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ABSTRACT OF THESIS 

Targeted Movement Pattern Recognition for Infants with Perinatal Brachial Plexus Injury 
 

By 

Yasmeen AbuZeid 

Master of Science in Biomedical Engineering 

University of California, Irvine, 2019 

Professor David Reinkensmeyer, Chair 

 

 

This thesis presents work toward a novel rehabilitation tool for infants with limited 

arm movement such as those who sustain a perinatal brachial plexus injury (PBPI).  PBPI is 

a traction injury to peripheral nerves that occurs during the birth process. An injury to the 

upper trunk of the plexus (C5-6 spinal nerves) partially or fully denervates the skin of the 

upper arm and muscles of the elbow (i.e., biceps, brachialis) and shoulder (i.e., Deltoid, 

Sternal Pectoralis Major, Rotator Cuff). Initially, PBPI is typically treated with Passive 

Range of Motion (PROM) and positioning led by a physical therapist or occupational 

therapist. If recovery is limited, nerve microsurgery is indicated by 6 months of age.  

Recovery in infants with PBPI varies from 38 to 80% of infants depending on the initial 

condition and severity, as well as the rate of reinnervation. Yet, through technology, there 

may be methods available to increase the rate of recovery, leading to greater use of the 

affected arm. Infants as young as 3 months of age have been found to increase arm and leg 

movements through a paradigm of contingent reinforcement (i.e. rewarding desired 

movement patterns with audiovisual stimulation such as an overhead mobile).  Before a 
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device can be fully constructed to provide contingent reinforcement for desired arm 

movements, those movements must be consistently detectable. Thus, for this thesis project, 

I studied automatic detection of the arm movements desired for young infants with PBPI 

using arm acceleration data. 

Acceleration data was acquired from a wrist-worn sensor as an adult volunteer moved 

her arm in the desired motion.  I implemented a template-matching algorithm based on 

taking the dot-product of a moving window of 3D acceleration vectors with template 

acceleration patterns, where the templates were movement samples deemed targeted and 

rehabilitative by an experienced physical therapist.  I found that the algorithm detected 

rehabilitative movements with an accuracy of ~90%.  The algorithm never identified a 

movement that was deemed as undesirable for this population of infants, by the physical 

therapist.  These results reveal the potential for the template matching algorithm to be 

used in a contingent reinforcement paradigm capable of activating a toy to encourage 

infants with PBPI to make targeted rehabilitative arm movements. 
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1 INTRODUCTION 

1.1 Background 

Perinatal Brachial Plexus Injury (PBPI) is a type of peripheral nerve injury that 

occurs in approximately 560,000 live births worldwide (Chauhan et al, 2014). It occurs 

when the infant’s shoulder is caught on the mother’s pubic bone as shown Figure 1. This 

Erb’s palsy form of the PBPI results in reduced motion into elbow flexion/external rotation. 

Infants often compensate for this partial to full paralysis by using other muscles, such as 

their triceps, to move the elbow and internal rotators, to move their shoulder.  The use of 

habitual compensatory patterns often leads to secondary musculoskeletal conditions such 

as posterior shoulder subluxation (Duff et al, 2015). 

 

Figure 1: Perinatal Brachial Plexus Injury (PBPI).  Taken from BBP Presentation OTAC. 

 

Currently, therapeutic options for PBPI include rehabilitation and if needed, 

microsurgery.  If infants are showing evidence of some neural recovery, they are not in 

need of microsurgery. Thus, they typically receive physical or occupational therapy.  
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Therapy often employs passive range-of-motion (PROM), positioning, methods to increase 

motor skills including reach-to-grasp behaviors and parent education.  With PROM, the 

therapist manually moves the joints of the infant’s arm to minimize secondary impairments 

and prevent joint and muscle contracture.  Age appropriate motor behaviors are 

encouraged to increase strength and prehensile function.  A current strategy being 

explored is the use of contingent reinforcement to foster self-generated motion and 

activation thus control of intact neuromuscular pathways.  Microsurgery is needed when 

the nerves fail to recover sufficiently to restore necessary arm function (OrthoInfo).  The 

options for microsurgery include neurolysis, nerve grafting or nerve transfer.  Following 

microsurgery, the infant must learn to use the new connections, relying on use-dependent 

neuroplasticity and motor learning strategies.  Post-operatively, the infant ofen requires a 

period of physical or occupational therapy, in which the therapist attempts to foster age 

appropriate motor skills and movement patterns involving the affected arm. 

The goal of this project is to develop a sensor-based rehabilitation system that could 

be used to encourage self-generated, yet targeted movement using a contingent 

reinforcement paradigm in infants at risk for dysfunction.  It is not possible to instruct an 

infant to perform certain movements, so, instead, therapists typically take the approach of 

rewarding desired targeted arm movements, using sound, expression, and movement of 

toys.  It would be advantageous to therapists, patients, and infants if this approach could be 

automated, giving infants the incentive to practice desired movements at a high intensity.  

Thus, the work undertaken in this thesis contributes toward the design of an interactive 

toy that responds when the infant makes desired arm movements.   
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1.2 Literature Review 

 

This literature review compares and analyzes publications in the field of 

rehabilitation technology designed to encourage targeted movement or muscle activation 

in children who are typically developing, as well as those with atypical conditions, and/or 

at risk for developmental delay. This review will reference 11 main papers to compare the 

goals, technologies used, experimental methods, data collection methods, outcome 

measures, and results. The long-term goal of each of these papers was to contribute to the 

field by designing a device that could be used to foster specific types of movement in 

children with movement-related impairments.  

Children move in a variety of ways to modulate task-specific actions such as 

reaching, crawling, and walking (Pulido et al. 2018). The dynamic process of exploration 

and discovery allows them to control their bodies and interact with their environments. In 

contrast to typically developing (TD) infants, infants at risk (AR) for developmental delays 

often have neuromotor impairments which reduce their available strength, sensibility (i.e., 

proprioception), and coordination. These challenges may lead to greater difficulty with 

movement and potentially decrease motivation to move and explore. 

