axion-deexcitation,
axio-bremsstrahlung in electron-ion or electron-electron collisions, and Compton
scattering with emission of an axion. Figure 5.5 shows the Feynman diagrams of
all these processes. Collectively, solar axions from the flux generated by all these
channels are referred to as ABC (or BCA) solar axions, from the initials of the
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aforementioned processes. The most up-to-date computations of these production
channels can be found in [12].

The spectral distribution of ABC solar axions, as well as of each of the individual
components, is shown in Fig. 5.2. Although the relative strength of ABC and
Primakoff fluxes depends on the particular values of the gaee and gaγ γ couplings,
and therefore on the details of the axion model being considered, for non-hadronic
models the ABC flux is expected to dominate. For example, for the representative
values taken to produce Fig. 5.2, the Primakoff spectrum has been multiplied by 50
to make it comparable with the ABC spectrum.

Although all processes contribute substantially, free-free (bremsstrahlung) pro-
cesses constitute the most important component and are responsible for the fact
that ABC axions are of somewhat lower energies than Primakoff axions, with a
spectral maximum around ∼1 keV. This is because the axio-bremsstrahlung cross
section increases for lower energies and, in the hot solar core, electrons are more
abundant than photons, and their energies are high with respect to atomic orbitals.
In addition, the axio-deexcitation process is responsible for the presence of several
narrow peaks, each one associated with different atomic transitions of the species
present in the solar core. These two features would be of crucial importance in the
case of a positive detection to confirm an axion discovery, as will be discussed in
Sect. 5.4.2.3.

Despite the above, due to the fact that gaee is more strongly bounded from
astrophysical considerations than gaγ γ (see Chap. 3), the sensitivity of experiments
to ABC axions has so far not been sufficiently high to reach and study unconstrained
values of gaee. This may change with the next generation of solar axion helioscopes,
like the International AXion Observatory (IAXO), that will enjoy sensitivity to
values down to gaee ∼ 10−13 (Sect. 5.4).

For the sake of completeness, we should mention that the existence of axion-
nucleon couplings gaNN also allows for additional mechanisms of axion production
in the Sun. These emissions are monoenergetic and are associated with particular
nuclear reactions in the solar core. Some examples of the emissions that have been
searched for experimentally are 14.4 keV axions emitted in the M1 transition of
57Fe nuclei and MeV axions from 7Li and D(p, γ )3He nuclear transitions or 169Tm
(see Ref. [14] for details and references).

Note that while the above considerations are mainly focusing on axions, axion-
like particles (ALPs, [15–17], see also Chap. 2) share—to a large extent—the
same theory and phenomenology as axions. Interestingly, most of the experiments
searching for the effects of axion couplings to standard model particles (photons,
electrons, nucleons) are therefore also sensitive to these more generic axionlike
particles. Generally speaking, ALPs are pseudo-Nambu-Goldstone bosons with
small masses and rather weak interaction strength originating from the spontaneous
breaking of a symmetry at very high energy scales (Chap. 2, Sect. 2.3). They
generally mix with photons similarly to axions but do not exhibit the axion-typical
relation between axion mass ma and coupling constant gaγ γ , i.e., they are not a
part of the Peccei-Quinn (PQ) mechanism [18, 19] for quantum chromodynamics
(QCD) axions and do not acquire their masses from effects in QCD but rather
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through corresponding dynamics that explicitly break a global symmetry. These
more generic particles (every axion is an ALP, but not every ALP is an axion) are
invoked in various scenarios, theoretically well motivated at the low-energy frontier
of particle physics (see Ref. [14] and also Chap. 2, Sect. 2.5). They are sometimes
also referred to as non-QCD or non-PQ axions, which is why the term axions is often
used to refer to both QCD axions and ALPs.

5.1.3 Constraints on the Solar Axion Flux

The solar axion flux expectation can be constrained by using known solar properties.
First, an additional energy loss channel via axion emission would increase the
consumption of nuclear fuel, and since the Sun has lived through about half of its
helium burning phase, its solar axion luminosity should not exceed the solar photon
luminosity. This consideration can, for example, rule out apparent “signals” of the
PVLAS-type [20], since these would require an axion luminosity of La > 106×L�,
such that the solar lifetime would be about 1000 years [21]. Indeed, for g10 � 20,
it becomes basically impossible to construct a self-consistent solar model due to
excessive axion losses [22].

Precision helioseismology and the measured solar neutrino flux are another
avenue to constrain the axion-photon coupling strength. In an updated statistical
analysis [23], these two observations were combined to provide a stringent upper
limit on the coupling constant of g10 < 4.1 at the 4σ confidence level. Helioscope
upper limits on gaγ γ are consistent with these solar constraints, in that the solar
axion flux, which corresponds to the published limits, is too small to significantly
affect the abovementioned observations. A similar argument holds to constrain the
coupling of axions to electrons gaee [24]. Axion losses can thus be seen as minor
perturbations of solar models.

5.1.4 Do Axions Escape from the Sun?

In order to be detected in an experiment, solar axions first need to escape the Sun.
Their mean free path (MFP) 
a must therefore be larger than the solar radius. In
natural units, the photon-axion conversion rate given in Eq. (5.9) and the inverse
MFP of a photon of energy Eγ considering the Primakoff effect are identical. Thus,
the MFP can be obtained from Eq. (5.9) in the static limit (no recoil, screening
included). With a temperature T ≈ 1.3 keV and κ ≈ 9 keV at the solar center, 
a for
4 keV axions is


a ≈ 6× 1024g−2
10 cm ≈ 8× 1013g−2

10 R�. (5.18)
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Thus, the coupling constant gaγ γ would have to be larger than the best solar axion
limits as observed by the CERN Axion Solar Telescope (CAST, [13, 25–31]) by a
factor of 107 in order to have reabsorption of axions in the Sun.

In the extreme case of such a strong coupling, axions would influence the solar
structure. They would be responsible for the bulk of the energy transport within the
Sun, which is otherwise carried by the photons. In order to be trapped in the Sun,
axions would have to interact strongly enough to have an MFP smaller than that of
photons, which is ≈ 1 mm in the solar interior. Thus, the solar structure will only
remain unaffected if the MFP 
a of axions is not much larger than a millimeter.
Otherwise, the energy transfer rate in the Sun would be extremely accelerated and
the solar structure would be dramatically altered. This condition is so stringent
that reabsorption is not a possibility worth considering for axions or axionlike
particles [21].

5.2 Axion-to-Photon Conversion Probability for Solar Axions

To detect solar axions in a laboratory experiment, helioscopes employ magnetic
fields to convert axions into X-ray photons via the inverse Primakoff effect (see
the right part of Fig. 5.1). The virtual photon in this interaction is provided by
the transverse component of the magnetic field. The conversion process works in
a manner analogous to neutrino oscillations [2].

Although the photon has spin-one and axions are spin-zero particles, mixing is
possible in an external magnetic or electric field that enables matching of the missing
quantum numbers. The conversion from a free photon into a spin-zero axion requires
a change in the azimuthal quantum number of angular momentum (Jz) which for
photons equals Jz = ±1 and Jz = 0 for axions. Therefore, a longitudinal field, i.e.,
a field with azimuthal symmetry, does not allow for these transitions given the fact
that it cannot change Jz. A transverse field, however, does allow for mixing between
photons and axions.

The determining wave equation for particles propagating perpendicular to a
transverse magnetic field B has been derived by Raffelt and Stodolsky [32] as

⎡
⎢⎢⎣

⎛
⎜⎜⎝
ω − m2

γ

2ω
− i

�

2
gaγ γ

B
2

gaγ γ
B

2
ω − m2

a

2ω

⎞
⎟⎟⎠− i∂z

⎤
⎥⎥⎦

⎛
⎝A‖

a

⎞
⎠ = 0. (5.19)

A‖ is the amplitude of the photon field component parallel to the magnetic field B,
a is the amplitude of the axion field, ω represents the frequency, mγ is the effective
photon mass in the gas, and ma is the axion mass. Damping is included via the
inverse absorption length � of photons. Up to a global phase, a first-order solution
can be found by using a perturbative approach as
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〈A‖(z)|a(0)〉 = 1

2
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−

∫ z
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2
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×
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0
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0
dz′′

[
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2ω
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2

])
. (5.20)

The conversion probability Pa→γ of axions into photons at a length z = L of the
magnetic field can be obtained in Lorentz–Heaviside units (see Problem 5.1) as

Pa→γ = |〈A‖(z)|a(0)〉|2 =
(
Bgaγγ

2

)2 1

q2 + �2/4

[
1+ e−�L − 2e−�L/2 cos (qL)

]
,

(5.21)
where q is the absolute momentum transfer between the real photon in the medium
and the axion (see Problem 5.2) given by

q =
∣∣∣∣∣
m2

γ −m2
a

2Ea

∣∣∣∣∣ , (5.22)

where Ea is the energy of the axion.

•? Problem 5.1 Natural Lorentz–Heaviside Units

The conversion probability of axions into photons in the presence of a transverse
magnetic field as given in Eq. (5.21) uses natural Lorentz–Heaviside units for
which the dimensions GeV and (T · m) are equivalent, due to the fact that charge
is dimensionless and natural units are used (c = 1). Show how 1 GeV = 1.010 T ·m
and therefore Pa→γ is dimensionless.

Solution on page 328.

•? Problem 5.2 Momentum Transfer

Derive the equation for the axion-to-photon momentum transfer as shown in
Eq. (5.22).

Solution on page 329.

There are two cases to consider for the probability of conversion in experimental
solar axion searches: (1) an evacuated conversion region and (2) a conversion
volume filled with a low-Z buffer gas. Both scenarios will be discussed in the
following.
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5.2.1 Coherence Condition and Conversion Probability in
Vacuum

Using Eq. (5.21) in the limit of mγ → 0, the probability of axion-to-photon
conversion in a magnetic field in vacuum can be derived. Assuming negligible
absorption (� ≈ 0) results in

Pa→γ =
(
BLgaγγ

2

)2
⎛
⎝ sin

(
qL
2

)
(
qL
2

)
⎞
⎠

2

, (5.23)

again with magnetic field strength B and length L. The momentum transfer q as
given in Eq. (5.22) simplifies to

q = m2
a

2Ea

. (5.24)

This enables a coherence condition for which photon and axion waves are in phase
and nonzero conversion probability can be obtained. This coherence condition can
be expressed as

qL

2
 π, (5.25)

which is shown in Fig. 5.6 where the (sin (x)/x)2 term of Eq. (5.23) with x = qL/2
is plotted as a function of x and it nicely illustrates that the largest contributions are
found for values x � π . In terms of axion mass, the condition can be written as

ma 
√

4πEa

L
, (5.26)

such that the coherence condition is fulfilled for axion masses smaller than 0.02 eV
for a realistic example of a 10 m long magnet and a typical solar axion energy of
Ea ≈ 4.2 keV. In the limit of x → 0, the sin2 (x)/x2 term tends to 1 and Eq. (5.23)
reduces to

Pa→γ =
(
BLgaγγ

2

)2

, (5.27)

i.e., the conversion probability in vacuum.
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Fig. 5.6 Dependence of the
coherence term on different
values of its argument qL/2.
The major contributions to
the probability function result
from values of qL/2 which
are smaller than π
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5.2.2 Coherence Condition and Conversion Probability in a
Buffer Gas

Accessing higher axion masses than possible in a conversion volume under vacuum
in a given experiment can be achieved by filling the magnetic field region with a
buffer gas. In order to minimize the absorption of X-ray photons in the buffer gas,
elements with low atomic number Z are strongly preferred. Additional constraints
due to operation of the magnet as a superconductor often require low operating
temperatures of a few Kelvin and therefore usually only helium and hydrogen are
good options since others are not gaseous given the required operating pressure. In
the case of buffer gas use, Eqs. (5.21) and (5.22) no longer simplify as in the vacuum
case.

5.2.2.1 Effective Mass of the Photon

While photons in vacuum can be considered massless and travel at the speed of light
c, they acquire an effective mass when passing through a transparent medium at a
speed v < c. In the classical wave picture, the slowdown can be explained as a delay
of the photon wave due to interference of the incident light with photons coming
from matter polarized by the original photons. Considering the situation from the
particle view, it can be understood as a mixing effect between initial photon and
quantum excitations of the traversed matter, resulting in a particle with effective
mass. The photon energy is given by E2

γ = m2
γ = h̄2ω2

p, where ωp is the plasma
frequency, and the effective photon mass in helium can be derived (see Problem 5.3)
as
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mγ =
√

0.020
p/mbar

T/K
eV. (5.28)

•? Problem 5.3 Effective Photon Mass in a Buffer Gas

In a buffer gas, photons acquire an effective mass, which enables the study of higher
mass axions as compared to the use of an evacuated magnetic field region in axion
helioscope experiments. Derive Eq. (5.28) for helium.

Solution on page 330.

5.2.2.2 Momentum Transfer

With the effective photon mass, the momentum transfer between an axion and a
(real) photon can be calculated. q will be minimal for axion masses close to the
corresponding effective photon mass of the considered buffer gas pressure. Since
the momentum transfer has to be small in order to fulfill the coherence condition
of Eq. (5.25), only a narrow range of axion masses can be studied at a specific gas
pressure.

5.2.2.3 The Absorption of Photons in a Buffer Gas

The absorption of the photons originating from axions via the Primakoff effect in
a buffer gas is another important factor influencing the conversion probability. In
general, the absorption � of these photons is defined as the inverse of the absorption
length 
:

�(Ea) = 1


(Ea)
= ρμ(Ea), (5.29)

where ρ is the density of the gas and μ(Ea) represents the energy-dependent mass
absorption coefficient, which is given by

μ(Ea) = NA

A
σA(Ea), (5.30)

with Avogadro’s constant NA and mass number A. The scattering cross section σA

takes into account photoelectric, coherent, and incoherent contributions. In practice,
the magnetic field region of an axion helioscope will be filled with a low-Z buffer
gas at a certain pressure pgas and temperature Tgas. It is therefore useful to consider
that at standard temperature and pressure (STP), the ideal gas equation yields
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STP = 
×
(
TSTP

THe

)
×

(
pHe

pSTP

)
, (5.31)

for helium gas, and thus Eq. (5.29) is

�(Ea) = μ(Ea)ρSTP
TSTPpHe

pSTPTHe
. (5.32)

The density under standard conditions ρSTP for 4He is 0.1786 g/L.

5.2.2.4 Mass Range of Coherence

Restoring coherence by means of a buffer gas in the magnetic field region makes
small axion mass ranges around the effective photon mass accessible as can be seen
from Eq. (5.22) and the coherence condition of Eq. (5.25), i.e.,

√
m2

γ −
4πEa

L
< ma <

√
m2

γ +
4πEa

L
. (5.33)

Since the effective photon mass depends on the pressure and the axion mass range
that can be explored varies with axion energy and length of the magnetic field region
in a given experiment, the accessible axion mass range changes. For example, axion
masses around a photon mass of 0.43 eV can be scanned with 4He at 1.8 K, since the
maximum operating pressure before the 4He gas liquefies at these temperatures is
16.4 mbar. If an axion helioscope is operated at room temperature (293 K) instead, a
similar photon mass is obtained for an operating gas pressure of 2.7 bar. Depending
on the buffer gas, the magnet length, and the operating temperature, different solar
axion experiments will be able to access slightly different mass ranges around the
calculated photon mass.

5.3 Expected Number of Photons from Solar Axion
Conversion

The expected number of photons Nγ from axion-to-photon conversion in a magnetic
field can be obtained as a function of axion mass and the coupling constant (for a
given pressure of the buffer gas) as

Nγ =
∫

E

d�(Ea, g
2
aγ γ )

dEa

Pa→γ (Ea,ma, g
2
aγ γ ) ε(Ea) t A dEa, (5.34)

with detection area A and detection efficiency ε(Ea). The exposure time, i.e., the
time an axion helioscope is able to point at the solar core while tracking the Sun, is
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Fig. 5.7 Expected number of
photons from axion-to-photon
conversion in a magnetic field
for a typical axion helioscope
as described in the text
(namely, CAST). The
pressure of the buffer gas
(here, 4He) is given at 1.8 K
and therefore 5.49 mbar
corresponds to a density of
0.147 kg/m3

0.0001 0.0010 0.0100 0.1000
Axion Mass [eV]

10−6

10−5

10−4

10−3

10−2

10−1

100

N
γ

× 
(1

0
−

1
0
 G

eV
−

1
 /

 g
aγ

)4

Vacuum

5.49 mbar

t . Since the expected solar axion flux and the conversion probability each depend
quadratically on gaγ γ , the number of expected photons relates to the axion-photon
coupling constant as

Nγ ∝ g4
aγ γ . (5.35)

The number of expected photons from conversion of axions in vacuum and at a
particular pressure p of a buffer gas (4He is used as an example) at 1.8 K in the
magnetic field region is shown in Fig. 5.7 for the experimental conditions of a typical
axion helioscope (i.e., CAST). An exposure time of 90 min and 100% efficiency of
the detector (ε = 1) have been assumed for this plot along with a magnetic field
of 9 T throughout a 10 m long region. The sensitive area included is 14.52 cm2,
corresponding to the size of the magnet bore for the current leading axion helioscope
(CAST).

5.4 Axion Helioscope Experiments

As discussed in Sect. 5.2, axion helioscopes employ strong transverse magnetic
fields B over a length L to convert solar axions into photons. Due to the fact that
axions have a mass, axion and photon waves will be out of phase after a certain
distance which determines the coherence condition (Eq. 5.25). For typical solar
axion energies and a magnet length of ≈ 10 m, coherence is conserved for axion
masses up to about 10−2 eV, while for higher masses coherence in vacuum is lost
and the experimental sensitivity decreases. It can be restored by the use of a buffer
gas in the magnetic field region for higher axion masses due to the photon acquiring
an effective mass in a medium. Thus, the coherence condition will be fulfilled for
axion masses close to the effective photon mass. By changing the pressure of the gas
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inside the magnetic field region systematically, the photon mass can be increased in
a controlled manner and higher masses can be scanned via pressure-step scanning.

5.4.1 Concept of Axion Helioscopes

A typical axion helioscope requires at least two key components: a powerful magnet
and one or more high-sensitivity, ultralow background X-ray detectors. In latest
implementations of the concept, as shown in Fig. 5.8, an X-ray focusing device
is added at the end of the magnet to concentrate the signal photons and increase
the signal-to-noise ratio. Such an X-ray telescope also enables the use of large
cross-sectional magnets (to boost conversion probability) and simultaneously small-
area detectors (to enable ultralow background levels), which in combination boost
helioscope experiments to the next level. By aligning the magnet with the core
of the Sun and tracking its movement, an excess of X-rays at the end of the
magnet is expected as compared to background measurements when the magnet
is not pointing at the Sun. The helioscope detection concept was first proposed
in the 1980s [5, 33] and initially experimentally implemented by Lazarus et al.
with a few hours of data acquired [34]. Later, the second-generation helioscope
SUMICO [35] was built at the University of Tokyo, providing the first self-
consistent limit to solar axions compatible with solar physics. During the last two
decades, the helioscope principle has been advanced by the CERN Axion Solar
Telescope (CAST [13, 25–31]) pushing the sensitivity to solar axions significantly
due to innovative concepts employed by the experiment: a superior magnet, X-
ray optics, and enhanced detectors. The next generation of axion helioscopes, the

Fig. 5.8 A conceptual setup of an axion helioscope using X-ray focusing to enhance the
experimental sensitivity. Axions from the Sun are converted in a strong transverse magnetic field
and the emerging photons are then focused by an X-ray telescope into a small focal spot. A low
background detector is located in the focal plane of the optics to capture an image of the photons
produced by conversion from axions. Figure adapted from Ref. [36]
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International AXion Observatory (IAXO, [36–39]) and its intermediate-scale phase
BabyIAXO, will build on these improvements and further enhance solar axion
searches by pushing sensitivities far beyond the ones reached by CAST.

Generally speaking, so far each generation of axion helioscopes improved the
sensitivity to g10 by a factor of ≈ 7, mostly by successfully recycling existing
magnets and other equipment. Improving over the current state of the art provided
by CAST requires purpose-designed components for the key helioscope pieces
(magnet, detectors) as well as focusing devices without which the use of the full
potential of these new components would be impossible. To maximize the figure of
merit (FOM) f of a helioscope

f = fM × fO × fD × fT , (5.36)

a global optimization of the FOM for magnet fM , optics fO , detectors fD , and
exposure fT is needed. These are defined as

fM = B2L2A, (5.37)

fO = εo√
a
, (5.38)

fD = εd√
b
, (5.39)

fT = √εt t, (5.40)

where B, L, and A are the magnet parameters (field strength, field length, and
cross-sectional area), and εo, εd , and εt efficiencies of optics, detectors, and data
acquisition, respectively. Furthermore, a is the total focal spot area of the telescopes
and b the detector background normalized to unit area and time, while t is the total
exposure time for observations of the solar disk center. It is worth noting that in
order to maximize f , all components need to be optimized simultaneously in a
multi-parameter process considering the expected axion spectrum. The helioscope
figure of merit is directly proportional to the signal-to-noise (S/N) enhancement,
and therefore a measure for the sensitivity to the coupling that can be used to easily
compare experiments.

Tutorial: Figure of Merit for Helioscopes

According to Eqs. (5.37)–(5.40), the figure of merit for a helioscope can most
easily be boosted by improving the magnet if optics and detectors can be built to
fully enable the use of these improvements. As Eq. (5.37) clearly shows, increasing
the magnetic field strength B and the length L of the magnet would be the most
efficient ways. Why do next-generation helioscopes opt to increase the cross-
sectional area A instead?
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Since the magnet parameters (B, L, and A) are all interconnected, they need to
be optimized together. While magnets with larger fields (> 10 Tesla) have been
previously built, they are usually much shorter than the current state of the art
(CAST, with magnet length ≈ 10 m) or cannot be tilted sufficiently to track the Sun
without impairing the cooling needed for superconductive operation. Increasing the
length while keeping a (relatively) lower magnetic field B would be technologically
feasible. However, the length L feeds into the coherence condition (see Eq. 5.25),
i.e., for efficient conversion the product of momentum transfer q and length L must
be small. For large L, the accessible axion masses become small as can be seen
from Eqs. (5.26) and (5.33). Therefore, the best approach is to increase the cross-
sectional area A of the magnet. Note that this in turn, however, requires the use
of large focusing optics covering the complete magnet bore in order to focus the
putative signal onto a small spot such that small-area detectors can be used. This is
necessary since axion searches are by definition rare-event searches and the detector
background needs to be as low as possible (zero background is the goal), which is
generally only achievable with small-area detectors. Increasing the exposure time
increases the sensitivity, but the upper limit on gaγ γ (in the absence of an axion
signal) goes with the 8th root of time following Eqs. (5.34) and (5.35), i.e., in order
to improve the limit by a factor of 2, one would need to measure a factor of 28 times
longer. Considering that scanning axion masses with a buffer gas in the magnetic
field region needs many pressure steps and each step is usually measured for one
solar tracking, one would have to spend 256 days instead of 1 to achieve a factor 2
improvement in the upper limit on the coupling.

End of Tutorial

5.4.2 Current and Future Axion Helioscopes

5.4.2.1 The CERN Axion Solar Telescope (CAST)

To date, the CAST experiment has been the most powerful axion helioscope
ever built. The magnet drives the sensitivity of any helioscope due to the B2L2

dependence of the conversion probability as seen from Eq. (5.37): a 9 Tesla,
9.3 m superconducting magnet is the primary element at the heart of the CAST
experiment. With its two magnet bores of 14.5 cm2 each, it was originally built as
one of the early prototypes for the Large Hadron Collider (LHC) at CERN, which
had straight bores as opposed to the bent ones fabricated later on and eventually
used in the LHC, and then it was repurposed for axion searches with CAST. The
magnet itself boosts the conversion probability by 2 orders of magnitude [26]
compared to the predecessor helioscope [35]. CAST is equipped with an elevation
and azimuthal drive, such that the experiment is able to follow the Sun twice a
day during sunrise and sunset for 90 min each. When not tracking the Sun, CAST
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Fig. 5.9 Experimental setup of the CERN Axion Solar Telescope (CAST). The magnet (blue) is
installed on a movable platform (green), and detectors are mounted on either end of the magnet.
On the right side, the original telescope used at CAST is visible (silver). Also shown is the cryo
cooling tower of the experiment with the helium supply lines. Credit: CERN/CAST

acquires background data in a magnet parking position. Right from the start, this
helioscope employed an X-ray telescope in combination with a Charge Coupled
Device (CCD) as a focal plane detector [40] on one of its four magnet bore exits.
A second optic was installed later on [41]. CCDs are highly sensitive, pixelated
photon detectors based on semiconductor technology (less sensitive versions can
be found in many digital cameras and imaging devices). The CCD of CAST is a
spare flight detector from the European Space Agency’s XMM Newton mission and
has greatly enhanced the sensitivity of the helioscope. A variety of other detectors
have been used over the course of the experiment, including several generations
of novel MICROMEsh GAseous Structure (MICROMEGAS, MM, [42]) and
microbulk MM detectors (i.e., a more advanced version of MM detectors), a time
projection chamber (TPC, [43]) and other more specialized equipment (see [31]
and the references therein for further details). Both TPCs and MMs are gaseous,
low background particle detectors combining elements of Multiwire Proportional
Chambers (MWPC) and conventional drift chambers. While TPC and MM share
the same detection principles of amplifying charges that are created by ionization
in the gas volume of the detectors, the MM detectors represent a more recent
evolution that includes a metallic micro-mesh positioned in close proximity to the
readout electrode dividing the gas region into two. This is a key feature that enables
high gain as well as the ability to detect fast signals and also allows for ultralow
background performance benefiting from the use of low-radioactivity materials used
to build the detectors. Figure 5.9 shows the CAST experiment including all its main
components: magnet, optics, and detectors.

The experiment was divided into two main phases: (1) CAST Phase I (vacuum)
and (2) Phase II (gas phase with 4He and 3He in the magnet bores). After completion
of both phases, the experiment revisited some vacuum measurements to make
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use of improved detection techniques and dedicated some time to chameleon2

searches [47–49], which are candidates for dark energy, and the use of microwave
cavities within the CAST magnet. During its initial observational program (Phase
I), CAST operated with evacuated magnet bores studying axion masses ma <

0.02 eV yielding an upper limit result of gaγ γ < 8.8 × 10−11 GeV−1 at the 95%
confidence level [13, 26]. During CAST Phase II operations, the magnet bores
were filled with 4He and 3He to extend the search range up to axion masses of
ma = 1.17 eV with average limits of gaγ γ � 2.3–3.3 × 10−10 GeV−1 at 95% C.L.
for masses larger than 0.02 eV [27, 28]. For Phase II, the exact values depend on
the individual pressure setting of the buffer gases. In recent years, improvements
of the previous vacuum data results have been enabled with upgraded MM detector
systems coupled to a novel X-ray telescope, the IAXO pathfinder system [41]. This
approach using improved instrumentation resulted in a new benchmark limit for
ma < 0.02 eV of gaγ γ < 0.66 × 10−10 GeV−1 (95% C.L.) [31]. One of the main
goals of the CAST experiment has been to supersede the most stringent limits from
astrophysical observations of horizontal branch stars (see Chap. 3) at the level of
gaγ γ � 0.8 × 10−10 GeV−1 [50]. CAST has studied both QCD and non-QCD
axions, but most notably excluded KSVZ axions (see Chap. 3) around the 1 eV
axion mass as shown in Fig. 5.10. Furthermore, the experiment has delivered results
on more exotic physics cases of solar axions from M1 transition of Fe-57 nuclei [51],
high-energy (MeV) axions from 7Li and D(p, γ )3He nuclear decays [52], axion–
electron coupling constants for solar axions [53], and other ALP searches, such as
for chameleons [47–49].

Tutorial: Understanding Helioscope Exclusion Plots

Figure 5.10 is a typical example of a helioscope exclusion plot, showing the
upper limit obtained by a solar axion search in the case where no signal was detected
above background. Why does the red line (measurements in vacuum) sharply rise at
ma ≈ 10−2 eV and why does the black upper limit (combined previous vacuum and
buffer gas phase results) display a “wiggly” structure for the higher axion masses?

The sharp rise of both curves at around 10−2 eV is the result of a loss of coherence
when operating with vacuum in the magnetic field region. Note that the value of ma

for which coherence is lost depends on the length L of the magnetic field, as seen
from Eq. (5.25), and therefore depends on the specific helioscope. The black line
is a combination of vacuum and buffer gas measurements, i.e., here coherence is
restored—as can be seen from Eq. (5.33)—by scanning through small pressure steps
with a buffer gas (4He and 3He, in the case of CAST). Each “wiggle” in the upper
limit corresponds roughly to one specific pressure setting, i.e., a specific narrow

2 Chameleons [44, 45] are hypothetical scalar particles postulated as candidates for dark energy
and interact less strongly with matter than with gravity. Depending on the energy density of
their surrounding environment, these particles have a variable effective mass. A more detailed
description of chameleons and their expected properties can be found in Ref. [46].
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Fig. 5.10 CAST exclusion plot showing the recent benchmark result [31] of the experiment
obtained with the IAXO pathfinder system [41]. The exclusion limits for gaγ γ at 95% C.L. are
shown for previous data (black) and the latest results (red). QCD axions are expected to live
in the yellow model band and the green line indicates the standard KSVZ axion model with
E/N = 0. This ratio is the quotient of electromagnetic anomaly E and color anomaly N of
the axion current [54, 55] and can acquire various values depending on the different axion models
(see Chap. 2). Figure taken from Ref. [31], in which the interested reader will also be able to find
additional details and references

axion mass range. The exact values depend on the number of actually observed
(background) counts during the tracking, the exact time spent at the respective
pressure setting, detectors active during tracking, and so on. Note also that the factor
of roughly 2–3 between the vacuum and buffer gas measurements is due to the
different exposure times (as well as improved detection systems): the vacuum phase
includes about 2 years of tracking data, while 2+ pressure steps were measured per
day during the gas phase.

End of Tutorial
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5.4.2.2 The International Axion Observatory (IAXO)

The most straightforward way to improve over current helioscope designs (see the
tutorial on helioscope figures of merit earlier in this chapter) is to boost the cross-
sectional area of the magnet, equip all magnet bores with X-ray focusing devices,
and utilize ultralow background detectors—these improvements are the basis for
the next-generation axion helioscope IAXO [37]. The expected gain of IAXO over
CAST is a factor of 104–105 in signal-to-noise ratio, which corresponds to an
improvement in sensitivity to the coupling constant gaγ γ by≈ 30×. These advances
promise sensitivities to discover axionlike particles with a coupling to photons as
small as gaγ γ ≈ 10−12 GeV−1 or to electrons down to gaee ≈ 10−13. IAXO also
has the potential to find QCD axions in the 1 meV–1 eV mass range where these
particles are able to solve the strong CP problem. Figure 5.11 shows the envisioned
layout of the IAXO experiment.

Currently being designed, IAXO represents the next generation of axion helio-
scopes and builds on technologies with a proven track record in CAST as well as
other particle physics experiments [56, 57] and astronomy missions [58, 59]. The
key piece of IAXO is a 25 m long magnet with a 2.5 T (5.1 T) average (peak) field.
For the first time, a helioscope will use a toroidal multibore configuration [60] with
8 coils of 70 cm diameter each and a total diameter of 5.1 m resulting in an intense

Fig. 5.11 Schematic view of the IAXO experiment. The 25 m long magnet with its 8 bores is
shown along with eight X-ray optics and detectors, the flexible service lines, cryogenics, power
service units, and the horizontal and vertical drive system. A lifesize person has been added for
comparison. Figure taken from Ref. [39]
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field over a large conversion volume. The magnet figure of merit fM alone provides
a 300× improvement over CAST.

Each of IAXO’s 8 bores will be covered by a 70 cm diameter telescope adopted
from space science and optimized for axion searches. Telescopes for X-rays are
based on the principle of total external reflection of light at grazing incidence.
Therefore, the angle of incoming photons in the keV range needs to be below a
critical angle (≈ 1 deg) in order for the X-rays to be reflected rather than absorbed.
Reflectivity can be further enhanced by making use of Bragg’s law, resulting in
constructive interference via coating the mirror substrates with a “multilayer.”
Multilayers consist of periodic or non-periodic structures of alternating thin film
layers of two or more materials (absorbers and spacers) deposited on an optical
substrate. The focusing devices for IAXO will be built based on segmented glass
technology originally developed for NASA’s Nuclear Spectroscopic Telescope
Array (NuSTAR, [58]) mission and replicated optics similar to those flown on
the JAXA/NASA satellites Hitomi (ASTRO-H, see [59]) and XRISM [61]. While
segmented glass optics are assembled out of thousands of individual mirror pieces,
replicated optics are built up from multiple full revolution shells. For IAXO, the
number and position of the substrates as well as the exact prescription for the coating
are being carefully designed to optimize the throughput of the optics and match
both the axion spectrum and the detector responses [62], making use of the IAXO
pathfinder results [41].

•? Problem 5.4 Estimating the Focal Spot Size for Solar Axion Observations

Given that the region of the Sun from which most axions are expected has an extent
of sobject = 3 arcmin and the imaging capability of an envisioned IAXO optic is
soptic = 2 arcmin, estimate the expected focal spot area for a focal length of 5 m.

Solution on page 331.

The focal plane detectors will be ultralow background, pixelated devices to image
the focused signal. In order to achieve the low background levels required for an
efficient axion search (� 10−7–10−8 counts/keV−1cm−2s−1), these detectors are
fabricated from radiopure materials and require sophisticated shields. The baseline
technology for IAXO will use small gaseous detectors with pixelized readout planes
(Microbulk MICROMEGAS [42, 63]) as previously developed and tested at CAST.
In addition, other detector technologies are being studied [39] to reach higher
sensitivities, lower energy thresholds, and better energy resolution for applications
such as detection of solar axions from ABC processes via their gaee coupling (see
Sect. 5.1.2). Just like CAST before, IAXO will have a gas phase extending the
helioscope’s sensitivity to QCD axions at the higher axion masses.

As an intermediate step toward IAXO, BabyIAXO [64] is being designed and
is just moving into the beginnings of its construction phase. BabyIAXO will be a
scaled-down version of IAXO to test all IAXO components while simultaneously
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delivering first significant science results to supersede CAST’s latest benchmark
results. BabyIAXO will feature a 10 m long magnet with 2 bores of 60–70 cm
diameter and two optic detector systems similar in design and layout to the ones
of the full-scale IAXO experiment. Most likely, the experiment will be equipped
with custom-designed optics close to the final IAXO telescope specifications and
a telescope that is a flight spare from ESA’s XMM Newton mission [65]. The
baseline detectors for BabyIAXO are envisioned to be building on MICROMEGAS
microbulk technology.

5.4.2.3 Physics Prospects of IAXO

The physics prospects for IAXO and BabyIAXO in comparison to current best
limits from CAST and astrophysical hints (see Chap. 3) are shown in Fig. 5.12:
at the high-mass end of the axion mass range large parts of QCD axion model space
(KSVZ [8, 9] and DFSZ [10, 11]) can be tested, including viable dark matter models.
Furthermore, the ALP miracle [66] parameter space in which ALPs simultaneously
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solve dark matter and inflation can be studied. Also, at the high-mass end, IAXO
will test non-hadronic models (axion–electron coupling) that would be able to
explain the stellar cooling anomaly [67]. At the lower end of the axion masses, ALP
parameter space invoked by observed hints of the anomalous transparency of the
Universe to ultrahigh-energy (UHE) photons will be accessible to IAXO (partially
with BabyIAXO), and in the intermediate axion mass range, there is a large region
of parameter space that BabyIAXO and IAXO can probe for the very first time and
in which viable ALP cold dark matter could exist.

In the case of a discovery, the study of the spectral features of the signal
would provide additional insight into the nature of the new axionlike particle.
With sufficient energy resolution and statistics, the measured spectrum could be
decomposed as a sum of an ABC contribution and a Primakoff component. For
adequate parameter ranges, it has been shown that independent determination of
gaγ γ and gaee should then be possible [68]. In particular, the narrow lines of Fig. 5.2
could first be used to unambiguously identify an ABC component and, eventually,
they could be studied as a probe for solar metallicity [69]. Moreover, for values of
ma at the onset of loss of coherence, the measured spectrum gets distorted (depleted)
at low energies. Again, with sufficient energy resolution and statistics, this effect can
be used to determine the mass of the axion for a certain region of parameters [70].

Although this chapter is devoted to axions from the Sun, it is worth mentioning
that there is another astrophysical source whose axions could potentially be detected
with the help of helioscopes: namely, a nearby supernova (SN) explosion. In the
first 10 s after the bounce of a core-collapse SN, axions are copiously produced
via nucleon–nucleon axion-bremsstrahlung [71]. The energy of these axions can
be several tens of MeVs, and they could in principle convert back into photons
in a helioscope and be detected there, provided the experiment is equipped with
appropriate high-energy detectors. According to [72], if the SN explosion occurs
within a few hundred parsecs from Earth, the axions arrive in sufficiently high
numbers, and one can expect a detectable, even though potentially small, signal
in future helioscopes like BabyIAXO or IAXO. Apart from being equipped with
gamma-ray detectors, the helioscope should point to the SN in advance of the actual
explosion, something that could be accomplished with the help of a pre-SN neutrino
alert.

In summary, IAXO and BabyIAXO are the next generation of axion helioscopes
and will dramatically increase the sensitivity to solar axions compared to CAST,
the currently most powerful axion helioscope. Furthermore, these novel, large-scale
experiments also have the potential to serve as a multi-purpose facility for generic
axion and ALP research in the coming decade, e.g., by incorporating microwave
cavities and functioning as a haloscope (amongst other options). Together helio-
scopes, haloscopes, and laboratory searches provide complementary approaches to
finally close in on QCD axions, axionlike particles, and other dark matter candidates
to either discover these elusive particles or strongly constrain and potentially rule out
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their existence. For an instructive and detailed recent review of experimental axion
and ALP searches, see Ref. [14].

•? Problem 5.5 Calculating an Exclusion Plot Using the Maximum
Likelihood Method

While the goal of every axion search is obviously to find the (still hypothetical)
particle, if no signal above background is detected, one can still extract useful
knowledge from the observations and exclude previously viable parameter space
via an upper limit calculation for the axion–photon coupling constant gaγ γ . Using
a helioscope operated with buffer gas in the magnetic field region as an example
(e.g., CAST’s Phase II with 4He), i.e., low statistics per pressure step, outline how
an upper limit at 95% confidence level can be obtained using an extended maximum
likelihood method under the assumption that uncertainties in the background can be
neglected. Keep in mind that neighboring pressure settings can provide additional
information about a specific density step. Here, the expected number of photons
from axion-conversion Nik at a specific gas density setting pk (kth setting) in the
energy bin Ei (ith energy bin) is given as

Nik =
∫ Ei+1

Ei

d�i

dEa

Pa→γ,ik εi tk A dEa. (5.41)

How can results from multiple pressure settings, detectors, and even experimental
phases be combined to a single upper limit in the end?

Solution on page 331.

5.5 Alternative Experiments to Search for Solar Axions

5.5.1 Stationary Helioscopes

While conventional axion helioscopes are constructed to point at and follow the Sun,
other approaches have also been considered. One such novel modulation helioscope
technique uses a stationary setup in which a gaseous time projection chamber (TPC)
is installed in a strong magnetic field, such as the Axion Modulation hELIoscope
Experiment (AMELIE, see [73]). Since solar axions are most efficiently converted
when their incidence direction is perpendicular to the magnetic field, a modulation
signal varying during the day due to Earth’s rotation is expected. Given that the
signal would furthermore vary over the course of the year, axions would leave
a distinct temporal signature in addition to their usual spectral one. This novel
helioscope technology is not competitive with the standard helioscope technique
for low axion masses (ma � 0.1 eV) due to the fact that coherence of conversion
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is lost because of the short range of the X-rays from axion conversion in the high-
pressure or high-Z gas used for large photon absorption. For higher axion masses,
however, the approach might prove useful since the scanning of axion masses with
a buffer gas in a conventional axion helioscope to study model-compatible axions at
the higher end of the mass range remains challenging.

5.5.2 Crystalline Detectors Using Primakoff–Bragg Conversion

Instead of an external magnetic field, axion–photon conversion can also take place in
the electromagnetic field at the atomic level inside materials. Therefore, crystalline
detectors can be used to coherently convert solar axions into photons, which is the
case when the angle of incidence of the axion fulfills the Bragg condition with the
plane of the crystal [74, 75]. Pioneering results investigating these Bragg patterns
were achieved with the SOLAX, COSME, and DAMA experiments. SOLAX used
a Germanium spectrometer to study axion masses ma � 1 keV and derived an
upper limit on the coupling constant of gaγ γ (95% CL) < 2.7 × 10−9 GeV−1 for
this range [76]. COSME provided a similar result with its Ge detector yielding
gaγ γ (95% CL) < 2.78× 10−9 GeV−1, independent of the axion mass [77]. The best
result so far was achieved by DAMA with a NaI(Tl) crystal [78]: gaγ γ (90% CL) <
1.7 × 10−9 GeV−1, again independent of the axion mass. It is worth noting that
these bounds are not as strong as those derived from solar physics. Even though
future experiments like CUORE [79] are expected to provide improved sensitivity
to gaγ γ , they will not be able to compete with axion helioscopes for axion masses
below 1 eV. While for higher masses they become more competitive, these heavy
axions are disfavored by cosmology and astrophysics [80] (see also Chap. 3).

5.5.3 Non-Primakoff Effect Conversions

While the axion–photon coupling constant is the preferred parameter to study for
most axion searches, since it is generic to all axion models, axions could also
interact with matter via their coupling to electrons and nucleons. WIMP searches
using liquid xenon detectors [81–83] have looked for potential signals due to the
axio-electric effect [84] in their ionization detectors [85, 86]. The axio-electric
effect is similar to the photo-electric effect, but, instead of a photon, an axion hits
the electron and ionizes the target atom (e.g., xenon). The advantage here is that
the final signals depend directly on gaee rather than on a product of the axion–
electron and the axion–photon coupling. LUX sets the most competitive limit at
a 90% C.L. as gaee < 3.5 × 10−12, which is, however, not yet able to compete
with limits from astrophysics [67]. Recently, the XENON collaboration reported
a 3.5σ excess compatible with a potential axion signal [87] but cautioned that
tritium background could explain the observed feature and cannot be excluded as
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the real cause for the excess at present time. Measurements with the next-generation
XENONnT experiment will enable further studies of the observed feature. (Editor’s
note: indeed, after this chapter was written, the XENONnT experiment ruled out
axions as the cause of this excess, see arXiv:2207.11330.)

To probe axion–nucleon couplings, monochromatic solar axions emitted in
M1 nuclear transitions can be searched for with detectors containing the same
nuclide (see [14] and the references therein for a more detailed discussion). These
experiments are however not able to compete with astrophysical limits.

However, for the time being, helioscopes remain the most promising approach to
find solar axions and ALPs.
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Chapter 6
Magnetic Resonance Searches

John W. Blanchard, Alexander O. Sushkov, and Arne Wickenbrock

Abstract Ultralight bosonic dark matter (UBDM), such as axions and axionlike
particles (ALPs), can interact with Standard Model particles via a variety of
portals. One type of portal induces electric dipole moments (EDMs) of nuclei
and electrons and another type generates torques on nuclear and electronic spins.
Several experiments search for interactions of spins with the galactic dark matter
background via these portals, comprising a new class of dark matter haloscopes
based on magnetic resonance.

6.1 Searching for Axionlike Dark Matter via Nuclear
Magnetic Resonance

Searches for ultralight bosonic dark matter (UBDM) based on magnetic resonance
rely on the interaction between the UBDM field and spin. The possible forms of
these interactions are detailed in Chap. 2 (see Table 2.1 and surrounding discussion).
Here we focus on axions and axionlike particles (ALPs) and write these interactions
in a format that aids the description of relevant experiments. We also assume that
the axion or ALP field is the dominant component of the dark matter energy density.
Chapter 8 covers searches that do not make this assumption.
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6.1.1 Interactions with Nuclear Spins

The electric dipole moment (EDM) interaction of the axion field a with nuclear spin
I is described by the non-relativistic Hamiltonian:

HEDM = gdaE∗ · I/I, (6.1)

where gd is the coupling constant and E∗ is the effective electric field, see
below. The gradient interaction is described by the non-relativistic Hamiltonian (see
discussion in Sect. 2.4.3):

Hgr = h̄cgaNN∇a · I , (6.2)

where gaNN is the coupling constant. BothHEDM andHgr have the same form as the
Zeeman Hamiltonian,HZ = −h̄γB∗ · I , where γ is the nuclear spin gyromagnetic
ratio, and B∗ is an effective magnetic field, proportional either to aE∗ or to ∇a. To
a first approximation, the axionlike dark matter field a(t) = a0 cos (ωat) oscillates
at the Compton angular frequency ωa = mac

2/h̄, where c is the speed of light
in vacuum, h̄ is the reduced Planck constant, and ma is the unknown ALP mass.
Therefore the effective magnetic field B∗ also oscillates at this angular frequency.

