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Abstract

Glioma incidence is highest in non-Hispanic Whites, and to date, glioma genome-wide association 

studies (GWAS) to date have only included European ancestry (EA) populations. African-

Americans and Hispanics in the US have varying proportions of EA, African (AA) and Native 

American ancestries (NAA). It is unknown if identified GWAS loci or increased EA is associated 

with increased glioma risk. We assessed whether EA was associated with glioma in African-

Americans and Hispanics. Data were obtained for 832 cases and 675 controls from the Glioma 

International Case-Control Study and GliomaSE Case-Control Study previously estimated to have 

<80% EA, or self-identify as non-White. We estimated global and local ancestry using 

fastStructure and RFMix, respectively, using 1,000 genomes project reference populations. Within 

groups with ≥40% AA (AFR≥0.4), and ≥15% NAA (AMR≥0.15), genome-wide association between 

local EA and glioma was evaluated using logistic regression conditioned on global EA for all 

gliomas. We identified two regions (7q21.11, p=6.36x10−4; 11p11.12, p=7.0x10−4) associated 

with increased EA, and one associated with decreased EA (20p12.13, p=0.0026) in AFR≥0.4. In 
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addition, we identified a peak at rs1620291 (p=4.36x10−6) in 7q21.3. Among AMR≥0.15, we found 

an association between increased EA in one region (12q24.21, p=8.38x10−4), and decreased EA in 

two regions (8q24.21, p=0. 0010; 20q13.33, p=6.36x10−4). No other significant associations were 

identified. This analysis identified an association between glioma and two regions previously 

identified in EA populations (8q24.21, 20q13.33), and four novel regions (7q21.11, 11p11.12, 

12q24.21, 20p12.13). The identifications of novel association with EA suggests regions to target 

for future genetic association studies.

Keywords

Glioma; genetic epidemiology; genetic ancestry; genome-wide association study

INTRODUCTION

Glioma is the most commonly occurring malignant brain tumor in the United States (US), 

with an average annual age-adjusted incidence of 6.0 per 100,000 from 2010-2014, though 

incidence varies significantly by sex, race, and age.1 Glioma incidence is highest in 

countries with majority European ancestry (EA) populations, including northern Europe, the 

US and Canada.2 Within the US, incidence of these tumors is highest among non-Hispanic 

Whites.1, 3

Though these tumors are rare, they cause significant morbidity and mortality. There are few 

confirmed risk factors, and the vast majority of cases occur in individuals with no family 

history.4, 5 Previous genome-wide association studies (GWAS) in primarily European 

ancestry (≥80%) individuals have identified 25 genetic risk loci for glioma, which in total is 

estimated to account for ~30% of heritable risk, suggesting that there are both undiscovered 

environmental (which accounts for ~75% of overall risk variance) and genetic risk 

(accounting for ~70% of heritable risk).6, 7 Due to the rarity of glioma overall, and the 

decreased incidence of glioma in populations other than non-Hispanic Whites, there have 

been limited analyses done to identify risk factors or genetic variants associated with glioma 

risk in non-European populations.

The majority of genetic association studies in glioma to date have been conducted in 

majority EA or East Asian-ancestry populations, where included individuals have a high 

proportion of estimated genetic ancestry that can be traced to one of these continental 

populations.8-13 Previous analyses have attempted to compare allele frequencies of 

previously identified risk loci within reference data sets by ancestry groups in order to 

account for differences in incidence, but these have failed to identify new risk variants in 

non-European ancestry populations.14 Several candidate SNP studies have been conducted 

in East Asian populations, which have found novel associations in XRCC1/3, ZGPAT, 

SLC2A4RG, and SBTB46, as well as validated associations previously discovered in 

European ancestry populations in EGFR and RTEL1.15, 16 Previous analyses of somatic 

features in astrocytoma by self-identified race have found increased prevalence of TP53 
mutations and decreased prevalence of EGFR amplification among African Americans as 

