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3.1 Configuration of CARLsim 6 structural and neuromodulation features. CUBA/-
COBA can be configured at group level. Neuromodulatory neurons can project to
other neuron groups. Plasticity is defined on the connection level. Receptors can
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firing in CARLsim’s SpikeMonitor of such neurons without neuromodulation, la-
beled as control group. Each neuron was mapped to an increasing input current,
displayed on the y-axis, with a designed crossover at about 10 µA ( 7→ NeuronID
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down to 3 µA, and with both neuromodulators present, the phasic firing is almost
instantaneous. (b) Antagonistic effects of 5-HT on NE, which is suppression for
5-HT and neutralization at equilibrium. The SpikeMonitor of group nm1 shows
that the antagonistic receptor has the same excitability for NE as above. However,
when 5-HT is present, it acts as antagonist, and the nm2 group displays gaps of
spikes, when the neuron is silenced by 5-HT. The right column shows that when
both NM are present at the same level, the NM-effect is neutralized and group
nm12 exhibits the same behaviour as the control group. . . . . . . . . . . . . . . 46
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investigated in Avery et al. (2013) and Avery and Krichmar (2015). (a) Continous
mapping of DA to the connection based neuromodulatory factor µc of the D2 re-
ceptor fitting the discrete levels (inside columns) given by Avery and Krichmar
(2015). (b) Continuous bivariate mapping of DA, NE to the group based neuro-
modulatory factor µ of the α1 receptor fitting the discrete bivariate levels (marked
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3.7 (a) Representative voltage traces of individual neurons from each neuron type in
the SNN model. The horizontal axis represents time (ms), and the vertical axis rep-
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to the beta oscillation. (c) The power spectrum of CA3 Pyramidal neurons. . . . . . 55

v



4.1 Model deisgn. A. Architecture of the SNN model. Optic flow stimulus was first
processed by an array of MT neurons tuned to speed and direction of motion. The
MT activity was converted to Poisson spike trains as the input to the network. The
MT neuron group was connected to the MSTd group with a Gaussian projection,
which allowed the MSTd neurons to receive input from MT neurons that locate
in different locations of the visual field and were tuned to different direction and
speed. The MSTd group was reciprocally connected to a group of inhibitory neu-
rons, which regulated the activity of the network. All connections in the network
were modulated by STDP-H. The MT → MSTd connection weights and the MSTd
group activity were used to reconstruct the input. A fitness function measured the
network performance based on the reconstruction accuracy, and STDP-H parame-
ters were evolved with evolutionary computation to optimize the fitness function.
B. Direction tuning curves of the simulated MT neurons. C. Speed tuning curves
of the simulated MT neurons. The horizontal axis is plotted on a log2 scale. . . . . 63

4.2 Schematic drawings of motion patterns that the training and validation dataset was
sampled from. The first two rows depict motion patterns in the laminar motion
space, and the last two rows depict motion patterns in the spiral motion space. . . . 66

4.3 Stimulus reconstruction. STDP-H performed dimensionality reduction on the in-
put matrix V and decomposed it into two smaller matrices W, the MT→MSTd
weights, and H, the MSTd activity. Each column of the input matrix represented
an input instance v⃗i, which was visualized as the original flow field. In the figure,
the MT → MSTd connection weights W were visualized as a group of basis flow
fields. The MSTd activation to this particular stimulus h⃗i was represented as a col-
umn in the matrix H, which denoted the degree of activation of the corresponding
basis flow field. Darker color in this visualization corresponded to a higher level
of activity. The reconstructed input was shown on the right. The correlation score
between the original and the reconstruction of this particular input instance was 0.84. 70

4.4 Illustration of the effect of homeostatic synaptic scaling on an individual neuron.
As the synaptic drive (i.e., input synaptic weights) increases, the firing rate of the
neuron increases and exceeds the target firing rate. Homeostatic scaling brings the
activity down to the target zone by decreasing the input strength. If the synaptic
drive is too low and the activity of the neuron is below the target firing rate, home-
ostatic scaling raises the input strength and brings the activity of the neuron back
into the target firing zone. Synaptic drive is in arbitrary units and firing rate is
normalized. Adapted with permission from Turrigiano and Nelson (2004). . . . . . 72

4.5 Best-so-far (BSF) fitness curve across 30 generations of evolutionary process for
each network configuration. Solid lines denote the mean fitness scores of all indi-
vidual runs of the network configuration. Shaded area denotes the standard devia-
tion of the fitness scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
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4.6 Evolved STDP parameters. A. Evolved STDP curves visualized by plotting the
changes of synaptic weight (∆w) against the time difference between the pre-
synaptic (tpre) and post-synaptic (tpost) spikes. The blue curves correspond to the
LTP component of STDP (Equation 4.7), and the yellow curvescorrespond to the
LTD component (Equation 4.8). Solid lines denote the mean values calculated
from all evolved network instances (10 network instances for B = 16, 5 network
instances for B = {36,64,100,144}), and the shaded areas denote the standard
deviation. B. Area over the LTD or LTP component of the STDP curves. . . . . . 82

4.7 Sparseness measurements of different configurations of the SNN model. Popula-
tion sparseness measured how many neurons were activated by any stimulus, and
lifetime sparseness measured how many stimuli any given neuron responds to. The
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4.8 MSTd response to spiral flow fields. Plots in the first row visualize the distribu-
tions of tuning with arrows spanning the spiral motion space. Each arrow repre-
sents one neuron. Histograms in second row visualize the distributions of tuning by
showing the percentage of simulated neurons tuned to each type of motion. A,B.
Reprinted with permission from Graziano et al. (1994). In a population of 57 neu-
rons recorded from the MSTd area, the tuning of MSTd neurons spanned the entire
spiral space, with a large proportion of neurons tuned to expanding motions. C-F.
Analyses of the entire population of simulated MSTd neurons obtained from 5 sep-
arately evolved and trained network instances with the B = 64 configuration. C,D.
In a pre-screened for expansion sub-population of the simulated MSTd neurons, a
large proportion of simulated neurons were tuned to expanding motions. E,F. In
the entire simulated MSTd neuron population, 278 simulated MSTd neurons had
significant tuning to spiral stimuli. The preferred spiral directions distributed evenly. 86

4.9 MSTd response to spiral flow fields (B= {16,36,10,144}). The left column shows
the distribution of spiral tuning of the pre-screened population. Similar to the
B = 64 configuration as shown in Figure 4.8D, a large proportion of simulated
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next generation population in order to find optimal solutions to a given problem..

STDP Spike-timing-dependent plasticity. A type of synaptic plasticity which modifies connection
weights between a pair of neurons based on the relative timing of spikes between pre- and
post-synaptic neurons..

STP Short-term plasticity. A type of synaptic plasticity observed in the brain which induces tem-
porary changes in synaptic strength over a short time scale, ranging from hundres to thou-
sands of milliseconds..

Plaid A type of visual stimulus that consists of two or more superimposed sinusoidal gratings.
As the plaid stimulus drifts in one direction, the component gratings may appear to move in
other directions, causing ambiguity in perceiving the motion of the plaid stimulus..
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Optic flow Changes of structured light on the retina caused by the relative motion between an
observer and the scene during locomotion of the observer. Optic flows contain important
self-motion information including the heading direction and the moving velocity of the ob-
server..

Triple-T maze A track environment that can be used to conduct complex spatial working memory
tasks. In a Triple-T navigation task, the animal starts at the bottom part of the maze and is
required to traverse through four partially overlapping routes sequentially with no repeats..

Cognitive map A mental representation of the spatial structure of the environment, and the spatial
relationship among the agent, the navigation space, and objects within the environment..

Place cell A type of hippocampal neurons that have an activity bump only when the animal was
in certain locations in the environment. Spatial locations in the environment can be mapped
by the population activity of these place cells..

Analogy cell A sub-population of subiculum neurons that exhibit multiple firing fields which cor-
respond to locations that are spatially separated, but share structural or functional similari-
ties, such as head direction, axis of travel, and progression through a route..

Axis-tuned cell A subset of subiculum neurons that have bimodal activity bumps that correspond
to two heading directions 180°apart, encoding the axis of travel. Axis-tuned responses were
observed in a Triple-T maze, and may be a special type of analogous representations found
in the subiculum..

CA1 A sub-region of the hippocampus which sends major hippocampal outputs to cortical ar-
eas. CA1 is heavily involved in the formation, consolidation, and retrieval of hippocampus-
dependent memories..

SUB Subiculum. A brain region that is located in the hippocampal formation that receives direct
synaptic inputs from the hippocampal sub-region CA1 and projects to various cortical and
subcortical areas involved in spatial navigation and memory..

GPU Graphics Processing Units. A type of processor that is widely used in machine learning
applications because of their efficiency in performing parallel computations in neural net-
works..
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ABSTRACT OF THE DISSERTATION

A Computational Investigation of Cortical Motion Perception and Hippocampal Spatial Memory

By

Kexin Chen

Doctor of Philosophy in Cognitive Sciences
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Professor Jeffrey Krichmar, Chair

This dissertation explores the use of computational models, specifically spiking neural network

(SNN) models combined with evolutionary computation, as a versatile approach to investigate

neural representations and underlying neural mechanisms involved in navigation. The aim of this

thesis is to understand how information is processed and represented in the cortical motion stream

for visual motion perception and in the hippocampus for spatial cognition.

The first study introduces CARLsim, an efficient SNN simulator with biologically detailed im-

plementation of spiking neurons, synapses, and various synaptic plasticity rules. Additionally,

CARLsim is integrated with evolutionary computation libraries, providing flexible and powerful

modeling capabilities. This tool is utilized in the modeling studies presented in this dissertation.

In the second study, an SNN model is developed to understand the complex response properties

of neurons in the dorsal sub-region of the Medial Superior Temporal area (MSTd) area and how

they support heading estimation. The resulting model showed receptive fields that are suitable for

processing self-motion-induced optic flows, and accurately encoded the heading direction in the

neuron population. This study explores how synaptic plasticity rules could implement nonnegative

sparse coding (NSC) for efficient coding, and supports a previous theory which suggests that recep-

tive fields observed in MSTd may emerge through dimensionality reduction on its input (Beyeler

et al., 2016).
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The third study investigates how spatial representations that are important for navigation emerge

with self-motion cues and external cues that signal the relationship between the agent and the envi-

ronment. SNN models of hippocampal sub-region CA1 and the subiculum (SUB) were developed

using neuronal data recorded in a working memory navigational task. The models exhibited dif-

ferential spatial representations that reflect their functional distinctions and match experimental

observations. This study shows that distinct representations of spatial features can be formed by

different weightings in the integration of navigational variables.

This dissertation provides insights into how the brain processes information during navigation,

shedding light on the neural mechanisms underlying visual motion perception and spatial cog-

nition. The presented studies highlight the potential of SNNs and evolutionary computation as

powerful tools for computational modeling of the brain, which offer the advantage of biological

plausibility and minimal assumptions on the model parameters. This research may inspire the de-

velopment of other novel modeling approaches. The models developed in this research could have

practical applications in robotics and artificial intelligence.
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Chapter 1

Introduction

Efficient navigation is an essential task for humans and other animals. This is a complex pro-

cess that involves integrating various sensory modalities and cognitive processes. In particular,

visual motion processing and spatial memory are critical components of navigation. Optic flow,

generated as an individual moves through an environment, enables the perception of motion and

tracking of movement relative to the surroundings. On the other hand, spatial memory may con-

tain a mental map that represents the structure and components of the spatial environment. These

components allow individuals to make informed decisions about their own movement, enabling

successful navigation through complex environments. As a result, individuals can perform tasks

such as path planning, finding shortcuts, and adjusting movements based on their perceived self-

motion. Extensive data have been collected to investigate these two brain functions. The cortical

motion stream is responsible for processing visual motion information, and the hippocampal area

plays a critical role in spatial memory and navigation. However, the mechanisms underlying visual

motion processing and spatial memory in navigation are not yet fully understood.

In recent years, computational modeling has become an increasingly powerful tool for understand-

ing the neural mechanisms underlying complex behaviors, such as navigation. By developing
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models that are structurally and/ or functionally similar to the brain, researchers can test various

hypotheses and predict behavior under different conditions. This approach enables understanding

of data, identification of patterns, verification of hypotheses, and generation of testable predictions

about the brain. Notably, Spiking neural network (SNN) models offer an advantage in describ-

ing biological details of the biological neural network by representing neural activity with spike

trains, which contain information about the timing and frequency of spiking activity, rather than

the average firing rate of the neuron. SNNs also allow for the investigation of spike-based neural

plasticity, which has been observed in the brain and suggested to play important roles in learning

and memory. To optimize the performance of SNN models, Evolutionary computation provides

a flexible approach which selects solutions that lead to a higher score in the defined fitness func-

tion. The combination of evolutionary computation with SNNs and synaptic plasticity rules has

been demonstrated to be a successful method for modeling the brain (Rounds et al., 2018; Elbrecht

et al., 2020).

The aim of this dissertation is to explore neural mechanisms of visual motion processing and spatial

memory in navigation using computational modeling, specifically, a combination of evolutionary

computation with SNNs and synaptic plasticity rules. This research focuses on investigating how

the brain efficiently represents visual motion information, encodes self-motion parameters for nav-

igation, and integrates navigational variables to develop different forms of spatial representations

that are relevant to navigation.

To achieve these goals, this research begins with enhancing the features of CARLsim, an SNN

simulator, to allow for a user-friendly modeling framework and an efficient implementation of

neural dynamics, as well as flexible implementations of biologically observed synaptic plasticity

mechanisms. This dissertation also describes modeling studies of cortical motion perception and

spatial representations in the hippocampal area, which reproduced neuronal activities observed in

the brain and made novel predictions of the modeled areas.
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The contributions of this research include: 1) enhancement of an open-source modeling tool, 2)

the development of biologically detailed models of cortical motion perception and spatial repre-

sentations, which captured key response properties of neurons in the target brain regions, 3) a

computational demonstration of how spike-timing-dependent plasticity (STDP) could perform di-

mensionality reduction and sparse coding to achieve an efficient encoding of the input space, and

4) a prediction that STDP may also perform feature selection on locomotion and external cues to

form different spatial representations important for navigation.

1.1 Organization

The dissertation is organized as follows:

Chapter 2 provides background information by reviewing relevant literature. First, it gives a gen-

eral overview of computational modeling, SNN, and evolutionary computation, highlighting their

application in neuroscience research. Secondly, it briefly reviews the dorsal visual stream and

the motion processing pathway, discussing computational efforts towards understanding response

properties in these regions. Finally, it briefly reviews evidence of spatial cognition in the rodent

brain, particularly those found in the hippocampal formation, and presents computational and the-

oretical models that were developed to understand them.

Chapter 3 introduces CARLsim, which is an open-source spiking neural network simulator that

was used to create and simulate models presented in Chapter 4 and Chapter 5. This chapter pro-

vides an overview of the sixth release of CARLsim, introduces new features, presents simulation

results, and discusses related work.

Chapter 4 focuses on a computational investigation of optic flow processing in MSTd using SNNs

with evolved neural plasticity rules. Neurons in this model developed receptive fields that preferred

a mixture of motion patterns, similar to those observed in the MSTd. This chapter demonstrates
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that neural plasticity, specifically STDP, may allow the brain to perform sparse coding and dimen-

sionality reduction on high-dimensional input to represent information efficiently.

Chapter 5 presents SNN models of two hippocampal regions, CA1 and subiculum, which showed

differing encoding schemes of navigational features. The same modeling approach as in Chapter

4 was utilized in developing this model. Although the SNN models of these two hippocampal

regions shared the same network architecture and optimization method, they evolved to integrate

behavioral variables differently, leading to different spatial representations which resembled those

observed in their biological counterparts.

Chapter 6 presents the main conclusions of the dissertation, including a discussion of the implica-

tions of the research studies in relation to existing literature. It also provides a discussion of future

directions for extending the studies.
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Chapter 2

Background

2.1 Computational modeling of the brain

Computational methods have become increasingly important in the field of neuroscience for mod-

eling the complex dynamics of the brain. In particular, mathematical expressions can be used to

describe relationships between variables, and computational models enable simulations that help

to understand the interactions between components of the neural system. By manipulating ele-

ments within these computational models, we can observe how the alteration of components lead

to changes in the system, enabling us to draw useful conclusions that advance our understanding

of the brain. Furthermore, computational models that closely replicate certain brain structures and

exhibit functionalities of certain brain areas can serve as good representations of the biological neu-

ral network. These models offer the flexibility that allows researchers to have full control over the

design of network architecture, and the ability to record the entire state of the network, including

the activity of neurons and their connections.

Increasingly powerful and complex machine learning methods and model architectures have been

proposed in recent years, which demonstrate the ability to perform various tasks, including object
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recognition in an image, or learning to understand and generate natural languages. Neuroscien-

tists have also recognized the potential of using these models as a way to better understand brain

mechanisms (Richards et al., 2019; Vu et al., 2018). Computational models of the brain can be

developed through fitting to neural data directly, or by defining an optimization goal for the model

and observing properties that emerged through learning. With the advancement of deep learning,

the second approach has become increasingly popular. One example of this approach involves

training a deep neural network to perform path integration (Banino et al., 2018). This model helps

explain that grid-like representations of an environment may emerge from the learning process of

performing vector navigation. Another example of this modeling approach involves training a deep

neural network to estimate self-motion velocities. This model helps explain that response proper-

ties of the dorsal visual stream, which is responsible for processing visual motion, may emerge as

a result of estimating self-motion parameters (Mineault et al., 2021).

Although deep learning models provide new opportunities for studying functionalities of the brain,

they often lack explainability, leading them to be regarded as “black boxes" just like the biological

brain. In contrast, models with simpler architecture offer the advantage that allows us to learn

precisely how model elements, for example, how each neuron and connection contributes to the

final output of the network. In a recent computational study, Rideaux et al. (2021) presented a

model of the motion processing stream which contains only a few layers of neurons in a feed-

forward network model. This model received visual motion sequences and velocity information

as input and learned to estimate velocities of self-motion and scene motion, as well as whether the

visual and vestibular signals came from the same event. After the model successfully completed the

task, it was tested with stimuli similar to those used in neurophysiological studies, and the activity

of neurons in the MSTd layer was recorded. As an emergent property of the model, some neurons

in the model developed a preference for the same visual and vestibular heading directions, while

other neurons preferred opposite visual and vestibular directions, similar to the brain’s congruent

and opposite cells (Gu et al., 2008). With a thorough analysis of the connection weight values and

experiments involving the lesion of congruent of opposite cells, the authors confirmed congruent
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cell’s role in estimating self-motion, and made a novel prediction about opposite cell’s role in

estimating scene motion.

In Chapters 4 and 5, I present computational models of a cortical area that is involved in visual

motion perception, and regions in the hippocampal formation that play critical roles in spatial cog-

nition. I show that these models accurately replicate key response properties of neurons in these

brain areas. Additionally, I test these models using tasks similar to those used in physiological stud-

ies, and perform lesion studies to investigate how certain input variables contribute to the emergent

properties of the model. These experiments demonstrate the explainability of these computational

models, and show their potential to generate helpful predictions about the mechanisms of the brain.

2.1.1 Artificial neural networks (ANNs) and Spiking neural networks (SNNs)

Artificial neural networks (ANNs) are a widely used tool for computational modeling due to their

ability to represent information processing in biological neural networks. ANNs are generally

composed of interconnected neurons that can transmit information through their connections with

modifiable weight values. One form of representing the activity of neurons in ANNs is through

rate-based encoding, which approximates the neuron activity by their average firing rates. How-

ever, a more biologically plausible representation of real neurons uses spiking events to represent

the neuron activities.

Using spiking neurons, Spiking neural networks (SNNs) capture more details of the biological

neurons than rate-based networks. In SNNs, a spiking neuron accumulates incoming currents, and

when the membrane potential reaches the threshold, the neuron fires a spike. The size and shape of

a spike are not affected by the input, but the timing of a spike depends on the input. SNNs encode

information not only in the number of spikes but also in the temporal aspect of the spikes, allowing

for more sophisticated non-linear computations than rate-based networks. SNNs have been used
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to investigate sensory processing in the brain (Xu et al., 2020), to model brain activities (Kasabov,

2014), as well as to replicate neuronal activities (Rounds et al., 2018).

Different spiking neuron models have been proposed to capture the complex dynamics of real neu-

rons. The simpler integrate-and-fire neuron model computes the membrane potential by integrating

all input information including synaptic input and injected currents. Once the membrane poten-

tial reaches a threshold, a spike is generated, and the membrane potential is reset. Variants of the

integrate-and-fire neuron include the leaky integrate-and-fire (LIF) neuron, where an exponential

decay of membrane potential is incorporated (Dutta et al., 2017). The Hodgkin-Huxley model rep-

resents a more complex neuron model, which uses voltage-gated ion channels to describe the state

of a neuron (Hodgkin and Huxley, 1952). The Hodgkin-Huxley model describes the biological

mechanisms in more detail, but is also more computationally demanding. The Izhikevich model

combines the computational efficiency of integrate-and-fire neurons with the biological plausibility

of the Hodgkin-Huxley model. This model describes the state of a neuron using 4 or 9 parameters

and is able to reproduce spiking and bursting behavior of cortical neurons (Izhikevich, 2004).

Connections in ANNs mimic the axon and dendrites of the biological neurons. The strength of the

connection between a pre-synaptic neuron and a post-synaptic neuron determines the amount of

information received by the post-synaptic neuron. The changes in connection strength or “weights"

happen through learning. Back-propagation is a common learning method used in modern ANNs,

which updates connection weights based on the difference between the predicted output and the

desired output, and the error signals are transmitted back through the network to neurons that

are several synapses away. However, current biological evidence suggests that backpropagation

may not be implemented in the brain. To better understand the network dynamics during learning

and to have a more direct comparison between computational models and recorded neural data,

it is beneficial to employ learning rules that have been observed in the brain. Two such synaptic

plasticity rules are short-term plasticity (STP) and spike-timing dependent plasticity (STDP).
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STP is a type of synaptic plasticity that induces temporary changes in synaptic strength over a

short time scale, typically on the order of hundreds to thousands of milliseconds (Tsodyks and Wu,

2013). Short-Term Depression (STD) decreases synaptic strength through depletion of neurotrans-

mitters, and Short-Term Facilitation (STF) increases synaptic strength through an increase release

probability of subsequent neurotransmitters due to the influx of calcium into the axon terminal after

spike generation. STDP is another type of synaptic plasticity, which modifies connection weights

based on the relative timing of spikes between pre- and post-synaptic neurons (Sjöström and Ger-

stner, 2010). If a pre-synaptic neuron fires shortly before a post-synaptic neuron, the connection

between them is strengthened. Conversely, if the pre-synaptic neuron fires shortly after the post-

synaptic neuron, the connection is weakened. Both STP and STDP have been observed in multiple

brain regions (Markram et al., 1998; Wang et al., 2006; Sjöström et al., 2008; Caporale and Dan,

2008). Incorporating STP and STDP into SNNs can help to better understand the mechanisms of

learning and plasticity in the brain, and can lead to the development of more biologically realistic

and computationally sophisticated models of the brain.

Simulating SNNs that capture a considerable amount of biological detail involves lengthy and

complex computational processes that require careful network state update and memory alloca-

tion. To address these challenges, a number of SNN simulators have been developed, including

CARLsim (Chou et al., 2018; Balaji et al., 2020), NEURON (Carnevale and Hines, 2006), Brian

(Stimberg et al., 2019), and NEST (de Schepper et al., 2022). Compared to other SNN simula-

tors, CARLsim is advantageous because it supports parallel simulations with multiple GPUs and

CPUs, allowing for fast computation in large-scale SNN simulations. Additionally, CARLsim fea-

tures an automated parameter tuning interface (PTI), which can be bridged to external libraries

for evolutionary computation such as Evolutionary Computation in JAVA (ECJ) (Luke, 2017) and

Library for Evolutionary Algorithms in Python (LEAP) (Coletti et al., 2020). Hyper-parameter

tuning in SNNs with evolutionary algorithms usually involves simultaneous evaluation of multi-

ple individual networks, which requires considerable computing resources. CARLsim’s ability to

allocate individual networks or parts of the networks to multiple CPUs and GPUs significantly
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accelerates the simulation process. This is especially beneficial when running SNN simulations on

high-performance computing clusters and laboratory workstations, which contain arrays of CPUs

and GPUs (Chou et al., 2018). Chapter 3 introduces the new features integrated into the latest

release of CARLsim, which further extends the biological details of SNN simulations in the setup

of the STP and STDP plasticity update rules, and provides more flexibility for SNN simulations

that involve various neuromodulation setups.

2.1.2 Evolutionary algorithms and their applications on neural network op-

timization

Evolutionary algorithms were developed upon the Darwinian evolutionary theory and describe a

process in which the highest-performing members of a population survive and reproduce the next

generation population (De Jong, 2006). Evolutionary algorithms follow a general framework: a

population of size m evolves over time, with a number of individuals selected from the current

population to act as parents and produce n offsprings. This expanded population of size m+ n is

then reduced to m individuals to keep the size of the population constant. The values for the parent

population size m and offspring population size n should be carefully chosen (Jansen et al., 2005).

In general, larger values of m should be chosen for more complex optimization problems. The

selection of values for n reflects a balance between exploration and exploitation. As the offsprings

were generated from the parent population, the larger the value of n, the more influence the parent

population has on the next generation of population, and thus the less explorative the algorithm will

be. Apart from choosing appropriate values for m and n, it is also important to choose effective

methods for the following steps in the process of evolving a population: selection and reproduction.

The selection stage is involved in both the process of selecting the parent individuals as candidates

to produce offsprings, and the process of selecting m individuals among the m+ n population to

survive for the current generation. There are two commonly-used selection techniques: tournament
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selection and fitness proportionate selection. In tournament selection, k individuals are randomly

selected to compete with each other, and the best performing individual in these k competitors

is then selected for reproduction (Fang and Li, 2010). This process is repeated until the desired

number of offsprings have been produced. In fitness proportionate selection, the probability of an

individual being selected for reproduction is proportional to its fitness value relative to the fitness

values of other individuals in the population (Blickle and Thiele, 1996). Tournament selection

generally has a stronger selection pressure than fitness proportionate selection, as only the best

individuals are selected in the tournament competitions. On the other hand, in fitness proportionate

selection, a lower-fitness individual still has a probability of being selected for reproduction.

