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Abstract

In this paper, we build upon previous results to show
that our facial expression recognition system, an ex-
tremely simple neural network containing six units,
trained by backpropagation, is a surprisingly good com-
putational model that obtains a natural �t to human
data from experiments that utilize a forced-choice clas-
si�cation paradigm. The model begins by computing a
biologically plausible representation of its input, which
is a static image of an actor portraying a prototypical
expression of either Happiness, Sadness, Fear, Anger,
Surprise, Disgust, or Neutrality. This representation of
the input is fed to a single-layer neural network contain-
ing six units, one for each non-neutral facial expression.
Once trained, the network's response to face stimuli can
be subjected to a variety of \cognitive" measures and
compared to human performance in analogous tasks. In
some cases, the �t is even better than one might expect
from an impoverished network that has no knowledge
of culture or social interaction. The results provide in-
sights into some of the perceptual mechanisms that may
underlie human social behavior, and we suggest that the
system is a good model for one of the ways in which the
brain utilizes information in the early visual system to
help guide high-level decisions.

Introduction
In this paper, we report on recent progress in under-
standing human facial expression perception via compu-
tational modeling. Our research has resulted in a facial
expression recognition system that is capable of discrimi-
nating prototypical displays of Happiness, Sadness, Fear,
Anger, Surprise, and Disgust at roughly the level of an
untrained human. We propose that the system provides
a good model of the perceptual mechanisms and deci-
sion making processes involved in a human's ability to
perform forced-choice identi�cation of the same facial
expressions. The present series of experiments provides
signi�cant evidence for this claim.
One of the ongoing debates in the psychological lit-

erature on emotion centers on the structure of emotion
space. On one view, there is a set of discrete basic emo-
tions that are fundamentally di�erent in terms of phys-
iology, means of appraisal, typical behavioral response,
etc. (Ekman, 1999). Facial expressions, according to this
categorical view, are universal signals of these basic emo-
tions. Another prominent view is that emotion concepts
are best thought of as prototypes in a continuous, low-
dimensional space of possible emotional states, and that
facial expressions are mere clues that allow an observer
to locate an approximate region in this space (e.g. Rus-
sell, 1980; Carroll and Russell, 1996).
One type of evidence sometimes taken as support for

categorical theories of emotion involves experiments that

show \categorical perception" of facial expressions (Et-
co� and Magee, 1992; Young et al., 1997). Categorical
perception is a discontinuity characterized by sharp per-
ceptual category boundaries and better discrimination
near those boundaries, as in the bands of color in a rain-
bow. But as research in the classi�cation literature has
shown (e.g. Ellison and Massaro, 1997), seemingly cate-
gorical e�ects naturally arise when an observer is asked
to employ a decision criterion based on continuous infor-
mation. Neural networks also possess this dual nature;
many networks trained at classi�cation tasks map con-
tinuous input features into a continuous output space,
but when we apply a decision criterion (such as \choose
the biggest output") we may obtain the appearance of
sharp category boundaries and high discrimination near
those boundaries, as in categorical perception.
Our model, which combines a biologically plausible

input representation with a simple form of categoriza-
tion (a six-unit softmax neural network), is able to ac-
count for several types of data from human forced-choice
expression recognition experiments. Though we would
not actually propose a localist representation of the fa-
cial expression category decision (we of course imagine a
more distributed representation), the evidence leads us
to propose 1) that the model's input representation bears
a close relationship to the representation employed by
the human visual system for the expression recognition
task, and 2) that a dual continuous/categorical model,
in which a continuous representation of facial expres-
sions coexists with a discrete decision process (either of
which could be tapped by appropriate tasks), may be a
more appropriate way to frame human facial expression
recognition than either a strictly categorical or strictly
continuous model.

The Expression Classi�cation Model
For an overview of our computational model, refer to
Figure 1. The system takes a grayscale image as input,
computes responses to a lattice of localized, oriented
spatial �lters (Gabor �lters) and reduces the resulting
high dimensional input by unsupervised dimensionality
reduction (Principal Components Analysis). The result-
ing low-dimensional representation is then fed to a single-
layer neural network with six softmax units (whose sum
is constrained to be 1.0), each corresponding to one ex-
pression category. We now describe each of the compo-
nents of the model in more detail.