According to the review by Pulido et al, (2018) contingency studies have 

demonstrated that, when movements are reinforced by the motion of an overhead mobile, 

infants with typical development as young as 3 months respond in several ways, including 

increasing the rate of arm movement (Watanabe et al. 2006) and the rate of leg kicking 

(Heathcock et al. 2004, Lobo et al. 2013), or moving a foot vertically across a height 

threshold (Sargent et al, 2014). 
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Overhead mobiles 

 

 Four of the papers I am reviewing use overhead mobiles to study the use of 

contingent reinforcement to increase movements of infants about 2-5 months old. One 

paper studied the effect on arm movements (Watanabe et al. 2006), and three papers 

studied the effect on leg movements (Heathcock et al. 2004, Campbell et al. 2015, Rovee et 

al. 1969).  

A study by Carolyn Rovee was the first to experiment with conjugate reinforcement 

on 18 healthy infants ranging from 9-12 weeks of age.  A conjugate reinforcement schedule 

is a variant of a continuous reinforcement (CRF) schedule where the rate, amplitude, or 

intensity of the reinforcer is proportional to the target response (Rapp, 2008). In the 

original study, a cord was tethered to the ankle, such that foot or leg movement directly 

triggered sway and movement of mobile figures attached to a suspension bar (Rovee et al. 

1969). In that study, the experimental group received an initial session, consisting of 3 

periods: a 3-minute baseline to record the infant’s natural movements, a 15-minute 

acquisition period where the cord was attached to the leg, and finally, a 5-minute extinction 

period where the cord was unattached. The control group received the same initial and 

extinction periods and only the acquisition period changed. The control group was divided 

into two types of feedback: visual-somesthetic feedback which included visual and touch 

feedback, and visual feedback only. Specifically, during the acquisition period, the 

experimenter presented the control group with moving figures that were continuously 

activated similar to the moving figures seen in the experimental subjects’ acquisition 

period. Touch feedback was provided to the control group from the attached ankle cord. 
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Thus, in the experimental group the figures were triggered to move by leg movement and 

in the control group, the figures moved continuously. 

Although there were no sensors used to detect the movements, two observers 

independently recorded the responses as a reliability check. Figure 2 shows the mean 

responses per minute represented as a solid line for the experimental group, a dotted line 

with circles for the visual-somesthetic control group, and a dotted line with squares for the 

visual only control group. There was an increase in the mean number of responses in the 

experimental group in comparison to the control groups. This paper was referenced as a 

foundation for the further studies using the mobile paradigm.  

 

Figure 2: Mean response rate as a function of reinforcement condition over 46 minutes of 
continuous testing. 

 

Watanabe and colleagues examined interlimb movement patterns in 48 healthy 

infants aged 2–4 months while the infants attempted moving a mobile with string attached 

to each wrist as shown in Figure 3a (Watanabe et al. 2006). The purpose of this study was 

to encourage infants to learn to produce more arm movement by rewarding every 
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movement with a shaking mobile. During the final testing period (period 6), extinction, the 

arm was not attached to the overhead mobile, thus, the infants were not rewarded. If the 

infant exhibited arm movement without the reinforcement it would provide evidence of 

learning (Watanabe et al. 2006). The experimental design is portrayed in the flowchart in 

Figure 3b. 

(a)    (b) 

      

Figure 3: (a) The setup of experiment in the connected periods. (b) The flowchart of the 
procedure. 

 

The group used a 3D motion capture system to measure the trajectories of the arm 

movements.  From that, movement velocities and frequencies of movement were analyzed 

(˙x, ˙y, ˙z).  The results shown in Figure 4 reveal an increase in frequency of movement and 

velocities in period 3 (immediate test) compared to period 1 (baseline).  Additionally, from 

testing on different ages, the results suggested that 2-month-olds can acquire and retain 

general body movements that induce contingent motion in an overhead mobile. 
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Figure 4: Typical examples of 15 seconds trajectory and velocity data of the connected arm 
(right arm in this case) for a 3-month-old infant in Period 1 (baseline) and Period 3 
(immediate retention test). 

 

Similarly, Heathcock and colleagues examined the learning and memory abilities of 

a group of infants with respect to their leg movements, using an overhead mobile, as shown 

in Figure 5a (Heathcock et al, 2004).  They compared the movements of 10 full-term infants 

who had control over the mobile against a comparison group of 10 infants who did not 

have control over the mobile.  In addition, they compared the movements of a group of 10 

preterm infants who had control over the mobile to the same comparison group of 10 

infants without control.  Figure 5a shows the duration of the study for the full-term infants. 

Based on the literature (i.e., Gekoski et al, 1984) the preterm infant group was not expected 

to display learning during the first session, or either short-term or long-term memory 

periods during the first week.  Therefore, the duration of the study for the preterm infant 

group was extended to 6 consecutive weeks, where days 1 and 2 from the schedule in 

Figure 5b were repeated each week. Every 15-minute session was divided into 3 periods. 
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During the baseline period, the mobile was attached to the left stand so that kicking did 

not produce any movement of the mobile.  In the next acquisition period, the mobile was 

switched to the right stand for the full-term and preterm groups so that kicking resulted in 

a rewarding movement of the mobile.  In the final extinction period, the mobile was 

placed so that kicking did not produce any movement of the mobile. In the comparison 

group, the mobile was placed so that the infant’s movement did result in mobile movement. 

(a)                                                       (b) 

    

Figure 5: (a) In-home setup of mobile paradigm. (b) Schedule of sessions for full-term and 
comparison groups. 

 

Hip and knee range of motion were not measured during kicking.  However, the group 

visually estimated a kick to include > 15 degrees of simultaneous hip and knee extension.  

The acquisition period was broken down into 3 periods, as shown in Figure 6.  The kicking 

rates for all periods were normalized to baseline kicking rates and used to compare 

amongst groups.  Learning was considered to occur when the following 2 criteria were met: 

(1) the kicking rate was higher in the extinction period, after exposure to the mobile 

contingency than in the baseline period, before exposure, 

(2) the kicking rate was greater than that observed in the comparison group during 

a single session. 
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The results show that the full-term group learned during the session on day 1 (Figure 6).  

Although the preterm group did kick greater than their own baseline level during some test 

sessions, yet, they did not meet both criteria for learning during any testing session across 

the 6-week period.  

 

 

Figure 6: Learning, day 1: Group means and standard deviations of normalized kicking rate 
between the full-term and comparison groups. 