Reproductive mechanisms can be achieved through mutation or recombination (Eiben and Smith,

2015). Mutation is a single-parent reproductive mechanism that introduces small variations in the

parent’s genes to produce offspring. These variations can be implemented through mutation oper-

ators such as bit-flip or Gaussian mutation. Recombination, typically through crossover operators,

produces offspring by combining genes from two or more parents. Mutation facilitates exploration

by introducing new genes, while recombination exploits existing knowledge and searches in the

space defined by the gene values of the parent individuals.

Evolutionary algorithms represent a versatile approach with very few assumptions about the task

structure and has various applications in optimizing neural networks, a process known as neu-

roevolution (Lehman and Miikkulainen, 2013; Miikkulainen, 2010). The optimization could be

done through evolving network parameters (i.e. connection weights), or even network structures,

such as the number of neuron layers, the number of neurons per layer, or the connection topology

between neurons. These network features could be mapped directly to the genetic encoding of the

evolutionary algorithm. However, this direct encoding approach suffers from scalability issues.

When the network becomes more complex, the number of variables to be encoded can increase,

making it difficult to search through the parameter space thoroughly. An alternative approach is

indirect encoding, in which the genetic encoding defines a set of parameters that can be used to
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generate a solution, instead of mapping the genes directly to network components. This approach

provides an efficient and compact representation of the process to construct a network (Lehman

and Miikkulainen, 2013).

A number of previous studies have demonstrated that evolutionary algorithms provide a powerful

tool for constructing and optimizing SNNs. Pavlidis et al. (2005) showed that by directly evolv-

ing the weight vectors, they could generate SNNs with a generalization ability comparable to that

of a standard multi-layer perceptrons trained using gradient descent-based algorithms. For un-

derstanding and processing spatio-temporal brain data, Kasabov (2014) proposed an SNN model

architecture called NeuCube, which was based on a 3D evolving SNN that mapped structural and

functional areas of the brain concerining spatial-temporal brain data. Evolutionary algorithms were

applied to evolve for new neurons and new connections in the SNN based on the input data. Results

of this study suggest that this modeling approach led to a better accuracy for classification and pat-

tern recognition tasks, and can be applied to model various spatio-temporal brain data. Instead of

directly evolving the connection weights, Rounds et al. (2018) proposed a method of evolving the

parameters of the spike-timing dependent plasticity (STDP) rule in SNNs. This approach greatly

reduces the search space for network parameters, and was shown to be effective for modeling the

activity of individual neurons recorded in rodents while performing a navigational task. Elbrecht

et al. (2020) explored the relationship between STDP and evolutionary algorithms as optimiza-

tion approaches for training SNNs, and found that the combination of STDP and the evolution of

network structure led to a reduced network size and an improved generalization ability, both of

which are desirable characteristics in deployed SNNs. To explore interpretable plasticity rules for

SNNs, Jordan et al. (2021) proposed an evolutionary approach where mathematical expressions

were encoded as genotypes and evolved to complete tasks in various learning situations, including

reinforcement learning, supervised learning, and error-driven learning. The evolved learning rules

were interpretable and some of them closely resembled the plasticity rules observed in the brain,

such as STDP. Additionally, the approach also recovered rules similar to gradient-based meth-
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ods for learning from target signals, and uncovered previously unknown mechanisms for efficient

reward learning.

In Chapters 4 and 5, I demonstrate that evolving synaptic learning rules in SNNs is a versatile

modeling approach that could be applied to various forms of neural data, with diverse optimization

objectives. The approach was successfully employed to model cortical motion perception in the

macaque brain and spatial cognition in the rodent brain, resulting in models that accurately repli-

cated crucial neuron properties in the target regions. Furthermore, these models can generate novel

hypotheses for future neurophysiological investigations.

2.2 Visual motion perception

The ability to perceive motion, including one’s own movement relative to the environment, and

the movement of objects in the environment, allows individuals to make informed decisions about

their actions during navigation. Vision is an important source for motion perception. When an

observer moves through an environment, the relative motion between the observer and the scene

causes changes of structured light on the retina, creating an an optic flow (Raudies, 2013). From

the optic flow, it is possible to derive several key properties of the observer’s self-motion, including

their speed and direction of travel, as well as the rate of rotation. The estimation of optic flow has

been extensively studied in computer vision, and a number of computer vision techniques have

been proposed for estimating optic flow from moving images, such as the Lucas-Kanade method

(Lucas and Kanade, 1981) and the Horn-Shunck method (Horn and Schunck, 1981), both of which

compute spatial and temporal image derivatives to estimate optic flow components. It is intriguing

how the biological brain perceives optic flows and translates them into behavioral variables relevant

to navigation.
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Originating in the visual cortex, two distinct visual pathways have been characterized as the “what"

and “where" pathway, respectively. The “what" pathway, also known as the ventral pathway, con-

sists of a hierarchically organized set of cortical regions, beginning with the primary visual cortex

(V1) and extending to the inferior temporal (IT) cortex (Ungerleider and Pessoa, 2008; Issa et al.,

2018). This pathway is specialized in the recognition of objects. The “where" pathway, also re-

ferred to as the dorsal pathway, involves areas V1, the middle temporal cortex (MT), and the medial

superior temporal cortex (MST), which connects to intraparietal regions including the lateral in-

traparietal area (LIP), the ventral intraparietal area (VIP), and the middle intraparietal area (MIP).

This pathway is specialized in the localization of objects. Despite extensive research focused on

the “what" pathway, the “where" pathway has received comparatively less attention.

The visual motion processing stream is contained in the dorsal pathway. Similar to the ventral

pathway, this processing stream follows a hierarchical structure, where neurons in the downstream

regions have larger receptive fields and exhibit more elaborate response properties (Andersen et al.,

1997). These properties allow the downstream areas to perform more complex analyses of their

input signals, enabling more global and complex assessments of motion.

2.2.1 Direction selective neurons in V1

The cortical motion stream begins in V1, where direction-selective neurons were discovered (Hubel

and Wiesel, 1962; Emerson et al., 1992). This subset of V1 neurons respond to different directions

of movements, and have relatively small receptive fields. A simple hypothetical neural circuit

known as the Reichardt detector was proposed for motion detection (Reichardt, 1961). In this

model, two photoreceptors are positioned in two separate locations. The location difference results

in a time difference for these two receptors to receive the light intensity input. The response sig-

nal of the first receptor is delayed by the model mechanism, and compared to the response of the

second receptor through multiplication. The direction of motion can thus be derived if the delayed
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response from the first receptor matches with the instantaneous response of the second receptor

(Figure 2.1A) (Reichardt, 1961; Borst, 2000). The Reichardt detector demonstrates the ability to

detect local motion as it is sensitive to changes in both space and time. Adelson and Bergen (1985)

proposed that the problem of motion detection can be expressed as detecting oriented lines in a

spatio-temporal three-dimensional space. For example, as illustrated in Figure 2.1B, the state of

a stimulus that moves from left to right in a space defined by the x and y spatial coordinates can

be expanded to the temporal dimension t. In this example, the movement does not involve the y

axis. Therefore, the movement of the stimulus can be expressed as a slanted bar spanning the x

and t axes, and the orientation of this slanted bar tells the motion of the stimulus. Analogous to

how V1 neurons detect edges in static images, the selectivity of V1 neurons to the direction of

stimulus movement can be regarded as detecting orientation in a spatio-temporal space (Carandini

et al., 1999). Based on the concept of processing motion in the spatio-temporal frequency domain,

Adelson and Bergen (1985) elaborated the Reichardt model and introduced the “motion energy"

models. The basic units of this model are space-time separable filters whose impulse responses

are given by the joint responses of spatial and temporal responses. Local motion energy can be

computed by squaring and summing the the output of a pair of these spatio-temporal filters (Fig-

ure 2.1C). An opponent energy detector can be constructed by combining leftward and rightward

energy detectors. As a result, an (R-L) detector would respond positively to rightward motion, and

negatively to leftward motion. The spatio-temporal filters used in this class of models are physio-

logically plausible, which is supported by recordings from V1 neurons in the monkey or cat brain

(Emerson et al., 1992; Rust et al., 2005; Heess and Bair, 2010).

2.2.2 Velocity selective neurons in MT

The next stage of visual motion processing involves the MT area, which receives afferent input

from V1 and has been shown to play a critical role in motion perception (Britten et al., 1996). The

causal link between MT neuronal activity and psychophysical judgement of motion was observed
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Figure 2.1: A. The Reichardt detector. As the object moves from left to right, the two photorecep-
tors receive light intensity signals with a time difference. The response signal of the first receptor
is applied with a delay and compared with the response of the second receptor. A rightward motion
will activate the output neuron in this model. B. Figure adapted from Carandini (2012). Top: a
stimulus moves to the right. Middle: the motion represented in a three-dimensional spatio-temporal
space. Bottom: the motion represented in a spatio-temporal space, omitting the invariant dimen-
sion. C. Redrawn from Adelson and Bergen (1985). The motion energy model. The response of
a pair of spatio-temporal filters being squared and summed which results in a phase-independent
measure of local motion energy.
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in behavioral studies. For instance, by recording the performance of monkeys and neural activities

of MT neurons while the animal were engaged in a psychophysical task, Newsome et al. (1989)

showed that perceptual decisions regarding motion can be determined based on a relatively small

number of neurons. Additionally, (Celebrini and Newsome, 1995) showed that the perceptual

decisions of monkeys during psychophysical tasks can be influenced by stimulation of the MT

area during the presentation of visual stimuli.

Compared to V1 direction-selective neurons, MT neurons have a more global view of the motion

pattern, and are selective to the velocity of motion, including the direction and speed (Albright,

1984; Celebrini and Newsome, 1995). MT neurons have been demonstrated to effectively resolve

ambiguity in motion perception. The use of plaid stimuli has enabled researchers to examine the

response properties of cortical neurons to both local and global motion directions. A plaid stimulus

can be constructed by superimposing two gratings with different orientations. As illustrated in

Figure 2.2 A, when the plaid stimulus moves in one direction, which indicates the global motion of

the plaid pattern, the component gratings appear to move in two different directions, corresponding

to the local motion that conflicts with the global motion pattern. In contrast to most V1 neurons,

which respond only to a single component direction, ignoring the global motion of the plaid pattern,

two types of motion-selective neurons have been discovered in the MT area: component direction

selective (CDS) and pattern direction selective (PDS) neurons (Celebrini and Newsome, 1995).

The CDS neurons exhibit tuning curves for plaid stimuli with two distinct lobes, corresponding

to the directions of motion of the two component gratings. On the other hand, the PDS neurons

display a single-lobed tuning curve for plaid stimuli, which is invariant to different formation of

the two components of the stimulus. Additionally, unlike V1 neurons, MT neurons were found

to be strongly suppressed if two motions in different direction are present in their receptive fields

(Snowden et al., 1991). This mechanism is thought to be important for removing noise in the

motion stimulus, and showed that MT neurons have more complex response properties than V1

neurons (Andersen et al., 1997).
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Figure 2.2: Figure adapted from Rasmussen and Yonehara (2017). A. Plaid stimuli. A plaid stim-
ulus can be formed by superimposing two gratings with different orientations. As a plaid stimulus
moves in a particular direction, its two component gratings appear to move in two other directions.
B. Both CDS and PDS cells in MT respond to the direction of a drifting grating. However, for a
drifting plaid stimulus, CDS cells respond to the drifting direction of the component gratings, and
PDS cells respond to the “pattern direction", which corresponds to the driting direction of the plaid
stimulus.
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The PDS neurons appear to be key to understanding how the brain perceives coherent motion

patterns despite ambiguity in local motion. Adelson and Movshon (1982) suggested that the brain

utilizes the intersection-of-constraints (IOC) principle to determine global motion. Under this prin-

ciple, when a plaid stimulus moves in one direction, the lines representing the motion direction of

the two component gratings would intersect at a single point, which corresponds to the moving

direction of the plaid stimulus. Simoncelli and Heeger (1998) proposed a computational model

of area MT which incorporated a neural implementation of the IOC principle and accounted for

the pattern selectivity of MT neurons. This model is based on a two-stage processing framework

that involves the V1 and MT cortical areas. Both processing stages share the same basic form of

computation, including the summing of all input responses, rectification, squaring, and response

normalization. In the first stage, V1 neurons are modeled as spatio-temporal filters which led to

direction selectivity, but no velocity selectivity. In the next stage, each MT neuron integrates the re-

sponses of a particular set of V1 neurons that have spatio-temporal tuning profiles that form certain

patterns in the two-dimensional spatio-temporal frequency domain. This linear integration process

is in agreement with the IOC hypothesis, and allows the MT neurons to develop velocity tuning

and pattern motion selectivity. Additionally, each MT neuron sums the responses of V1 neurons

whose receptive field positions fall in a local spatial neighborhood, allowing the MT neurons to

have a larger receptive field than V1 neurons. Finally, the responses of the MT neurons are pooled

together to provide a population code for the motion of the stimulus. This model successfully cap-

tured the pattern motion selectivity of MT neurons and accounted for much of the physiology of

MT neurons, such as the suppression of response by non-preferred motions. In addition to PDS,

MT CDS neurons may also be constructed in a similar framework, using a broad spatial frequency

bandwidth.

A more elaborated computational model of area MT that incorporated surround suppression of V1

neurons to account for nonlinearity in visual processing was introduced by (Rust et al., 2006). In

this cascade linear-nonlinear model, MT neurons linearly integrate nonlinear response of a popu-

lation of direction-selective V1 cells. The direction selectivity of V1 neurons is described as von
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Mises functions. Unlike the Simoncelli-Heeger model, which operates on spatio-temporal image

intensities, the cascade model is restricted to inputs that are mixtures of 12 sinusoidal gratings of

fixed spatial and temporal frequency, which was sufficient to capture the response properties of

V1 neurons. This study compared two forms of divisive normalization in the V1 stage: 1) an “un-

tuned" normalization that weights all stimuli equally, as implemented in the Simoncelli-Heeger

model, and 2) a “tuned" normalization that gives less weight to non-preferred stimuli. The lat-

ter normalization method is consistent with surround suppression in V1 neurons, which has been

shown to be a divisive operation that is selective for both orientation and direction (Cavanaugh

et al., 2002). Results in this study showed that the pattern motion selectivity in the modeled MT

neurons could be largely attributed to the tuned normalization component. The tuned normaliza-

tion component provides a simple and biologically plausible way of modeling a wide range of the

complex response properties of MT neurons. This study also suggests that, for the formation of

pattern motion selectivity, pooling inputs from a broad range of preferred directions and incorpo-

rating strong motion opponent suppression may be essential.

2.2.3 Optic flow processing and heading perception in MST

Computational models based on V1-MT physiology provide an effective framework for low-level

visual motion processing, allowing for the computation of maps of local motion vectors from

retinal images (Nishida et al., 2018). However, the small size of receptive fields in these two brain

areas suggests that they are not sufficient for processing optic flows, which span the entire visual

field. On the other hand, the medial superior temporal area (MST) located in the higher levels of

the dorsal stream, contains neurons with large receptive fields. In particular, neurons in the dorsal

part of MST (MSTd) have receptive fields that can cover most of the visual field (Komatsu and

Wurtz, 1988). Area MST receives primary inputs from MT (Raiguel et al., 1997), and is believed

to play a crucial role in processing optic flow and perceiving self-motion.
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In order to study the response properties of MSTd neurons to visual motion patterns, various

stimuli paradigms have been employed. During these experiments, MSTd neuronal activity was

recorded as animals viewed visual stimuli that simulated scenes one would encounter during loco-

motion. Results of early studies showed that MSTd neurons were sensitive to optic flow patterns

that are related to self-motion, including expansion, contraction, translation, and rotation move-

ments (Tanaka and Saito, 1989; Tanaka et al., 1989). Some MSTd neurons were sensitive to only

one type of motion, but most neurons were sensitive to two or three components of optic flow

motion patterns (Duffy and Wurtz, 1991). Graziano et al. (1994) introduced a class of stimuli that

spanned a spiral space which allowed for the characterization of the continuous tuning property

of MSTd neurons. The spiral coordinates represented expansion and contraction motion on the

vertical axis, clockwise and counterclockwise rotation on the horizontal axis, and spiral motion

such as expanding clockwise spiral along the intermediate directions. This study, which recorded

57 MSTd neurons, found a large proportion of these neurons showed a preference for expanding

motion. Additionally, this study revealed that MSTd neurons showed some degree of position in-

variance in terms of preferred spiral motion for stimuli located in two different locations separated

by a vertical displacement of 8.5°.

The evidence of MSTd neurons responding to optic flow patterns led to investigations into the

role of area MSTd in visual navigation, particularly with regards to heading perception. By using

electrical microstimulation to perturb the activity of MSTd neurons, Britten and Van Wezel (1998)

demonstrated that the heading perception of monkeys was biased by the stimulation, indicating a

direct involvement of MSTd in the perception of heading from optic flow. It might be natural to

hypothesize that MSTd neurons each encodes the heading direction by using the focus of expan-

sion (FOE) in the preferred optic flow pattern. However, the property of position invariance of

MSTd tuning to motion patterns suggests that individual MSTd neurons cannot precisely encode

the heading direction. Instead, it has been proposed that heading direction is encoded in broadly

tuned populations of MSTd neurons (Graziano et al., 1994). Supporting this hypothesis, Hamed

et al. (2003) suggested that MSTd neurons may act as basis functions to encode heading direc-
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tion. Results from this study showed that the FOE in optic flow could be accurately estimated

using optimal linear estimators from single-trial responses of 144 MSTd neurons, with an aver-

age error of 2-3°, which was consistent with the discrimination thresholds measured in humans

and monkeys. This study suggests that downstream neurons could compute nonlinear functions of

perceptual variables, such as the FOE, by linearly combining the activities of MSTd neurons. The

heading preference of MSTd neurons was further characterized for both translational and rotational

motion in a three-dimensional (3D) space (Gu et al., 2006; Takahashi et al., 2007). These studies

revealed that MSTd neurons exhibited broad, approximately sinusoidal tuning, and that most of

them had a preferred heading direction for azimuth at 0°or 180°, which corresponds to leftward

or rightward movement during translation, or pitch or yaw motion for rotational movements. The

overabundance of neurons preferring lateral motion was shown to be correlated with better heading

discrimination around the straight forward direction (Britten, 2008; Gu et al., 2010).

Computational models have been developed to understand the visual response properties of MST

neurons, which follow the visual motion processing hierarchy of V1-MT-MST. In these models,

MT neurons are modeled as speed- and direction-tuned units with tuning curves similar to those

observed in the brain. The response of MT units is then integrated by MST units to account for the

complex response of MST neurons. Using a simple three-layer feed-forward model, Sereno and

Sereno (1991) demonstrated that Hebbian learning could capture the rotation and dilation motion

tuning and position invariance property of MSTd neurons. In a follow-up study, Zhang et al. (1993)

modified this model by using broader cosine tuning curves in the input layer, which allowed MST

units to have stable responses to their preferred motion components regardless of the magnitudes

of additional complex motion components in the stimulus. These results were consistent with the

decomposition hypothesis, which proposes that MST neurons decompose complex motion stimuli

into their component parts. However, MSTd neurons were found to be tuned to a continuum of

motion patterns in the spiral space, thus not supporting the idea that these neurons decompose optic

flows into component motions (Graziano et al., 1994). To understand the underlying structure of

MST neuron receptive fields, Yu et al. (2010) recorded MSTd responses to full-field optic flow
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stimuli and local patches of these optic flow patterns. They modeled the local motion responses

with Gaussian mixture models and found that a linear combination of the local responses did

not account for global responses well. Instead, adding response gain modulation significantly

improved the fit to the data, suggesting that complex interactions may occur among MST inputs.

Similarly, Mineault et al. (2012) argued that nonlinearity is necessary to fully explain the complex

visual selectivity of MST neurons. Specifically, they observed that a linear model was effective in

capturing translational selectivity but not for spiral stimuli. By adding a parameter that accounts

for compressive responses of the MT output, they found that the MST units had a strong tuning

to both translation and spiral stimuli. They suggested that this compressive mechanism could be

implemented through synaptic depression at the MT-MST connections, or could also be a form of

normalization that resembles surround suppression in MT.

Beyeler et al. (2016) proposed a model that accounted for the 3D translation and rotation selectivity

of MSTd neurons. They applied a dimensionality reduction method known as nonnegative matrix

factorization (NMF) to a matrix of MT responses, and decomposed this matrix into two smaller

matrices, which represented the MT-MST connection weights and the activation of MSTd units.

Through this method, MSTd-like receptive fields emerged from the model, showing preferences to

mixtures of translational, rotational, and deformational flow components. Furthermore, the MSTd

units displayed 3D translational and rotational selectivity similar to those observed neurophysio-

logical studies (Takahashi et al., 2007). Results in this study suggest that the complex response

properties of MSTd neurons may be a by-product of MSTd neurons performing dimensionality

reduction on their inputs. In a different modeling study by Mineault et al. (2021), deep neural

network models that were optimized to predict self-motion parameters, including walking speed

and head rotation, could learn motion representations that closely resembled those found in the

dorsal visual stream. The networks were able to account for neuronal responses in areas V1, MT

and MST. These findings suggest that the visual motion properties in the dorsal stream may be

explained by the brain’s optimization towards an ecologically relevant cost function of orienting

oneself during self-motion. Correspondingly, in Chapter 4, I demonstrate that MSTd-like response
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properties, including selectivity to spiral motion stimuli, and 3D translational and rotational head-

ing selectivity, emerge in a neural network model that is optimized to reconstruct input optic flows.

This study suggests that the complex visual response properties observed in MSTd neurons may

be relevant to the brain’s efficient representation of the visual space for achieving effective visual

motion perception.

Computational models of MSTd have employed different ways of decoding heading direction.

Perrone and colleagues proposed a class of template-based models in which heading was directly

encoded by individual neurons as heading detectors (Perrone, 1994; Perrone and Stone, 1998).

Similarly, in the model proposed by Layton and Browning (2014), MSTd subpopulations each

encode a heading direction, with different units within subpopulations tuned to different motion

patterns in a spiral space, and the maximally active subpopulation signaling the perceived heading

direction. Another proposed model by Grossberg et al. (1999) implemented log polar cortical

magnification on retinal images before they were processed by the visual motion stream. The

modeled MSTd units developed representations that encoded preferred heading direction, allowing

for accurate heading perception without using complex templates. In line with neurophysiological

evidence (Hamed et al., 2003), the heading/ FOE was decoded from the population activity of

MSTd units in the sparse decomposition model (Beyeler et al., 2016). This population decoding

method is also used in the SNN model presented in Chapter 4 of this dissertation.

In summary, the visual processing pathway follows a hierarchical scheme, where each subsequent

level integrates the output from the previous level, resolving conflicts and extracting global infor-

mation. In Chapter 4, an (SNN) model of MSTd is introduced to provide insight into how the

brain processes optic flow. This model integrates the local motion response of MT-like speed and

direction selective neurons, capturing a range of response properties observed in macaque MSTd

neurons. The model demonstrates a neurobiologically plausible implementation of the sparse cod-

ing and dimensionality reduction processing of optic flows proposed in Beyeler et al. (2016), and

accurately encodes heading using a population code.
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2.3 Cognitive maps

Efficient representations of environmental features is crucial for effective navigation. Behavioral

experiments on maze learning in rats have demonstrated that rodents possess remarkable abilities

to learn and infer about the spatial structure of their environment, creating an integrated map of

the environment in their brain that they can utilize for navigation. These "cognitive maps" allow

animals to locate themselves and other items in an environment and move between places through

available routes, even when familiar routes to a goal are blocked (Tolman, 1948). The response of

specific cells in the brain may represent certain components of episodic memory, which maps out

features in the environment useful for navigation.

The hippocampus has long been known for its role in memory, particularly in the context of spatial

navigation. For instance, rats with lesions in the hippocampus showed significant impairments in a

task where they were required to locate and arrive at a previously found platform hidden in a large

circular pool of water (Morris et al., 1982). The rodent hippocampal formation, consisting of the

Cornu Ammonis (CA) fields, dentate gyrus (DG), the subicular region (SUB), and the entorhinal

cortex (EC), was suggested to represent important components of the cognitive maps (O’Keefe

and Nadel, 1979). During navigation, representations of location and orientation are essential for

path planning. For example, when positional information about the animal’s current location and

destination, as well as the head direction of the animal the is known, a vector corresponding to the

most efficient path to the target location can be computed (McNaughton et al., 2006).

The first piece of evidence that revealed how cognitive maps may be represented in the brain was

the discovery of place cells in the rat hippocampal sub-region CA1. These neurons show an activity

bump only when the animal is in certain locations in the environment (O’Keefe and Dostrovsky,

1971). Spatial locations in the entire environment can thus be mapped by the population activity

of these place cells. Similar to place cells which show sharply tuned spatial firing, grid cells in the

entorhinal cortex have multiple firing fields and these firing fields form a grid that tiled the entire
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environment (Hafting et al., 2005). Representations of the animal’s head direction in relation to the

environment were found in the rat post-subiculum. These neurons are known as head direction cells

that encode the animal’s head direction independent of the animal’s position (Taube et al., 1990).

Furthermore, spatial representations in many other forms have been observed in the hippocampal

formation, including object vector cells that signal the animal’s distance and direction to objects in

the environment (Høydal et al., 2019), boundary vector cells that fire when the animal is in close

to the borders of the environment (Lever et al., 2009), and so on. These representations provide

important insights into how the brain encodes spatial relationships in different contexts (Figure

2.3).

This dissertation focuses on the hippocampal sub-region CA1, and the subiculum (SUB), which

has received less attention compared to the CA1. SUB receives direct synaptic inputs from CA1,

and projects to various cortical and subcortical areas (Matsumoto et al., 2019; Sun et al., 2019;

Olson et al., 2021). Neurons in the SUB conjunctively encode position, speed, and direction (Led-

ergerber et al., 2021). Compared to CA1 place cells, SUB place cells showed larger and less

specific place fields (Sharp and Green, 1994; Potvin et al., 2007), and these representations were

suggested to be the convergence of a number of CA1 place cells (Barnes et al., 1990). In addition to

exhibiting direction selectivity, SUB neurons also respond to boundaries of the environment (Lever

et al., 2009) and some neurons are tuned to the animal’s axis of travel (Olson et al., 2017). SUB

neurons were characterized to be encoding “kinds" of places; for example, on a Triple-T maze,

SUB neurons are often active for locations that are analogous with respect to the maze structures

(Olson et al., 2021).