The Training Set: Pictures of Facial A�ect

The model's training set is Ekman and Friesen's Pictures
of Facial A�ect (POFA, 1976). This database is a good



Spatial Filtering with Gabor Jets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

P
C
A

Six-way Forced
Choice Classification

Happy

Sad

Afraid

Angry

Surprised

Disgusted

High
Dimensional

Low
Dimensional

Figure 1: Facial Expression Classi�cation Model.

training set because the face images are reliably identi-
�ed as expressing the given emotion by human subjects
(at least 70% agreement), and the images are commonly
used in psychological experiments. We digitized the 110
POFA slides by scanning them at 520x800 pixels, per-
forming a histogram equalization, aligning the eyes and
mouths to the same location in every image by a lin-
ear transformation, and cropping o� most of the back-
ground. The result is a set of 110 240x320 grayscale
images of 14 actors portraying prototypical expressions
of six basic emotions and neutral.

Feature Extraction: The Gabor Jet Lattice

The system represents input stimuli using a lattice of re-
sponses of 2-D Gabor wavelet �lters (Daugman, 1985).
The Gabor �lter, essentially a sinusoidal grating local-
ized by a Gaussian envelope, is a good model of sim-
ple cell receptive �elds in cat striate cortex (Jones and
Palmer, 1987). It provides an excellent basis for recog-
nition of facial identity (Wiskott et al., 1997), individual
facial actions (Donato et al., 1999), and facial expres-
sions (Dailey and Cottrell, 1999; Lyons et al., 1999). We
use phase-invariant Gabor magnitudes with a parame-
terization of the �lter at �ve scales ranging from 16{96
pixels in width and eight orientations ranging from 0
to 7�

8
as described by Donato et al. (1999). Thus, at

each point in the lattice (in our representation a 29� 36
grid of �lter locations placed at regular 8-pixel intervals
over the face), we extract a 40-element vector of Gabor
magnitudes (sometimes called a \jet") that character-
izes a localized region of the face. A few of the �lters
are displayed graphically in Figure 1. To extract the
29� 36� 40 = 41; 760 �lter responses, we �rst convolve
the entire image with each �lter and take the magnitude
of each complex valued response. We then (globally) di-
visively normalize the vector of responses at each �lter
scale to unit length. By equalizing the contribution of
each �lter size to the �nal representation, we overcome

the problem that most of an image's power lies in lower
spatial frequency ranges, without destroying information
possibly present in the relative magnitude of response at
each orientation. Since even the smallest �lters in our
representation overlap with their neighbors, and Gabor
magnitudes are mildly invariant to slight translation, we
lose very little of the information in the higher spatial fre-
quency ranges, with a small price paid (due to ignoring
phase information) in loss of precise feature localization
and a larger price paid in that the resulting representa-
tion is very high dimensional (41,760 elements).

Evaluation of the representation In this section,
we examine the representation's utility and plausibility.
Donato et al. (1999) found that a nearest neighbor

classi�er with a cosine similarity metric applied directly
to a Gabor grid-based representation achieved 95.5%
correct classi�cation of image sequences containing in-
dividual facial actions (Ekman and Friesen, 1978), e.g.
facial action 1, the inner brow raiser. We evaluated this
type of classi�er on our task, classi�cation of full-face
expressions in static images. Nearest neighbor classi�ca-
tion of the 96 expressive faces in POFA using leave-one-
actor-out cross validation and a cosine similarity metric
achieves an expected generalization accuracy of 74.0%.
There are several possible reasons for this sub-par per-
formance: the need to simultaneously integrate informa-
tion from multiple facial actions, the small size of the
POFA database, and/or the lack of information on the
dynamics of facial movement. But the simple system's
performance is well above chance (16.7% correct), giving
an indication that a more complicated (and more psy-
chologically plausible) model such as a neural network
could do much better.
One way of visualizing the e�ectiveness of a represen-

tation, and gaining insight into how an agent might use
the representation to support decision-making, is to ap-
ply discriminant analysis.1 For the Gabor magnitude
components at a given location and spatial frequency,
we �nd Fisher's Linear Discriminant (Bishop, 1995), the
projection axis ~w that maximizes the criterion J(~w), the
ratio of between-class to within-class scatter along ~w.
J(~w) is a measure (invariant to linear transformations)
of the diagnosticity of that portion of the representation
for determining the class of the stimulus. That is, we
can determine exactly how well (in the linear sense) the
representation separates individual facial expressions.
We applied this method to the 85 expressive faces of

