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In the first four decades of life, women are protected from cardiovascular disease (CVD) 31 

compared to men, perhaps making women the stronger sex. Over the next 5-10 years, 32 

however, ovarian follicle depletion initiates a gradual decrease in sex steroid hormones 33 

transitioning women into perimenopause. Menopause occurs in approximately the 5th decade of 34 

life and results in a near complete loss of serum estrogen (1). With menopause, the risks of 35 

coronary artery disease, peripheral artery disease, aortic calcification, and stroke substantially 36 

rise, and the decrease of circulating estrogen is hypothesized to adversely affect adipose 37 

distribution, lipid metabolism, insulin sensitivity, and blood pressure (1). In young women with 38 

either abrupt and gradual loss of estrogen due to hysterectomy, chemotherapy, and extreme 39 

psychosocial stress, risk of CVD also increases (1, 2). Multiple lines of evidence suggest that 40 

estrogen imparts a protective effect on the cardiovascular system at multiple scales, including 41 

the endothelia, arteries, and the heart itself (1, 3, 4). However, an early clinical trial that sought 42 

to diminish CVD risk in post-menopausal women by administering exogenous estrogen instead 43 

increased risk of cancer, thromboembolic events, and stroke (5). To date, the protective and 44 

detrimental roles of estrogen in the cardiovascular health of premenopausal women, 45 

postmenopausal women, and men remain poorly understood. 46 

 In 2016, the National Institute of Health began requiring that biological sex be factored 47 

into clinical and preclinical study designs to improve rigor and translation of basic science to 48 

clinical science and care (6). Despite this, recruitment of women into clinical trials remains low 49 

(7), which leaves significant knowledge gaps in the pathology and treatment of CVD in women 50 

and creates disparities in prognosis compared to men. This limited knowledge has led to delays 51 

in critical care for women presenting with myocardial infarction and increased mortality in aortic 52 

valve replacements compared to men (8, 9). In basic science research, preclinical studies 53 

persist in using predominately male animals or do not report the sex of animals within the 54 



methods. Overall, the mechanisms by which female sex, estrogen, and age impact heart 55 

disease are critically understudied, which confounds translation from bench to bedside. 56 

The rapid report by Joll et al. in this issue (10) is a welcome change from business as 57 

usual in cardiovascular research. To investigate the impact of estrogen loss on CVD in women, 58 

the authors subjected young adult female C57BL6 mice (4 months old) to bilateral ovariectomy 59 

(OVX) to induce an early menopause-like state, fed them a high cholesterol (Western) diet, and 60 

aged them to 12 months. In vivo echocardiogram measurements were performed at 4, 9 and 12 61 

months, as well as bone mass density measurements using dual x-ray absorptiometry each 62 

month. At the terminal time point of 12 months, left ventricular (LV) and aortic valve (AV) tissues 63 

were harvested and stained with Mason’s Trichrome and Alizarin Red S to determine collagen 64 

content and calcification, respectively. The authors found that bilateral OVX in combination with 65 

a high fat diet and aging resulted in increased LV mass, signifying LV hypertrophy and 66 

suggesting systemic hypertension. Further, no evidence of LV or AV fibrosis or calcification was 67 

found. The OVX group did have a significant decrease in bone mineral density, indicating 68 

osteoporosis development in agreement with prior rodent models (11). The stimulus for LV 69 

hypertrophy is not elucidated by Joll et al. but is likely related to vascular stiffening due to aging 70 

(12) and the high cholesterol diet in combination with the loss of estrogen (13). In addition, while 71 

collagen accumulation was not found, collagen type and crosslinking, which play a functional 72 

role in the stiffening of these tissues (14), could have been altered by OVX, the high-fat diet, or 73 

aging, but were not measured. Despite these limitations, the authors are to be commended for 74 

addressing the elephant in the room regarding the lack of female specific CVD research and 75 

investigating the development of CVD in aging, post-menopausal women.  76 

Only continual action and acknowledgement of sex differences in cardiovascular health 77 

research will reduce sex-based cardiovascular health disparities. For those who take up this 78 

charge, we offer a few suggested refinements to the study design used by Joll et al. First, 79 



bilateral OVX is an overly simplified model of menopause. The loss of sex steroid hormones 80 

with surgical OVX is rapid and does not mimic the gradual loss of hormones and hormone 81 

receptors in the perimenopausal to menopausal transition in human women. As an alternative, 82 

the 4-vinylcyclohexenediepoxide (VCD) mouse model of menopause simulates ovarian failure 83 

over time (15). VCD injections cause regression of small follicles and rapidly accelerate 84 

depletion of the ovarian follicle reserve. During the transition to complete ovarian depletion, the 85 

mice undergo a perimenopause phase similar to human women with corresponding hormonal 86 

changes such as decreased estrogen, increased follicle stimulating hormone, and increased 87 

luteinizing hormone. Mice receiving the VCD injection over 10-20 days begin to have extended 88 

estrous cycles that taper off into a continual diestrus anovulatory phase (15). Moreover, variable 89 

VCD dosing allows for manipulation of the perimenopausal phase and permits investigators to 90 

optimize the perimenopause phase length to the study design. Prior research combining VCD 91 

with Ang-II infusion in female C57BL6 mice showed that blood pressure increased in both the 92 

perimenopausal and menopausal phase compared to intact mice with Ang-II infusion (16). 93 

However, the use of VCD in physiological research is limited due to the carcinogenic and toxic 94 

nature of the drug to the liver and kidneys. Other off-target effects may also limit the utility of this 95 

approach for mimicking menopause in an animal model. Second, since aging is key to CVD in 96 

women, performing OVX in older rodents would better recreate the effect of hormone loss on 97 

the stiffened vasculature that likely exists in women in the 5th decade of life. Third, the use of 98 

mice as a model of human disease is limited due to the robust compensatory mechanisms of 99 

the mouse in the face of injury, disease, or genetic mutations. Using the bilateral OVX with high 100 

cholesterol diet or VCD model of menopause in a larger rodent model, such as the rat, may 101 

induce more substantial LV and AV remodeling, including fibrosis, closer to the human 102 

condition. In combination with in vitro and in silico approaches, robust and physiologically 103 

relevant in vivo models that recapitulate the effects of female hormone loss in conjunction with 104 

aging on CVD development promise to advance equity in cardiovascular health. 105 



In conclusion, Joll et al. provide a good first step in developing a mouse model that 106 

bridges the gap between sex, hormones, and age in cardiovascular health (10). This publication 107 

addresses the sorely lacking inclusion of the female sex, female sex steroid hormone effects, 108 

and lifecycle in cardiovascular research. Understanding the sex-dependent and sex steroid-109 

dependent mechanisms of CVD development and progression are critical to diagnosis, 110 

treatment, and prognosis of women with CVD. Moreover, uncovering the ways in which 111 

estrogen protects young women’s hearts, making them stronger than men’s, may enable the 112 

discovery of novel therapeutics for older women and men. 113 
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