 

Campbell and colleagues have studied infants with Periventricular Brain Injury 

(PBI) at risk for poor developmental outcomes using an overhead mobile as reinforcement, 

in comparison to infants with TD and Cerebral Palsy (CP).  9 infants were in the exercise 

group and 7 infants in a control group with no mobile reinforcement (Campbell et al, 

2015).  In contrast to the previous 3 papers in which the experiments were run by 

researchers, this experiment was performed by the infant's parents in their home and 

recorded for assessment by researchers at the end of the study.  For the exercise group, 

parents were asked to perform kicking exercises for 8 minutes per day, 5 days per week for 
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2 months, by encouraging the infant to kick using toys that produce light and sound when 

the toy moved (Figure 7a).  Unlike the previous papers, the number of sessions for this 

study was higher, as this was geared towards rehabilitation for infants with PBI.  Infants 

from the control group with no exercise were assessed at the beginning and the end of the 

study.  Similar to Heathcock and colleagues (2004), the criterion for a leg movement was 

visually evaluated at more than 15 degrees in either direction from the resting position. No 

sensors were used to measure the movements, and the movements/minute were evaluated 

for each session, as shown in Figure 7b.  Overall, the movement rate for TD infants and 

infants at-risk increased throughout the study.  However, it decreased for delayed infants. 

(a)                                          (b) 

                

Figure 7: (a) The Exercise: The mobile (sound and movement deactivated) is attached to a 
wooden stand that slides under the infant bath seat in which the child is seated. A noise-
making toy hangs from the mobile to provide both visual and auditory feedback when the 
infant kicks. (b) Longitudinal Change in Total Leg Movement Frequency of Individual 
Children by Age, Outcome, and Group Assignment. CP, cerebral palsy. Numbers in the graph 
correspond with subject numbers. 

 

In a review of this study, Sargent and Huang comment on the treatment duration 

and suggest that parents will likely need more than just monthly visits to adhere to a 

treatment frequency (Sargent & Huang, 2015). The results show that a majority of the 
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children in the study increased the frequency of leg movements between 2 and 4 months in 

response to being tethered to the mobile while supported in an infant bath seat. However, 

there is no support that the tethered kicking intervention increased the frequency of 

kicking beyond the effects of maturation (Sargent & Huang, 2015). 

 

Authors Infant Group Measurement 
Evaluated 

Evaluation 
Tool 

Results 

Rovee et al, 
(1969) 

Typical Mean response/ 
minute 

Visually 
evaluated 

Increase in mean 
responses/minute 

Watanabe et 
al, (2006) 

Typical Movement 
trajectory and 

velocity 

Motion 
Capture 
System 

2-month-olds can 
acquire and retain 

general body 
movements that 

induce contingent 
motion in an 

overhead mobile 

Heathcock et 
al, (2004) 

Full term/ 
pre-term 

Kicks/minute Visually 
evaluated 
(>15 deg) 

Full-term group 
learned during the 
session on day 1. 

Preterm group did 
not show learning 
during any session 

across 6-weeks 

Campbell et 
al, (2015) 

Periventricular 
Brain Injury 

(PBI) 

Movements/ 
minute 

Visually 
evaluated 
(>15 deg) 

8/13 infants with 
longitudinal data 

increased frequency 
of leg 

movement 

 

TABLE 1: Summary of the four papers according to the targeted group, measurement 
evaluated, tools used, and their results.  
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Humanoid - Imitation 

 

Two papers in this review use a humanoid imitation and rewarding method to 

encourage infants to perform specific movements. Funke et al studied infant responses to 

non-contact interactions with a small humanoid robot as foundational work that will 

introduce appropriate strategies for future interventions with the more vulnerable 

population of AR infants (Funke et al, 2018). Nine healthy infants were seated in front of a 

humanoid robot that performed 4 interaction conditions; 1) raising arms and saying “yay”, 

2) kicking legs and saying “kick”, 3) stationary and saying “yay”, 4) stationary and saying 

“kick”. 

(a)                                                                        (b) 

 

Figure 8: (a) The experimental setup in which an infant observes and reacts to a Nao robot. 
(b) Graphic explaining the flow of the experiment and the makeup of trials within each 
experiment session. 

  

Throughout the sessions, visual attention, gaze, and physical response were 

measured using an eye tracker and APDM Opal inertial sensors (Portland, OR) secured to 

the wrist and ankles. Visual attention was used to calculate percent alert, which was shown 

to increase during the robot’s active phases, as shown in Figure 9a. As shown in Figure 9b, 

the infants tended to move more during periods of robot inactivity and seemed more 
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visually attentive when the robot was moving. This suggests that pauses in robot activity 

promoted infant movement. Although the robot performed arm and leg movements 

separately, there was no correlation between which limb the robot moved and which limb 

the infant moved. 

(a)                                        (b) 

 

Figure 9: (a) Visualization of the percent of time infants spent being alert while the robot 
was active and inactive in each condition. (b) The average number of right- and left-legged 
movements per second during the active and inactive phase of each condition. 

 

Since Funke and colleagues highlight the importance of the robot inactivity on 

increasing the frequency of movement, it is important to consider the amount of inactive 

time allotted between mobile rewards as well, to allow enough time to promote of arm 

movement. 

Rather than focusing on reinforcing motion patterns, the same group performed 

another experiment to reinforce the peak acceleration of a movement to encourage infants 

to increase the peak acceleration of their leg movements over time (Pulido, 2018). This 

study used the same humanoid robot to introduce various difficulty levels to activate the 

robot’s “rewarding movement”. The infant’s baseline movement was measured as the robot 

remained inactive. Then, the robot demonstrated the reward action three times, which was 
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a basic knee flexion kick at a ball on a string in front of the infant as shown in Figure 10a. 

After a demonstration, the contingency phase of the study ran for 8 minutes. If the infant 

produced an acceleration from the right leg above a fixed threshold of 3.0 m/s^−2, 

measured by the OPAL inertial sensors, the robot would perform the reward action. 

Additionally, the eye tracker was used to measure the infant’s engagement in the task. The 

average acceleration peak of the infant’s leg was used to set a higher threshold for the 

reward activation in every segment, as shown in Figure 10b. 

(a)                       (b) 

 

Figure 10: (a) An infant study participant interacting with the NAO robot in the previous 
study. (b) Representation of the contingency problem. 