a 12-actor subset of the POFA database The results for
Fear, the most di�cult to recognize expression in POFA
(for both humans and machines), are shown in Figure 2.
The size of the dots placed over each grid location in the
face is proportional to how easy it is to separate Fear
from all of the other expressions based on the 8 Gabor
�lter responses extracted at that position of the grid.
There are two interesting aspects to the result. First,
the lowest spatial frequency channel (using �lters about

1We introduced this visualization method for the Gabor
representation in a recent technical report (Dailey and Cot-
trell, 1999), and Lyons et al. (1999) have independently in-
troduced a similar technique.
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Figure 2: Diagnosticity of Gabor �lter locations for
Fear discrimination, separated by �lter spatial frequency,
from scale 1 (highest SF) to scale 5 (lowest).

96 pixels in width, compared to the total image width of
240) is best for this expression, implying that improve-
ment might be obtained by dropping the smaller scales
from the representation and even increasing the �lter
size. Second, the technique hints at which facial actions
are most reliable for distinguishing expressions from one
another, readily making predictions for psychological ex-
periments. According to Ekman and Friesen (1978), pro-
totypical displays of Fear include facial action 1 (inner
brow raise), 2 (outer brow raise), 4 (scrunching together
of the eyebrows), and 5 (upper eyelid raise) in the upper
face, along with 25 (lips part) and some combination of
20 (lip stretch), 26 (jaw drop), or 27 (mouth stretch) in
the lower face. Although some discriminability can be
obtained in the higher spatial frequencies in the region of
the mouth (presumably detecting facial action 25), our
model �nds that the best regions are in the lower spatial
frequencies around the eyes, especially around the upper
eyelids.

Principal Components Analysis for

Dimensionality Reduction

We use Principal Components Analysis (PCA) as a sim-
ple, unsupervised, linear method to reduce the dimen-
sionality of the network's input patterns by projecting
each 41,760-element pattern onto the top k eigenvectors
of the training set's covariance matrix. This speeds up
classi�er training and improves generalization. We ex-
perimented with various values of k and achieved the
best generalization results with k = 35, so in all exper-
iments reported here we project training and test pat-
terns onto the top 35 principal component eigenvectors
of the training set, then use the standard technique of
\z-scoring" each input to a mean of 0 and a standard
deviation of 1.0 (Bishop, 1995).

Classi�cation by a Six Unit Network

The classi�cation portion of the model is a six-unit
neural network. Each unit in the network �rst com-

putes its net input, a weighted sum of the input pat-
ter ~x: ai = bi +

P
j wijxj . Then the softmax function

yi = eai=
P

k e
ak is applied to the net inputs to produce

a 6-element output vector ~y. The network is trained
with the relative entropy error function (Bishop, 1995).
Since the outputs of this network must sum to 1.0, we
use a constant target vector of ( 1

6
; 1
6
; 1
6
; 1
6
; 1
6
; 1
6
)T for the

neutral training stimuli.
With no hidden layer and just 35 elements in its input,

the network is very small, but its number of parameters,
216, is still large compared to the number of training
examples (88-99). Therefore, we must avoid overtrain-
ing the network; we have found that too-fast optimiza-
tion techniques lead to poor generalization. We have
obtained the best results using stochastic gradient, mo-
mentum, weight decay, and early stopping using a hold-
out set. For the experiments reported here, we used a
learning rate � = 0:0017 (the number of units divided by
the number of inputs times 0.01), a momentum � = 0:9,
and weight decay rate � = 0:01.
The early stopping technique bears some explanation.

We obtain expected generalization results by leave-one-
actor-out cross validation. For POFA, this means a net-
work is trained on the images of 13 actors and tested on
generalization to the 14th. Rather than training on the
full 13 actors, we leave one out as a holdout set to help
determine when to stop training. After each epoch of
training on the remaining 12 actors' faces, we test the
network's performance on the 13th actor (the holdout
set). If classi�cation accuracy on the holdout set has not
improved in 6 epochs, we stop training and restore the
weights from the best epoch. Training time under this
paradigm varies greatly; it ranges anywhere from 60 to
300 epochs depending on which partition into training,
holdout, and test set is used.