Ostrom et al. Page 3

Int J Cancer. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compared with non-Hispanic Whites, but these studies largely pre-date current molecular 

classification of these tumors, and are based on limited sample sizes.17, 18

Candidate SNP studies in East Asians have identified novel risk variants, suggesting that 

genetic susceptibility to glioma may vary by ancestry. While nearly all individuals can trace 

portions of their genetic ancestry to multiple distinct populations, admixed populations with 

genetic ancestry that is the result of two or more previously isolated populations coming into 

contact and interbreeding. In the US, African Americans and Hispanics have continental 

ancestry from Africa, Europe, and the Native Americans. The overall proportion of EA 

varies substantially among individuals within these populations.19-22 Over decades and 

centuries, chromosomes become mosaics of the ancestral chromosomes from which they 

arose. Patterns of continental ancestry can be examined both globally (averaged continental 

ancestry across the genome) and locally (probable continental origin of specific segments of 

DNA). Multiple methods have been developed for identifying these mosaic segments, using 

reference populations with known continental ancestry. In addition finding ancestry-specific 

SNPs associated with specific diseases and other characteristics, ancestry-specific 

differences in linkage disequilibrium (LD) can also be used to identify the causal variant(s) 

within chromosomal regions identified by GWAS.23

Glioma is more commonly reported in European ancestry and self-identified White Non-

Hispanic populations, which may be due to enrichment for glioma risk alleles within 

European ancestry populations. As a result, the presence of increased proportions of global 

European ancestry in African American and Hispanic populations may be associated with 

increased glioma risk, and patterns of local European ancestry may be used to identify novel 

glioma risk loci. Here we attempted to assess whether variation in European ancestry was 

associated with glioma risk in populations with a combination of European, African and 

Native American ancestry.

MATERIALS AND METHODS

This study was approved by the institutional review board at University Hospitals Cleveland 

Medical Center, as the IRB of record for Case Western Reserve University School of 

Medicine where the data were secured and analyzed. All sites received Institutional Review 

Board or ethical board approval to conduct the study, and informed consent was obtained 

from all participants.

Study population

In this study, data were combined from two glioma GWAS: the Glioma International Case-

Control Study (GICC) and the Glioma South-East Case-Control Study (GliomaSE), which 

have both been described in detail in previous publications.7, 24, 25 Only individuals 18 years 

or older at time of diagnosis or consent were included in all analyses. The GICC was a study 

conducted by the Genetic Epidemiology of Glioma International Consortium that recruited 

glioma cases and healthy controls from 14 centers across the US and Europe between 2010 

and 2013. Controls were recruited using three approaches: seven sites recruited visitors 

accompanying non-brain tumor cancer patients, four sites recruited clinic-based controls at 

general medical clinics, and three sites used population-based controls.24 Race and ethnicity 
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information was not available for all individuals from GICC, and as a result all individuals 

previously estimated to have <80% European ancestry using FastPop and excluded from 

Melin, et al.7 were used for these analyses. GliomaSE was a multi-center study that recruit 

glioma cases and controls from five centers across the southeastern US. Controls were 

recruited using two approaches: friends or family members of identified glioma cases, a 

through telephone listings who were frequency matched on age, gender, race and zip code. 
26 Cases and controls over 18 years old that self-identified as Hispanic or African American 

were included from GliomaSE. Cases and controls were not individually matched, but all 

analyses were adjusted for sex and age. Individual data were collected through patient 

interviews, and histologic classification was abstracted from pathology reports issued at 

recruiting institutions.24 After we completed quality control, these combined datasets 

included 832 cases and 675 controls (See Table 1 for additional study characteristics).

Genotyping and imputation

GICC cases and controls were genotyped on the Illumina Oncoarray,27 which was 

customized to include glioma-specific candidate SNPs and previous GWAS hits. GliomaSE 

cases and controls were genotyped on the Affymetrix UK Biobank Axiom array.28 Details of 

DNA collection and processing are available in previous publications.7 All datasets have 

previously undergone standard GWAS quality control using PLINK,29 and duplicate and 

related individuals within datasets have been excluded (as described in Melin et al.7). Both 

datasets were imputed using Eagle 2 and Minimac3 as implemented on the Michigan 

Imputation Server (http://imputationserver.sph.umich.edu) using the 1,000 genomes phase 3 

as a reference population.30, 31 Imputed SNPs were filtered to those with r2≥0.7, and 

individual genotype probabilities ≥0.7, after which genotype probabilities were converted to 

hard calls for further analysis. Principal components analysis was performed using the union 

set of the genotyped SNPs (Supplementary Figure 1), and all analysis were adjusted for both 

study and the first two principal components (which significantly differed between cases and 

controls) in order to adjust for differences in genotypes due to analysis platforms.