Both CA1 and SUB are major hippocampal output regions, and they are reciprocally connected.

SUB receives a large projection from CA1, and sends a sparser backward projection to CA1

(O’Mara, 2005; Xu et al., 2016). The mammillary bodies project strongly to SUB, which may

be the source of head direction information along with the anterior thalamic nuclei (ATN) (Allen

and Hopkins, 1989). It has been suggested that SUB processes input information with a mixed
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Figure 2.3: Schematic drawings of spatial representations observed in the rodent brain. A. Place
cells that are active when the animal is in certain locations in the environment. Initially discovered
in the hippocampal sub-region CA1 (O’Keefe and Dostrovsky, 1971). B. Grid cells that have mul-
tiple firing fields that form grids tiling the spatial environment. Discovered in the medial entorhinal
cortex (MEC) (Hafting et al., 2005). C. Head direction cells that are active when the animal is
facing a particular direction. Initially discovered in the postsubiculum (Taube et al., 1990). D. Ob-
ject vector cells that are active when the animal is in a particular distance and direction to objects
in the environment. Discovered in MEC (Høydal et al., 2019). E. Boundary vector cells that are
active when the animal is close to the boundary of the environment. Discovered in the subiculum
(Lever et al., 2009). Figure adapted from Behrens et al. (2018).

27



selectivity and broadcasts the hippocampal signal for more efficient readout in distant brain areas

(Ungerleider and Pessoa, 2008).

Remarkably, spatial representations in the hippocampus involve more than the current experience.

For example, place cells in CA1 were shown to have trajectory-dependent activity. Using a plus-

shaped maze where the rat navigated from one arm to another, with a decision point at the inter-

section, Ferbinteanu and Shapiro (2003) observed that place cell activity on the shared segment

of two routes varied with different route selection. This differential activity was dependent on the

rat’s prior trajectory, preceded the navigation decision and provided a prospective coding decisions

in the immediate future. Neurons that exhibited this property were also termed “splitter cells," and

the quality of the trajectory-dependent information, measured by the consistency of firing, and the

discriminability between left and right turns, was found to be correlated with task performance

(Kinsky et al., 2020).

The emergence of spatial representations in the brain and the integration of different signals that

contribute to these representations have been investigated through various computational models.

Burgess et al. (1994) suggested that hippocampal place fields can be generated through associative

learning with sensory inputs. In this model, sensory inputs were modeled using a set of “sensory

cells" that respond broadly to the distance of discrete sensory cues such as visual, olfactory, and

auditory cues. Learning occured through exploration of the environment, and the model demon-

strated that unsupervised competitive learning led to the development of stable place fields. Redish

and Touretzky (1997) proposed a system-level model of rodent navigation based on path integra-

tion using a place code and a representation of head direction. This model incorporated self-motion

signals that updated the place code, and suggested a mechanism for aligning place code with lo-

cal view information upon re-entry into familiar environments. Using a brain-based device with

a simulated nervous system that modeled the hippocampus and its surrounding regions following

anatomy, Krichmar et al. (2005) demonstrated that place fields emerged from the by integrating

visual and self-movement cues during exploration in a real environment. Additionally, based on
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the evidence that the EC provides strong cortical inputs into the hippocampus and the discovery

of grid cells as well as boundary vector cells in the EC, computational models have been proposed

to describe the emergence of place fields from EC inputs. Solstad et al. (2006) showed that place

fields can be formed by summing the inputs from a population of grid cells with similar spatial

phases, diverse grid orientations, and a biologically plausible range of grid spacings. In addition,

Hartley et al. (2000) demonstrated that inputs sensitive to the distance and allocentric direction of

boundaries in the environment, which is what boundary vector cells respond to, can drive place-

specific responses.

To investigate how these forms of spatial representations can guide navigation, reward learning has

been incorporated in studies of hippocampal-dependent navigation. In these studies, the activity of

a population of place cells signals the location of the agent, and the agent takes actions which were

represented by the activity of head direction cells to receive rewards. Place fields were described as

either Gaussian tuning curves that tiled the entire environment (Foster et al., 2000; Frémaux et al.,

2013), or as an integration of allothetic information provided by the visual system and idiothetic

information such as internal movement-related signals (Arleo and Gerstner, 2000). These studies

modeled place cells in the CA1 and CA3, which have small and specific place fields. In contrast,

Burgess et al. (1994) used SUB cells with large place fields built from CA1/ CA3 projections, al-

lowing information to be passed from positions far from the goal. To account for the representation

of future occupancy and decisions in place cells, Stachenfeld et al. (2017) suggested that the pre-

dictive nature of hippocampal place codes could be realized by a successor representation (SR) in

a reinforcement learning framework. The SR serves as a representation of the expected discounted

future state occupancy, and can be combined with the reward function to form the value function

(Dayan, 1993). Their SR model showed that a predictive code in the hippocampus could flexibly

support adaptive behavior.

In Chapter 5, I propose biologically plausible SNN models of hippocampal sub-region CA1 and

SUB. I show that self-motion variables, including linear and angular velocity, head direction, and
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position information can be integrated differently within the same network architecture, through

separately evolved STDP learning curves. This integration results in differing spatial representa-

tions as observed in CA1 and SUB, respectively.
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Chapter 3

CARLsim 6: An Open Source Library for

Large-Scale, Biologically Detailed Spiking

Neural Network Simulation

3.1 Introduction

Spiking Neural Networks (SNNs) provide a powerful method for modeling the dynamics of bio-

logical neural networks due to their ability to encode and process data in the temporal dimension,

making them an important tool for both the neuroscience and the machine learning communities.

As research in these fields continues to advance, there is a growing need for more flexible and ac-

cessible tools for building and simulating complex SNNs. Such tools would provide an easy-to-use

This chapter is a slightly modified version of the paper titled “CARLsim 6: An Open Source Library for Large-
Scale, Biologically Detailed Spiking Neural Network Simulation" published in the 2022 International Joint Conference
on Neural Networks (IJCNN) Proceedings (Niedermeier et al., 2022). The inclusion of this paper is in compliance
with the permission policy of the original publisher.
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user interface, efficient and scalable network processing ability, and a rich set of native features

that supports a wide variety of simulation needs.

CARLsim is a biologically detailed and large-scale simulator for SNNs that meets these criteria.

It supports various types of spiking neuron models, including the Izhikevich model with four or

nine parameters, as well as the Leaky Integrate-and-Fire (LIF) model. CARLsim also supports the

simulation of spiking neurons with multiple compartments, such as spiking neurons that include

a somatic compartment and a number of dendritic compartments, whose membrane capacitance

can be separately simulated with the Izhikevich model (Izhikevich and Edelman, 2008). In addi-

tion, spiking neurons in a group can be arranged in a three-dimensional grid to capture the spatial

structure of the network. For example, this feature is used in the SNN model presented in Chen

et al. (2022), where the neuron groups of two visual motion processing layers were organized into

grids to preserve the retinotopic information in these two layers. On the synapse level, CARL-

sim supports simulations in the current-based (CUBA) mode, where the synaptic current into the

postsynaptic neuron is directly proportional to the synaptic weight, and in the conductance-based

(COBA) mode, where the input synaptic current is dependent on conductances with exponen-

tial decays. Synaptic connections between neurons can have fixed weight values or be updated

with synaptic plasticity, such as spike-timing-dependent plasticity (STDP) or short-term plastic-

ity (STP). Various forms of synaptic plasticity have been implemented in CARLsim, including

STDP that can be applied to either glutamatergic synapses (E-STDP) or to GABAergic synapses (I-

STDP), Dopamine-modulated STDP (DA-STDP), STP, and homeostatic plasticity (Beyeler et al.,

2015).

To enhance its usability, CARLsim provides real-time and offline data analysis tools and an au-

tomated parameter tuning interface (PTI) which accelerates the creation of SNN models and fa-

cilitates the analysis of simulation data (Beyeler et al., 2015). CARLsim leverages the power of

diverse computing tools by supporting the use of multiple graphics processing units (GPUs) and

multiple central processing units (CPUs) concurrently in a heterogeneous computing cluster (Chou

32



et al., 2018). With the advantage of energy efficiency and computing speed, neuromorphic chips

are also a promising option for SNN applications, such as cloud edge devices and autonomous

robots. Recently, a Python interface was introduced to CARLsim, which preserves its computing

efficiency realized by the C++ core developments, and also further increases its accessibility to the

computational neuroscience and machine learning communities (Balaji et al., 2020). PyCARL fa-

cilitates the construction of SNN models for neuromorphic hardware, and supports the estimation

of hardware latencies to allow for performance optimization (Balaji et al., 2020).

This chapter describes the development of CARLsim’s sixth generation, which involves both sys-

tem maintenance and the introduction of new features (Niedermeier et al., 2022). System main-

tenance efforts focus on ensuring sustainability and improving accessibility to users. These ef-

forts include addressing defects, extending documentation, and integrating CMake which ensures

CARLsim to be compatible to all relevant target platforms (i.e. Linux, Windows, and MacOS).

In addition to the analysis toolbox already implemented in MATLAB, CARLsim 6 now provides

a Python implementation of the Offline Analysis Tool (OAT). Apart from these, new features in-

troduced in CARLsim 6 include the support for multiple neuromodulatory features that enable the

implementation of the mammalian neuromodulatory system as defined by Krichmar (2008); Av-

ery and Krichmar (2017). Furthermore, the configuration of STDP and STP is now applied at the

connection level, rather than being restricted to the post-synaptic group level. The new structural

features and neuromodulation implementations are illustrated in Figure 3.1.

Overall, the system maintenance effort and the feature enhancement in CARLsim 6 allow users

to utilize a variety of hardware configurations and incorporate greater biological fidelity into their

models. In the remainder of this chapter, we describe the new system maintenance and functional

features in detail. Continuing the trend from previous releases, CARLsim 6 remains open-source,

extensible, backwards compatible with prior versions. The source code is publicly available on

GitHub at https://github.com/UCI-CARL/CARLsim6.
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Figure 3.1: Configuration of CARLsim 6 structural and neuromodulation features. CUBA/COBA
can be configured at group level. Neuromodulatory neurons can project to other neuron groups.
Plasticity is defined on the connection level. Receptors can be defined on both the pre- and post-
synapctic groups.

3.2 New features in CARLsim 6

3.2.1 System maintenance

The Integration of CMake and the Multi-Operating System Support

As a highly efficient software framework for simulating large-scale SNNs, CARLsim is developed

in C++ and leverages the computational power of CUDA. However, due to the complexity of its

compilation and build process, as well as the constantly evolving nature of its software and hard-

ware dependencies, maintaining the software across different platforms has remained a challenge.

To address this issue, CARLsim 6 now integrates CMake into the build process. CMake is recog-

nized as the best practice build system for C++ projects by the open source community. It allows

developers to define the build process in a platform-independent way, and generates build files

that are specific to the target platform. With CMake, CARLsim 6 can be built using the same

CMake scripts across all supported platforms, including Linux, Mac OS, and Windows. Users can
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now configure the build process to compile and link only the desired features using the CMake

Graphical User Interface (GUI) or the command line interface (CLI).

CARLsim 6 restores the previously removed support for the Windows platform, as CMake enables

the generation of project files for all current versions of Microsoft Visual Studio. On Windows,

CARLsim now deploys as an optimized Dynamic Link Library (DLL) that can be integrated as

a plug-in, which further improves the flexibility and maintainability of the software. In addition,

CARLsim 6 provides extensions to PyNN, enabling PyCARL (Balaji et al., 2020), the Python in-

terface to CARLsim, to run on Windows, as well as enabling interactive analyses with the network

simulations in JupyterLab.

The improvement in CUDA and GPU support

The support of GPU and CUDA is key to the high performance of CARLsim. It is thus important

to ensure that CARLsim 6 can support the latest CUDA versions and GPU architectures. CARL-

sim 6 has been successfully tested on Linux and Windows up to CUDA version 11.5. Additionally,

CARLsim 6 provides support for GPUs with the Ampere architecture, which is used by NVIDIA

GForce RTX 3060 up to the NVIDIA DGX-A100. The CARLsim website lists recommended sys-

tems and tested configurations, and also includes performance benchmarks to serve as a guideline.

Binaries, Docker support, and community contributions

To increase usability of the software, CARLsim 6 provides binaries for commonly used platforms,

such as Ubuntu 20.04 LTS and Windows 10 /11. This allows users to evaluate the software perfor-

mance without the need to compile it from source.

Additionally, to increase consistency and reproducibility of CARLsim programs in different soft-

ware environments, different machines, and different platform versions, CARLsim 6 now offers
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Docker images of Ubuntu 20.04 with CARLsim 6 pre-installed and configured. This simplifies

the process of using CARLsim 6 for users, eliminates compatibility issues on different machines,

and removes the need for installation and configuration from the user side. This is also beneficial

for deploying CARLsim 6 projects on cloud computing platforms, such as Kubernetes, which run

containerized workloads and services.

As an open-source software, contributions to CARLsim by the community follow the GitHub

workflow. New features and fixes are organized in Git feature branches and are committed by the

contributor as a GitHub Pull Request (PR). After the PR is reviewed by the CARLsim development

team, changes can be merged into the master branch, triggering the continuous integration and

build pipeline (CI/CD) for quality testing. If all quality gates have been passed, the binaries are

created under the release tagged “LATEST" and will be available for download.

Python Offline Analysis Toolbox (OAT)

CARLsim provides convenient tools for monitoring network activity, such as spike monitors, neu-

ron monitors, and group monitors for recording neuronal activity, and connection monitors for

recording synaptic changes. The outputs of these monitors can be analyzed with the Offline Anal-

ysis Toolbox (OAT) integrated in CARLsim. However, in earlier versions of CARLsim, only the

MATLAB OAT is provided, which posed a challenge for users that have limited access and fa-

miliarity with MATLAB. In response to this, CARLsim 6 now introduces the Python OAT, which

offers a more accessible and flexible option for analyzing network simulations. This is also ben-

eficial to users of PyCARL (Balaji et al., 2020), as the Python OAT allows them to simulate and

analyze data generated in the simulation without the need to switch between different software or

tools.
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Parameter tuning with Evolutionary Computation packages

CARLsim 6 provides an automated parameter tuning interface (PTI), which is integrated with two

powerful evolutionary computation packages written in Java (ECJ) (Luke, 2017) and in Python

(LEAP) (Coletti et al., 2020). The PTI assists in finding optimal parameters for network simula-

tions at different levels, from the level of single neurons to the level of the entire network, using a

fitness function defined by the user that describes the need of their task. To perform a parameter

tuning process in CARLsim with the PTI, the user creates an SNN model in CARLsim and specifies

the open parameters to optimize. The evolutionary computation settings, such as the population

size of a generation or reproduction methods, can then be defined in ECJ or LEAP. During the

parameter search process, the PTI communicates between CARLsim and the EC package, passes

parameter values provided by the EC to simulate networks in CARLsim, and obtains fitness scores

from the network simulation for the EC to generate a new set of parameter values. The evolution-

ary search process is accelerated with the support of parallel execution of multiple SNN instances

in CARLsim. CARLsim in combination with ECJ has demonstrated success in reproducing neural

dynamics observed in a number of brain regions (Carlson et al., 2014; Rounds et al., 2018; Chen

et al., 2021, 2022). As a newly integrated package in CARLsim 6, LEAP provides easy-to-use

syntax and powerful visualization features.

While CARLsim 6 introduces several functional enhancements that allow for SNN simulations

with high biological fidelity, the additional parameters may add complexity to the parameter tuning

process. The automated PTI provides an efficient solution to this challenge, allowing users to

search for appropriate parameter values with ease.
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3.2.2 Functional enhancements

Connection-level configuration of synaptic plasticity

CARLsim implements spike-timing-dependent plasticity STDP, and short-term plasticity STP,

both of which are synaptic plasticity mechanisms observed in the brain, and have also been demon-

strated to be powerful tools for encoding and processing information in SNNs through synaptic

updates.

In previous releases of CARLsim, STDP parameters were specified on the post-synaptic group,

and all connections to this group with the same connection type (i.e., E-STDP or I-STDP) shared

the same STDP parameters. The present release offers improved flexibility in STDP setting and

allows users to assign separate STDP parameters for each inter-group connection. This feature

enhances the biological plausibility of the SNN model, and increases the learning capacity of the

model by introducing additional parameters.

To illustrate this feature, the code snippet below demonstrates how to define different STDP con-

figurations for the two incoming excitatory projections into the same output neuron group. Note

the different variables used in the two “setESTDP" functions.

// two separate connections into the output group

sim.connect(gIn , gOut , ...

sim.connect(gOut , gOut , ...

// set E-STDP for the input connection

sim.setESTDP(gIn , gOut , true , STANDARD ,

ExpCurve(alpha_LTP_in , tau_LTP_in ,

-alpha_LTD_in , tau_LTP_in)

);

// set E-STDP for the recurrent connection
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sim.setESTDP(gOut , gOut , true , STANDARD ,

ExpCurve(alpha_LTP_out , tau_LTP_out ,

-alpha_LTD_out , tau_LTP_out)

);

In addition to STDP, CARLsim 6 now allows users to configure STP for each inter-group con-

nection. Various forms of STP have been observed in neural circuits for distinct connection types

(Moradi and Ascoli, 2019). The updated feature in CARLsim 6 enables further variability to be

included in an SNN by allowing STP variables u, τu, τv, and τd to be set for each connection.

The code snippet below demonstrates how STP can be configured on an inter-group connection

between Basket (inhibitory) and Pyramidal (excitatory) cells, two well documented neuron types

in the Hippocampus:

// configure STP on an inter -group connection between

// CA3 Basket and CA3 Pyramidal groups

sim.setSTP(CA3_Basket , CA3_Pyramidal ,

true ,

STPu (0.23f, 0.04f),

STPtauU (16.74f, 2.0f),

STPtauX (384.34f, 50.0f),

STPtdAMPA (5.0f, 0.0f),

STPtdNMDA (150.0f, 0.0f),

STPtdGABAa (7.64f, 1.5f),

STPtdGABAb (150.0f, 0.0f),

STPtrNMDA (0.0f, 0.0f),

STPtrGABAb (0.0f, 0.0f)

);

As illustrated in the example above, each STP variable, including u, τu, τv, and τd for AMPA

and GABAA, can be assigned a mean and standard deviation. This implementation allows for the
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incorporation of biologically realistic parameter estimates based on receptors with fast synaptic

properties.

Group-level configuration of input current

The implementation of current-based (CUBA) and conductance-based (COBA) synaptic models

in CARLsim gives users the flexibility to choose between a less computationally extensive input

current integration approach and a more realistic conductance based integration approach.

In previous versions of CARLsim, the choice of CUBA and COBA was applied to the entire sim-

ulation. In CARLsim 6 the calculation method of the input current can be individually defined for

each neuron group to provide greater flexibility. The interface is backward compatible and applies

default network settings, so that models developed with earlier versions of CARLsim can still be

simulated without changes. Furthermore, the group-based configuration was expanded to include

metabotropic receptors, also known as G-Protein Coupled Receptors (Bucher and Marder, 2013;

Pándy-Szekeres et al., 2022; Kooistra et al., 2020), which inherently rely on neuromodulators. Ex-

amples of these receptors include dopaminergic D1/2, norepinephrine alpha1, and muscarinic for

acetylcholine ACh. The neuromodulation features will be described in more detail below.

Neuromodulatory effects on target neuron groups

Neuromodulators can have broad, long-lasting effects on downstream neurons (Lakna, 2019). In

addition to the well-studied single pathways of distinct neuromodulators (Rosenzweig et al., 2007),

it has been observed that neuromodulators also heavily influence each other (Krichmar, 2008; Av-

ery and Krichmar, 2017). To facilitate SNN simulations that incorporate the effects of neuromod-

ulators, CARLsim 6 provides support for four major neuromodulators (NM4): dopamine (DA),

serotonin (5-HT), acetylcholine (ACh), and norepinephrine (NE). The concentration of these neu-

romodulators are captured as an NM4 molarity vector in the neuron group, which is targeted by
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the projection of neuromodulatory neurons. Accompanying the implementation of these features,

the CARLsim offline analysis toolkit (OAT) was also extended to visualize the molarity in the

distinct target groups. Figure 3.3 shows an example visualization of the molarity of different neu-

romodulators. In the current implementation, a target neuron group accumulates the molarity of all

contained postsynaptic neurons of neuromodulatory neurons. The NM4 molarity vector is utilized

as input for multivariate functions to implement neuromodulated excitability and plasticity.

In an SNN model of the insular cortex developed using CARLsim, dopamine modulated post-

synaptic facilitation (DA-PSF) was implemented with custom code (Chou et al., 2015). This im-

plementation is limited to only the effect of dopamine. However, multiple modulators can act on

the same synapse to modify its strength depending on the behavioral needs. Different neuromodu-

lators can lead to drastically different effects on the synapse. For example, 5-HT can functionally

silence synapses, and dopamine can unmask synapses that are normally silent. The combined

action of multiple neuromodulators on synapses can be more complex than simply additive, and

the same neuromodulator can have opposing actions on the synaptic strength (Nadim and Bucher,

2014). With the group-level configuration of input current implemented in CARLsim 6, the cal-

culation method of the input current can be individually set for a neuron group and parameters

being incorporated using an extended form of linear combination. This implementation extends

and generalizes the DA-PSF method described in Chou et al. (2015).

The following code snippet demonstrates the configuration of synergistic and antagonistic recep-

tors on the target neuron group. Note that the inclusion or removal of these receptor effects can be

realized with the same function “setNM4weighted", which takes in different parameter values that

correspond to the concentrations of each type of receptor.

// target neuron group (g_nm)

sim.setNeuromodulator(g_nm ,

baseDA , tauDA , releaseDA , true ,

base5HT , tau5HT , release5HT , true ,

0.001f, 1.f, 0.f, false ,
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baseNE , tauNE , releaseNE , true

);

// synergistic receptor

sim.setNM4weighted(g_nm , NM4W_LN21 ,

1.0f/1.5f, // DA normalize and weight

0.0f, // 5-HT

0.0f, // ACh

2.0f/1.5f, // NE normalize and weight

4.0f / (1.0f + 2.0f), // normalize all and boost

1.0f // unmodulated baseline

);

// antagonistic receptor

sim.setNM4weighted(g_nm , NM4W_LN21 ,

0.0f, // DA

-1.0f/1.5f, // 5-HT normalize and weight

0.0f, // ACh

1.0f/1.5f, // NE normalize and weight

4.0f/2.0f, // normalize all and boost

2.0f // unmodulated baseline

);

Figures 3.3 demonstrates the effects of synergistic and antagonistic receptors on the defined tar-

get neuron group, where the concentrations of different neuromodulators separately strengthen or

weaken the input current based on the individually defined parameters, as shown in the code snip-

pet above. In this simulation, the simulated Izhikevich neurons exhibited non-linear excitability

with crossover from tonic to phasic expression. In the control group, with increasing input current,

the crossover happened when the current reached about 10 µA. With synergistic receptors added,

DA lowers the crossover down to 6 µA, and NE lowers the crossover to 3 µA. When both neuro-

modulators were present, the phasic firing is almost instantaneous (Figure 3.3 (a)). In contrast, the
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antagonistic receptor 5-HT can silence the neuron if presented alone, or neutralize the effect of NE

if the concentration level of both receptors are the same (Figure 3.3 (b)).
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Conductance modulation of receptors

CARLsim 6 also implements the neuromodulated α1/ α2A NE receptors, and the D1/ D2 DA

receptors, the concentration of which were shown to impact the level of arousal and decision-

making performance in visuospatial working memory tasks (Avery et al., 2013; Avery and Krich-

mar, 2015).

As shown in the code snippet below, the receptors can be configured using the generic interface

function “setConnectionModulation" with parameter values defined for each type of receptor. In

this function, the first two arguments correspond to the pre- and post-synaptic groups, which are

used to identify the connection group and assign the receptor parameters.

// noadrenergic alpha2A receptor

sim.setConnectionModulation(g_L3e[c], g_L3e[c], alpha2A_ADK13 );

// dopaminergic D1 receptor

sim.setConnectionModulation(g_L3e_npref[d], g_L3e[c], D1_ADK13 );

// dopaminergic D2 receptors

sim.setConnectionModulation(g_L5e[c], g_L5e[c], D2_AK15 );

sim.setConnectionModulation(g_MD_SC , g_L5e[c], D2_AK15 );

// alpha1 receptor (DA, NE, lambda)

sim.setNM4weighted(g_L3e[c], alpha1_ADK13 ,

1.f, 0.f, 0.f, 1.0f, 1.f,

-1.0f / 6.0f / log (1.0f / 3.0f)

);

Figure 3.4 (a) shows the underlying continuous mapping of DA to the connection-based neuromod-

ulatory factor µc of the D2 receptor, and figure 3.4 (b) shows the continuous bivariate mapping of
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(a) Synergistic impact of NE on DA resulting in tonic to phasic excitability

(b) Antagonistic impact of 5-HT on NE with suppression and equilibrium
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Figure 3.3: CARLsim 6 allows for the configuration of Izhikevich neurons with neuromodu-
lated synergistic and antagonistic receptors, that exhibit non-linear excitability with an arbitrary
crossover from tonic to phasic firing. The left column shows the firing in CARLsim’s SpikeMoni-
tor of such neurons without neuromodulation, labeled as control group. Each neuron was mapped
to an increasing input current, displayed on the y-axis, with a designed crossover at about 10 µA
(7→ NeuronID 10). The simulation time is displayed on the x-axis in ms for each neuron group. (a)
Synergistic effect on the neurons of the neuromodulators NE and DA. The molarity of the target
groups are displayed in the CARLsim’s GroupMonitor in the second row, which shows consistent
values over time to demonstrate the synergistic effect on the receptor that is the changed crossover
point of the firing from tonic to phasic. DA lowers the crossover down to 6 µA, while NE lowers
it even more down to 3 µA, and with both neuromodulators present, the phasic firing is almost
instantaneous. (b) Antagonistic effects of 5-HT on NE, which is suppression for 5-HT and neutral-
ization at equilibrium. The SpikeMonitor of group nm1 shows that the antagonistic receptor has
the same excitability for NE as above. However, when 5-HT is present, it acts as antagonist, and
the nm2 group displays gaps of spikes, when the neuron is silenced by 5-HT. The right column
shows that when both NM are present at the same level, the NM-effect is neutralized and group
nm12 exhibits the same behaviour as the control group.