We consider here magnetic resonance experiments that search for spin energy
shifts or for spin precession induced by these oscillating interactions. The energy
shift is quantified by the expectation value of the relevant Hamiltonian, 〈H〉,
where H could be either HEDM or Hgr. To quantify the rate of spin precession,
it is convenient to define the Rabi frequency �a . Assuming that the effective
magnetic field B∗ is linearly polarized, in the rotating wave approximation this Rabi
frequency is given by

�a = 〈H〉
2h̄

. (6.3)

6.1.1.1 The EDM Interaction with P,T-odd Moments of Nucleons and
Nuclei

As discussed in Chap. 2, the axion concept was invented as a solution of the strong
CP problem of quantum chromodynamics (QCD). It is the QCD axion interaction
with the gluon field that achieves this goal, by relating the θ parameter of the
QCD Lagrangian to the axion field: θ = a/fa . In the presence of a dynamical
background axionlike field a(t), the oscillating θ(t) can lead to experimentally
observable effects. For an isolated nucleon, θ induces an electric dipole moment
(EDM):

dn = gda = 2.4× 10−16 θ e · cm = 2.4× 10−3 θ e · fm, (6.4)
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calculated with 40% accuracy [1, 2]. We note the unit conversion: 1 e · cm = 1.5×
1013 GeV−1. The neutron EDM experiment discussed in Ref. [3] and the proton
storage ring experiment described in Ref. [4] search for these oscillating nucleon
EDMs.

When the nucleon is bound inside an atomic nucleus, this EDM is screened.
According to the Schiff theorem, the EDM of a point-like nucleus is completely
screened by atomic electrons in the low-frequency limit [5]. Taking into account
finite nuclear size, the nuclear Schiff moment is given by

S = e

10

(
〈r2r〉 − 5

3Z
〈r2〉〈r〉

)
, (6.5)

where e is the elementary electric charge, Z is the atomic number, and 〈rk〉 =∫
rkρ(r)d3r are the moments of nuclear charge density ρ(r). The Schiff moment

sources the (P)arity- and (T)ime-odd electrostatic potential

ϕ(r) = 4π(S · ∇)δ(r). (6.6)

Let us consider two contributions to the nuclear Schiff moment: (1) the permanent
nucleon EDM dn, and (2) P,T-odd nuclear forces.

1. The contribution due to dn arises because of non-coincident densities of nuclear
charge and dipole moment. It can be estimated using Eq. (8.76) from Ref. [6]:

4πSEDM ≈ dn × 4π

25

(K + 1)I

I (I + 1)
r2

0 , (6.7)

where K = (
− 1)(2I + 1) = 1 and r0 = 1.25A1/3, 
 being the orbital angular
momentum of the valence nucleon. Note that the definition of the Schiff moment
in Ref. [6] differs from ours by a factor of 4π , which appears on the left-hand
side.

2. The P,T-odd nuclear interaction of a non-relativistic nucleon with nuclear core is
parametrized by strength η [7]:

W = GF√
2

η

2mn

σ · ∇ρ(r), (6.8)

where GF ≈ 10−5 GeV−2 is the Fermi constant, mn is the nucleon mass, σ is
its spin, and ρ(r) is the density of core nucleons. A vacuum θ angle gives rise to
this interaction via the P,T-odd pion-nucleon coupling constant [6, 8]:

η = 1.8× 106 θ. (6.9)

Nuclear physics calculations express the nuclear Schiff moment of a particular
nucleus in terms of parameter η, see, for example, Ref. [9].
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Once the nuclear Schiff moment is expressed in terms of θ , atomic calculations
are used to connect physical observables to the value of the Schiff moment. For
example, the observable can be the value of the energy shift of a nuclear spin state
in an applied electric field. The connection can then be made to the effective electric
field E∗ defined in Eq. (6.1). This calculation is performed for 207Pb nuclear spins
in ferroelectric crystals in Refs. [10, 11]. For ferroelectrically poled PMN-PT (lead
magnesium niobate-lead titanate) it is found that the effective electric field is E∗ =
340 kV/cm with estimated uncertainty ≈50% [12]. The effect on nuclear spins is
equivalent to that of an effective magnetic field

B∗EDM = −
gdaE∗

h̄γ I
, (6.10)

where γ is the spin gyromagnetic ratio.

6.1.1.2 The Gradient Interaction

In order to calculate the gradient of the axionlike field a that appears in Eq. (6.2),
it is necessary to consider the integral over the velocity distribution of the axionlike
galactic dark matter field. Importantly, there are contributions from both the lab
velocity with respect to the galactic rest reference frame, and from the spread of the
dark matter virial velocity distribution. The effect on nuclear spins is equivalent to
that of an effective magnetic field

B∗aNN = −(cgaNN/γ )∇a, (6.11)

where γ is the spin gyromagnetic ratio.

6.1.2 Interactions with Electron Spins

Electron spins can also couple to the ALP field via the derivative fermion coupling.
This gradient interaction generates the electron spin Hamiltonian with the same
form as Eq. (6.11). For an electron spin the coupling constant in the Lagrangian
is often written as gaee/(2me), where me is the electron mass, and gaee is unitless.
However, the physics is exactly the same—an electron spin experiences a torque
due to the gradient ∇a, which acts as an effective magnetic field, whose magnitude
is proportional to gaee. There are stringent astrophysical limits on the coupling
constant gaee, and the QUest for AXions experiment (QUAX) is a laboratory search
for this interaction at frequencies near 10 GHz [13].
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6.2 Basics of NMR

Nuclear magnetic resonance (NMR) encompasses a broad and versatile set of
techniques that have found application in a wide range of disciplines. A typical
NMR experiment involves measurement of nuclear spin dynamics in an applied
bias magnetic field (Fig. 6.1).

In pulsed magnetic resonance experiments, the spins are perturbed by resonant
radiofrequency (RF) magnetic field pulses, and the subsequent spin evolution is
detected. Since the introduction of digital fast Fourier transform algorithms, most
modern applications of NMR utilize the pulsed scheme [14, 15]. Searches for
permanent electric dipole moments are an example of pulsed NMR experiments
in the fundamental-physics context [16]. In continuous wave (CW) magnetic
resonance experiments, the excitation field is present continuously and the bias
field is varied. Spin-based dark matter haloscope experiments usually employ the
CW scheme [17]. Here we provide a basic introduction to NMR, in order to help
readers make sense of nuclear-spin-based dark matter searches. For a more thorough
treatment, the reader is referred to Refs. [18–20].

6.2.1 Nuclear Magnetism

In virtually all cases,1 detection of an NMR signal involves measurement of the
magnetic field produced by nuclear spins in a sample. The magnetic moment of a

Fig. 6.1 A schematic of a
typical NMR experiment. M
is the nuclear spin
magnetization of the sample.
B0 is the bias magnetic field,
and B1 sinω1t is the
“pseudo-magnetic” field due
to interaction with ultralight
dark matter. The spin-1/2
level diagram indicates spin
polarization as larger
population in the ground spin
sublevel, and spin coherence
induced by the excitation
field B1, if it is resonant with
the spin Larmor frequency

1 Notable exceptions include electrically detected NMR [21] and beta-NMR [22, 23].



178 J. W. Blanchard et al.

nucleus with non-zero spin is given by

μ = gIμNI

h̄
, (6.12)

where gI is the g-factor of the nuclear spin I . In NMR it is typically convenient to
rewrite the nuclear magnetic moment in terms of a nucleus’ gyromagnetic ratio,

γ = gIμN

h̄
, (6.13)

where gI is the nuclear g-factor and μN is the nuclear magneton, such that the
magnetic moment may be written in condensed form as

μ = γ I . (6.14)

The total magnetization of an ensemble of spins can then be written as

M = Nh̄γP0I , (6.15)

where N is the number density of nuclear spins, and P0 is the ratio of the spin
state population difference to the total population, generally referred to as the spin
polarization. Explicitly, for spin-1/2 nuclei,

P0 = n↑ − n↓
n↑ + n↓

, (6.16)

where n↑ represents spins with mI = +1/2, and n↓ represents spins with
mI = −1/2. For nuclear spin polarization at thermal equilibrium, the Boltzmann
distribution gives

n↑ = e−E+/(kBT ) (6.17)

n↓ = e−E−/(kBT ), (6.18)

where E± is the energy of the state with mI = ±1/2, kB is the Boltzmann constant,
and T is the temperature of the system. In a large magnetic field, the dominant
energy term is the Zeeman interaction,

HZ = −h̄γB · I , (6.19)

where B is the applied magnetic field. For a magnetic field B0 in the ẑ direction, the
energy is

E = −h̄γB0mI , (6.20)

so Eq. (6.16) may be written as
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P0 = eh̄γB0/(2kBT ) − e−h̄γB0/(2kBT )

eh̄γB0/(2kBT ) + e−h̄γB0/(2kBT )
= tanh

(
h̄γB0

2kBT

)
. (6.21)

Under practically achievable conditions, the so-called high-temperature approxi-
mation is valid, so we keep only the leading term of the Taylor expansion of the
hyperbolic tangent,

P0 ≈ h̄γB0

2kBT
, (6.22)

such that

M ≈ Nh̄2γ 2B0

2kBT
I . (6.23)

From this, we can see that the magnitude of the observable NMR signal depends on
the spin density, gyromagnetic ratio, and (assuming thermal spin polarization) the
magnetic field strength.

•? Problem 6.1 Magnetic Field Produced by a Spherical Sample

(a) Calculate the nuclear magnetization of liquid Xe in a field of 1 T at 170 K.
Assume a density of 3.1 g/mL, atomic weight 131.3 g/mol, a 26.4% abundance
of 129Xe, and a xenon gyromagnetic ratio of −7.441× 107 rad T−1 s−1.

(b) Consider a spherical sample of 129Xe with diameter 1 cm. What is the magnetic
field produced by the sample (at 1 T and 170 K) at a distance of 1 cm from the
center of the sample along the magnetization axis? What is the magnetic flux
through a circular coil of radius 1 cm located 1 cm from the center of the sample
along the magnetization axis?

(c) 129Xe polarizations far above those achievable at thermal equilibrium can be
achieved using a technique called Spin-Exchange Optical Pumping (SEOP) [24,
25]. If a nuclear spin polarization of 10% is achieved, what is the magnetic flux
that would arise in the coil arrangement above?

Solution on page 334.

Because the energy difference between nuclear spin states is generally small
compared to thermal energy, h̄γB0  kBT , spin polarization at thermal equilibrium
is many orders of magnitude smaller than unity. Considering that the NMR
signal is proportional to polarization, sensitivity (either in dark matter searches
or in chemical analysis) can be greatly enhanced through the use of so-called
hyperpolarization techniques, which generate non-equilibrium spin states with
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polarization approaching 100%. Examples of such techniques include dynamic
nuclear polarization (DNP) [26, 27], spin-exchange optical pumping (SEOP) [24],
metastability exchange optical pumping (MEOP) [28], and parahydrogen-induced
polarization (PHIP) [29–31].

6.2.2 Nuclear Spin Dynamics

A phenomenological description of the evolution an ensemble of nuclear spins in a
magnetic field is given by the Bloch equation:

dM

dt
= γM × B − Mx x̂ +My ŷ

T2
− Mz −M0

T1
ẑ , (6.24)

where γ is the nuclear gyromagnetic ratio, M is the nuclear magnetization vector,
M0 is the magnitude of the equilibrium magnetization, as derived in Eq. (6.23), and
B is the magnetic field, oriented along the z-axis. We have also introduced two
characteristic relaxation times: the longitudinal relaxation time T1 and the transverse
relaxation time T2. The magnetization dynamics are a combination of relaxation and
precession about the magnetic field at the Larmor frequency

ωL = γB . (6.25)

The longitudinal relaxation time may be interpreted as the characteristic time
it takes for the spin system to reach equilibrium. For example, if an unpolarized
sample is placed into a magnetic field, the magnetization will build up as

M(t) = M0

(
1− e−t/T1

)
. (6.26)

For hyperpolarized spin systems, the magnetization generally decays to its equilib-
rium value with characteristic time T1 as well.

The transverse relaxation time may be thought of as the nuclear spin coherence
lifetime, corresponding to the exponential decay of precessing magnetization in the
xy plane. As an example, we consider the case where we have prepared a spin state
where our sample is magnetized along x̂ (by applying, for example, a −π/2 pulse
along ŷ to rotate spins initially oriented along ẑ to along x̂). Then the magnetization
along x̂ will be

Mx(t) = M0 cos (γBt)e−t/T2 . (6.27)

The Fourier transform of this signal yields a Lorentzian peak at the Larmor
frequency with full-width at half maximum (FWHM)
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w1/2 = 1

πT2
. (6.28)

More specifically, T2 refers to the “intrinsic” dephasing time that would occur in
a perfectly homogeneous magnetic field. The transverse relaxation time in a real
magnetic field (i.e., possessing some inhomogeneity) is T ∗2 .

To understand how nuclear spins respond to oscillating magnetic (or axion)
fields, it is useful to transform into a rotating reference frame. Consider a driving
field along the x-axis: Bx(t) = 2B1 cosωt , which can be decomposed into two
counter-rotating components. In the reference frame rotating around the z-axis at
the frequency ω the magnetization components are M̃x , M̃y , and the Mz component
is unchanged. The connection between the laboratory-frame and the rotating-frame
magnetization components is:

Mx = M̃x cosωt − M̃y sinωt (6.29)

My = M̃x sinωt + M̃y cosωt. (6.30)

The steady-state solution of the Bloch equations in the rotating frame is:

M̃x = ωγB1T
2
2

1+ (T2ω)2 + γ 2B2
1T1T2

M0 (6.31)

M̃y = γB1T2

1+ (T2ω)2 + γ 2B2
1T1T2

M0 (6.32)

Mz = 1+ (ωT2)
2

1+ (T2ω)2 + γ 2B2
1T1T2

M0, (6.33)

where ω = ω − ωL is the drive detuning.
For a resonant (ω = 0) driving field that is far from saturation (γB1 

1/
√
T1T2), these equations become substantially simpler. We see that M̃x = 0,

M̃z ≈ M0, and

My ≈ γB1T2M0 cosωt. (6.34)

Together with Eqs. (6.10) and (6.11), this result allows us to convert the strength
of the axionlike dark matter EDM or gradient interaction to an experimental
observable: the transverse nuclear magnetization.
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6.2.3 Nuclear Spin Interactions

We will now consider some basic features of NMR spectra that arise due to various
spin interactions. An understanding of NMR spectra is needed for design and
calibration of NMR-based dark matter searches.

6.2.3.1 Chemical Shielding

Because most experiments are not conducted with bare nuclei, it is necessary
to generalize the Zeeman interaction of Eq. (6.19) to include local susceptibility
effects:

HCS = h̄γ I · (1− σ cs) · B0, (6.35)

where the chemical shielding tensor σ cs describes the effect of electrons producing
counteracting magnetic fields that “shield” the nucleus from the external field. This
chemical shielding interaction is particularly useful for chemists: different chemical
environments within a given molecule, labeled by subscript j , give rise to different
shielding σ cs,j , and therefore different peak shifts, which can be interpreted in
terms of electron density. For practical reasons, it is often convenient to refer to
the chemical shift relative to some reference, defined as δ = σ ref − σ cs. The shift
is typically measured in units of “parts per million” (ppm). For example, δ = 10−6

corresponds to a 1 ppm shift to higher frequency.2 From the perspective of dark
matter searches, these shifts can be problematic, as maximum sensitivity is achieved
if all spins in a sample have the same Larmor frequency. For example, consider the
case of ethanol, CH3CH2OH, which contains 102.8 moles of 1H per liter: 1/2 of the
hydrogens are in the CH3 environment, 1/3 are in the CH2 environment, and 1/6
of all hydrogens are in the OH environment. For comparison, methanol, CH3OH,
contains 98.9 moles of 1H per liter, and 3/4 of them are in the CH3 environment.
So on a per-peak basis, methanol gives roughly 50% more signal for the peaks
associated with the CH3 environment, as illustrated in Fig. 6.2b.

The tensor nature of the chemical shielding is also of note, as its principal axis
system is defined in the molecular frame. In liquid samples, rapid molecular tum-
bling averages out all components except for the isotropic part of the tensor, σ iso. In
the case of solid samples, however, the anisotropy of the chemical shielding tensor
persists, and different molecular orientations yield different NMR frequencies. In
single-crystal samples, NMR spectra consist of a countable number of peaks, which
shift depending on crystal orientation relative to the magnetic field. Polycrystalline
or powder samples, however, are composed of a large number of randomly oriented

2 In CW-NMR operating at a constant frequency, the chemical shift refers to a change in the
magnetic field, so δ = 10−6 corresponds to a 1 ppm shift to lower field. This is the historical
reason for the somewhat confusing NMR tradition of plotting spectra with an inverted x axis.
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Fig. 6.2 1H NMR spectra of ethanol (blue) and methanol (red), acquired at 1.4 T (60 MHz 1H
Larmor frequency), with the chemical-shift scale referenced to tetramethylsilane (TMS). For
simplicity, the hydroxyl (-OH) signals at 4.8 ppm are not shown in parts (b) and (c). (a) In the
low-resolution case—corresponding here to a line width of 10 ppm—ethanol yields slightly more
signal than methanol due the larger concentration of 1H. (b) For line widths on the order of
1 ppm (the line width shown is 15 Hz, or 0.25 ppm), chemical shifts can be resolved. Because
the (non-hydroxyl) hydrogens in ethanol are in two different chemical environments, the signal is
separated into two peaks—the signal at 1.2 ppm corresponds to the CH3 hydrogens and the signal
at 3.7 ppm corresponds to the CH2 hydrogens—each of which is smaller than the methanol signal.
(c) At higher resolution (the line width shown here is approximately 1.8 Hz, or 30 ppb), further
structure due to J -couplings can be seen in ethanol: the CH3 signal is split into a triplet by the CH2
hydrogens, and the CH2 signal is split into a quartet by the CH3 hydrogens. Note that the hydroxyl
protons do not induce splittings due to rapid chemical exchange

crystallites, which leads to a distribution of NMR resonances. Such distributions are
often hundreds of ppm wide, which reduces sensitivity. It is worth pointing out that
the so-called powder broadening is an example of inhomogeneous broadening—
the signal is broad not because of T2 relaxation, but because of the distribution of
orientations.
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6.2.3.2 Direct Dipole-Dipole Coupling

The Hamiltonian describing the direct dipole-dipole coupling of two nuclear spins
I 1 and I 2 is given by

H12 = μ0

4π

h̄2γ1γ2

r3
12

[
I 1 · I 2 − 3

(
I 1 · r̂12

) (
I 2 · r̂12

)]
, (6.36)

where γ1, γ2 are the gyromagnetic ratios of the two spins and r12 is the vector
between them. In magnetic fields much larger than the characteristic dipolar field,
the part of this Hamiltonian that commutes with the Zeeman interaction is:

H12 ≈ μ0

4π

h̄2γ1γ2

r3
12

(
1− 3 cos2 α

) [
Î1zÎ2z − 1

4

(
Î1+Î2− + Î1−Î2+

)]
, (6.37)

where α is the angle between r12 and the magnetic field vector, Î1± and Î2± are the
raising and lowering operators for the respective nuclear spins 1 and 2, where

Î+ = Îx + iÎy , (6.38)

Î− = Îx − iÎy . (6.39)

In NMR literature the dipolar Hamiltonian acting on the spin ensemble is often
written as

HD = h̄
∑

N;N ′>N

IN ·DNN ′ · IN ′ , (6.40)

where DNN ′ is a rank-2 symmetric tensor, and the sum is over all spin pairs in
the ensemble. Because the dipole-dipole coupling tensor is traceless, it is fully
averaged out by molecular tumbling in isotropic liquids. In “dilute” powdered solids
composed of isolated spin pairs, it is possible to resolve a double-peaked feature
called “Pake doublet” that arises due to the distribution of angles α for different spin
pairs. Solids with high nuclear spin density, which are of greater interest for dark
matter searches, cannot be considered in terms of isolated spin pairs, so one must
also consider the distribution of distances rIS . This generally gives rise to broad
“blobby” NMR resonances (a more detailed analysis of solid-state NMR lineshapes
is given in Ref. [20]).

In some experiments dipolar broadening can be greatly reduced using a technique
called magic angle spinning (MAS) [32]. By rotating a sample rapidly3 about
an axis, tensor components transverse to the spinning axis are averaged to zero.

3 Rapidly here means that the rotation frequency should significantly exceed the largest dipolar-
coupling frequency.
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By setting the angle between the spinning axis and the magnetic field such that
1 − 3 cos2 α = 0, the effective time-averaged dipole-dipole coupling is zero. This
technique can also be used to average out powder broadening due to chemical-shift
anisotropy. While the added complexity of MAS may seem daunting for dark matter
experiments, the improved signal intensity may prove useful.

6.2.3.3 Indirect Spin-Spin Coupling

The indirect dipole-dipole coupling, known as J -coupling, may be thought of as
a second-order hyperfine effect where one nucleus N affects the electronic state
of a molecule through hyperfine couplings to the molecular electron density, and
this perturbation is then transmitted from the molecular electronic state to a second
nucleus N ′ through its hyperfine interaction with the molecular electron density.
The Hamiltonian may be written in the form

HJ = h̄
∑

N;N ′ �=N
IN · JNN ′ · IN ′ , (6.41)

where IN and IN ′ are the spins of nuclei N and N ′, and JNN ′ is the second-rank
J -coupling tensor. JNN ′ may in general be represented as a sum of irreducible
spherical tensors

JNN ′ = J
(0)
NN ′ + J

(1)
NN ′ + J

(2)
NN ′ , (6.42)

where the isotropic component J
(0)
NN ′ transforms as a scalar, the antisymmetric com-

ponent J
(1)
NN ′ transforms as a pseudovector, and the symmetric component J

(2)
NN ′

transforms as a symmetric rank-2 spherical tensor. The J -coupling is often referred
to as the “scalar” coupling because typical high-resolution NMR experiments utilize
isotropic liquid samples where rapid molecular tumbling averages higher-order
tensor components to zero. In solid-state experiments, J

(2)
NN ′ adds to the dipole-

dipole coupling and transforms the same way. The rank-1 component does not
commute with the high-field Zeeman Hamiltonian and has never been conclusively
measured.

In terms of dark matter searches, the J -coupling is most important for experi-
ments with liquid samples [33, 34], where it causes peak splitting. Consider again
the cases of ethanol (CH3CH2OH) and methanol (CH3OH). Assuming the presence
of even a small amount of water, the OH hydrogens undergo rapid exchange and thus
their couplings to the other spins are averaged to zero. The three CH3 hydrogens
in methanol are magnetically equivalent, so there are no observable J -couplings
and the methanol spectrum consists of a single resonance. In ethanol, there are two
sets of equivalent spins, the three CH3 hydrogens and the two CH2 hydrogens. The
two CH2 hydrogens split the CH3 resonance into a triplet with relative amplitudes
1:2:1, and the three CH3 hydrogens split the CH2 resonance into a quartet with
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relative amplitudes 1:3:3:1. As a result, the largest peak in ethanol is about three
times smaller than the methanol peak, as shown in Fig. 6.2c.

6.2.3.4 Quadrupolar Coupling

The quadrupolar coupling Hamiltonian has the form

HQ($) = eQ

2I (2I − 1)
I · V ($) · I , (6.43)

where e is the electric charge, Q is the nuclear quadrupole moment, I is the nuclear
spin quantum number, and V ($) is the electric field gradient tensor for an arbitrary
molecular orientation $ [19]. As a rank-2 interaction, the quadrupolar coupling is
non-zero only for nuclei with spin I ≥ 1. This is one of the notable advantages of
studying spin-1/2 nuclei, because the coupling of quadrupolar nuclei to the electric
field gradient is a major source of relaxation, leading to short coherence times and
thus to broad resonance lines.

6.2.4 Zero-to-Ultralow-Field NMR

While the vast majority of NMR experiments are performed in a large applied
magnetic field, an alternative method, zero-to-ultralow-field (ZULF) NMR [35],
also exists and has found use in dark matter searches [33, 34]. In ZULF NMR,
the magnetic field is small enough that the Zeeman interaction may be treated as a
perturbation on other spin couplings. As of the time of this writing, all ZULF NMR
dark matter searches have relied on the electron-mediated J -coupling as the primary
interaction, perturbed by a small bias magnetic field [33, 34].

6.3 Detecting Spin Evolution due to Axionlike Dark Matter

The most sensitive scheme for NMR detection depends on the frequency range being
explored. In general, the goal is to search for oscillating magnetic fields originating
from the evolution of spins due to interaction with ALP dark matter. Spins act
as transducers for the cosmic signal, converting the oscillating ALP field to an
oscillating magnetic field at the same frequency. The optimal detection modality is
the most sensitive magnetometer for the frequency corresponding to the ALP mass
range under investigation. Additionally, the working environment of the device has
to be considered. For example, the most sensitive vapor cell magnetometers require
that the ambient background magnetic field is below 100 nT in order to operate.
This requirement might be at odds with the conditions needed for the spin sample
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Table 6.1 Example of different NMR detection modalities with their frequency range and
sensitivities to oscillating magnetic fields

Frequency range Sensor Field sensitivity Ref.

dc–100 Hz Alkali SERF 160 aT/
√

Hz [38]

0.4–300 kHz RF alkali vapors 1000 aT/
√

Hz [39, 40]

10 Hz–2.5 MHz dc SQUID 150 aT/
√

Hz [41]

>2.5 MHz Inductive coil 2000 aT/
√

Hz [12]

in an ALP search: for instance, in the case of ALP Compton frequencies ωa in the
∼100 MHz range, applied magnetic fields of several tesla are required in order for
the NMR resonant frequency to match ωa . Superconducting quantum interference
devices (SQUIDs) require cryogenic temperatures which demands either a stand-
off distance for thermal insulation or a cold nuclear sample. The latter might be
problematic due the inherently broader magnetic resonance linewidth of solids.

This section gives an overview of the most sensitive detection modalities used in
NMR spectroscopy at various frequencies. The frequency range to be considered
is as open as the mass range of the potential dark matter candidates. However,
NMR measurements at the highest possible frequencies require the largest possible
magnetic field and the field range of commercially available magnets is limited.
Commercially available high-field magnet systems feature proton frequencies up to
1.2 GHz corresponding to a field of 28.2 T in a 54 mm diameter bore. The maximum
demonstrated dc magnetic field in a research facility at the time of writing was
45.5 T [36] corresponding to a proton Larmor frequency of 1.93 GHz and therefore
an ALP mass of 8 μeV. An overview of even higher magnetic fields that can be
produced for short times can be found in Ref. [37]. Here we begin with general
considerations of the axion-induced NMR signals and then review the working
principles of a selection of sensitive devices used to search for NMR signals,
namely optical atomic magnetometers in the spin-exchange-relaxation free (SERF)
regime for the lowest bandwidth and highest magnetic field sensitivity, RF vapor
cell magnetometers in an intermediate regime, followed by SQUIDs, and finally
inductive pick-up coils. The section closes with a brief discussion of magnetic noise
suppression techniques. Table 6.1 summarizes the different detection modalities
mentioned in this chapter and their basic properties.

6.3.1 Axion-Induced NMR Signals

Figure 6.3 illustrates how to detect oscillating magnetic signals of unknown origin
and frequency using nuclear magnetic resonance. As discussed in Sect. 6.1.1, the
interaction of nuclear spins with UBDM appears as an effective magnetic interaction
Hamiltonian [Eqs. (6.1) and (6.10) for the EDM coupling and Eqs. (6.2) and (6.11)
for the gradient coupling] modulated at the ALP field’s Compton frequency. This
interaction can be detected as an oscillating torque on the magnetization in a frame
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Fig. 6.3 Two ways to detect ALPs with nuclear magnetic resonance using a spherical sample of
polarized nuclei and a sensor. (a–c) Continuous wave nuclear magnetic resonance (CW-NMR)
with the cosmic ALP field driving spin population. The energy levels are scanned with the applied
magnetic field and a resonance occurs if the Larmor frequency of the nuclear sample corresponds
to the Compton frequency of the ALP. This detection mechanism is relevant for dipole moment
and gradient coupling. In gradient coupling searches this detection is sensitive to two directions
of the signal (x and y) for leading B0 along z. In oscillating electric dipole moment searches an
additional electric field needs to be applied along the magnetic background field. (d–f) Modulation
of the magnetic field. Note that for gradient coupling searches the properties of the ALP pseudo-
magnetic field are given by the field itself, while for EDM coupling searches an additional electric
field needs to be applied. And here different directions with respect to the leading magnetic field
can be chosen, so that it is possible to choose between situation (a) and (d)

co-rotating at the Larmor frequency of the nuclear sample, Fig. 6.3a. Depending on
the experimental setup an ALP field can also be detected as a periodic modulation
of the magnetic resonance frequency itself, see Fig. 6.3b. This can be searched
for by observing the magnetic resonance frequency, for example, by probing it
with another oscillating magnetic field at frequency ωRF and observing the out-of-
phase quadrature (Y) component with lock-in detection demodulated at ωRF . The
direction of the ALP pseudo-magnetic field depends on the coupling that is being
investigated. In case of the gradient coupling, the oscillating pseudo-magnetic field
is a property of the axion field itself. EDM coupling searches require an additional
applied electric field which determines the direction of the pseudo-magnetic field.

Generally speaking, in order to obtain the biggest possible NMR signal from the
ALP interaction one aims to have the largest number of nuclear spins subjected to
the same magnetic field, such that they precess at the same Larmor frequency ωL.
The signal for the measurement configuration displayed in Fig. 6.3a is proportional
to the magnitude of the oscillating component of the transverse magnetization
Mx . The overall magnetization magnitude M , Eq. (6.23), results from N particles
with magnetic moment μ, Eq. (6.12). The fundamental limitations on NMR
sensitivity were already pointed out by Felix Bloch in his 1946 paper [42]: assuming
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uncorrelated, randomly oriented spin-1/2 particles in a volume V : there will be a
statistically incomplete cancellation of the magnetization in any direction of order

MSPN ≈ μ

√
N

V
. (6.44)

So even without any ALP signal, there will be a fluctuating signal at the detector
proportional to this magnetization: this is the spin-projection noise (SPN). The
maximum signal-to-noise therefore scales as

M

MSPN
≈ √N. (6.45)

This means the larger the volume and the density of nuclear spins in a homogeneous
magnetic field the more sensitive is the ALP search. The average power spectrum of
the spin-noise signal will feature a Lorentzian lineshape with a width given by the
transverse relaxation time T ∗2 of the spin ensemble and a center frequency given by
the Larmor frequency,

ωL = γB0 , (6.46)

which depends on the applied background field B0 and the gyromagnetic ratio γ of
the nuclear species. Protons feature the highest known nuclear gyromagnetic ratio
(of all stable nuclei) with γp/(2π) = 42.6 MHz/T. In a magnetic resonance search,
the accessible Larmor frequencies ωL determine the sensitive mass range of the
ALP-search experiment. Searches following Fig. 6.3b schematic, i.e., measurements
of an oscillating center frequency of a magnetic resonance, result in a slightly
different limit that depends on the linewidth of the magnetic resonance as well.

•? Problem 6.2 Spin Noise

Consider the 10% hyperpolarized sample of liquid 129Xe from Problem 6.1, with
nuclear magnetic moment |μXe| = 3.9×10−27 J/T and liquid Xenon number density
of nXe = 1.4× 1028 m−3. Calculate the volume of a spherical liquid xenon sample
needed to perform a spin noise-limited dark matter search. Assume that the magnetic
field detector is optimally coupled to the spherical sample and has the sensitivity
Bdet = 200 aT, which corresponds to approximately 1 s of integration time for the
most sensitive detectors listed in Table 6.1.

Solution on page 336.
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6.3.2 Inductive Coil Detection

The most basic approach to detect an NMR signal is to use a pick-up coil coupled
to the spin ensemble. The transverse magnetization precesses around the leading
field at the Larmor frequency, creating an oscillating magnetic flux, which induces
a Faraday voltage across the coil. A resonant circuit is often used to couple this
voltage to a sensitive amplifier. There are many configurations analyzed in the NMR
literature, see, for example, Ref. [43]. One example of such circuit is shown in
Fig. 6.4. In this series capacitor-matched circuit the values of capacitors C1 and
C2 are chosen so that the circuit resonance ω0 is near the spin Larmor frequency,
and probe impedance is matched to the transmission line and the amplifier input
impedance. The resistance R includes dissipation due to the circuit elements, as
well as the spin ensemble itself. The circuit dissipation can be quantified by the
quality factor Q = ω0L/R.

Inductive pick-up coils have been engineered since the invention of nuclear
magnetic resonance and are highly sophisticated devices, commercially available
in a broad range of frequencies (up to several GHz), Fig. 6.5. The voltage induced in
the pick-up coil by the precessing spin magnetization is shown as a voltage source Vs

in Fig. 6.4. This voltage is proportional to the Larmor frequency, due to Faraday’s
law. On resonance, and in the limit of small circuit dissipation (Q 
 1), we can
write a simple expression for the resulting voltage that appears at the input of the
amplifier:

V ′s =
Vs

2

√
QRa

ω0L
, (6.47)

where Ra is the amplifier input impedance, usually matched to the 50� transmis-
sion line impedance.

Consider the signal-to-noise ratio that can be achieved with this detection
method. One of the noise sources is the thermal Nyquist noise due to the dissipation

Fig. 6.4 A schematic of an NMR series capacitor-matched detection circuit. The blue dashed box
denotes a transmission line (such as a coaxial cable) that couples the resonant detection probe on
the left to the amplifier on the right
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in the circuit, which appears as a noise voltage source in series with the signal
source Vs , and with power spectral density Ṽ 2

th(ω) = 2RkBT/π , where kB is
the Boltzmann constant and T is the circuit temperature. Another noise source
is the amplifier noise, which usually referred to the amplifier input. The relative
importance of these, and other noise sources, depends on the details of the NMR
sample and of the probe circuit. Many of the modern NMR machines are limited by
the thermal Nyquist noise, and therefore probes are sometimes cooled to reduce this
noise.

6.3.3 Superconducting Quantum Interference Devices

Superconducting quantum interference devices (SQUIDs) can be used as current
sensors to detect magnetic resonance signals. Since SQUIDs are usually low-
frequency devices, optimization of the coupling circuit is, in general, different from
the high-frequency inductive detection shown in Fig. 6.5. For example, in the case
of non-resonant coupling the pick-up coil inductance should be roughly matched to
the SQUID input coil self-inductance [45].

The basic building block of a dc SQUID is a loop of superconducting material
interrupted via one or two Josephson junctions, i.e., non-conducting barriers in the
superconducting loop. This loop is inductively coupled to a sensing coil, which is
often superconducting itself, as seen in Fig. 6.6. The SQUID is a complicated non-
linear superconducting device, whose operation is treated in Refs. [47, 48], which
also present a comprehensive introduction to SQUID technology and applications.
However, the SQUID characteristics can be linearized by operating it in feedback
mode, where a feedback loop supplies a signal that cancels the flux from the sensing
coil.

Fig. 6.5 Different coil
geometries for inductive
detection. Image and caption
taken with permission from
Ref. [44]. Common NMR
coil geometries: (a) solenoid,
(b) saddle coil, (c) inductively
coupled high-temperature
superconducting coils
(drawings by Jason Kitchen
of the National High
Magnetic Field Laboratory)
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Fig. 6.6 Superconducting quantum interference device (SQUID) magnetometer. Image and cap-
tion taken with permission from Ref. [46]. (a) Photograph of a thin-film SQUID fabricated at
Berkeley (right) and a close up of the Josephson junction area (left). (b) Configuration of a flux
transformer coupled to a SQUID to form a magnetometer

Fig. 6.7 Amplitude noise spectrum of a SQUID magnetometer and a SQUID gradiometer. Image
and caption taken with permission from Ref. [41]. Measured magnetic flux density noise S

1/2
B,m

for the two setups with 45 mm diameter pick-up coils: magnetometer (solid green curve) and
gradiometer (solid blue curve). The calculated intrinsic SQUID noise levels S

1/2
B,i are given by

the dotted curves. For the gradiometer, the noise is referred to the bottom pick-up loop, and the
gradient noise is shown on the right

SQUIDs have been used to measure NMR since the 1990s [49–51] in a wide
variety of fields. SQUID sensitivity can be characterized in terms of magnetic field
at the location of the pick-up coil. A wideband ultra-sensitive magnetometer [41]
from 2017 demonstrates a noise floor of 150 aT/

√
Hz in a frequency range between

20 kHz and 2.5 MHz (Fig. 6.7). Similar performance has been achieved in the Search
for Halo Axions with Ferromagnetic Toroids (SHAFT) experiment that searches for
electromagnetic coupling of ultralight axionlike dark matter [45]. We note that the
superconducting nature of SQUIDs limit their use to low-temperature environments,
usually near 4 K (although there are high-Tc SQUIDs, whose performance is not
quite as good). The SQUID sensors should also be carefully shielded from external
magnetic fields. There are also other superconducting devices in development
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whose performance may offer significant improvements compared to the SQUID
characteristics [52].

6.3.4 Atomic Vapor Sensors

Optical atomic magnetometry [54] is based on the manipulation of atomic spins with
laser light and the subsequent observation of their evolution under the influence
of a magnetic field. Overall the principles of optical atomic magnetometry are
very similar to those of NMR discussed in earlier sections, however, in atoms the
nuclear spin and electron angular momentum (orbital and spin) are coupled and
so the dynamics involve the total atomic angular momentum. For alkali atoms, the
ground state magnetic moment is dominated by the electron spin of the valence
electron. Atomic magnetometers have been around since the 1970s [55]. Excellent
review articles and books have been written on this topic [54, 56, 57]. Admitting
numerous variations, Fig. 6.8 illustrates the most common ingredients of an optical
atomic magnetometer. Figure 6.8a shows a vapor cell filled with a dilute vapor
of alkali atoms. Figure 6.8b shows an experimental configuration using crossed
probe and pump beams orthogonal to an applied background magnetic field B0,
and an oscillating field close to the Larmor frequency ωL to excite the magnetic
resonance. A (truncated) atomic level scheme and optical transitions for 87Rb can
be seen in Fig. 6.8c. Applying an on-resonant circular polarized light beam along
the direction of the magnetic field optically pumps the atoms, through consecutive
absorption and spontaneous emission cycles, into the highest magnetic sublevel
of the ground state. The atomic spins in the vapor are thus oriented and can be
measured as a macroscopic, collective (electron spin) magnetization. The evolution
of these spins due to the magnetic field occurs at the driving frequency ωRF and a
magnetic resonance centered around the Larmor frequency ωL is observable using
demodulation with a lock-in amplifier. The width and amplitude of this complex
Lorentzian are the key quantities to optimize for sensitive magnetometry. The center
frequency of the Lorentzian, i.e., the Larmor frequency, is a measure of the magnetic
field. For small magnetic fields (in the regime of the linear Zeeman effect) it can be
written as:

h̄ωL = μBgF |B| , (6.48)

where μB/h̄ = 2π × 14 GHz/T is the Bohr magneton, gF the Landé factor, and |B|
the magnitude of the background magnetic field. This oscillation is then read out,
for example, with an off-resonant laser beam via modulation of its polarization due
to the Faraday effect [58]. The cells can be evacuated (i.e., contain a low density
of single species alkali atoms), include various wall coatings or buffer gases to
reduce relaxation rates and contain different species or combination of species of
alkali atoms. The fundamental atomic shot-noise limited sensitivity δBSNL of such
a magnetometer is dominated by two quantities: the spin-relaxation rate �rel and
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Fig. 6.8 Optical magnetometry with alkali vapor cells (a) An example of a glass vapor cell used
for magnetometry. It is two centimeters in diameter, has a reservoir for Rb and a stem to separate the
sensing volume and the reservoir. In this particular case, the inner walls of the cell are coated with
an alkene film [53] enabling coherence times of up to 77 s. (b) In the cell atoms fly ballistically with
a large velocity and are interrogated and manipulated with laser beams. (c) The atomic energy level
of 87Rb atoms with interactions. (d) The resulting magnetic resonance is often demodulated with a
lock-in and is well described by a complex Lorentzian centered around the Larmor frequency ωL

the number of spins N that are measured simultaneously. For measurement times
τ 
 1/�rel [59] it is given by:

δBSNL ≈ 1

γ

√
�rel

Nτ
. (6.49)

Similar to NMR-based ALP searches, the fundamental sensitivity improves with
the number of atoms and with a reduction in the relaxation rate. The longer the
more spins can be observed precessing the better the magnetic field resolution.
Unfortunately, N and �rel are often correlated. For example, increasing the vapor
pressure of the alkali atoms by heating the cell (and therefore the number of atoms to
be interrogated) also increases spin-exchange- and spin-destruction-collision rates,
which in turn increase the relaxation rate.

Radiofrequency vapor cell magnetometry has been used to measure NMR at
60 kHz [40]. A complication is that, due to different gyromagnetic ratios, the nuclear
spins and the alkali atoms cannot be subjected to the same magnetic field. This
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problem can be solved by placing the nuclear sample in a magnetic solenoid coil
penetrating the magnetic shield of the vapor cell magnetometer [60].

6.3.4.1 Spin-Exchange-Collision-Free (SERF) Magnetometry

Increasing the density of the alkali vapor and therefore the spin-exchange collision
rate leads to an interesting new regime. First, magnetic resonances broaden as a
function of spin-exchange rate, and then begin to get narrower. This is the so-called
spin-exchange relaxation free regime (SERF). If the spin-exchange collision rate is
much higher than the Larmor precession frequency, this decoherence mechanism
effectively averages out. This behavior was first reported in Ref. [61], explained
by the same group [62], and has been used for magnetometry since 2002 [63]. In
2010, the Romalis group at Princeton demonstrated a record-breaking sensitivity
of 160 aT/

√
Hz in a gradiometric configuration [38]. SERF magnetometers can

be used for ZULF NMR [35, 64, 65], see Sect. 6.2.4. Due to the fact that SERF
magnetometers employ a magnetic resonance centered around a near-zero magnetic
field, the accessible frequency range depends on the linewidth of the resonance,
normally below 1 kHz. Searches for UBDM using SERF magnetometers include
the Cosmic Axion Spin Precession Experiment (CASPEr) ZULF sidebands and
CASPEr comagnetometer experiments, as shown in Fig. 6.9.

6.3.5 Magnetic Noise Suppression

As discussed in Sects. 6.1.1.1 and 6.1.1.2, a UBDM field that couples to atomic
spins mimics an oscillating magnetic field, therefore real oscillating magnetic
fields are one of the most important sources of systematic errors. And, of course,
magnetic fields are everywhere: the Earth’s magnetic field itself is ∼1010 times
larger than the smallest field that can be detected by commercially available atomic
magnetometers (averaged over 1 s), radio waves over a wide range of frequencies
travel through space, and electronic currents generate associated magnetic fields.
Thus a conventional laboratory environment is teeming with complicated patterns
of oscillating magnetic fields and magnetic field gradients of many orders at many
frequencies, especially at the power line frequency and its harmonics. Most sensitive
magnetometers require, therefore, a sophisticated shielded environment to avoid
being saturated by magnetic noise. The effort to invest in magnetic shielding
depends on the UBDM candidate mass range that is being searched. While static
and slowly varying magnetic fields require complicated, multilayered magnetic
shields constructed from materials with a high magnetic permeability to guide
the magnetic flux around the sample or possibly superconducting shields, higher
frequency magnetic noise can be effectively shielded by conductive enclosures. For
sub-kHz magnetic noise, most vapor cell magnetometer are still limited by intrinsic
magnetic field noise of the shield. Note that, in many cases (such as if the coupling
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Fig. 6.9 Existing bounds and sensitivity projections for the: (a) EDM and (b) gradient coupling
of axionlike dark matter taken from [12] with permission. The purple line shows the QCD axion
coupling band in (a) and (b). The darker purple color shows the mass range motivated by theory [2].
The blue regions mark the mass ranges where the ADMX and HAYSTAC experiments (see
Chap. 4) have probed the QCD axion-photon coupling [75, 76]. The green region is excluded by
analysis of cooling in supernova SN1987A (see Chap. 3), with color gradient indicating theoretical
uncertainty [2].The region shaded in red is the exclusion at 95% confidence level placed by
CASPEr-E in [12]. The dashed green line marks the projected 5σ sensitivity of the CASPEr-
E search with a 4.6 mm sample, as used in [12]. The dashed blue line marks the projected 5σ
sensitivity of the CASPEr-E search with an 80 cm sample, operating at 100 mK temperature.
The black dashed line marks the sensitivity limited by quantum spin-projection noise [77]. This
would be sufficient to detect the EDM coupling of the QCD axion across a 6-decade mass
range from ≈0.3 peV to ≈500 neV. The other bounds are as follows. (a) The pink region is
excluded by the neutron EDM (nEDM) experiment [78]. The blue region is excluded by the HfF+
EDM experiment [79]. The yellow region is excluded by analysis of Big Bang nucleosynthesis
(BBN) [80]. (b) The pink region is excluded by the neutron EDM (nEDM) experiment [78]. The
blue region is excluded by the zero-to-ultralow field comagnetometer (ZULF CM) experiment [33].
The gray region is excluded by the zero-to-ultralow field sideband (ZULF SB) experiment [34].
The yellow region is excluded by the new-force search with K-3He comagnetometer [81]. The
bounds are shown as published, although corrections should be made to some of the low-mass
limits, due to stochastic fluctuations of the axionlike dark matter field [82]

of the UBDM is primarily to nuclei), signals from UBDM fields are unaffected by
the magnetic shielding [66], while in some cases the magnetic shielding can in fact
have significant effects (e.g., for hidden photons as discussed in Chap. 7). Detailed
discussion of magnetic shielding can be found in Chapter 12 of Ref. [54].