Ancestry estimation and statistical analysis

We estimated the global and local ancestry the using the following reference populations: 

Yoruba in Ibadan Nigeria (YRI, African super-population [AFR]), Peruvians from Lima 

Peru (PEL, American super-population [AMR]), Han Chinese in Beijing China (CHB, East 

Asian super-population [EAS]), Japanese in Tokyo Japan (JPT, EAS), and Utah Residents 

(CEPH) with Northern and Western European Ancestry (CEU, European super-population 

[EUR]).30 Principal components analysis was used to compare distribution of study samples 

to reference samples prior to global ancestry estimation to confirm that individuals were 

clustering with expected reference populations (Supplementary Figure 1). We estimated 

global ancestry using all 1,000 genomes AMR populations, and PEL was identified as being 

the most distinct from European and East Asian populations. Global ancestry was estimated 

using all genotyped SNPs remaining after QC procedures with minor allele frequency ≥5% 

in any reference population using fastStructure, an efficient algorithm that approximates that 

of STRUCTURE for use with genome-wide SNP data (Supplementary Figure 2).32 Overall 

ancestry proportions were estimated for all four continental ancestry populations for each 

individual. RFMix v2.03 (http://github.com/slowkoni/rfmix) 33 was used to identify local 
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ancestry structure across all SNPs in the imputed set using the following continental 

ancestry reference populations: AFR (YRI), AMR (PEL), EAS (CHB, JPT), and EUR 

(CEU).30 RFMix uses a sliding window inferring local ancestry within each window by 

using a conditional random field parameterized by random forests. Estimates were generated 

under the assumption of 15 generations since admixture (as estimated by Zaitlen, et al., 

under the assumption of assortive mating by ancestry34), two expectation-maximization 

iterations were performed to refine local ancestry estimates. RFMix outputs both most-likely 

ancestry calls as well as posterior probabilities for each ancestry. Statistical analyses were 

performed in R 3.5.0, and figures were generated using LocusZoom and the following R 

packages: ggplot2 and pophelper.35-38

Global ancestry proportions were compared within self-identified race/ethnicity groups, 

phenotypes, and studies using t tests. Differences in local European ancestry (EALocal) 

between cases and controls were evaluated using logistic regression conditioned on global 

European ancestry (EAGlobal) for all glioma in individuals with ≥40% global African 

ancestry, and ≥15% global Native American ancestry.39 Both EALocal and EAGlobal were 

included in all analyses as continuous variables. Due to small sample size, we were unable 

to conduct histology-specific analyses for local ancestry. Logistic regression models were 

adjusted for study (GliomaSE versus GICC, when sets were combined for those with ≥40% 

global African ancestry only), sex, age at diagnosis, and the first two principal components 

estimated using a combined dataset. Associations were considered statistically significant at 

was p<1.67x10−4 (Bonferroni correction for 300 tests) for individuals with ≥40% global 

African ancestry, and at p<2.17x10−4 (Bonferroni correction for 230 test) for the ≥15% 

global Native American ancestry set. See Supplementary Note 1 for details of estimates of 

independent tests and power for these analyses.

For selected prioritized regions, unconditional logistic regression models in SNPTEST 

adjusted for age, and sex were used to generate per-allele odds ratios, 95% confidence 

intervals, and p values.40 For those with ≥40% global African ancestry only, GICC and 

GliomaSE estimates were combined using fixed-effects meta-analysis in META.41 Estimates 

for ≥80% global European ancestry individuals were obtained from Melin, et al.7 Single-

SNP associations for 25 previously identified risk loci were considered statistically 

significant at p<0.002 level (Bonferroni correction for 25 tests). See Supplementary Note 2 

for estimates of power for these analyses.