DA and NE to the group-based neuromodulatory factor µ of the α1 receptor. These results show

the sensitivity dependency of the interaction between NE and DA, and confirm the successful

replication of the neuromodulatory levels described in Avery et al. (2013) and Avery and Krichmar

(2015). In addition to the already implemented receptor types, the implementation of configurable

neuromodulatory effects using a generic interface function is easily extensible to other G protein-

coupled receptors.

Neuromodulated short-term plasticity (STP) and spike-timing-dependent plasticity (STDP)

CARLsim 6 introduces the capability to modulate the short-term plasticity (STP) applied to a

neuron group to be influenced by neuromodulators. As a result, STP can act as a gain-control

mechanism that modifies synaptic strength as a function of the frequency of presynaptic activity.

In some cases, it can even switch the sign of synaptic dynamics from depression to facilitation and

vice versa (Nadim and Bucher, 2014).
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(a) Neuromodulatory factor µc(DA) of receptor D2

(b) Neuromodulatory factor µ(DA,NE) of receptor α1

Figure 3.4: A well-balanced concentration of different types of neuromodulators has a profound
impact on the working memory. CARLsim 6 provides a continuous mapping of NE, DA to the
neuromodulatory factor µ that matches the discrete levels investigated in Avery et al. (2013) and
Avery and Krichmar (2015). (a) Continous mapping of DA to the connection based neuromodu-
latory factor µc of the D2 receptor fitting the discrete levels (inside columns) given by Avery and
Krichmar (2015). (b) Continuous bivariate mapping of DA, NE to the group based neuromodula-
tory factor µ of the α1 receptor fitting the discrete bivariate levels (marked by blue dots) given by
Avery et al. (2013).
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The following code snippet shows how the STP variables u, τu, τv can be configured to be modu-

lated by a multivariate function on the NM4 concentration, thus enabling the expression of facili-

tation as standard STP at a certain level. To ensure consistency with previous implementations, the

modulated STP was validated to yield the same plasticity as standard STP. This new feature can

be applied to elucidate synaptic gain and plasticity operations in the hippocampal subregion CA3

(Kopsick et al., 2022).

// facilitative STP

sim.setSTP(g1,true , 0.15f, 750.0f, 50.0f);

// modulated STP by serotonin

float u[] = { 0.0f, 1.0f, 0.0f, 0.0f, 0.30f / 0.15f, 1.0f };

float tau_u [] = { 0.0f, 1.0f, 0.0f, 0.0f, -700.0f / 750.0f, 1.0f };

float tau_x [] = { 0.0f, 1.0f, 0.0f, 0.0f, 700.0f / 50.0f, 1.0f };

sim.setNM4STP(g1, u, tau_u , tau_x);

sim.setNeuromodulator(g1 ,

0.001f, 1.f, 0.f, false ,

1.0f; 1.f, 0.f, true , // base5HT

0.001f, 1.f, 0.f, false ,

0.001f, 1.f, 0.f, false

);

On top of the eligibility trace-based spike-timing-dependent plasticity (STDP) for dopamine (DA-

STDP) implemented in previous versions, CARLsim 6 now extends this feature to other neuro-

modulators such as 5-HT, ACh, and NE. Furthermore, the offline analysis tool (OAT) has been

updated to monitor the neuromodulator level of the eligibility trace-based STDP, facilitating the

analysis of the effect of neuromodulation on STDP and synaptic dynamics.

The connection-level configuration of STDP in CARLsim 6 allows for the creation of multiple

connection groups with different neuromodulators. This capability facilitates the implementation

of complex neuromodulatory systems such as the one described in Krichmar (2008). The code
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snippet below demonstrates the configuration of STDP modulated by different neuromodulators,

which can be realized by the same function “setSTDP" with different neuromodulator flags.

// set up dopamine modulated STDP

sim.setSTDP(gin , gPFC , true , DA_MOD ,

alphaPlus ,tauPlus ,alphaMinus ,tauMinus

);

// or for other modulators

sim.setSTDP(gin2 , gPFC , true , SE_MOD ,..

sim.setSTDP(gin3 , gPFC , true , AC_MOD ,..

sim.setSTDP(gin4 , gPFC , true , NE_MOD ,..

In addition to modeling the effect of neuromodulators in eligibility trace-based STDP, CARLsim 6

also introduces the ability to model the effect of neuromodulators on long-term potentiation (LTP)

and long-term depression (LTD) of synapses. The balance of LTP and LTD can be altered by

different neuromodulators. For example, the activation of the protein kinase A (PKA) pathway

promotes and gates LTP, and the activation of the phospholipase C (PLC) pathway promotes LTD.

Interestingly, the activation of one pathway also supresses the activation of the other, leading to

a push-pull rule for neuromodulation of long-term synaptic plasticity that is independent of the

underlying mechanisms of LTP and LTD (Nadim and Bucher, 2014).

CARLsim 6 extends the PKA/ PLC modulation effect to any arbitrary neuromodulator pair, such as

NE and ACh. Figure 3.5 shows how the phenomenological STDP curves, which can take different

shapes depending on the positively or negatively defined amplitude parameters, can be altered by

the push-pull effect of PKA and PLC.

This implementation enables SNNs to have adaptive learning rates depending on the neuromod-

ulators, and also may lead to unlearning in some cases, which may be particularly relevant for

learning by rewiring as described in Krichmar (2012), Bucher and Marder (2013), and Krichmar
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et al. (2019). The following code snippet demonstrates the configuration of PKA/PLC-modulated

LTP/LTD of STDP.

float ALPHA_LTP = 0.08f;

float ALPHA_LTD = -0.12f;

float TAU_LTP = 8.0f;

float TAU_LTD = 8.0f;

//enum FigNr { _a, _b , _c, ..

//float ne []={ 1.0f, 1.0f, 0.0f, ..

//float ach []={ 1.0f, 0.0f, 1.0f, ..

//float a_p []={ 0.08f, 0.16f, -0.08f, ..

//float a_m []={ -0.12f, 0.12f, -0.24f, ..

// set STDP group

g1 = sim ->createGroup("excit", 1, EXCITATORY_NEURON );

sim ->setNeuronParameters(g1, 0.02f, 0.2f, -65.0f, 8.0f);

// set modulated STDP group

//g2 = sim ->createGroup (..

//sim ->setNeuronParameters(g2 ,..

sim ->setNeuromodulator(g2,

1.0f, 1.0f, 1.0f, false , // DA

1.0f, 1.0f, 1.0f, false , // 5HT

ach[fig], 1000000 , 0.000001f, true ,

ne[fig], 1000000 , 0.000001f, true

);

// set ESTDP with reference values

sim ->setConductances(false );

sim ->setESTDP(gex2 , g1, true , STANDARD ,

ExpCurve(a_p[fig], TAU_LTP , a_m[fig], TAU_LTP)

);
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// set PKA_PLC modulated ESTDP

sim ->setConductances(false );

sim ->setESTDP(gex2 , g2, true , PKA_PLC_MOD ,

ExpCurve(ALPHA_LTP , TAU_LTP , ALPHA_LTD , TAU_LTP),

PkaPlcModulation(NM_NE , 1.0f, // pka

NM_ACh , 1.0f // plc

)

);

Figure 3.5: LTP/LTD is modulated by NE and ACh and can adapt STDP based learning to envi-
ronmental needs.

3.3 Benchmarks and example simulations

3.3.1 Computational performance

A primary goal during the development of CARLsim 6 was to maintain comparable performance

with its previous versions, despite the kernel changes that made the implementation of various new
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features possible. To evaluate the performance of CARLsim 6 against its predecessor, CARLsim

5, we conducted multi-GPU benchmark tests similar to those performed in Chou et al. (2018).

This set of benchmark tests used an SNN model with 2 subnetworks, each consisting of 80 %

excitatory neurons and 20 % inhibitory neurons, and an input Poisson neuron group to drive the

activity of the network. Each subnetwork had four inter-group connections: the input connection

to the excitatory group, the recurrent connection within the excitatory group, and the reciprocal

connections between the excitatory and inhibitory groups, with each neuron having 100 synapses.

In the 1-GPU and 1-CPU tests, all neuron groups were allocated to the same GPU or CPU. In the

2-GPU and 2-CPU tests, each subnetwork is partitioned among 2 GPUs or CPUs, and 2 out of the

4 connections are allocated to different GPUs or CPUs.

To test the scalability of CARLsim, we varied the total number of excitatory and inhibitory neurons

from 103 to 105. Figure 3.6 shows the simulation time of each benchmark setup. The results show

that CARLsim 6 achieves similar computing efficiency compared to the previous release, CARL-

sim 5, and retains the capability of utilizing multiple GPUs for larger-scale SNN simulations.

3.3.2 Large-scale model of a hippocampal subregion

In the past, models of the neural circuit were usually limited to modeling only a few neuron types

and a simple form of their connections for studying a particular function of the circuit. To increase

biological accuracy and scale of these models, additional biological details can be incorporated,

such as the number of neurons for each neuron type as observed in the brain, connection proba-

bility between neuron types, synaptic plasticity that induces long and short term synaptic changes,

neuromodulatory effects on synaptic dynamics, and spatial structure of neuron groups and their

connections.
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Figure 3.6: Benchmark performance of CARLsim 5 (v5) and CARLsim 6 (v6). The vertical axis
represents the execution time, where a value of 1 indicates real-time performance.

CARLsim 6 provides support for these implementations, as demonstrated in a large-scale neural

circuit model of mouse hippocampal subregion CA3. This model consists of 8 neuron types,

90,000 neurons, 51 neuron-type specific connections, and 250 million synapses. Parameters for

simulating the neuron groups, their connections, as well as the synaptic plasticity dynamics were

derived from published data of the hippocampus hosted in the Hippocampome.org knowledge base

(Kopsick et al., 2022; Moradi and Ascoli, 2019; Tecuatl et al., 2021; Komendantov et al., 2019).

CARLsim 6 allows for a fast simulation of this large-scale network, with one second of simula-

tion time taking 4 minutes of real time. The simulated network produced beta oscillations that

are similar to those observed in the hippocampal subregion CA3 during stationary behaviors. Ad-

ditionally, the simulated neuron groups exhibited firing patterns that are consistent with existing

knowledge of cell type-specific activity in vivo, such as the local field potentials (LFPs) for each

neuron type (Figure 3.7 (a)), and the distribution of firing phase of each neuron type relative to the

beta oscillation (Figure 3.7 (b)).
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This simulation shows that CARLsim 6 has the potential to be adapted and extended to support bi-

ologically realistic, data-driven neural circuit models of various brain areas. Its support for efficient

simulations of large and complex network models makes it an appealing simulation environment

for modeling at the neural circuit level.

3.4 Related work

Compared to Artificial Neural Networks (ANNs) that encode neural activity with a rate-based

approach, SNN models encodes the timing of the spikes, which allows them to process temporal

information. SNNs also offer the advantage of incorporating biologically realistic features into

neural network simulations, allowing for the modeling of the biological neural systems in more

details, which can lead to a better understanding of the neural circuits and their functions.

To facilitate the development of SNN models, various SNN simulators have been developed. We

compare CARLsim 6 with the latest versions of several of these open source SNN simulators

that support parallel execution of SNN simulations, conductance based synapses, and synaptic

plasticity, which are the key features of CARLsim 6 that allows for accurate and efficient SNN

simulations. Table 3.1 presents a comparison of supported features and software/ hardware re-

quirements of different SNN simulation platforms. These simulators include: Brian2 (Stimberg

et al., 2019), GeNN (Yavuz et al., 2016), Nengo (Bekolay et al., 2014), NEST (de Schepper et al.,

2022), NEURON (Carnevale and Hines, 2006), NeuronGPU (Golosio et al., 2021).

Similar to CARLsim 6, NeuronGPU utilizes GPUs as a backend and has an optimized spike de-

livery algorithm (Golosio et al., 2021) which enables high computing performance comparable to

CARLsim. However, NeuronGPU’s feature development remains at an early stage, as it currently

only has nearest-neighbor STDP implemented as synaptic plasticity and lacks neuromodulation.
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(a)

(b)

(c)

Figure 3.7: (a) Representative voltage traces of individual neurons from each neuron type in the
SNN model. The horizontal axis represents time (ms), and the vertical axis represents the voltage
(mV). (b) Firing phase histograms of each neuron type relative to the beta oscillation. (c) The
power spectrum of CA3 Pyramidal neurons.
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We also compare the support of neuromodulation in different SNN simulators, which is an im-

portant feature introduced in CARLsim 6. NEST, for instance, can generate code for DA-STDP

utilizing NESTML (de Schepper et al., 2022). Brian provides an improved generator syntax for

synaptic plasticity. Nengo applies BMC as unsupervised learning as equivalent for tripplet based

STDP. The other simulators including NCS or GeNN, have incorporated notable changes in this

functional area.

Overall, compared to other simulators, CARLsim 6 is advantageous in that it implements a wide

variety of synaptic learning rules and biologically plausible model features, and is also highly

optimized for large scale SNN simulations, utilizing parallel execution with different computing

hardware.

3.5 Conclusion

CARLsim 6 offers enhanced flexibility for the implementation of biorealistic features in SNNs by

supporting the configuration of STDP and STP at the connection level, instead of being restricted

to the post-synaptic group level. Additionally, CARLsim 6 now supports the implementation of

multiple neuromodulators and their effects on neuronal excitability and plasticity. The introduc-

tion of the Python OAT and the Python-based parameter tuning with LEAP makes modeling and

analysis tools more accessible to users. With the system maintenance efforts, CARLsim 6 remains

computationally efficient on multiple compute platforms. With these improvements, CARLsim 6

is well positioned to be a valuable tool for constructing biologically detailed models of the brain,

and developing highly efficient neurobiologically-inspired algorithms that are amenable to neuro-

morphic implementations (Krichmar et al., 2019).

As an open-source tool licensed under the MIT License, CARLsim 6 provides a matured core

library with a powerful support system for new projects, making it well suited for building a new
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Table 3.1: Comparison of SNN simulators by recent features. An ‘X‘ denotes that the feature
is directly supported by the simulator, while a ‘/‘ means that the user has to implement custom
code, respectively that the feature is only partially implemented, and a blank ‘ ‘ that feature is
not available in general. Gray colored cells highlight features new in CARLsim 6 compared to
previous versions.
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Synaptic plasticity
DA-STDP X / X X X
5HT-/ ACh-/ NE-STDP X / / X
Modulated LTP/ LTD X
Connection specific STDP X X X X X
Neuromodulated STP X / /
Connection specific STP X X X X

Synapse model
Group level CUBA X X X X
Group level COBA X X X X
Neuromodulation X X X / X X

Tools
Parameter tuning (JAVA) X X
Parameter tuning (Python) X / X
Analysis/ visualization X / X / X

Front-ends
Python/ PyNN X X X X X X X X
C/ C++ X X X X X

Back-ends
Single-threaded CPU X X X X X X X X
Multi-threaded CPU X X X X X X X
Distributed / X X X X X
Single GPU X / X X X X
Multi-GPU X X X
Hybrid (Multi-CPU/ GPU) X X

ecosystem of neuroscience and engineering applications. CARLsim 6 is available on GitHub at

https://github.com/UCI-CARL/CARLsim6.
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Chapter 4

Cortical motion perception emerges from

dimensionality reduction with evolved

spike-timing dependent plasticity rules

4.1 Introduction

As an observer moves through the environment, the motion between oneself and the scene causes

a change in the structure of light, which is reflected on the retina as optic flow. Optic flows can

be used to perceive the heading direction of self-motion and to guide locomotion (Warren and

Hannon, 1988). Neurons in the dorsal visual pathway of the primate brain are selective for motion

(Britten, 2008). The Middle Temporal (MT) area contains neurons that are tuned to the speed and

This chapter is a reprint of the article titled “Cortical motion perception emerges from dimensionality reduction
with evolved spike-timing dependent plasticity rules", which was originally published in the Journal of Neuroscience
in 2022 (Chen et al., 2022). This chapter includes minor revisions to the original article. The inclusion of this article
is in compliance with the permission policy of the original publisher.
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direction of motion (Albright, 1984). Receiving primary input from MT (Raiguel et al., 1997),

neurons in the dorsal sub-region of the medial superior temporal (MSTd) area respond to large

and complex optic flow patterns, including translation, rotation, expansion, contraction, and the

intermediates of these motions (Graziano et al., 1994). MSTd was suggested to play an important

role in heading perception. Physiological studies showed that microstimulation of the MSTd area

biased the monkey’s perception of heading directions based on optic flow (Britten and Van Wezel,

1998; Gu et al., 2012). The causal role for self-motion perception was also established in the human

functional equivalent of macaque area MST (hMST) (Schmitt et al., 2020). Furthermore, heading

direction can be decoded from the population activity of MSTd neurons (Hamed et al., 2003). MST

was also suggested to participate in 3D velocity estimation (Mineault et al., 2012). These studies

provide evidence for MSTd’s role in self-motion perception based on optic flow. However, it is

not well understood how MSTd integrates input from MT to form complex selectivity to motion

patterns and to perceive self-motion.

The brain is under tight metabolic constraints and uses numerous strategies to achieve efficient

representations of information that allow for high performance and information transfer (Krichmar,

2019). Nonnegative sparse coding (NSC) is an efficient population coding scheme that combines

dimensionality reduction with sparsity constraints to reduce the number and activity of neurons to

represent environmental features (Beyeler et al., 2019). A prior study described a computational

model that can account for a wide range of MSTd visual response properties through applying

a dimensionality reduction algorithm known as Nonnegative Matrix Factorization (NMF) with

sparsity constraints, which implements a form of NSC, to MT input activity (Beyeler et al., 2016).

This MSTd model exhibited sparse, ‘parts-based’ representations of the optic flow patterns that

resembled the receptive fields observed in MSTd neurons. This model provided evidence that the

seemingly complex response properties may emerge from MSTd neurons performing a biological

equivalent of dimensionality reduction and sparse coding on their input. However, it remains to be

shown how these coding schemes can be implemented in neurobiological circuits.
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This chapter, which is based on published work (Chen et al., 2022), describes how a neurobio-

logically plausible synaptic plasticity could implement a form of NSC. Learning processes in the

brain are believed to occur in the synaptic changes among neurons. Hebb’s rule describes a mech-

anism that leads to long-term-potentiation (LTP) between excitatory neurons given their consistent

coactivity (Hebb, 1949). Oja’s learning rule adds constrained synaptic modification on top of the

Hebbian model to prevent saturation of synaptic weights (Oja, 1982). In the spiking domain, the

spike-timing dependent plasticity (STDP) learning rule modifies synaptic weights according to the

relative timing of spikes of the pre-synaptic and post-synaptic neurons (Sjöström and Gerstner,

2010). These synaptic learning rules perform statistical inferences on the input data. Oja’s rule

was shown to reduce the dimensionality of datasets similar to performing principal component

analysis (PCA) (Oja, 2008). Analogously, through mathematical derivation, STDP in combina-

tion with homeostatic scaling (STDP-H) was suggested to have the same effect on the input data

as NMF (Carlson et al., 2013). We propose that STDP-H could have a similar effect on MSTd

receptive fields.

In the present study, we implement a Spiking Neural Network (SNN) model of monkey MSTd

based on evolved STDP-H parameters. We show that by learning to reconstruct the input stimuli

with STDP-H, the network extracts representations of the input in a form that resembles the recep-

tive fields of MSTd neurons. The spiking neurons in the network show selectivity to spiral motions

and 3D heading direction similar to the selectivity observed in the brain. The present results sug-

gest a neurobiologically plausible method for producing sparse and reduced receptive fields in the

dorsal visual system, and possibly other brain regions (Beyeler et al., 2019).

4.2 Materials and methods

A spiking neural network model (SNN) of visual cortical areas MT and MSTd was created to

reconstruct optic flow patterns resulting from self-movement. Figure 4.1 shows the overall archi-
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tecture of the SNN model. In this model, input optic flow stimulus was processed by an array

of MT neurons, whose responses were then converted to Poisson spike trains and projected to a

group of excitatory spiking neurons that simulated MSTd. The MSTd group projected to a group

of inhibitory neurons, and the inhibitory neurons provided feedback inhibition to the MSTd group

to regulate the network activity. Connection weights in the network were updated with an unsuper-

vised learning rule which implemented STDP and homeostatic scaling (STDP-H). The parameters

of the learning rule were optimized through evolutionary algorithms, with an objective function

measuring how well the network reconstructed the input stimuli. Neural activity was modeled

with Izhikevich neurons (Izhikevich, 2004), with regular spiking for excitatory neurons and fast

spiking for inhibitory neurons.

SNN simulations were performed using CARLsim 5 (Chou et al., 2018; Balaji et al., 2020). Pa-

rameter optimization was done with the parameter tuning interface (PTI) in CARLsim 5, which

utilized the Evolutionary Computations in JAVA (ECJ) library (Luke, 2017). The evolutionary

process which included network training and validation was performed with 1 GPU node and 15

CPU cores on the computing clusters supported by the Cognitive Hardware and Software Ecosys-

tem Community Infrastructure (CHASE-CI) (Altintas et al., 2019). We utilized parallel execution

enabled by CARLsim and PTI to distribute computations among the GPU and CPU cores, which

greatly accelerated the simulation processes. In each generation of evolutionary computation, PTI

launched a total of 50 separate SNN instances that were simulated in parallel and evaluated con-

currently.

4.2.1 Code accessibility

Custom code used in this study including neural network simulations and data analysis scripts will

be publicly shared upon publication of this article.
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Figure 4.1: Model deisgn. A. Architecture of the SNN model. Optic flow stimulus was first pro-
cessed by an array of MT neurons tuned to speed and direction of motion. The MT activity was
converted to Poisson spike trains as the input to the network. The MT neuron group was connected
to the MSTd group with a Gaussian projection, which allowed the MSTd neurons to receive input
from MT neurons that locate in different locations of the visual field and were tuned to different
direction and speed. The MSTd group was reciprocally connected to a group of inhibitory neurons,
which regulated the activity of the network. All connections in the network were modulated by
STDP-H. The MT → MSTd connection weights and the MSTd group activity were used to recon-
struct the input. A fitness function measured the network performance based on the reconstruction
accuracy, and STDP-H parameters were evolved with evolutionary computation to optimize the
fitness function. B. Direction tuning curves of the simulated MT neurons. C. Speed tuning curves
of the simulated MT neurons. The horizontal axis is plotted on a log2 scale.
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4.2.2 Input stimuli

Input stimuli to the network were computer-generated arrays of optic flows that resembled those

used in physiological experiments. To simulate the apparent motion on the retina that would be

caused by an observer moving in a 3D environment, we used the model of the motion field proposed

by Longuet-Higgins and Prazdny (1980), where a pinhole camera with focal length f = 1 cm was

pointed to a frontoparallel plane located at a distance d, which simulated 3D real world points at a

reference depth Z. The pinhole camera was used to project the 3D real world points, P⃗ = [X ,Y,Z]t

onto a 2D image plane, p⃗ = [x,y]t = f/Z[X ,Y ]t (i.e. the retina). When the camera moved in the

3D environment, the local motion of points on the 2D image plane was described as a function

of the camera’s motion and the location of the points. In our simulation, the camera moved with

a translational velocity v⃗ = (vx,vy,vz) and a rotational velocity ω⃗ = (ωx,ωy,ωz). The optic flow

component (ẋ, ẏ) on the 2D image plane at location (x,y) could then be computed as following:

 ẋ

ẏ

=
1
d

 − f 0 x

0 − f y




vx

vy

vz


︸ ︷︷ ︸

translational flow

+
1
f

 x · y −
(

f 2 + x2
)

f · y(
f 2 + y2

)
−x · y − f · x




ωx

ωy

ωz


︸ ︷︷ ︸

rotational flow
(4.1)

The first component in the right side of the equation computed the translational flow, and the

second component computed the rotational flow. These two components superimposed linearly,

and the rotational flow was independent of the depth d. Simulated flow fields were represented as

15×15 pixel arrays, subtending a visual angle of 90◦ x 90◦.
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For the training and validation of the network, we generated a dataset containing 1280 flow field

stimuli. Each optic flow stimulus was presented to the network for 500 ms, interleaved by 500 ms

of a blank stimulus. To simulate motion patterns resulting from locomotion, the linear velocity of

the pinhole camera was set to 1 m/s for stimuli that included a translational flow and 0 m/s for

the pure rotation motion. The angular velocity was set to 1 radian/s) for stimuli that included a

rotational flow, which was within the range of natural head rotation movements (Cullen, 2019),

and 0 radian/s for the pure translation motion. The depth was set to 1 m from the observer. Stim-

uli in the training and validation dataset were sampled uniformly from a laminar motion space

and a spiral motion space. The laminar motion space contained unidirectional motion patterns

that simulated eight directions (45◦ intervals in 360◦) of translation. For these stimuli, the rota-

tional component in Equation 4.1 was 0, and in the translational component, vx = {0,±
√

1
2 ,±1},

vy = {0,±
√

1
2 ,±1}, and vz = 0. The spiral motion space contained the following motion patterns:

expansion/ contraction, clockwise/ counter-clockwise rotation, and intermediate spiral motions,

namely clockwise-expanding, clockwise-contracting, counter-clockwise-expanding, and counter-

clockwise contracting motions. The center of motion (COM) of these stimuli was kept near the

center of the visual field, with (vx,vy) ≈ 0 and vz = ±1 for stimuli that had a translational com-

ponent, and (vx,vy) ≈ 0 and vz = ±1 for stimuli that had a rotational component. In order to

introduce a slight variability in the COM, We converted the velocities to spherical coordinates and

applied a Gaussian noise with standard deviation of 10◦ to the x and y velocity components, before

converting them back into Cartisian coordinates and using Equation 4.1 to compute for optic flow

components. Schematic drawings of these motion patterns are shown in Figure 4.2.

We also generated three other datasets, which were used for testing the SNNs after training, by

following the protocols used in neurophysiological studies (Gu et al., 2006; Takahashi et al., 2007;

Hamed et al., 2003; Graziano et al., 1994). We used these datasets to quantify the response prop-

erties, including the Gaussian tuning in spiral space, the 3D translation and rotation heading se-

lectivity, as well as the population encoding of heading, of our simulated MSTd neurons. These

measurements allowed us to compare the selectivity of our simulated MSTd neurons to the one
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Figure 4.2: Schematic drawings of motion patterns that the training and validation dataset was
sampled from. The first two rows depict motion patterns in the laminar motion space, and the last
two rows depict motion patterns in the spiral motion space.
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observed in the real brain. It is worth noting that these three separate datasets contained stimuli

not present in the training and validation dataset. We computed the fitness scores achieved by the

evolved and trained models on these three datasets, which allowed us to measure the generalization

ability of the model and ensure that the performance was not limited to the validation dataset.