To further improve the sensitivity of UBDM searches relying on magnetic
resonance, other mechanisms have to be deployed to extend the discovery reach
of the apparatus. One method of reducing sensitivity to local magnetic field changes
is comagnetometry [67], i.e., where the magnetic field (and the UBDM signal) is
simultaneously measured in two (or more) different ways in the same volume such
that the magnetic responses and UBDM responses of the two methods are distinct.
As elucidated in Sect. 6.1, the overall coupling strength of an ALP field to an atomic
nucleus depends on the nuclear composition and the electronic state of the sample
[68]. Consider the case where the sample consists of two ALP-sensitive species
with opposing signs for the ALP interaction and identical signs for the magnetic
interaction. When signals from both species are measured simultaneously and
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independently, subtracting the resulting signals reduces the effects of magnetic fields
while enhancing the measurable effects of an ALP-spin interaction. This method has
been successfully deployed in the experiments described in Refs. [3, 69, 70].

As a last thought for this section, if comagnetometer measurements are able
to achieve sufficient insensitivity to magnetic fields, what will be the next most
important systematic? The answer could be given by a common application of
nuclear comagnetometry: gyroscopy [71, 72]. In fact, systematic errors due to
rotations are major impediments to recent comagnetometer experiments searching
for Lorentz invariance [73, 74].

6.4 Experimental Searches

Finally, we present a selection of magnetic-resonance-based experiments constrain-
ing ALP parameter space and place them in context with respect to astrophysical
limits (see Chap. 3). The Cosmic Axion Spin Precession experiment (CASPEr) is
a multi-pronged approach proposed in 2014 [77] to search for ALP dark matter
over a wide range of ALP masses using NMR and undertaken in Boston, USA,
and Mainz, Germany. The nEDM experiment searches for a permanent electric
dipole moment of the neutron (nEDM) at the Paul Scherrer Institut in Switzerland.
Reanalyzing their accumulated years of nEDM data (including a data set collected
at the Institut Laue-Langevin in Grenoble, France between 1998 and 2002) for
oscillating signals allowed the team to place tight constraints on both the EDM
and the gradient coupling for low mass ALPs. The HfF+ EDM experiment at the
Joint Institute for Laboratory Astrophysics (JILA) in Boulder, USA, by the group
of Eric Cornell searches for a permanent electron EDM. It is a precision experiment
measuring electron spin precession with trapped molecular ions. Data collected in
2016 and 2017 were reanalyzed for oscillating signals and used to place constraints
on the EDM coupling. Figure 6.9 summarizes the constraints on EDM and gradient
ALP couplings. Other closely related magnetic resonance experiments include the
QUAX experiment [13, 83, 84] that searches for electron-ALP interactions as well as
a proposal to use antiferromagnetically doped topological insulators [85] to search
for high mass axions in the 0.7–3.5 meV range.
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Chapter 7
Dark Matter Radios

Derek F. Jackson Kimball and Arran Phipps

Abstract Many theories predict that ultralight bosonic dark matter (UBDM) can
couple to photons and thus generate electromagnetic signals. In such scenarios,
UBDM can be searched for using a radio: an antenna connected to a tunable LC

circuit that is in turn connected to an amplifier. Such “dark matter radios” are
particularly useful tools to search the broad range of UBDM wavelengths where
resonant cavity dimensions are too large to be practical. In this chapter, we discuss
how dark matter radios can be used to search for UBDM, focusing on the case of
hidden photons.

7.1 Hidden Photons

Chapters 4 and 5 of this text have described searches for UBDM in the form of
axions or axionlike particles (ALPs) that utilize techniques based on their coupling
to electromagnetic fields. In this chapter, we describe another technique that can be
used to look for electromagnetic couplings of UBDM (including axions and ALPs),
but instead focus on a different class of ultralight bosons known as hidden photons
[1].

Hidden sectors described by extra U(1) symmetries1 are a common feature in
theories going beyond the Standard Model such as string theory [2]. Even though
such hidden sectors may be quite complicated [3, 4], their observable effects can be

1 The U(1) gauge symmetry is related to the fact that particle wave functions can have an overall
complex phase which is unobservable in experiments. Thus, all observables must be invariant
with respect to this phase—this is the U(1) symmetry. U(1) gauge invariance directly implies
conservation of charge, just as translational symmetry gives conservation of momentum, rotational
symmetry gives conservation of angular momentum, and symmetry with respect to time translation
gives energy conservation.
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parameterized by the effective operators coupling them to Standard Model particles
and fields [5]. One possibility is direct couplings: Standard Model particles and
fields can be “charged” with respect to the hidden sector [6]. It turns out that the
only other generic possibility is a kinetic mixing between the new U(1) symmetry
and electromagnetism [1]: this is the origin of the hidden photon.

The effects of this hidden photon can be understood in particularly simple terms:
it behaves exactly like a photon except that

• It has a nonzero mass mγ ′ .
• It interacts with charged particles primarily through its mixing into a “real”

photon field, parameterized by a kinetic mixing parameter κ .

The Lagrangian describing photons and hidden photons can be written in what is
known as the “mass basis” as follows:

L = − 1

16π

(
FμνF

μν + FμνFμν
)+ m2

γ ′c
2

2h̄2 XμXμ − 1

c
Jμ

(
Aμ + κXμ

)
, (7.1)

where Aμ and Fμν are the gauge potential and field strength tensor of electromag-
netism (the ordinary photon field), Xμ and Fμν are the gauge potential and field
strength of the hidden photon field, Jμ is the ordinary electromagnetic current, and
here and throughout this chapter we use Gaussian (cgs) units. Notice that in the
limit where mγ ′ → 0, because of the symmetry between the photon and hidden
photon fields, one can redefine a linear combination Aμ + κXμ that couples to the
electromagnetic current Jμ and a sterile componentXμ−κAμ that does not interact
at all electromagnetically. Essentially, this means that all hidden photon interactions
are suppressed by powers of m2

γ ′ in the small mass limit. This is the argument that
significantly reduces many astrophysical bounds on hidden photons [7].

In vacuum, the hidden photon field obeys the wave equation

(
1

c2

∂2

∂t2 −∇2 + m2
γ ′c

2

h̄2

)
Xμ = 0 , (7.2)

and the constraint ∂μXμ = 0 is assumed (equivalent to the Lorenz gauge condition).
The two key features of hidden photons, that they have nonzero mass and only

weakly interact with SM particles via the kinetic mixing with photons, have three
important consequences: (1) their nonzero mass means that hidden photons can
have the right characteristics to behave as cold dark matter [8], (2) their kinetic
mixing with photons means that hidden photons can weakly excite electromagnetic
systems, and (3) their weak coupling with SM particles and macroscopic Compton
wavelength allow hidden photons to have a long penetration depth in conductors
and superconductors.
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7.2 Hidden Photon Electrodynamics

A useful way to understand the effect of the hidden photon on electrodynamics is
to rewrite the Lagrangian given in Eq. (7.1) in the “interaction basis” by making the
substitutions:

Āμ = Aμ + κXμ , (7.3)

X̄μ = Xμ − κAμ , (7.4)

which yields for the Lagrangian

L = − 1

16π

(
F̄μνF̄

μν + F̄μνF̄μν
)
+ m2

γ ′c
2

2h̄2
X̄μX̄

μ

− 1

c
JμĀμ + κ

m2
γ ′c

2

h̄2 X̄
μ
Āμ . (7.5)

From Eq. (7.5), we can see that the effect of hidden photons on Standard Model
particles can be derived from the existence of an effective current density:

J̄μ = −κ m
2
γ ′c

3

h̄2 X̄
μ
, (7.6)

since the last term in Eq. (7.5) describes the coupling to SM particles.
This gives us

L = − 1

16π

(
F̄μνF̄

μν + F̄μνF̄μν
)
+ m2

γ ′c
2

2h̄2 X̄μX̄
μ − 1

c

(
Jμ + J̄μ

)
Āμ . (7.7)

•? Problem 7.1 Interaction Basis

Derive Eq. (7.5) from Eqs. (7.1), (7.3), and (7.4).

Solution on page 336.

Note that the timelike component of the four-potential, X̄0
, is suppressed

compared to the spacelike component, i.e., the vector potential X. The relationship

between X̄0
and X is derived from the equivalent of the Lorenz gauge condition,

1

c

∂X̄0

∂t
= ∇ · X . (7.8)
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Assuming a plane wave solution for X̄μ ∝ ei(k·r−ωt), Eq. (7.8) yields

X̄0 = − c

ω
k · X . (7.9)

Using the relationship between the wavevector k and the hidden photon’s velocity,

k = mγ ′v/h̄ , (7.10)

and the fact that h̄ω ≈ mγ ′c2, we find that

X̄0 ≈ −v
c
· X . (7.11)

Therefore, the timelike component of the hidden photon four-potential is suppressed
by a factor ≈ v/c ≈ 10−3 as compared to the spacelike component. For the same
reason, the spacelike component of the hidden photon four-current (i.e., the effective
charge density) is suppressed by ≈ v/c compared to the hidden photon current
density, J, see Eq. (7.6).

•? Problem 7.2 Oscillation Frequency of Hidden Electromagnetic Fields

Show that a gas of nonrelativistic hidden photons with high mode occupation
number manifests as a field oscillating at approximately the hidden photon Compton
frequency.

Solution on page 337.

7.3 Hidden Electric and Magnetic Fields as Dark Matter

If hidden photons comprise the majority of dark matter, they must be nonrelativistic
and the energy of the hidden photon field is stored primarily in the hidden-electric
field E′. This can be understood by analogy with the relativistic properties of
ordinary electric and magnetic fields. If an observer is in the rest frame of a static
charge distribution, they will measure a static electric field E sourced by the charges
but no magnetic field. If the observer moves at a constant velocity v with respect to
the charge distribution, they will measure a motional magnetic field of magnitude
B ∼ (v/c)E. In the case where v  c, the observer measures that most of the
energy is stored in the electric field. This contrasts with the case of electromagnetic
waves propagating in vacuum, where there is equal energy stored in both E and B.
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Because hidden photons have a nonzero rest mass, there exists a hidden photon rest
frame in which the hidden photon energy is stored entirely in the oscillating hidden
electric field E′—analogous to the rest frame of a static charge distribution. If the
hidden photons are the dark matter, they must be nonrelativistic (see Chaps. 1 and 3),
and so the vast majority of the hidden photon energy density is associated with E′.

The dark matter energy density in our local region of the Milky Way galaxy,
ρdm ≈ 0.4 GeV/cm3, can thus be estimated using the hidden electric field analog
of the usual formula from electromagnetism

ρdm = 1

8π

(
E′

)2
, (7.12)

from which we find that

E′ ≈ 40 V/cm . (7.13)

The associated hidden magnetic field is

B′ ≈ v

c
E′ ≈ 10−4 G . (7.14)

The hidden fields E′ and B′ result from the interference of a large number of
virialized hidden photons having high mode occupation number, and thus the
hidden field properties have a stochastic nature [9, 10]. The stochastic behavior of
virialized UBDM fields is analogous to that of thermal (chaotic) light [11]. The
finite coherence time τ coh and coherence length λcoh of E′ and B′ result from the
velocity spread of the hidden photons (δv ≈ v ≈ 10−3c, see Chap. 1):

τ coh ≈ 4000 s× 10−12 eV

mγ ′c2 , (7.15)

and

λcoh ≈ 106 km× 10−12 eV

mγ ′c2 . (7.16)

The amplitude, phase, and polarization of E′ and B′ remain roughly constant over
τ coh and λcoh.

Also of note is the fact that due to the nonzero rest mass of hidden photons,
hidden photon fields can possess longitudinal modes unlike photon fields in
vacuum [12]. The existence of longitudinal modes of the hidden fields affects both
astrophysical constraints and experimental strategies [12].
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7.4 Dark Matter Radio Experimental Scheme

Because the coupling of the hidden photon field to Standard Model particles is
entirely through kinetic mixing into real electromagnetic fields, it can be difficult
to distinguish hidden photon dark matter signals from electromagnetic noise.
Therefore, in order to achieve the highest possible sensitivity to hidden photon dark
matter, it is generally advantageous to enclose the detector within electromagnetic
shielding (for example, a superconducting shield). The hidden photon dark matter
will penetrate the shield and can produce a signal in the detector. As noted above,
however, the hidden photon field also affects charges within the shield and generates
a real electromagnetic field inside the shield that can interfere with the signal
from the hidden photons. Therefore, careful consideration of the “hidden photon
electrodynamics” is needed to understand the measurable signal inside the shield.

Consider a cylindrical superconducting shield of radius R and length 
 with axis
along z. Working in the interaction basis, let us consider a single mode of the hidden
photon field described by the vector potential X which we assume points along ẑ,
parallel to the shield axis. The effective current density can be described by

J(r, t) = −κ m
2
γ ′c

3

h̄2 X0e
i(k·r−ωt)ẑ , (7.17)

where X0 is the amplitude of the vector potential. As discussed above, the spacelike
components of the effective four-current (the charge density) and four-potential (the
scalar potential) are suppressed by ≈ v/c and can be neglected in the following
considerations.

7.4.1 Electric Field Due to Hidden Photons Within Shields

To solve for the electric field E inside the cylindrical shield, we start from Maxwell’s
equations for E, namely Gauss’s Law and Faraday’s Law:

∇ · E = 4πρ ≈ 0 , (7.18)

∇ × E = −1

c

∂B
∂t

. (7.19)

Taking the curl of Eq. (7.19), we find

∇ × (∇ × E) = −1

c
∇ × ∂B

∂t
= −1

c

∂

∂t
(∇ × B) . (7.20)

The left-hand side of Eq. (7.20) can be simplified by using the identity

∇ × (∇ × E) = ∇(∇ · E)− ∇2E ≈ −∇2E , (7.21)
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where the right-hand side follows from Eq. (7.18). The right-hand side of Eq. (7.20)
can be rewritten in terms of E and J using another of Maxwell’s equations,
Ampère’s Law,

∇ × B = 1

c

(
4πJ+ ∂E

∂t

)
, (7.22)

yielding

−1

c

∂

∂t
(∇ × B) = −4π

c2

∂J
∂t
− 1

c2

∂2E
∂t2 . (7.23)

Combining Eqs. (7.21) and (7.23), we obtain

(
1

c2

∂2

∂t2 −∇2
)
E = −4π

c2

∂J
∂t

. (7.24)

So far the analysis has been quite general. Now, let us assume the z-polarized
current density of Eq. (7.17), giving us a more specific form of the wave equation
for E, namely

(
1

c2

∂2

∂t2
− ∇2

)
E = 4πi

ω

c2
J(r, t) .

= −4πiκ
m2

γ ′ωc

h̄2 X0e
i(k·r−ωt)ẑ . (7.25)

It can be seen from Eq. (7.25) that E is aligned with J. Because the electric
field arising from the hidden photon field generates forces on charges within the
cylindrical superconducting shields, the charges will rearrange themselves so as to
cancel the field parallel to the surface of the shield (r = R), resulting in the boundary
condition E(R) · ẑ = 0. Furthermore, based on Eq. (7.25), the time dependence of E
must match the time dependence of J, and so the time derivative in Eq. (7.25) can
be resolved:

(
−ω2

c2 − ∇2
)
E = −4πiκ

m2
γ ′ωc

h̄2 X0e
i(k·r−ωt)ẑ . (7.26)

Next, let us take the limit where kR  1; in other words, the de Broglie wavelength
(approximately equal to the coherence length for virialized dark matter) of the
hidden photon field is far larger than the dimensions of the shield. In practical
terms, this is the scenario for which dark matter radios have an advantage compared
to resonant cavities. The kR  1 limit allows us to assume eik·r ≈ 1, further
simplifying our equation for the spatial dependence of E:
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(
ω2

c2 +∇2
)
E = 4πiκ

m2
γ ′ωc

h̄2 X0e
−iωt ẑ . (7.27)

Since we ignore edge effects based on taking the 

 R limit for the shield and have
cylindrical symmetry, E can be assumed to be independent of z and the angular
variable φ. Equation (7.27) is solved by assuming a spatial dependence for the
electric field of

E(r) = E0

(
1− J0(ωr/c)

J0(ωR/c)

)
, (7.28)

where Jn(x) is the nth order Bessel function of the first kind [13, 14]. Note
that E(R) = 0, thus satisfying the boundary condition imposed by the shield.
Substituting Eq. (7.28) into Eq. (7.27) enables us to solve for E0, and we find that

E0 = 4πiκ
m2

γ ′c
3

h̄2ω
X0 . (7.29)

Since ω ≈ mγ ′c2/h̄,

E0 = 4πiκ
mγ ′c

h̄
X0 . (7.30)

Thus, the full description of the electric field generated inside the shield by the
hidden photon field is

E(r, t) = 4πiκ
mγ ′c

h̄
X0

(
1− J0(ωr/c)

J0(ωR/c)

)
e−iωt ẑ . (7.31)

For ωR/c  1, we can Taylor expand the Bessel functions and find that

E(r, t) ≈ 4πiκ
mγ ′c

h̄
X0

ω2

c2

(
R2 − r2

)
e−iωt ẑ ,

≈ 4πiκ
X0

λ3
γ ′

(
R2 − r2

)
e−iωt ẑ , (7.32)

which shows that the electric field at the center of the shield is suppressed by a
factor ≈ R2/λ2

γ ′ in comparison to the field in the absence of a shield, where λγ ′ =
h̄/(mγ ′c) is the hidden photon Compton wavelength.
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7.4.2 Magnetic Field Due to Hidden Photons Within Shields

The magnetic field induced within the shield by the hidden photons can be derived
from Faraday’s Law [Eq. (7.19)],

∇ × E = iω

c
B , (7.33)

where we have used the fact that the time dependence of B is described by e−iωt .
Taking the curl of the E described by Eq. (7.31), we obtain

B(r, t) = 4πκ
mγ ′c

h̄
X0

(
J1(ωr/c)

J0(ωR/c)

)
e−iωt φ̂ . (7.34)

Taylor expansion of the Bessel functions for ωR/c  1 yields

B(r, t) ≈ 4πκ
mγ ′c

h̄
X0

(ωr
c

)
e−iωt φ̂ ,

≈ 4πκ
X0

λ2
γ ′
re−iωt φ̂ . (7.35)

The relative amplitudes of the electric and magnetic fields can be compared by
taking the ratio:

|B|
|E| ≈

rλγ ′

R2 − r2 , (7.36)

and therefore the measurable magnetic field is∼ λγ ′/R larger than the electric field.
For this reason, dark matter radios are designed to detect B.

•? Problem 7.3 DM Energy Density and the Magnetic Field Within Shields

Due to the effects of the shielding, the electric and magnetic fields measurable
with a DM Radio scheme are different from those in a vacuum. Relate the
approximate value of the magnetic field within the shield given by Eq. (7.35) to
the local DM density, ρDM ≈ 0.4 GeV/cm3, obtaining the result:

B(r, t) = 4πκ
√

8πρdm
r

λγ ′
e−iωt φ̂ . (7.37)

Estimate the amplitude of this field in G.

Solution on page 338.
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7.4.3 DM Radio Inside a Cylindrical Shield

Essentially, a dark matter radio is an antenna readout by a tunable LC circuit
connected to an amplifier. This methodology is complementary to microwave cavity
searches as discussed in Chap. 4. A crucial difference between a microwave cavity
and a dark matter radio is the frequency range that can be probed. The resonant
frequency of a microwave cavity is inversely proportional to its size, which creates
a practical limit on the lowest Compton frequencies that can be probed. On the
other hand, the resonant frequency of an LC circuit is ω0 = 1/

√
LC, and thus

large inductors and capacitors enable searches for hidden photons with much lower
Compton frequencies.

Let us consider a schematic design of a dark matter radio as proposed in
Ref. [15]. Figure 7.1 shows the schematic diagram of the DM Radio experiment.
A hollow cylindrical superconducting sheath is housed within a superconducting
shield. External electromagnetic fields are screened by the superconductors, but the
hidden photon field penetrates inside. This gives rise to the circumferential magnetic
field as described by Eqs. (7.34), (7.35), and (7.37), as shown in Fig. 7.2.

Fig. 7.1 Top left: schematic diagram of the DM Radio setup discussed in Ref. [15], showing
the hollow superconducting sheath housed within a superconducting shield. Bottom left: cross-
section of the hollow superconducting sheath. Top right: outer superconducting shield of the first
generation “DM Radio Pathfinder” experiment. Bottom right: hollow superconducting sheath for
DM Radio Pathfinder
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Fig. 7.2 The oscillating
effective current due to the
hidden photon field J(r, t)
(pale violet arrows) induces a
circumferential magnetic field
B(r, t) (green arrows) inside
the hollow superconducting
sheath. The screening
currents (yellow arrows)
induced in the superconductor
cancel B(r, t) within the bulk
of the superconductor. A
concentric circular slit is cut
in the bottom of the
superconducting sheath. The
two sides of the slit are
connected through an
inductive loop, and the
current through the loop is
measured by a SQUID

The next step is to measure the field B generated within the superconducting
sheath using a resonant LC circuit. The DM Radio approach is to use the
superconducting sheath as the “pick-up loop” for detection, and thus the sheath acts
as the inductor in the circuit. The current through the inductor is read out by cutting
a concentric circular slit in the bottom of the sheath and connecting the two sides
of the slit through an inductive loop that siphons off the screening current. The field
from the inductive loop can be measured with a SQUID.

A slitted sheath of inner radius r1, outer radius r2, and height h has an
approximate inductance of

L ≈ 2

c2 h ln

(
r2

r1

)
. (7.38)

•? Problem 7.4 Inductance

Derive Eq. (7.38). If one models the concentric cylindrical slitted sheath as an
N -turn toroidal solenoid with equivalent inductance, show that the corresponding
number of turns would be
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N2 = r1 + r2

r1 − r2
ln

(
r2

r1

)
.

Solution on page 339.

The resonant circuit also needs a capacitor. Since the mass and, therefore, the
Compton frequency of the hidden photon are unknown, the resonant frequency of
the circuit needs to be scanned, for example, with a tunable capacitor. The tunable
capacitor in the approach of DM Radio is a set of concentric hexagonal niobium
“cylinders” between which sapphire plates are inserted (Fig. 7.3). The sapphire
plates are a dielectric material, and by adjusting how far they extend into the
hexagonal capacitor, the capacitance can be adjusted.

Combining these elements, we have all the essential components of a dark matter
radio. A schematic circuit diagram is shown in Fig. 7.4; note that the LC circuit
naturally has nonzero resistance R due to loss mechanisms. (For the DM Radio
Pathfinder experiment, R ≈ 5× 10−3 �.) The induced electromotive force (EMF),
Vγ ′ , in the dark matter radio is due to the changing magnetic flux through the
inductor induced by the hidden photon field. For conceptual simplicity, here let
us model the concentric cylindrical slitted sheath as an N -turn toroidal solenoid
with equivalent inductance, as discussed in Problem 7.4 (in fact, for the DM Radio
Pathfinder experiment, such a solenoid is used as the resonator). The field is given
by Eq. (7.37) from which we derive

Fig. 7.3 Tunable concentric
hexagonal capacitor used in
the DM Radio experiment
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Fig. 7.4 Schematic diagram
of a dark matter radio circuit

Vγ ′ ≈ 4iκ
√

2πρdm
NV

λ2
γ ′

e−iωt . (7.39)

•? Problem 7.5 DM Radio EMF

Derive Eq. (7.39).

Solution on page 340.

The EMF Vγ ′ induced by the hidden photon field drives a current through the
resonant RLC circuit. The advantage of the resonant RLC circuit is that when the
resonance frequency is tuned near the hidden photon Compton frequency, the circuit
will “ring up” and enhance the measurable signal. This enhancement is described
by the Q-factor of the circuit, given by the ratio of the energy stored in the inductor
to the energy lost per cycle due to dissipation (equivalent to the ratio of the resonant
frequency to the linewidth)

Q = ω0

ω
= ω0L

R
. (7.40)

The magnetic flux � through a cross-sectional area of the sheath, i.e., the flux
through one loop of the equivalent N -turn toroidal solenoid, is given by (see solution
to Problem 7.5):

� = 4κ
√

2πρdm
V

λγ ′
e−iωt , (7.41)

and the flux through the solenoid due to the hidden photon field is N�. Because the
RLC circuit rings up, on resonance this translates to a total flux of QN� due to the
current accumulated in the inductor due to the hidden photon-induced EMFVγ ′ .
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•? Problem 7.6 DM Radio Q-factor

Show that on resonance, the flux through the inductor in the circuit shown in
Fig. 7.4 is given by �L = QN�. Thus, the resonant RLC circuit enhances the
measurable flux by the Q-factor.

Solution on page 341.

The magnetic flux in the inductor can be measured with a SQUID. The flux
through the SQUID is scaled by its area (As) relative to the cross-sectional area of
the inductor A = h(r2 − r1),

�SQUID ≈
(
As

A

)
QN� , (7.42)

and SQUIDs can have areas of As ≈ 1 cm2. A typical commercial DC SQUID has
a noise floor of δ� ≈ 10−6�0/

√
Hz, where �0 ≈ 2× 10−7 G · cm2 is the magnetic

flux quantum and, as argued in Ref. [15], is an efficient detector for frequencies
below about 100 MHz. To evaluate the sensitivity of a DM Radio experiment, the
SQUID sensitivity must be compared to other sources of noise. A main source of
noise comes from the circuit itself: the Johnson noise δV th from the resistance. This
thermal noise can be estimated by considering the current noise δI th generated in
the inductor:

δI th = δV th

R
=

√
2kBTω

πR
=

√
2kBTQω

πω0L
=

√
2kBT

πL
, (7.43)

where T is the temperature of the circuit, kB is Boltzmann’s constant, and we
assume for the bandwidth of the measurement ω = ω0/Q. This thermal current
generates noise in the magnetic flux measured by the SQUID:

δ�th ≈ cLδI th ≈ c

√
2kBT L

π
. (7.44)

It turns out that under typical conditions, even for a cryogenic system with T  1 K,
δ�th is much greater than the SQUID noise floor.

From these properties and Eq. (7.41), we can estimate the sensitivity (on
resonance) of a prototypical DM Radio experiment to κ:

δκ ≈ 1

mγ ′c2

δ�th

QNV

A

As

h̄c

4
√

2πρdm
, (7.45)

and integrating for a time τ would improve the sensitivity by a factor of ≈√
1/(τω) ≈ √

Q/(ω0τ). Choosing V ≈ 3 × 106 cm3, A ≈ 104 cm2, N ≈ 2,



7 Dark Matter Radios 215

Q ≈ 106, and T = 1 K, we obtain the relationship:

δκ ≈
(

5× 10−8
)
×

(
10−12 eV

mγ ′c2

)
. (7.46)

7.5 Out-of-Band Sensitivity

Consider a DM Radio-style resonator operating at a fixed frequency. It is unlikely
that the resonant frequency is exactly matched to the oscillation frequency of the
hidden photons. The farther detuned the dark matter frequency is from resonance,
the weaker the resonant enhancement of the signal. A large mismatch will result in
very little signal power, but for small detunings the degradation is mild. With this in
mind, over what frequency range does the resonator have sensitivity to a dark matter
signal? A reasonable choice might be to assert that the sensitivity should be limited
to the standard half-power bandwidth of the resonator: f = f0/Q.

Note, however, that the ability to detect a dark matter signal actually depends on
the signal-to-noise ratio. A relatively weaker signal due to detuning can be detected
just as easily if the noise power has also decreased by the same amount. It was
previously shown that the dark matter signal manifests as an effective voltage source
in series with the resonator. The degradation of signal power due to detuning follows
the Lorentzian line shape of the resonator. The thermal noise due to loss mechanisms
(the resistor R in the circuit model) also appears as a series voltage source, and its
power also follows the Lorentzian line shape at detuned frequencies. Thus, the ratio
of signal power to thermal noise power remains unchanged even away from the LC

resonance.
Since the total noise power is the sum of the frequency-dependent thermal noise

power and the frequency-independent white noise of the amplifier, there is still some
degradation in detection ability with detuning, but the effective sensitivity bandwidth
can be much greater than the intrinsic resonator bandwidth and depends on the noise
properties of the readout amplifier. This concept is shown in Fig. 7.5.

The out-of-band sensitivity offers several advantages. First, the total time
required to scan a range of frequencies to a particular level of dark matter coupling
is reduced as each frequency step of the resonator covers a greater bandwidth than
the resonator bandwidth alone. Second, the larger frequency steps of the resonator
during a scan relax the engineering requirements of the detector tuning system.
Finally, it makes the use of quantum-limited amplifiers for dark matter radios
desirable in order to maximize the sensitivity bandwidth. A detailed analysis of
the quantum limits on dark matter radios, including amplifier back-action, can be
found in Ref. [16]. While this same analysis applies to microwave cavity detectors,
their total noise tends to be dominated by the readout amplifier and the sensitivity
bandwidth is about the same as the resonator bandwidth. The out-of-band sensitivity
is a consequence of the lower operating frequency, resulting in a higher thermal
occupation of the resonator.
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Fig. 7.5 Total noise, thermal noise, and amplifier noise as a function of detuning from the
LC oscillator resonant frequency. The signal-to-noise ratio is only slightly degraded away from
resonance, resulting in a much greater sensitivity bandwidth compared to the intrinsic resonator
bandwidth

7.6 Sensitivity of Dark Matter Radio Experiments

There are a number of DM Radio experiments proposed, planned, or underway
aimed at exploring unconstrained parameter space for UBDM [15, 17–19], and
several have reported initial results [20–22]. These experiments employ a variety
of tools and techniques going beyond the basic scheme described in Sect. 7.4 and
target axion and ALPs as well as hidden photons.

The sensitivity of DM Radio experiments can be compared to astrophysical
constraints (see Chap. 3). In contrast to axions and ALPs, there are no strong
constraints on hidden photons from supernovae for any parameters [7]. Constraints
from star-cooling fall off rapidly for smaller values of mγ ′ , and so the dominant
constraint on κ comes from measurements of the cosmic microwave background
(CMB). The idea of the CMB limits is that there can be resonant conversion of
CMB photons into hidden photons when the “effective mass” of the photon due to
interactions with the primordial plasma matches mγ ′ [23]. (This resonant conversion
effect is similar to the Mikheyev–Smirnov–Wolfenstein (MSW) effect for neutrinos
[24, 25].) Therefore, the constraints from the CMB have a sharp cutoff at around
mγ ′c2 ≈ 10−14 eV [23, 26]. Constraints below mγ ′c2 ≈ 10−14 eV come from limits
on heating of the ionized interstellar medium by hidden photon dark matter [27].

A wide view of the hidden photon parameter space is shown in Fig. 7.6. The green
areas show regions of parameter space excluded by a reinterpretation of published
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Fig. 7.6 Current exclusion limits for the hidden photon parameter space. Plot adapted from
Ref. [22]

ADMX and precursor experiment axion limits applied to hidden photons [28]. The
thin red line shows the first exclusion limit produced by a dark matter radio—
the DM Radio Fixed Resonator [22]. Shown in blue is the expected exclusion
limit for a 1-year scan of the DM Radio Pathfinder, a larger detector currently
operating at Stanford University. These prototype dark matter detectors have served
as stepping-stones for two future axion-focused detectors being constructed by the
DM Radio collaboration: DM-Radio-50L and DM-Radio-m3. The DM-Radio-50L
detector will use a 50 liter,∼1T toroidal magnet to probe axionlike particles between
5 kHz and 5 MHz, corresponding to the 20 peV–20 neV axion mass range. The DM-
Radio-m3 detector will use a cubic meter, 4T magnet to probe the QCD axion
between 5 MHz and 300 MHz (∼20 neV–800 neV) with sensitivity to the DFSZ
QCD axion above 30 MHz. Both of these detectors may also be modified to search
for hidden photons over the same span of frequencies. Interestingly, it has recently
been realized that the Earth itself can be used as a transducer for a DM-Radio-like
experiment at much lower frequencies [29].
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Chapter 8
Laboratory Searches for Exotic
Spin-Dependent Interactions

Andrew A. Geraci and Yun Chang Shin

Abstract The possible existence of exotic spin-dependent interactions with ranges
from the subatomic scale to astrophysical scales has been of great theoretical
interest for the last few decades. Typically, these exotic interactions are mediated
by ultralight bosons with very weak coupling strength. If they indeed exist,
such long-range interactions would indicate new physics beyond the Standard
Model. A wide variety of experimental tests have been made to search for novel
long-range spin-dependent interactions. Most experimental searches have focused
on monopole-dipole or dipole-dipole interactions that could be induced by the
exchange of ultralight bosons such as axions or axionlike particles. These ultralight
bosons could also provide an answer to some of the most challenging problems
in modern particle physics and astronomy: for example, the strong-CP problem
in quantum chromodynamics (QCD), where C represents the charge conjugate
symmetry and P represents the parity symmetry, and the explanation of dark matter
and dark energy. In this chapter, we discuss the theoretical motivations as well as
experimental searches for exotic spin-dependent interactions mediated by ultralight
bosons in recent decades. We also introduce ongoing experimental efforts, such as
Axion Resonant InterAction DetectioN Experiment (ARIADNE) and the QUest for
AXion (QUAX)-gsgp experiment. The high sensitivities of these tests will allow
vast expansion of the discovery potential for exotic spin-dependent interactions.
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8.1 Introduction

In nature, there are four different fundamental forces that explain interactions of
objects: electromagnetic, strong, weak, and gravitational forces. The gravitational
and electromagnetic forces produce long-range interactions, and the strong and
weak forces produce interactions at subatomic scales. Understanding the funda-
mental forces of nature has long been a profound goal in physics research. Each
of the fundamental forces is characterized by its strength, effective range, and the
nature of the particles that mediate the interaction. The Standard Model of particle
physics is a theory describing three of the four known fundamental interactions
and all elementary particles; the quantum description of the role of gravity in the
Standard Model is incomplete. Although the Standard Model has had great success
in describing most interactions and particles, there is a considerable piece of the
puzzle missing: the nature of the dark matter. Recently, new theories have postulated
the existence of new “exotic” interactions that may explain various anomalous
phenomena that remain unexplained by the Standard Model [1]. In these theories,
exotic interactions with very weak strength have ranges from sub-mm scales all
the way to cosmological scales. The search for such exotic interactions has been
motivated in recent decades by the cosmological dilemmas of dark matter and dark
energy [2, 3].

8.1.1 Dark Matter and New Spin-Dependent Interactions

Over the last few decades, astrophysical observations have indicated that most of
mass-energy density of our universe is in the form of non-baryonic components
belonging to what is known as the “dark sector." Recent measurements show that
ordinary baryonic matter contributes only about 4% of the energy content in the
universe. The remaining 96% of the energy content belongs to the dark sector with
two sub-components called “dark energy” and “dark matter.” The dark energy is
believed to accelerate the expansion of the universe and contributes about 68% of the
energy content in our universe. Although the accelerating expansion of our universe
has been verified by astronomical observations, the existence of dark energy is still
under debate [4, 5].

On the other hand, the reality of dark matter is becoming more evident based
on the observation of the abundance of light elements and the measurement of
the cosmic microwave background (CMB), as well as from the measured galactic
rotation curves, galactic cluster dynamics, and gravitational lensing studies (see
Chap. 1). Dark matter is considered to be responsible for approximately 85% of
the matter density and about 25% of total energy density in the universe.

The fact that dark matter cannot be explained in the framework of the Standard
Model of particle physics creates the need for a new theory that extends beyond the
Standard Model. There are two main categories of beyond-Standard-Model theories
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to explain dark matter: one class of theories suggest that dark matter is composed of
neutralinos or other weakly interacting massive particles (WIMPs) and the other
suggests that dark matter is made of axions or other weakly interacting sub-eV
particles (WISPs), another term for the ultralight bosons described throughout this
text. WIMPs have been a promising solution for the dark matter problem since they
were first introduced [6]. However, non-observation of WIMPs at the Large Hadron
Collider (LHC) and in other direct-detection dark matter experiments over past few
decades gives rise to strong motivation to look for WISPs. A wide variety of theories
beyond the Standard Model have predicted the existence of such weakly coupled
scalar, pseudoscalar, vector, and axial-vector bosons with very light mass as dark
matter candidates [2].

These ultralight bosons arise from spontaneous symmetry breaking of global
U(1) symmetries at a scale of f and their effective couplings to standard model
particles are suppressed by a factor on the scale f [7–10], as discussed in Chap. 2.
Examples include majorons which result from breaking of the global U(1) B− L
symmetry where B is the baryon number and L is the lepton number. Majorons could
explain the small neutrino mass mν ∼ m2

l /fL where ml is the mass of the associated
charged lepton and fL is the symmetry-breaking scale for lepton number [11, 12].
Familons are WISPs that arise from breaking of family symmetry which normally
refers to various discrete, global, or local symmetries between quark-lepton families
or generations. Familions couple to a divergence of current changing flavor quantum
number and therefore can be emitted in flavor changing decays [13].

These ultralight bosons could be an answer not only for the dark matter problem,
but also for many other fundamental questions in physics, such as the CP problem
in QCD [7, 14, 15]. One well-known example of such an ultralight boson is the
axion. The axion remains the most prominent solution of the strong CP problem
many decades after its prediction and is also a very well-motivated dark matter
candidate, as discussed in Chaps. 1 and 2 and elsewhere throughout this book. Now
the question is if these ultralight bosons could also be linked to new interactions
that are yet to be observed? If such an exotic long-range interaction mediated by an
ultralight boson is discovered, it would have a profound impact on our understanding
of nature.

8.1.2 New Spin-Dependent Interactions

Weakly coupled, long-range interactions are a generic consequence of a sponta-
neously broken continuous symmetry as shown by Goldstone’s theorem. Gold-
stone’s theorem states that if a system that is invariant under a continuous, global
symmetry has this symmetry broken so that the ground (vacuum) state is not
invariant with respect to the global symmetry (referred to as a spontaneously broken
symmetry—see Chap. 2), there must be a state in the spectrum of excitations of the
system with zero energy (which can be created from the ground state by performing
a spacetime-dependent symmetry transformation). This state is called a Goldstone
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mode or Goldstone boson. Since the Goldstone mode is “gapless” so that its energy
vanishes when its momentum vanishes, i.e., as ω → 0 then k → 0 (see Fig. 2.1
and surrounding discussion), the Goldstone mode oscillates with infinite wavelength
(λ→∞) to minimize the energy of the wave by reducing the momentum. Thus the
Goldstone mode corresponds to massless particles traveling with the speed of light.
Therefore, when the underlying symmetry is exact up to an energy scale f , the
process always produces a massless Goldstone boson [16].

However, when the symmetry is explicitly broken, meaning that the symmetry
becomes an approximate symmetry instead of an exact symmetry, the Goldstone
boson acquires a very small mass rather than being exactly massless. Such particles
are referred as to “pseudo-Goldstone bosons” (again, see Chap. 2). The pseudo-
Goldstone bosons acquire a small mass of order mb ∼ �2/f that depends on
the symmetry-breaking scale � of the continuous Lagrangian [17]. If such bosons
have sufficiently small mass they have a macroscopic Compton wavelength and can
mediate macroscopic interactions [18].

The ultralight pseudo-Goldstone bosons can couple to fundamental fermions
through scalar and pseudoscalar vertices for spin-0 bosons, vector, axial-vector,
tensor, and pseudotensor vertices for spin-1 bosons. The interactions can be
classified in terms of a multipole expansion: well-known examples of possible
allowed interactions are monopole-monopole, monopole-dipole, and dipole-dipole.
Monopole-dipole interactions include a scalar coupling, gs , and a pseudoscalar
coupling, gp, thereby violating P and T symmetry. This can be seen in the
nonrelativistic limit, where this interaction is proportional to gsgpσ · r where σ

is the spin of one particle, and r is the distance between two particles: the spin σ is
P -even and T -odd, whereas the position vector r is P -odd and T -even, making their
scalar product, σ · r , P - and T -odd. Dipole-dipole interactions are dependent on the
spins of two particles, σ 1 and σ 2, and can be either velocity-independent or velocity-
dependent. Spin-dependent but velocity-independent dipole-dipole interactions are
proportional to g2

pσ 1 · σ 2 [19–21]. Depending on the model, the monopole and
dipole couplings can occur for electrons and/or nuclei.

An interesting point is that, although the couplings can be extremely feeble for
the interaction between single particles, a macroscopic object composed of many
particles, e.g., on the order of ∼1022–1023, would produce a coherent field, thus
enhancing the signal as compared to a single particle and potentially making it
detectable with a sufficiently sensitive laboratory experiment [18]. Many of the
experimental tests of such interactions have been done with polarized gases [22].
Torsion balance experiments also have recently set new limits on both monopole-
dipole interactions and dipole-dipole interactions. But laboratory constraints on
possible new interactions in the mesoscopic range, which is roughly defined in
a scale of between ∼ μm to ∼ mm, have not yet been well developed [23].
In many cases, laboratory measurements combined with astrophysical data have
produced the most stringent constraints on the products of the coupling constants gs
and gp. These coupling strengths are constrained by experiments or astrophysical
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observations. For the QCD axion, gs and gp are related to the axion mass as they
are fixed by the axion decay constant fa (see discussion in Chap. 2):

6× 10−27
(

109GeV

fa

)
< gs < 10−21

(
109GeV

fa

)
, (8.1)

and

gp = Cfmf

fa
= Cf × 10−9

( mf

1GeV

) (
109GeV

fa

)
, (8.2)

where Cf is a dimensionless coupling constant for the particular fermion consid-
ered.

8.2 Spin-Dependent Interactions Mediated by Light Bosons:
Classification

Spin-dependent interactions mediated by ultralight bosons were first described by
Moody and Wilczek along with some suggestions for experimental tests in Ref. [18].
They proposed experimental tests to detect axions via the macroscopic forces
mediated by axion exchange. A phenomenological theory was also developed by
Dobrescu and Mocioiu [1]. They listed all possible spin-dependent interactions
satisfying rotational invariance and standard assumptions of quantum field theory.
Fadeev et al. later revisited and derived nonrelativistic potentials mediated by spin-0
and spin-1 bosons [24]. They have updated the Dobrescu and Mocioiu’s work with
more details and several corrections, for example, including contact-terms in the
coordinate-space nonrelativistic potentials, which can affect atomic- and molecular-
scale experiments, in particular [25].

Exotic spin-dependent interactions that are mediated by spin-0 and spin-1 bosons
between two fermions with masses m1 and m2, and spins σ 1 and σ 2 can be derived
from the elastic scattering of two fermions in the nonrelativistic limit as shown in
Fig. 8.1. The scattering is mediated by a boson of mass mb and the four-momentum
q is transferred from fermion 2 to fermion 1.

Fig. 8.1 The Feynman
diagram of elastic scattering
between two fermions with
masses m1 and m2 mediated
by ultralight bosons with
mass mb with
four-momentum transferred
from vertex 2 to vertex 1 p1,i

p1,f

p2,i

p2,f

1 2

q
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The Lagrangian describing the interaction between fermions ψ mediated by a
spin-0 boson φ is given as:

Lψ = φ
∑
ψ

ψ̄
(
gs,ψ + iγ5gp,ψ

)
ψ , (8.3)

where γ5 = −iγ0γ1γ2γ3 are Dirac matrices. The interaction constants gs,ψ and
gp,ψ parametrize the scalar and pseudoscalar interaction strengths, respectively.

The Lagrangian describing the interaction mediated by exchange of a massive
spin-1 boson (denoted Z

′
) can be separated from that describing the interaction

mediated by a massless spin-1 boson (denoted γ ′) due to the presence of a
longitudinal polarization appearing for Z

′
bosons. In the case of a massive spin-

1 Z
′

boson, the Lagrangian becomes

L
Z
′ = Z

′
μ

∑
ψ

ψ̄
(
gV,ψ + γ5gA,ψ

)
ψ , (8.4)

where gV,ψ and gA,ψ are the vector and axial-vector interaction strengths, respec-
tively. The interaction Lagrangian describing the exchange of a massless spin-1 γ ′
boson is:

Lγ ′ = vh

�2Pμν

∑
ψ

ψ̄σμν
(
Re(Cψ)+ iγ5Im(Cψ)

)
ψ , (8.5)

where ψ denotes the fermion field, vh is the Higgs vacuum expectation value, � is
the ultraviolet energy cut-off scale of the Lagrangian in Eq. (8.5),

Pμν = ∂μAν − ∂νAμ (8.6)

is the field strength tensor of the massless spin-1 boson γ ′,

σμν = i

2
[γ μ, γ ν] , (8.7)

and Re(Cψ) and Im(Cψ) denote the respective interaction strengths. The details of
these cases can be found in Ref. [24].

The nonrelativistic momentum-space potential V (q) can be estimated from the
scattering matrix M(q) in the leading order as

V (q) ≈ − M(q)

4m1m2
. (8.8)

The nonrelativistic coordinate-space potential can be obtained by applying the three-
dimensional Fourier transformation to Eq. (8.8):



8 Laboratory Searches for Exotic Spin-Dependent Interactions 225

V (r) =
∫

d3q

(2π)3
V (q)eiq·r =

∫
d3q

(2π)3

−M(q)

4m1m2
eiq·r . (8.9)

8.2.1 Interactions Mediated by Massive Spin-0 Bosons

Interactions mediated by a massive spin-0 boson can be derived from the Lagrangian
in Eq. (8.3). They can be classified by three different type of interactions: scalar-
scalar, pseudoscalar-scalar, and pseudoscalar-pseudoscalar interactions.