 
This experiment met the goal of determining whether the robot could encourage the 

infant to reach higher accelerations from their movements to receive better rewards from 

the robot. Although it was not graphically represented in the paper, the reinforcement 

learning based model was able to determine the best threshold configuration in terms of 

peak acceleration and indicate the thresholds that would reach higher rewards values. 

Additionally, the model is sensitive to the degree of variance amongst participants.  

Maintaining these thresholds in a session would help to maximize the average of the 

acceleration peaks and the number of peaks detected. 
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 As suggested in Pulido and colleagues’ study, an algorithm specific to each infant for 

movement classification is optimal for this contingent reinforcement paradigm to be 

effective.  Infants not only exhibit different movement features (speed, smoothness), but 

also different learning levels. Thresholds for “desirable” movements should be set 

individually or based on the infants’ ability in perform those movements. 

 

Crawlers – (early mobility) 

 

Pediatric crawlers promote crawling for children who have difficulty tolerating 

movement, while supporting body weight. The crawlers on the market have a platform or 

suspended support sling on caster wheels, which reduce required effort on arm and leg 

muscles (Proctor,1989, Williams, 2007). These devices may not be suitable for mobility-

impaired infants (Chen et al, 2010). Therefore, Chen and colleagues have built a crawler to 

provide typically developing infants an opportunity for exercise while exploring the 

environment. As shown in Figure 11a, Chen and colleagues designed a device such that 

infants could use two mice, one in each hand, to control a robot using the natural limb 

movements. A stereo camera was used to track an infant’s face to correlate head direction 

with robot heading, as well as hands or leg movement to set forward velocity, in addition to 

accelerometers on the arms and legs. Lastly, they used electromyography (EMG) to detect 

biceps or leg muscle contraction while the infant crawled to direct the speed and direction 

of the robot as a reward for limb movement.  
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An experiment with this prone crawler, was conducted on 2 infants, 2 days a week, 

for a total of 4 days, in which driving time, path length, and path complexity were measured 

throughout the sessions. The findings indicate that driving time and path length increased 

linearly with the number of driving days as shown in Figures 11b and 11c, and the paths 

became richer with more complex maneuvers at the end of the 4 days. However, more 

experiments are needed to show if infants can learn to purposefully drive the robot. 

(a)                                                     (b)                                            (c) 

 

Figure 11: (a) Overview of the infant base with the foam wedge for supporting the infant, 
camera for capturing leg motion, and joystick for turning. (b) Driving time for two infants 
over the 4 training days. (c)  Path length of two infants. 

 

Additionally, infants at risk for cerebral palsy are at a severe disadvantage in 

learning to crawl as compared with typically developing infants. Miller and colleagues 

(2015) built a system out of a suit that allows kinematic reconstruction of infant 

movement. EEG sensors monitor their neural responses; and an assistive robot named the 

SIPPC3, amplifies the effectiveness of their crawling actions to reduce the required weight 

bearing for successful prone locomotion (Miller et al, 2015). The kinematic suit shown 

worn on an infant is displayed in Figure 12. This suit enables the infant to trigger robot 

movements through crawling-like actions, even when their limbs are not in contact with 

the ground. The sensors on the suit detect the configuration of the infant’s limbs and trunk 
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in real time. The SIPPC3 is also advantageous for mounting cameras to record head, arm 

and foot movements.  Actions are recognized by the system using the following set of 

heuristically-derived rules by the group, including: 

(1) allowable position and velocity of a subset of the limbs, 

(2) priority, 

(3) robot response (forward, backwards, turn left or right), 

When these rules are met, the crawling actions are amplified. The group has tested this 

method of assisting motion on 3 infants so far and are continuing the study of this device 

for 30 infants. The EEG has shown suppression of the mu rhythm in the motor cortex which 

is indicative of goal-directed activity, suggesting that infants can use the robot to engage in 

goal-directed activity. 

 

Figure 12: SIPPC3 Crawling Assistant System in Use.  

 

Robot Enhanced Mobility – (later mobility) 

 

Agrawal and colleagues believe that infants with Cerebral palsy (CP) may benefit 

from robot-enhanced mobility, in which the mobility comes from a robot driven by the 

child using a joystick (Agrawal et al, 2014). The authors report the results from two pilot 
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studies conducted in children with CP, who performed two tasks across multiple training 

sessions. Five infants were recruited for a short-term study (10 training sessions, 20 mins 

each), five were recruited for a long-term study (30 training sessions, 20 minutes each, 3 

times a week for approximately 10–12 weeks) and five served as a control group. As shown 

in Figure 21, 2 tasks were asked per session: 

Task 1: move from areas 6 to 2 then 5 to 4; 

Task 2: move from areas 6 to 1 then 6 to 3. 

Hand gestures, sounds, and toys were used as rewards to encourage the infants to drive the 

robot. After training with the robot, the children who performed 30 training sessions in the 

“long-term study,” showed that they could learn to drive a robot using a joystick, as they 

advanced in their driving skills. They showed significant improvements in their 

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 =  
# 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠

# 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠
 , and clinical scores on the Gross Motor Function Measure, 

Quality of Upper Extremity Skills Test, and Pediatric Evaluation of Disability Inventory, as 

displayed in Figures 13a and 13b. The increase in the success ratio and clinical scores are 

promising results for the paradigm of contingent reinforcement in infants with 

developmental delays as it shows the potential for learning among infants participating in 

my study.  Clinical scores were measured before, middle and after robotic training for 30 

sessions, as shown in Figure 13d.  The x-axis labels are clinical measures including 

hip/knee flexion, manual ability to handle objects, shoulder/elbow/wrist flexion, self-care, 

mobility, social function, self-care with caregiver assistance, mobility with caregiver 

assistance, and social function with caregiver assistance, respectively. 
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(a)                            (b) 

  

(c)                          (d) 

 

Figure 13: (a) (Left) Pioneer-AT (short-term) and (right) PowerBot (long-term). Both 
experimental setups consist of a mobile robot as a platform, a conventional joystick, an 
LRF, and a booster seat. (b) Schematic description of tasks 1 and 2: A bold arrow indicates 
the initial starting direction. (c) Average value and standard deviation of success ratio for 
30 sessions of the robot-trained experimental group. (d) Clinical measurements of five 
experimental children before, middle, and after robotic training for 30 sessions (∗p < 0.05, 
∗∗p < 0.01). 
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EMG-triggered musical video 