4.2.3 Model design

The SNN model consisted of three neuron groups: MT, MSTd, and an inhibitory group (Figure

4.1). The network model processed flow field stimuli in three steps: 1) Input flow fields were first

processed by the MT group, 2) The MSTd group received Poisson spike trains from the MT group,

and 3) The input was reconstructed with a dot product of the MT→MSTd connection weights and

the MSTd neuronal activation.

The MT neuron group was organized into 3D grids with dimensions 15× 15× 40. The first two

dimensions corresponded to the pixels of the input flow fields that subtended 90◦ × 90◦ of the

visual angle. The third dimension corresponded to the direction and speed tuning profile of the

neurons. At each spatial location, there were a total of 40 MT-like model units (selective for eight

directions times five speeds of motion). This organization can be seen as having multiple layers

of MT neurons covering the visual field, with each layer of neurons tuned to the same direction

and speed of motion but responding to different locations (Figure 4.1). Neurons in this group

were modeled as idealized MT neurons selective to particular combinations of speed and direction

of motion. Each MT neuron had a receptive field of 1 pixel area of the simulated flow fields,

corresponding to 3◦ of visual angle. In this study, the firing rate of a MT neuron RMT responding

to the motion flow at the location (x,y) was given by:

RMT (x,y;θpre f ,ρpre f ) = d(x,y;θpre f )s(x,y;ρpre f ), (4.2)
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where the component d(x,y;θpre f ) computed the direction response of the neuron, and s(x,y;ρpre f )

computed the speed response of the neuron.

The direction response d(x,y;θpre f ) was described by a circular von Mises function (Figure 4.1B):

d(x,y;θpre f ) = exp(σtheta(cos(θ(x,y)−θpre f )−1)), (4.3)

where the direction response was a function of the difference between the stimulus direction θ(x,y)

and the preferred direction θpre f of the neuron. The tuning bandwidth parameter σtheta was set to

3, corresponding to a tuning width of approximately 90◦.

The speed response s(x,y;ρpre f ) was described by a log Gaussian function (Figure 4.1C), which

approximated MT tuning curves observed in the macaque brain (Nover et al., 2005). The speed

response of a MT neuron was given by:

s(x,y;ρpre f ) = exp(−
log(ρ(x,y)+s0

ρpre f+s0
)2

2σ2 ), (4.4)

where the speed response was a function of the difference between the stimulus speed ρ(x,y) and

the preferred speed ρpre f of the neuron. The free parameter σ determined the width of the curve

and was set to 1.16. The speed offset parameter s0 was set to 0.33, which prevented undefined

logarithm values when stimulus speed approaches zero. These parameter settings were consistent

with the median values across the MT population (Nover et al., 2005).

The MT response RMT computed from Equation 4.2 represented the normalized firing rate of the

neuron ranging from 0 to 1, and was used to generate spike trains following a Poisson distribution

with a maximum firing rate of 20 Hz. Neurons in the MT group were connected to the MSTd

group following a Gaussian distribution, with which neurons that were spatially closer to each

other had a higher probability of being connected and had higher initial connection weights. We
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defined a 2D Gaussian connectivity along the first two dimensions of the MT neuron group, and

all layers of the MT neurons shared the same connectivity scheme, such that each MSTd neuron

had a circular receptive field covering MT neurons at different locations and tuned to different

direction and speed of motion. The width of the Gaussian curve, which corresponded to the radius

r of this circular receptive field was an open parameter that was evolved through the evolutionary

computation process. Activity of the MSTd group was regulated by an inhibitory neuron group,

which contained the same number of neurons as the MSTd group. The MSTd neurons provided

feedforward excitation to the inhibitory neuron group, and the inhibitory group provided feedback

inhibition to the MSTd neurons. Both connections followed a uniform random connectivity with

a 10 % probability. All inter-group connections were modulated by STDP-H plasticity during

training, which include the projection from MT to MSTd (MT → MSTd), from MSTd to the

inhibitory group (MSTd → Inh), and from the inhibitory group back to the MSTd group (Inh →

MSTd). As discussed in Section 4.2.6, the parameter values for STDP-H were selected through

evolutionary computation.

The resulting MSTd activity was used to reconstruct the input stimuli along with the MT → MSTd

connection weights. Analogous to the sparse decomposition model proposed by Beyeler et al.

(2016), the MT activity was represented as a multivariate matrix V, where each column within the

matrix represented an instance of input stimulus v⃗i, namely the population activity of the MT group

responding to a flow field stimulus. The connection weights between the MT and MSTd groups

were represented as a matrix W, where wi j was the connection weight between MT neuron i and

MSTd neuron j. The activity of the MSTd neurons was represented as the coefficients in the matrix

H, where each column in the matrix h⃗i denoted the MSTd population activity responding to the

input stimulus v⃗i. To test the hypothesis of whether STDP-H allows the network to learn a reduced

representation of the input V by decomposing it into two lower rank matrices W and H, we took a

dot product of the two matrices to reconstruct the input matrix V. Effectively, a particular instance

of input stimulus v⃗i was reconstructed by taking the inner product of the connection weights W

and the MSTd activation h⃗i (see Figure 4.3).
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The second column in Figure 4.3 shows a visualization of the connection weights between the MT

and MSTd neuron groups. Each grid shows the receptive field of a MSTd neuron, determined by

calculating a population vector for direction and speed of motion from W (Georgopoulos et al.,

1982). These receptive fields acted as basis flow fields. With the MSTd neuron activity indicating

the degree of activation, a linear superposition of the basis flow fields reconstructed the input flow

field pattern.

Figure 4.3: Stimulus reconstruction. STDP-H performed dimensionality reduction on the input
matrix V and decomposed it into two smaller matrices W, the MT→MSTd weights, and H, the
MSTd activity. Each column of the input matrix represented an input instance v⃗i, which was vi-
sualized as the original flow field. In the figure, the MT → MSTd connection weights W were
visualized as a group of basis flow fields. The MSTd activation to this particular stimulus h⃗i was
represented as a column in the matrix H, which denoted the degree of activation of the correspond-
ing basis flow field. Darker color in this visualization corresponded to a higher level of activity.
The reconstructed input was shown on the right. The correlation score between the original and
the reconstruction of this particular input instance was 0.84.

4.2.4 Spike-timing dependent plasticity and homeostatic scaling (STDP-H)

All three inter-group connections (i.e. MT→MSTd, MSTd→Inh, and Inh→MSTd) were plastic,

whose weight values were modulated by the STDP learning rule in combination with homeostatic

synaptic scaling (STDP-H). Homeostatic scaling was applied in a multiplicative manner, which

modified synaptic weights based on the average post-synaptic firing rate R (Turrigiano et al., 1998;
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Turrigiano and Nelson, 2004; Carlson et al., 2013). As illustrated in Figure 4.4, homeostatic scaling

adjusted synaptic properties (i.e. connection weight values) to keep the activity of the neurons

close to the target firing rate. The total effect of STDP-H on a particular synapse wi, j connecting

pre-synaptic neuron i and post-synaptic neuron j can be described as below:

dwi, j

dt
= [α ·wi, j(1− R̄/Rtarget)︸ ︷︷ ︸

homeostasis

+β (LT Pi, j +LT Di, j)︸ ︷︷ ︸
ST DP

] ·K (4.5)

The α and β terms controlled the strength of STDP and homeostasis. We fixed the value of β to

be 1, and evolved the value of α for the optimal relative strength of the two learning components.

The parameter K was a term that damped oscillation in the weight updates and sped up learning,

which was defined as:

K =
R̄

T · (1+
∣∣1− R̄/Rtarget

∣∣ · γ) (4.6)

Here, the parameter T was the time scale over which the firing rate of the post-synaptic neuron was

averaged and γ was a tuning factor, which were set to 10 and 50, respectively, in this study.

In Equation 4.5, the first component described the homeostatic scaling, which was a function of

the ratio between the mean firing rate R̄ and the target firing rate Rtarget of the neuron j. With

homeostatic scaling, the rate of weight changes decreased if the neuron was over-excited, and

increased if the neuron was overly quiescent. The second component of Equation 4.5 described

STDP, which was composed of long-term-potentiation (LTP) and long-term-depression (LTD).

STDP strengthened or weakened the synaptic connection according to the timing of the pre- and

post-synaptic spikes. LTP and LTD were described as decaying exponential functions, with a
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Figure 4.4: Illustration of the effect of homeostatic synaptic scaling on an individual neuron. As
the synaptic drive (i.e., input synaptic weights) increases, the firing rate of the neuron increases
and exceeds the target firing rate. Homeostatic scaling brings the activity down to the target zone
by decreasing the input strength. If the synaptic drive is too low and the activity of the neuron is
below the target firing rate, homeostatic scaling raises the input strength and brings the activity of
the neuron back into the target firing zone. Synaptic drive is in arbitrary units and firing rate is
normalized. Adapted with permission from Turrigiano and Nelson (2004).

magnitude parameter A+ or A−, and a decay constant τ+ or τ−:

LT Pi, j = A+exp
(
−(t j − ti)

τ+

)
for t j > ti (4.7)

LT Di, j =−A−exp
(

t j − ti
τ−

)
for t j ≤ ti (4.8)

Parameters A+, A−, τ+, and τ− were evolved through evolutionary computation.

72



4.2.5 Training and validation of the model

From the training and validation dataset with 1280 flow fields, we randomly selected 160 stimuli as

validation samples and the rest as training samples. In both the training and validation processes,

each stimulus was presented to the network for 500 ms, followed by a blank stimulus presented

for the same duration of time. During training, connection weights in the network were updated

with STDP-H in an unsupervised manner. Parameters of the STDP-H learning rule were optimized

through evolutionary computation for each iteration of the training and validation process.

To validate whether the network had learned representations that allowed the reconstruction of

unseen stimuli, we used the validation phase where we froze the connection weights and stopped

STDP-H from modulating the connections. Flow fields from the validation set were presented

to the network in the same way as during the training phase. Here we recorded the activity of

the MSTd neurons during the 500 ms of stimulus presentation. As described in section 4.2.3,

we reconstructed the input by multiplying W, the connection weights between the MT and MSTd

neuron groups, with h⃗i, the corresponding MSTd neuronal response to the stimulus. After obtaining

a reconstruction for all flow fields from the validation set, we assembled them into a matrix V̂ ,

where each column contained the reconstructed MT activity pattern corresponding to an input flow

field. We defined a fitness function which accounted for both the reconstruction accuracy and

network stability, as follows:

y = corr(V,V̂ )−λL (4.9)

In the first term of the fitness function, we calculated the Pearson correlation between the input

matrix V and the reconstructed matrix V̂ . To prevent instability in the network, we added the
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second term L, which described a penalty for high firing rates of the MSTd neuron population and

was weighted by a scaling factor λ = 0.001. The penalty term was defined as:

L =


max(R̄MST d)−RMST d;t , if max(R̄MST d)> RMST d;t

0 , otherwise
(4.10)

Here, R̄MST d was the mean firing rate of individual MSTd neurons, and RMST d;t = 250 Hz was the

firing rate threshold. When the maximum mean firing rate of MSTd neurons exceeded the firing

rate threshold, the network received a penalty score.

4.2.6 Optimization of the model via evolutionary computation

Parameters of the STDP-H learning rule were optimized through evolutionary computation. A

total of 19 parameters divided into 5 groups were evolved: 1) STDP amplitude parameters A+

and A− and decay constants τ+ and τ− for all three inter-group connections (12 parameters), 2)

target firing rates RMST d of the MSTd group and RInh of the inhibitory neuron group (2 parame-

ters), 3) maximum connection weights for all three inter-group connections (3 parameters), 4) the

radius r of the Gaussian connection between MT and MSTd (1 parameter), and 5) the parameter

α that adjusted the relative strengths between STDP and homeostatic scaling for each of the three

inter-group connections (1 parameter). Table 4.1 shows the ranges of values for these evolved

parameters.

Parameter A+ A− τ+ τ− Target FR Max Wt Radius (r) alpha
Minimum 0 -4e-3 5.0 5.0 5.0 0.001 0.75*sqrt(B) 0.1
Maximum 4e-3 0 100.0 100.0 20.0 0.5 sqrt(B) 1.0

Table 4.1: Parameters evolved with Evolutionary Computation
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We used an Evolution Strategy (ES) that took the form of ES-(µ,λ ), in which µ = 5 specified the

size of the parent population and λ = 50 specified the size of the offspring population (De Jong,

2006). In the first generation of the evolutionary process, the ES initialized the parameters for

50 individual networks. The network instances were then trained and validated with simulated

flow fields in the training and validation dataset, and were evaluated with the fitness function

defined in section 4.2.5. These fitness scores were then transferred to the ES. The ES performed a

binary tournament selection to select the best performing µ = 5 individual networks as the parent

networks for the next generation, and modified their parameters through replication and mutation

to produce a new population of λ = 50 network individuals. This optimization process continued

for 30 generations.

4.3 Results

The SNN model went through 30 generations of an evolutionary process which searched for opti-

mal parameters of the STDP-H synaptic learning rule in order to maximize a fitness function that

measured the accuracy of input reconstruction. Each evolutionary generation consisted of a train-

ing phase and a validation phase. Optic flow stimuli were generated by projecting from a pinhole

camera moving at different combinations of linear and angular velocity to a frontoparallel plane. A

total of 1280 computer-generated flow field stimuli that simulated different motion patterns were

used in the training and validation phases. In the training phase, 1120 stimuli were randomly

selected and presented to the network, and connection weights in the network were updated by

STDP-H in an unsupervised manner. In the validation phase, 160 optic flow stimuli, which were

not used in the training phase, were presented to the network with STDP-H disabled, and the fit-

ness function was computed over the validation set of stimuli. After the evolutionary process, we

presented several sets of novel stimuli used in physiological studies to examine the selectivity and

response properties of the simulated MSTd neurons in the models.
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4.3.1 Model performance and evolved STDP parameters

To investigate whether the SNN model was able to accurately reconstruct the input stimuli, and

to understand the effect of model size on the performance of the model, we experimented with

different sized neuron populations for the MSTd group (B = {16,36,64,100,144}). All configura-

tions shared the same network setup as described in section 4.2.3. The differences among different

configurations were the size of the MSTd group, B, and the range of values for the Gaussian pro-

jection width, r, which was adjusted such that the MSTd neurons in all configurations covered

similar portions of the visual field. To ensure reliable results from the parameter optimization pro-

cess and to obtain a sizable pool of simulated MSTd neurons for subsequent analyses (a minimum

of 144 MSTd neurons were required for the analysis described in section 4.3.5), we completed 10

separate runs for the B = 16 configuration, so it had more variability, and 5 separate runs for all

other configurations. In each run of the evolutionary process, a total of 1500 SNN instances were

simulated (30 generations and 50 network individuals in each generation).

With a population of 50 individual networks in each generation, all five network configurations

converged to optimal solutions within 30 generations (Figure 4.5). For all configurations, fitness

scores reached ∼0.5 at the first generation of the evolutionary process, and gradually increased

over generations. At generation 30, all five configurations reached fitness scores greater than 0.65

(see Table 4.2). As shown in Table 4.2, the total time for completing 30 generations of optimization

process and the simulation of 1500 network individuals increased with the size of the MSTd group.

The evolutionary process of the smallest network with B = 16 MSTd neurons required 3.89 ±

0.75 days to complete, while the largest network with B = 144 MSTd neurons required 13.60

± 2.19 days to complete. Networks with a larger MSTd group showed a better reconstruction

ability and reached higher fitness scores. Among the evolved networks, configurations with B =

{64,100,144} MSTd neurons were able to approximate the input data with R2 > 0.7, indicating

an accurate reconstruction of the input stimuli. Although network configurations with more than

B = 144 MSTd neurons may lead to an even better reconstruction accuracy, we showed in the

76



sparseness analysis (see section 4.3.2) that the level of sparseness may not improve beyond the B =

144 configuration. To ensure that the reconstruction ability of the network models was not limited

to the 160 samples randomly sampled from the training and validation datasets, we computed

fitness scores that the evolved and trained network models achieved on the three separate datasets,

which were composed of samples that were not present in the training and validation dataset (see

Table 4.3). The results showed that the models were able to generalize to other motion patterns.

These datasets, which are from previous neurophysiological studies (Graziano et al., 1994; Gu

et al., 2006; Takahashi et al., 2007; Hamed et al., 2003), will be used in our subsequent analyses

for sections 4.3.3, 4.3.4, and 4.3.5.

Figure 4.5: Best-so-far (BSF) fitness curve across 30 generations of evolutionary process for each
network configuration. Solid lines denote the mean fitness scores of all individual runs of the
network configuration. Shaded area denotes the standard deviation of the fitness scores.

STDP, as a biologically observed process, modifies synaptic strengths based on the time differences

between pre- and post-synaptic spikes. The largest weight changes induced by STDP occur when

the time difference between the pre- and post-synaptic spikes is small. As the time difference

increases, the weight changes decrease exponentially. Typically, if a presynaptic neuron fires prior
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Number of MSTd
neurons

Execution time
(days)

Fitness (BSF after
30 generations) R2

B=16 3.89 ± 0.75 0.67 ± 0.02 0.45 ± 0.02
B=36 5.28 ± 0.30 0.80 ± 0.02 0.64 ± 0.04
B=64 7.39 ± 0.85 0.84 ± 0.01 0.71 ± 0.03

B=100 10.40 ± 1.52 0.86 ± 0.01 0.74 ± 0.02
B=144 13.60 ± 2.19 0.88 ± 0.02 0.77 ± 0.03

Table 4.2: Execution time and performance of all network configurations. Values are the
mean±standard deviation. BSF = best so far of an evolutionary computation run. R2 is the co-
efficient of determination.

Number of MSTd
neurons

Spiral selectivity
dataset

3D translation/
rotation dataset

Population
encoding dataset

B=16 0.54 ± 0.06 0.57 ± 0.05 0.56 ± 0.05
B=36 0.74 ± 0.03 0.75 ± 0.03 0.70 ± 0.03
B=64 0.81 ± 0.02 0.79 ± 0.01 0.72 ± 0.03

B=100 0.81 ± 0.05 0.78 ± 0.05 0.71 ± 0.02
B=144 0.87 ± 0.02 0.82 ± 0.01 0.76 ± 0.02

Table 4.3: Fitness scores achieved by the evolved and trained networks on the three datasets used
in subsequent analyses: Spiral selectivity dataset (section 4.3.3), 3D translation/ rotation dataset
(section 4.3.4), and Population encoding dataset (section 4.3.5). Values are the mean±standard
deviation.
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to the postsynaptic neuron, the connection is strengthened because intuitively, the presynaptic

neuron caused the postsynaptic neuron to fire. If the order is reversed, the relationship between

these neurons is uncorrelated and that connection would typically be weakened. In the case of

STDP for inhibitory neurons, the order might be reversed since if there is causality, the inhibition

should be released (i.e., weaken the synapse). However it should be noted that many variations of

timing and order have been observed experimentally.

We examined the evolved STDP parameters for the best performing network individuals with each

configuration. In the evolutionary computation process, we searched the parameter space for the

amplitude and time constant components of the STDP curves for LTD and LTP. Through the op-

timization towards an accurate reconstruction of the input spiking patterns, the STDP parameters

evolved to show similar patterns across all five network model configurations as measured by the

area over the LTP or LTD part of the STDP curves (Figure 4.6). The MT → MSTd input con-

nection showed stronger LTD effects than LTP. STDP for the inhibitory connections evolved the

opposite pattern, the MSTd →Inh and the Inh → MSTd connections showed stronger LTP effects

than LTD. Such biases agree with the hand-designed STDP learning curves used in computational

studies, which demonstrated the effect of these types of curves in balancing synaptic strength and

encouraging competitive learning in the synapses (Gerstner et al., 1997; Song et al., 2000; Abbott

and Nelson, 2000).

These learning curves also contributed to sparseness in the learned representations. The MT →

MSTd input connection was biased toward LTD, which led to a net effect of depression of all

synapses and stabilized network activity by reducing the firing rate of network neurons. With a

reduced overall activity in the network, correlated spikes between a particular pair of pre- and post-

synaptic neurons are more easily differentiated, which triggered LTP consistently and strengthened

the synapse. As a result, after learning through STDP, some synapses were selectively driven to

be close to the maximum weight values, and other synapses close to the minimum values. On the

other hand, the inter-connection between the MSTd group and the inhibitory neuron group were
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biased toward LTP, which tended to strengthen the synapses. Stronger synapses in the feedforward

MSTd-Inh connection led to a higher level of activity in the inhibitory neuron group, which when

combined with the strong synapses in the feedback Inh-MSTd connection, provided a powerful

inhibition on the MSTd neurons. The STDP curves in all three connections encouraged a sparser

activity in the MSTd neuron group. Taken together, it suggests that the evolutionary process dis-

covered STDP curves, similar to those observed experimentally and proposed theoretically, that

stabilize activity and produce sparse, reduced representations.

4.3.2 Sparse representations in simulated MSTd neurons

Sparse coding describes a coding scheme in which a stimulus could be represented by a small set

of neurons, and each stimulus activates different subsets of neurons (Foldiak and Endres, 2008).

This is in contrast to dense codes, where every stimulus activates all neurons, and local codes,

where each neuron is highly selective to a particular stimulus (Arbib, 1995). Sparse codes are a

favorable compromise between the dense and local codes, which reduce the overall neural activity

required to represent the stimulus space (Vinje and Gallant, 2000; Beyeler et al., 2019).

Beyeler et al. (2016) showed that the MSTd units in the sparse decomposition model formed a

sparse population code of the input, and suggested that sparse codes may be employed by MSTd

to learn compact and multifaceted representations of the input. In the current study, we also inves-

tigated whether the simulated MSTd neurons in the SNN model formed sparse representations of

the input activity patterns. We quantified the level of sparseness of the simulated MSTd neurons

using the sparseness metrics defined in Vinje and Gallant (2000). The lifetime sparseness metric

measured how selective a neuron was to different stimuli, and the population sparseness metric

measured how many neurons were activated by any given stimulus. The sparseness values range

from 0 to 1, with 1 indicating very selective responses and maximum sparseness, and 0 indicating

a dense code. We computed both metrics for the MSTd activity over the validation trials after the
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Figure 4.6: Evolved STDP parameters. A. Evolved STDP curves visualized by plotting the
changes of synaptic weight (∆w) against the time difference between the pre-synaptic (tpre) and
post-synaptic (tpost) spikes. The blue curves correspond to the LTP component of STDP (Equation
4.7), and the yellow curvescorrespond to the LTD component (Equation 4.8). Solid lines denote
the mean values calculated from all evolved network instances (10 network instances for B = 16, 5
network instances for B = {36,64,100,144}), and the shaded areas denote the standard deviation.
B. Area over the LTD or LTP component of the STDP curves.

models were fully evolved and trained. The same procedure was applied to all configurations of

the SNN model (B = {16,36,64,100,144}).

As shown in Figure 4.7, network models with a larger MSTd group tended to have sparser repre-

sentations of the input stimuli both in lifetime sparseness and population sparseness. Sparseness

values in both metrics ranged from ∼0.5 for the B = 16 configuration to ∼0.8 for the B = 144

configuration. These results indicated that, similar to the sparse decomposition model (Beyeler

et al., 2016), the simulated MSTd neurons in all configurations of the SNN model learned a sparse

population code of the input activity patterns. The results also indicated that the sparseness values

may saturate at the B = 144 configuration and not improve for networks with a larger number of

MSTd neurons, as the fitness scores increased minimally from the B = 100 configuration to the

B = 144 configuration.

4.3.3 MSTd-like receptive fields and spiral selectivity

We visualized the receptive fields of simulated MSTd neurons by applying population decoding

on the connection weight values in the networks evolved with B = {16,36,64,100,144} MSTd

neurons (Georgopoulos et al., 1982). The 2D motion selectivity of many simulated MSTd neu-

rons may be predicted from the visualized weight patterns. Figure 4.3 shows the visualized weight

patterns of an evolved and trained network individual with the B = 64 configuration as an exam-

ple. Simulated MSTd neurons in the network had large receptive fields and preferred a mixture

of translational and rotational flow. The receptive fields depicted a wide range of optic flow pat-
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Figure 4.7: Sparseness measurements of different configurations of the SNN model. Population
sparseness measured how many neurons were activated by any stimulus, and lifetime sparseness
measured how many stimuli any given neuron responds to. The level of sparseness increases with
the increased number of MSTd neurons in the network.

terns, including translation, rotation, expansion, contraction, and intermediate of these basic flow

patterns. Networks with other configurations (B = {16,36,100,144}) showed similar weight pat-

terns.

To quantify the selectivity of the simulated MSTd neurons to a continuum of spiral motions, we

followed the procedure described in Graziano et al. (1994), where the tuning of MSTd neurons

was determined by a Gaussian curve fit (Figure4.8 A and B). We generated a set of eight “basic

stimuli" as described in Graziano et al. (1994), which contained expansion, contraction, clockwise

rotation, counter-clockwise rotation, and the four cardinal directions of translation (up, down, right,

and left). We presented these stimuli to the fully evolved and trained networks, and obtained

the response of the simulated MSTd neurons to each stimulus. We first used a criterion that the

neuronal response should be greater than 10 % of the maximum response in the population for

any of the stimuli to filter out simulated neurons that were not responsive to the basic stimuli.

We then fit the tuning curve of each neuron with a Gaussian function. The peak of the Gaussian

function corresponded to the preferred spiral motion of the neuron. These analyses were performed

on all configurations of the network with B = {16,36,64,100,144} MSTd neurons. In Figure
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4.8 we present the results from the networks with B = 64 MSTd neurons (results of the other

four configurations are shown in Figure 4.9). From five separately evolved and trained network

individuals with the B = 64 configuration, we obtained the response of 320 MSTd neurons, 317 of

which responded significantly to at least one stimulus. We plotted the tuning curve of each MSTd

neuron as a function of their response to the spiral motion stimuli, and fit the tuning curve with a

Gaussian function. We measured the goodness-of-fit of the Gaussian function by computing the

correlation r between the Gaussian function and the tuning curve. We also recorded the width σ of

the Gaussian curves and compared them to the real neurons. A large proportion of simulated MSTd

neurons had smooth tuning curves and good Gaussian fits: the mean r score for the Gaussian fit

was 0.97 ± 0.04 SD, and 278 out of 317 neurons (87.70 %) had r scores greater than 0.9. The

average tuning width for these neurons was 74.09◦, with SE of 4.44◦. These measurements were

comparable to the tuning widths of MST neurons in Graziano et al. (1994) (average width σ =61◦,

SE=5.9◦).