8.2.1.1 Scalar-Scalar Interaction

The scattering matrix of the interaction between two fermions via the exchange
of a spin-0 boson at the tree level can be calculated from the Feynman rules in
momentum space,

iM(q) = [iū(pf,1)gs,1u(pi,1)][iū(pf,2)gs,2u(pi,2)] i

q2 −m2
b

, (8.10)

where mb is the mass of the boson which mediates the interaction and u(p) is the
spinor. The four-momentum of the mediating boson is defined as

q = p1,f − p1,i = p2,i − p2,f , (8.11)

and the average momenta of each fermion are defined as

p1 =
p1,i + p1,f

2
, (8.12)

p2 =
p2,i + p2,f

2
, (8.13)

where the labels 1, 2 denote the fermions and i, f denote the initial and final state
of the fermions as defined from Fig. 8.1. In the nonrelativistic limit (|p|  m), the
momentum-space Dirac spinor u(p) can be expanded up to the first order in p as

u(p) ≈ √m

⎛
⎜⎝

(
1− σ · p

2m

)
ξ

(
1+ σ · p

2m

)
ξ

⎞
⎟⎠ , (8.14)

where ξ is a 2×1 matrix with normalization ξ†ξ = 1 (ξ is often also called a spinor
in the literature).
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In the nonrelativistic limit, by using Eqs. (8.10) and (8.14) in the expression for
the coordinate-space potential (8.9), the potential of the scalar-scalar interaction
becomes

Vss(r) = −gs,1gs,2Vss = −gs,1gs,2
∫

d3q

(2π)3

1

|q|2 +m2
b

eiq·r , (8.15)

where we note that in the nonrelativistic limit the spacelike component of the
momentum dominates, q2 = q2

0 − |q|2 ≈ −|q|2. The integration in spherical
coordinates results in the potential Vss(r):

Vss(r) = −gs,1gs,2

4π

e−mbr

r
, (8.16)

which includes the well-known Yukawa-type factor.

•? Problem 8.1 Yukawa Potential in the Monopole-Monopole Interaction

Derive the Yukawa-type potential in Eq. (8.16) from Eq. (8.15) by computing the
integral in spherical coordinates.

Solution on page 342.

8.2.1.2 Pseudoscalar-Scalar Interaction

In the case of a pseudoscalar-scalar interaction between two fermions, the scattering
matrix can be obtained from the Feynman diagram as follows:

iM(q) = [i2ū(pf,1)gp,1γ5u(pi,1)][iū(pf,2)gs,2u(pi,2)] i

q2 −m2
b

, (8.17)

where we assumed a pseudoscalar coupling on vertex 1 (gp,1) and a scalar coupling
on vertex 2 (gs,2), respectively.

In the nonrelativistic limit, the spinor products in the scattering amplitude
become

ū(pf )u(pi) ≈ 2m,

ū(pf )γ
5u(pi) ≈ ∓σ · q,

(8.18)

where the sign of the pseudoscalar vertex depends on the direction of momentum
transfer.

This scalar-pseudoscalar interaction is normally called a monopole-dipole inter-
action in the sense of the multipole expansion. From Eqs. (8.18) and (8.17), the
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potential describing the monopole (gs) and dipole (igpσ ·q/2m) interaction between
two fermions can be expressed based on Eq. (8.9) as,

Vps(r) = −gp,1gs,2

2im1
Vps(r) = −gp,1gs,2

2im1

∫
d3q

(2π)3

σ 1 · q
|q|2 +m2

b

eiq·r , (8.19)

where the integration function Vps(r) can be obtained by taking the inner product
between the spin vector and the gradient ofVss(r):

Vps(r) = −iσ 1 · ∇Vss(r). (8.20)

With the calculation ofVps(r), the interaction potential becomes

Vps(r) = −gp,1gs,2

8πm1

(
σ 1 · r̂

) (
mb

r
+ 1

r2

)
e−mbr . (8.21)

•? Problem 8.2 Spin-Dependent Interaction via Spin-0 Boson Exchange:
Monopole-Dipole Interaction

Derive the monopole-dipole interaction potential (8.21) by completing the calcula-
tion in Eq. (8.20). Show that the strength of the interaction can be expressed as an
“effective” magnetic field or pseudo-magnetic field.

Solution on page 343.

8.2.1.3 Pseudoscalar-Pseudoscalar Interaction

The scattering matrix describing a pseudoscalar-pseudoscalar interaction is given
by

iM(q) = [i2ū(pf,1)gp,1γ5u(pi,1)][i2ū(pf,2)gp,2γ5u(pi,2)] i

q2 −m2
b

. (8.22)

In this matrix, the momentum is transferred from vertex two to vertex one. From
Eq. (8.18), the scattering matrix in the nonrelativistic limit becomes,

iM(q) = −(σ 1 · q)(σ 2 · q) −i
|q|2 +m2

b

. (8.23)

From Eq. (8.9), the potential for the pseudoscalar-pseudoscalar interaction between
two fermions is



228 A. A. Geraci and Y. C. Shin

Vpp(r) = gp,1gp,2

4m1m2
Vpp(r) = gp,1gp,2

4m1m2

∫
d3q

(2π)3

(σ 1 · q)(σ 2 · q)
|q|2 +m2

b

eiq·r , (8.24)

where the labels 1 and 2 indicate each fermion with mass m1 and m2, respectively.
The spin product in the integral part in Eq. (8.24) can be expressed via the
summation of each spin state a, b = 1, 2, 3:

Vpp(r) =
∑
a

∑
b

∫
d3q

(2π)3

σ1,aσ2,bqaqb

|q|2 +m2
b

eiq·r . (8.25)

Analogously to the method used in Eq. (8.20), Vpp(r) can be derived from Vss(r)

in the following way:

Vpp(r) = −
∑
a

∑
b

σ1,aσ2,b∂a∂bVss . (8.26)

The evaluation of partial derivatives in Eq. (8.26) yields

4π∂a∂bVss =
(
∂a∂be

−mbr
) 1

r
+2

(
∂ae

−mbr
) (

∂b
1

r

)
+e−mbr

(
∂a∂b

1

r

)
. (8.27)

By completing the calculation of Eq. (8.27), the potential for the pseudoscalar-
pseudoscalar interaction becomes

Vpp(r) = − gp,1gp,2

16πm1m2
e−mbr

×
[
σ 1 · σ 2

(
1

r3 +
mb

r2 +
4π

3
δ(r)

)

−(σ 1 · r̂)(σ 2 · r̂)
(
m2

b

r
+ 3mb

r2 + 3

r3

)]
.

(8.28)

•? Problem 8.3 Spin-Dependent Interaction via Spin-0 Boson Exchange:
Dipole-Dipole Interaction

Derive the dipole-dipole interaction potential (8.28) by using Eq. (8.27).

Solution on page 344.
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8.2.2 Interactions Mediated by Massive Spin-1 Bosons

Interactions between two fermions mediated by a massive spin-1 boson (Z′) can be
described using the Lagrangian in Eq. (8.4). In this case, the terms describing the
possible vertex interactions are given by

gV ū(pf )γ
μu(pi) ,

gAū(pf )γ
μγ 5u(pi) .

(8.29)

Using approximate nonrelativistic solutions, the spinor products for each vertex can
be simplified as

ū(pf )γ
0u(pi) ≈ 2m,

ū(pf )γu(pi) ≈ 2p ± iq × σ ,

ū(pf )γ
0γ 5u(pi) ≈ 2σ · p,

ū(pf )γ γ
5u(pi) ≈ 2mσ ,

(8.30)

where ± in the vector component is the direction of vector vertex.

8.2.2.1 Vector-Vector Interaction

The scattering matrix element of the vector-vector interaction is given by

iM(q) = gV,1gV,2[iū(pf,1)γ
μu(pi,1)][iū(pf,2)γ

νu(pi,2)]i gμν − qμqν/m
2
b

m2
b − q2

.

(8.31)
Since the vector current is conserved in the interaction, the qμqν term in the
propagator can be neglected. Therefore the scattering matrix can be simplified in
the nonrelativistic limit as

iM(q) ≈ −igV,1gV,2 4m1m2 − (2p1 − iq × σ 1) · (2p2 + iq × σ 2)

|q|2 +m2
b

. (8.32)

The potential describing the vector-vector interaction in momentum space is
approximately

V (q) ≈ gV,1gV,2

m2
b + |q|2

(8.33)

×
(

1− (q × σ 1) · (q × σ 2)

4m1m2
− p1 · p2

m1m2
− i

p1 · (q × σ 2)− p2 · (q × σ 1)

2m1m2

)
.
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In the nonrelativistic limit, the above expression can be simplified as

V (q) ≈ gV,1gV,2

m2
b + |q|2

(
1− (q × σ 1) · (q × σ 2)

4m1m2

)
. (8.34)

The dot product of the cross products between spin and momentum of each fermion
can be decomposed into

(q × σ 1) · (q × σ 2) = |q|2(σ 1 · σ 2)− (q · σ 1)(q · σ 2) . (8.35)

The coordinate-space potential can be obtained as

VVV (r) = gV,1gV,2

∫
d3q

(2π)3

eiq·r

m2
b + |q|2

(
1− |q|

2(σ 1 · σ 2)− (q · σ 1)(q · σ 2)

4m1m2

)
.

(8.36)
The first term of Eq. (8.36) is simply the Yukawa potential which we already studied
in the case of scalar-scalar interaction, Eq. (8.16).

∫
d3q

(2π)3

eiq·r

m2
b + |q|2

= e−mbr

4πr
. (8.37)

The second and third terms of Eq. (8.36) can be evaluated by using the results from
our analysis of the pseudoscalar-pseudoscalar interaction,

∫
d3q

(2π)3

q2eiq·r

m2
b + |q|2

= −∇2
(
e−mbr

4πr

)
=

(
δ(r)− m2

b

4πr

)
e−mbr , (8.38)

and

∫
d3q

(2π)3

(q · σ 1)(q · σ 2)e
iq·r

m2
b + |q|2

= σ 1 · σ 2

4π

(
1

r3 +
mb

r2 +
4π

3
δ(r)

)
e−mbr

− (σ 1 · r̂)(σ 2 · r̂)
4π

(
3

r3 +
3mb

r2 + m2
b

r

)
.

(8.39)
From these relationships, the interaction potential of the vector-vector interaction
becomes



8 Laboratory Searches for Exotic Spin-Dependent Interactions 231

VVV (r) = gV,1gV,2
e−mbr

4πr

+ gV,1gV,2

16πm1m2
(σ 1 · σ 2)

(
1

r3 +
mb

r2 +
m2

b

r
− 8π

3
δ(r)

)
e−mbr

− gV,1gV,2

16πm1m2
(σ 1 · r̂)(σ 2 · r̂)

(
3

r3
+ 3mb

r2
+ m2

b

r

)
e−mbr .

(8.40)

8.2.2.2 Axial-Vector-Vector Interaction

The potential describing the axial-vector-vector interaction can be calculated by
assuming an axial-vector coupling in the first vertex and a vector coupling in the
second vertex. In this case, the scattering matrix is given by

M(q) = −gA,1gV,2i[iū(pf,1)γ
μγ5u(pi,1)][iū(pf,2)γ

νu(pi,2)]i gμν − qμqν/m
2
b

m2
b − q2

.

(8.41)
Since the vector current is conserved, qμJμ = 0 imposes the condition that the
qμqν term vanishes. In the nonrelativistic limit, the momentum-space potential is

V (q) ≈ gA,1gV,2

4m1m2(m
2
b + |q|2)

[
4m2σ 1 · p1 − 2m1σ 1 · (2p2 + iq × σ 2)

]
.

(8.42)
It can be simplified as

V (q) ≈ gA,1gV,2

m2
b + |q|2

[
σ 1 ·

(
p

m1
− p2

m2

)
+ i

q · (σ 1 × σ 2)

2m2

]
. (8.43)

The coordinate-space potential can thus be obtained by applying a Fourier trans-
form:

VAV (r) = gA,1gV,2

4π
σ 1 ·

(
p

m1
− p2

m2

)
e−mbr

r

− gA,1gV,2

8πm2
(σ 1 × σ 2) · r̂

(
mb

r
+ 1

r2

)
e−mbr

r
. (8.44)

8.2.2.3 Axial-Vector-Axial-Vector Interaction

The main difference between an axial-vector-axial-vector interaction and a vector-
vector interaction is that the axial current of each fermion is not conserved whereas
the vector current is conserved. Therefore, in the case of the axial-vector-axial-
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vector interaction, it is necessary to consider the qμqν term in the propagator. The
scattering matrix becomes

M(q) = −gA,1gA,2i[iū(pf,1)γ
μγ5u(pi,1)][iū(pf,2)γ

νγ5u(pi,2)]i gμν − qμqν/m
2
b

m2
b − q2

,

(8.45)

and so consequently the momentum-space potential can be written as

V (q) = gA,1gA,2

m2
b + |q|2

(
σ 1 · p1

m1

σ 2 · p2

m2
− σ 1 · σ 2 + (q · σ 1)(q · σ 2)

m2
b

)
. (8.46)

The first term in Eq. (8.46) can be neglected because pi/mi  1 in the nonrelativis-
tic limit. The coordinate-space potential then becomes

VAA(r) = −gA,1gA,2

4π
(σ 1 · σ 2)

e−mbr

r
+ gA,1gA,2

4πm2
b

e−mbr

×
[
(σ 1 · σ 2)

(
1

r3
+ mb

r2
+ 4π

3
δ(r)

)

−(σ 1 · r̂)(σ 2 · r̂)
(

3

r3 +
3mb

r2 + c

)]
.

(8.47)

8.2.3 Interactions Mediated by Massless Spin-1 Bosons

For massless spin-1 bosons, the interaction Lagrangian is described as

Lγ ′ = vh

�2
Pμνψ̄σμν

[
Re(Cψ)+ iγ5Im(Cψ)

]
ψ , (8.48)

where the Pμν is the field strength tensor of the massless gauge boson γ ′, and σμν =
i
2 [γ μ, γ ν]. Using anti-symmetric properties of the tensors, the Lagrangian can be
written as

Lγ ′ = 2i
vh

�2
∂μAνψ̄γ μγ ν

[
Re(Cψ)+ iγ5Im(Cψ)

]
ψ . (8.49)

Using ∂μ = iqμ for the operator, then

Lγ ′ = −2
vh

�2 qμAνψ̄γ μγ ν
[
Re(Cψ)+ iγ5Im(Cψ)

]
ψ . (8.50)

The matrix elements ū(pf )γ
μγ νu(pi) and ū(pf )γ

μγ νγ5u(pi) in the scattering
matrix need to be estimated. In the nonrelativistic limit, the qμ can be approximated
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to only have a spacelike component. Therefore, the spinor products in the leading
order become (± corresponds to the particle 1 and 2 cases, respectively):

qi ū(pf )γ
iγ 0u(pi) = mqi

((
1+ σ ·p

2m

)
ξ†,

(
1− σ ·p

2m

)
ξ†

)

×
(

0 σ i

−σ i 0

) (
0 1
1 0

)
⎛
⎜⎝

(
1− σ · p

2m

)
ξ

(
1+ σ · p

2m

)
ξ

⎞
⎟⎠

= 2ip1,2 · (q × σ )± (σ · q)2,

(8.51)

and

qiū(pf )γ
iγ ju(pi) = mqi

(
(ξ†, ξ†

) (
0 σ i

−σ i 0

) (
0 σ j

−σ j 0

) (
ξ

ξ

)

= −2m(−i(q × σ )j ).

(8.52)

In the case of i �= j , the spinor products become

qi ū(pf )γ
iγ 0γ5u(pi) = mqi

(
ξ†, ξ†

) (
0 σ i

−σ i 0

) (
0 1
1 0

) (−1 0
0 1

) (
ξ

ξ

)

= −2m(σ · q),
(8.53)

and

qi ū(pf )γ
iγ j γ5u(pi) = mqi

(
(1+ σ ·p

2m )ξ†, (1− σ ·p
2m )ξ†

)

×
(−σ iσ j 0

0 −σ iσ j

) (−1 0
0 1

) ⎛
⎜⎝

(
1− σ · p

2m

)
ξ

(
1+ σ · p

2m

)
ξ

⎞
⎟⎠

= −2(q × (p × σ ))j .

(8.54)
There are three different types of possible interactions mediated by massless spin-1
bosons: tensor-tensor, pseudotensor-tensor, and pseudotensor-pseudotensor. Details
of concerning these interactions can be found in Ref. [24].

8.2.3.1 Tensor-Tensor Interaction

For the tensor-tensor interaction, the scattering matrix element is

iM(q) = 4v2
hRe(C1)Re(C2)

�4
[iqi ū(pf,1)γ

iγ ju(pi,1)]
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× [iql ū(pf,2)γ
lγ mu(pi,2)]−ig

jm

q2 . (8.55)

In the nonrelativistic limit, the scattering matrix becomes

iM(q) = 4v2
hRe(C1)Re(C2)

�4 [−2m1(q × σ 1)]j [−2m2(q × σ 2)]m igjm

|q|2 . (8.56)

Then the momentum-space potential is given by

V (q) = 4v2
hRe(C1)Re(C2)

�4

eiq·r

|q|2 (−(q × σ 1) · (q × σ 2)) . (8.57)

After the Fourier transform, the coordinate-space potential becomes

VT T (r) = 4v2
hRe(C1)Re(C2)

4π�4

[
(σ 1 · σ 2)

(
1

r3
− 8π

3
δ(r)

)
− (σ 1 · r̂)(σ 2 · r̂) 3

r3

]
.

(8.58)

8.2.3.2 Pseudotensor-Pseudotensor Interaction

For the pseudotensor-pseudotensor interaction, the leading order contribution comes
from the timelike components. The corresponding scattering matrix is

iM(q) = 4v2
hIm(C1)Im(C2)

�4
[i2qiū(pf,1)γ

iγ 0γ5u(pi,1)]

× [i2qlū(pf,2)γ
lγ 0γ5u(pi,2)]−ig

00

q2 , (8.59)

In the nonrelativistic limit, it becomes

iM(q) = 4v2
hIm(C1)Im(C2)

�4 [i2(−2m1)(σ 1 · q)][i2(−2m2)(σ 2 · q)] ig
00

|q|2 .

(8.60)
Then the momentum-space potential is given by

V (q) = 4v2
hIm(C1)Im(C2)

�4

eiq·r

|q|2 (q · σ 1)(q · σ 2) , (8.61)

yielding the coordinate-space potential:
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V
T̃ T̃

(r) = 4v2
hIm(C1)Im(C2)

4π�4

[
(σ 1 · σ 2)

(
1

r3
+ 4π

3
δ(r)

)
− (σ 1 · r̂)(σ 2 · r̂) 3

r3

]
.

(8.62)

8.2.3.3 Pseudotensor-Tensor Interaction

Unlike the tensor-tensor or pseudotensor-pseudotensor interaction, the leading order
of the fermion current for the pseudotensor-tensor interaction depends on the
fermion momenta. In the following calculation, we assume that the first vertex
involves the pseudotensor coupling and the second vertex involves the tensor cou-
pling. The pseudotensor term appears in leading order with the timelike component
of the gamma matrix, while the tensor term appears in leading order with the
spacelike component of the gamma matrix and is thus associated with momentum.
Therefore, it is necessary to evaluate both the timelike and spacelike components in
order to estimate the scattering amplitude.

Timelike Component: The timelike component of the scattering matrix is given by

M(q)00 = −i 4v2
hIm(C1)Re(C2)

�4
[i2qiū(pf,1)γ

iγ 0γ5u(pi,1)]

× [iqi ū(pf,2)γ
iγ 0u(pi,2)] ig00

|q|2 (8.63)

In the nonrelativistic limit, it becomes

M(q)00 →−i 4v2
hIm(C1)Re(C2)

�4

[−2m1(σ 1 · q)][2ip2 · (q × σ 2)− (σ 2 · q)2]
|q|2 .

(8.64)
Let us evaluate the above expression term by term. Note that the following
calculations employ the path integral formalism, making use of the integration
measure

∫
Dq to carry out the functional integral over all possible trajectories (see,

for example, discussion in Refs. [26, 27]). First,

∫
Dqeiqr

1

|q|2 (σ 1 · q)p2 · (q × σ 2) =
∑
i,l

pi
2ε

ijkσ2,kσ1,l

∫
Dqeiqr

qj ql

|q|2 ,

= 1

4π

∑
i,l

pi
2ε

ijkσ2,kσ1,l

[
δjl

r3 −
3rj rl
r5 + 4π

3
δjlδ(r)

]
,

= 1

4π

[
σ 1 · (σ 2 × p2)

r3 − 3
p2 · (r̂ × σ 2)(σ 1 · r̂)

r3 + 4π

3
σ 1 · (σ 2 × p2)δ(r)

]
,

= 1

4π

[
p2 · (σ 1 × σ 2)

(
1

r3
+ 4π

3
δ(r)

)
+ 3

p2 · (σ 2 × r̂)(σ 1 · r̂)
r3

]
.

(8.65)
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Second,

∫
Dqeiqr

1

|q|2 (σ 1 · q)(σ 2 · q)2 =
∫
Dqeiqr

1

|q|2 |q|
2(σ 1 · q)

= −iσ 1 · ∇δ(r).
(8.66)

Inserting the expressions (8.65) and (8.66) into Eq. (8.64), we obtain

M(r)00 =− 4v2
hIm(C1)Re(C2)m1

π�4
p2 · (σ 1 × σ 2)

(
1

r3
+ 4π

3
δ(r)

)

− 4v2
hIm(C1)Re(C2)m1

π�4

3p2 · (σ 2 × r̂)(σ 1 · r̂)
r3

− 8v2
hIm(C1)Re(C2)m1

�4 σ 1 · ∇δ(r) .

(8.67)

This timelike component of the pseudotensor-tensor potential can then be written as

V00(r) =4v2
hIm(C1)Re(C2)

8π�4 (σ 1 × σ 2)

{
−p2

m2
,

(
1

r3 +
4π

3
δ(r)

)}

+ 4v2
hIm(C1)Re(C2)

8π�4

{
−p2,i

m2
,

3(σ 2 × r̂)i(σ 1 · r̂)
r3

}

− 2v2
hIm(C1)Re(C2)

�4

σ 1 · ∇δ(r)
m2

.

(8.68)

Spacelike Component: The spacelike component of the scattering matrix is

M(q)lm = −i 4v2
hIm(C1)Re(C2)

�4

× [i2qi ū(pf,1)γ
iγ lγ5u(pi,1)][iqi ū(pf,2)γ

iγ mu(pi,2)] iglm|q|2 .

In the nonrelativistic limit

M(q)jj →− i
4v2

hIm(C1)Re(C2)

�4

[2m2i(q × σ 2)j ][−2(q × (p1 × σ 1))j ]
|q|2

= −16v2
hIm(C1)Re(C2)m2

�4

[(q × σ 2)j ][(q × (p1 × σ 1))j ]
|q|2 .

(8.69)
Summing over the j index gives the inner product of the two vectors and yields

(q×σ 2)·(q×(p1×σ 1)) = (q ·σ 1)q ·(σ 2×p1)−(q ·p1)(q ·(σ 2×σ 1)) . (8.70)
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Taking the Fourier transform with respect to the three-momentum q, the first term
gives

p1 · (σ 1 × σ 2)

(
1

r3
− 4π

3
δ(r)

)
+ 3(σ 1 · r̂)p1 · (σ 2 × r̂)

r3
. (8.71)

From the conservation of energy-momentum, q ·p = 0, the second term in Eq. (8.70)
vanishes. Thus combining the timelike and spacelike components together, the
potential for the pseudotensor-tensor interaction is given by

V
T̃ T

(r) =4v2
hIm(C1)Re(C2)

8π�4
(σ 1 × σ 2)

{
p1

m1
− p2

m2
,

(
1

r3
+ 4π

3
δ(r)

)}

+ 4v2
hIm(C1)Re(C2)

8π�4

{
p1

m1
− p2,i

m2
,

3(σ 2 × r̂)i(σ 1 · r̂)
r3

}

− 2v2
hIm(C1)Re(C2)

�4

σ 1 · ∇δ(r)
m2

.

(8.72)

8.3 Searches for New Interactions Between Polarized
Electrons and Unpolarized Nucleons

Several experiments have searched for the monopole-dipole interaction between
polarized electrons and unpolarized nucleons mediated by axions or ALPs,
described by the monopole-dipole interaction potential [Eq. (8.21)]

Vsp(r) =
h̄2gN

s g
e
p

8πme

(
1

λr
+ 1

r2

)
e−r/λσ · r̂ , (8.73)

where r is the displacement vector between electron and nucleon, gN
s and ge

p

are the scalar and pseudoscalar coupling constants of axions to the nucleon and
to the electron, respectively, me is mass of electron, λ is the axion Compton
wavelength, and σ is the spin unit vector. For example, Ni et al. tried to measure
an induced magnetization in a paramagnetic salt located near a heavy copper
mass [28]. Hammond et al. [29] observed the motion of three copper cylinders
located between a source of polarized electrons consisting of two split toroidal
electromagnets inside a magnetic shield system that enabled high spin polarization
with negligible external magnetic field [30]. Youdin et al. searched for monopole-
dipole couplings between a nearby lead mass and the spins of 133Cs and 199Hg
atoms using co-located atomic magnetometers [31]. Torsion balances have been
a successful method used for searches at the millimeter scale [32] as well as
at Earth and solar system scales [33]. In this section we describe the working
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principles of three example experiments which have produced recent world-leading
constraints: a torsion pendulum experiment, an electron-spin-resonance experiment,
and a spectroscopy experiment using trapped ions [34].

8.3.1 Torsion Pendulum Experiments

The most stringent experimental constraint at distance scales below ≈1 mm on an
axion-mediated interaction has been made with a torsion pendulum experiment by
Hoedl et al. [32], which is a characteristic example of the sort of experimental
method used to search for exotic interactions mediated by new bosons. The torsion
pendulum apparatus consists of two parts: a split toroidal electromagnet and a planar
torsion pendulum suspended between two magnet halves. The magnet halves are
fixed in the apparatus (see Fig. 8.2). The pendulum is free to twist about the axis
of the torsion fiber. The twist angle of the pendulum is optically monitored with
an autocollimator [32]. The autocollimator measures small angles by comparing
the position of a collimated laser beam that is reflected from the surface of the
pendulum to the position of a reference laser beam. An axion-mediated force
between the polarized electrons in the electromagnet and the unpolarized silicon
atoms in the pendulum would generate a torque on the pendulum which is given
by gNs gepG(x, λa), where G(x, λa) is a geometrical factor and x is the distance

Fig. 8.2 Schematic diagram
of a torsion pendulum
experiment designed to
search for a monopole-dipole
coupling between electron
spins and nucleons. Two
toroidal electromagnet halves
source polarized electrons. A
planar torsion pendulum
suspended between the two
magnet halves sources
unpolarized nucleons. The
pendulum is freely suspended
by a tungsten wire. Adapted
from Ref. [32]
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between the pendulum and the symmetry plane between the magnet halves.
This interaction acts like an effective “magnetic field” (pseudo-magnetic field) to
generate torque on the pendulum, thereby behaving as a torsion spring. When the
effective magnetic field is switched from one direction to the other direction by
changing the polarization of the electron spins in the electromagnet, if there is a
new macroscopic interaction in the form of Eq. (8.73), the pendulum experiences
a torque. Thus a spin-dependent interaction could be detected by measuring the
change in the equilibrium twist angle of the torsion pendulum. The strength of the
interaction depends on the distance between pole and pendulum. Figure 8.3 shows
the exclusion limit based on this torsion balance experiment (red dashed line labeled
Hoedl et al. [32]), as well as constraints from other experiments [35].

Although gNs gep would be very small for QCD axions due to the fact that gNs ∝
θQCD, where θQCD is the CP-violating phase appearing in the Lagrangian describing
the strong interaction (see discussion in Chap. 2), this experiment has the advantage
compared to axion haloscope searches (as discussed in, for example, Chaps. 4 and 6)
that axions are sourced directly from the local object. Thus the effect would exist

Fig. 8.3 Constraints on monopole-dipole couplings between nucleons and electrons |gNs gep|/(h̄c)
from laboratory experiments and astrophysical observations, adapted and updated from Ref. [35].
Constraints from experiments discussed in this chapter include those from Ref. [32], shown by the
red dashed line labeled Hoedl et al. [32], Ref. [36], shown by the red dotted line labeled Crescini
et al. (2017) [36], Ref. [34], shown by the black short-dashed line labeled Wineland et al. [19],
and Ref. [37], shown by the dashed blue line labeled Lee et al. [37]. Further discussion of other
constraints can be found in Ref. [35]
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even if the axion is not the dominant component of dark matter, and means that the
signal is not subject to the myriad uncertainties affecting the interpretation of limits
from haloscope experiments due to the unknown local distribution of dark matter
(see, for example, discussion in Chaps. 3 and 10). Because the axion-mediated
interaction is locally sourced in this experiment, and, in fact, all the experiments
considered in this chapter, the axion-induced signal can be purposefully modulated
in a controlled fashion, making it potentially easier to distinguish from noise.

8.3.2 Electron-Spin Based Magnetometer Searches

Recent magnetometry experiments have provided the best constraints on monopole-
dipole couplings of electron spins at distances of order 1–10 cm [36]. The QUAX-
gsgp experiment described in Ref. [36] is an adaptation of the QUAX experi-
ment (QUest for AXions) to search for monopole-dipole interactions between an
unpolarized source mass and the electron spins in a paramagnetic gadolinium oxy-
orthosilicate Gd2SiO5 crystal (GSO) crystal. The GSO crystal is cooled down to 4K
in a liquid helium cryostat. Figure 8.4 shows the diagram of the setup; the derived
constraints on electron-spin couplings are shown in Fig. 8.3 with the red dotted line
labeled as Crescini et al. (2017) [36]. An unpolarized lead source mass is spun a few
cm away from the GSO crystal and the change in magnetization is read out with

Fig. 8.4 Schematic diagram of the setup for the short-range spin-dependent force search of the
QUAX-gsgp experiment. An unpolarized lead source mass wheel is spun in proximity to a
paramagnetic GSO crystal, and the resulting change in its polarization is read out with a SQUID
magnetometer. Figure from Ref. [36]
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a dc superconducting quantum interference device (SQUID) magnetometer. The
setup includes concentric superconducting shields placed within an outermost μ-
metal shield in order to reduce the flux trapped in the inner superconducting shields.
The overall rejection factor of magnetic shield system is expected to be ∼1012,
significantly reducing environmental magnetic disturbances. The distance between
the center of mass of each lead source and the GSO crystal is modulated in time by
mounting the masses on a rotating 70 cm diameter aluminum disk that rotates at a
constant angular velocity. The minimum distance between each source and detector
is 3.7 cm.

8.3.3 Spectroscopic Constraints with Trapped Ions

Constraints on novel electron monopole-dipole interactions have also been obtained
using hyperfine spectroscopy of trapped and cooled 9Be+ ions in experiments
performed by Wineland et al. [34]. Here by reversing the magnetic field along the
direction of the Earth’s gravitational field, novel spin-dependent frequency shifts
can be constrained. Here the source of the interaction was assumed to be nucleons
in the Earth and the resulting frequency shift between two Zeeman sublevels within
the electronic ground state hyperfine manifold was measured. In the absence of
novel spin-dependent interactions, the field reversal should result in no frequency
shift. The frequency shift was determined to be less than ∼13.4 μHz, resulting in
the limits shown by the black short-dashed line in Fig. 8.3.

8.4 Monopole-Dipole Searches with Polarized Nuclear Spins
and Unpolarized Nucleons

Several experimental techniques have been employed to search for novel spin-
dependent monopole-dipole interactions Vsp between nucleons. Some experiments
have used ultra-cold neutrons (UCNs) and 3He to test spin-dependent interactions
between polarized and unpolarized nucleons. Baessler et al. tried to find a deviation
from the expected energy levels of UCNs in the Earth’s gravitational field [38].
Serebrov et al. searched for a change in the UCN precession frequency due to a
spin-dependent interaction [39]. Pethkhov et al. looked for a change in the spin
relaxation time of 3He induced by exotic spin-dependent interactions [40]. Fu et al.
also set a constraint on the monopole-dipole interaction [41] by reanalyzing existing
data on the spin relaxation times of polarized 3He in the context of exotic spin-
dependent interactions [42]. Here we describe in more detail a few examples based
on magnetometry and nuclear magnetic resonance (NMR), including experiments
under development.
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8.4.1 Axion Searches with Comagnetometers

A powerful technique to search for axion-mediated interactions is to measure varia-
tions in the nuclear Larmor precession frequency as a source mass is brought near a
polarized atomic vapor. There have been many successful approaches, for example,
relying on comagnetometry with multiple nuclear spin species [43–46], nuclear
spins along with alkali gases [37], and single-species liquid comagnetometers based
on NMR measurements of different nuclei in identical molecules [47].

8.4.1.1 Noble Gas Comagnetometer

A method to search for non-magnetic, spin-dependent interactions is to use a
sensitive low-field comagnetometer based on detection of free spin precession of
gaseous, nuclear polarized samples [45]. The idea is to measure spin precession of
two species, 3He and 129Xe gas, in the same volume. The Larmor frequencies of
3He and 129Xe in a guiding magnetic field B are given by ωL,He(Xe) = γHe(Xe)B,
with γHe(Xe) being the gyromagnetic ratios of the respective gas species with
γHe/γXe = 2.75408159. The goal of employing a comagnetometer is to separate
out background magnetic fields and drifts from any anomalous spin-dependent
interactions. One seeks to establish a signal which will vanish for ordinary magnetic
fields but be sensitive to new physics. In practice perfect subtraction of ordinary
backgrounds is challenging for several reasons, but the technique is quite powerful
and has produced constraints on monopole-dipole interactions between nuclei at a
variety of laboratory scale distances.

The influence of the ambient magnetic field and its temporal fluctuations cancels
in the difference of measured Larmor frequencies of the co-located spin samples

ω = ωHe − γHe

γXe
ωXe . (8.74)

This frequency shift in Eq. (8.74) can be separated into three parts [45]:

ω(t) = ωlin + εHeAHee
−t/T ∗2,He − εXeAXee

−t/T ∗2,Xe , (8.75)

where εHe(Xe) are the respective geometry-dependent factors describing self-field
effects, T ∗2,He(Xe) are the respective effective spin coherence relaxation times, and
AHe(Xe) are the constants describing the amplitude of the spin polarization of the
respective species. The first part is a constant frequency shift, ωlin, due to Earth’s
rotation which is not compensated by comagnetometry. This effect is commonly
referred to as the gyro-compass effect and is nicely demonstrated and well-described
in Ref. [48]. The other two parts are related to the generalized Ramsey-Bloch-
Siegert shift [49–51] arising from the self-fields caused by the precessing 3He/129Xe
nuclear spins appearing in nonspherical vapor cells [52]. In the same manner,
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Fig. 8.5 Schematic diagram of the experimental setup from Ref. [45] used to search for anomalous
monopole-dipole interactions. The 3He/129Xe cell is located at the center. The BGO crystal is
placed on right (or left) side with respect to the sample. The crystal travels back and forth toward
the cell with a certain frequency. The SQUID module located on the top of the cell monitors the
precession frequency of each species. Adapted from Ref. [45]

the weighted accumulated phase difference acquired during precession, �(t) =
�He(t) − (γHe/γXe)�Xe, can also be measured. Any anomalous frequency shift
generated by non-magnetic spin interactions, such as the monopole-dipole interac-
tion described in Eq. (8.21), could be analyzed by monitoring ω(t) and �(t),
respectively (Fig. 8.5).

The experiment was done inside the magnetically shielded room (MSR) at the
Physikalisch-Technische Bundesanstalt Berlin (PTB). A homogeneous magnetic
guide field of ∼350nT was provided in the MSR. The detection of spin precession
was done with multi-channel low Tc dc SQUID device. The SQUID sensor detects
a sinusoidal magnetic flux change due to the nuclear spin precession of the gas.
The spin precession frequency shift due to any monopole-dipole interaction is
induced by an unpolarized mass with high nucleon density. In this experiment, a
cylindrical BGO crystal (Bi4Ge3O12), which is non-conductive and non-magnetic
(χmag ≈ 0), with nucleon density (ρ = 7.13 g/cm3) was used. The BGO crystal
source mass is alternately moved to the left and right side of the 3He/Xe cell.
If a sufficiently strong monopole-dipole interaction exists, the movement of the
BGO crystal would produce a frequency shift correlated with the motion of the
source mass. In the case of a non-zero spin-dependent interaction, a shift ωw

sp in
the weighted frequency difference described by Eq. (8.74) can be extracted from
respective frequency measurements in the “close” and “distant” BGO positions
given by

ωw
sp =

2V c
�

h̄

(
1− γHe

γXe

)
. (8.76)
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Fig. 8.6 Constraints on monopole-dipole couplings between nucleons and neutrons |gNs gnp|/(h̄c)
from laboratory experiments and astrophysical observations, adapted and updated from Ref. [35].
Constraints from experiments discussed in this chapter include those from Ref. [45], shown by
the black dotted line labeled Tullney et al. [45], Ref. [46], shown by the red dashed line labeled
Bulatowicz et al. [46], Ref. [37], shown by the dashed blue line labeled Lee et al. [37], and
Ref. [54], shown by the long-dashed red line labeled Chu et al. [54]. Further discussion of other
constraints can be found in Ref. [35]

Here the average potential in the “close” BGO position, V c
� , is obtained by

integration of the monopole-dipole interaction potential Vsp over the volume of the
massive unpolarized sample averaged over the volume of the polarized spin sample,
each having a cylindrical shape [45]. The estimation of V c

� assumes that the He and
Xe nuclei can be described by the single-particle Schmidt model, see, for example,
discussion in Ref. [53]. The constraints derived from this experiment are shown by
the black dotted line labeled Tullney et al. [45] in Fig. 8.6.

A different experiment was performed with a dual-species comagnetometer
employing 129Xe and 131Xe and using Rb as an optical magnetometer for readout
of the nuclear spin precession [46]. The Rb atoms are optically spin polarized and,
through spin-exchange collisions, polarize the Xe nuclei parallel to a dc magnetic
field. The Rb atoms serve as a magnetometer that detects the Xe precession since
the transverse magnetic fields of the polarized Xe produce an oscillating transverse
spin polarization of the Rb atoms. This is detected optically as a rotation of the
polarization of a linearly polarized sense laser [46]. The setup is shown in Fig. 8.7
and limits on scalar-pseudoscalar interactions are derived in the distance range of



8 Laboratory Searches for Exotic Spin-Dependent Interactions 245

Fig. 8.7 The setup for the dual-species free-induction decay (FID) comagnetometer used to search
for mm-scale monopole-dipole interactions. Sample FID data, where Xe spin precession was
optically detected via laser light probing Rb spins co-located with the Xe spins, are shown (FID
oscillations are frequency down-converted to ≈0.3 Hz from 45 Hz or 152 Hz). The unpolarized
source is the movable zirconia rod, which can induce frequency shifts of the Xe spin precession if
a monopole-dipole interaction of the form given by Eq. (8.21) exists. Figure from Ref. [46]

approximately 1 mm. NMR frequency shifts in polarized 129Xe and 131Xe could
arise due to a monopole-dipole interaction when a zirconia rod was moved back and
forth near the NMR cell. By comparing the simultaneous frequencies of the two Xe
isotopes, magnetic field changes are distinguished from frequency shifts due to the
monopole-dipole coupling using the same principle of comagnetometry discussed
in the previous paragraphs. Using prior calculations of the neutron spin contribution
to the nuclear angular momentum in 129Xe and 131Xe, a new upper bound on the
product gNs gnp for was obtained for ranges at the millimeter scale as shown by the
red dashed line labeled Bulatowicz et al. [46] in Fig. 8.6.
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8.4.1.2 Noble Gas: Alkali Comagnetometer Searches

Searches for new spin-dependent interactions have also been performed with K-3He
comagnetometers [37, 55]. Recent work was done with a moveable unpolarized Pb
source mass at a distance of approximately 15 cm from the K-3He comagnetometer
in order to search for both electron- and nuclear-spin-coupled interactions that
arise when there are both pseudoscalar and scalar couplings [37]. The experiment
employed overlapping ensembles of spin-polarized K and 3He, which are strongly
coupled via Fermi-contact interactions during spin-exchange collisions when the
resonant frequencies of K and 3He are matched. This allows effective cancellation
of magnetic fields and fast transient response [37]. In particular, the cancellation is
for fields transverse to the external field due to the adiabatic following of the 3He
spins. (The system is insensitive to fields along the applied external field, because
those do not create torques on the spins initially aligned along the leading field.)

Rubidium is used for spin-exchange optical pumping (SEOP), which polarizes
the K by collisions, and Rb and K-3He spin-exchange collisions polarize 3He to
approximately 2%. The comagnetometer signal is proportional to the difference
of the anomalous magnetic-like field couplings to the nuclear spin in 3He and the
electron spin in K. The He-3 adiabatically follows the magnetic field and the leading
field is tuned so that its effect on the K spins exactly balances that of the He-3
magnetization, making the comagnetometer insensitive to regular magnetic fields to
first order. The rotation rate of the apparatus about the y axis represents an example
of a non-magnetic coupling to spin that does not cancel in the comagnetometer. A
challenge in this experiment was that the motion of the Pb source masses produced
a subtle mechanical effect due to temperature changes correlated with the positions
of the masses [37]. Constraints derived from this experiment are shown in both
Figs. 8.3 and 8.6 by the dashed blue line labeled Lee et al. [37].

8.4.2 NMR-Based Spin-Dependent Searches

A sub-mm-range search was performed using room temperature polarized 3He gas
in a cell with a 250 μm thick window and unpolarized source mass [54]. The
experimental diagram is shown in Fig. 8.8. The cylindrical 3He cell is located in
a uniform magnetic field. Correction coils compensate for residual leading field
gradients. 3He is polarized using spin-exchange optical pumping in the spherical
pumping chamber, and polarized 3He atoms diffuse into the lower 40-cm long
cylindrical chamber, which has two hemispherical glass windows at both ends. Two
pick-up coils are used: pick-up coil A is mounted below the window to measure
the precession frequency shift of the polarized 3He nuclei due to spin-dependent
short-range interactions with the unpolarized mass. Pick-up coil B is positioned
farther away to be insensitive to short-range interactions, and its signal is used to
monitor the leading field drift and background fields. The frequencies measured in
both coils are subtracted for each measurement. The 3He cell position is adjusted
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Fig. 8.8 Experimental setup
for the NMR measurement
with a 3He sample cell,
polarizing cell (spherical),
polarizing laser, Helmholtz
coils, and source mass.
Precession of the polarized
3He nuclei is measured by the
induced EMF in the pick-up
coils. Figure from Ref. [54]

to optimize the transverse spin relaxation time measured from coils A and B. The
leading field is tuned to produce a 3He Larmor frequency near 23.8 kHz and the
authors apply a 24 kHz radiofrequency (RF) pulse to tip the spins by a small angle
with negligible polarization loss. The precessing polarized 3He nuclei induce an
electromotive forces (EMF) in the pick-up coils which is recorded. Two source
masses for the experiment are used having differing nucleon densities and low
magnetic impurities: a ceramic mass block and a liquid mixture of 1.02% MnCl2
in pure water. Constraints derived from this experiment are shown in Fig. 8.6 by the
long-dashed red line labeled Chu et al. [54].

8.4.3 Resonant NMR-Based Spin-Dependent Interaction
Search: ARIADNE

The Axion Resonant InterAction DetectioN Experiment (ARIADNE) aims to detect
axion-mediated spin-dependent interactions between an unpolarized source mass
and a spin-polarized 3He low-temperature gas [56]. As previously noted in the
discussion around Eq. (8.21), the axion can mediate an interaction between fermions
(e.g., nucleons) with a potential given by

Vsp(r) =
h̄2gNs gNp

8πmf

(
1

rλa
+ 1

r2

)
e
− r

λa

(
σ · r̂)

, (8.77)

where mf is their mass, σ is the Pauli spin matrix, r is the vector between them,
and λa = h/(mac) is the axion Compton wavelength. For the QCD axion the scalar
and dipole coupling constants gNs and gNp are related to the axion mass. Since the
axion couples to σ , which is proportional to the nuclear magnetic moment, the axion
coupling can be treated as an effective “magnetic field” Beff (i.e., a pseudo-magnetic
field). This effective field is used to resonantly drive spin precession in a laser-
polarized cold 3He gas. This is accomplished by spinning an unpolarized tungsten
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mass sprocket near the 3He vessel. As the teeth of the sprocket pass by the sample
at the nuclear Larmor precession frequency, the magnetization in the longitudinally
polarized He gas begins to precess about the axis of an applied field. This precessing
transverse magnetization is detected with a SQUID. The 3He sample acts as an
amplifier to transduce the small effective magnetic field into a larger real magnetic
field detectable by the SQUID.

Integrating over the source mass, via Eq. (8.77), an axion with λa < R will
generate a potential a distance r from the surface of the source mass

Va(r) ≈
gNs gNp

2mN

λ2
anNe

− r
λa , (8.78)

where mN and nN are the nucleon mass and density of the material, respectively.
Here we assume the NMR sample thickness is of order λa and the source mass
surface is effectively flat. A spin-polarized nucleus near this rotating sprocket will
feel an effective magnetic field of approximately

Beff ≈ 1

h̄γN
∇Va(r)(1+ cos(nωrott)) , (8.79)

where γN is the nuclear gyromagnetic ratio and n is the number of segments, for a
sample thickness of order λa . Beff is parallel to the radius of the sprocket.

The NMR sample with net polarization Mz parallel to the axis of the sprocket
(and a Larmor frequency 2μN · Bext/h̄ = ω determined by an axial field Bext) will
develop a time-varying perpendicular magnetization Mx in response to the resonant
effective axion field Beff given by

Mx(t) ≈ 1

2
nspμNγNBeffT2

(
e−t/T1 − e−t/T2

)
cos(ωt) , (8.80)

where p is the polarization fraction, ns is the spin density in the sample, and μN is
the nuclear magnetic moment. Mx(t) grows approximately linearly with time until
t ∼ T2, the transverse relaxation time, and then decays at the longer longitudinal
relaxation time T1. Mx(t) can be detected by a SQUID with its pick-up coil axis
oriented radially. Note the SQUID detects the changing magnetization of the sample,
not the axion field itself (which is not a “real” magnetic field and thus does not affect
the SQUID reading directly).