Evaluation of the Network's Performance

How does the network perform the expression recogni-
tion task? An examination of the trained network's rep-
resentation provides some insight. The idea is to project
each unit's weight vector back into image space in order
to visualize what the network is sensitive to in an image.
But this is not a trivial task; though PCA is linear and
easily inverted, the Gabor magnitude representation, be-
sides being subsampled, throws away important phase
information. Normalization of the power in each spatial
frequency channel could also be problematic for inver-
sion. Current techniques for inverting Gabor magnitude
representations (C. von der Malsburg, personal commu-
nication) are computationally intensive and make several
assumptions that do not apply here. So we instead take
a simpler approach: learning the function from the 35-
element input space into facial image space with linear
regression, then using the regression formula to produce
an image that visualizes each network unit's weight vec-
tor.
The results for one network trained on an arbitrary

12-actor subset of POFA are shown in Figure 3. In each
image, each pixel value is the result of applying the re-
gression formula predicting the value of the pixel at that
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Figure 3: Images reconstructed by linear regression from
a trained network's weight vectors.

location as a linear function of the 35-element weight vec-
tor for the given network output unit. Dark and bright
spots indicate the features that excite or inhibit a given
output unit depending on the relative gray values in the
region of that feature. Note that the representations are
very much like one might predict given the linear dis-
criminant analysis described earlier: each unit combines
evidence based upon the presence or absence of a few
local features; for Fear, the salient criteria appear to be
the eyebrow raise and the eyelid raise, with a smaller
contribution of parted lips.
An important factor not shown in Figure 3 is the ef-

fect output units have on each other. Due to the di-
visive normalization of the softmax function, an active
output unit can e�ectively inhibit other units that are
only mildly activated. Nevertheless, it seems clear from
the reconstructions that the network's e�ective strategy
is to learn how the combination of facial actions involved
in each prototypical expression can be reliably detected
in a static image. We hypothesize that, when faced with
a forced choice expression recognition task, humans must
use similar representations and classi�cation strategies.
In the next two sections, we provide some indirect sup-
port for this hypothesis with both qualitative and quan-
titative comparisons between the model's performance
and human performance on the same stimuli.

Modeling Forced-Choice Classi�cation

Ekman and Friesen (1976) presented subjects with the
task of 6-way forced choice classi�cation of the expressive
stimuli in POFA and provide the results of their exper-
iment with the dataset. Their criterion for admission
into the �nal database was that at least 70% of subjects
should agree on each face's classi�cation into one of the
six POFA expression categories. On average, the pro-
portion of agreement (or chance of correct classi�cation)
was 91.7%.

Classi�cation accuracy comparison

We trained 14� 13 = 182 networks, one for each of the
possible partitions of the database into a training set of
12 actors, a holdout set of one actor, and a test set of
one actor. After training using the method described
earlier, we tested each network's classi�cation accuracy
on its generalization (test) set and averaged their per-
formance. The 182 networks, on average, obtain a clas-
si�cation accuracy of 85.9% (compared to a human ac-
curacy of 91.7%), and interestingly, the rank order of
expression category di�culty, Happy { Disgusted { Sur-
prised { Sad { Angry { Afraid, is identical to that of the
humans. We also �nd that the humans and networks

show the same rank order We have also found that it
is possible to boost classi�er accuracy on this task if
the classi�er is given the opportunity to \peek" at the
test set (without labels) before actually classifying it.
This \batch mode" classi�cation technique is a plausible
model for familiarizing subjects with the stimuli in an
experiment prior to testing them. It boosts classi�er ac-
curacy to up to 95%; details are available in a technical
report (Dailey and Cottrell, 1999).