The modeled MSTd neurons showed similar responses to spiral flow fields as those observed ex-

perimentally. We estimated the preferred spiral motion of the neuron by finding the peak of the

Gaussian curve. Figure 4.8C and Figure 4.8D show the preferred spiral motion of the simulated

MSTd population. In Figure 4.8C, each arrow represents the preferred motion of one simulated

MSTd neuron. The population of simulated MSTd neurons showed a wide range of preferred spi-

ral motion patterns. We categorized these neurons by their tuning to the eight basic motion types

(expansion, contraction, both rotations, and four intermediate directions of spiral motion). Figure

4.8D shows the distribution of simulated MSTd neurons tuned to different spiral motions. Unlike

the MST neurons reported in Graziano et al. (1994), where the population showed a bias to ex-

panding stimulus (Figure 4.8A, B), the simulated MSTd population in the SNN model had their

preferred spiral motion distributed more evenly for each motion type.

Previous studies (Gu et al., 2006; Takahashi et al., 2007; Gu et al., 2010; Beyeler et al., 2016)

suggested that the predominance of expansion-tuned MST neurons may be due to selection bias
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in the neuron screening process. Earlier neurophysiological studies of MSTd tended to use expan-

sion stimuli to locate visually responsive neurons in MSTd, and therefore may have led to a biased

population of neurons more likely to be tuned to expanding optic flows. We applied the same se-

lection bias and sampled a sub-population of simulated MSTd neurons. In pre-screening process,

neurons that had a strong response to the expansion stimulus were more likely to be included in

this sub-population. With this simulation of selection bias, we selected 39 neurons from the pool

of simulated MSTd neurons in networks with the B = 64 configuration. After filtering out neurons

that were not significantly tuned to any of the basic motion stimuli, we had 36 simulated neu-

rons for the subsequent analysis. In the sub-population that was pre-screened for expansion, 47 %

were expansion-tuned neurons, 50 % spiral-tuned neurons (42 % expanding spiral and 8 % con-

tracting spiral), 3 % rotation-tuned neurons, and 0 % contraction-tuned neurons. The distribution

of preferred spiral motion in Graziano et al. (1994) was expansion (40 %), spiral [37 % (expanding

spiral 28 %, contracting spiral 9 %)], rotation (16 %), and contraction (7 %). Similar to the data

in Graziano et al. (1994), a large proportion of simulated MSTd neurons in the SNN model were

tuned to expansion (Figure 4.8E, F). The pre-screened sub-population had tuning curves with good

Gaussian fits, with a mean r score of 0.98 ± 0.05 SD. The average tuning width was 64.90◦, with

SE of 10.82◦, which was also comparable to the MST data in Graziano et al. (1994).

4.3.4 3D translation and rotation heading selectivity

Neurophysiological studies characterized the 3D translation and rotation heading tuning of MSTd

neurons using visual stimuli that simulated the observer’s movement through a 3D cloud of “stars"

(Gu et al., 2006; Takahashi et al., 2007). These stimuli were generated following a “translation

protocol", which consisted of stimuli that depicted straight translational movements along 26 di-

rections corresponding to all combinations of azimuth and elevation angles in increments of 45◦,

and a “rotation protocol", which consisted of stimuli that depicted rotational movements along the

same 26 directions, with the direction corresponding to the axis of rotation according to the right-
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Figure 4.8: MSTd response to spiral flow fields. Plots in the first row visualize the distributions
of tuning with arrows spanning the spiral motion space. Each arrow represents one neuron. His-
tograms in second row visualize the distributions of tuning by showing the percentage of simulated
neurons tuned to each type of motion. A,B. Reprinted with permission from Graziano et al. (1994).
In a population of 57 neurons recorded from the MSTd area, the tuning of MSTd neurons spanned
the entire spiral space, with a large proportion of neurons tuned to expanding motions. C-F. Anal-
yses of the entire population of simulated MSTd neurons obtained from 5 separately evolved and
trained network instances with the B = 64 configuration. C,D. In a pre-screened for expansion sub-
population of the simulated MSTd neurons, a large proportion of simulated neurons were tuned to
expanding motions. E,F. In the entire simulated MSTd neuron population, 278 simulated MSTd
neurons had significant tuning to spiral stimuli. The preferred spiral directions distributed evenly.
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Figure 4.9: MSTd response to spiral flow fields (B = {16,36,10,144}). The left column shows
the distribution of spiral tuning of the pre-screened population. Similar to the B = 64 configura-
tion as shown in Figure 4.8D, a large proportion of simulated neurons were tuned to expanding
motions. The right column shows the distribution of spiral tuning of the entire population of sim-
ulated MSTd neurons obtained in 10 separately evolved and trained network instances with the
B = 16 configuration, and 5 network instances with the B = {36,10,144}. Similar to the B = 64
configuration as shown in Figure 4.8F, the preferred spiral directions distributed evenly.

87



hand rule. These 26 directions were described by 26 movement vectors spaced 45◦ apart in both

azimuth and elevation on the sphere.

We tested whether the simulated MSTd neurons in the SNN models had similar translation and

rotation tuning as experimental observations. We followed the same protocols as the neurophys-

iological studies and generated visual motion stimuli to test the SNN models (Gu et al., 2006;

Takahashi et al., 2007). The translational stimuli were generated with a peak velocity vz =0.3 m/s,

and the rotational stimuli were generated with a peak velocity ωz =20 ◦/s. We recorded the ac-

tivity of the simulated MSTd neurons during the stimulus presentation, and obtained 3D tuning

curves for each MSTd neuron by plotting the neuron activity as a function of the azimuth and

elevation of the stimuli. As the heading directions were sampled around the sphere, the heading

tuning function was spherical. We transformed the data using the Lambert cylindrical equal-area

projection, in order to plot the 3D tuning curves on Cartesian axes (Snyder, 1987). Figure 4.10

shows a comparison of 3D translation and rotation tuning in an example macaque MSTd neuron

and in an example simulated MSTd neuron from the SNN model (B = 64). The tuning curves

of the neurons were illustrated as contour maps, where the x-axis represented the azimuth angle,

the y-axis represented the sinusoidally transformed version of the elevation angle, and the mean

firing rate of the neuron to each stimulus was plotted as a function of azimuth and elevation angles.

Similar to MSTd neurons (Takahashi et al., 2007), our simulated MSTd neurons showed broad

tuning curves for translational and rotational heading directions. We computed the vector sum of

the unit’s response to all 26 stimuli to determine the preferred translation and rotation directions

for the simulated neurons. The experimentally observed MST neuron shown in Figure 4.10A and

B was tuned to 291◦ azimuth and −18◦ elevation under the rotation condition, and was tuned to

190◦ azimuth and −50◦ elevation under the translation condition (Takahashi et al., 2007). The

simulated MSTd neuron also showed strong spatial tuning under both the rotation and translation

condition. This particular simulated MSTd neuron shown in Figure 4.10C and D was tuned to

35◦ azimuth and −27◦ elevation for rotational heading, and 216◦ azimuth and −65◦ elevation for

translational heading.
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We examined the distribution of preferred directions of the simulated MSTd neurons. Figure 4.11

shows the distribution of translation and rotation direction preferences of MST neurons (Takahashi

et al., 2007) and of all 320 simulated MSTd neurons from 5 individually evolved and trained SNN

models with the B = 64 configuration (results of the other four configurations are shown in Figure

4.12). Each data point in these plots represents the 3D preferred direction of a single neuron. Note

that in these plots, 360◦ in the azimuth angle was equivalent to 0◦ in the azimuth angle. Similar

to the distribution reported in Takahashi et al. (2007), the simulated MSTd neurons also showed

significantly non-uniform distributions in azimuth and elevation for both translation and rotation

heading preferences (uniformity test, p < 0.05). Rotational preferences showed a bimodal distri-

bution in azimuth, clustering at 0◦ and 180◦, corresponding to pitch-up and pitch-down rotations,

respectively. Translational preferences had bimodal distributions in both azimuth and elevation,

clustering at 0◦ and 180◦ in azimuth, corresponding to leftward and rightward movement direc-

tions, and ± 90◦ in elevation, corresponding to upward and downward movement directions. We

categorized the simulated neurons with their preferred motion type by finding neurons with pre-

ferred directions falling within ± 30◦ of each of the cardinal axes of the motion type. Similar to

the recordings in Takahashi et al. (2007), the majority of the simulated MSTd neurons were tuned

to yaw (± 90◦ in elevation) or pitch (0◦ and 180◦ in azimuth) directions for rotational headings,

and a smaller percentage of simulated MSTd neurons were tuned to roll motions (90◦ and 270◦ in

azimuth) (Table 4.4). Under the translation condition, the majority of the simulated MSTd neu-

rons were tuned to lateral (0◦ and 180◦ in azimuth) or vertical (± 90◦ in elevation) translational

motions (see Table 4.5). To quantify the strength of heading tuning of single MSTd neurons, we

computed the heading tuning index (HTI) value defined in Gu et al. (2006). A HTI ranges from 0

to 1, with larger values indicating stronger heading tuning. Gu et al. (2006) reported that the aver-

age HTI value for their sampled MSTd neurons was 0.48±0.16. The simulated MSTd neurons in

the networks with the B = 64 configuration showed a stronger tuning, averaging 0.66± 0.14 and

0.68±0.12 for rotation and translation respectively.
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Figure 4.10: 3D translation and rotation tuning of example MSTd neurons. A,B. Reprinted with
permission from Takahashi et al. (2007). Translation and rotation tuning of an example MST
neuron recorded under the visual rotation and translation conditions. C,D. Translation and rotation
tuning of an example MSTd neuron from a fully evolved and trained SNN model with the B =
64 configuration. Each contour map shows the Lambert cylindrical equal-area projection of the
original data (Snyder, 1987).

Yaw Pitch Roll
Takahashi et al., 2007 36/127 (28%) 27/127 (21%) 1/127 (1%)
SNN Model (B = 64) 67/320 (20.94%) 95/320 (29.69%) 25/320 (7.81%)

Table 4.4: Number of neurons tuned to each motion type under the visual rotation condition

Lateral Fore-aft Vertical
Takahashi et al., 2007 57/307 (19%) 20/307 (7%) 76/307 (25%)
SNN Model (B = 64) 75/320 (23.44%) 29/320 (9.06%) 73/320 (22.81%)

Table 4.5: Number of neurons tuned to each motion type under the visual translation condition
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Figure 4.11: Distribution of 3D translation and rotation tuning of MSTd neurons. Each data point
in the scatter plot represents the preferred azimuth and elevation angles of one neuron. The his-
tograms along the sides of the scatter plot show the marginal distributions. The 2D projections
of unit-length 3D preferred direction vectors were shown in the radial plots, including the front
view, the side view, and the top view. Each radial line in these plots represents one neuron. A,B.
Reprinted with permission from Takahashi et al. (2007). MST neurons recorded under the visual
rotation and translation conditions. C,D. Simulated MSTd neurons from 5 separately evolved and
trained SNN model with the B = 64 configuration.
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Figure 4.12: Distribution of 3D translation and rotation tuning of simulated MSTd neurons
(B = {16,36,10,144}). The left column shows the rotational heading preferences of all simu-
lated neurons in each network configuration, and the right column shows the translational heading
preferences. Each data point in the scatter plot represents the preferred azimuth and elevation an-
gles of one simulated neuron. The histograms along the sides of the scatter plot show the marginal
distributions.

What might be the source of the non-uniform distribution of heading preferences, especially the

over-representation of lateral motion (azimuth of 0◦ and 180◦), and how might these characteristics

of the MSTd neuron population contribute to self-motion perception? Gu et al. (2010) suggested

that an abundance of MSTd neurons preferring lateral heading directions may account for the ob-

servation that primates are most accurate at judging small variations in heading references directly

in front of the animal, and less precise for heading around an eccentric reference. Most of their

recorded MSTd neurons have broad, cosine-like tuning curves, and the preference to lateral head-

ings caused the peak discriminability of these neurons to lie near straight ahead.

In the evolved and trained models, the simulated MSTd neurons also had broad, cosine-like tun-

ing curves (see Figure 4.10). We tested whether these simulated MSTd neuron populations also

maximal discriminability for heading directions near the straight-ahead. We presented motion pat-

terns that simulated eight directions of translation in the horizontal plane (0◦, ± 45◦, ± 90◦, ±

135◦, 180◦, relative to straight-ahead) to the models and recorded the activity of the simulated

MSTd neurons. Following the experimental protocol of Gu et al. (2010), we computed the peak

discriminability of individual simulated MSTd neurons, and estimated the precision of heading dis-

crimination by computing population Fisher information from the tuning curves of the simulated

MSTd neurons. To obtain smooth tuning curve of the simulated MSTd neurons, we fitted a spline

function with 0.01◦ resolution to the coarsely sampled data (45◦ spacing). We then calculated

the spatial derivative of the spline fit and obtained the tuning curve slope. Peak discriminability

was achieved at the steepest slope of the tuning curves. For each heading direction, we computed

the population Fisher information based on the derivative of the tuning curve for each simulated

neuron, and the variance of the response of each simulated neuron to each heading direction, as
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described in Gu et al. (2010). Larger values of Fisher information indicate higher precision in

heading discrimination.

In order to make a direct comparison with the neurophysiological data, we adopted the coordinate

system used in Gu et al. (2010), where 0◦ azimuth corresponded to the straight-ahead direction.

Figure 4.13 compares the distribution of peak discriminability of recorded MSTd neurons and

simulated MSTd neurons in the models with different network configurations. Consistent with the

neurophysiologically recorded data, most simulated MSTd neurons had their peak discriminability

clustered around forward (0◦) and backward (180◦) headings. Figure 4.14 shows population Fisher

information computed from the heading tuning curves for recorded MSTd neurons and simulated

MSTd neurons in the network models. Consistent with the data reported in Gu et al. (2010), there

was a clear dependence of Fisher information on reference heading for the simulated MSTd neuron

populations, with a peak for forward headings (0◦) and a minimum for lateral headings (± 90◦).

The magnitudes of Fisher information differed between the recorded and simulated MSTd neurons,

and also across different network configurations, due to the different sample sizes and differences

in signal-to-noise ratio. The simulated MSTd neurons diverged from the recorded neurons in that

the former population showed higher Fisher information for backward headings (180◦).

4.3.5 Population encoding of heading direction

MSTd neurons were suggested to encode perceptual variables such as the focus of expansion (FOE)

in optic flow, eye position, and pursuit to support self-motion. Perceptual variables could be de-

coded with an average accuracy of 2◦ to 3◦ based on single-trial response of a population of 144

MSTd neurons (Hamed et al., 2003).

In the current study we focus on investigating whether the simulated MSTd neuron population

in the SNN model also encoded FOE robustly. We generated a dataset with 10,000 optic flow

fields that simulated various translational motions as described in the physiological study (Hamed
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Figure 4.13: Distribution of the direction of maximal discriminability for neurons recorded in
macaque MSTd (A, reprinted with permission from Gu et al. (2010)) and simulated MSTd neurons
in the SNN models (B-F). Both the recorded and the simulated neuron populations showed a
bimodal distribution with peaks around the forward (0◦) and backward (180◦) headings.
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Figure 4.14: Population Fisher information computed from neurons recorded in macaque MSTd
(A, reprinted with permission from Gu et al. (2010)) and from simulated MSTd neurons in the
SNN models (B). The error bands in A show (95 % confidence intervals derived from a bootstrap
procedure.

et al., 2003). The “heading" condition contained flow fields that depicted randomly selected

heading directions, with azimuth between 60◦ and 120◦, and elevation between -30◦ and 30◦.

These flow fields simulated linear movements toward a back plane located at various distances

in meters, d = {2,4,8,16,32} from the observer, with the observer moving at a velocity in m/s,

vz = {0.5,0.75,1,1.25,1.5}, without any rotational movements. The goal was to decode the MSTd

population activity to predict the location of FOE, which in this case, was the same as predicting the

heading direction of the observer. With the fully evolved and trained network models configured

with different number of MSTd neurons (B = {16,36,64,100,144}), we obtained MSTd group

activity responding to the “heading" stimuli. For each configuration, we randomly selected 144

units from the pool of simulated MSTd neuron collected from all separately evolved and trained

networks, and used optimal linear estimators with a 10-fold cross-validation procedure to find the

linear weights that could decode heading from the activity of this sub-population of simulated

MSTd neurons. Table 4.6 shows the prediction error of FOE of the MSTd neurons and simulated

MSTd neurons from the network instances with the B = 64 configuration. FOE as a key percep-

tual variable could be decoded with a slightly higher degree of precision than the experimentally
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observed MSTd neurons (Hamed et al., 2003). As shown in Figure 4.15, FOE could be decoded

with a similar level of accuracy from simulated MSTd neurons in all 5 configurations of the SNN

model (Wilcoxon’s rank sum test, p = 1 for all pair-wise comparisons).

FOE (x, y)
Hamed et al., 2003 (3.62° ± 6.78°, 3.87° ± 4.96°)

SNN Model (B = 64) (0.98° ± 0.77°, 1.13° ± 0.87°)

Table 4.6: Error in predicting FOE using the activity a population of 144 MSTd neurons sampled
from evolved and trained models with the B = 16 configuration.

Figure 4.15: Error in predicting FOE (Heading) using the activity a population of 144 MSTd
neurons from each configuration (B = {16,36,64,100,144}) of the network model. Simulated
MSTd neurons from different configurations of the network exhibited similar levels of accuracy
in these two tasks. The interquartile range box represents the middle 50% of the values. The line
within the box indicates the median. The red data points mark outliers that are 1.5 times bigger
than the interquartile range, and the whiskers extend to the most extreme data points that are not
considered outliers.

4.4 Discussion

By evolving STDP-H parameters of SNNs, we demonstrated that a model of MSTd was able to

account for many experimentally response properties observed in monkeys: 1) Tuning to spiral

motions, 2) 3D translation and rotation selectivity, and 3) Encoding of perceptual variables such as
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heading. The simulated MSTd neurons learned compressed and efficient representations of input

activity patterns with a population that was an order of magnitude smaller than its MT neuron in-

put group. These representations, which accurately reconstructed input stimuli, efficiently encoded

complex self-motion that could be used by downstream neural areas. The present results provide

a linkage from prior machine learning studies that suggested nonnegative sparse coding can pro-

duce similarities to responses observed in the cortex (Hoyer, 2002; Beyeler et al., 2016, 2019),

to neurobiologically plausible computations. Specifically, our results suggest that neurobiologi-

cal plasticity, like STDP-H, may be contributing to dimensionality reduction and sparse coding

observed in the brain.

4.4.1 Response properties of simulated MSTd neurons and implications for

downstream processing

Simulated MSTd neurons in our SNN model exhibited a variety of response properties observed in

neurophysiological studies. Firstly, simulated MSTd neurons had Gaussian tuning spanning the en-

tire spiral space, and many of these neurons showed a strong representation of expanding motions

(Graziano et al., 1994). Secondly, similar to the MSTd neurons recorded in visual translational

and rotational heading experiments (Gu et al., 2006; Takahashi et al., 2007), the simulated MSTd

neurons showed strong tuning to 3D translation and rotation heading directions, with more neurons

preferring lateral and vertical translational movements, and pitch and yaw rotational movements.

The simulated MSTd neuron had maximal heading discriminability clustered around forward (0◦)

and backward (180◦) headings. Such properties may arise from the SNN models learning to re-

construct the input optic flow dataset, which sampled headings near the center of the visual field

for expanding and contracting motion patterns. It’s interesting to note these biases in heading pref-

erences and heading discriminability were also observed in macaque MSTd neurons (Gu et al.,

2006; Takahashi et al., 2007; Gu et al., 2010), which may suggest that in natural scenes, optic flow

patterns with headings near the center of the visual field are more commonly experienced during
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forward and backward movements. In the training and validation dataset, we sampled forward

and backward movements with the same probability, while backward locomotion is an uncommon

activity in natural movements (Perrone, 1986, 1994). This discrepancy may explain the higher

precision in discriminating backward headings with the simulated MSTd neurons and the neu-

rons recorded in the macaque MSTd. In future studies, by varying the distribution of the training

data and observing how this affects the tuning curves of the MSTd neurons, we will have a better

understanding of how observed response properties of MSTd neurons may be an adaptation for

efficient self-motion perception. Lastly, FOE as one of the key perceptual variables could be de-

coded with high accuracy from our simulated MSTd neurons (Hamed et al., 2003). These results

suggest that the simulated MSTd neurons encoded information essential for perceiving and guiding

self-motion.

These properties emerged as the model evolved unsupervised learning parameters (STDP-H) to

reconstruct optic flow patterns. This led to the efficient coding of perceptual features that may be

decoded by downstream neurons for motor behaviors. For example, our SNN model showed a con-

tinuum of tuning in the spiral space that has been suggested to simultaneously encode the curvature

of a path and heading (Layton and Browning, 2014). This allows MSTd to perform trajectory es-

timation and guide self-motion along complex trajectories. Heading tuning that spanned the entire

translational and rotational movement space allows for accurate heading direction perception. The

sparse, reduced representations of the global motion pattern allows for efficient encoding of key

locomotion parameters including the heading direction. These observations are consistent with the

hypothesis that MSTd transforms stimulus information into representations more directly linked

to perception and action, supported by the connections between MSTd to many cortical and sub-

cortical areas (Boussaoud et al., 1990; Felleman and Van Essen, 1991 Jan-Feb; Wild and Treue,

2021).

A limitation of the current study is that heading perception with the simulated MSTd neurons

was only studied under the locomotion condition without eye movements. Previous studies have
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shown that although eye rotations during smooth pursuit distort the optic flow patterns on the

retina, humans and nonhuman primates are able to perceive their heading direction correctly (Roy-

den et al., 1992; Britten and Van Wezel, 2002). It will be interesting to investigate whether the

simulated MSTd neurons could predict heading in the presence of eye movements, and whether

retinal mechanisms are sufficient to discount distortions to the optic flow fields, as suggested in

previous computational and neurophysiological studies (Royden, 1997; Perrone and Stone, 1998;

Beyeler et al., 2016; Manning and Britten, 2019). The stimulus paradigm used in this study was not

well equipped for such an analysis, as the stimuli did not provide meaningful distinction between

head rotation and eye rotation.

4.4.2 Relating STDP-H to Nonnegative Sparse Coding in the brain

It has been suggested that STDP-H may lead to sparse, reduced representations in the brain (Carl-

son et al., 2013; Beyeler et al., 2019). Indeed, our model showed the ability to accurately recon-

struct the input stimuli in a neuron population by activating a small subset of neurons (population

sparseness), which were active on only a subset of stimuli (lifetime sparseness). In our SNN model,

the high-dimensional visual motion input, represented by the population activity of 9000 MT neu-

rons, projected to a small group of MSTd neurons (B = {16,36,64,100,144}). The simulated

MSTd neurons were pressured to reduce the dimensions of the input and find efficient representa-

tions that retained relevant features in the input space. In addition, sparse coding was encouraged

by the synaptic competition induced by STDP at the synapse level, and by feedback inhibition

(Finelli et al., 2008; Chistiakova et al., 2015). Also, the STDP curves in our SNN model that

modulated the MT→MSTd connections evolved to have stronger LTD than LTP, which led to a

pruning effect on the connection weights by depressing uncorrelated spiking activity that led to

sparser activity (Feldman, 2000, 2012). Finally, homeostatic synaptic scaling preserved the rela-

tive weight differences between synapses on the same postsynaptic neuron and stabilized STDP

learning (Carlson et al., 2013).
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The biological brain operates under tight metabolic constraints and is often pressured to find strate-

gies for accurate information encoding which also allows for efficient transfer, while minimizing

the energy costs (Krichmar, 2019). Sparse coding is one such strategy that reduces neural activity

without sacrificing performance (Graham and Field, 2007). The sparse coding strategy was demon-

strated to be effective in encoding sensory input and was suggested to be ubiquitous throughout

the brain (Olshausen and Field, 2004). Dimensionality reduction is a strategy to transform high-

dimensional and complex information into a compressed form that is easier to transfer and read out

at subsequent levels of processing. The sparse coding scheme implemented in Olshausen and Field

(2004) used a greater number of neurons than the dimensions of the input space to represent the

input, suggesting “dimensionality expansion". This may seem contradictory to the dimensionality

reduction strategy. However, Hoyer (2002) combined the two strategies to form the Nonnega-

tive Sparse Coding (NSC) method, which decomposes multivariate data into non-negative sparse

components. Hoyer (2004) further showed that explicitly incorporating sparseness constraints is

important for learning nonnegative representations that match the underlying elements of the data.

NSC has been demonstrated to reproduce receptive fields of neurons in the primary visual cortex

(V1) by decomposing the activities of ON- and OFF-channels in response to natural image patches

(Hoyer, 2002). NMF with sparsity constraints implements a form of NSC, which when applied

to MT-like input, resulted in sparse, parts-based representations of the optic flow resembling the

receptive fields of experimentally observed MSTd neurons (Beyeler et al., 2016). Outside of the

visual cortex, NSC was suggested to be employed by many other sensory areas in the brain to

encode external stimuli (Beyeler et al., 2019).

The scheme of dimensionality reduction and sparse coding induced by STDP-H in our SNN model

is consistent with NSC. NSC describes the input data as a superposition of a set of sparsely ac-

tivated basis functions and requires that the basis functions as well as the activation values to be

nonnegative (Hoyer, 2002). The input optic flow patterns resulting from locomotion, despite their

high dimensionality encoded in the population activity of idealized MT neurons, had some statis-

tical regularities. For example, Beyeler et al. (2016) showed that these optic flow patterns could
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be reconstructed with a linear combination of a set of “basis flow fields”. These basis flow fields

captured the key features within the data and represented the data in a lower dimensional space.