Superconducting shielding is needed around the sample to screen it from
ordinary magnetic field noise which would otherwise limit the sensitivity of the
measurement. The ultimate limit is set by spin-projection noise (SPN) in the sample
itself [56], given as

√
M2

N =
√
h̄γ nsμHeT2

2V
(8.81)
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c

Fig. 8.9 (left) Setup: a sprocket-shaped source mass is rotated so its “teeth” pass near an NMR
sample at its resonant frequency. (right) Projected reach for monopole-dipole axion-mediated
interactions. The band bounded by the red (dark) solid line and dashed line denotes the limit set
by transverse magnetization noise, depending on achieved T2. Constraints and expectations for the
QCD axion also are shown, adapted from Refs. [37, 56]

and the minimum transverse magnetic resonant field detectable with this setup is
given by:

Bmin ≈ p−1

√
2h̄b

nsμHeγV T2
= 3× 10−19 T (8.82)

×
(

1

p

) √(
b

1 Hz

) (
1 mm3

V

) (
1021 cm−3

ns

) (
1000 s

T2

)
.

Here V is the sample volume, γ is the gyromagnetic ratio for 3He = (2π) × 32.4
MHz/T, b is the measurement bandwidth, and μHe = −2.12 × μn is the 3He
nuclear moment, where μn is the nuclear Bohr magneton. The estimated SQUID
magnetometer limited sensitivity is shown in Fig. 8.9.

The experiment sources the axion in the lab, and can explore all mass ranges
in our sensitivity band simultaneously, unlike experiments which must scan over
the allowed axion oscillation frequencies (masses) by tuning a cavity (e.g., as
described in Chap. 4) or magnetic field (e.g., as described in Chap. 6). Distinct
from other magnetometry experiments [37, 46, 54], the experiment uses a resonant
enhancement technique. Assuming sources of systematic error and noise can be
mitigated, the approach is expected to be spin-projection noise limited, and in
principle allows several orders of magnitude improvement, yielding sufficient
sensitivity to detect the QCD axion (Fig. 8.9). In principle, an experiment like
ARIADNE could be adapted to use a polarized source mass, in order to search for
anomalous dipole-dipole interactions [56]. Using a polarized source mass, however,
increases the need for the screening of ordinary magnetic interactions.
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•? Problem 8.4 Magnetic Field “amplification factor” for a Magnetized
NMR Sample Subject to an Effective Axion-Induced “magnetic field”

Within an order of magnitude, using Eq. (8.80), calculate the approximate amplitude
of the (real) time-varying magnetic field BSQUID that would be detected by a SQUID
pick-up loop at a distance of 2 mm from the center of a 1-mm-radius spherical
sample. Assume the induced transverse magnetization Mx is driven for a duration
of T2 by an axion with an effective field Beff. Evaluate your expression for the
dimensionless “amplification factor” (BSQUID/Beff) with T2 = 1000 seconds, a spin
density of 1021 spins per cubic centimeter, and unity polarization p = 1.

Solution on page 345.

8.5 Spectroscopic Measurements of Spin-Spin Coupled
Interactions

Comparison of precision spectroscopy of atoms [57] and molecules [58] with
theoretical expectations allows one to place stringent constraints on new exotic
interactions at atomic scales. As an example, we consider here a recent exper-
iment that has resulted in orders of magnitude improvement for constraints on
the existence of anomalous dipole-dipole forces on angstrom length scales [58].
Constraints were obtained by comparison of NMR measurements and theoretical
calculations of J -coupling in deuterated molecular hydrogen (HD). Such couplings
have the form J I · S (here, I and S are nuclear spin operators) and arise due to a
second-order hyperfine interaction. Exotic spin-spin interactions mediated by new
bosons, described, for example, by Eqs. (8.28), (8.40), and (8.47), also contain terms
proportional to I · S that can lead to a shift J of the J -coupling. Experimentally
measured J -coupling is in good agreement with theoretical calculations [58], ruling
out novel angstrom-range anomalous spin-dependent forces at a level several orders
of magnitude better than prior constraints from molecular beam measurements [59]
(Fig. 8.10).

8.6 Outlook

Future prospects for improvements in the search for novel spin-dependent inter-
actions are promising with new cryogenic and quantum technologies. Cryogenic
torsion balance technology could provide substantial gains beyond the thermal noise
limit for spin-dependent torque experiments. Spin squeezing or coherent collective
modes could offer prospects for improved sensitivity beyond the standard quantum
limit of spin-projection noise in experiments such as ARIADNE, potentially
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Fig. 8.10 Limits on dipole-dipole couplings between protons and nucleons |gNp g
p
p |/(h̄c),

described by Eq. (8.28), derived from comparison of NMR measurements and theory for J -
coupling in deuterated molecular hydrogen [58], shown by the light gray shaded region, along
with limits from molecular beam experiments [59], shown by the dark gray shaded region. The
prediction for dipole-dipole couplings mediated by the QCD axion in the Kim-Shifman-Vainshtein-
Zakharov (KSVZ) model [18] is also shown for comparison. Figure adapted from Ref. [58]

allowing sensitivity all the way down to the SQUID-limited sensitivity (dashed-
dotted line in Fig. 8.9). This would allow one to rule out the axion over a wide
range of masses, and when combined with other promising techniques [60–62], and
existing experiments [63, 64] already sensitive to QCD axions, could, in principle,
allow the QCD axion to be searched for over its entire allowed mass range.
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Chapter 9
Light-Shining-Through-Walls
Experiments

Aaron D. Spector

Abstract The light-shining-through-walls (LSW) method of searching for ultra-
light bosonic dark matter (UBDM) uses lasers and strong dipole magnets to probe
the coupling between photons and UBDM in the presence of a magnetic field.
Since these experiments take place entirely in the laboratory, they offer a unique
opportunity to perform a model independent measurement of this interaction. This
involves shining a high-power laser through a magnetic field toward a wall which
blocks the light. The interaction between the laser and the magnetic field generates
a beam of UBDM that passes through the wall. Beyond the wall is another region
of strong magnetic field that reconverts the UBDM back to photons that can then
be measured by a single photon detection system. The sensitivity of these kinds of
experiments can be improved further by implementing optical cavities before and
after the wall to amplify the power of the light propagating through the magnetic
fields. This chapter gives an introduction to LSW experiments and discusses a
number of interesting challenges associated with the technique.

9.1 Introduction

Light-shining-through-walls (LSW) experiments offer the unique ability to measure
the coupling between photons and the UBDM field over a wide range of masses in a
purely laboratory setting. As Fig. 9.1 shows, these experiments work by shining
a high-power source of light through a static magnetic field toward an opaque
wall. While the wall blocks the light, the interaction between the photons and the
magnetic field will generate a UBDM field which travels through it. Past the wall
is another region of static magnetic field where the UBDM field converts back
to photons which can then be measured with a detector. One of the strengths of
LSW experiments is that since they do not rely on model-dependent astrophysical
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Magnetic Field
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Laser field UBDM field Regenerated field

Magnetic Field

UBDM fieldLaser field

Detector

Fig. 9.1 A simple layout for an LSW experiment. The laser field is the red solid line, while the
blue line is the UBDM field. A wall then blocks the light from the laser, while the UBDM field
passes directly through it. The regenerated field is then shown as a red dotted line. The detector
measures the regenerated field and does not interact with the UBDM field
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Fig. 9.2 Limits on g set from ALPS I [1] in orange and the projected sensitivity of ALPS II in
blue. The hints from the transparency of the universe for TeV photons are shown in red [2], while
the range of g that could cause stars to cool faster than their models predict is shown in pink [3].
ALPS II will be the first experiment to search for the UBDM coupling to photons over the mass
range that could cause these phenomena in a purely laboratory setting

sources to produce UBDM fields, their systematic uncertainty is related only to the
experimental apparatus itself.

In this chapter, we will refer to the region of magnetic field before the wall as the
“production area” and the magnetic field after the wall as the “regeneration area.”
The electromagnetic field reconverted from the UBDM field in the regeneration area
will be called the “regenerated field” or “regenerated photon signal.”

We will also use the Any Light Particle Search II (ALPS II) [4, 5] as a reference
point for the design of these experiments. From Fig. 9.2, we can see that ALPS II
will be able to probe the coupling constant g between photons and the UBDM field
down to g < 2× 10−11 GeV−1 for masses below 0.1 meV. This will allow ALPS II
to explore a very important region of the parameter space where there are several
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hints of the existence of UBDM fields from astronomical observations mentioned
earlier in Chap. 3. These include measurements of highly energetic photons from
distant sources that indicate the universe is more transparent at these energies than
predictions of the standard model would suggest [2]. This is shown in Fig. 9.2 as
the circular region in the lower left corner. In addition to this, UBDM fields could
also explain why stellar cooling rates uniformly exceed the expectations of their
models [3]. This is shown as the band from 10−11 < g < 10−10. While other
experiments may have investigated parts of these regions before, ALPS II will be
the first to measure this range of g without relying on any astrophysical models of
the production–regeneration process of the UBDM fields or the interstellar magnetic
fields.

9.1.1 UBDM Interaction with Photons in a Magnetic Field

As we saw in Chap. 2, the term in the Lagrangian that defines the interaction
between the photons and the UBDM field is

LUBDM = −
1

4
gϕFμνF̃

μν . (9.1)

In this equation, g is the coupling constant mentioned in the previous section. For
LSW experiments, we can define the amplitude of the pseudoscalar UDBM fields
ϕp generated in the production area as an integral of the dot product between an
oscillating electric field E, supplied by the laser, and a static magnetic field B over
an interaction length x,

ϕp(x, t) = e−i(ωt−kϕx) ig

2kϕ

∫
dx′E

(
x′

) · B(
x′

)
e−ikϕx′ , (9.2)

where ω is the angular frequency of the electric field, while kϕ is the wavenumber
of the UBDM field described by the following equation:

kϕ =
√
ω2 −m2

ϕ . (9.3)

The maximum amplitude in Eq. (9.2) will occur when E ‖ B, while no field is
produced if E ⊥ B. Likewise, opposite is true of scalar fields and the amplitude
will be largest when E ⊥ B and zero when E ‖ B. Therefore, LSW experiments
can search for pseudoscalar fields by aligning the polarization of the laser to the
magnetic field, while tuning the polarization of the laser orthogonal to the magnetic
field when searching for scalar fields.

If we assume that B is static in time and uniform over a length L, the amplitude
of the UBDM field can be simplified using plane wave approximations for E and
B:
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ϕ(x, t) = ig

2kϕ
BE0e

−i(ωt−kϕx)
∫

dx′eiqx′ . (9.4)

In this equation, q is a parameter that helps quantify the phase matching between
the UBDM field generated at different points along the static magnetic field and is
described by

q = nω −
√
ω2 −m2

ϕ ≈ ω(n− 1)+ m2
ϕ

2ω
. (9.5)

From Eq. (9.4), it is apparent that when the mass is large enough or the interaction
length is long enough that qL > 1, the experiment will lose some sensitivity as
the UBDM field generated in the production area does not sum coherently. In the
case where qL is some integer multiple of 2π greater than zero, the destructive
interference prevents any field from being generated at all.

By evaluating the integral in Eq. (9.4), we can find the probability Pγ→ϕ that a
photon in the production area will convert to a UBDM field:

Pγ→ϕ = 1

4

ω

kϕ
(gBL)2|F(qL)|2 . (9.6)

In the equation above, F(qL) represents the form factor for the magnetic field and
can be simplified to

∣∣Fsingle(qL)
∣∣ =

∣∣∣∣
2

qL
sin

(
qL

2

)∣∣∣∣ . (9.7)

Here, we can again see the effect of destructive interference in the generation of the
UBDM field as the form factor goes to zero when qL = 2πN for positive integer
values of N . This effect, along the 1/qL factor outside the sine function, limits the
sensitivity of LSW experiments at higher masses. This is apparent in the sensitivity
curves for ALPS I and ALPS II shown in Fig. 9.2. There we can also see how a more
detailed model of the magnetic field, which considers the gaps between the magnets,
can produce patterns in the sensitivity at higher masses [6].

As it happens, the probability Pϕ→γ of the reverse process occurring and the
UBDM field reconverting back to a photon in the regeneration area is the same as
Pγ→ϕ . Therefore, a simple LSW experiment with the same magnetic field before
and after the wall using a laser that travels only a single pass through the generation
area will produce the following number of photons Nγ , in the regenerated field over
a measurement time τ , for masses in which qL 1:

Nγ = 1

16
(gBL)4τPi . (9.8)
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We should make note of the fact here that these regenerated photons will have an
identical energy to those that were used to generate the UBDM field. The magnetic
field and length are obviously critical to the sensitivity of the experiment as the
regenerated power is proportional to (BL)4. The input power Pi , shown in units
of photons per second, matters as well, but in this case the number of regenerated
photons “only” scales linearly with it.

Plugging in the ALPS II parameters of 560 T·m of magnetic field length and an
input power of 50 W gives an interesting result. For couplings down to g < 2 ×
10−11 GeV−1, this would only produce 1 regenerated photon over the course of
700 000 years. This is no mistake, remember that the Nγ above is only the number
of regenerated photons for our simple example of an LSW experiment. This helps
illustrate the importance of the additional techniques that LSW experiments like
ALPS II can use to boost the power of the regenerated signal. These systems and
how they impact the sensitivity are discussed in the later sections.

•? Problem 9.1 Measuring the Mass of the UBDM Field

Suppose we build a simple LSW experiment with using a laser with an angular
frequency of ω and a uniform magnetic field of length L for the production area and
regeneration area. What is the lowest mass that the experiment is insensitive to? If
we inject an inert gas into both the production and regeneration areas to give the
optical path an index of refraction, at what value of n will the experiment achieve
maximum sensitivity to that mass? How could this be used to find the mass of the
UBDM field?

Solution on page 346.

9.1.2 Magnets

As we just discussed, LSW experiments rely on strong magnetic fields to promote
an interaction between photons and the UBDM field. The magnets used for LSW
experiments can be evaluated based on three critical parameters: (1) the strength
and orientation of their static magnetic dipole field, (2) their length, and (3) the size
of the bore. While it should be obvious why the length and magnetic field strength
are important, a sufficient bore diameter is also crucial for LSW experiments so that
light is not lost due to clipping as the lasers propagate through the beam tube. We
will discuss later how this is essential when cavities are used to amplify the power
of the input laser field and the reconverted field.

Fortunately, superconducting dipole magnets that were originally developed for
particle accelerators are well suited for LSW experiments as they can produce strong
dipole fields over very long distance with bore diameters sufficient to accommodate
the accelerator beams. These magnets are constructed by coiling a superconducting



260 A. D. Spector

thread to form many layers of wire, increasing the total current to induce very strong
magnetic fields. They can also be connected in strings to produce magnetic fields
with km lengths.

Reaching and maintaining superconductivity of course requires a cryogenic
system that constantly supplies liquid He to cool the thread. Nevertheless, since they
are a core element in modern accelerators, there are facilities all around the world
that possess the cryogenic infrastructure necessary for operating them. Furthermore,
after many years of development, the technology is very mature and magnets that
can produce static dipole fields as high as 9 T with a uniform polarization over long
distances and sufficient free apertures for LSW experiments are even currently in
use at the LHC [7].

9.1.3 Light-Tightness

For LSW experiments to reach their optimal sensitivity, background signals must
be suppressed below the sensitivity of the detection system. You may remember
from earlier that the regenerated photons will have the same energy of those used
to generate the UBDM field. Therefore, one source of background that all LSW
experiments must cope with is light leaking through the wall from the production
area to the regeneration area, as this would create a signal at the detector that is
indistinguishable from one induced by an interaction with the UBDM field.

While sufficiently suppressing this light may seem like a trivial task, it is
complicated by two points. First, current detection systems are capable of sensi-
tivities on the order of a single photon per week. Second, as we will see later, the
optical systems for LSW experiments are very sophisticated and need to transfer
light between the production and regeneration areas of the experiment while a
measurement is taking place. This interface is a particularly vulnerable point in
terms of light-tightness. On top of that, there also needs to be systems that can verify
the sensitivity of the experiment by checking parameters such as the alignment
of the laser that generates the UBDM field. This involves having a shutter in the
wall that can be opened to allow light to propagate directly from the production
area to the regeneration area. This is another vulnerable point as stray light can
find some scattering path through the shutter. The chance of a laser field actually
transmitting through the bulk material of the shutter, on the other hand, is not a major
concern. Even a few µm of material is enough to prevent any light from reaching the
regeneration area, and in reality, the shutter will be substantially thicker than this.

9.2 Boosting Sensitivity with a Production Cavity

One way to increase the power in the reconverted signal is to amplify the power
of the circulating light in the production area. Optical cavities or resonators can be
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very useful in this regard as state-of-the-art mirror coatings will allow cavities on
the order of 100 m to amplify their circulating power by four orders of magnitude or
more. As we saw in the previous section, the power in the regenerated photon signal
scales linearly with the power circulating through the static magnetic field in the
production area. Therefore, installing a production cavity (PC) there will amplify the
power of the regenerated photon signal by the power build-up factor of the cavity βP ,
if full power build-up can be achieved. Because of this caveat, in practice, it is more
precise to quantify this in terms of circulating power in the PC Pc. With this, we can
calculate the number of photons in the regenerated signal over a measurement time
of τ from the following:

Nγ = 1

16

(
gaγ γ BL

)4
Pcτ . (9.9)

Therefore, a PC with power build-up of 10,000 will boost the sensitivity of the
experiment with respect to g by a factor of ten.

9.2.1 Linear Cavity

While a variety of resonator designs exist, two mirror linear optical cavities are the
most relevant for LSW experiments. As Fig. 9.3 shows, these types of cavities use
two partially transmissive mirrors separated by a distance L and aligned with their
surfaces normal to each other. The laser field enters the cavity through the input
mirror M1 and exits through the output mirror M2. Let us suppose that these mirrors
have a reflectivity of R1 and R2, transmissivity of T1 and T2. For lossless mirrors,
these quantities are related by the following expression:

1 = R + T . (9.10)

Pi

Pc

M1 M2

L

Pt

Fig. 9.3 Diagram of a two-mirror linear optical cavity with an input mirror M1 and an output
mirror M2. The input power is given by Pi , while the circulating power is Pc, the transmitted
power is Pt, and the length of the cavity is L
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While these can also be expressed as field coefficients, in this chapter we will work
in the convention that these are in terms of power.

In the 1D example, a laser field that is incident on the input mirror will be
resonant if the length of the cavity is some integer multiple of the wavelength of
the laser. The frequency spacing between the resonances of the cavity is known as
its free spectral range (FSR) and can be found from fFSR = c/2L. If the resonance
condition is satisfied, the ratio of circulating power to input power can then be
approximated by the following equation when T1, T2, ρ  1:

βP ≡
(
Pc

Pi

)

max
≈ 4T1

(T1 + T2 + ρ)2
. (9.11)

This is what we referred to earlier as the power build-up factor of the cavity. In this
equation, ρ is the power losses that the circulating field accrues after each round
trip. To reemphasize a point we made on the previous page, if the combined mirror
transmissivities and losses are on the order of 100 ppm, the PC can amplify the
power converted to the UBDM field by more than four orders of magnitude.

The dependence of circulating power on the laser frequency can be found from
the cavity Lorentzian:

Pc = βPi

1+
(

2F
π

sin
(
π

f
fFSR

))2
. (9.12)

In this equation, the finesse of the cavity, F, is defined as the ratio between the
linewidth (full width half maximum, FWHM) of the cavity resonance fc and the
FSR:

F ≡ fFSR

fc
≈ 2π

(T1 + T2 + ρ)
(when T , ρ  1) . (9.13)

Therefore, in order to achieve the maximum circulating power in the cavity, the
input laser must be controlled such that the difference between its frequency and the
cavity resonance is much less than fc or fFSR/F.

•? Problem 9.2 Maximum Power Build-Up

Let us suppose we are provided mirrors that have total scattering and absorption
losses of ρ per mirror. What is the highest possible power build-up achievable for a
two-mirror cavity and what transmissivities of the mirrors need to be used? Suppose
we need 1% of the input power in transmission of the cavity. What is the highest
power build-up that we can achieve and what mirror transmissivities are necessary
under these conditions?

Solution on page 347.
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9.2.2 Cavity Spatial Modes

In the previous section, we only discussed the longitudinal mode of the cavity, and
however it is important to also consider the spatial profile of the cavity eigenmodes.
This is especially true for longer baseline LSW experiments since the modes are
constrained by the magnet bore and the power build-up factor can be limited by its
diameter. In addition to this, in the next section, we will discuss dual cavity LSW
experiments that also use a resonator in the regeneration area. When this technique is
used, it is also important to ensure that the cavities share nearly the same transversal
mode.

The transversal modes of the cavity resonances are commonly expressed in a
basis set of Hermite–Gauss or Laguerre–Gauss modes, and the higher order modes
can therefore be described as the product of the fundamental mode and Hermite or
Laguerre polynomials. For LSW experiments, it is advantageous to operate with the
fundamental mode since it will provide the smallest beam sizes over the longest
baseline, thus reducing the clipping losses on the magnet bore. Therefore, while
there are cases where the Hermite–Gauss and Laguerre–Gauss description can be
very useful, we will not explore it further.

The field, when in the fundamental mode, follows a Gaussian distribution that
can be described by the following equation when using the paraxial approximation:

E(r, z) = E0
w0

w(z)
exp

(
− r2

w(z)2

)
exp

(
i

[
kz− ψ(z)+ kr2

2R(z)

])
. (9.14)

The intensity distribution for a beam with a power of P is then given by

I (r, z) = 2P

πw(z)2
exp

(
−2

r2

w(z)2

)
. (9.15)

In these equations, w(z) represents the 1/e2 radius of the intensity distribution as
the following function of z:

w(z) = w0

√
1+

(
z

zr

)2

. (9.16)

Figure 9.4 shows a visual representation of the spatial mode of a Gaussian beam as
it propagates through its waist position. As we can see, the radius of the distribution,
shown as the thick black line, has the minimum waist w0 at the position z = 0. In the
near field (z  zr ), the beam is collimated and its size remains relatively constant,
while in the far field (z
 zr ) the waist expands linearly with z. The parameter zr is
known as the Rayleigh length and is defined as the distance from the waist position
at which w(zr) =

√
2w0. It depends only on the minimum waist size and the laser

wavelength:
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w0

zr

θ

Fig. 9.4 Profile of a Gaussian beam with a minimum waist size of w0, a Rayleigh length of zr ,
and a divergence half-angle of θ . The waist size is shown as the thick black line, while wavefronts
at different positions are shown as gray lines. As the beam propagates further into the far field, it
will asymptotically approach the dotted lines that illustrate the divergence angle

zr = πw2
0

λ
. (9.17)

From this equation, we can see that the Rayleigh length is proportional to the
area of the beam at the minimum waist position and inversely proportional to the
wavelength. Therefore, producing a beam that is well collimated over long distances
requires using a larger beam as smaller beams will only remain collimated for
shorter distances. Furthermore, shorter wavelength lasers can produce the same
Rayleigh length as longer wavelength lasers using smaller beam sizes. This is a
critical point for LSW experiments as the diameter of the magnet bore will typically
limit the length of the experiment, and once the waist size approaches some fraction
of the bore diameter, clipping losses will limit the possible power build up factor of
the cavities.

This can also be seen by looking at the divergence half angle θ , of the beam in the
far field. In this regime, the dependence of the waist size on z can be approximated
by the linear relation w(z) ≈ w0z/zr , and by plugging in for zr we can define θ as

θ = λ

πw0
. (9.18)

There are also several terms in the complex exponential of Eq. (9.14). The first
term, kz, is just the product of the wavenumber and the longitudinal position. The
second term, ψ(z), is known as the Gouy phase and represents the natural phase
shift that the field will experience passing through the waist. The fields will also
have spherical wavefronts, shown as light gray lines in Fig. 9.4, and the final term
in the exponential, kr2/2R(z), introduces the curvature R(z) of the wavefronts. The
dependence of the wavefront curvature on the longitudinal position is given by

R(z) = z

[
1+

(
zr

z

)2
]

. (9.19)

Here, it is apparent that at the minimum waist position the wavefronts are flat
(R(0) = ∞), while at the Rayleigh length R(zr) = 2zr and in the far field R(z) ≈ z.
This is important as the radius of curvature of the mirrors sets the wavefront
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curvature at their position, and this will determine the shape of the transversal mode
throughout the cavity.

In order for the cavity to achieve full power build-up, the input beam must be
in the same spatial mode as the eigenmode of the cavity. The coupling efficiency
between the laser and the cavity can be found by calculating the spatial overlap η,
between the input laser field, shown in this equation as E, and the cavity eigenmode,
expressed here as E′:

η =
∣∣∫ E∗E′dA

∣∣2

∫ |E|2 dA ∫ |E′|2 dA . (9.20)

In this equation, we evaluate the overlap integral between the two normalized fields
over an area A and then take its absolute square. Any spatial dependence in the
differential phase between the wavefronts of the two fields or mismatch in the spatial
distribution of their amplitudes will lead to a loss in the coupling of the field to
the cavity. We should note the fact that the spatial overlap is independent of the
longitudinal position of the plane it is evaluated over.

•? Problem 9.3 Eigenmode Waist Size Versus Length

Derive the relationship between the minimum waist size w0 of the cavity eigenmode
and its length L for a two-mirror cavity in which both mirrors have a radius of the
curvature equal to L.

Solution on page 347.

9.2.3 Stabilization of Optical Cavities

So far we have only considered static cavities using an input laser with a fixed
frequency. In reality, though, both the laser frequency and cavity length will have
some noise and a control system is needed to maintain the frequency of the laser
with respect to the length of the cavity or vice versa. Much of the pioneering work
in this field was done by the gravitational wave community as these types of control
systems are critical to sensing the tiny phase fluctuations that gravitational waves
introduce into detectors such as Advanced LIGO [8] and LSW experiments benefit
considerably from this.

One of the most well-known and widely used techniques is the Pound–Drever–
Hall (PDH) laser frequency stabilization [9, 10]. PDH takes advantage of the fact
that close to resonance, the phase of the field reflected by the cavity will be linearly
proportional to the frequency difference between the input laser and the cavity.
Using phase modulation sidebands, the reflected phase can be measured to generate
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an electronic signal that can then be fed back to the laser frequency or the cavity
length to maintain the resonance condition.

A similar technique known as differential wavefront sensing is capable of sensing
the alignment of the laser with respect to the spatial eigenmode [11–13]. Here,
a quadrant photodetector (QPD) measures the four quadrants of reflected power
distribution. Again with phase modulation sidebands, misalignments between the
wavefronts of the incident laser field and the circulating field that is leaking out
of the input mirror of the cavity can be measured. By feeding this signal back to
alignment actuators, the spatial overlap between the laser and the cavity eigenmode
can be maintained.

9.2.4 Achieving High Finesse

Of course, achieving a high finesse or power build-up comes with its own set of
challenges. As Problem 9.2 illustrates, the highest possible power build can be
achieved when the losses (ρ) and the output mirror transmissivity (T2) are as low as
possible, while the input mirror transmissivity (T1) obeys the condition T1 = T2+ρ.

While we have some control on the transmissivities of the mirrors, there is a limit
to how much we can suppress the losses. Three of the most common causes of the
intracavity losses that LSW experiments must consider are scattering and absorption
from the cavity mirrors and clipping on the free aperture of the magnet bore.

The scattering losses for mirrors used in high-finesse long-baseline cavities are
typically driven by the surface roughness of the substrates themselves. In this case,
the total integrated scatter (TIS) at normal incidence for smooth surfaces can be
approximated by

TIS =
(

4πσ

λ

)2

. (9.21)

In this equation, σ is the integrated RMS deviation from a perfect spheroid of the
reflective surface of the mirror evaluated over the area of the beam. Therefore, larger
beams will be exposed to features at lower spatial frequencies than smaller beams.
Since the amplitude of these features tends to increase as the spatial frequency
decreases, larger beams will typically experience higher scattering losses than
smaller beams. For longer baseline cavities, this can limit in the maximum possible
power build-up factor.

For LSW experiments, the clipping losses from the magnet aperture must also
be considered. For this purpose, the magnet strings can be thought of as series of
connected pipes. If we form a cavity by placing mirrors at the ends of the string, the
clipping losses will be the percentage of light lost from scattering off of the walls of
the pipes. When straight magnets are used, this can be approximated by integrating
the power of the Gaussian beam at the position of its widest radius inside the
magnets over the free aperture of the string. For long-baseline high-finesse cavities,
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this can create a problem as longer cavities will have larger eigenmodes. Unless
magnets with extremely large bore diameters are used, clipping losses on the magnet
bore will actually limit the maximum length of the string. To help compensate for
this, the production cavity can be designed such that the Rayleigh length of the
eigenmode is roughly equal to half the length of magnet string that contains it. If
a cavity is also used in the regeneration area, then we must consider the clipping
losses there as well. In this case, the Rayleigh length of both cavities should be half
the combined length of the two strings. This will allow for the smallest possible
beams at the exits of the string.

•? Problem 9.4 Clipping Losses and Cavity Length

Suppose you have a site and supply of magnets where you are free to make an LSW
experiment as long as you want using magnets with a bore diameter of 50 mm and
a laser operating at a wavelength of 1064 nm. You would like to use a production
cavity with a power build-up of 10,000 using a flat mirror and a concave mirrors
with a radius of curvature that you may choose. How long can you make the magnet
string in the production area before you can no longer reach a power build-up of
10,000? (Hint: use the relationship you derived in Problem 9.2 on the maximum
power build-up factor.)

Solution on page 348.

9.2.5 High-Power Operation

As we have already discussed, the higher the power the PC can support, the more
sensitive the experiment will be. This can be complicated, though, by a number of
effects that degrade the performance of the cavity as higher powers are used due to
absorption in the optical coatings.

One of the issues with absorption in the optical coatings is that areas with a
higher incident intensity will reach a higher steady-state temperature than the areas
of the mirror with a lower incident intensity [14]. This will cause larger thermal
expansion in the central region of the mirror creating a change in its effective radius
of curvature that makes it more convex. With this, the Rayleigh length of the cavity
eigenmode will increase resulting in a larger beam size of the circulating field. If the
beam size increases enough, this can lead to power losses due clipping on the free
aperture of the magnets or a reduction in the spatial mode matching.

High-power operation can also lead to an increase in the cavity losses if there are
point absorbers on the surface of the optical coating or embedded in it [15]. These
points will also reach higher steady state-temperatures than the rest of the mirror
and can introduce low-frequency spatial features through thermal expansion. If the
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spatial features are smaller than the beam size, this can lead to additional scattering
losses.

9.3 Dual Cavity LSW Experiments

The sensitivity of LSW experiments can be increased further by using a regen-
eration cavity (RC) after the wall to amplify the regenerated field by a resonant
enhancement factor. While this factor is nearly identical to the expression we used
earlier for the power build-up, the concepts are somewhat distinct as the regenerated
signal is injected without its power being attenuated by one of the mirrors. There
it is amplified and then attenuated only as it leaves the cavity. In this way, the
resonant enhancement factor is an expression of the amplification, in power, of the
regenerated field that is actually incident on the detector. The power build-up in the
PC, on the other hand, is the amplification of the power of the input laser while that
field is still circulating in the PC.

With this, the resonant enhancement factor, βR, can be expressed as the following
approximation:

βR ≈ 4Tout

(T1 + T2 + ρ)2 . (9.22)

In this equation, Tout refers to the transmissivity of the mirror at the detector port of
the RC and could be either T1 or T2. As we discussed in the previous section, if we
say mirror “1” is the mirror at the detector, the highest possible power build-up will
be achieved when T1 = T2 + ρ and T2 is chosen to be as low as possible.

Figure 9.5 shows a simplified optical setup where the flat mirrors of the PC and
RC are coupled to a central optical bench (COB) in the middle of the experiment.
In this setup, the radius of curvature of the curved mirrors at the end stations can
be chosen to be roughly the length of the entire such that the Rayleigh length of
the cavity eigenmodes is half the length of the entire magnet string, to minimize
clipping losses on the magnet bore. It is important that the Rayleigh length is not
the exact length of the cavities as this could lead to higher order mode degeneracies
that will interfere with their performance. The wall is then located in between the

COB

RC eigenmodePC eigenmode

Fig. 9.5 Standard layout for a dual cavity LSW experiment with a COB at the center that houses
the flat mirrors and wall, with curved mirrors located at the end stations
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mirrors on the COB. We should note that the distance between these mirrors is much
smaller than the length of the cavities.

When the dual cavity configuration is used, the number of regenerated photons
at the detector will be

Nγ = 1

16

(
gaγ γ BL

)4
ηβRPcτ, (9.23)

where η is the spatial overlap between the two cavity eigenmodes and Pc is the total
circulating power in the PC. With a spatial overlap on the order of one, 150 kW
circulating in the PC, an RC resonant enhancement factor of 20,000, and BL of
560 T·m, a two-week measurement will produce roughly 50 photons at the detector
for a gaγ γ of 2× 10−11GeV−1. From this, we see that the product of the PC power
build-up and RC resonant enhancement factor can help LSW experiments gain more
than 8 orders of magnitude in the signal strength in the regenerated field. This can
increase their sensitivity in terms of gaγ γ by a factor of 100.

The regenerated field can be treated like a weak input field and thus will need
to be resonant with the length of the RC and in its spatial eigenmode. Since the PC
transmitted field should be an accurate representation of the regenerated field, it can
be used to verify the resonance condition and spatial overlap.

9.3.1 Dual Resonance

Remember that the regenerated field will be in the same spatial mode and have the
same frequency as the field circulating in the RC. Therefore, for the regenerated field
to be resonant with the RC, the field circulating in the PC must also be resonant with
the RC. For this to occur, the frequency of the PC circulating field fPC must meet
the condition

fPC = N
c

2LRC

, (9.24)

where the right side of the equation gives the corresponding resonance of the RC.
Here, N is some whole integer number and c/2LRC is the FSR of the RC. Any static
offset from the resonance condition will lead to a loss in the resonant enhancement
factor that follows the cavity Lorentzian expressed earlier in Eq. (9.12). As the input
laser to the PC is frequency stabilized to its length, this tuning can actually be done
by adjusting the length of either of the cavities.

Once the cavities are set to the correct length, the resonance condition must then
be maintained in the presence of environmental noise. To do this, the frequency
changes of the PC circulating field must somehow track the length changes of the
RC or vice versa. This requires a sensing system capable of comparing these two
parameters. This can be done by stabilizing the frequency of a reference laser (RL)
to the length of the RC using PDH and interfering it with the light transmitted
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from the PC. With this system, a direct measurement can be made of the frequency
difference between the PC circulating field and the RC resonance. This is important
as this information can then be fed back to stabilize the length of one of the cavities
with respect to the other.

This transfer of the frequency information between the RC resonance and the
PC circulating field must be done while still preventing the light circulating in
the PC from entering the RC. This would create background signals that are
indistinguishable from the regenerated signal. Therefore, it is clear that we cannot
use the same frequency for RL as the light circulating in the PC. The limits on
the available frequency that we can choose for RL are actually dependent on the
energy resolution of our detection method. This system must be able to tell the
difference between the light we are using to sense the length of the RC and the
actual regenerated signal we are trying to measure.

As we will see in the next section, the COB is one of the critical design features
of dual cavity LSW experiments and its passive stability can be used to maintain
the alignment between the flat mirrors. Therefore, it makes sense to actuate on the
length of the cavity via one of the curved mirrors at the end stations instead.

Stabilizing the length of one of the cavities requires an actuator capable of
moving the mirror fast enough and with enough dynamic range to overcome the
differential length noise between the cavities over the course of a measurement. One
way to do this is to mount the mirror to a piezo-electric actuator which can expand
or contract based on an input voltage. The information from the measurement of the
frequency difference between the PC field and the RC can be used to stabilize the
length of one of the cavities by feeding back to the piezo actuator.

Without additional seismic isolation, these systems will require control band-
widths in the kHz range. This can be difficult as the mass of the mirror, internal
resonances of the piezo, and the rigidity of the mount can limit the speed with
which actuation is possible. As we saw from the previous section, the longer the
length of the cavities is, the larger their mirrors must be to avoid clipping losses.
As the mirror gets larger, it quickly becomes difficult to actuate with the necessary
speed as their mass typically increases nonlinearly with the active area. Therefore, if
the cavities in future LSW experiments are much longer than 100 m, they may also
require more sophisticated systems that use passive isolation to suppress the seismic
noise in addition to actively controlling the lengths of the cavities.

9.3.2 Spatial Overlap

Just as it is important to maintain the resonance condition of the regenerated field
with respect to the RC length, this field must also be spatially coherent with the
eigenmode of the RC. Any lateral displacement or angular misalignment between
the modes will lead to a reduction in the coupling efficiency of the regenerated field
to the RC. Just as we discussed in the previous section, the spatial mode of the
regenerated field will be a replica of the PC circulating field. Therefore. the spatial
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overlap η [Eq. (9.20)] between the PC and RC eigenmodes can be used to estimate
the coupling of the regenerated field to the RC.

For small mode-matching errors, η can be approximated by Eq. (9.25), where
x is a transversal offset in the minimum waist position between the input field and
the cavity eigenmode, θ is an angular offset between their optical axes, w is a
difference in the minimum waist size, and z is a difference in the position of the
waist along the optical axis:

η = 1−
(
x

w0

)2

−
(
θ

θ

)2

−
(
w0

w0

)2

−
(
z

2zr

)2

. (9.25)

Due to the length of the cavities being much larger than the separation between their
waist positions, z/2zr is much less than one and should not cause a significant
reduction in coupling efficiency. Likewise, w0/w0 is also insignificant as the waist
size in cavities with this geometry is determined only by their length and the radius
of curvature of the end mirrors, and these values should be nearly identical for the
PC and RC.

The angular misalignment and transversal displacement of the eigenmodes, on
the other hand, can cause a significant loss in the spatial overlap and Fig. 9.6
shows examples of how each of these effects can occur in dual cavity setups.
The angular misalignment of the cavity eigenmodes will be determined by the
alignment error between the flat cavity mirrors since the optical axes of the cavities
must be perpendicular to them. To ensure that there is less than 1% loss in the
spatial coupling from this effect, their alignment must be within one-tenth of the
cavity divergence half-angle. To put this in context, for ALPS II, this is 57 µrad and
the requirement on the misalignment between the central mirrors is < 5 µrad. In
ALPS II, this is achieved by rigidly mounting the mirrors to a COB. The COB
is effectively just a large metallic plate which has demonstrated the necessary
alignment stability in tests of prototypes.

Transversal shift

Angular misalignment

Δx

Δθ

Fig. 9.6 Examples of an angular misalignment (top) and lateral shift (bottom) between the cavity
spatial eigenmodes. The angle of the optical axes is determined by the alignment of flat mirrors,
while their transversal positions are controlled by the alignment and position of the curved mirrors
relative to the flat mirrors
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The transversal waist position of each of the cavity eigenmodes will be deter-
mined by the position and alignment of the curved mirror. Since the optical axis
will be normal to both mirrors, a transversal displacement of the curved cavity
mirror will lead to an equal shift in the position of its optical axis. Changes in the
alignment of the curved mirrors will produce a shift in the optical axis equal to the
product of the angular displacement of the curved mirror and the radius of curvature
of the mirror:

x = Rθ curved . (9.26)

The lower diagram in Fig. 9.6 shows an example of this effect. To put some numbers
on this, in ALPS II, w0 = 6 mm and the requirements on the transversal shift
between the cavities eigenmodes are < 1 mm or a < 3% power loss. With a radius
of curvature of 214 m for the curved mirrors, this means that their alignment must
be controlled with better than 5 µrad precision.

The relative transversal shift between the cavity eigenmodes can be sensed by
measuring cavity fields transmitted from flat mirrors with QPDs on the COB. The
changes in the transversal position of the cavity eigenmodes relative to the COB will
then lead to changes in the differential power level measured between the quadrants.
By feeding back to alignment actuators on the curved cavity end mirrors, a control
loop can be used to stabilize the positions of the eigenmodes.

Like cavity length stabilization, alignment stabilization can also be tricky. A
difference here is that the requirements on the alignment stability of the cavities
are usually much more forgiving relative to the environmental noise than the length
stability requirements. Because of this, the cavity alignment control can be much
slower (control bandwidths on the order of 1 Hz) than the length control (control
bandwidths on the order of 1 kHz) while still sufficiently suppressing the noise. If
the alignment noise is low enough, it can even be the case that no active alignment
stabilization is necessary for the cavities.

9.3.3 Verification of the Resonance Condition and Spatial
Overlap

When using a dual cavity setup to amplify the regenerated photon signal, it becomes
all the more important to verify that the optical system is aligned and properly tuned.
In particular, the resonance condition and spatial overlap must be checked. As we
mentioned earlier, one of the design features of LSW experiments is a shutter in
the wall that will allow light to freely propagate from the production area to the
regeneration area when it is opened.

In dual cavity LSW experiments, the shutter must be located in between the flat
cavity mirrors on the COB. When the control systems are sufficiently suppressing
the environmental noise and the shutter is open, the PC transmitted field should
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couple directly to the RC. With prior knowledge of the reflectivities of the RC
mirrors, the total coupling efficiency of the regenerated field to the RC can be
estimated by measuring the ratio of the PC power incident on the RC to the power
that transmits through it.

9.4 Detection Techniques

As we mentioned in the introduction, LSW experiments require detection systems
capable of measuring single photons over time scales of weeks in order to reach
their target sensitivity. This section will discuss two different detection schemes
which are capable of this, both of which will be implemented in ALPS II. These are
heterodyne interferometry and transition edge sensors. We should emphasize that
each of these systems places distinct constraints on the optical setup, and therefore
they cannot be operated in parallel.

9.4.1 Heterodyne Interferometry

Heterodyne interferometry works by optically mixing a laser, which we will refer
to as the local oscillator (LO), with the regenerated field to create an interference
beat note in the power which we can then measure. By using the coherence
between the two fields, we can distinguish between this low power signal and
noise. Figure 9.7 shows how a detection system using heterodyne interferometry
could be implemented in a dual cavity LSW experiment. In this diagram, the high-
power laser (red) is coupled to the PC and has an angular frequency of ωs , while
the local oscillator (blue), with an angular frequency of ωLO , is injected to the RC
through a Faraday isolator (FI). As the regenerated field, shown as the dotted red
line, circulates in the RC, it naturally mixes with the LO field. This produces an
interference beat note at the difference frequency ω, between the two fields. This
beat note on the LO power can then be measured at the science photodetector PDS.

As we discussed in the previous section, for optimal resonant enhancement of
the regenerated signal, the cavity lengths must be tuned such that the frequency
difference between the two fields is held at some integer number of FSRs of the
RC. Furthermore, since heterodyne detection systems rely on the absolute phase
coherence of the local oscillator to the regenerated signal, any drift in the relative
phase between these signals will lead to a reduction in sensitivity. We should note
that this goes beyond even the requirements of dual resonance.

This necessitates some additional system that can sense the phase relationship
between the local oscillator and the PC transmitted field. As we can see in Fig. 9.7,
the simplest way to do this would be to interfere the fields transmitted by the
cavities at a beam splitter on the COB. The phase of the interference beat note
can then be monitored by a photodetector PDM. This system must also be capable
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ωLOωs

Δωt

Δωt+ϕ

FI

PDS

PDM

Production Cavity Regeneration Cavity

Fig. 9.7 Simplified design of a heterodyne detection system for a dual cavity LSW experiment

of sensing the optical path-length changes between the flat cavity mirrors on the
COB [16], although the components that perform this function are not shown in the
figure. The technical challenges become even more significant when considering
that all of this must be accomplished without compromising the light-tightness of the
experiment.

We can see how difficult it is to measure the power of the regenerated field by
looking at the expression for the expected power at PDS:

P(t) = PLO + PS + 2
√
PLOPS cos (ωt − φ)+ χSN

(
ω = ωLO − ωS

)
.

(9.27)
The static terms PLO and PS represent the DC power of the local oscillator laser
and the weak signal field. In LSW experiments, these powers differ by over 20
orders of magnitude effectively making a measurement of the PS term impossible.
The third term shows the interference beat note between the local oscillator and the
regenerated field. The beat note has an amplitude of 2

√
PLOPS , which corresponds

to sub-pW amplitudes for a regenerated signal of one photon per day when a 10 mW
local oscillator is used. This means we need to measure an oscillation in the power
with an amplitude that is over 10 orders of magnitude lower than its mean value.

Furthermore, the beat note will also be embedded within what is known as shot
noise due to photon counting statistics. This will make it impossible to identify
the interference beat note simply from a time series of the power. Instead, we can
calculate the power spectral density (PSD) to find the signal. The PSD is a measure
of the density of power in each of the frequency components that make up the
signal. As we will see, heterodyne interferometry takes advantage of the fact that
the PSD of coherent signals will increase with the measurement time, while the
PSD of incoherent signals will remain the same over time.

The PSD of shot noise measured by the photodetector will be equal to

PSDSN = PLOhν , (9.28)

where hν is the energy per photon of the laser. The single-sided PSD of the
interference beat note at the difference frequency in the absence of noise is given by
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the following equation for a measurement time τ :

PSDIB(ω) = PSPLOτ . (9.29)

The signal-to-noise ratio (SNR) can then be found by calculating the ratio of these
PSDs [17],

SNR = SIB(ω)

SSN(ω)
= PS

hν
τ = 〈NS〉. (9.30)

As expected, the signal-to-noise ratio is proportional to the measurement time, but
what is also apparent is that the signal-to-noise ratio is equal to the expected number
of regenerated photons. This is, of course, contingent on several factors such as the
shot noise being at a level well above the technical noise of the photodetector. Also,
the beat note between the regenerated signal and LO remaining coherent with the
oscillator used to perform the PSD. Additionally, for this condition to be valid stray
light and other sources of background signals must be sufficiently suppressed.