RESULTS

Overall, global and local ancestry were estimated for 1,507 individuals, including 832 cases 

and 675 controls (Table 1, see Supplementary Figure 3 for individual estimates of global 

ancestry by racial/ethnic groups and study group). After examining the distribution of global 

ancestry probabilities within each self-identified racial/ethnic group, 40% African ancestry 

and 15% Native American ancestry were selected as the cut-offs for further analysis to 

exclude individuals with the highest levels of European ancestry within each group (see 

Supplementary Figure 3). There were 373 individuals (193 cases and 180 controls) with 

≥40% global African ancestry (AFR≥0.4, 244 from GICC, 129 from GliomaSE). Of these 

cases, 114 (59.1%) were glioblastoma (GBM) and 74 (40.9%) were non-GBM, while 5 (%) 
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were other glioma histologies. There was a significant association between self-

identification as black and belonging to the AFR≥0.4 set (p<2.2x10−16; sensitivity=96.9% 

and specificity=97.5%). Within individuals self-identified as African American, estimated 

EAGlobal was slightly higher in glioma cases (20.0%) as compared to controls (17.4%) but 

the difference was not statistically significant (p=0.6102, Supplementary Figure 4A). 

EAGlobal varied by study, and was lower in individuals recruited as part of GliomaSE (GICC 

cases EAGlobal=20.6%, controls EAGlobal=18.1%, p=0.3581; GliomaSE cases 

EAGlobal=19.4%, controls EAGlobal==14.3%, p=0.9417, Supplementary Figure 4C). 

EAGlobal was also higher in GBM cases (20.7%, p=0.1046), and non-GBM cases (20.0%, 

p=0.2889), but these differences were not statistically significant (Supplementary Figure 5).

There were 425 individuals (232 cases and 190 controls) with ≥15% global Native American 

ancestry (AMR≥0.15, 396 from GICC, 29 from GliomaSE). Due to small sample size (21 

cases and 8 controls), GliomaSE samples were excluded from further analysis of the 

AMR≥0.15 set, for a total of 211 cases and 182 controls. Of these cases, 97 (46.0%) were 

GBM, and 108 (51.2%) were non-GBM (e.g. astrocytic or oligodendroglial tumors), while 6 

(2.8%) were other glioma histologies. Within GICC, Hispanic self-identification was 

significantly associated with the AMR≥0.15 set (p<2.2x10−16; sensitivity=76.0% and 

specificity=96.6%). Within individuals identified as Hispanic in the GICC set, estimated 

EAGlobal was higher in glioma cases (59.7%) as compared to controls (55.5%, p=0.0108, 

Supplementary Figure 6C). EAGlobal was also non-significantly higher in GBM cases 

(58.3%, p=0.1836), and significantly higher in non-GBM cases (60.8%, p=0.0076) 

(Supplementary Figure 7).

Single-SNP associations were examined at the 25 glioma risk loci previously identified in 

European ancestry populations (Figure 2, Supplementary Table 1). In the AFR≥0.4 set, 0/25 

SNPs were statistically significant at the p<0.002 level (Bonferroni correction for 25 tests), 

while 2/25 SNPs were nominally significant at the p<0.05 level: rs723527 (7p11.2, EGFR, 

p=0.0118, OR=0.66, 95%CI=0.48-0.91), and rs648044 (11q23.2, ZBTB16, p=0.0464, 

OR=0.67, 95%CI=0.45-0.99). Overall correlation between effect estimates (log odds ratio) 

across the 25 risk loci between the AFR≥0.4 set and the >80% European ancestry set was 

weak (adjusted R2=0.426, Figure 2). The effect size at these SNPs in AFR≥0.4 was further 

from the null than the associations detected in Melin, et al.7 In the AMR≥0.15 set, ½5 SNPs 

were statistically significant at the p<0.002 level (Bonferroni correction for 25 tests), while 