 

Contingent reinforcement is also a feasible paradigm useful to increase muscle 

activation in infants at-risk.  Duff and colleagues (2017) developed a surface EMG-triggered 

program using a musical-video as the reinforcement for muscle activation.  The set-up for 

this study is shown in Figure 14 and was used to assess learning in typically developing 

infants and infants who sustained perinatal brachial plexus injury (PBPI).  Thirteen 

typically developing infants and six infants with PBPI were recruited for two 1-hour 

sessions.  The infants sat in a corner seat with a tray and surface EMG sensors were placed 

on the mid-biceps muscle of each arm.  Initially, the average biceps muscle activation 

(Volts) was determined for each arm (100s) and set as the threshold or baseline.  Then, the 

training session was conducted. During training, when the infant activated the biceps above 

the pre-set threshold the musical video would play.  Learning was measured by the amount 

and duration of muscle activation during 5-minute sessions (300s) with each arm as 

Volts*seconds (Vs). 

 

Figure 14: Experimental setup to assess learning. 

 
As shown in Figure 15, both groups displayed a mean increase in the integral of 

muscle activation from baseline during the reinforcement period.  Yet, the activation 

significantly increased from baseline in the affected arm of the group with PBPI by the 2nd 
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and 3rd 100 s intervals of reinforcement as shown in Figure 15.  This method of contingent 

reinforcement is novel in comparison to the previous papers in this review because it 

allows the infant to explore operation of a toy or video through reinforcing movements for 

a specific muscle group based on clinical condition.  

 

Figure 15: Mean integrals of biceps activation at baseline and during reinforcement 
(reinforce) for typically developing (TD) children (left) and children who sustained 
perinatal brachial plexus injury (PBPI, right). 

 
 
Summary 

Given this research, it has been shown repeatedly that typical developing infants, as 

well as infants at-risk, are able to increase specific movements using the paradigm of 

contingent reinforcement.  Contingent reinforcement has been implemented using strings 

attached to the infant limbs, computer vision, and EMG-based muscle activity sensing.  A 

range of reward types have been shown to be effective in increasing movement, including 

shaking toys, humanoid robot movement, robotic overground mobility, video, and music.  

The at-risk populations that have been studied are infants with developmental delay, 

cerebral palsy, pre-term conditions, brain injury and PBPI. 
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2 DESIGN OF NEUREWARDS 

In the context of PBPI, an important goal is to distinguish “rehabilitative” from “non-

rehabilitative” movement or muscle activation.  This requires algorithms that can detect 

“desired” movements amongst the large set of random movements that infants typically 

make.  As described above, detection of rehabilitative movement has previously been 

shown using surface EMG-based sensing of biceps activity.  However, EMG-based 

approaches have the disadvantage of requiring that sensors be affixed in accurate positions 

above the target muscle, and are only able to detect activity of specific muscles rather than 

desirable, whole-arm movement patterns.  Here, we studied detection of rehabilitative arm 

movements using acceleration data from a wrist sensor.  Specifically, the goal of this project 

was to wirelessly reward “desired” arm movements by activating an overhead mobile with 

visual and auditory feedback.  The target age was 3-6 months as this is thought to be a 

developmental period when infants have significant neuroplasticity for learning to use 

residual pathways, and is an age prior to the frequent 6-month cut-off for microsurgery.       

 

2.1 Hardware 

NeuRewards consists of two major components: a wrist sensor and an overhead 

mobile.  The wrist sensor, EcoMini, was developed in Professor Pai Chou’s Electrical 

Engineering lab at the University of California, Irvine. EcoMini collects raw data for 

acceleration (with gravity), gyroscope and magnetometer via Bluetooth Low Energy 

(BTLE), with a sampling rate of 100Hz and powered by a 3.7V Lithium ion battery.  
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Figure 16: EcoMini senor hardware (Chou). 

 

The overhead mobile consists of an Arduino board and Bluetooth Low Energy 

module connected to an overhead mobile by TinyLove, to deliver reward to the infant.  The 

components include a battery, PMOS, motor for spinning, and a mini MP3 player for 

Arduino (DFPlayer) for auditory feedback. 

   

Figure 17: SolidWorks model for NeuRewards overhead mobile enclosing electronics for 
reward activation. 

 

2.2 Software 

  Dr. Pai Chou’s group developed the data collection software for the Ecomini on 

Python, which saves acceleration, gyroscope, and magnetometer readings, as well as a 

timestamp.  Upon powering on, the sensor is calibrated during the first 3 seconds, where it 

must remain stationary.  The average value of the first 3000 samples in each axis is taken. 



31 
 

These averages are considered biases that are later subtracted from the readings of the 

corresponding axes.  After calibration, data collection may begin.  This code was modified to 

add “marks” using a keyboard to annotate the data when a desired movement occurred with 

the assistance of Michael Pollind, graduate student at Chapman University.  After data 

collection, all the measurements were analyzed and visualized offline, on MATLAB R2018a. 
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3 METHODS 

3.1 Participants and data acquisition 

Arm movement data was collected from a 4-month-old typically developing infant 

while she was lying in supine and seated, to develop and test an algorithm used to classify 

rehabilitative from non-rehabilitative movements.  To acquire a target set of movements 

from the infant, a physical therapist, Dr. Susan Duff held the infant’s arm and moved it to 

mimic “desirable” rehabilitative movements and “undesirable” compensatory movements.  

To foster active movements, a toy was used to attract the infant’s attention and encourage 

desirable movements.  Additionally, I performed the same movements myself while lying in 

supine.   

For the two subjects, we gathered three desirable movements: (1) elbow flexion (EF), 

(2) shoulder abduction (SA) (3) shoulder flexion (SF) and one undesriable movement (4) 

triceps flexion (TF), which involved elbow flexion into gravity using the triceps muscle. For 

TF, the subject abducted and internally rotated the shoulder then brought the hand toward 

the face (mouth) by eccentrically contracting the triceps into elbow flexion. EF, SA, SF are 

rehabilitative movements which are important to detect, in order to be rewarded.  TF is a 

compensatory movement that infants at-risk perform to bring their hand toward the face 

(mouth) and must not be rewarded.  Figure 13 shows all 4 movements. 