The power in the regenerated field can then be calculated by dividing the PSD at
ω by the measurement time and LO power:

PS =
PSDIB(ω)

PLOτ
. (9.31)

In principle, heterodyne interferometry should not be limited by any fundamental
backgrounds. Nevertheless, the system must be well designed such that the various
electronic signals used to maintain the coherence of the fields only experience a
limited coupling to the detection electronics. Otherwise, this will create background
signals that cannot be distinguished from the regenerated field.

9.4.2 Transition Edge Sensors

An entirely different technology that can also be used to measure the regenerated
field is transition edge sensors (TES) [18]. These devices are capable of measuring
the heat induced by the incidence of single photons on an absorptive chip. They are
well equipped to face the challenges posed by LSW experiments due to their low
noise and high efficiency.

The diagram to the left of Fig. 9.8 shows a simplified version of the TES electrical
circuit. TESs work by holding a small chip, typically made of tungsten, at the
temperature threshold to superconductivity. When a photon is absorbed by the chip,
it will cause a sudden spike in its temperature that provokes a change in its resistance
and thus the current passing through the sensor. An inductive coil (L) in series
allows the pulse in the current to be measured using a SQUID.
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Fig. 9.8 On the left is a simplified diagram of the TES circuit. Here, the chip has a resistance R0
when held at a temperature T with a current I passing through it. The current passing through the
inductive coil L is measured with a SQUID. The center plot shows an R versus T curve of the chip
at the superconducting transition, with the set point TC . The plot on the right shows an ideal pulse
and how the rise time τrise and fall time τfall effect the pulse shape

A bias current can be introduced which, when traveling over a shunt resistor RL,
can be treated as a constant voltage source (Vbias) . This configuration is critical
to the stability of the system as when RL  R0 the electrothermal feedback is
negative and the sensor operates at a steady state between heat introduced by the
flow of current through it and the heat dissipated by a thermal link to a cold bath
held at a lower temperature Tbath.

Since the bias current puts an additional heat load on the chip, it can also be
used to tune and maintain the working point of the system. The R versus T curve
in the middle of Fig. 9.8 shows how the chip transitions from a normal state to
the superconducting state as its temperature drops. The set point is chosen at some
temperature TC along this curve, below the point where the derivative ∂R/∂T is at
a maximum, to optimize the dynamic range of the system.

As the right-hand plot in Fig. 9.8 shows, pulses in current will have several
defining features that help identify whether or not they were indeed the result of
an incident photon, and if so how much energy was transferred to the chip. One of
these is the rise time τrise, a measure of the time constant of the initial leveling off
of the change in current after the photon is absorbed. The rise time is dependent
on the inductance of the coil and the total dynamic resistance of the circuit. Then,
there is the fall time τfall or the time constant of the decay of the current back to
its steady-state value. The fall time will also be determined by the same parameters
which set the rise time along with several others. These additional parameters are the
derivative of the resistance with respect to the bias current ∂R/∂I and temperature
of the chip ∂R/∂T , along with the temperature of the chip itself TC , all at the
working point, as well as the thermal conductivity of the link to the cold bath.
Finally, there is the height of the pulse, which will depend on the energy introduced
by the incident photon.
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The following expression can be used as a simple model for a pulse with A as a
scaling constant:

δI (t) = A
(
e−t/τrise − e−t/τfall

)
. (9.32)

All incident photons will produce pulses with the same rise time and fall time, with
the energy of the photon determining the pulse height. Simply integrating the pulse
will give energy induced by the photon. However, for robustness a pulse fitting
algorithm is typically applied to the measured data, which not only provides data
on the photon energy, but can also help distinguish whether or not the source of the
pulse was actually an incident photon, rather than the intrinsic noise of the system.

The energy resolution of the TES can be determined by measuring many photons
from a single frequency source and constructing a histogram of energies with
the template fitting routine. A perfect energy resolution would result in the same
measured energy for all of the incident photons. The noise of the system will,
however, lead to spreading of the histogram with the energy resolution of the TES
being the width of the distribution. This is a critical parameter for LSW experiments
as the better the energy resolution is, the better the TES can distinguish background
events from signal photons. Energy resolutions down to 5% have been demonstrated
[19].

One of the limiting sources of background events when using TESs for LSW
experiments is black-body radiation. The primary concern is not actually events at
the signal energy, since the lasers typically operate at energies outside the black-
body spectrum at room temperature. Instead, the main issues arise from events
called “pile-ups”, in which two pulses occur so close close together in time that
is is impossible to distinguish them from a single event. If the energies of the two
black-body photons sum to an energy close to that of the regenerated field, they can
be mistaken as a signal.

One way to mitigate this problem is to filter out the black-body photons before
they are incident on the chip. This is complicated by the fact that the filter must be
operated in a cryogenic environment, and any optics after the filter that couple the
light to the TES must also be cold. Otherwise, the filter itself along with the warm
optics would generate their own black-body spectrum creating a background. This
is further complicated by the fact that the regenerated field is normally coupled to
the TES via an optical fiber.

We should note here that the black-body spectrum does not need to be completely
eliminated, only reduced to the point where the background rate no longer effects
the sensitivity of the experiment. If the black-body pile-up can be sufficiently
suppressed, it is possible for TESs to achieve background rates below to 1×10−5s−1

before other backgrounds, such as the radioactivity of the materials in the vicinity
of the chip, become limiting.



278 A. D. Spector

•? Problem 9.5 Black-Body Pile-Ups

Let us assume we are performing a 106 s measurement using a TES with a rise time
of 0.1 µs, and we have a background rate due to black-body radiation for photons at
energies from 0.45 eV < hν < 0.55 eV of 100 photons per second. Assuming that
the photons obey Poissonian statistics, what is the expectation value for the number
of unresolvable pile-ups? For simplicity, assume that “unresolvable” means that the
photons arrive at the chip within one rise time of each other.

Solution on page 348.

9.5 Conclusion

As we have discussed, LSW experiments are capable of measuring the coupling
between a UBDM field and electromagnetic fields without relying on model-
dependent astrophysical sources. Instead, the UBDM fields are generated in the
laboratory with a laser and a string of magnets. Using such a well understood
mechanism of production for the UBDM field is a major advantage of LSW
experiments over other types of searches.

In order to increase further their sensitivity, these experiments can use optical
cavities on both sides of the wall to increase the power of the regenerated field at
the detector. This, however, requires a sophisticated optical system to stabilize the
length and alignment of the cavities. Furthermore, the system must have the ability
to verify that it is properly tuned, all while suppressing background signals below
the sensitivity of the detectors. With detection systems capable of sensitivities on
the order of one photon per day, modern LSW experiments such as ALPS II will
be able to probe the electromagnetic–UBDM field interaction down to couplings
∼ 2× 10−11 GeV−1.
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Chapter 10
Global Quantum Sensor Networks as
Probes of the Dark Sector

Andrei Derevianko and Szymon Pustelny

Abstract Most dark matter searches to date employ a single sensor for detection. In
this chapter, we explore the power of distributed networks in dark matter searches.
Compared to a single sensor, networks offer several advantages, such as the ability to
probe spatiotemporal signatures of the putative signal and, as a result, an improved
rejection of false positives, better sensitivity, and improved confidence in the dark
matter origin of the sought-after signal. We illustrate our general discussion with
two examples: (1) the Global Network of Optical Magnetometers for Exotic physics
searches (GNOME) and (2) the constellation of atomic clocks on board satellites of
the Global Positioning System (GPS).

10.1 Introduction

The goal of this chapter is to give an introduction to direct searches for ultralight
dark matter (UBDM) using networks of precision sensors. This chapter reviews a
meta-technique as it combines individual direct searches described in preceding
chapters. A single apparatus couples to a dark matter (DM) field at its specific
location, while a geographically distributed network can probe DM constituents at
multiple locations. Thus a network approach enables testing additional signatures
based on spatiotemporal correlation properties of putative DM signals. This leads
to both an enhanced sensitivity and to a greater confidence in the DM origin of the
sought-after signal (Fig. 10.1).

To reiterate the preceding chapters, our galaxy, the Milky Way, is embedded in a
DM halo and rotates through the halo. The Sun moves through the DM halo towards
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Fig. 10.1 A network of
atomic clocks in the “sea” of
wavy dark matter. The
confidence level in the dark
matter origin of the sought
signal can be improved
because of the specific
spatiotemporal correlation
properties of virialized DM
fields

the Cygnus constellation at galactic velocities vg ≈ 230 km/s. Further, in the DM
halo reference frame, the velocity distribution of DM objects is nearly Maxwellian
with the dispersion of vvir ∼ 270 km/s (virial velocity) and a cut-off at the galactic
escape velocity vesc ≈ 650 km/s. The DM energy density ρdm in the vicinity of the
Solar system is estimated at the level of 0.3 GeV/cm3, corresponding to about one
hydrogen atom per three cubic cm.

All the evidence for dark matter (galactic rotation curves, gravitational lensing,
peaks in the cosmic microwave background spectra, etc.—see discussion in Chap. 1)
comes from galactic scale observations. The challenge in planning a laboratory
experiment lies in extrapolating down from the 10-kpc characteristic galactic length
scales to laboratory scales. These are truly vast extrapolation scales and a large
number of theoretical models can fit the observations (as discussed in Chap. 3). For
the goals of this chapter, we broadly classify DM candidates as either being “wavy”
or “clumpy.” As with the ocean, one may distinguish between either a relatively
calm surface with characteristic ripples or solitary perturbations such as tsunami that
preserve their shape while traveling across many miles. The former is an example
of the wavy DM (nearly uniform field composed of many interfering waves) and the
latter of the clumpy DM candidates.

The “wavy” DM is typically composed of non-self-interacting ultralight DM
candidates. Due to the large mode occupation numbers (see Chaps. 1–3), such
fields behave as classical entities coherent on a scale of individual detectors. At
a single node, these fields would drive a signal oscillating at the DM field Compton
frequency. An important point is that such candidates are waves, and while they
do induce an oscillating-in-time signal at a given spatial location, DM signals at
different locations have a fixed phase relation, i.e., the signals at distinct nodes are
correlated. Thereby, a discovery reach can be improved by sampling the DM wave at
multiple locations. In the wavy DM models, the DM field is composed of numerous
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waves traveling at different velocities and in different directions. Interference of
DM waves results in a stochastic field, characterized by the coherence length and
coherence time (see Chaps. 1–3). Namely, the coherence properties of the DM field
determine space-time correlations of the DM signal measured at different nodes.
We will discuss the relevant correlation properties of wavy DM fields and network
performance in Sect. 10.4.2.

“Clumpy” DM is another distinct theoretical possibility. Here, DM is not
distributed uniformly but rather occurs in the form of clumps: massive, large-scale,
composite DM objects. Formation of clumps generically requires some form of
interaction (self-interaction) between the elementary DM constituents, but even
the ever-present gravitational interaction leads to instabilities and clumping (see
discussion in Chap. 3). Examples of “clumpy” objects include “dark stars” [1],
Q-balls [2, 3], solitons, and clumps formed by dissipative interactions in the DM
sector. Alternatively, a significant fraction of the DM mass-energy could be stored
in “topological defects” manifesting as monopoles, strings, or domain walls [4].
Self-interacting fields can include bosonic and fermionic DM candidates. The
characteristic spatial extent of topological defects is determined by the Compton
wavelength of the underlying DM field. For an Earth-sized object, this translates
into a characteristic mass of DM field quanta of ∼10−14 eV, which places such DM
fields in the category of ultralight candidates.

If DM takes such a “clumpy” form, sensors would not register a continuous
oscillating signal associated with the “wavy” DM but rather would observe tran-
sient events associated with a DM clump sweeping through the detector [5–7].
Network-based searches seek patterns of synchronous propagation of DM-induced
perturbations (“glitches”) in sensor data streams; the perturbation is expected to
sweep through the network at galactic velocities. The value of the network in
searches for DM clumps lies in a much suppressed rate of false positives, as
inevitable intrinsic noise (especially flicker noise) of a single-node sensor can mimic
an encounter with a DM clump. Moreover, even if the DM-induced glitches are
large, an unsuspecting experimentalist is likely to discard the event and attribute it to
something perhaps unexplained but mundane (see blog post [8]). An appearance of
the same glitch at all the nodes substantially raises confidence level in the detection
of the sought-after signal. This strategy is analogous to that of gravitational wave
observatories [9], where the same waveform is registered by multiple geographically
separated detectors with the prescribed time delays. We will discuss network-based
searches for clumpy DM in Sect. 10.4.3.

There are several networks of precision quantum sensors in existence. The
authors are involved in the DM searches with atomic clocks and atomic mag-
netometers and, for concreteness, we focus on networks comprised of these two
sensor types. We illustrate our general discussion with two examples: (1) the Global
Network of Optical Magnetometers for Exotic physics searches (GNOME) and
(2) the constellation of atomic clocks onboard satellites of the Global Positioning
System (GPS). Section 10.2 introduces couplings (portals) of ultralight DM fields
to the clocks and magnetometers. Essentially, we are interested in interactions
that either vary fundamental constants or lead to fictitious magnetic fields coupled
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to atomic or nuclear spins. Section 10.3 introduces basics of atomic clocks and
magnetometers. Section 10.4.1 reviews existing networks of quantum sensors.
Network detection of wavy dark matter is discussed in Sect. 10.4.2 and of clumpy
dark matter in Sect. 10.4.3. Some of the recent results are presented in Sect. 10.5 and
conclusions are drawn in Sect. 10.6. Since the intended audience includes broader
physics community, we restore h̄ and c in the formulae in favor of using natural or
atomic units.

10.2 Portals Into Dark Sector

Quantitative studies of interaction between the DM and Standard Model (SM)
particles/fields require specification of how the two sectors interact. We follow
a phenomenological approach of the so-called portals, when the gauge invariant
operators of the SM fields are coupled to the operators that contain fields from the
dark sector (see, e.g., Ref. [10] and Sect. 2.4.1 of Chap. 2). While a large number
of Lorentz-invariant portals can be constructed, here we focus on those that can
affect atomic clocks and magnetometers. In this section, we spell out these portals
and discuss existing, DM-model independent, constraints on the portals. Proposals
for direct DM searches should be more sensitive to new interactions than these
established constraints.

In the following, we focus on either scalar or pseudoscalar DM fields φ.
We consider interaction Lagrangians that are linear, L(1), and quadratic, L(2), in
φ. While linear interactions invariably arise in perturbative treatments, quadratic
interactions naturally appear for scalars possessing either Z2

1 or U(1) intrinsic
symmetries.

For atomic clocks,

L(1)
clk =

⎛
⎝−

∑
f

�
(1)
f mf,0c

2ψ̄f ψf + �
(1)
α

4
FμνF

μν

⎞
⎠√h̄c φ , (10.1)

L(2)
clk =

⎛
⎝−

∑
f

�
(2)
f mf,0c

2ψ̄f ψf + �
(2)
α

4
FμνF

μν

⎞
⎠h̄c φ2 . (10.2)

The structure of these portals is such that various parts of the SM Lagrangian
are multiplied by DM fields, with �’s being the associated coupling constants (to
be determined or constrained). In the above interactions, f runs over all the SM
fermions (fields ψf and masses mf ), and Fμν is the electromagnetic Faraday tensor.
Here we used the Lorentz-Heaviside system of electromagnetic units that is common

1 Qualitatively, Z2 symmetry means that for a real-valued field φ, the Lagrangian remains invariant
under sign swap operation, φ →−φ. Thus, φ and −φ obey the same equation of motion.
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in particle physics. In these expressions, the combination
√
h̄c φ is measured in units

of energy, [E], i.e., �(1)
X are measured in [E]−1 and �

(2)
X in [E]−2 . The Lclk portals

effectively alter fundamental constants [7], such as the electron mass me and the
fine-structure constant α = q2/h̄c.

•? Problem 10.1 Dark matter-induced variation of fundamental constants

Show that the portals (10.1) and (10.2) lead to the effective redefinition of fermion
masses mf and the fine-structure constant α:

mf (r, t) = mf,0 ×
[
1+ �

(n)
f

(√
h̄c φ(r, t)

)n]
, (10.3)

α(r, t) ≈ α0 ×
[
1+ �(n)

α

(√
h̄c φ(r, t)

)n]
, (10.4)

for the linear (n = 1) and quadratic (n = 2) portals, where mf,0 and α0 are the
nominal (unperturbed) values, i.e., demonstrate that fundamental constants become
both space and time dependent.

Solution on page 349.

It is conventional to recast the linear coupling strengths �
(1)
X in terms of

dimensionless “moduli” [11] (see Sect. 2.5.3)

dX ≡
(

EPl√
4π

)
�
(1)
X , (10.5)

with EPl =
√
h̄c5/GN being the Planck energy and GN being the Newtonian

constant of gravitation. We focus on the electron mass modulus dme and the
electromagnetic gauge modulus de, where X = α in this case. The most stringent
limits on these moduli come from the tests of Einstein’s equivalence principle
violation (see Fig. 1 of Ref. [11]). For the parameter space relevant to atomic clocks,
the excluded regions are de � 10−3 and dme � 10−2.

For quadratic couplings, for consistency with prior literature, we work with
energy scales

�X ≡ 1√
|�(2)

X |
. (10.6)

The most stringent (DM-model independent) constraints on the energy scales,
�me,α � 3 TeV and �mp � 10 TeV, come from the bounds on the thermal emission
rate from the cores of supernovae [12]. The authors of Ref. [12] estimated emissivity
of φ quanta due to the pair annihilation of photons and other processes such as the
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bremsstrahlung-like emission. They also considered tests of the gravitational force
which resulted in similar constraints; compared to the linear Lagrangians L(1)

clk these
are milder, because the quadratic Lagrangians lead to the interaction potentials that
scale as an inverse cube of the distance between the test bodies as only the exchange
of pairs of φ’s are allowed (for linear Lagrangians, the φ-mediated interaction
potentials scale as the inverse distance). There are additional limits on quadratic
couplings arising from Big Bang nucleosynthesis, black-hole superradiance and
other mechanisms which are beyond the scope of this chapter (see Ref. [13] for
details).

For magnetometers, we consider the following interaction Lagrangians [5]

L(1)
mag =

1

fl
Jμ∂μφ , (10.7)

L(2)
mag =

1

f 2
q

Jμ∂μφ
2 . (10.8)

In these expressions, Jμ = ψ̄γ μγ5ψ is the axial-vector current for SM fermions
and fl and fq are the characteristic energy scales (decay constants) associated with
the linear and quadratic spin portals. These Lagrangians give rise to the effective
spin-dependent interactions

H(1)
mag ≈ −

2(h̄c)3/2

fl
S ·∇φ , (10.9)

H(2)
mag ≈ −

2(h̄c)2

f 2
q

S ·∇φ2 , (10.10)

where S is the atomic or nuclear spin.

•? Problem 10.2 Dark matter-induced pseudo-magnetic field

Starting from the portal (10.7), derive the spin-dependent interaction Hamiltonian
(10.9).

Solution on page 350.

Similar to the clocks, the most stringent limits on axion spin couplings fl
and fq come from astrophysical observations, in particular, supernova 1987A (see
discussion in Chap. 3). The basic framework for setting up the constraints comes
from analysis of axion production through N + N → N + N + a, where N is
the nucleon and a is the axion. If such a reaction occurs, it would lead to core
emission of axions and increased supernova cooling rate. In turn, this would result
in shortening of neutrino pulses from the supernova explosion, which was not
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observed with detectors such as Kamiokande, IMB, and Baksan [14]. However, the
axion production would occur under conditions difficult to fully describe, thus a
rather conservative limit on the decay constant fl at 2 × 108 GeV is derived from
the observations [15]. Alternatively, the constraint can be formulated based on the
kaon decay K → πa, which gives comparable value of 108 GeV [16]. For the
quadratic coupling fq the limit is much weaker yielding 104 GeV [5, 12]. It is
important to note, however, that there do exist theoretical scenarios where these
astrophysical bounds can be circumvented [17], and therefore laboratory-based
detection experiments as described here play a crucial role.

10.3 How Do Atomic Clocks and Magnetometers Work?

Although atomic clocks and atomic magnetometers measure different physical
quantities, at the most fundamental level, both devices effectively measure the
energy/frequency splitting between atomic states. For clocks, the atomic levels are
chosen in such a way that the transition frequency, ideally, remains independent
of external fields and environmental dynamics. Thereby, measurements of the
transition frequency provide a reference that can be used for telling time. In
contrast, the measured energy-level splitting in atomic magnetometers depends on
the spin state and hence the applied magnetic field. In such a way, measurement
of the splitting provides information about the strength (and often direction) of the
magnetic field. Additionally, a common feature of atomic clocks and magnetometers
is that they both employ photons for preparation and monitoring, and sometimes also
manipulation, of the atoms used for the measurement.

10.3.1 Atomic Clocks

Measuring time requires observation of a stable periodic process. The elapsed time
is simply a product of the number of counted periods and the fixed duration of each
period. A grandfather clock is a mechanical realization of this formula: each swing
of the pendulum is counted by the escapement mechanism, which advances the
clock’s hands. In atomic clocks, an atomic transition serves as a frequency reference
for an external source of electromagnetic radiation, referred to as the local oscillator
(LO). The frequency source is tunable and once its frequency is in resonance with
the atomic transition, the period of oscillation is fixed and one counts the number
of oscillations at the source. The simple formula “time = number of oscillations ×
known oscillation period” applies once again.

One may generally distinguish between two types of atomic clocks: microwave
and optical clocks. This dichotomy is based on the frequency band of the reference
atomic transition. In the microwave clocks, two hyperfine levels, associated with
a state of a given electronic angular momentum, are used. In the case of alkali-
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metal atoms, which are often used in atomic-physics experiments, the splitting of
two ground-state hyperfine levels ranges between hundreds of MHz (in lithium)
to nearly 10 GHz (in cesium). In fact, the ground-state hyperfine level splitting in
133Cs defines the SI unit of time, the second. Alternatively, in optical clocks, it is the
energy splitting between two different electronic states that serves as the frequency
reference. As these are typically separated by hundreds of THz, compared to GHz
in microwave clocks, optical clocks have better fractional frequency accuracies than
their microwave counterparts.

We focus on microwave clocks, as these are used in GPS. The atoms (quantum
oscillators) are interrogated with light and microwave radiation. The microwave
field is driven from the LO referenced to a microwave cavity. The cavity frequency is
tunable and a feedback (servo) loop drives the LO frequency to be in resonance with
the reference atomic transition. Technically, atomic clocks measure the quantum
phase � of an atomic oscillator with respect to that of the LO. The accumulated
phase and thereby the quantum probability of a resonant transition is determined
by a time integral of the difference in frequencies between the clock atom and the
LO. Both the atomic oscillator and the LO can be affected by the DM fields. The
DM-induced accumulated-phase difference over measurement time t0 = tj − tj−1
is

�DM
j = 2π

∫ tj

tj−1

[
νDM

atom(t
′)− νDM

LO (t ′)
]
dt ′ . (10.11)

This DM-induced phase is interpreted by the servo-loop logic as if the cavity
frequency νLO has drifted away from its nominal value νclock. Technically, the servo-
loop would introduce a correction �DM

j /(2πt0) to the LO frequency νLO. In other
words, DM affects the time as measured by the clocks.

One can simplify the DM-induced phase in two practically relevant cases. If we
assume that the characteristic duration τ of DM field action on the clock is much
longer than t0 (slow regime), �DM

j ≈ 2π [νDM
atom(tj ) − νDM

LO (tj )]t0 . In the opposite

limit of a short transient of duration τ  t0 occurring at time t ′ ∈ (tj−1,tj ), �DM
j ≈

2π [νDM
atom(tj )− νDM

LO (tj )]τ . Then DM leads to fractional frequency excursions

sDM ≡ νDM
atom − νDM

LO

νclock
× min(τ, t0)

t0
, (10.12)

where the second factor accounts for both the slow and fast regimes.
As discussed in Sect. 10.2, we are interested in portals that lead to variation of

fundamental constants, such as the fine-structure constant α or electron mass me.
Atomic frequencies are primarily affected by the induced variation of the Rydberg
constant, R∞ = mec

2α2. Optical clocks can exhibit additional α dependence due
to relativistic effects for atomic electrons. Microwave clocks operate on hyperfine
transitions and are additionally affected by the variation in the quark masses, mq

and the strong coupling constant. The reference cavity is also a subject to the DM
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influence. For example, the variation in the Bohr radius a0 = α−1h̄/(mec) affects
cavity length L ∝ a0 and thus the cavity resonance frequencies. Conventionally, one
introduces coefficients κX = ∂ ln ν/∂ lnX quantifying sensitivity of a resonance
frequency ν to the variation in the fundamental constant X. Then

κatom
me

≈ 1 , κatom
α ≈ 2 , κcavity

me
≈ −1 , κcavity

α ≈ −1 .

It is worth noting that there are exceptional cases of enhanced sensitivity to variation
of fundamental constants, for example, in the actively pursued 229Th nuclear clock
(κα ≈ 104) [18], and clocks based on highly charged ions (κα � 102) [19].

Since DM portals pull on the fundamental constants [Eqs. (10.3) and (10.4)] and
thus on the LO and atomic frequencies, the putative DM signal [Eq. (10.12)] can
then be expressed as

s(t)DM = �
(n)
eff

(√
h̄c φ(t)

)n × min(τ, t0)

t0
, (10.13)

where n = 1 or 2 for the linear and quadratic portals, respectively. Here we also
introduced the effective coupling constants

�
(n)
eff ≡

∑
X

KX�
(n)
X , (10.14)

where KX = κatom
X −κLO

X is the differential sensitivity coefficient and the summation
runs over all relevant fundamental constants.

As with any device, there are two issues that must be addressed in experiments
with atomic clocks: systematic errors (accuracy) and statistical uncertainties (stabil-
ity). Systematic errors quantify how well the quantum oscillator is protected from
external perturbations. Although the community of physicists working on atomic
clock development devotes significant efforts to characterizing clock accuracies,
these are not relevant to the goal of detecting DM signals (unless conventional
physics perturbations mimic the sought-after DM signatures). Sensitivity to DM
portals is determined by the clock stability which quantifies statistical uncertainties.
As with most statistical errors, these are reduced by increasing measurement time
τmeas. The clock stabilities are characterized using the Allan variance σy(τmeas),
quantifying the statistical error in fractional clock frequency as a function of
the measurement time. Typically, the Allan variance scales as 1/

√
τmeas. One

can interpret σy(τmeas) as the error in the determination of the mean fractional
clock frequency. In other words, namely σy(τmeas) determines the non-DM noise
component of the fractional clock excursions (first factor) entering the DM signal
(Eq. (10.12)). At τmeas = 1 s, modern atomic clocks have Allan deviations of
∼10−12 for GPS clocks and 10−16 for optical clocks.
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10.3.2 Atomic Magnetometers

Magnetic field measurement requires monitoring of a physical quantity that depends
on the magnetic field. In the case of (optical) atomic magnetometers, this quantity
may be the intensity or polarization of light propagating through a medium subjected
to an external magnetic field. If the medium is spin polarized, e.g., by interaction
with polarized light (optical pumping), the magnetic field changes the initial spin
polarization, which affects the characteristics of the transmitted light.

At the microscopic level, interaction of the field with atomic magnetic moments
leads to the precession of the moments at the Larmor frequency νL = γB/(2π),
where γ is the gyromagnetic ratio for the atom. Periodic evolution of the system
(i.e., precession of spins around the magnetic field direction) enables synchronous
pumping of the atoms (e.g., by modulating light frequency at the Larmor frequency
or its harmonic), leading to a resonant response of the atoms and hence stronger
optical signals. Tracking the position of the resonance, by modifying the frequency
of the LO driving the modulation, enables accurate magnetic field measurements.
Alternatively, atomic magnetometers may be subjected to continuous perturbation,
e.g., continuous-wave (CW) light, when competition between such processes as
optical pumping, Larmor precession, and spin-polarization relaxation results in
appearance of quasi-static optical signals. While this scheme allows measurements
of relative field changes (unless the signal is calibrated, in which case absolute
measurements can be made) and typically leads to smaller dynamic range (up to
about 100 nT), the magnetometers typically have better sensitivities (1 fT/

√
Hz or

below), than their dynamically driven counterparts.
As shown in Eqs. (10.9) and (10.10) the axion-field gradient acts as a pseudo-

magnetic field. Generally, this pseudo-magnetic field differs for electrons and
nucleons. By rewriting the Hamiltonians using the total angular momentum F of
an atom (F is a sum of electronic spin, electronic angular momentum, and nuclear
spin), one obtains

H(1) ≈ − (h̄c)3/2

f eff
l

F ·∇φ
F

, (10.15)

H(2) ≈ − (h̄c)2
(
f eff
q

)2
F ·∇φ2

F
, (10.16)

where f eff
l and f eff

q are linear and quadratic effective decay constants. The relation

of the effective decay constants f eff
l,q to the electron fe, proton fp, and neutron fn

decay constants can be calculated as described, for example, in Ref. [20]. In the case
of 3He and 39K, two atoms often used in atomic magnetometers, the linear coupling
constants take the form

3He: 1
f eff
l

= 1
fn
, (10.17)
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39K: 1
f eff
l

= 1
4fe
− 3

20fp
, (10.18)

where we assumed that the angular momentum F is mostly due to an unpaired
neutron in 3He and the d3/2 valence proton in 39K.

Since the exotic spin couplings are orders of magnitude weaker than the conven-
tional Zeeman interaction, suppression of Zeeman coupling to any uncontrollable
(e.g., environmental) magnetic fields becomes of prime importance. Therefore,
most experiments searching for exotic spin couplings are housed inside magnetic
shields. The shields, commonly made of high permeability material (e.g., mu-metal
or ferrites), passively attenuate stray magnetic fields by a factor on the order of 106.
As shown in Ref. [21], for many experimental geometries and conditions, magnetic
shields do not substantially reduce the sensitivity to exotic spin couplings. To further
reduce the sensitivity to the magnetic fields, the magnetometers can be operated in
the so-called comagnetometer arrangement, where two distinct atoms or nuclei are
used for field sensing (see Chap. 8 for more information). Often, a noble gas and
alkali atoms are used, as they sense the field through the coupling to the nuclear
spin in the first case and predominantly through the coupling to the electronic spin
in the second case. Comparison of the responses of the species to the magnetic
field removes sensitivity to the field, leaving system sensitive to other, particularly
exotic, couplings. Moreover, due to principally different coupling of exotic physics
to different atomic species, comagnetometry also allows disentangling individual
couplings to electrons, protons, and neutrons.

At the most fundamental level, the sensitivity of atomic magnetometers is
determined by the quantum nature of atoms and light, i.e., by the spin-projection
and photon shot noise. In an optimized system, the magnetometric sensitivity is
determined as described in, e.g., Auzinsh et al. [22], Ledbetter et al. [23]

δBopt = h̄

gμB

√
1

NatT2τmeas
, (10.19)

where g is the Landé factor, Nat is the number of atoms involved in field sensing, T2
is the transverse spin relaxation time, and τmeas is the duration of the measurement.
This gives the fundamental sensitivity limit between 0.01 and 1 fT/

√
Hz for a typical

magnetometer.

•? Problem 10.3 Atomic-projection noise limit on magnetometric sensitivity

Derive the atomic-projection limit on the sensitivity of an atomic magnetometer.

Solution on page 350.
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10.4 DM Searches with Network of Sensors

10.4.1 Overview of Existing Networks

Networks are ubiquitous in our life, with one of the most well-known examples
being the internet. In telecommunication settings, the utility of the network is
proportional to the square of the number of nodes (Metcalfe’s law). This scaling
law reflects the total number of unique connections Ns(Ns− 1)/2 for the number of
nodes Ns. If one considers that the price of the network increases as Ns, there is a
certain critical number of nodes above which the network becomes economically
viable. Similar considerations (with significant caveats) apply to networks of
quantum sensors. One can argue that the sensitivity of a classical network to the
exotic physics should improve generically as

√
Ns since the same putative signal

is measured independently by Ns sensors. However, such an argument neglects the
vetoing power of the interconnected network that results in a reduced rate of false
positives. In addition, the cost of deploying Ns sensors in research environment is
vastly different from commercial settings. The reason is that the cost of developing
a single table-top sensor in a university lab vastly exceeds the cost of the hardware.
Thus the cost of the second identical sensor is mostly the cost of the hardware
(economy of scale). Another possibility is an integration of already developed
sensors, then the additional cost is the cost of synchronizing data acquisition or
links.

Perhaps the most widely celebrated network in the physics community is LIGO
(the Laser Interferometer Gravitational Wave Observatory)—a gravitational wave
observatory initially consisted of two sites in the US. While this network is adding
more locations, the original black-hole merger gravitational wave detection from
2015 used only two spatially separated interferometers in the waveform template
matching [9]. The appearance of the same waveform in both interferometers, with
the proper time delay between the two, greatly supported the credibility of the
discovery claim.

There are several criteria [25] for a network to detect the signal pattern due to a
macroscopic DM object sweeping through a network of Ns sensors:

(i) The network should be sufficiently dense so that the string and monopole-type
DM objects can overlap with at least several geographically distinct nodes.

(ii) The network volume should be sufficiently large in order to increase the rate
of encounters with string and monopole-type DM objects.

(iii) Per the standard halo model the DM objects sweep through the network
at galactic velocities (vg ∼ 300 km/s). Thus the sampling rate should
be sufficiently high to enable tracking the propagation of the DM object
through the network (see Fig. 10.2). The tracking enables reconstruction of the
geometry and dynamics of the encounter.
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Fig. 10.2 Simulated
response of an Earth-scale
network of atomic clocks to a
spherically symmetric
Gaussian-profiled dark matter
clump (a monopole or a
Q-ball). The traces in the
bottom panel show
time-evolution of the phase of
quantum oscillators for three
distinct locations. From
Ref. [7]
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(iv) Although not necessary, it is desirable that the encounters of DM objects with
the network are sufficiently rare, so that only a single DM object interacts with
the network at any given time.

A particular example of a global network fulfilling these criteria is the GPS. The
network is nominally comprised of Ns = 32 satellites in a medium-Earth orbit
(altitude ∼ 20,000 km). Microwave Rb or Cs atomic clocks onboard the satellites
drive microwave signals, which are broadcast to Earth. A network of specialized
Earth-based GPS receivers measures the carrier phase of these microwave signals,
which is then used to deduce the satellite clock data. The network can be extended
to incorporate clocks from high-quality Earth-based receiver stations and other
navigation systems, such as the European Galileo, Russian GLONASS, and Chinese
BeiDou, and networks of laboratory clocks [26]. An additional and important
advantage of the GPS network is the public availability of nearly two decades of
archival data enabling relatively inexpensive data mining. Such searches for dark
matter-induced transient variation of fundamental constants are the focus of the
GPS.DM collaboration [7, 27].

GNOME is a network of shielded optical atomic magnetometers specifically
targeting transient events associated with exotic physics [28]. To the best of
our knowledge, this is the first network ever constructed specifically to search
for physics beyond the SM. Presently, GNOME consists of Ns = 12 atomic
magnetometers located at stations throughout the world (six sensors in North
America, five in Europe, three in Asia, and one in Australia), with a number of new
stations under construction in Israel, India, and Germany [29]. Each magnetometer
is located within a multilayer magnetic shield to reduce the influence of magnetic
noise. The overall network sensitivity is close to 100 fT depending on the number of
stations active [30]. It is noteworthy that besides the traditional analysis technique
that takes advantage of the spatiotemporal pattern of the network signal to veto false
positives, GNOME offers further ability to limit the rate of false positives. Due to the
pseudoscalar character of the coupling in atomic magnetometers (Sect. 10.3.2) and
different directions of spin polarization in specific GNOME stations, the amplitude
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Fig. 10.3 A map of existing
low-energy precision
measurement laboratories
(red dots) around the globe.
Such a network can serve as a
global dark matter
observatory. Adopted from
Ref. [24]

and sign of the putative signals also carry information about the coupling. This
information can be used to further improve rejection of false positives. Additionally,
several stations are implementing sensors employing a dense polarized noble gas in
a comagnetometer configuration [31]. This arrangement has a reduced sensitivity
to magnetic couplings and hence enhanced sensitivity to exotic spin couplings. This
new network of noble-gas-based comagnetometers will form an Advanced GNOME
with an anticipated sensitivity to spin couplings a hundred times better than the
existing GNOME. As of the summer of 2020, there is about a year of GNOME data
collected which can be analyzed to search for exotic physics signals, and results
of the first search for dark matter using the GNOME data set has recently been
completed as described in Ref. [32].

Let us finally reiterate a vision for a global dark matter observatory [24] (see
Fig. 10.3), that is a natural extension of the GNOME architecture. Up to date,
individual direct DM searches employ a broad range of sensors: atomic clocks,
magnetometers, accelerometers, interferometers, cavities, resonators, permanent
electric-dipole and parity-violation measurements, and extend to gravitational wave
detectors (see Ref. [33] for a review). These distinct tools are typically located at
geographically separated laboratories across several continents (see Fig. 10.3) or
in space. These tools already form nodes of the network and only the links are
missing. In the most basic version, even the physical links are not necessary as
the synchronization can be implemented with a GPS-assisted time-stamping of data
acquisition [6, 34]. Some of the enumerated instruments are sensitive to the same
portals (e.g., atomic clocks, cavities, atom interferometers, and gravimeters are all
sensitive to the DM-induced variation of fundamental constants), which would lead
to an important complementarity of the searches at individual nodes.

•? Problem 10.4 Noise suppression of false positive events with a sensor
network

Determine the suppression of the false positive event rate by introduction of an
additional sensor into a network searching for “clumpy” dark matter.

Solution on page 352.
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10.4.2 Network-Based Searches for “Wavy” Dark Matter

In the wavy models, DM is composed of ultralight spin-0 bosonic fields, oscillating
at their Compton frequency ωφ = mφc

2/h̄, where mφ is the boson mass, see
Chaps. 1 and 2. Multiple proposals covered in this book focus on searching for
an oscillating signal at the Compton frequency. Unfortunately, in a laboratory
environment, an observation of an oscillating signal could be ascribed to some
mundane ambient noise and it is desirable to establish additional DM signatures.
Due to the DM virial velocity distribution, these DM fields are stochastic in nature
(again, see Chap. 1) and we refer to them as virialized ultralight fields (VULFs).
Their coherence times and coherence lengths are related to DM properties. An
additional signature [24] relies on a VULF spatiotemporal correlations that can be
probed with a network. Formally, the two-point field correlation function is defined
as

g (t,r) = 〈φ (
t ′ = t +t, r′ = r+r

)
φ (t, r)〉 ,

where averaging is over stochastic realizations of the DM field.
DM field correlations imprint correlations on the putative DM signal. Indeed,

in the assumption of the linear portals, see Sect. 10.2, the measured quantity has a
DM-induced admixture sX (t, r) that is proportional to the field value φ (t, r) at the
device location. Then the correlation between DM signals at the two locations is
related through the DM field correlation function

〈sX
(
t ′, r′

)
sX (t, r)〉 ∝ 〈φ (

t ′, r′
)
φ (t, r)〉 .

The correlation function for spatiotemporal variations of fundamental constants is
also expressed in terms of DM field correlation function, e.g.,

〈α (
t ′, r′

)
α (t, r)〉

(α0)2
= 1+ h̄c

(
�(1)
α

)2
g (t,r) ,

where we used the DM-induced variation (10.4) of the fine-structure constant.
The correlation function derived in Ref. [24] reads

g (t,r) ≈ 1

2
�2

0 A (t,r) cos
[
ω′φt − kg ·r+� (t,r)

]
. (10.20)

Here ω′φ is the Doppler-shifted value of the Compton frequency ω′φ = ωφ +
mφv

2
g/(2h̄) and kg = mφvg/h̄ is the “galactic” wave vector associated with

the apparatus motion through the DM halo (towards the Cygnus constellation).
The effective field amplitude �0 is related to the DM energy density as �0 =
h̄

mφc

√
2ρdm, which comes from directly evaluating the time-like (00) component

of the stress-energy tensor for the bosonic field. Further, the amplitude and phase
are defined as
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A (t,r) =
exp

(
−|r−vgt|2

2λ2
c

1
1+(t/τc)2

)

[
1+ (t/τc)2

]3/4
, (10.21)

� (t,r) = −
∣∣r− vgt

∣∣2

2λ2
c

t/τc

1+ (t/τc)2
+ 3

2
tan−1 (t/τc) ,

where the coherence time τc ≡
(
ξ2 ωφ

)−1 ≈ 106/ωφ and coherence length λc ≡
h̄/

(
mφξc

)
are expressed in terms of the virial velocity ξc ≈ 10−3c. The correlation

function encodes the priors on VULFs and the DM halo, such as the DM energy
density in the vicinity of the Solar system, motion through the DM halo at vg and the
virial velocity ξc. Thereby, the correlation function provides an improved statistical
confidence in the event of an observation of a DM signal.

The N -point correlation function required for the multi-node network can be
fully expressed in terms of the derived two-point correlation function since the DM
field is Gaussian in nature. The statistical significance of the correlation function for
a network was explored in Ref. [24]. If all Ns nodes are separated by distances larger
than the coherence length λc, compared to a single apparatus, the network sensitivity
improves as N1/4

s . In the opposite limit of the node separations being much smaller
than λc (fully coherent network), the statistical sensitivity is improved by the factor√
Ns. Network searches for wavy DM are in their infancy, but are expected to gain

in significance once the oscillating DM signal is discovered. The network will be
necessary to confirm the DM origin of the signal.

10.4.3 Network-Based Searches for “Clumpy” Dark Matter

In the “clumpy” dark matter models, DM is postulated to be composed of macro-
scopic objects, such as topological defects (TDs). Monopoles (0D), strings (1D),
and domain walls (2D) are all examples of TDs of various dimensionalities. Other
examples of macroscopic DM candidates include “dark stars” [1], Q-balls [2, 3],
solitons, and clumps formed due to dissipative interactions in the DM sector. A
special case of clumpy DM are DM “blobs” [35], particle-like DM objects sourcing
long-range Yukawa-type interactions with the SM sector.

As an illustration, we focus on topological defects. Inside the defect, the
amplitude of the DM field A and the energy density of the defect is related by
ρinside = A2/(h̄c d2), where d is the width of the defect (we use the convention
where the field has units of energy). The DM object width d is treated as a free
observational parameter. For topological defects, this width may be linked to the
mass of the DM field particles mφ through the healing length which is on the order
of the Compton wavelength, d ∼ h̄/(mφc). Further, the local DM energy density
ρdm may be expressed in terms of d and A by assuming that these objects saturate
the local DM energy density,
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Fig. 10.4 While crossing
through the domain wall, wall
timings and amplitudes of the
signals recorded in different
GNOME nodes (red dots)
form a spatiotemporal pattern
that enables determination of
the properties of dark matter
and reduce a false positive
rate. Courtesy of Arne
Wickenbrock

A2 = h̄c ρdmd
2Te
τ

, (10.22)

where τ ∼ d/vg is the characteristic duration of crossing through a point-like
instrument and Te is the average time between encounters of the sensor with DM
clumps. These relations hold for all types of defects.

So far both the GPS.DM and GNOME searches focused on domain walls
(Fig. 10.4). Their signature is especially simple as the wall would cross all the
sensors with the same amplitude of the DM signal. Domain wall-like signatures
can appear naturally in the context of bubbles, i.e., domain walls closed on
themselves [27]. Locally, one can neglect the bubble curvature as long as the bubble
radius is much larger than the spatial extent of the sensor network. Since bubbles are
spherically symmetric, gravitationally interacting ensembles of these DM objects
are a subject to the equation of state for pressureless cosmological fluid as required
by the �CDM paradigm, see Chap. 3.

An example of a DM signature for a “thin” domain wall (d/vg < t0) sweeping
through the GPS constellation is shown in Fig. 10.5. GPS clock data are reported
with respect to some other fixed (reference) clock. Thus the signal pattern would
involve DM-induced perturbations to both satellite clocks and the reference clock.
For identical types of reference and satellite clocks, the domain wall creates a
perturbation of the reference clock that leads to a “timing glitch” of equal magnitude
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Fig. 10.5 One of the expected frequency signatures for a thin domain wall sweeping through the
GPS constellation. Red (blue) tiles indicate positive (negative) DM-induced frequency excursions,
while white tiles mark the absence of the signal. In this example, the satellites are listed in the order
they were swept (though in general the order depends on the incident direction of the DM object
and is not known a priori). The slope of the red line encodes the incident velocity of the wall. The
reference clock was swept within the 30 s leading to epoch 8. Satellites 15 and 16 do not record
any frequency excursions, since they are spatially close to (degenerate with) the reference clock
and are swept within the same sampling period. Adopted from Ref. [27]

but opposite sign as compared to those appearing when the domain wall passes
through satellite clocks.2 Consider the pattern of “glitches” in GPS clocks shown
in Fig. 10.5. The domain wall first sweeps through satellites 1 and 2 in epoch 4,
causing a temporary positive frequency excursion, then encounters clocks 3 and 4 in
the next epoch, and so on. When the domain wall passes through the reference clock
in epoch 8, most of the clocks show a temporary negative frequency excursion, since
the reference clock itself experiences a positive frequency excursion (the exceptions
being satellites 15 and 16 which are spatially close to the reference clock). In
the case of GNOME, however, there is no reference magnetometer, i.e., all the
magnetometers are independent. Thus for identical magnetometers the sought-after
pattern would involve only the “diagonal” (red tiles) in Fig. 10.5.