4/25 SNPs were nominally significant at the p<0.05 level: rs10069690 (5p15.33, TERT, 

p=0.0056, OR=1.56, 95%CI=1.14-2.13), rs55705857 (8q24.21, CCDC26, p=0.0049, 

OR=2.39, 95%CI=1.30-4.37), rs78378222 (17p13.1, TP53, p=0.0130, OR=6.75, 

95%CI=1.50-30.44), and rs6010620 (20q13.33, RTEL1, p=4.83x10−5, OR=2.02, 

95%CI=1.44-2.83). Overall correlation between effect estimates (log odds ratio) across the 

25 risk loci in the between the AMR≥0.15 set and the >80% European ancestry set was 

moderate (adjusted R2=0.833, Figure 2). The effect size at these SNPs in AMR≥0.15 was 

further from the null than the associations detected in Melin, et al.7

SNPs within 500kb of these 25 SNPs (~34,000 total SNPs with MAF>0.05 and INFO>0.7), 

as well as SNPs previously identified in East Asian populations, were examined within both 

sets to assess whether population-specific associations exist (Supplementary Table 2). None 
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of these associations met the threshold for statistical significance (p<1.47x10−6, Bonferroni 

correction for 34,000 tests) There were two SNPs identified as nominally significant in 

AMR≥0.15 where association in Melin, et al. was null, including one SNP previously 

identified in East Asians (rs730437, EGFR16, p=0.0063, OR=0.67, 95%CI=0.50-0.89; 

Melin, et al.: p=0.8600, OR=1.00, 95%CI=0.96-1.03). One other nominally significant 

association was identified in EGFR in this set (rs56129111, p=0.0010, OR=1.68, 

95%CI=1.23-2.28; Melin, et al.: p=0.6638, OR=1.01, 95%CI=0.97-1.05). In AFR≥0.4, one 

nominally significant association was identified in AKAP6 (rs733978; p=4.91x10−4, 

OR=1.91, 95%CI=1.33-2.75).

Within the AFR≥0.4 set, there was a nominally significant association between increased 

EALocal and glioma at 7q21.11 (p=6.36x10−4), and 11p11.12 (p=7.0x10−4), and a nominally 

significant negative association between EALocal) and glioma at 20q12.13 (p=0.0026) 

(Figure 3). Single SNP associations were examined within these three regions 

(Supplementary Figure 8A-C), and a significant peak was identified at 7q21.3 with the 

strongest association at the C allele of rs1620291 (p=4.36x10−6, OR=2.16, 

95%CI=1.55-3.00, Figure 4B). In the Melin, et al. analysis this association was null 

(p=0.9151, OR=1.00, 95%CI=0.96-1.04). The allele frequency at this SNP is 0.34 in the 

1,000 AFR population as compared to 0.65 in the EUR population (Figure 4C). Within 

AFR≥0.4, the MAF in cases was close to the average of AFR and EUR (MAF=0.45), as 

compared to in controls where it was more similar to the AFR population (MAF=0.30). No 

other significant single SNP associations were identified.

Within the AMR≥0.15 set, there was a nominally significant association between increased 

EALocal and glioma at 12q24.21 (p=8.38x10−4), a nominally significant negative association 

between EALocal and glioma at 8q24.21 (p=0.0010) and 20q13.33 (p=6.36x10−4) (Figure 3). 

Single SNP associations were examined within these three regions, but no apparent peaks 

were identified (Supplementary Figure 8D-F).

DISCUSSION

This study represents the first GWAS to assess the relationship between European ancestry 

and glioma in admixed African-American and Hispanic populations in two multi-center case 

control studies. All previously conducted glioma GWAS have been conducted in 

predominantly European ancestry populations,8-13 and non-European ancestry populations 

have been systematically excluded from GWAS in most complex diseases.42 Due to the 

rarity of glioma overall and the decreased incidence of glioma in African Americans as 

compared to persons of European ancestry there have been limited analyses done to identify 

genetic variants associated with glioma risk in populations with large proportions of non-

European genetic ancestry.