 

Infant  

During the infant’s data collection, EcoMini was secured to a soft strap with paper 

tape to avoid sliding of the sensor on the skin (Figure 18a).  The soft strap was attached to 

the right wrist. Acceleration, gyroscope and magnetometer data for the four movement 
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types (Table 2) were acquired using the sensor as the therapist passively moved the limb 

into each of the four positions. Each movement started at a specific location and palm 

orientation (Table 2).  For each movement type, two repetitions were performed. 

Movement type Rehabilitative 
Starting 
position 

Posture 
Palm 

orientation 
Elbow flexion 

(EF) 
Yes Beside hip 

Lying down Palm down 
Seated Palm neutral 

Shoulder 
abduction 

(SA) 
Yes Beside hip 

Lying down Palm neutral 

Seated Palm down 

Shoulder flexion 
(SF) 

Yes Beside hip 
Lying down Palm down 

Seated Palm neutral 
Tricep flexion 

(TF) 
No 

Vertically above 
shoulder 

Lying down Palm down 
Seated Palm down 

 

TABLE 2: Map for Infant Template Movements 

(a)                                        (b)         (c) 

          

                                                 (d)   (e) 

        

Figure 18: Collection of four template movements lying in supine. (a) Sensor secured to 
the wrist with a soft wristband at desired orientation and position. (b) Elbow flexion, (c) 
Tricep flexion, (d) Shoulder abduction, and (e) Shoulder flexion. 
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(a)                           (b)  

       

Figure 19: Collection of template movements while seated: (a) desirable Elbow flexion 
with shoulder adducted, (b) undesirable elbow flexion in shoulder abduction and internal 
rotation. Shoulder abduction & flexion images were not taken. 

 

Then, two minutes were allocated for the infant to freely perform self-initiated 

movements while seated and while lying down.  During this time, Dr. Susan Duff shook a 

toy to encourage rehabilitative movements.  After one of each of the three “desirable” 

movements were performed, the data was marked by pressing a key on the computer 

keyboard. Specifically, when Dr. Duff saw a “desirable” movement, she told the operator to 

mark the dataset.  

Upon powering on the sensor for data collection, the sensor was secured on the 

infant’s wrist, and not stationary on a surface.  Therefore, it did not calibrate properly, 

leading to incorrect acceleration values. 

Another limitation with the infant data collection was that, although I entered a 

mark when Dr. Duff identified a desirable movement in the free movement collection 

period, there was a delay between the key button press and the actual movement, making it 

difficult to specify when the movement occurred.     
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(a)                                                   (b) 

    

Figure 20: Active movements were performed, including “desirable” movements. (a) in 
supine, and (b) seated. 

 

Adult 

To obtain a better data set, I performed the same movements collected for the 

infant, but this time I took care to properly calibrate the sensor and to more accurately 

mark the data. Since the supine position is age appropriate for infants’ rehabilitation 

strategies in young infants, I performed the movements in supine to mimic their 

movements. Upon powering the sensor, I calibrated the sensor by keeping it stationary for 

the first 4 seconds, unlike during the infant’s data collection. Once calibrated, I performed 

the four template movements, with five repetitions each. The sensor was placed at the 

same location and orientation as for the infant (Figure 21). 

 

Figure 21: Left) Sensor placement on adult’s wrist with tape. Right) Sensor’s axis 
orientation 

 

+x 

+y

+ 
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To mimic the infant’s active movements and achieve a large “desirable” data sample of 

movements, I performed random movements + “desirable” movements (EF, SA, SF) for 

10 minutes, also in supine.  During this time, a colleague ran the data collecting program on 

Python as I performed the movements.  My colleague marked the data with the keyboard, 

simultaneously verbally informing me which movement to make (i.e., “EF”).  I immediately 

performed the corresponding movement upon command.  This method accurately marked 

the beginning of each movement.  I also collected a “undesirable” data sample for 

approximately five minutes where I performed random movements + “undesirable” 

movement (TF) and excluded the “desirable” movements (EF, SA, SF).  My colleague again 

carefully marked the timing onset of the undesirable movements. 
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3.2 Data visualization 

Infant 

To visualize the data acquired, it was plotted in 3D space and their differences were 

examined.  Accelerometer, gyroscope and magnetometer data for template movements, 

lying in supine are displayed in a 3D space in different colors to visualize their unique 

properties.  Magnetometer data was disregarded as it was affected by interference with 

metal objects surrounding the sensor.  Comparing gyroscope and acceleration data, 

acceleration showed the most visual differences across movement types, which is why it 

was chosen to be analyzed alone.  The movements, starting positions and palm orientations 

were the same for the infant and the adult subject.  However, the differences in values are 

due to the sensor calibration issue in the infant data set.  Therefore, all the later data 

analysis was performed on the adult data set which was correctly calibrated.  Table 3 

shows the acceleration, gyroscope and magnetometer data in 3D space.  

 

Subject Acceleration Gyroscope Magnetometer 

Infant 
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Adult 

   

 
TABLE 3: Acceleration, Gyroscope, and Magnetometer data for “template” movements for 
the infant and adult subjects, in 3D space. 

 

Then, time history of the raw acceleration values in x, y, z, as well as their 3D vector 

magnitude were analyzed to ensure the values were logical for each movement.  As 

mentioned, the acceleration values from the infant were incorrect due to the calibration 

error, which is shown in Figure 22.  Elbow flexion (EF) and shoulder flexion (SF) revealed 

similar patterns, due to their movement similarity. 
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Figure 22: 2D Acceleration plot against time for infant’s four “template” movements. 
Acceleration in x-direction (green), acceleration in y-direction (red), acceleration in z-
direction (blue) and magnitude of acceleration vector (black).  

 

In the adult data set, the time history of the acceleration in x, y, z directions, and the 

3D vector magnitude were also plotted and analyzed.  Each movement has its unique 

acceleration pattern.  It is noticeable that elbow flexion (EF) and shoulder flexion (SF) are 

very similar in their movement patterns.  Most importantly, it is crucial that elbow flexion 

initiated with eccentric triceps activation (TF) is not rewarded, amongst EF, SA, and SF. 

 

Figure 23: 2D Acceleration plot against time for adult’s four “template” movements. 
Acceleration in x-direction (green), acceleration in y-direction (red), acceleration in z-
direction (blue) and magnitude of acceleration vector (black).  