Visualization with Multidimensional Scaling

Multidimensional Scaling (MDS) is a frequently-
used technique for visualizing relationships in high-
dimensional data. It aims to embed stimuli in a low di-
mensional space (usually two or three dimensions) while
preserving, as best possible, observed distances or sim-
ilarities between each pair of stimuli. MDS has long
been used as a tool for exploring the psychological struc-
ture of emotion. Russell has proposed a \circumplex"
model of a�ect (Russell, 1980) that describes the range
of human a�ective states along two axes, pleasure and
arousal. Russell and colleagues have found support for
their theory in a wide range of studies for which MDS
consistently yields two-dimensional solutions whose axes
resemble pleasure and arousal.
A similar technique can be applied to Ekman and

Friesen's forced-choice data. We computed a 96�96 Eu-
clidean distance matrix from the 6-dimensional response
vectors supplied by Ekman and Friesen and used non-
metric MDS2 to �nd a 2-dimensional con�guration of
the 96 stimuli. This con�guration, shown in the �rst
graph of Figure 4, yielded a Kruskal stress S = 0:205.
The circumplex embedded in Ekman and Friesen's data,
Happiness { Surprise { Fear { Sadness { Anger { Disgust,
or HSFMAD (using M for Maudlin in place of Sadness
to distinguish it from Surprise), is di�erent from that
typically reported by Russell and colleagues. This is
not surprising, however, because a large portion of Rus-
sell's circumplex (a�ective states that are negative on the
arousal dimension and positive or neutral on the pleasure
dimension, such as sleepiness, content, and relaxation) is
simply not represented in POFA. The HSFMAD circum-
plex is the same, however, reported by Katsikitis (1997),
who used the same set of expressions, a similar forced-
choice arrangement, but an entirely di�erent set of pho-
tographs in which the actors were not instructed on how
to portray each expression.
Does the facial expression similarity structure induced

by the network resemble the human psychological sim-
ilarity structure in any way? We have performed MDS
analyses at three levels in this network: at the input layer
(on the Gabor/PCA representation), at the net inputs
to the network's output units (the units' un-softmaxed
activations ai), and at the softmax output layer. As
one might expect, at the input layer, the patterns form

2There are many varieties of MDS; we implemented the
Guttman-Lingoes SSA-1 algorithm as described in Borg and
Lingoes (1987). Put briey, the algorithm iteratively derives
a con�guration X that minimizes Kruskal's stress S, which
is the proportion of variance in a monotonic regression unex-
plained by X.
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Figure 4: MDS con�gurations derived from human
classi�cation data and the linear activations of the
units in the network model. The circumplex (order of
stimuli around the graph) is the same: H-S-F-M-A-D
(M=Maudlin/Sadness).

a cloud in the plane with little structure. At the net-
work's output, the responses on the training set tend
to be so nearly binary that there is very little similar-
ity structure. But using the net inputs to the softmax
units, averaged over all 182 networks, we obtain a solu-
tion (stress = 0:231) that orders the expressions in the
same way as the human circumplex, as shown in the
second graph of Figure 4.
With the caveat that this only occurs in the linear part

of the network, the fact that the human and network
MDS solutions contain the same ordering is striking. It
is very unlikely (p = 0:017 for a single trial and p = 0:033
for two trials) that we would obtain the same ordering if
the human and network similarity structure were in fact
unrelated.

Correlation of network and human errors

MDS analysis is useful as a visualization tool, but the
correspondence between the human circumplex and net-
work circumplex is not a formal test of the model. Is the
correspondence between the human and network MDS
solutions simply a fortuitous coincidence? One way to
address this concern is with a direct comparison of the
confusion matrices for the humans and networks. For the
humans and networks, we computed the 6� 6 confusion
matrix whose ij-th entry gives the probability that when
a face from class i is present, the humans or networks
(on the training set) respond with expression j. Since
the network was explicitly trained to produce label i for
members of class i, we removed the diagonal elements
from each confusion matrix and compared the network
and human error patterns, i.e. the 30 o�-diagonal terms
of the confusion matrices. Note that it is not \cheat-
ing" to use the network's responses on the training set
here; the network was never biased in any way to make
errors similar to humans. We found that the correlation
between the o�-diagonal elements of the confusion matri-
ces for the humans and networks is r = 0:567. An F -test
(F (1; 28) = 13:3; p = 0:0011) con�rms the signi�cance of
this result. These results lead us to claim that much
of the facial expression similarity structure observable
in forced-choice experiments is due to direct perceptual
similarity, and that our model does an excellent job of
capturing that structure.