In general, self-identified African American and Hispanic cases trended toward higher 

EAGlobal as compared to controls, though many of these differences were not statistically 

significant. The mean level of African ancestry observed in African American cases in GICC 

and GliomaSE (78.7% in cases and 79.9% in controls) is similar to what was observed in a 

large-scale study conducted by 23andMe (73%).43 The mean level of Native American 
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ancestry observed in Hispanic cases in GICC is (36.7% in cases and 37.5% in controls) is 

substantially higher than that observed in the same study of 23andMe data (18%). This 

analysis found that mean African ancestry is highest and mean European ancestry is lowest 

among self-identified African Americans in the south east US. African -American cases and 

controls recruited for GliomaSE had lower levels of EAGlobal, which is consistent with the 

geographic location of these study sites.43 Similarly, the highest level of mean Native 

American ancestry among Hispanics was found in Texas and the southwest US, with 

relatively low levels of Native American ancestry among Hispanics in the eastern part of the 

US. The genotype quality and ancestry cutoffs used for these analyses were chosen to 

maximize sample size as well as overlap between the two datasets. There is no established 

standard for defining African or Native American ancestry groups based on proportion of 

continental ancestries, and as a result the choice of boundaries used to define these groups 

may affect the results of the analysis.

No associations with the 25 previously identified GWAS hits reached statistical significance 

in either racial group, though some associations were nominally significant (Supplementary 

Table 1). There were nominally significant associations observed with previously identified 

SNPs in ZBTB16 and EGFR in the AFR≥0.4 set, and with TERT, EGFR, CCDC26, TP53, 
and RTEL1 in the AMR≥0.15 set. While other associations did not meet genome-wide 

significance, most associations were in a similar direction as those observed in Melin, et al.,7 

and it is possible that these associations may be significant with increased power or when 

analyses are stratified by histology. When the regions containing these SNPs were examined, 

there was an additional nominal association identified in AKAP6 in the AFR≥0.4 set, 

suggesting that there may be multiple population-specific SNPs tagging a causal variant or 

multiple causal variants increasing glioma risk. An EGFR SNP previously identified in East 

Asians (rs730437) was nominally significant in the AMR≥0.15 set, but the direction of the 

association was the reverse of previously observed in the East Asian population. These 

results suggest that the SNPs previously identified by GWAS in other populations may not 

have identified the ‘true’ causal SNP, and that this SNP may tag different SNPs in different 

populations. Further fine-mapping of these loci in multi-ethnic populations may improve the 

resolution for detecting the causal SNP.23 Another explanation is that there may be multiple 

causal SNPs within this region, and that these causal SNPs vary by ancestry group due to 

patterns of LD and allele frequencies.

This analysis identified a novel candidate association with increased EALocal at 7q21 in the 

AFR≥0.4 set. Single SNP analyses identified a nominally significant association with 

rs1620291, an intergenic variant located within the antisense RNA AC002451.3 and 

upstream of pyruvate dehydrogenase kinase 4 [PDK4] (7q21.3, upstream of see Figure 4A 

for genomic context). Multiple risk loci for breast cancer (rs17268829, rs111307654)44, and 

prostate cancer (rs6465657)45 have been identified within this region. This SNP lies within a 

previously identified 12 Mb structural variation hotspot on 7q,46 in which insertions and 

deletions have been previously associated with genomic disorders. Local ancestry analyses 

also identified nominally significant associations between EALocal and glioma at 11p11.12 

and 20p12.13.
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Nominally significant associations were identified in the AMR≥0.15 set between glioma and 

decreased EALocal at 8q24.21, and 20q13.33, and increased EALocal at 12q24.21. SNPs at 

8q24.21 (rs55705857) and 20q13.33 (rs6010620) have both been previously associated with 

glioma in GWAS of majority European ancestry populations, and these previously identified 

SNPs were nominally significant in AMR≥0.15 (rs55705857: p=0.0049, OR=2.39, 

95%CI=1.30-4.37; rs6010620: p=4.83x10−5, OR=2.02, 95%CI=1.44-2.83). The 8q24.21 

region has been associated with multiple cancer types in GWAS in majority European 

ancestry populations. Prior GWAS have identified risk associations at 8q24.21 locus in East 