In the present study, we demonstrated that STDP-H allowed the spiking neurons to detect and ex-

tract these statistical regularities among the spike trains, and developed representations of the input

optic flow fields similar to those obtained through NSC. Together with the sparse decomposition

model proposed in Beyeler et al. (2016), the SNN model presented in the present study challenges

the prevailing views about the MST area in macaque cortex, by showing that prominent neuronal

responses traditionally attributed to specialized self-motion “templates” might instead be a by-

product of neurons performing dimensionality reduction on their inputs. Our work agrees with the

hypothesis that STDP-H may be a biologically plausible neural mechanism that implements NSC

in the brain (Carlson et al., 2013), and to our knowledge, may be the first computational study to

demonstrate the link between the STDP-H synaptic learning rules and the NSC neural encoding

scheme.

4.4.3 Model alternatives

A number of computational models have been proposed to reproduce the motion selectivity of

MSTd neurons. Examples of these models include a model trained with unsupervised Hebbian

learning (Zhang et al., 1993), the “multi-cause" model that took the form of an autoencoder (Zemel

and Sejnowski, 1998), and a two-layer back-propagation network that was trained in a supervised

manner to approximate tuning curves of MST neurons (Beardsley and Vaina, 1998). Alternatively,

Perrone (1994); Perrone and Stone (1998) proposed the “template model" which constructed MST

units that each encoded a specific combination of heading and rotation through combining the in-

put from specifically arranged MT-like units. By modeling the MSTd neurons’ responses to a set

of novel continuous optic flow stimuli, Mineault et al. (2012) showed that nonlinear integration,

especially compressive integration of MT input led to the complex selectivity observed in MST

neurons. Layton and Browning (2014) defined MSTd hypercolumns that had receptive fields cen-
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tered at different locations of the visual field and possessed selectivities across a spiral space of

motions. Mineault et al. (2021) showed that a deep neural network trained to predict self-motion

parameters could account for the selectivity of neurons in the dorsal visual stream.

Here, we employed a novel modeling approach of evolving synaptic learning rules in a SNN, which

posed minimal assumptions on the selection of model parameters. Selectivity and receptive fields

of the simulated MSTd neurons in our models were emergent properties without hand-crafted

templates, which makes our modeled neurons flexible and generalizing to other complex tasks.

This approach is generalizable and has been used to replicate neural recordings in the retrosplenial

cortex (Rounds et al., 2018) and the medial temporal lobe (Chen et al., 2021).

In summary, we showed that MSTd-like response properties emerge from a SNN model that was

trained with STDP-H and evolutionary computation, with an objective of reconstructing the input

optic flow fields. Simulated MSTd neurons in this model formed a sparse population code of the

input activity pattern, and encoded perceptual variables important for self-motion perception. This

model demonstrated that STDP-H reduced the dimensions of input stimuli and allowed spiking

neurons to learn sparse and efficient representations, in a similar way that NSC performs decom-

position of complex input. It suggests a biologically plausible method for how these and other

representations in the brain emerge.
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Chapter 5

Differential Spatial Representations in

Hippocampal CA1 and Subiculum Emerge

in Evolved Spiking Neural Networks

5.1 Introduction

Rodents flexibly and reliably navigate in the world by using a variety of available spatial informa-

tion. Effective spatial navigation is supported by localizing oneself in the environment, knowing

the current direction of movement, and inferring about the progress along routes leading to the

destination. Several regions in the rodent brain have been identified as important for spatial nav-

igation, including the hippocampal sub-region CA1 and the subiculum (SUB). Lesions of both

The contents of this chapter were originally published as a paper titled “Differential Spatial Representations
in Hippocampal CA1 and Subiculum Emerge in Evolved Spiking Neural Networks" in the 2021 International Joint
Conference on Neural Networks (IJCNN) Proceedings (Chen et al., 2021). The inclusion of this paper is in compliance
with the permission policy of the original publisher.
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regions cause deficits in navigational abilities and a loss of accurate localization ability (Morris

et al., 1990). On the single cell level, place cells have been identified in both regions (O’Keefe and

Dostrovsky, 1971; Sharp and Green, 1994). Place cells were shown to signal the allocentric posi-

tion of the animal during navigational tasks. These cells fire selectively in specific locations in the

environment, and the population ensemble activity can be used to decode the animal’s movement

(Wilson and McNaughton, 1993). However, compared to CA1, SUB place cells showed larger,

less specific place fields (Potvin et al., 2007), and exhibit more directional modulation for activity

within those fields (Sharp and Green, 1994; Olson et al., 2017).

A number of computational models have been proposed to explain the emergence of CA1 place

cells (Arleo and Gerstner, 2000; Burgess and O’Keefe, 2011; Tsodyks and Sejnowski, 1995), but

fewer computational studies concern the spatial representations in SUB neurons. As biologically

detailed models, Spiking Neural Networks (SNNs) have been used to investigate sensory process-

ing in the brain (Xu et al., 2020) and to model brain activities (Kasabov, 2014). Different methods

of optimizing SNNs have also been proposed, such as unsupervised learning with spike timing

dependent plasticity (STDP) (Diehl and Cook, 2015) and evolving the structure of the network

(Kasabov, 2014). Our method is unique that we evolve the synaptic learning rule in SNNs to map

recorded behavioral data to neuronal data.

In this chapter, we extend the method of evolving SNNs introduced in (Rounds et al., 2018) to

replicate neural dynamics of CA1 and SUB neurons. We use datasets recorded from the CA1 and

SUB while rats performed a complex navigational task on a Triple-T maze (Fig. 5.1) (Olson et al.,

2021). Neural circuits of both regions are modeled with SNNs optimized by evolving spike timing

dependent plasticity with homeostatic scaling (STDP-H) parameters using evolutionary algorithms

(EAs). In the SNN models, behavioral variables including the allocentric position of the animal and

self-motion related variables such as the head direction and linear/angular velocity of the animal

serve as the input to the network, and a recurrently connected group of excitatory spiking neurons

is tuned to replicate the CA1 and SUB neural activity. Our results suggest that the same spiking

105



neural network modeling framework can be used to model different brain regions related to spatial

navigation. In addition, an analysis of the connection weights and the results from ablation studies

are suggestive of how CA1 and SUB integrate sensory information differently to form spatial

representations. The CA1 region fires sparsely and less actively with higher spatial information,

whereas the SUB is more active and directionally selective. These differences are captured in the

connection weights and the evolved STDP-H parameters of these regions.

1 2 3 4

65

Figure 5.1: Schematic drawing of the navigational task. The rat would start from the bottom (in-
dicated by a green dot), take one of the four internal routes (i.e., Routes 1-4) to get to a reward
site, and return to the starting point via one of the two return routes (i.e., Routes 5-6). The rats
demonstrated remarkable navigation ability and working memory capacity by visiting all four re-
ward sites with minimal repeats.

5.2 Methods

We took a unique modeling approach of evolving hyper-parameters in spiking neural networks.

Spiking neural networks are preferable in this study as they accurately captured the nature of our

datasets, which included spike trains that were distributed into spatial bins and processed with

a smoothing function (Olson et al., 2017). We processed the spike trains in our spiking models

following the same procedure to ensure a direct comparison with the recorded data. The models
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were optimized with an approach combining evolutionary algorithms and unsupervised learning

using STDP and homeostatic synaptic scaling (STDP-H) (Rounds et al., 2018). The evolutionary

algorithms searched for optimal hyper-parameters for the STDP-H learning rule, without directly

updating the connection weights in the network. To ensure the reliability of our modeling and pa-

rameter search process, we carried out 5 independent evolutionary runs for each modeled region,

each with a population size of 15 individual networks that underwent 50 generations of evolution-

ary algorithms.

All simulations were performed with the CARLsim 4 spiking neural network simulator (Chou

et al., 2018). CARLsim 4 includes a parameter tuning interface (PTI) that links to an evolutionary

computation library called ECJ (Luke, 2017).

5.2.1 Network model

The network model contained 1282 neurons in total: 640 excitatory neurons modeled as regular

spiking (RS) Izhikevich spiking neurons, 160 inhibitory neurons modeled as fast spiking (FS)

Izhikevich spiking neurons (Izhikevich, 2003), and 482 input neurons modeled as Poisson spike

generators. The input layer contained four types of behavioral inputs: 450 neurons for allocentric

position (Pos), 12 neurons for angular velocity (AV), 12 neurons for linear velocity (LV), and

8 neurons for head direction (HD). Each input group was connected to both the excitatory and

inhibitory groups. The inhibitory neuron group provided feed-forward inhibition to the excitatory

neuron group, while the excitatory neuron group had recurrent excitatory connections within its

own group. Neuron groups were sparsely connected with a probability of 0.1 (Fig. 5.2).

Input streams to the SNNs represented the kinds of information processed by connected regions.

For example the hippocampal sub-region CA3 provides positional information (Leutgeb et al.,

2007), the medial entorhinal cortex (MEC) provides velocity related information (Kropff et al.,

2015), and the anterior thalamic nucleus (ATN) provides movement and head direction related
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Figure 5.2: Network architecture. This network contains four input neuron groups, representing
four types of behavioral variables: angular velocity (AV), linear velocity (LV), head direction
(HD), and allocentric position (Pos) of the rat. The input neuron groups are connected to an
excitatory neuron group and an inhibitory neuron group. Neurons within and between groups have
a connection probability of 0.1.

information (O’Mara, 2005; Frost et al., 2020) to CA1 and SUB. We created the tuning curves

for each type of input streams following the same fashion as in (Rounds et al., 2018). Parameter

values were set to allow the tuning curves to cover the entire value range in our datasets and elicit

varying neuronal responses. The analog response from the tuning curves was converted into spike

trains using a Poisson spike generator.

Tuning curves of AV and LV neurons were modeled as Gaussian functions of the rat’s angular/-

linear velocity. If the rat was moving at a velocity s, the activity of neurons i = 1...N (N = 12) in

these two groups was given by:
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fi(s) = rmax × exp

(
−1

2

(
s− si

σ

)2
)

(5.1)

where rmax = 40 is the maximum firing rate of the neuron population, and si is the preferred velocity

of neuron i. Standard deviation of the curve σ was set to be 6 and 20 for AV and LV respectively.

Tuning curves of HD neurons were modeled with cosine functions. With an input head direction ,

the activity of neurons i = 1...N (N = 8) in the head direction input group was given by:

fi(θ) =


rmax × cos(θ −θi) , if |θ −θi|<= π

4

0 ,otherwise
, (5.2)

where rmax = 60, and θi represented the preferred direction of neuron i.

Tuning curves of Pos neurons were modeled as 2D-Gaussian functions of the rat’s position in

the maze. For an input position p, which represented the (x,y) values in the maze in Cartesian

coordinates, the activity of neurons i = 1...N (N = 450) in the position input group was given by:

fi(p) = rmax × exp

(
−1

2

(
||p− pi||

σ

)2
)

(5.3)

where rmax = 40, and || · || denotes the Euclidean norm. pi is the preferred position of neuron i, and

σ as the width of the tuning curve took the value 25 in this study.
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5.2.2 Evolutionary computation

Instead of directly evolving the connection weights, we employed a “learning to learn” paradigm

and evolved a total of 20 hyper-parameters in our network. The hyper-parameters in the network

fell into 3 categories: (1) Parameters of the STDP learning rule, which included the amplitude

parameters A+ and A−, and the time decay constants τ+ and τ−. Optimal values for these pa-

rameters were searched for the Excitatory-STDP that projected into both the excitatory (EE) and

inhibitory (EI) neuron groups, and the Inhibitory-STDP that projected into the excitatory (IE)

neuron group. (2) Parameters of the homeostatic synaptic scaling rule that were applied to the

excitatory and inhibitory neuron groups, which included the target firing rate Rtarget and the time

scale parameter T . (3) The maximum connection weights for the inter-group connections (i.e., Inp

→ Exc, Inp → Inh, Exc → Exc, Inh → Exc).

Models were optimized through 50 generations of evolutionary algorithms. In the first generation,

the evolutionary algorithm initialized 15 networks, each of which went through a training and

testing phase and obtained a fitness score. Parameters of the best performing 3 networks were then

used to generate a new generation of 15 network individuals using the (µ,λ ) Evolutionary Strategy

(ES) (Luke, 2017).

We used a multi-parent (µ +λ ) Evolution Strategy (ES) model implemented in ECJ to optimize

the network (Luke, 2017). In each generation, the fitness scores from (µ + λ ) = 18 individual

networks were collected, and the top µ = 3 individuals were selected as the parent population

to produce the next generation of λ = 15 individuals. For the reproductive process, we adopted

a combination of mutation and cross-over, which added 1-dimensional Gaussian noise to each

hyper-parameter with a mutation probability of 0.5 and a cross-over rate of 0.6. This mechanism

allowed us to get a good balance between exploring the parameter space and keeping the useful

gene values already found.
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5.2.3 Training and testing of the model

We used a subset of the data in (Olson et al., 2021), which included 5430 trials from 32 recording

sessions for CA1, and 5908 trials from 49 recordings for SUB. Each trial contained neuronal

activity recorded from one brain region and behavioral variables of the animal as it traversed one

of the six routes of the maze shown in Fig. 5.1. For both CA1 and SUB datasets, we shuffled the

data based on trials and split them in half to create a pool of training data and a pool of testing data.

In each evolutionary algorithm generation, a population of networks with different hyper-parameters

went through a training and a testing phase, and the fitness scores of the networks were evaluated

by the evolutionary algorithm to generate the hyper-parameters for the next generation. The train-

ing and testing datasets each consisting of 600 trials (i.e., 100 trials for each route) were re-sampled

every generation from the training and testing data pools respectively. In the training phase, be-

havioral data were fed into the network and STDP-H learned associations between neurons and

stabilized network activity. STDP updated the connection weights based on the temporal distance

of pre- and post-synaptic spikes, and homeostatic scaling modified the weights in a multiplicative

manner based on the post-synaptic firing rate (Carlson et al., 2013). During testing, we disabled

synaptic plasticity and froze the connection weights. We presented the network with different be-

havioral and neurophysiological data from the training phase. To determine how well the simulated

neurons resembled the experimentally observed neurons, a Pearson correlation coefficient, ρ , was

computed between the mean firing rate of excitatory neuron activity in the SNN and experimen-

tally observed neurons. Using a greedy approach, we determined a match between a simulated

neuron and an experimentally observed neuron based on the highest correlation value and each

neuron could only be matched once. After all experimentally observed neurons found a match, a

fitness value of the network was calculated by summing the ρ values of all matched neuron pairs:
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y =
N

∑
i

ρ(R̄i
real, R̄

i
match)−L (5.4)

where L was a penalty for unrealistically high firing rates, which only applied when the maximum

mean firing rate of one of the excitatory neurons Rexc exceeded the threshold firing rate Rt = 100

Hz:

L =


max(R̄exc)−Rt , if max(R̄exc)> Rt

0 ,otherwise
, (5.5)

Although only a subset of neurons in the excitatory neuron group were matched to the recorded

neurons, the entire neuron group was intended to model a larger population of CA1 and SUB

neurons. Neurons that were not explicitly matched to the recorded neurons were expected to have

similar response properties as those that were explicitly matched.

5.2.4 Positional reconstruction matrix

Population analysis of the neuronal activity was conducted by comparing the positional recon-

struction matrices of the simulated neurons in the models and experimentally observed neurons in

our datasets (Cowen and Nitz, 2014) . We concatenated the neuronal activity in every positional

bin of all six routes and computed mean firing rate vectors for every neuron based on odd and

even trials. We obtained mean rate matrices Rodd ∈ Rn×m and Reven ∈ Rn×m for the entire neuron

population, where n represented the number of neurons in the population, and m represented the

number of positional bins in the maze. Each column in the matrix represented the population ac-
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tivity in a specific positional bin. We then computed the positional reconstruction matrix based on

the columns of the odd trial ensemble rate matrix and the even trial one:

M = ρ(Rodd,Reven), M ∈ Rm×m (5.6)

where ρ(·) computes the Pearson correlation coefficient.

Comparing the positional reconstruction matrix of simulated neurons and experimentally recorded

neurons allowed us to gauge how well the response properties of simulated neurons resembled

those of recorded neurons. A similarity score was obtained by converting the matrices into column

vectors and correlating the two vectors:

g = ρ(Msimulated,Mrecorded),g ∈ R1×1 (5.7)

Different from the fitness function (Equation 5.4), this measurement took into account neurons

that were not explicitly matched to the recorded neurons, and thus also tested whether the learned

response properties generalized to the entire simulated neuron population.
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5.3 Results

5.3.1 Evolved networks captured properties of both regions

SNN models were optimized such that a subset of the excitatory neurons had firing patterns aligned

with those of experimentally recorded neurons (295 neurons in the CA1 dataset, and 382 neurons

in the SUB dataset). As described in Section 5.2.3, fitness function of the network was defined to

be the sum of pairwise correlation values of all simulated-recorded neuron pairs, with a penalty

for high firing rates of the simulated neurons (Equation 5.4). The highest fitness scores that could

be achieved by the CA1 and SUB models were 295 and 382 respectively. These scores correspond

to a perfect correlation value of 1 between the modeled and experimentally recorded neuron firing

rates for all neurons in each dataset. To compare the performance of the two models, the fitness

values were normalized by the number of neurons in their corresponding brain regions.

We conducted 5 evolutionary runs for each model. With a population of 15 individual networks,

the best fitness score in the first generation averaged to be 140.44 for the CA1 model and 136.83

for the SUB model. As shown in Fig. 5.3, by 50 generations, the networks achieved an averaged

fitness score of 186.97 for the CA1 model, and 213.48 for the SUB model, corresponding to a mean

Pearson’s ρ value of 0.63 and 0.56 respectively (normalized to the number of recorded neurons in

each brain region). The fitness scores were comparable to those reported in (Rounds et al., 2018).

These scores showed that the firing patterns of experimentally observed neurons were captured by

a subset of neurons in the excitatory neuron group. The networks also showed a generalization

ability, as excitatory neurons that were not explicitly matched to the recorded neurons also showed

response properties similar to those observed in CA1 and SUB.

Similar to rodent recordings(Olson et al., 2017, 2021), we observed spatially selective place cell

responses in the simulated CA1 and directionally modulated responses along maze axes in the sim-

ulated SUB (Fig. 5.4). Simulated neurons in the CA1 model were mostly quiet in other positions,
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and had lower firing rates than the simulated SUB. Simulated neurons in the SUB had higher fir-

ing rates and responded to multiple locations. As has been observed in the rat, some of the SUB

neurons encoded analogous spaces and were sensitive to the direction of travel.
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Figure 5.3: Best-so-far fitness scores over 50 generations for the CA1 and SUB models. Solid lines
show the mean and shaded areas show the standard deviation of 5 runs. At generation 50, the CA1
model reached a mean fitness score of 186.97 and the SUB model had a mean score of 213.48,
corresponding to a mean Pearson’s ρ value of 0.63 and 0.56 respectively.

After training, the distribution of weights reflected the function of the brain region. Fig. 5.5 shows

the histogram of connection weights from the input variables to the excitatory neuron groups. In

the CA1 model (Fig. 5.5, top row), connection weights showed a U-shape distribution pattern.

The weight values clustered at the limiting values (i.e. 0 and maximum weight), with more values

near 0 for AV, LV, and HD, and more values near the maximum weight for Pos. This reflects the

place encoding observed in this region. In contrast, a large proportion of connection weights in

the SUB model (Fig. 5.5, bottom row) clustered near the maximum weight, with all four types of

input variables showing a similar distribution. The responsiveness of SUB neurons, on average, to
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Figure 5.4: Examples of representative excitatory neurons in the CA1 and SUB models. Each firing
rate map is labeled with the maximum firing rate of the neuron. Model units exhibit differential
spatial representations: CA1 model units show single place fields, while the SUB model units
respond to multiple locations that are analogous with respect to maze structures. The first and
third SUB units show examples of analogy cells, and the second SUB unit shows an example of an
axis-tuned cell. Arrows denote the direction of travel.

a broader set of positional, directional, and self-motion input types may be key to generation of

firing fields in multiple locations that are analogous in terms of the direction of travel and location

within topologically similar routes

Interestingly, the STDP parameters evolved to support these differential responses. Fig. 5.6 shows

the evolved STDP curves for the two modeled brain regions. Compared to the SUB model, the CA1

model showed stronger long-term-depression (LTD) for E-STDP on both excitatory and inhibitory

neurons, and weaker long-term-potentiation (LTP) for E-STDP on the inhibitory neurons. For the

other evolved hyper-parameters, the maximum weight for the Inh → Exc connection in the CA1

model is stronger than that in the SUB model (CA1: 0.54± 0.05, SUB: 0.16± 0.11, Wilcoxon’s

rank sum test, p < 0.01). The CA1 model also showed a trend of having smaller values for the time

scale parameter T (CA1: 0.78±0.35 s, SUB: 4.5±3.29 s, Wilcoxon’s rank sum test, p = 0.056)
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and the mean firing rate for the excitatory group (CA1: 2.28± 0.36 Hz, SUB: 5.19± 2.38 Hz,

Wilcoxon’s rank sum test, p = 0.056).

AV

0

1

F
ra
ct
io
n

o
f

S
yn

ap
se

s

CA1

LV HD Pos

0 Max
0

1
SUB

0 Max 0 Max 0 Max

Connection
Weight

Figure 5.5: Histograms of the connection weights from the input groups to the excitatory neuron
groups. Weight values range from 0 to the maximum weight value, which was evolved by the
evolutionary algorithm. CA1 weights show more weights near 0 for AV, LV, and HD, and more
weights near the maximum weight for Pos. In the SUB model, weight values of all four types of
input all cluster near the maximum weight value.

Figure 5.6: Visualization of STDP curves used in the evolved and trained CA1 and SUB models.
Solid lines show the mean, and shaded areas show the standard deviation of 5 evolutionary runs.
CA1 model had slightly stronger LTD on the EE and EI connections, and weaker LTP on the EI
connections. The I-STDP curve in both models had similar amplitude and time constant.
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To make a quantitative comparison between the spatial representations emerged from the two mod-

eled regions, we conducted spatial analyses on the excitatory neurons of both modeled region (Ta-

ble 5.1). These analyses were developed to interpret neural correlates of rodent navigation. We

computed spatial information per spike (Skaggs et al., 1993), spatial sparsity (Skaggs et al., 1996),

spatial selectivity (Skaggs et al., 1996), and spatial coherence (Kubie et al., 1990). As the exci-

tatory neuron group was intended to model a larger population of neurons in the corresponding

brain region, we analyzed neurons from the entire group instead of only those explicitly matched

to the experimentally observed neurons. Consistent with the experimentally observed neurons

and other neurophysiological studies (Sharp and Green, 1994), SUB neurons showed higher firing

rates, lower spatial information per spike, lower spatial selectivity, and lower spatial coherence

than CA1 neurons (Wilcoxon’s rank sum test, p < 0.01).

Table 5.1: Spatial analyses on the model units (mean ± standard deviation) in the five evolution-
ary runs (sim) and the experimentally recorded neurons (recorded). Values in bold fonts showed
greater values in comparison between CA1 and SUB neurons (Wilcoxon’s rank sum test, p< 0.01).

SpatialMetrics CA1 (sim) SUB (sim) CA1 (recorded) SUB (recorded)
meanFR (Hz) 0.85 ± 0.87 2.16 ± 2.00 0.88 ± 1.42 3.62 ± 4.23
maxFR (Hz) 27.66 ± 18.78 41.75 ± 33.35 31.57 ± 14.91 38.86 ± 21.35

spatialIfo (bits) 2.87 ± 1.04 1.92 ± 0.69 2.97 ± 1.19 1.56 ± 1.21
sparsity 0.12 ± 0.08 0.20 ± 0.10 0.12 ± 0.13 0.35 ± 0.25

selectivity 64.53 ± 74.53 27.29 ± 21.47 63.76 ± 50.79 31.18 ± 38.84
spatialCoherence 0.83 ± 0.05 0.81 ± 0.05 0.48 ± 0.12 0.49 ± 0.14

5.3.2 Population vector analysis

We conducted population vector analyses with positional reconstruction matrices to test whether

the spatial representations of these simulated brain regions are similar to the rodent. The population

activity in both models closely resembled that of the experimentally observed neurons. Computed

with Equation 5.7, CA1 model units obtained a similarity score of 0.76± 0.01 and SUB model

units obtained a score of 0.69±0.01 (i.e., mean ± standard deviation).
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Figure 5.7: Positional reconstruction matrices of the simulated CA1 and SUB populations. Mean
activity of the even trials are correlated against that of the odd trials. Position bins for each route
are shown on the axes. At each position bin, the color represents the correlation value. High values
on the diagonal lines indicate that position along the route is inferred from population activity of
the neurons. Grids highlighted in red and green show stronger head-direction and analogous tuning
of SUB ensemble compared to CA1.

Fig. 5.7 visualizes the positional reconstruction matrix for each model from a representative evolu-

tionary run. Each value of the positional reconstruction matrix depicted the similarity of population

activity in one location versus the activity in another location. Values on the diagonal line described

the correlation of activity in the same location between odd and even trials. Both CA1 and SUB

simulated neurons showed high correlation values on the diagonal line (median correlation value

for CA1 averaged over 5 runs: 0.94±0.01, for SUB: 0.96±0.01), indicating that simulated neu-

rons in both modeled regions reliably encoded locations. The two matrices also showed distinctive

differences in off-diagonal values. Comparing the grids highlighted in red on both matrices, the

SUB matrix had high correlation values around the diagonal in the grids while the CA1 matrix

didn’t show this pattern, indicating that the SUB model units had a stronger head-direction tuning.

Additionally, for the grids highlighted in green, the SUB matrix showed a square region of higher

correlation values near the top left of the grids, which correspond to a higher correlation of popu-
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lation activity on the longer segments between Routes 5 and 6. These location pairs were spatially

separated but shared the same head direction and analogous maze structure in the environment.

These results indicate that the simulated SUB neurons had stronger head direction tuning and en-

coded analogous spaces more profoundly than the simulated CA1 neurons, which is consistent

with the differences observed in the rodent CA1 and SUB (Olson et al., 2021).

5.3.3 Control experiments

To verify the necessity of evolutionary algorithms and STDP learning in the optimization process,

we ran the models in two additional conditions; one in which there was STDP but no evolutionary

algorithm, and another in which there was no STDP and no evolutionary algorithm. In both con-

ditions, we had 5 runs for each model, with each run including 15 individual networks initialized

with random hyper-parameters. Similar to the fully evolved and trained models, models in the

control experiments were evaluated with a fitness function (Equation 5.4), and the best performing

network individual in each run was selected for population vector analyses.