2 This is simply a consequence of the fact that the timing glitches are determined by comparison
between the reference and satellite clocks. If, for example, the glitch causes a clock to temporarily
run fast, when the domain wall passes through the reference clock, satellite clocks appear to run
slow with respect to the reference clock, whereas when the domain wall passes through a satellite
clock, the satellite clock appears to run fast compared to the reference clock.
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10.5 Putting It All Together

In this section, we illustrate the implementation of the described ideas with a search
for clumpy DM [27] using archival GPS data. The archival GPS data is publicly
available and the dataset includes atomic clock data and satellite positions sampled
every t0 = 30 s.

Returning to the discussion of Sect. 10.3.1, we focus on “thin” domain walls and
quadratic couplings. Then, with Eq. (10.22) for the DM field amplitude, the DM
signal (10.13) becomes

sDM
0 = �

(2)
eff (h̄c)

2 ρdmd
2Te
τ

. (10.23)

This is the amplitude of the signal during the time interval when the wall overlaps
with a sensor, otherwise there is no signal, sDM

0 = 0.
The key qualifier for Eq. (10.23) is that one must be able to distinguish between

the clock noise and DM-induced frequency excursions. Discriminating between the
two sources relies on measuring time delays between DM events at network nodes,
see Fig. 10.5. The velocity of the sweep is encoded in the time delay between two
DM-induced frequency excursion and it must lie within the boundaries predicted by
the standard halo model (the distributed response of the network encodes the spatial
structure and kinematics of the DM object and its coupling to the sensors).

To search for domain wall signals, the GPS.DM collaboration analyzed the GPS
data streams in two stages [27]. At the first stage, they scanned all the data from
October 2016 to May 2000 searching for the most general patterns associated with
a domain wall crossing, without taking into account the order in which the satellites
were swept. They required at least 60% of the clocks to experience a frequency
excursion at the same epoch, which would correspond to when the wall crossed
the reference clock (vertical blue line in Fig. 10.5). This 60% requirement is a
conservative choice based on the GPS constellation geometry and ensures sensitivity
to walls with relative speeds of up to 700 km/s. Then, the GPS.DM collaboration
checked if these clocks also exhibit a frequency excursion of similar magnitude
(accounting for clock noise) and opposite sign anywhere else within a given time
window (red tiles in Fig. 10.5). Any epoch for which these criteria were met was
counted as a “potential event.” Above a certain threshold for the DM signal (10.23),
no potential events were seen.

The second stage of the search involved analyzing the potential events in more
detail, so that their status could be elevated to “candidate events” if warranted by
the evidence. GPS.DM examined a few hundred potential events that had frequency
excursions magnitudes just below the threshold values, by matching the data streams
against the expected patterns, where the velocity vector and wall orientation were
treated as free parameters. At this second stage, GPS.DM accounted for the ordering
and time at which each satellite clock was affected. This was done by matching
data against a bank of signal templates that was itself generated using DM halo
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Fig. 10.6 Projected discovery reach for thin wall dark matter objects along with existing
constraints. The red dashed lines represent the least stringent and most stringent discovery
reaches for the 2010 GPS atomic clock network. The shaded cyan region are the constraints
coming from astrophysics [12], while the salmon shaded regions are the constraints placed by the
GPS.DM collaboration [27]. The green shaded region contains the constraints placed by optical
clock experiments [36], while the yellow region—by a global terrestrial network of laboratory
clocks [37]. Adopted from Ref. [25]

properties. As a result of this pattern matching, none of these events was consistent
with domain wall signals.

Since GPS.DM did not find evidence for encounters with domain walls, there
are two possibilities: either DM of this nature does not exist, or the DM signals
are below the sensitivity. The derived limits on quadratic coupling energy scale �α

are presented in Fig. 10.6 (salmon shaded region). Here we assumed for simplicity
that the DM-induced variation in the fine-structure constant α dominates. These
limits represent a significant improvement over the astrophysical bounds, discussed
in Sect. 10.2.

The ultimate discovery reach of the clock network is given by [25]

|�(2)
X | ≤

C√
NENs

σy(t0)

h̄cρdmTed2KX

. (10.24)

Again we assumed that a specific coupling constant �X dominates so that �eff →
KX�X. Here C ∼ O(1) is a constant that depends on the confidence level and
details of the network implementation, NE = T/Te is the total number of expected
encounters with DM objects during total observation time T (as of 2020 ∼ 20
years for GPS archival data). This constraint translates into projected exclusion
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limits on the effective energy scale �X = 1/
√|�X|, shown in Fig. 10.6. Notice

that the derived constraints from the first GPS.DM search [27] are several orders of
magnitude weaker than the projected limits. Reaching the full discovery potential
requires implementing more advanced statistical approaches, such as Bayesian
statistics [38] or matched filter techniques [25]; these are a subject of current efforts
by the GPS.DM collaboration.

10.6 Summary

Distributed sensor networks, either at a local or a global scale, are one of the
powerful strategies used in scientific research. Extension of these ideas to networks
of precision quantum sensors opens novel opportunities, in particular searches for
a variety of dark matter candidates. While these developments are in their early
stages, we believe that additional spatiotemporal signatures offered by the networks
are key to improving confidence in the DM origin of a putative signal (if discovered).
Networks also enable a powerful rejection of false positives.

Searching for dark matter using sensor networks is a rapidly developing research
area: soon after the initial proposals [5, 7] based on atomic magnetometers and
atomic clocks, several new schemes involving terrestrial networks of optical clocks,
atom interferometers, and optical cavities [37, 39] have been proposed. We also
mention recently proposed space missions [40, 41] that involve rudimentary net-
works of atomic clocks and interferometers; while these missions focus on detection
of gravitational waves, DM searches are one of their secondary goals.

Finally, once a network is built, it may find other applications. For example,
quantum sensor networks can be used in searches for exotic low-mass fields (ELFs)
emitted in cataclysmic astrophysical events such as black-hole or neutron-star
mergers [42]. This idea opens up an intriguing “exotic physics” modality in multi-
messenger astronomy, where the measured exotic physics signals are correlated with
gravitational wave triggers and the progenitor position in the sky.

Acknowledgments We would like to thank members of GPS.DM and GNOME collaborations
for numerous discussions. This work of A.D. was supported in part by the U.S. National Science
Foundation under Grant Nos. PHY-1806672 and PHY-1912465 and the work of S.P. was supported
in part by the National Science Centre, Poland.

References

1. E.W. Kolb, I.I. Tkachev, Phys. Rev. Lett. 71, 3051 (1993)
2. S. Coleman, Nucl. Phys. B 262, 263 (1985)
3. A. Kusenko, P.J. Steinhardt, Phys. Rev. Lett. 87, 141301 (2001)
4. A. Vilenkin, Phys. Rep. 121, 263 (1985)



302 A. Derevianko and S. Pustelny

5. M. Pospelov, S. Pustelny, M.P. Ledbetter, D.F. Jackson Kimball, W. Gawlik, D. Budker, Phys.
Rev. Lett. 110, 021803 (2013)

6. D. Budker, A. Derevianko, Phys. Today 68 (2015)
7. A. Derevianko, M. Pospelov, Nat. Phys. 10, 933 (2014)
8. A. Derevianko, When would an unanticipated “new physics” event be apparent to an

unsuspecting experimentalist? http://wp.me/p2Z9xm-8Z
9. B.P. Abbott, et al., Phys. Rev. Lett. 116, 061102 (2016)

10. R. Essig, J. Jaros, W. Wester, arXiv:1311.0029 (2013)
11. A. Arvanitaki, S. Dimopoulos, K. Van Tilburg, Phys. Rev. Lett. 116, 031102 (2016)
12. K.A. Olive, M. Pospelov, Phys. Rev. D 77, 043524 (2008)
13. S. Sibiryakov, P. Sørensen, T.T. Yu, J. High Energ. Phys. 2020, 75 (2020)
14. G.G. Raffelt, Annu. Rev. Nucl. Part. Sci. 49, 163 (1999)
15. J.H. Chang, R. Essig, S.D. McDermott, J. High Energ. Phys. 2018, 51 (2018)
16. G. Marques-Tavares, M. Teo, J. High Energy Phys. 2018, 180 (2018)
17. W. DeRocco, P.W. Graham, S. Rajendran, Phys. Rev. D 102, 075015 (2020)
18. V.V. Flambaum, Phys. Rev. Lett. 97, 092502 (2006)
19. M.G. Kozlov, M.S. Safronova, J.R.C. López-Urrutia, P.O. Schmidt, Rev. Mod. Phys. 90,

045005 (2018)
20. D.F. Jackson Kimball, New J. Phys. 17, 073008 (2015)
21. D.F. Jackson Kimball, J. Dudley, Y. Li, S. Thulasi, S. Pustelny, D. Budker, M. Zolotorev, Phys.

Rev. D 94, 082005 (2016)
22. M. Auzinsh, D. Budker, D.F. Kimball, S.M. Rochester, J.E. Stalnaker, A.O. Sushkov, V.V.

Yashchuk, Phys. Rev. Lett. 93, 173002 (2004)
23. M.P. Ledbetter, I.M. Savukov, V.M. Acosta, D. Budker, M.V. Romalis, Phys. Rev. A 77, 033408

(2008)
24. A. Derevianko, Phys. Rev. A 97, 042506 (2018)
25. G. Panelli, B.M. Roberts, A. Derevianko, EPJ Quantum Technol. 7, 5 (2020)
26. F. Riehle, Nat. Photon. 11, 25 (2017)
27. B.M. Roberts, G. Blewitt, C. Dailey, M. Murphy, M. Pospelov, A. Rollings, J. Sherman,

W. Williams, A. Derevianko, Nat. Comm. 8, 1195 (2017)
28. S. Afach, D. Budker, G. DeCamp, V. Dumont, Z.D. Grujić, H. Guo, T.W. Jackson Kimball, D.
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I. Gerhardt, Z.D. Grujić, H. Guo, et al. Nat. Phys. 17, 1396 (2021)
33. M.S. Safronova, D. Budker, D. DeMille, D.F. Jackson Kimball, A. Derevianko, C.W. Clark,

Rev. Mod. Phys. 90, 025008 (2018)
34. P. Wlodarczyk, S. Pustelny, D. Budker, M. Lipinski, Nucl. Instrum. Methods 150, 763 (2014)
35. D.M. Grabowska, T. Melia, S. Rajendran, Phys. Rev. D 98, 115020 (2018)
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Solutions to Chapter Problems

Problem 1.1: Galactic Rotation Curves

Since most of the galaxy’s mass M is within the radius R of the star’s circular orbit,
the star’s centripetal acceleration (v2/R, where v is the star’s rotational velocity) is
equal to the gravitational pull of the galaxy divided by the star’s mass:

v2

R
≈ GNM

R2
, (A.1)

and so

v ≈
√
GNM

R
. (A.2)

Thus, v ∝ 1/
√
R. If we assume that, in fact, the galaxy’s mass is dominated by a

spherical distribution of dark matter so that

M(R) ≈
∫ R

0
4πρdm(r)r

2dr , (A.3)

where ρdm(r) is the dark matter density, to obtain the observed flat rotation curve, we
demand that ρdm(r) ∝ 1/r2. This yields M(R) ∝ R, and thus based on Eq. (A.2),
v is independent of R.
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Problem 1.2: Minimum Mass of Fermionic Dark Matter

The spin–statistics theorem demands that only a single fermion can occupy a given
quantum state, and so there is an upper bound on the possible fermion density in
the dark matter halo. There is also an upper bound on the speed of the dark matter
particles: to remain trapped within the gravitational potential of the galaxy, they
cannot exceed the escape velocity vesc. These two bounds conspire to set a lower
limit m∗ on the fermionic dark matter mass m.

The existence of a lower bound on m can be understood qualitatively in the
following way. The maximum number density of fermions is capped at ∼ 1/λdB

3,
where λdB is the de Broglie wavelength of the fermions; this is the case when
there is about one fermion per quantum state. This caps the mass density at about
ρmax ∼ m/λdB

3. Since λdB ∝ 1/m, ρmax ∝ m4. Thus, if m is too small, ρmax

is smaller than ρdm, and the fermions cannot obtain the observed density of dark
matter.

To derive a numerical value for m∗, we begin by considering the number of
quantum states dN in a differential volume of phase space, which is given by
dividing the phase space volume by h3:

dN = 2
d3rd3p

h3 , (A.4)

where we have included an additional factor of 2 to account for the spin degree
of freedom for the spin-1/2 fermions. To find the maximum possible density, we
assume that every possible quantum state is occupied, starting from the state with
the smallest possible momentum up to the Fermi momentum pF (the case of a
zero-temperature Fermi gas). The density of quantum states nQ = dN/dV , where
dV = d3r is the volume element, and so the maximum number density nmax = nQ
is found by integrating over the possible momenta in spherical coordinates

nmax = 2

h3

∫ pF

0
4πp2dp = 8πp3

F

3h3
. (A.5)

Requiring that pF ≤ mvesc and also ρmax = mnmax ≥ ρdm, we obtain the relation

8πm4vesc
3

3h3 ≥ ρdm (A.6)

and find that the minimum mass of a fermionic dark matter particle is

m∗ = 4

√
3h3ρdm

8πvesc
3 . (A.7)

Numerically, given that ρdm ≈ 0.4 GeV/cm3 and vesc ≈ 2× 10−3c, we find

m∗ ≈ 10 eV. (A.8)
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Problem 1.3: Ultralight Bosonic Dark Matter Waves

The Compton frequency is given by

ωc = mc2

h̄
, (A.9)

and the Compton wavelength is given by

λc = 2πc

ωc

= 2πh̄

mc
. (A.10)

A useful numerical quantity to recall for such “back-of-the-envelope” estimates is
h̄c ≈ 200 eV · nm. For mbc

2 = 10−6 eV, we find

ωc ≈
(
10−6 eV

)× (
3× 1010 cm/s

)

200× 10−7 eV · cm
≈ 2π × 240 MHz , (A.11)

and

λc ≈ 2π × 3× 1010 cm/s

1.5× 109 s−1
≈ 130 cm. (A.12)

The de Broglie wavelength is given by

λdB = 2πh̄

mv
= λcc

v
, (A.13)

and so for virialized dark matter with v ≈ 10−3c and mbc
2 = 10−6 eV, λdB ≈

105 cm ≈ 1 km. Since the axions are nonrelativistic, their kinetic energy is small
compared to their rest energy, and we can estimate that each axion carries about
mac

2 of energy. Based on the dark matter density ρdm, the average number of bosons
〈Nb〉 occupying a “quantum volume” λdB

3 can be estimated to be

〈Nb〉 ≈ ρdmλdB
3

mbc2 . (A.14)

For mbc
2 = 10−6 eV, 〈Nb〉 ≈ 1030. Clearly, the mode density for such UBDM is

quite large.
To see how these estimates change for lighter bosons, we note how each quantity

scales with mb: ωc ∝ mb, λc and λdB are ∝ 1/mb, and 〈Nb〉 ∝ 1/m4
b. Thus, for

mbc
2 = 10−12 eV, we find ωc ≈ 2π × 240 Hz, λc ≈ 108 cm, λdB ≈ 1011 cm, and

〈Nb〉 ≈ 1054.
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Problem 1.4: Coherence of Ultralight Bosonic Dark Matter Fields

Since UBDM is cold (i.e., nonrelativistic), the energy of a UBDM particle is the
sum of its rest energy and its kinetic energy:

E ≈ mbc
2 + 1

2
mbv

2 , (A.15)

and the spread in observed energies due to the virialized velocity distribution is

E ≈ 1

2
mbv2 . (A.16)

Thus, there is a spread of observed frequencies ω for UBDM:

ω

ω
= E

E
≈ v2

2c2 . (A.17)

Since v2 ≈ 10−6c2, the UBDM waves dephase after ≈ 106 oscillations: this is
when the accumulated phase differences become ∼ 1. The Q-factor for UBDM in
the Milky Way is thus Q ≈ 106. This gives a coherence time of

τ coh ≈ 106 2πh̄

mbc2 . (A.18)

The coherence length is given by the product of τ coh and the average boson velocity,
v ≈ 10−3c, which is the de Broglie wavelength:

Lcoh = vτ coh = λdB ≈ 103 2πh̄

mbc
. (A.19)

For mbc
2 = 10−6 eV, τ coh ≈ 4 ms and Lcoh ≈ 105 cm ≈ 1 km. For mbc

2 =
10−12 eV, τ coh ≈ 4000 s ≈ 1 hour and Lcoh ≈ 1011 cm.

Problem 1.5: Axion Dark Matter Field Amplitude

Since L has units of energy density and both ∂μ and mac/h̄ have units of inverse
length, from Eq. (1.20), it is then evident that the axion field ϕ must have units of
(energy/length)1/2. The energy density of the axion field based on the Klein–Gordon
equation,

1

c2

∂2

∂t2
ϕ − ∇2ϕ + m2

ac
2

h̄2
ϕ = 0 , (A.20)
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can be equated to the dark matter energy density:

ρdm ≈ 1

2

(
mac

h̄

)2

〈ϕ2〉 , (A.21)

and thus

〈ϕ2〉 ≈ 2ρdmh̄
2

m2
ac

2 . (A.22)

Problem 1.6: Dark Electromagnetic Fields

From Eq. (1.21), we have

E′ ≈ √
8πρdm ≈ 40 V/cm . (A.23)

From Eq. (1.22), we have

B′ ≈ v

c
E′ ≈ 10−4 G . (A.24)

Problem 2.1: Vacuum Field and Boson Mass in Spontaneous Symmetry
Breaking

By taking the derivative of the potential with respect to φ and setting to zero, we
find

∂V

∂φ
= −μ2φ + λ

3!φ
3 = 0 , (A.25)

which gives us the roots 0,+√
6μ2/λ and−√

6μ2/λ. By inspection of the potential
(the plot on the right of Fig. 2.2) or by taking the second derivative,

∂2V

∂φ2 = −μ2 + λ

2
φ2 , (A.26)

we see that the roots ±√
6μ2/λ correspond to minima and thus the vacua of the

field φ.
To find the mass of the associated boson, we Taylor expand the potential around

one of the minima. Let us choose φ0 =
√

6μ2/λ:
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V (φ) = V (φ0)+
[
∂V

∂φ

]

φ=φ0

(φ − φ0)+ 1

2!
[
∂2V

∂φ2

]

φ=φ0

(φ − φ0)
2 + · · ·

(A.27)

= V (φ0)+ μ2(φ − φ0)
2 + · · · . (A.28)

The constant offset of the potential, V (φ0), has no physical consequences and can
be subtracted. Keeping only the lowest order terms in φ̄ ≡ φ−φ0 (since we assume
small perturbations around the minimum) and noting that ∂μφ = ∂μφ̄, we find for
the Lagrangian

L ≈ 1

2

(
∂μφ̄

)2 − μ2φ̄2 . (A.29)

By analogy with Eq. (2.13), we find that the boson mass is given by the relation

1

2
m2 = μ2 , (A.30)

so the mass m = √2μ.

Problem 2.2: Lagrangian for Two Scalar Fields

Starting from the potential from Eq. (2.30),

V
(
ᾱ, β̄

) =− μ2

2

[
(ᾱ + α0)

2 + β̄2
]

+ λ

4!
[
(ᾱ + α0)

2 + β̄2
]2

,

(A.31)

we can expand the terms and substitute α0 = μ
√

6/λ to obtain

V
(
ᾱ, β̄

) =− 1

2
μ2ᾱ2 − μ3

√
6

λ
ᾱ − 3

μ4

λ
− 1

2
μ2β̄2

+ λ

4! ᾱ
4 + μ

√
6

λ
ᾱ3 + 3

2
μ2ᾱ2 + μ3

√
6

λ
ᾱ + 3

2

μ4

λ

+ λ

12
ᾱ2β̄2 + μ

√
6

λ
ᾱβ̄2 + 1

2
μ2β̄2 + λ

4! β̄
4.

(A.32)

Combining like terms in Eq. (A.32)—noting in particular that (1) the terms linear
in ᾱ, with no β̄ dependence, cancel and also (2) the terms quadratic in β̄, with no ᾱ
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dependence, cancel—we arrive at

V
(
ᾱ, β̄

) =μ2ᾱ2 + μ

√
λ

6
ᾱ3 + λ

4! ᾱ
4

+ λ

4! β̄
4 + μ

√
λ

6
ᾱβ̄3 + λ

12
ᾱ2β̄2

− 3

2

μ4

λ
,

(A.33)

which yields Eq. (2.31).

Problem 2.3: Explicit and Spontaneous Symmetry Breaking

To verify that the minimum of the potential V (α, β) from Eq. (2.35), namely,

V (α, β) = −μ2

2

(
α2 + β2

)
+ λ

4!
(
α2 + β2

)2 − ελα3
0α , (A.34)

occurs at

α = α0(1+ 3ε) , (A.35)

β = 0 , (A.36)

let us begin by taking the derivative of V (α, β) with respect to α:

∂V

∂α
= −μ2α + λ

6

(
α3 + αβ2

)
− ελα3

0 . (A.37)

A bit of algebra shows that

∂V

∂α
= λ

6

[
−6μ2

λ
α +

(
α3 + αβ2

)
− 6εα3

0

]
,

= λ

6

[
α3 +

(
β2 − α2

0

)
α − 6εα3

0

]
,

(A.38)

where we made the substitution α0 =
√

6μ2/λ. Setting α = α′0 = α0(1+ 3ε) and
β = 0 in Eq. (A.38), we find
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[
∂V

∂α

]

α=α′0,β=0
= λ

6

[
α3

0(1+ 3ε)3 − α3
0(1+ 3ε)− 6εα3

0

]
,

≈ λ

6

[
α3

0(1+ 9ε)− α3
0(1+ 3ε)− 6εα3

0

]
,

≈ 0 ,

(A.39)

where in the second line of Eq. (A.39) we have kept only terms to first order in ε.
Similarly, with respect to β,

∂V

∂β
= −μ2β + λ

6
β

(
α2 + β2

)
, (A.40)

and so
[
∂V

∂β

]

β=0
= 0 . (A.41)

This shows that α = α0(1+ 3ε), β = 0 is an extremal point of the potential to
first order in ε. Either by examining the second derivatives or by inspection of the
potential plotted in Fig. 2.5, it is evident that this is a minimum.

Next, we rewrite the potential in Eq. (A.34) in terms of the suggested variable,

ā = α − α0(1+ 3ε) , (A.42)

which gives us

V (ā, β) =− μ2

2
α2

0

(
1+ 3ε + ā

α0

)2

− μ2

2
β2

+ λ

4!α
4
0

[(
1+ 3ε + ā

α0

)4

+ 2
β2

α2
0

(
1+ 3ε + ā

α0

)2

+ β4

α4
0

]

− ελα4
0

(
1+ 3ε + ā

α0

)
.

(A.43)

In order to simplify the above expression, we make the approximations that terms
higher than first order in ε can be neglected as well as any terms higher than second
order in the field variables ā and β, yielding
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V (ā, β) ≈− μ2

2
α2

0

[
1+ 6ε + 2

ā

α0
(1+ 3ε)+

(
ā

α0

)2
]
− μ2

2
β2

+ λ

4!α
4
0

[
1+ 12ε + 4

ā

α0
(1+ 9ε)+ 6

(
ā

α0

)2

(1+ 6ε)

]

+ λ

12
α2

0β
2(1+ 6ε)

− ελα4
0 − ελα3

0 ā .

(A.44)

The above expression can be further simplified by eliminating constant terms in the
potential (which do not affect the physics) and making the substitution λα2

0 = 6μ2

to eliminate λ from the expression to help identify like terms that can be combined,

V (ā, β) ≈− μ2α2
0

[
ā

α0
(1+ 3ε)+ 1

2

(
ā

α0

)2
]
− μ2

2
β2

+ μ2α2
0

[
ā

α0
(1+ 9ε)+ 3

2

(
ā

α0

)2

(1+ 6ε)

]

+ μ2

2
β2(1+ 6ε)− 6εμ2α0ā ,

(A.45)

and canceling and combining like terms produces

V (ā, β) ≈ μ2ā2(1+ 9ε)+ 3εμ2β2 . (A.46)

Since ε  1, the factor of (1+ 9ε) in the first term is ≈ 1, and so we obtain the
sought-after Eq. (2.39), namely

V (ā, β) ≈ μ2ā2 + 3εμ2β2 . (A.47)

Problem 2.4: Interactions Between Two Scalar Fields

The third-order terms of interest come from two terms in the second line of
Eq. (A.43), namely

λ

4!α
4
0

(
1+ 3ε + ā

α0

)4

(A.48)

and
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λ

4!α
4
0

(
2β2

α2
0

)(
1+ 3ε + ā

α0

)2

. (A.49)

The expansion of the polynomial factor in (A.48), keeping only terms up to first
order in ε and third order in the fields, gives

(
1+ 3ε + ā

α0

)4

≈1+ 4

(
ā

α0

)
+ 6

(
ā

α0

)2

+ 4

(
ā

α0

)3

12ε + 36ε

(
ā

α0

)
+ 36ε

(
ā

α0

)2

+ 12ε

(
ā

α0

)3

.

(A.50)

Since the terms lower than third order in the fields were already accounted for in
Eq. (2.40), the new interaction term from (A.50) is

λ

4!α
4
0

[
4

(
ā

α0

)3

(1+ 3ε)

]
≈ λ

6
α0ā

3 . (A.51)

Similarly, for the polynomial factor in (A.49),

β2
(

1+ 3ε + ā

α0

)2

≈ β2
[
(1+ 6ε)+ 2

(
ā

α0

)
(1+ 3ε)

]
(A.52)

≈ 2β2
(

ā

α0

)
, (A.53)

giving a new interaction term

λ

4!α
2
0

[
4β2

α2
0

(
ā

α0

)]
≈ λ

6
α0β

2ā . (A.54)

Problem 2.5: Axion–Photon Interaction

The electromagnetic field tensor (Faraday tensor) Fμν is given by [1]

Fμν = ∂μAν − ∂νAμ (A.55)

=

⎛
⎜⎜⎝

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎞
⎟⎟⎠ , (A.56)
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where ∂μ is the four-derivative, Aμ is the four-potential, and Ei and Bi are the
electric and magnetic field components in the Cartesian basis. The dual field tensor
is given by

F̃αβ = 1

2
εαβμνF

μν (A.57)

=

⎛
⎜⎜⎝

0 Bx By Bz

−Bx 0 Ez −Ey

−By −Ez 0 Ex

−Bz Ey −Ex 0

⎞
⎟⎟⎠ , (A.58)

where εαβμν is the Levi-Civita totally antisymmetric tensor. Taking the trace of the
product of the matrices (A.56) and (A.58) yields FμνF̃μν :

FμνF̃μν = 4
(
ExBx + EyBy + EzBz

) = 4E · B . (A.59)

Substituting Eq. (A.59) into (2.63) yields Eq. (2.64).

Problem 3.1: Background Evolution of UBDM

The continuity equation, ρ̇/ρ = −3(w + 1) ȧ/a, can be integrated such that
ρ ∝ a−3(w+1). Note that this solution is also valid for the case w = −1, i.e., when
ρ is constant. Substituting this into the Friedmann equation, we find

H 2 ≡
(
ȧ

a

)2

= ρ

3M2
pl

∝ a−3(w+1) ⇒ ȧ a
3w+1

2 = c1 , (A.60)

where c1 is some constant. Integrating the equation above, we obtain

a =
{

c2 ec1t if w = −1

(c1 t + c2)
2

3(w+1) else
(A.61)

a
3(w+1)

2 = c1 t + c2 ⇒ a ∝ t
2

3(w+1) . (A.62)

Consequently, we find via H = ȧ/a that

H =
{

c1 if w = −1
2c1

3(w+1)
1

c1 t+c2
else.

(A.63)
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To change variables from conformal to physical time, note that

φ̄′ ≡
¨̄φ

dτ
= dt

dτ

dφ̄

dt
= a ˙̄φ (A.64)

φ̄′′ ≡ d

dτ
φ̄′ = a′ ˙̄φ + a2 ¨̄φ = aȧ ˙̄φ + a2 ¨̄φ = a2(H ˙̄φ + ¨̄φ). (A.65)

This yields the following field equation for φ̄:

0 = ¨̄φ + 3H ˙̄φ +m2φ̄ = ¨̄φ + 2 ˙̄φ
3(w + 1) t

+m2φ̄ . (A.66)

The solutions of this equation can be expressed in terms of Bessel functions of
first (Jν) and second kind (Yν) with ν = (w−1)/2(w+1) and δ ≡ √

1− (2m/3H)2

φ̄ =
{

e−3H(1+δ) t (
c3 + c4 e3Hδ t

)
if w = −1

tν [c3 Jν(m t)+ c4Yν(m t)] if w �= −1,
(A.67)

where c3 and c4 are constants that depend on the initial conditions. While these
may be used to derive expressions for the pressure and density, we note that the
asymptotic behavior of Eq. (A.66) may be derived more generally. Note that, for
early times, t → 0,1 we have H ∝ 1/t → ∞ and the corresponding term will
dominate:

¨̄φ + 3H ˙̄φ � 0 ⇒ ˙̄φ ∝ a−3 ⇒ φ̄ = c5 +

⎧⎪⎨
⎪⎩

c6e−3H t if w = −1
ln(c6 t) if w = 1

c6 t
w−1
w+1 else,

(A.68)

where c5 and c6 are constants. In typical applications, e.g., a radiation-dominated
universe with w = 1/3, we have φ̄ = c5 + c6 t

−1/2. The second term is divergent
for t → 0 and we also see that φ̄ � c5 for t 
 (c6/c5)

2, which are two arguments
usually used for ignoring the second term and saying that the background field is
simply constant at early times, φ̄ = c5.

On the other hand, for late times H(t)  m, Eq. (A.66) is solved by a WKB-
like solution,2 and without loss of generality we take φ̄ ∝ a−3/2 cos(m t) and ˙̄φ ∝
a−3/2[H cos(m t)−m sin(m t)]. Note that H  m also implies that the oscillation
periods T ∼ 1/m 1/H ∼ t such that we can assume that H and a do not change
much over each integration

1 More precisely, this is the regime where H(t)
 m.
2 This can be checked by substituting this in Eq. (A.66) and noting that the non-vanishing terms
are all small if H  m.
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m2 ˙̄φ2 = P + ρ ⇒ m2〈 ˙̄φ2〉 = 〈P 〉 + 〈ρ〉 ≡ (weff + 1)〈ρ〉 . (A.69)

Using 〈sin(m t) cos(m t)〉 = 0 and 〈sin2(m t)〉 = 〈cos2(m t)〉 = 1/2, we find that

〈 ˙̄φ2〉 ∝ (H/m)2/2+ 1/2 , (A.70)

〈ρ〉 = m2〈 ˙̄φ2〉/2+ 〈V 〉 ∝ H 2/4+m2/4+m2/4 , (A.71)

⇒ weff + 1 = 2
(H/m)2 + 1

(H/m)2 + 2
� 1 ⇒ weff � 0 . (A.72)

For the potential V (φ) = λφ4, Eq. (A.66) now becomes

0 = ¨̄φ + 2 ˙̄φ
3(w + 1) t

+ 4λφ̄3 . (A.73)

For early times, there is no change to the previous argument since the potential is
irrelevant.

For later times, the shape of Eq. (A.73) implies that we cannot rely on the WKB-
like solutions anymore and instead follow the general approach presented in Refs [2,
3].3 We repeat this derivation for a symmetric potential V , i.e., V (−φ̄) = V (φ̄), and

V (φ̄) = λφ̄n (n even). At the maximum ˆ̄φ, the total energy density is given by the

maximum potential value, ρ( ˆ̄φ) = V ( ˆ̄φ) ≡ V̂ . Since the oscillations at late times are
very rapid, the energy density of the field does not change much over one oscillation
period T , and ρ ≈ V̂ . The definition of ρ then implies that

˙̄φ2 = 2

m2 (ρ − V ) = 2 V̂

m2

(
1− V

V̂

)
, (A.74)

and we find for the oscillation period that

T =
∫

dt =
∫

dt

dφ̄
dφ̄ =

∫ ˆ̄φ

− ˆ̄φ
1

| ˙̄φ|
dφ̄ = 2m√

2V̂

∫ ˆ̄φ

0

1√
1− V/V̂

dφ̄ , (A.75)

which in turn implies that

weff + 1 = m2 〈 ˙̄φ2〉
〈ρ〉 = m2

V̂

1

T

∫
˙̄φ2dt = m2

V̂

1

T

∫ ˆ̄φ

− ˆ̄φ
˙̄φ2/| ˙̄φ|dφ̄ (A.76)

3 Note that, for the quartic potential V (φ̄) = λφ̄4, the solutions for φ̄ can be expressed in terms of
so-called Jacobi elliptic functions times an oscillating function [3], which can be used to check the
general solution presented here explicitly.
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= 2
√

2m√
V̂ T

∫ ˆ̄φ

0

√
1− V/V̂ dφ̄ (A.77)

= 2

∫ ˆ̄φ
0 (1− V/V̂ )

1
2 dφ̄

∫ ˆ̄φ
0 (1− V/V̂ )− 1

2 dφ̄
= 2n

n+ 2
⇒ weff = n− 2

n+ 2
, (A.78)

i.e., weff = 1/3 for n = 4, which corresponds to the equation-of-state parameter of
radiation.

We see that when Hubble friction dominates, i.e., typically at sufficiently early
times, any scalar particles generically behave as dark energy with weff = −1. Later
on, however, (dominant terms of) the potential determine the behavior of the scalar
field oscillations, which need not be that of dark matter (pressureless dust), and dark
matter bounds hence do not apply.

Problem 3.2: Derivation of the Schrödinger–Poisson Equations for UBDM

First, let us write down the Klein–Gordon equation,

�φ − ∂φV = 0 , (A.79)

where the D’Alembertian is defined as

� = 1√−g ∂μ(
√−ggμν)∂ν, (A.80)

and the potential is given by

V (φ) = m2

2
φ2 + m2

2
λφ4 . (A.81)

With � = � and a = 1, the metric is given by

g = [gμν] = diag[−(1+ 2�), 1− 2�, 1− 2�, 1− 2�] . (A.82)

To first order, this gives

g−1 = [gμν] = diag[−(1− 2�), 1+ 2�, 1+ 2�, 1+ 2�] ,
√−g = 1− 2� .

Thus, the D’Alembertian to first order is given by
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� = 4�̇∂t − (1− 2�)∂2
t + (1+ 2�)∇2, (A.83)

and the Klein–Gordon equation (Eq. (A.79)) reads

− (1− 2�)φ̈ + 4�̇φ̇ + (1+ 2�)∇2φ −m2φ − 2m2λφ3 = 0 . (A.84)

We can rewrite the Klein–Gordon equation by multiplying with−(1+2�) (since
this term goes to −1 in the nonrelativistic limit, the result remains unchanged save
for an overall minus sign), which reduces the number of terms we need to consider
later on:

φ̈ − 4�̇φ̇ − (1+ 4�)∇2φ + (1+ 2�)m2φ + (1+ 2�)2m2λφ3 = 0 . (A.85)

Let us take the ansatz for φ and write

φ = 1√
2m

[
ψeimt + ψ∗eimt

]
,

φ̇ = 1√
2m

[
eimt

(
ψ̇ + imψ

)+ e−imt
(
ψ̇∗ − imψ∗

)]
,

φ̈ = 1√
2m

[
eimt

(
ψ̈ + 2imψ̇ −m2ψ

)
+ e−imt (...)

]
,

∇2φ = 1√
2m

[
(∇2ψ)eimt + (∇2ψ∗)e−imt

]
,

φ3 = 1

(
√

2m)3

[
eimt2|ψ |2ψ + e−imt2|ψ |2ψ∗ + ψ3e3imt + ψ∗3e−3imt

]
.

Since terms for e−imt are the complex conjugate, the terms in front of e+imt need
to vanish in order for the Klein–Gordon equation to be fulfilled. Thus, one needs to
consider only the terms which go with an e+imt oscillation (or e−imt , respectively).
This gives for Eq. (A.85)

1√
2m
[−4�̇(ψ̇ + imψ)+ (ψ̈ + 2imψ̇ −m2ψ)− (1+ 4�)(∇2ψ)

+ (1+ 2�)m2ψ + (1+ 2�)2m2λ
2

2m2
|ψ |2ψ] = 0

⇐⇒ 1√
2m
[−4�̇ψ̇ − 4�̇imψ + ψ̈ + 2imψ̇ −∇2ψ − 4�∇2ψ

+ 2�m2ψ + 2λ|ψ |2ψ] + 4�λ|ψ |2ψ] = 0 .

Now, let us take the nonrelativistic limit and consider either the limits given in the
exercise or take c → ∞. We calculated in natural units, where c = 1. Remember
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when reintroducing the c’s that � → �/c2, that the time derivatives gain a factor
of 1/c and that—for each m within the brackets—m → mc. Hence, a number of
terms vanish, and one is left with

iψ̇ − 1

2m
∇2ψ +m�ψ + λ

m
|ψ |2ψ = 0. (A.86)

Considering the complex conjugate, this equals Eq. (3.35) with λGP = −λ.
To calculate the energy density, ρ, to leading order, we recognize that ρ = −T 0

0 .
The stress energy tensor is given by

Tμν = ∂μφ∂νφ − gμν

[
1

2
gαβ∂αφ∂βφ + V (φ)

]
, (A.87)

and thus

T 0
0 = g00T00

= g00φ̇2 − g00g00

(
1

2
gαβ∂αφ∂βφ + V (φ)

)

= 1

2
g00φ̇2 − 1

2
(∇φ)2gii − V (φ)

= −1

2

[
(1− 2�)φ̇2 + (1+ 2�)(∇φ)2 + 2V (φ)

]
.

The individual terms are given by

φ2 = 1

2m2

[
e2imtψ2 + e−2imtψ∗2 + 2|ψ |2

]
,

φ̇2 = 1

2m2
[e2imt (ψ̇ + imψ)2 + e−2imt (ψ̇∗ − imψ∗)2+

2(|ψ̇ |2 + im(ψ∗ψ̇ − ψψ̇∗)︸ ︷︷ ︸
=2mIm(ψ̇ψ∗)

+m2|ψ |2)] ,

(∇φ)2 = 1

2m2

[
(∇ψ)2e2imt + (∇ψ∗)2e−2imt + 2|∇ψ |2

]
.

Again, the leading order terms can be identified by either taking the limits given
in the exercise or counting powers of c (remembering that the mass term in the
potential has a factor of c2). Neglecting the oscillatory terms, the remaining terms
are φ̇2 → |ψ |2 and m2φ2 → |ψ |2. Thus,
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ρ = 1

2

(
|ψ |2 + |ψ |2

)
= |ψ |2. (A.88)

Problem 3.3: Relaxation of UBDM

Starting from

trelax = 0.1
R

v

M

m log�
, (A.89)

first one notes that the host of mass M with radius R and the quasi-particle of mass
m follow from the same underlying density ρ. The host mass can be approximated
by assuming it to be a sphere of constant density ρ, while the quasi-particle mass is
effectively given by the size of the de Broglie wavelength:

M = 4π

3
ρR3 (A.90)

m ∼ ρ

(
λdB

2

)3

. (A.91)

The de Broglie wavelength is given by

λdB = h

mv
, (A.92)

where the velocity v approximately equals the quasi-particle velocity. The latter is
justified since the dynamics of the quasi-particle are ultimately determined by the
dynamics of the underlying axion particle and, thus, one can expect vqp ∼ va .

Plugging Eqs. (A.90), (A.91), and (A.92) into (A.89) yields

trelax ∼ 3.4(m/h)3v2R4 1

log�
. (A.93)

Plugging in the numbers, we obtain Eq. (3.47):

trelax ∼ 1010

log�

(
m

10−22 eV

)3 ( v

100 km/s

)2
(

R

5 kpc

)4

. (A.94)



322 Solutions to Chapter Problems

Problem 3.4: Estimating Superradiance Properties of UBDM

First, let us derive mass scale relevant for superradiance. In order to affect
the action, the UBDM potential m2φ2/2 should be comparable gravitational term
induced by the Kerr BH, M2

plR/2. Recalling that 8πGN ≡ 1/M2
pl , the Ricci scalar

in the Kerr geometry is given by

R2 = 48 (GNM)2

(
r2 − a2

J cos2(θ)
)2

[(
r2 + a2

J cos2(θ)
)2 − 16r2a2

J cos2(θ)
]

(
r2 + a2

J cos2(θ)
)6

.

(A.95)
Suppose, for simplicity, that we are at the equator (θ = π/2) and that we are just
inside the ergosphere at

rergo = GN

(
M +

√
M2 − a2

J cos2(θ)

)
= 2GNM , (A.96)

which is also just the Schwarzschild radius of the black hole. We then find

R2 θ=π/2= 48G2
NM

2

r6

r=rergo= 3

4

1

(GNM)4
. (A.97)

For typical field values φ ∼ Mpl in the extreme environment surrounding the
black hole, we find that

m2φ2

2
∼ m2M2

pl

2
!∼ M2

plR

2
∼ M2

pl

2

√
3

4

1

(GNM)2 ⇒ GNM ∼ 1 , (A.98)

where we ignored the O(1) numerical factor.
Note that we might have used dimensional analysis (e.g., that R ∼ 1/RS ∼

1/2GM) instead of Eq. A.95 to arrive at a similar result.
To compute the Bosenova condition, the self-coupling of the UBDM particles,

λ, needs to be large enough to play a role. We anticipate this to happen when the
corresponding term in the action, λφ4/4!, becomes of the same order as the potential
term, m2φ2/2. To facilitate this comparison, first note that the total energy density
of the UBDM cloud can be equated to its total mass, Mcloud, divided by its volume,
Vcloud, which are given by

Mcloud = Nm , (A.99)

Vcloud = 4π

3
R3

cloud ∼
4π

3
r3

ergo =
32π

3
(GNM)3 , (A.100)

where N is the number of UBDM particles. By equating m2φ2/2 = Mcloud/Vcloud,
we find that
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φ2 = 3

16π

N

(GNM)3m
. (A.101)

From m2φ2/2
!∼ λφ4/4! and using Eq. (A.101), we find further that

φ2 ∼ 12m2

λ
⇒ N ∼ 64π

(GNMm)3

λ
∼ 64π

λ
, (A.102)

where the last step made use of Eq. (A.98). To compare to Eq. (3.60), we use that
λ = m2/f 2

a for an axion and eliminate m via the SR condition (A.98), such that
λ ∼ 1/f 2

a (GNM)2. Since Mpl = 2.4× 1018 GeV = 2.2× 10−39 M�, we arrive at

N ∼ 64π

λ
∼ 1

π

(
10M�
Mpl

)2 (
M

10M�

)2 (
fa

Mpl

)2

(A.103)

≈ 6.6× 1078
(

M

10M�

)2 (
fa

Mpl

)2

, (A.104)

which is very close to Eq. (3.60) for the first energy level (n = 1).

Problem 3.5: Microlensing Constraints on UBDM

The Schrödinger–Poisson (SP) equation is given by

iψ̇ + ∇
2

2m
ψ + λGP

m
|ψ |2ψ = 0 (A.105)

and

∇2� = 4πG

(
|ψ |2 −

∫
d3x|ψ |2

)
. (A.106)

We can therefore write Eq. (A.105) using the given scaling relation {t, x, ψ,�, λGP} →
{λ−2 t̂ , λ−1x̂, λ2ψ̂, λ2�̂, λ−2λ̂GP}.

For some constant and variable, c and q, respectively, we can write that ∂
∂(cq)

=
1
c

∂
∂(q)

, and hence ∇ → λ∇̂. Therefore,

i
∂λ2ψ̂

∂(λ−2 t̂ )
+ λ2∇̂2

2m
λ2ψ̂ + λ−2λ̂GP

m
|λ2ψ̂ |2λ2ψ̂ = 0, (A.107)
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λ4

[
i
∂ψ̂

∂(t̂)
+ ∇̂

2

2m
ψ̂ + λ̂GP

m
|ψ̂ |2ψ̂

]
= 0, (A.108)

i
∂ψ̂

∂(t̂)
+ ∇̂

2

2m
ψ̂ + λ̂GP

m
|ψ̂ |2ψ̂ = 0. (A.109)

Therefore, Eq. (A.105) is invariant under the rescaling. This can similarly be shown
for the second equation using the fact that for the solitons |ψ |2 
 1.

For λ = 1, the soliton profile is given by

ρsol(r)

m2M2
pl

= χ2(mr) = 1

(1+ α2m2r2)8 . (A.110)

The mass of the soliton is then given by

Msol = 4π
∫ rs

0
ρsol(r)r

2dr . (A.111)

The rescaling relates to χ → λ2χ̂ . Then, since ρsol(r) = |χ |2,

Msol = 4π
∫ rc

0
|χ |2r2dr

= 4π
∫ rc

0
λ4|χ̂ |2 1

λ3
r̂2dr̂

= λM̂sol .