Asians, Latin Americans and African Americans for prostate and colon cancer.47-49

This study has several limitations. While this sample does represent the largest dataset of 

genotyped non-European glioma cases, the small sample size limits the power of this 

analysis to detect significant associations between EALocal and glioma. Due to the limited 

sample size, the analysis was limited only to a pooled assessment of glioma and not specific 

subtypes. The African-American and Hispanic sets had differing proportions of patients with 

GBM and non-GBM, which may limit the comparability of these two sets for loci with 

histology-specific associations. Due to limited sample size and the rarity of these cases, no 

validation set was available for this study. Increases in sample size are necessary in order to 

confirm the associations detected in this analysis, which due to the rarity of these cases 

necessitates additional multi-center collaborations.

Recruitment for GliomaSE and GICC in different regions of the US, which contributes to 

variation in EAGlobal within race/ethnicity groups, particularly in regards to proportions of 

global African ancestry by study. This regional variation also likely results in heterogeneity 

in the specific populations contributing to Native American ancestry.50, 51 Both global and 

local ancestry estimations are highly sensitive to the reference populations and settings used 

to generate these estimates. American reference populations are all derived from admixed 

populations, and as a result ‘true’ proportion of Native American ancestry in those samples 

may be estimated incorrectly.

CONCLUSIONS

The results of this study suggest that increased European ancestry in admixed populations 

may be associated with increased risk of glioma. The identification of novel SNP 

associations within previously identified glioma risk regions may assist in fine mapping of 

these regions to identify causal variants. In order to accrue the larger sample sizes necessary 

for further discovery in this rare disease in minority populations, the development of further 

multi-institutional collaborations is necessary.
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CEU Utah Residents with Northern and Western European Ancestry

CHB Han Chinese in Beijing China

EA European ancestry

EAS East Asian super-population

EUR European super-population

GA Global ancestry
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GICC Glioma International Case-Control Study

GliomaSE Glioma Southeast Case-Control Study

GWAS Genome-wide association study

JPT Japanese in Tokyo Japan

LA Local ancestry

LD Linkage disequilibrium
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MAF Minor allele frequency

PEL Peruvians from Lima Peru

RAF Risk allele frequency

SNP Single nucleotide polymorphism

US United States

YRI Yoruba in Ibadan Nigeria
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Novelty and Impact:

Glioma is very rare in non-White populations, and genome-wide association studies in 

glioma to date have included exclusively European ancestry populations. In this study, we 

use African-American and Hispanic cases and controls from two large glioma case-

control studies to assess association between European ancestry and glioma in non-White 

populations. This analysis identified an association between glioma and two regions 

previously identified in EA populations, and four novel regions, suggesting regions to 

target in future studies.
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Figure 1. 
Schematic of data processing and imputation
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Figure 2. 
Odds ratios, overall correlation, and −log10 p-values in non-European ancestry (EA) groups 

between estimates for Europeans (>=80% global European Ancestry) as compared to A) 

African-Americans (>=40% global African ancestry), and B) Hispanics (>=15% global 

Native American ancestry)
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Figure 3. 
−log10 p-values for association between local European ancestry (EA) estimate and glioma 

in those with A) African-Americans (≥40% global African ancestry, GICC & GliomaSE), 

and B) Hispanics (≥15% global Native American ancestry, GICC only), and odds ratios and 

95% confidence intervals by ancestry group associated with region of lowest p value as 

identified in C) African-Americans (≥40% global African ancestry, GICC & GliomaSE), 

and D) Hispanics (≥15% global Native American ancestry, GICC only)
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Figure 4. 
A) Single SNP associations from 95Mb to 96Mb on chromosome 7 in AFR≥0.4 annotated 

with linkage disequilibrium in 1,000 genomes African ancestry super-population, B) Odds 

ratio and 95% confidence interval for rs1620291 by ancestry group, and C) alternate allele 

[C] frequencies for rs1620291 by 1000 genomes reference population and ancestry group
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