Modeling Perception of Morphs

Beyond the forced-choice classi�cation data provided by
Ekman and Friesen, the literature on categorical percep-
tion of facial expressions transitions is a treasure trove
of data for modeling. Previous work (Padgett and Cot-
trell, 1998) compared a somewhat di�erent facial ex-
pression recognition model to human behavior in a large
study by Young et al. (1997) (henceforth referred to as
\Megamix"). In the Megamix study, the researchers cre-
ated morph stimuli interpolating each of the 21 possi-
ble transitions between six expressive images and one
neutral image of POFA actor \JJ." They then tested
subjects on forced-choice identi�cation of the perceived
expression in the morphs (they also measured response
times, discrimination, and the subjects' ability to detect
mixed-in expressions in the morph stimuli). Padgett and
Cottrell (1998) simulated the Megamix morph stimuli
with dissolves, or linear combinations of each source im-
age and target image. Their linear feature extraction
technique (projection of eye and mouth regions onto a
Local PCA basis) and neural network classi�er applied
to the linear dissolves produced good results. However,
when we created true morphs and attempted to apply
the same techniques, we found that the model no longer
�t the human data | there were large intrusions of un-
related expressions along the morph transitions, indicat-
ing that linear feature extraction is unable to produce a
smooth response to nonlinear changes in the image. One
might expect that the Gabor magnitude representation,
with its built-in invariance to phase, might better cap-
ture the smooth, categorical transitions observed in the
Megamix study on nonlinear morphs. In this section,
we very briey show that this is indeed the case: the
Gabor/PCA-based model does produce smooth transi-
tions between expression categories without intrusions
and a very good �t to the human identi�cation data
without any free parameters.

Network training

We used a slightly di�erent methodology for modeling
this data because we wanted to model each human sub-
ject with one trained network. This requires as much
between-subject variability as possible (although vari-
ability is di�cult to achieve given POFA's small size).
We trained 50 networks on di�erent random partitions
of the 13 non-JJ actors' images into training and holdout
sets. Each network's training set consisted of 7 examples
of each expression plus neutrality, with the remaining
data used as a holdout set. As before, neutral stimuli
were assigned the uniform target vector [ 1

6
; 1
6
; 1
6
; 1
6
; 1
6
; 1
6
]T

and the expressive faces were assigned binary target vec-
tors.

After training each network until holdout set classi�-
cation error was minimized, we tested its performance on
JJ's prototypes as well as all morphs between them. We
then extracted identi�cation, response time, discrimina-
tion, and faint morph detection response variables from
the model.
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Figure 5: Human and network responses to JJ morphs
along the transitions HSFMDA.

Model �t

Using the same response variable measurements as Pad-
gett and Cottrell (1998), we do �nd the Megamix pat-
tern of sharp categorical transitions, scallop-shaped re-
sponse time curves, improved discrimination near cate-
gory boundaries, and a close correspondence between hu-
mans and networks on detection of the secondary expres-
sion in morph transitions. Due to space limitations, we
cannot report all of the Megamix modeling results here,
but we do show the model's �t to the human responses
on one series of morph transitions. Forced-choice identi-
�cation results for the Happy { Surprised { Afraid { Sad
{ Disgusted { Angry { Happy transition series are shown
in Figure 5. The human data and model prediction are
quite similar, but the networks appear to place slightly
sharper boundaries between expressions; this is because
there is not as much variation in our population of net-
work \subjects" as that occurring in the Megamix data.
Nevertheless, the correspondence (r2 = 0:846) is remark-
able considering that the networks were never trained on
images of JJ or morph stimuli and that there are abso-
lutely no free parameters involved in �tting the model
to the data.

Discussion

We have shown that a simple, mechanistic computa-
tional model obtains a natural �t to data from several
psychological studies on classi�cation of human facial ex-
pressions. Exploring the space of possible expression
classi�cation models has led us to reject several alter-
native models (including local PCA-based input repre-
sentations and more complicated ensembles of networks
containing hidden layers). Since one simple model, de-
spite its lack of culture and social experience, explains so
much data without any free parameter �tting, we claim
that it is a strong model for how the human visual sys-
tem perceives facial expressions in static images. To the
extent that performance in the controlled forced-choice
psychological experiments cited here generalizes to more
naturalistic social situations (an admittedly big assump-

tion to make), we suggest that the model captures the
essentials of the visual processing used to make many
social judgments.
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