(A.112)

Similarly, ρsol(r) = λ4ρ̂sol(r̂). We can therefore rescale the profile to

λ4ρ̂sol(r)

m2M2
pl

= 1

(1+ α2λ−2m2r̂2)8 . (A.113)

We can define a scale radius rc = λ
αm

allowing us to write the density profile as

ρsol(r) =
M2

pl

r4
c α

4m2

1

(1+ (r̂/rc)2)8
. (A.114)

Integrating and making the change of variables, u = r̂/rc, we find that

M̂sol =
4πM2

pl

rcα4m2

∫ 1

0

u2

(1+ u2)8 du . (A.115)
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The integral is now a constant (∼ 0.246).4 Fixing the units and dropping the hats,
we then find

Msol ∼ 4× 108
( m

10−22eV

)−2
(

rc

kpc

)−1

M� . (A.116)

The Einstein radius for such a lens is given by

RE = 2× 10−7
(
M∗
M�

)1/2

kpc . (A.117)

Rearranging our mass–radius relation, we see

rc ∼ 4× 108
( m

10−22eV

)−2
(
Msol

M�

)−1

kpc . (A.118)

For the object to lens like a point mass, we require that rc < RE , and therefore

4× 108
( m

10−22eV

)−2
(
Msol

M�

)−1

< 2× 10−7
(
Msol

M�

)1/2

kpc , (A.119)

which can be rearranged to

m < 5× 10−15
(
Msol

M�

)−3/4

eV . (A.120)

This upper limit is maximized by being sensitive to masses as small as possible.
Setting Msol to the smallest mass detectable by HSC,

m < 1.4× 10−10eV . (A.121)

To calculate the range of the (Tosc, δ) parameter space, we neglect the activation
function in Eq. (3.68) (since S(x) ∼ O(1)). Requiring again that RMC < RE and
substituting our MC mass into the equation for the Einstein radius, we find the region
range of (Tosc, δ) parameter space can be probed by microlensing to be

1

δ(1+ δ)1/3

(
Tosc

2GeV

)1/2

� 7× 10−4 . (A.122)

4 This integral can be solved analytically. The result is insensitive to whether we define the mass
to be M(r < rc) or M(r <∞).
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Problem 4.1: Axion to Photon Production

An axion of mass equivalent to 3.3 μeV = 5.29× 10−25 J corresponds to a photon
with frequency ν = 5.29× 10−25 J/h ≈ 800 MHz. To find the expected signal
power, we can plug in the values listed in the problem into Eq. 4.1. We will use the
standard assumption of Qa = 106, which implies that the axion signal linewidth
at 800 MHz is νa = ν/Qa = 800 MHz/106 = 800 Hz. This is smaller than
the cavity resonant linewidth given by νc = νc/QL = (8 × 108)/(6 × 104) =
1.33× 104 Hz.

Psig =
(

(0.36)αma

π · 0.006 GeV2

)2
(
h̄3c3ρa

(ma)2

)

×
(

1

μ0
(B0)

2(ωc)(V )(C)(Q0)

)

×
(

β

(1+ β)2

1

1+ ((2×νa)/(νc))
2

)
.

(A.123)

Canceling the factors of m2
a and plugging in the remaining terms including α ≈

1/137, μ0 = 4π × 10−7 H m−1, and h̄c = 1.97× 10−14 GeV cm,

Psig ≈
(

0.36/137

π · 0.006 GeV2

)2 (
(1.97× 10−14 GeV cm)3 (0.45 GeV cm−3)

)

×
(

1

μ0
(7.6 T)22π(8× 108 s−1)(0.150 m3)(0.45)(180, 000)

)

×
(

2

9

)
×

(
1

1+ (
2× 800 Hz/1.33× 104 Hz

)2

)
.

(A.124)
One can see that the units (GeV, s, cm) in the top and bottom rows cancel out

and that the middle row has units of W. Plugging these values into Eq. (4.1) yields
Psig ≈ 4.17× 10−23 W coming out of the cavity. For photons with 5.29× 10−25 J
of energy, this implies photon rates of 78 photons per second.

Problem 4.2: Cavity Resonance Frequencies

The frequency of the TM010 mode of an empty cylindrical cavity of radius rcavity =
5.0 cm is independent of the radius and is given by Eq. (4.8) to be
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νTM010 = ωTM010

2π
= 2.3 GHz. (A.125)

To find the number of TE modes between 1.3 GHz and 3.3 GHz, we can use
Eq. (4.9). The lowest frequency TE mode in a cavity of height 5.0 cm is νTE111 =
3.5 GHz, so there are zero TE modes within 1 GHz of νTM010. A cavity of height
10.0 cm has the TE mode frequencies of νTE111 = 2.3 GHz and νTE211 = 3.3 GHz,
so there are two TE modes within 1 GHz of νTM010. Finally, a cavity of height
20.0 cm has the TE mode frequencies of νTE111 = 1.9 GHz, νTE112 = 2.3 GHz,
νTE113 = 2.9 GHz, νTE211 = 3.0 GHz, and νTE212 = 3.3 GHz, so there are five
TE modes within 1 GHz of νTM010.

Problem 4.3: Form Factor of an Annular Cavity

Since the external applied magnetic field is in the ẑ direction, the dot product of the
electric field of the modes of interest and the external applied magnetic field is

E · B0 = EzB0. (A.126)

The form factor of the TM0n0 mode in an annular cavity with the described
dimensions is

C0n0 =
(∫

V
sin k0 (ρ − rrod) B0 dV

)2

B2
0V

∫
V
εr sin2 k0 (ρ − rrod) dV

. (A.127)

Then, the volume integral can be separated into its cylindrical components and
integrated in the ẑ and φ̂ directions to give

C0n0 =
2πhcavity

(∫ rcavity
rrod

ρ sin k0 (ρ − rrod) dρ
)2

V εr
∫ rcavity
rrod

ρ sin2 k0 (ρ − rrod) dρ
. (A.128)

Integrating, we get C010 = 0.81 and C030 = 0.09. The results do not depend on
the rod radius, cavity radius, or cavity height.

Problem 4.4: The Standard Quantum Limit

The noise temperature of the standard quantum limit is given by

TSQL = hν

kB
, (A.129)
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where h is Plank’s constant, ν is the frequency of interest, and kB is the Boltzmann
constant. Plugging in the frequencies of interest, TSQL ≈ 34 mK at 700 MHz, and
TSQL ≈ 290 mK at 6 GHz.

Problem 5.1: Natural Lorentz–Heaviside Units

The speed of light c is given by

c = 299, 792, 458
m

s
= {c}[c], (A.130)

where c = 299, 792, 458 is the numerical value of c and [c] represents the unit, i.e.,
m/s. Equivalently, one obtains for the electric charge

e = 1.602176487× 10−19 C = {e}[e]. (A.131)

Due to the fact that

1
GeV

c
= 10 9 eV

c

= 10 9 × {e} J

{c}m
s

= 10 9 × {e} C J
C

{c}m
s

= 10 9 × {e} C J
C

{c}m
s

= 10 9

{c} e
J s

C m2
m

= 10 9

{c} e T ·m, (A.132)

we find that

1
GeV

c
= 3.336 e T ·m. (A.133)
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Using natural units, i.e., c = 1, Eq. (A.133) turns into

1 GeV = 3.336 e T ·m, (A.134)

such that the relation between GeV and T·m depends on the definition of the electric
units. In Gaussian units, the electric charge is chosen to be

e = √α ≈ 0.085, (A.135)

while Heaviside units differ from the Gaussian units by a factor of
√

4π and yield

e = √4πα ≈ 0.303. (A.136)

In both systems, charge is dimensionless. Using Lorentz–Heaviside units in
Eq. (A.134) yields

1 GeV = 1.010 T ·m. (A.137)

Problem 5.2: Momentum Transfer

The axion energy is given by

E2
a = m2

a + p2
a. (A.138)

Thus, the momentum of the axion can be written as

pa = Ea

√
1− m2

a

E2
a

, (A.139)

where the development for ma  Ea yields

pa ≈ Ea − m2
a

2Ea

. (A.140)

Analogously, one obtains

pγ ≈ Eγ −
m2

γ

2Eγ

, (A.141)

and with this, the momentum transfer q follows as
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q = |pa − pγ | =
∣∣∣∣∣
m2

a

2Ea

− m2
γ

2Eγ

∣∣∣∣∣ , (A.142)

which is Eq. (5.22) if Ea = Eγ .

Problem 5.3: Effective Photon Mass in a Buffer Gas

The plasma frequency ωp is given by

ω2
p = 4πne

e2

m
= 4πner0, (A.143)

with ne as the electron density and r0 = e2/m the classical electron radius.
Using the fact that ne = Ne/V , where Ne is the number of electrons in volume

V , the plasma frequency can be expressed as

ω2
p = 4π

Ne

V
r0. (A.144)

The effective photon mass follows then as

m2
γ = 4π

Ne

V
r0. (A.145)

In the case of helium, the number of electrons corresponds to twice the number of
atoms Na , i.e., Ne = 2Na . And thus, applying the ideal gas law,

pV = nRT, (A.146)

with pressure p, volume V , gas constant R, temperature T , and the amount of gas
n given in mol, it follows that

Ne

V
= 2pNA

RT
. (A.147)

In the above expression, we used the fact that n = Na/NA and NA is Avogadro’s
constant. Inserting Eq. (A.147) into Eq. (A.145) leads to

m2
γ = 8π

r0NA

R

p

T
= 5.130× 1011 p

T

K

mbar m2 (A.148)

or, using natural units (h̄c = 0.197 GeV fm),
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mγ =
√

0.020
p/mbar

T/K
eV, (A.149)

which is the effective photon mass in helium.

Problem 5.4: Estimating the Focal Spot Size for Solar Axion Observations

To first order, the total angular spot size stotal is given by

stotal =
√
s2

object + s2
optic

=
√
(0.87 mrad)2 + (0.58 mrad)2

= 1.09 mrad.

The spatial diameter of the imaged focal spot can be calculated as focal length f ×
stotal, and therefore the focal spot area a is

a = π

4
(stotal × f )2

= 0.23 cm2.

Problem 5.5: Calculating an Exclusion Plot Using the Maximum Likelihood
Method

The total expected number of counts μik in the i-th energy bin Ei at the k-th
pressure setting pk can be expressed as

μik = bik +Nik, (A.150)

where bik is the expected background in the i-th energy bin at density step k. It is
assumed that this has been appropriately normalized. Due to low count numbers,
Poissonian statistics have to be used and the maximum likelihood (ML) method
can be applied (see, e.g., Chapter 40: Statistics in Ref. [4]). Generally, the standard
likelihood function for Poissonian statistics is given by

Lstd =
∏
i

e−μik
μ
nik
ik

nik! , (A.151)
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where nik is the number of counts measured during tracking in the i-th energy bin
and the k-th pressure setting in the case of a CAST-like helioscope that we are
considering here.

It is often convenient to work with a likelihood ratio of the kind:

Lk = Lstd

L0k
=

∏
i

e−μik
(
μ
nik
ik /nik!

)

∏
i

e−nik
(
n
nik
ik /nik!

) , (A.152)

whereL0 is merely the likelihood for which we have replaced μik by the bin-by-bin
model-independent ML estimator that is nik . Note that L0 does not depend on Nik

(thus neither on gaγ γ ), and therefore maximizing Lk is equivalent to maximizing
Lstd. Also, note that−2 lnLk behaves asymptotically as a χ2 function (with degrees
of freedom equal to the number of bins minus the number of free parameters in
the fit) and therefore can be used to compute p-values and extract goodness-of-fit
information.

In practice, we can minimize

χ2
k = −2lnLk =

∑
i

[
2μik − nikln

(
μ2
ik

)
− 2nik + nikln

(
n2
ik

)]
, (A.153)

instead of maximizing the likelihood function.
Assuming the absence of a signal above background, the minimal value χ2

min
should be close to χ2

Null, which is the value of χ2 for which g4
aγ γ = 0. For this

case, tracking and background data can be directly compared, since no photons
from conversion are expected. The difference between χ2

min and χ2
Null can be used

to confirm the absence of signal.
Once all pressure steps have been taken into account separately and individual

ML functions per step are obtained, the global likelihood function L is obtained by
multiplying the individual likelihoods

L =
∏
k

Lk, (A.154)

with k = 0, . . . , number of pressure steps −1.5 Before deriving an upper limit, for
all pressure settings, the global ML function has to be maximized or, equivalently,
its χ2-function

χ2 = −2lnL, (A.155)

5 In practice, only values of k “close” to the ma being evaluated have a meaningful contribution to
the final result at that particular mass, so, in order to speed up computation time, only a few steps
need to be actually combined at any time.
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needs to be minimized to determine the best fit value for the axion–photon coupling
constant g4

aγ γ at each axion mass ma .
The confidence interval for the l-th axion mass can be estimated using

[
lnL(g4

aγ γ )
]
l
=

[
lnLmax(g

4
aγ γ )

]
l
− σ 2

2
, (A.156)

with
[
lnLmax(g

4
aγ γ )

]
l

being the maximal value at the l-th mass. The statistical error

of the best fit value for g4
aγ γ , i.e., g4

aγ γ,min, can therefore be obtained as

[
χ2(g4

aγ γ )
]
l
=

[
χ2

min(g
4
aγ γ )

]
l
+ σ 2. (A.157)

Here,
[
χ2

min(g
4
aγ γ )

]
l

represents the minimal χ2 at the l-th axion mass. Note that

the χ2-distribution does not necessarily have to be symmetric, and therefore the
statistical error can be asymmetric as well.

If the best fit value and its error are compatible with absence of signal, we usually
like to express our result as an upper limit to gaγ γ , above which we consider a signal
to be rejected by the available data at a given confidence level (CL), like, e.g., 95%
CL. There are several methods in the statistics literature to compute upper limits. A
conceptually simple one is offered by Bayesian statistics. The Bayesian framework
allows for building the probability function of unknown theoretical parameters (like,
in this case, gaγ γ ). Such a probability is to be viewed as the distribution of our state
of knowledge (or degree of belief) on where the true value of gaγ γ is (and not as the
distribution of infinite outcomes of a variable, as is the case in frequentist statistics).
This is done by invoking Bayes’ theorem, by which the posterior probability of a
theoretical parameter θ , after having obtained certain measurements x, is

P(θ, x) = π(θ)L(x, θ)∫
π(θ ′)L(x, θ ′)dθ ′

, (A.158)

where π(θ) is the prior probability of θ (that is, the state of knowledge about θ
that we had before carrying out the observations), and L is the likelihood function.
Note that the denominator is just a normalization to make the numerator a proper
probability (its total integral over θ is unity).

Coming back to our case, we identify θ with g4
aγ γ and assume a flat prior for

positive values of this variable, while zero for negative ones, reflecting our prior
knowledge that the expected signal must be positive, but otherwise being quite
uninformative.6 Therefore, the posterior probability on g4

aγ γ is

6 The choice of g4
aγ γ versus other function of gaγ γ seems justified as the strength of the signal in

a helioscope is proportional to g4
aγ γ , although admittedly the choice of a prior has always some

degree of subjectivity that is typical in Bayesian methods.
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P(g4
aγ γ ) =

L(g4
aγ γ )

L0
, (A.159)

where L0 =
∫∞

0 L(g
4
aγ γ )dg

4
aγ γ is a normalization factor.

The upper limit at 95% CL, g4
aγ γ (95%), is then simply computed by integrating

the posterior probability from zero to the value that encompasses 95% of the area:

∫ g4
aγ γ (95%)

0
P(g4

aγ γ )dg
4
aγ γ = 0.95. (A.160)

Repeating this step for different values of ma , one obtains an exclusion line in the
(gaγ γ ,ma) plane. Note that it is possible in principle to calculate the upper limit
for each single pressure setting in this way, but since neighboring pressure settings
contribute to the same masses, one loses information in comparison to a combined
limit.

In order to combine multiple detectors, one can proceed equivalently, i.e.,
multiplying the global likelihoods of each detector

LTotal Detectors 4He Phase = LDetector 1 ·LDetector 2 · ... ·LDetector n,
(A.161)

to obtain a global helioscope likelihood function and derive an exclusion plot for
a buffer-gas phase (such as CAST’s Phase II with 4He in the magnet bores). This
result can then also be combined with the achievements of a vacuum data run as
well by multiplying the global likelihoods of different experimental phases. Of
course, this procedure can also be directly applied to other helioscope experiments
like BabyIAXO or IAXO. To find better justification and context on the statistical
methods used here, we strongly recommend the interested reader to consult a
textbook on statistical methods in particle physics (e.g., see Ref. [5] for a modern
one).

Problem 6.1: Magnetic Field Produced by a Spherical Sample

(a) From Eq. (6.21),

M ≈ Nh̄2γ 2B0

2kBT
I . (A.162)

Plugging in the numerical values from the statement of the problem yields
approximately 4.922× 10−5 A/m.

(b) Multiplying the magnetization by the volume of the sample, the magnetic
moment is 2.577× 10−11 A m2. The magnetic field along the z-axis is
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B(z) = μ0|m|
2πz3 ẑ, (A.163)

so, plugging in the numbers, the field at a distance of 1 cm along the magneti-
zation axis is about 5.154 pT.

The flux through a coil enclosing a surface S is defined as

� =
‹

S

B · dS, (A.164)

where B is the magnetic field. Using Stokes’ theorem, this can be rewritten as

� =
‹

S

∇ × A · dS =
∮

C

A · dC, (A.165)

where A is the magnetic vector potential and C is the bounding curve of surface
S (in our case, the coil itself). The vector potential of a magnetic dipole with
magnetic moment m is

A(r) = μ0

4π

m× r
r3 . (A.166)

We parametrize the curve C as

C(θ) =
⎛
⎝

5× 10−3m cos θ
5× 10−3m sin θ

10−2m

⎞
⎠ , (A.167)

such that the derivative is

C′(θ) =
⎛
⎝
−5× 10−3m sin θ
5× 10−3m cos θ

0

⎞
⎠ . (A.168)

Then, the flux is

� =
∫ 2π

0
A(C(θ)) · C′(θ)dθ = 4μ0

√
5 |m|/m, (A.169)

which works out to 2.897× 10−16 Wb or 0.14 magnetic flux quanta.
(c) The polarization at 1 T and 170 K is h̄γB0

2kBT
≈ 1.67 × 10−6. A nuclear spin

polarization of 10% provides an enhancement of nearly 60,000. The resulting
flux would be 1.733× 10−11 Wb or 8.38× 103 flux quanta.
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Problem 6.2: Spin Noise

The spin noise limit is determined by the spin density, the sample volume, and
the sensitivity of the detector to magnetic fields. It is independent of the degree of
polarization of the ensemble. However, the sensitivity to ALP coupling does scale
linearly with the degree of polarization, which is why it is a crucial quantity.

Consider a sample with volume V , containing N = nXeV atoms, each with
magnetic moment μXe. Its spin-noise magnetization is given by

MSPN = μXe

√
N

V
= μXe

√
nXe

V
. (A.170)

For a sample of spherical shape, the magnetic field immediately outside is given by
(see, for example, [1])

BSPN = μ0MSPN

3
= μ0μXe

3

√
nXe

V
,

where μ0 is the vacuum permeability. In order to find the volume necessary for
the measurement to be limited by spin projection noise, this field is equated to the
magnetic detector sensitivity: BSPN = Bdet. The result for the sample volume is

V SPN = nXe

(
μ0μXe

3Bdet

)2

.

Substituting the values given in the problem gives the numerical result: V SPN ≈
10−6 m3 = 1 ml.

Problem 7.1: Interaction Basis

Beginning from the expressions for Āμ and X̄μ [Eqs. (7.3) and (7.4)], we find
Aμ and Xμ in terms of these interaction basis potentials:

Āμ − κX̄μ =
(
Aμ + κXμ

)− κ
(
Xμ − κAμ

)
, (A.171)

= Aμ + κ2Aμ ≈ Aμ , (A.172)

and

X̄μ + κĀμ =
(
Xμ − κAμ

)+ κ
(
Aμ + κXμ

)
, (A.173)

= Xμ + κ2Xμ ≈ Xμ , (A.174)
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where in our approximation we neglect terms of order κ2.
Note that the electromagnetic field strength tensor Fμν and the hidden photon

field strength tensor Fμν are related to the gauge potentials through

Fμν = ∂μAν − ∂νAμ , (A.175)

Fμν = ∂μXν − ∂νXμ , (A.176)

from which one can show that

Fμν = F̄μν − κF̄μν , (A.177)

Fμν = F̄μν + κF̄μν . (A.178)

Thus, again neglecting terms of order κ2, the term in the Lagrangian involving
the field strength tensors is unchanged in form going from the mass basis to the
interaction basis:

FμνF
μν + FμνFμν ≈ F̄μνF̄

μν + F̄μνF̄μν . (A.179)

Next, we consider the term from the mass basis proportional to XμXμ:

XμXμ = (
X̄μ + κĀμ

)(
X̄μ + κĀμ

)
, (A.180)

≈ X̄μX̄
μ + 2κĀμX̄

μ
. (A.181)

Substituting Eqs. (7.3), (A.179), and (A.181) into the Lagrangian for the mass
basis [Eq. (7.1)] yields Eq. (7.5) as desired.

Problem 7.2: Oscillation Frequency of Hidden Electromagnetic Fields

The wave equation for the hidden photon gauge potential is given by

[
1

c2

∂2

∂t2
− ∇2 +

(
mγ ′c

h̄

)2
]
X̄μ = 0 . (A.182)

Assuming a plane wave solution for a given mode of the hidden photon field, such
that X̄μ ∝ ei(k·r−ωt), we find that
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[
−ω2

c2 + k2 +
(
mγ ′c

h̄

)2
]
X̄μ = 0 , (A.183)

which implies that

−ω2

c2 + k2 +
(
mγ ′c

h̄

)2

= 0 . (A.184)

Since k  ω/c due to the fact the hidden photons are nonrelativistic,

ω ≈ mγ ′c2

h̄
, (A.185)

and thus the field oscillates at the hidden photon Compton frequency. Hidden
photons with high mode occupation will interfere with one another producing
a classical field that has properties similar to thermal light, with characteristic
coherence length and time determined by the velocity distribution.

Problem 7.3: DM Energy Density and the Magnetic Field Within Shields

The energy density in the hidden photon field can be related to the amplitude
of the hidden photon vector potential based on the free space (vacuum) form result
[Eq. (7.12)],

ρdm = 1

8π

(
E′

)2 ≈ 1

8π

X2
0

λ2
γ ′

, (A.186)

where we have used the fact that in vacuum the hidden electric field is given by

E′ = −∂μX̄μ ≈ i
ω

c
X ≈ iX

λγ ′
. (A.187)

While the effect of E′ on the charges in the shield generates a compensating field that
largely cancels E′ within the shield, the estimate of X0 based on ρdm in Eq. (A.186)
is still valid since it is derived solely from the hidden photon field and does not
include the vector potential A that describes the real field generated by the charges
in the shield. Thus, from Eq. (A.186), we have

X0 ≈ λγ ′
√

8πρdm . (A.188)

Substituting into Eq. (7.35), we obtain
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B(r, t) = 8πκ
√

2πρdm
r

λγ ′
e−iωt φ̂ . (A.189)

In terms of G, the magnetic field can be estimated by converting the dark matter
density into cgs units, finding ρdm ≈ 6.4× 10−4 erg/cm3, from which we have

B ≈ (0.04 G)× κR

λγ ′
. (A.190)

To get a rough sense of the R/λγ ′ suppression, let us estimate R ∼ 100 cm for the
shield and assume mγ ′c2 ≈ 10−12 eV, which corresponds to λγ ′ ≈ 2× 107 cm. In
this case, B ≈ κ × (

2× 10−7 G
)
.

Problem 7.4: Inductance

The hollow superconducting sheath consists of two concentric cylinders of height
h and radii r1 and r2. For the purposes of this calculation, we assume the common
axis of the two cylinders is along z. The inductance is a measure of the ratio of
magnetic flux � to the current I generating the flux for a particular conductor
geometry and can be expressed as

L = 1

c

�

I
. (A.191)

Assuming a current I flowing in the +ẑ direction on the inner cylinder, the flux
between the cylinders can be calculated from Ampère’s law:

∮
B · d� = 4π

c
I . (A.192)

Choosing an Ampèrian loop of radius r , where r1 < r < r2, we find that

B = 2I

cr
φ̂ . (A.193)

The flux through a cross section of the sheath can then be found through integration:

� = B · dA , (A.194)

= 2I

c

∫ r2

r=r1

∫ h

z=0

(
1

r
φ̂

)
·
(
drdzφ̂

)
, (A.195)

= 2Ih

c
ln

(
r2

r1

)
. (A.196)
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Inserting the above expression for the flux into Eq. (A.191), we find

L = 2h

c2
ln

(
r2

r1

)
. (A.197)

A toroidal solenoid of the same dimensions, with radius r = (r1 + r2)/2 and
cross-sectional area A = h(r2 − r1), having N turns, has inductance

Lts = 4

c2

N2A

2r
, (A.198)

= 2

c2

N2h(r2 − r1)

r1 + r2
. (A.199)

Equating this expression for Lts with our expression for the inductance of the
cylindrical sheath [Eq. (A.197)], we find

N2 =
(
r1 + r2

r2 − r1

)
ln

(
r2

r1

)
. (A.200)

Problem 7.5: DM Radio EMF

The magnetic flux through a cross-sectional area of the toroidal solenoid (height
= h, inner radius = r1, and outer radius = r2) that acts as the “antenna” of the dark
matter radio is given by

� =
∫

B · dA , (A.201)

= 8πκ
√

2πρdm
h

λγ ′
e−iωt

∫ r2

r1

rdr , (A.202)

= 4πκ
√

2πρdm
h

λγ ′

(
r2

2 − r2
1

)
e−iωt . (A.203)

Noting that the volume contained within the concentric cylindrical sheath is V =
πh

(
r2

2 − r2
1

)
, we have

� = 4κ
√

2πρdm
V

λγ ′
e−iωt . (A.204)

The induced EMF is given by
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Vγ ′ = −N

c

∂�

∂t
, (A.205)

= 4iκ
√

2πρdm
NV

λ2
γ ′

e−iωt , (A.206)

where we have used the fact that c/ω ≈ λγ ′ and accounted for the fact that the total
flux through the solenoid is N�.

Problem 7.6: DM Radio Q-Factor

To understand the signal enhancement, consider the current flowing through the
RLC circuit in Fig. 7.4, given by

I = Vγ ′

Z
= Vγ ′√

R2 + (ωL− 1/(ωC))2
, (A.207)

where Z is the circuit impedance. On resonance ω = ω0 = 1/
√
LC, the current is

I = Vγ ′/R, and so the magnetic flux �L in the inductor is given by

�L = cLI (A.208)

= LVγ ′c

R
, (A.209)

= L

R
4iκ

√
2πρdm

NV c

λ2
γ ′

e−iωt , (A.210)

= ω0L

R
4iκ

√
2πρdm

NV

λγ ′
e−iωt , (A.211)

= Q4iκ
√

2πρdm
NV

λγ ′
e−iωt , (A.212)

= QN� . (A.213)

Thus, the flux in the inductor is enhanced by the Q-factor as compared to the flux
from the hidden photon field alone.
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Problem 8.1: Yukawa Potential in the Monopole–Monopole Interaction

In the nonrelativistic limit, the interaction between two fermions at the tree level
can be written from the inverse Born approximation (momentum space to coordinate
space Fourier transformation),

V (r) =
∫

d3q

(2π)3

(vertex 1)(vertex 2)

|q|2 +m2
b

eiq·r , (A.214)

where the q is the transferred momentum and mb is the mass of the mediating boson.
The simplest form of integration can be obtained from the interaction between two
monopoles (gs,1gs,2):

Vss(r) = −gs,1gs,2Vss(r) = −gs,1gs,2
∫

d3q

(2π)3

1

|q|2 +m2
b

eiq·r . (A.215)

This integration can be done in spherical coordinates as follows:

Vss(r) =
∫ ∞

0
dq

∫ 2π

0
dφ

∫ 1

−1
d cos θ

q2

(2π)3

1

q2 +m2
b

eiqr cos θ , (A.216)

= 1

(2π)2

∫ ∞

0
dq

q

q2 +m2
b

(
eiqr − e−iqr

ir

)
,

= 1

ir

1

(2π)2

∫ ∞

−∞
dq

q

q2 +m2
b

eiqr .

From the Cauchy integral theorem, the complex integration yields

∫ ∞

−∞
dq

q

q2 +m2
b

eiqr = 2πi

(
imb

2imb

)
e−mbr = iπe−mbr , (A.217)

which is the Yukawa-type potential. The potential describing the scalar–scalar
interaction becomes

Vss(r) = −
(gs,1gs,2

4πr

)
e−mbr . (A.218)
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Problem 8.2: Spin-Dependent Interaction via Spin-0 Boson Exchange:
Monopole–Dipole Interaction

The potential describing a monopole (gs) and dipole (igpσ · q/2m) interaction
between two fermions can be expressed as follows:

Vps(r) = −gp,1gs,2

2im1
Vps(r) = −gp,1gs,2

2im1

∫
d3q

(2π)3

σ 1 · q
|q|2 +m2

b

eiq·r , (A.219)

This integration can be obtained by applying the inner product between the spin
vector and the gradient of theVss(r) from Eq. (A.218),

Vps(r) = −iσ 1 · ∇Vss(r) . (A.220)

In spherical coordinates, the calculation is straightforward,

Vps(r) = −iσ 1 · ∇Vss(r) = iσ 1 · r̂
(
mb

r
+ 1

r2

)
e−mbr

4π
. (A.221)

Therefore,

Vps(r) = −gp,1gs,2

2im1
Vps(r) = −gp,1gs,2

2m1
σ 1 · r̂

(
mb

r
+ 1

r2

)
e−mbr

4π
, (A.222)

which can be rewritten in terms of an “effective” or “pseudo-” magnetic field Beff
as suggested in the statement of the problem:

Vps(r) = −gp,1gs,2

8πm1

(
σ 1 · r̂

) (
mb

r
+ 1

r2

)
e−mbr ,

= −
(
gp,1gs,2

8πm1

)
∇

(
1

r
e−mbr

)
· σ ,

= −∇U(r) · σ ,

= −∇U(r)

(
2

h̄γf

)
· σ

(
h̄γf

2

)
,

= −Beff · μf . (A.223)

Equation (A.223) shows that indeed the interaction potential acts on a nearby
fermion as an “effective” magnetic field

Beff = 2

h̄γf
∇U(r), (A.224)
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where γf is the gyromagnetic ratio of the fermion. This effective field is different
from an ordinary magnetic field. Since it couples to the spin of the particle rather
than electric charge or ordinary angular momentum, this field is crucially not subject
to Maxwell’s equations and therefore cannot be screened by magnetic shielding.

Problem 8.3: Spin-Dependent Interaction via Spin-0 Boson Exchange:
Dipole–Dipole Interaction

In the case of pseudoscalar vertices on both sides, the dipole–dipole interaction
has following integral form:

Vpp(r) = gp,1gp,2

4m1m2
Vpp(r) = gp,1gp,2

4m1m2

∫
d3q

(2π)3

(σ 1 · q)(σ 2 · q)
|q|2 +m2

b

eiq·r ,

(A.225)
where labels 1 and 2 indicate the two fermions. One can expand the inner product
with the summation over all possible spin states,

Vpp(r) =
∑
a

∑
b

∫
d3q

(2π)3

σ1,aσ2,bqaqb

|q|2 +m2
b

eiq·r , (A.226)

where a and b are the possible spin state of each fermion (a, b = 1, 2, 3).
Eq. (A.226) can be expressed in the following way:

Vpp(r) = −
∑
a

∑
b

σ1,aσ2,b∂a∂bVss , (A.227)

where Vss is already defined from Eq. (A.218). The partial derivatives of the
monopole interaction ∂a∂bVss become

4π∂a∂bVss =
(
∂a∂be

−mbr
) 1

r
+ 2

(
∂ae

−mbr
) (

∂b
1

r

)
+ e−mbr

(
∂a∂b

1

r

)
.

(A.228)
The evaluation of each term in Eq. (A.228) yields
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(
∂a∂be

−mbr
) 1

r
= ∂a

(
−mbe

−mbr
rb

r

) 1

r

=
(
m2

b

rarb

r2 − mbδa,b

r
+ mbrarb

r3

)
e−mbr

r
,

(
∂ae

−mbr
) (

∂b
1

r

)
= mb

rarb

r4
,

e−mbr

(
∂a∂b

1

r

)
=

(
−δa,b

r3 + 3rarb
r5 − 4π

3
δa,bδ

3(r)

)
e−mbr .

(A.229)

The Dirac delta function in Eq. (A.229) comes from the Laplacian of the 1/r term
since ∇2(1/r) = −4πδ3(r), and the factor of 1/3 comes from the normalization of
the

∑
a

∑
b δa,b running over the indices 1 → 3. Using the relationships

∑
a,b

σ1,aσ2,bδa,b = σ 1 · σ 2 (A.230)

and

∑
a,b

σ1,aσ2,brarb = (σ 1 · r̂)(σ 2 · r̂)r2 , (A.231)

one can obtain

Vpp(r) =σ 1 · σ 2

4π

(
1

r3
+ mb

r2
+ 4π

3
δ(r)

)
e−mbr

− (σ 1 · r̂)(σ 2 · r̂)
4π

(
m2

b

r
+ 3mb

r2 + 3

r3

)
e−mbr . (A.232)

Problem 8.4: Magnetic Field “Amplification Factor” for a Magnetized NMR
Sample Subject to an Effective Axion-Induced “Magnetic Field”

The time-varying magnetic field BSQUID that would be detected by a SQUID
pickup loop at a distance of r = 2 mm from the center of a 1-mm radius spherical
sample can be determined from the dipole approximation by integrating the induced
transverse magnetization Mx over the volume V of the sample.

BSQUID ≈ μ0

4π

MxV

r3
.
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Driven for a duration of T2 by an axion with an effective field Beff, the expected
magnetization is

Mx ≈ 1

2

Ns

V
pμNγT2Beff,

where Ns is the number of nuclear spins in the sample and p is the polarization
fraction.

The numerical value of the “amplification factor” (BSQUID/Beff) with T2 = 1000
seconds, a spin density of 1021 spins per cubic centimeter, and unity polarization
p = 1 is about 2.7× 104.

Problem 9.1 Measuring the Mass of the UBDM Field

The experiment will not produce any UBDM field if |F(qL)| = 0. This will
occur when qL is some greater than zero integer multiple of 2π . We can use the
approximation in Eq. (9.5) with the index of refraction equal to one to find the
mass:

q ≈ m2
ϕ

2ω
. (A.233)

The lowest mass that the experiment is insensitive to is therefore

mϕ =
√

4πω

L
. (A.234)

If we then plug that mass back into the equation for qL, but this time with an index
of refraction of n, we get

qL ≈ ωL(n− 1)+ 2π. (A.235)

Since n ≥ 1, the form factor, |F(qL)|, will have a maximum value when qL =
2π + π/2. Therefore, we can solve for n to get

n ≈ π

2ωL
+ 1. (A.236)

If we use roughly the ALPS II parameters of L = 100m and a photon energy of
1 eV, we see we get an index of refraction n ≈ 1+ 3× 10−9.

If a regenerated photon signal is observed, this could be used to identify the mass
of the UBDM field by performing measurements with and without a small pressure
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of residual gas present in the system and then comparing the difference in the event
rates.

Problem 9.2: Maximum Power Build-Up

If we take the derivative of βP with respect to T1, we get the following:

∂βP

∂T1
= β

T1
− 2β

T1 + T2 + ρ
, (A.237)

∂βP

∂T2
= − 2β

T1 + T2 + ρ
. (A.238)

By setting this equation to zero, we can see that the maximum power build-up will
occur when

T1 = T2 + ρ , (A.239)

while T1 and T2 are as low as possible. We should note here that when the cavity
meets the condition in Eq. (A.239), it is in what is called an “impedance matched”
configuration.

Problem 9.3: Eigenmode Waist Size Versus Length

Since the cavity is configured with mirrors that have identical curvatures, we
know that the waist position will be halfway between them. Therefore, we can use
Eq. (9.19) to solve for the Rayleigh range with the knowledge R(z = L/2) = L:

R

(
L

2

)
= L = L

2

[
1+

(
2zr
L

)2
]

. (A.240)

Here, we can see that zr = L/2. We can then plug this into Eq. (A.243) to get

w0 =
√
λL

2π
. (A.241)
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Problem 9.4: Clipping Losses and Cavity Length

If we integrate the intensity in a Gaussian beam out to a radius rap, we get the
following equation:

∫ 2π

0

∫ rap

0
I (r, zap)rdrdθ = Pmax

(
1− exp

(
−2

r2
ap

w2

))
, (A.242)

where the second term is equal to the clipping losses. With this, we can derive the
following relationship between the clipping losses and the waist radius:

w0 =
√
−2

r2
ap

ln(ρ)
. (A.243)

Since we know that the minimum clipping losses will occur when the length of the
cavity is the Rayleigh length, we can then find the following relationship between
the bore radius rap, the clipping losses, and the length of the cavity:

L = −2π
r2

λln(ρ)
. (A.244)

Let us assume T1 
 T1. Then, the maximum power build-up factor will occur when
T1 = ρ, and using β = 10, 000 necessitates that ρ = 100 ppm. From this, we
can see that we can only make the cavity ∼400 m before we will incur more than
100 ppm of clipping losses.

Problem 9.5: Black-Body Pile-Ups

In a given rise time, probability of 2 photons from this energy band hitting the
detector is

P2γ = (τriseγr)e
−τriseγr

2! ≈ 5× 10−9 , (A.245)

where γr is the background rate for this energy band. Over the course of a 106 s
measurement 1012, “rise times” will occur. Therefore, the expected number of
unresolvable pile-ups will be 500.
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Problem 10.1: Dark Matter-Induced Variation of Fundamental Constants

We focus on the linear portal (10.1) (derivations for the quadratic portal are
identical)

L(1)
clk =

(
−�fm0c

2ψ̄ψ + �α

4
FμνF

μν

)√
h̄c φ .

Here, we streamlined notation in Eq. (10.1). Recall that the SM Lagrangian for a
fermion coupled to an electromagnetic field reads

LSM
f = i(h̄c)ψ̄γμ∂

μψ −m0c
2ψ̄ψ − q0ψ̄γ μψAμ − 1

4
FμνF

μν ,

with the Faraday tensor Fμν = ∂μAν − ∂νAμ expressed in terms of the electromag-
netic 4-potential Aμ and q0 being the fermion’s electric charge. Comparing the mass

terms in L(1)
clk and LSM

f leads to a combination m0c
2ψ̄ψ

(
1+ �f

√
h̄c φ

)
. Thereby,

the factor m0 ×
(
1+ �f

√
h̄c φ

)
is the effective, DM field-dressed mass (10.3).

The proof of DM-induced variation of α, Eq. (10.4), is more involved.
We start by combining the Faraday tensor contributions in L(1)

clk and LSM
f :

1
4FμνF

μν
(
1− �α

√
h̄c φ

)
. Next, we rescale the Faraday tensor

Fμν = F ′μν
(

1− �α

√
h̄c φ

)−1/2

to bring the resulting Lagrangian contribution to the canonical −F ′μνF ′μν/4 form.
This rescaling is equivalent to the redefinition of the 4-potential,

Aμ = A′μ
(

1− �α

√
h̄c φ

)−1/2
,

in the assumption that the field φ does not vary appreciably over the atomic sample
size or over atomic time-scales. This assumption is well justified for conventional
atomic clocks and ultralight DM fields. The rescaling of the 4-potential brings the
gauge interaction in LSM

f into

−q0ψ̄γ μψA′μ
(

1− �α

√
h̄c φ

)−1/2
.

In other words, the electric charge is dressed by the DM field

q(r, t) = q0 ×
(

1− �α

√
h̄c φ

)−1/2
.
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Since the fine structure constant is α = q2/h̄c, this leads to Eq. (10.4), where we
used �α

√
h̄c φ  1.

Problem 10.2: Dark Matter-Induced Pseudo-Magnetic Field

The relevant contribution to the Dirac Hamiltonian can be computed as

Hintψ = −γ0

[
∂Lint

∂ψ̄
− ∂μ

(
∂Lint

∂
(
∂μψ̄

)
)]

, (A.246)

with Lint ≡ L(1)
mag. Explicit evaluation leads to

H(1)
mag = −

1

fl

(
γ5

∂

c∂t
φ +� ·∇φ

)
.

Here, we used the identities γ0γ0 = 1 and γ0γ
iγ5 = �i with the spin matrix

� =
(

σ 0
0 σ

)
. (A.247)

In the nonrelativistic limit for atomic electrons, we arrive at the effective spin-
dependent interaction

H(1)
mag ≈ −

2(h̄c)3/2

fl
S ·∇φ .

The terms containing time derivatives of the φ field are neglected in the nonrela-
tivistic limit for atomic electrons or nucleons as the γ5 matrix mixes large and small
components of the Dirac bi-spinors. This term is additionally suppressed due to cold
DM being nonrelativistic, as ∂

c∂t
φ ∼ vg

c
φ.

By comparing H(1)
mag to the Zeeman interaction HZeeman = −γS · Bdm, one can

immediately read out the DM-induced pseudo-magnetic field Bdm. Here, γ is the
gyromagnetic ratio for the magnetometer’s atoms or nuclei.

Problem 10.3: Atomic Projection Noise Limit on Magnetometric Sensitivity

Consider a fully polarized ensemble of Nat atoms, each of which has a total
angular momentum F . A magnetic field B, perpendicular to the spin orientation,
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induces atomic magnetic moment precession with the Larmor frequency νL. The
phase ϕ acquired by a freely processing atom before their depolarization is given by

ϕ = 2πνLT2 = γ T2B,

where T2 is the transverse relaxation time and γ is the gyromagnetic ratio of the
atom. In atomic magnetometers, determination of the net phase ϕ acquired by the
atoms due to the field provides information about the magnetic field. Thereby, the
phase uncertainty δϕ determines the uncertainty δB of magnetic field determination

δB = 1

γ T2
δϕ.

At the most fundamental level, the phase uncertainty δϕ is given by the
uncertainty of the spin orientation δϕ = δFi/F , where δFi is the uncertainty of
spin orientation in i-th direction. From the Heisenberg uncertainty principle, one
gets

δF 2
i δF

2
j ≥

|[Fi, Fj ]|2
4

= h̄2F 2
k

4
.

For a coherent state, this relation equates, and based on the symmetry of the
problem, we can write

δFi =
√
h̄Fk

2
.

Introducing this relation into equation for δϕ, we can write

δϕ = δFi

NatF
=

√
2h̄

NatF
,

which gives the magnetometric limit in a single measurement

δB = 1

γ

√
2h̄

T2
√
NatF

.

For the total measurement time τmeas , the measurement can be repeated τmeas/T2
times. Since this is random white noise, this reduces the magnetic field uncertainty√
τmeas/T2 times

δB = 1

γ

√
2h̄√

NatFT2τmeas
.
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Assuming that
√

2h̄/F is on the order of unity and replacing γ by gμB/h̄, with g

being the Landé factor and μB being the Bohr magneton, we get the spin-projection-
noise limit on the sensitivity of atomic magnetometer

δB ≈ h̄

gμB

√
1

NatT2τmeas
.

Problem 10.4: Noise Suppression of False Positive Events with a Sensor
Network

Let us start with a discussion of the spatiotemporal pattern of signals of the
network encountering a two-dimensional DM topological defect (domain wall). To
reconstruct the pattern, we notice that the timing of DM-induced signals recorded
by specific sensors is determined by the velocity v⊥, with which Earth moves along
the normal to the wall (v⊥ = v · n, where v is the wall-Earth relative velocity).
The same velocity component also determines the duration τ of the transient signal
measured with a single sensor (assuming that the bandwidth of the sensor is larger
than the pulse spectral width)

τ = d

v⊥
, (A.248)

where d is the thickness of the wall. The time delay between DM-induced transient
signals in two sensors i and j separated by the distance Lij can be calculated based
on

ti − tj = Lij · n/v⊥, (A.249)

where the vector connecting the two sites is projected onto the normal to the wall.
From Eq. (A.249), we can show that in order to fully determine the velocity v⊥ we
need to have four sensors.

Let us now estimate the rate of false positive detection by the network. If the
network consists of identical sensors recording signals with random noise spikes
appearing with an average rate of 1/τn, the average number N1234 of false positive
events due to these random noise spikes within the measurement campaign lasting
for time T is given by

N1234 ∼ T
τn

(
ttran

τn

)3

, (A.250)
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where ttran is the transit time of the wall through the entire network and we assumed
that T 
 τn 
 ttran [if the left side of Eq. (A.250) is larger than one we associated
it with a high likelihood of detecting at least one false positive event during the
campaign]. Equation (A.250) follows from the fact that the number of noise spikes
measured by one sensor throughout the campaign is∼ T/τn, and in order for a false
positive, there should be at least one event recorded in three other sensors within the
transit time ttran, which reduces the number of events by ∼ (ttran/τn)

3.
Based on the timing of signals in specific sensors, one can precisely determine

the time t5 of appearance of the signal in additional sensor. Recalling that the signal
lasts for a time τ , one can estimate the average number of false positives with a
network consisting of five sensors

N12345 ≈ N1234

(
τ

τn

)
. (A.251)

This demonstrates that each additional sensor further reduces the probability of false
positives by ∼ τ/τn, which clearly shows the advantage of introducing additional
sensors to the network.

We can now put it in perspective using experimental parameters of the GNOME.
For that, we assume a 4-month long campaign with 9 active sensors, domain-wall
transit time through a single detector of 10 ms, and the entire network passage time
of 30 s. The noise spikes’ characteristic time τn strongly depends on a signal-to-
noise ratio and a confidence level one wants to achieve (this determines the threshold
level). Herein, we assume τn = 100 s, which comes from feasible parameters.
Putting all these numbers into Eq. (A.250), one gets

N1234 ≈ 2800, (A.252)

which roughly corresponds to a false positive detection every hour. Introduction of
five additional sensors gives an average number of false positive detections

N1−9 ≈ 10−17, (A.253)

meaning that observation of a false positive event is nearly impossible.
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