 

A Kolmogorov-Smirnov (KS) test was performed on the acceleration magnitude of 

the four template movements to evaluate the similarity between distributions.  The null 

hypothesis is that the distributions are the same.  The null hypothesis is rejected between 
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all movements (p<0.05).  However, EF and SF have the most similar distributions (KS test, 

p-value=0.0035). 

KS Test p-values EF TF SA SF 

EF 1 1.1216e-04 3.1944e-16 0.0035 

TF 1.1216e-04 1 1.4928e-20 1.9385e-04 

SA 3.1944e-16 1.4928e-20 1 2.0028e-11 

SF 0.0035 1.9385e-04 2.0028e-11 1 

 

TABLE 4: KS test for similarity between the four movements’ magnitude distributions. 

 

3.3 Movement Classification 

3.3.1 Hand-drawn Ellipsoids 

Our first attempt was to classify these acceleration patterns based on volumes or 

ellipsoids that they reside in, in 3D space.  Although the shapes elegantly wrapped the 

different patterns, as shown in Figure 24, there were a few limitations: 

(1) There was an overlap in the patterns across the 4 movements and the shapes did 

not fully enclose just one pattern. 

(2) The shapes were hand drawn over the data set.  

(3) After running a set of random active movements including “desirable” movements 

over their templates, they did not fit in their expected shapes.  

Therefore, this classification method was disregarded after this step. 
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Figure 24: Acceleration of Infant’s template movements, lying down. Hand-drawn 
ellipsoids enclosing the four template movements. The green ellipsoids enclose “desirable” 
movements, and the red ellipsoid encloses “undeisrable” movements. 

 
3.3.2 Similarity measure 

To overcome these limitations, we shifted towards looking at the acceleration vector.  

Here, we took the average of 5 repetitions, for each of the 4 movements.  Figure 25 shows a 

quiver plot of the EF template and the first EF performed in “desirable” sample of active 

movements, against time on the x axis. 

 

Figure 25: 3D plot of acceleration vectors for (1) EF template and (2) EF from “desirable” 
sample against time in seconds 
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This template acts as a window that passes over a large set of random movements, to 

find a “match”.  The similarity measure is obtained from a hand velocity study (Shadmehr 

et al, 1994), where the dot product of the template and the data set is calculated for each 

data sample, until the end of the data set.  Then the average of the dot products is taken to 

quantify the similarity between the template and the data set.  This calculation produces a 

set of numbers between -1 and 1.  The larger the number, the more similar that window of 

data is to the template. 

< 𝑈, 𝑌 > = ∑ ui• 𝑦𝑖
𝑛
𝑖=1   (1) 

(< 𝑈, 𝑌 >) =
1

𝑛
< 𝑈, 𝑌 >   (2) 

𝑎𝑣𝑔(𝑠𝑖𝑔𝑛𝑎𝑙•𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒)  (3) 

For proof of concept, four equally spaced chunks of the EF template were added into the 

“undesirable” sample with no EF movements.  The similarity measure was applied, and the 

signal was plotted.  As can be seen, the similarity measure produced peaks of magnitude 1 

at the time instants when the EF template was artificially inserted into the random 

movement data.  

 

Figure 26: Chunks of EF template added into the “undesirable” sample (green bars). Peaks 
in the similarity measure are shown at the location of the EF template (green dots). 
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4 RESULTS  

4.1 Alignment detection 

 For each movement, I found the peaks detected from the similarity measure.  Then, I 

created an algorithm that locates the number of peaks “aligned” with the data marks.  For 

each mark, I looked 3 seconds before and 3 seconds after the mark in the similarity 

measure.  If the peak fell in this period, then the peak was detected as identifying a 

template movement.  If not, it counted as a “spuriously identified” (SI) movement, as shown 

in Figure 27. 

 

Figure 27: Example of similarity measure of “desirable” sample with EF template. All 
circles were detected as EF. However, they aligned with EF marks, SF marks, and also no 
marks at all. 

 

4.2 Choice of threshold 

To choose the optimal threshold for peak detection, a set of thresholds from 0.5 to 

0.95 in increments of 0.05 were analyzed for their True Positive (TP) ratio and Frequency 



44 
 

of Spuriously Identified (FSI) Movements.  As stated above, SI movements are considered 

any peaks that are not aligned with EF, SA, SF, TF marks.  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)  =  
# 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐸𝐹 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑡𝑒𝑑 𝐸𝐹 𝑚𝑎𝑟𝑘𝑠
 

𝐹𝑟𝑒𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑆𝑝𝑢𝑟𝑖𝑜𝑢𝑠𝑙𝑦 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 (𝐹𝑆𝐼) 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

=  
# 𝑜𝑓 𝑆𝐼 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠
 

 

Figure 28: True Positive (TP) rate and Frequency of Spuriously Identified (FSI) 
movements are plotted for similarity measure thresholds ranging from 0.5 to 0.95, for the 
four template movements. 

 

The True Positive value decreased as the threshold increased since less peaks were being 

detected. After a threshold of 0.75, the FSI rate increases because the number of detected 
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marks decreased.  A threshold of 0.7 was chosen as it had a relatively low FSI rate and 

relatively high TP ratio. 

 

4.3 Efficiency of Similarity Measure 

The similarity measure for the EF template was applied to the “desirable” sample in 

the first plot of Figure 29.  The closer the result is to 1, the more similar the movement is to 

the template.  The chosen threshold of 0.7 was taken to detect the peaks, with a minimum 

peak distance of 3 seconds between peaks.  The second plot shows the SA template applied 

onto the “desirable” sample.  The third shows the SF template with the “desirable” sample.  

Lastly, the fourth plot shows the similarity measure for TF on the “desirable” sample.  Note 

that TF was not performed in the “desirable” sample, and therefore is important that it is 

not detected. 

Due to the similarity the accelerations associated with the EF and SF “desirable” 

movements, as identified above, the peaks in the first plot for EF align with the red SF 

marks as well.  Figure 23 and table 4 show the similarity between distributions of EF and 

SF, consecutively, and therefore they have the most overlap in peaks and marks. 
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Figure 29: Similarity measure when the four template movements were applied to the 
“desirable” sample of data that included both random movement and EF, SA, and SF 
movements.  The sticks at the bottom of each plot represents the inputted marks EF 
(green), SA (blue) and SF (red).  Each plot shows the similarity measure between the 
sample’s acceleration vectors and the movement template’ acceleration vectors.  The dots 
above 0.7 threshold are the similarity peaks. 