In both control conditions, the performance of the SNNs was worse than evolving STDP-H param-

eters for 50 generations. In the “no STDP no EA” condition, where each of the 15 networks was

tested without being trained with STDP, the CA1 model obtained an average similarity score of

0.26±0.36, and the SUB model obtained an average similarity score of 0.12±0.28. In the “STDP

no EA” condition, where each of the 15 networks went through the same training and testing pro-

cedure as the fully evolved models did but did not go through the evolutionary process, the CA1

model obtained an average similarity score of 0.46±0.29 and the SUB model obtained an average

similarity score of 0.60±0.03.

Taken together, these results show that STDP greatly improved the performance of the network,

and that having multiple generations of evolutionary computation was necessary for finding the

hyper-parameters that allow for higher resemblance of simulated neuronal activity to that of the
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modeled brain region. These control experiments suggest that parameter tuning through the evo-

lutionary process and synaptic plasticity through STDP-H were necessary to replicate these brain

regions. Similar results were reported when modeling the retrosplenial cortex (RSC) using this

methodology (Rounds et al., 2018).
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Figure 5.8: Ablation studies: similarity scores of the unlesioned and lesioned models. Bars show
the mean values and the error bars show standard deviation of scores obtained by 5 instances of
each model. Lesions of the positional input (Pos) in the CA1 model had the strongest impact on
the network performance compared to lesions of other single input streams. In the SUB model,
lesions of all four types of input had a similar level of impact on the network performance.

5.3.4 Ablation studies

To examine the effect of removing input streams on each modeled brain region, we conducted ab-

lation studies using the fully evolved and trained networks. The ablation studies included lesions

of connections from each of the input streams to both the excitatory and inhibitory neuron groups.

Lesion models were created by loading the trained networks and removing the inter-group connec-

tions corresponding to the input stream(s). The lesion models were presented with the same input
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variables as the non-lesioned models, and the network activity was recorded. Population vector

analysis was then performed on the lesion models to assess the impact of lesions of input streams.

Lesions had differential effects on model performance that reflect the spatial encoding of CA1 and

SUB (Fig. 5.8). In the CA1 model, lesions of the positional input (Pos) had a strong impact on

the performance of the network, while lesions of one of the three idiothetic inputs (AV, HD, and

LV) did not have a strong effect on performance. Lesions of all three idiothetic inputs together

(AV_HD_LV) had a stronger impact than individual lesions, but were weaker than lesions of Pos

alone. Additionally, lesions of the head direction and positional inputs together (HD_Pos) brought

the similarity score down to near 0. In contrast, lesions of any input stream to the SUB had a

moderate impact on network performance. Similar to the CA1 model, lesions of the head direction

and positional inputs together (HD_Pos) in the SUB model greatly decreased the similarity score.

Taken together, these ablation studies further support that the CA1 is more place specific and the

SUB is more driven by inputs related to action or movement.

5.4 Discussion

The spiking neural network modeling framework presented here captured the differing spatial re-

sponses of hippocampal CA1 and the SUB through unsupervised learning, via STDP-H, and evo-

lutionary algorithms. The resulting networks show highly place-specific responses in CA1 neurons

and the emergence of pattern recurrence in the spatially specific firing of SUB neurons. These dif-

fering functional responses were reflected in the STDP-H parameters and the weight distributions

of the simulated spiking neural networks (SNNs). Moreover, the present simulations make testable

experimental predictions for the plasticity and connectivity in these brain areas.

The evolutionary algorithms automated the design of SNNs by indirect encoding of network learn-

ing parameters. This approach had been shown in a previous study to successfully replicate neural
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dynamics observed in the retrosplenial cortex (RSC) as rodents traverse a W-shaped maze (Rounds

et al., 2018). In the present work, we extended the approach to model two other regions that are

important to spatial navigation: hippocampal CA1 and the SUB. Using data recorded in the two

brain regions when rats performed the same navigational task in the same environment allowed us

to compare our two models directly.

With the same input representations, the evolutionary algorithms selected different STDP-H learn-

ing parameters for the two SNN models, which led to different connection weight distributions.

STDP-H parameters in the CA1 models had more LTD than in SUB, which led to a strong pruning

effect in the CA1 excitatory group. In contrast, synapses connecting the AV, LV, and HD input

groups with the SUB excitatory groups had larger connection weights than in the CA1 model, sug-

gesting stronger vestibular inputs to the SUB model, which is consistent with neurophysiological

observations (O’Mara, 2005; Allen and Hopkins, 1989).

Different distributions of connection weights in turn allowed for divergent spatial representations

to emerge in the network models. These spatial representations, as analyzed through firing rate

distributions, firing rate map visualizations, classic spatial metrics including spatial information,

sparsity, selectivity, and spatial coherence, were consistent with those observed in the experimen-

tally recorded neurons. The network models, though simplified in terms of the types of input

information and network sizes, generated neural dynamics resembling those observed in the real

neural circuits. It should be noted that although only a subset of simulated neurons were opti-

mized to match with recorded neurons, all neurons in the simulated neuron groups were included

in the analyses and showed consistent response properties within the group. This suggests that our

modeling approach allowed for generalization of learned firing patterns to unobserved data.

Results of the control experiments underscore the importance of combining both STDP and evolu-

tionary computation in the modeling framework. By evolving the learning parameters, the search

space is dramatically reduced, as compared to directly evolving weights or using a method such as

back-propagation. This study further suggests a functional role for STDP-H in stabilizing network
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activity, developing spatial representationas, and reducing the dimensionality of the input space.

The result is a viable SNN that can be used for a range of simulation studies. The success in model-

ing CA1, SUB and RSC (Rounds et al., 2018) suggests that the approach may be a general-purpose

means to building SNNs.

In the ablation studies, we removed one or more input streams from the fully evolved and trained

networks. Lesions of positional input to the CA1 model had a stronger impact on the network

performance than the other three input streams, suggesting that spatial representations in CA1 are

more reliant on the CA3 input to CA1 than self-motion signals. In the SUB model, lesions of any

one of the four input streams had a similar level of impact on the network performance, suggesting

that the SUB model utilized different input information more equally.

In addition to showing single place fields as CA1 neurons do, SUB neurons often encode multiple

locations that share certain spatial features in a Triple-T maze environment(Olson et al., 2021).

These representations may require an integration of idiothetic information as well as positional

information. In both models, a significant drop in the similarity score was observed when two

or more input streams were lesioned together, suggesting a conjunctive coding of multiple input

variables in the CA1 and SUB models, which coincides with the evidence that CA1 and SUB

neurons are encoding multiple types of signals (Muller et al., 1994; Kitanishi et al., 2020).

The presented modeling approach could be extended to include multiple brain regions to investi-

gate how they interact. In future studies, we will integrate findings in this work and link together

the CA1 and SUB models. As neurophysiological studies suggest, SUB receives a strong input

from CA1, and SUB also sends backward projections to CA1 (O’Mara, 2005; Xu et al., 2016).

Following these findings, we can investigate how the interaction between the two regions work

together during navigation by connecting the two models and examining how information is inte-

grated between these brain regions.
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Chapter 6

Summary and Future Directions

This dissertation aims to contribute to the understanding of how the brain processes information

during navigation through the lens of computational modeling, specifically using spiking neural

networks (SNNs) and evolutionary computation. The focus of this research centers on studying

how information is encoded and processed in the cortical motion stream and the hippocampal area.

To accomplish this, this study started by enhancing an open-source computational modeling tool,

which was then applied to two modeling studies using a unique modeling approach that integrated

evolving neural plasticity rules in SNNs. This approach produced models that account for response

profiles of neurons related to visual motion perception and spatial cognition.

In Chapter 3, CARLsim 6 was introduced as a tool that allows for efficient construction and simu-

lation of biologically realistic SNNs. The new release of this software extended beyond previous

versions by introducing new neural plasticity features, while maintaining computational efficiency.

In addition to their biological plausibility, SNNs also offer advantages in their event-driven nature,

making them suitable for energy-saving neuromorphic implementations. Developing CARLsim to

be integratable with neuromorphic hardware and enabling embedded systems could open up many

opportunities for exploring embodiment of the brain and developing brain-based devices.
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Chapter 4 presents the results from modeling MSTd neurons in an SNN model that was optimized

through evolutionary algorithms and spike-timing-dependent plasticity (STDP). With the evolved

STDP learning curves, the model learned to reconstruct the input optic flow patterns, which led

to the emergence of MSTd-like receptive fields. Neurons in this model exhibited key response

properties observed in MSTd neurons, such as spiral selectivity, 3D translational and rotational

heading selectivity, and a population encoding of heading direction. This model demonstrated how

synaptic plasticity can contribute to efficient encoding of the high-dimensional input space through

sparse coding and dimensionality reduction. These findings suggest that STDP, a neurobiologically

plausible learning rule, could potentially serve as a neural implementation of nonnegative sparse

coding (NSC). A limitation of this study is the use of simplified and low-resolution stimuli that

only contained coherent optic flow patterns that were projected to a frontoparallel plane. In natural

scenes encountered during navigation, optic flows may contain segments that correspond to the

sky and ground, which break the consistency in the optic flows patterns. It would be interesting

to investigate whether the model can scale up to process naturalistic stimuli that are in higher

resolution.

The presented model is biologically plausible and demonstrates a certain degree of resemblance to

the macaque MSTd. It can serve as a valuable testbed for more complex visual motion processing

scenarios, such as the processing of self-motion induced optic flows in the presence of moving

objects and eye rotation. To further enhance its capabilities, depth information can be incorporated

into the model, as this information was suggested to facilitate the estimate of self-motion and to

separate object motion (Layton and Niehorster, 2019), and is also crucial for accurate heading

perception in the presence of eye rotation (Manning and Britten, 2019).

This study focuses on the visual aspect of motion perception in MSTd. However, MST integrates

multimodal information, including visual and vestibular signals (Gu et al., 2006; Takahashi et al.,

2007; Britten, 2008). Incorporating vestibular signals into the model can help to understand how

the brain separates self-motion and scene motion. As suggested in Rideaux et al. (2021), MSTd
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single neurons are capable of performing causal inference when visual and vestibular signals pro-

vide conflicting information about self-motion. The same causal inference mechanism may also

be employed to separate object motion from self-motion.

Chapter 5 presents SNN models of two neural structures, the hippocampal sub-region CA1 and

the subiculum (SUB), which play a vital role in spatial memory. In this study, models of these

two neural structures shared a common network architecture, and were optimized using the same

approach. In the process of learning to reproduce the neural responses of CA1 and SUB in a

working memory navigational task, differential spatial representations emerged in the two network

models. Although only a subset of neurons in the models were optimized to match recorded

neurons’ activity profiles, the entire modeled neuron groups exhibited population statistics similar

to those observed in CA1 and SUB recordings during behavior. This study suggests that that the

place-specific responses of CA1 neurons and the response to “kinds of places" in SUB neurons

may be attributed to different integration of a similar set of navigational variables.

The optimized models presented in Chapter 5 can be extended to help better understand the func-

tional properties of neurons in the CA1 and SUB regions during navigational tasks. By incorporat-

ing a readout layer or a set of action units, these models can be trained to perform path integration

tasks or goal-directed navigation tasks. The resulting models can then be compared with task-

optimized models that are trained end-to-end on specific navigational tasks. Previous studies have

demonstrated that networks trained to perform path integration exhibit grid-like, head-direction

selective, and place-specific responses (Banino et al., 2018; Cueva and Wei, 2018; Cueva et al.,

2020). By comparing the response properties, task performance, and generalizability of task-

optimized models and models optimized to capture neural responses, we can gain further insights

into the functional distinctions of these two brain areas and how the observed spatial representa-

tions may be used in navigation.

The hippocampal models developed in this study can be utilized for virtual experiments that may

be difficult or expensive to conduct in real-world environments. One example of such experiments
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is altering the shape of the maze to investigate how neuronal responses adapt as a result. Neu-

rophysiological studies have demonstrated that environmental features can influence the response

properties of neurons. For instance, Olson et al. (2017) observed axis-tuned cells, which are selec-

tive to two head directions 180◦ apart, only in the Triple-T maze task and not in open space for-

aging. Additionally, Zhang et al. (1993) suggested that environment symmetry shapes directional

responses in neurons located in the retrosplenial cortex (RSC), indicating an experience-dependent

effect of global environment symmetry on local firing symmetry. By testing the models in dif-

ferent environment, we can observe how the brain encodes environmental structure in a way that

is relevant to the current perceptual situation, as well as a more global view of the environment

beyond immediate perceptual reach. In addition, lesion studies, such as selective removal of cer-

tain connections or inactivation of specific regions, can be conducted to investigate how different

components of the network contribute to network responses.

In this dissertation, two modeling studies were presented, both using the same modeling approach

of evolving STDP parameters in SNNs, but with different optimization goals. The MSTd model

was optimized to reconstruct stimuli by assuming that MSTd neurons act as basis functions, a

linear combination of which encodes the stimulus space. In contrast, the CA1 and SUB models

were optimized by matching a subset of neurons to the exact activity profile of neurons recorded in

the target region. During model training, MSTd-like receptive fields emerged in the first model, and

neurons in the CA1/ SUB model exhibited response properties of CA1 or SUB neurons, even for

neurons that were not matched directly to recorded neurons. These results demonstrate the power

and versatility of the modeling approach described in this dissertation. To extend this modeling

approach, we may impose fewer assumptions about weight update mechanisms by using a more

general design of the plasticity rules in the network, such as the approach presented in Jordan

et al. (2021), which involves defining learning rules as modular mathematical expressions, with

specific update mechanisms discovered through evolving the network to complete certain tasks.

In addition to evolving the learning rules, we can also combine STDP with evolving the network

architecture of the model, such as the number of neurons and their connections (Elbrecht et al.,
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2020). Being agnostic about the formation of the network provides an opportunity to observe how

network topology and its relationship with learning rules can optimize performance.

Another potential research direction is to integrate optic flow processing and spatial cognition into

a single model to better understand the interaction between motion perception and the development

of cognitive maps during navigation. Evidence suggests that optic flow can help individuals build

mental representations of the environment, allowing for navigation along complex, multi-legged

paths (Kirschen et al., 2000). Path integration, which involves calculating the momentary estima-

tion of current position based on self-movement cues, has been extensively studied in rodents and

primates. Human path integration can be performed by solely integrating optic flow information

(Kearns et al., 2002). The relationship between optic flow processing and spatial representations

has also been investigated in rodent studies, which demonstrated that optic flow enables systematic

control of place fields through the recalibration of path integration, thus preventing or correcting

accumulating errors (Madhav et al., 2022).

In addition to the perception of heading due to optic flow, neurons in MSTd were also shown to

integrate heading and location information to encode the path and place of self-movement, poten-

tially serving spatial cognition (Froehler and Duffy, 2002). Furthermore, Alefantis et al. (2022)

demonstrated that humans and monkeys can use optic flow for sensory evidence accumulation in a

naturalistic navigation task. By combining optic flow processing and spatial cognition in a single

model, we can investigate how the brain encodes spatial features that allow for effective navigation

using optic flow information for short-term reactive control, as well as using cognitive maps for

long-term planning.

Overall, this dissertation demonstrates the potential of SNNs and evolutionary computation in

modeling the complex neural computations involved in processing information related to naviga-

tion, particularly the processing of visual information and representation of spatial features. The

findings of this research provide insights into the neural mechanisms underlying navigation, gen-

erate testable predictions regarding the integration and processing of information in the brain, and
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may inform the development of novel approaches for modeling the brain. In addition to increasing

our understanding of the brain, the models developed in this research also have the potential for

practical applications in areas such as robotics and artificial intelligence.
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Keserű, and D. E. Gloriam. GPCRdb in 2021: Integrating GPCR sequence, structure and
function. Nucleic Acids Research, 49(D1):D335–D343, Dec. 2020. ISSN 0305-1048. doi:
10.1093/nar/gkaa1080.

J. D. Kopsick, C. Tecuatl, K. Moradi, S. M. Attili, H. J. Kashyap, J. Xing, K. Chen, J. L. Krichmar,
and G. A. Ascoli. Robust resting-state dynamics in a large-scale spiking neural network model
of area CA3 in the mouse hippocampus. Cognitive Computation, Jan. 2022.

J. Krichmar. Design principles for biologically inspired cognitive robotics. Biologically Inspired
Cognitive Architectures, 1:73–81, July 2012. doi: 10.1016/j.bica.2012.04.003.

J. Krichmar. A Neurobiologically Inspired Plan Towards Cognitive Machines. In AAAI Spring
Symposium: Towards Conscious AI Systems, 2019.

J. L. Krichmar. The neuromodulatory system: A framework for survival and adaptive behavior in
a challenging world. Adaptive Behavior, 16:385–399, 2008. ISSN 1741-2633. doi: 10.1177/
1059712308095775.

J. L. Krichmar, D. A. Nitz, J. A. Gally, and G. M. Edelman. Characterizing functional hippocampal
pathways in a brain-based device as it solves a spatial memory task. Proceedings of the National
Academy of Sciences of the United States of America, 102(6):2111–2116, Feb. 2005. doi: 10.
1073/pnas.0409792102.

140



J. L. Krichmar, W. Severa, M. S. Khan, and J. L. Olds. Making BREAD: Biomimetic strategies
for artificial intelligence now and in the future. Frontiers in Neuroscience, 13, 2019. doi:
10.3389/fnins.2019.00666.

E. Kropff, J. E. Carmichael, M.-B. Moser, and E. I. Moser. Speed cells in the medial entorhinal
cortex. Nature, 523(7561):419–424, 2015.

J. L. Kubie, R. U. Muller, and E. Bostock. Spatial Firing Properties of Hippocampal Theta Cells.
Journal of Neuroscience, 10:111–123, 1990.

Lakna. What is the difference between Neurotransmitter and Neuromodulator. PEDIAA, 2019.

O. W. Layton and N. A. Browning. A Unified Model of Heading and Path Perception in Primate
MSTd. PLoS Computational Biology, 10(2), 2014. ISSN 15537358. doi: 10.1371/journal.pcbi.
1003476.

O. W. Layton and D. C. Niehorster. A model of how depth facilitates scene-relative object motion
perception. PLOS Computational Biology, 15(11):e1007397, Nov. 2019. ISSN 1553-7358. doi:
10.1371/journal.pcbi.1007397.

D. Ledergerber, C. Battistin, J. S. Blackstad, R. J. Gardner, M. P. Witter, M.-B. Moser, Y. Roudi,
and E. I. Moser. Task-dependent mixed selectivity in the subiculum. Cell Reports, 35(8):109175,
May 2021. ISSN 22111247. doi: 10.1016/j.celrep.2021.109175.

J. Lehman and R. Miikkulainen. Neuroevolution. Scholarpedia, 8(6):30977, June 2013. ISSN
1941-6016. doi: 10.4249/scholarpedia.30977.

J. K. Leutgeb, S. Leutgeb, M.-B. Moser, and E. I. Moser. Pattern Separation in the Dentate Gyrus
and CA3 of the Hippocampus. Science (80-. )., 315(5814):961 LP – 966, Feb. 2007. doi:
10.1126/science.1135801.

C. Lever, S. Burton, A. Jeewajee, J. O’Keefe, and N. Burgess. Boundary Vector Cells in the
Subiculum of the Hippocampal Formation. Journal of Neuroscience, 29(31):9771–9777, Aug.
2009. ISSN 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.1319-09.2009.

H. C. Longuet-Higgins and K. Prazdny. The interpretation of a moving retinal image. Proceedings
of the Royal Society of London. Series B. Biological Sciences, 1980.

B. D. Lucas and T. Kanade. An Iterative Image Registration Technique with an Application to
Stereo Vision. Proceedings of the 7th international joint conference on Artificial intelligence,
1981.

S. Luke. ECJ Then and Now. Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion, pages 1223–1230, 2017. doi: 10.1145/3067695.3082467.

M. S. Madhav, R. P. Jayakumar, B. Li, F. Savelli, J. J. Knierim, and N. J. Cowan. Closed-loop
control and recalibration of place cells by optic flow. Preprint, Neuroscience, June 2022.

141



T. S. Manning and K. H. Britten. Retinal Stabilization Reveals Limited Influence of Extraretinal
Signals on Heading Tuning in the Medial Superior Temporal Area. The Journal of Neuroscience,
39(41):8064–8078, Oct. 2019. ISSN 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.
0388-19.2019.

H. Markram, Y. Wang, and M. Tsodyks. Differential signaling via the same axon of neocortical
pyramidal neurons. Proceedings of the National Academy of Sciences, 95(9):5323–5328, Apr.
1998. doi: 10.1073/pnas.95.9.5323.

N. Matsumoto, T. Kitanishi, and K. Mizuseki. The subiculum: Unique hippocampal hub and more.
Neuroscience Research, 143:1–12, June 2019. ISSN 0168-0102. doi: 10.1016/j.neures.2018.08.
002.

B. L. McNaughton, F. P. Battaglia, O. N. Jensen, Ole Jensen, O. Jensen, O. B. Jensen, E. I. Moser,
and M.-B. Moser. Path integration and the neural basis of the ’cognitive map’. Nature Reviews
Neuroscience, 7(8):663–678, Aug. 2006. doi: 10.1038/nrn1932.

R. Miikkulainen. Neuroevolution. In Encyclopedia of Machine Learning. Springer, New York,
2010.

P. Mineault, S. Bakhtiari, B. Richards, and C. Pack. Your head is there to move you around: Goal-
driven models of the primate dorsal pathway. In Advances in Neural Information Processing
Systems, volume 34, pages 28757–28771. Curran Associates, Inc., 2021.

P. J. Mineault, F. A. Khawaja, D. A. Butts, and C. C. Pack. Hierarchical processing of complex mo-
tion along the primate dorsal visual pathway. Proceedings of the National Academy of Sciences,
109(16):5930–5930, 2012. doi: 10.1073/pnas.1115685109.

K. Moradi and G. A. Ascoli. A comprehensive knowledge base of synaptic electrophysiology in
the rodent hippocampal formation. Hippocampus, 30(4):314–331, Aug. 2019.

R. G. Morris, P. Garrud, J. N. Rawlins, and J. O’Keefe. Place navigation impaired in rats with
hippocampal lesions. Nature, 297(5868):681–683, June 1982. ISSN 0028-0836. doi: 10.1038/
297681a0.

R. G. Morris, F. Schenk, F. Tweedie, and L. E. Jarrard. Ibotenate Lesions of Hippocampus and/or
Subiculum: Dissociating Components of Allocentric Spatial Learning. Eur. J. Neurosci., 2(12):
1016–1028, 1990. ISSN 14609568. doi: 10.1111/j.1460-9568.1990.tb00014.x.

R. U. Muller, E. Bostock, J. S. Taube, and J. L. Kubie. On the directional firing properties of
hippocampal place cells. J. Neurosci., 14(12):7235–7251, 1994. ISSN 02706474. doi: 10.1523/
jneurosci.14-12-07235.1994.

F. Nadim and D. Bucher. Neuromodulation of neurons and synapses. Current Opinion in Neuro-
biology, 29:48–56, Dec. 2014. ISSN 0959-4388. doi: 10.1016/j.conb.2014.05.003.

W. T. Newsome, K. H. Britten, and J. A. Movshon. Neuronal correlates of a perceptual decision.
Nature, 341(6237):52–54, Sept. 1989. doi: 10.1038/341052a0.

142



L. Niedermeier, K. Chen, J. Xing, A. Das, J. Kopsick, E. Scott, N. Sutton, K. Weber, N. Dutt,
and J. L. Krichmar. CARLsim 6: An Open Source Library for Large-Scale, Biologically De-
tailed Spiking Neural Network Simulation. In 2022 International Joint Conference on Neural
Networks (IJCNN), pages 1–10, July 2022. doi: 10.1109/IJCNN55064.2022.9892644.

S. Nishida, T. Kawabe, M. Sawayama, and T. Fukiage. Motion Perception: From Detection to
Interpretation. Annual Review of Vision Science, 4(1):501–523, Sept. 2018. doi: 10.1146/
annurev-vision-091517-034328.

H. Nover, C. H. Anderson, and G. C. DeAngelis. A logarithmic, scale-invariant representation of
speed in macaque middle temporal area accounts for speed discrimination performance. Journal
of Neuroscience, 25(43):10049–10060, Oct. 2005. doi: 10.1523/JNEUROSCI.1661-05.2005.

E. Oja. Simplified neuron model as a principal component analyzer. Journal of Mathematical
Biology, 15(3):267–273, Nov. 1982. doi: 10.1007/bf00275687.

E. Oja. Oja learning rule. Scholarpedia, 3(3):3612, 2008. doi: 10.4249/scholarpedia.3612.

J. O’Keefe and J. Dostrovsky. The hippocampus as a spatial map. Preliminary evidence from unit
activity in the freely-moving rat. Brain Research, 34(1):171–175, Nov. 1971. ISSN 0006-8993.
doi: 10.1016/0006-8993(71)90358-1.

J. O’Keefe and L. Nadel. The hippocampus as a cognitive map. Behavioral and Brain Sciences, 2
(4):487–494, 1979. doi: 10.1017/S0140525X00063949.

B. Olshausen and D. Field. Sparse coding of sensory inputs. Current Opinion in Neurobiology, 14
(4):481–487, Aug. 2004. doi: 10.1016/j.conb.2004.07.007.

J. M. Olson, K. Tongprasearth, and D. A. Nitz. Subiculum neurons map the current axis of travel.
Nat. Neurosci., 20(2):170–172, Feb. 2017. ISSN 15461726. doi: 10.1038/nn.4464.

J. M. Olson, A. B. Johnson, L. Chang, E. L. Tao, and D. A. Nitz. Complementary Maps for Lo-
cation and Environmental Structure in CA1 and Subiculum. bioRxiv, page 2021.02.01.428537,
Feb. 2021. doi: 10.1101/2021.02.01.428537.

S. O’Mara. The subiculum: What it does, what it might do, and what neuroanatomy has yet to tell
us. J. Anat., 207(3):271–282, Sept. 2005. ISSN 0021-8782. doi: 10.1111/j.1469-7580.2005.
00446.x.

G. Pándy-Szekeres, M. Esguerra, A. S. Hauser, J. Caroli, C. Munk, S. Pilger, G. M. Keserű, A. J.
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