 

Figure 30 shows the similarity measure calculated for all four movements templates 

applied to the “undesirable” sample of data that included random movement and TF 

movements.  SF was detected twice in the “undesirable” sample because I accidentally 

performed SF to get my arm vertically above my shoulder for the initial position of TF. 
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Figure 30: Similarity measure when the four template movements were applied to the 
“undesirable” data sample, which contained random arm movement plus TF.  The black 
sticks at the bottom of each plot represent the marks inputted for TF. 

 

For the chosen threshold of 0.7, the table below shows the percentage of detected 

peaks for each mark.  The green boxes represent the algorithm performance for the 

“desirable” sample of arm movement, and the red boxes represent the algorithm 

performance for the “undesirable” sample of arm movement.  The right column presents 

the rate of spurious movements that were detected and that did not align with marks, for 

each movement.  The bottom row represents the number of marks that were not detected. 
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   TRUE 
   DESIRABLE UNDESIRABLE Spurious 

   EF SA SF TF  

D
E

T
E

C
T

E
D

 

D
E

S
IR

A
B

L
E

 E
F

 13

22
=  59.1% __ 

20

21
= 95.2% __ 0.13 𝑝𝑒𝑎𝑘/𝑚𝑖𝑛 

S
A

 7

22
= 31.8% 

19

21
=  90.5% 

7

21
= 33.3% __ 1.87 𝑝𝑒𝑎𝑘/𝑚𝑖𝑛 

S
F

 14

22
= 63.0% __ 

18

21
= 85.7% 

2

16
= 12.5% 0.533 𝑝𝑒𝑎𝑘/𝑚𝑖𝑛 

U
N

-
D

E
S

R
IA

B
L

E
 

T
F

 

__ __ __ 
14

16
= 87.5% 1.33 𝑝𝑒𝑎𝑘/𝑚𝑖𝑛 

N
o

n
-

m
a

rk
e

d
 

ra
n

d
o

m
 

3

22
= 13.6% 

 

2

21
= 9.52% 

 

1

21
= 4.76% 

 

2

16
=  12.5% 

 
N/A 

  

TABLE 5: Green boxes represent the movements detected as desirable. Red boxes represent 
the undesirable movements detected as desirable or undesirable.  The rest show the number 
of extra peaks detected, or marks that were missed. 

  TRUE 
  Desirable Undesirable Spurious 

D
e

te
ct

e
d

 

D
e

si
ra

b
le

 (TP) 
57

64
= 89.1% 

(TP) 
2

16
=  12.5% 

(FP) 
2.53 𝑝𝑒𝑎𝑘𝑠/𝑚𝑖𝑛 

U
n

-
d

e
si

ra
b

le
 (FP) 

0

64
=  0% 

(TP) 
14

16
=  87.5% 

(FP) 
1.33 𝑝𝑒𝑎𝑘𝑠/𝑚𝑖𝑛 

 

N
o

n
-

m
a

rk
e

d
 (FN) 

 
7

64
= 10.9% 

 

(FN) 
 

2

16
=  12.5% 

N/A 

 
TABLE 6: A broader view of table 5 that groups the “desirable” movements together.  The 
“true” movements represent the inputted marks, and the detected movements are the 
peaks from the similarity measure.  The “desirable” values are with respect to the 
“desirable” sample.  The “undesirable” values are with respect to the “undesirable” sample. 



49 
 

5 DISCUSSION 

 

In working toward an automated arm therapy system for infants with PBPI, I studied 

detection of rehabilitative (or “desirable”) arm movements using acceleration data from a 

wrist sensor.  I implemented a template-matching algorithm based on the dot-product of a 

moving window of 3D acceleration vectors with the template acceleration pattern.  I found 

that the algorithm detected desirable movements (i.e. EF, SA, or SF) with an accuracy of 

~90%.  The algorithm erroneously identifying spurious movements as desirable at a rate of 

about 1-3 movements per minute.  In addition, I found that the algorithm detected when an 

undesirable arm movement (i.e. TF) occurred with about 88% accuracy.  Importantly, the 

algorithm never identified an undesirable arm movement as a desirable arm movement.  

These results show the potential for the template algorithm to be used in a contingent 

reinforcement paradigm to encourage infants with PBPI to make arm rehabilitative 

movements. 

 

5.1 Limitations 

 The main limitation of this work is that I applied the identification algorithm only to 

one adult subject.  Future work should apply the algorithm to a series of infants with and 

without PBPI.  Future work should also compare other algorithms for identifying target 

movements. 

Another limitation is that I assumed that the “desirable” sample of arm movement 

did not contain any “undesirable” (i.e. TF) movements, and that the “undesirable” sample of 

arm movement did not contain any “desirable” movements (i.e. EF).  Since two SF 
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movements were detected in the “undesirable” sample, there could have been 

unintentional SF movements in that sample.  I also assumed that any marks in the desirable 

and undesirable sample were inputted within a 6 second window of telling the subject to 

move.  This alignment detection window might have taken into consideration extra 

movements, or also missed some movements that were performed at a delay. 

 

5. 2 Future Work 

The next steps should include acquiring the four template movements from an 

infant, with sensor calibration, while also acquiring a sample of arm movement that 

contains desirable and undesirable movements, to determine how well the template-

matching algorithm works for infants.  

I calculated the template movement as the average of five movements performed at 

about the same speed.  As currently implemented, the template algorithm will not 

accurately identify movements with the same spatial movement pattern as the template 

movement, but that are preformed more quickly or more slowly.  Future research should 

study how to automatically modify the template to identify spatially-similar movements 

performed at different speeds. 

We have built the overhead mobile to play music and spin upon receiving a signal 

from the sensor.  Future work should apply the algorithm in real time and activate the toy 

to provide a reward (i.e. to spin the mobile and play music or parent’s voice).  

Another option to explore is the use of a mechanically built contingent 

reinforcement system that rewards desirable movements based on a pattern or trajectory 

that the arm follows, reducing the complexity of pattern recognition through an algorithm.  
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