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Abstract

OBJECTIVE: BCORL1, a transcriptional co-repressor, has a role in cortical migration, neuronal 

differentiation, maturation, and cerebellar development. We describe BCORL1 as a new genetic 

cause for major brain malformations.

METHODS AND RESULTS: We report three patients from two unrelated families with neonatal 

onset intractable epilepsy and profound global developmental delay. Brain MRI of two siblings 

from the first family depicted hypoplastic corpus callosum and septal agenesis (ASP) in the 

older brother and unilateral perisylvian polymicrogyria (PMG) in the younger one. MRI of the 

patient from the second family demonstrated complete agenesis of corpus callosum (CC). Whole 

Exome Sequencing revealed a novel hemizygous variant in NM_021946.5 (BCORL1):c.796C>T 

(p.Pro266Ser) in the two siblings from the first family and the NM_021946.5 (BCORL1): 

c.3376G>A; p.Asp1126Asn variant in the patient from the second family, both variants inherited 

from healthy mothers. We reviewed the patients’ charts and MRIs and compared the phenotype 

to the other published BCORL1-related cases. Brain malformations have not been previously 

described in association with the BCORL1 phenotype. We discuss the potential influence of 

BCORL1 on brain development.

CONCLUSIONS: We suggest that BCORL1 variants present with a spectrum of 

neurodevelopmental disorders and can lead to major brain malformations originating at different 

stages of fetal development. We suggest adding BCORL1 to the genetic causes of PMG, ASP, and 

CC dysgenesis.

INTRODUCTION

BCORL1 (BCL6 co-repressor-like 1 gene, (OMIM 300688) is located on chromosome 

Xq26.1 and expressed in the brain and other tissues [1]. In 2018, Shukla et al. described 

five patients with an X-linked disorder of intellectual disability, dysmorphic features, and 

behavioral abnormalities associated with variants in BCORL1 [2]. This syndrome was 

named Shukla-Vernon syndrome (OMIM 301029).

So far ten patients have been reported harboring BCORL1 pathogenic variants [1–4]. Four 

had early onset epilepsy, eight intellectual disability of variable severity, and six autistic 

spectrum disorder. Some of the children had dysmorphic facial features (Table 1). Mild 

manifestations such as learning difficulties were reported in carrier females. A brain MRI 

was reported in only 4/10 patients, and cerebellar atrophy was described in two; a major 

brain malformation has not been described [2].

We describe three patients from two unrelated families with two novel variants of 

unknown significance (VUS) in BCORL1 who manifested neonatal onset intractable 

epilepsy and profound developmental delay consistent with a developmental and epileptic 

encephalopathy in accordance with ILAE criteria [5]. Brain MRI in two siblings depicted 

major malformations originating at different stages of fetal brain development: hypoplastic 

corpus callosum (CC) and septal agenesis (ASP) in the older brother, and unilateral 

opercular polymicrogyria (PMG) in the younger one. MRI of the patient from the second 

family demonstrated complete agenesis of the corpus callosum.
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MATERIAL AND METHODS

We reviewed the patients’ medical records and postnatal MRIs. The study was approved by 

the institutional review board [0075–17WOMC].

Genetic studies

Genomic DNA was extracted from peripheral blood by the QIAamp DNA Mini kit 

(QIAGEN), according to the manufacturers’ instructions.

Quartet Whole exome sequencing was performed on the DNA of both patients and their 

parents. The samples were enriched with Twist Human Core Exome Plus Kit (Twist 

Bioscience). Sequencing was carried out on NovaSeq 6000 (Illumina, San diego, CA, USA) 

as 100-bp paired–end runs. Reads were aligned with the human reference genome (assembly 

GRCh37/hg19). Pipeline was performed using the Genoox platform based on BWA (version 

0.7.16) for read alignment and GATK HaplotypeCaller (version 3.7) and FreeBayes (version 

1.1.0) for variant calling.

Dataset files including the annotated information were analyzed with the following filtering 

steps: variant s which were called <9 times and synonymous variants were removed. 

Variants were filtered based on allele frequency <0.01 according to online databases; dbSNP, 

1000G, ExAC and gnomAD. Likely pathogenicity was assessed if the variant was truncating 

(splicing or nonsense), missense or an in-frame indel. Missense and in-frame indels were 

considered if they were predicted to be pathogenic by online prediction tools, PolyPhen-2, 

SIFT, and Mutation Taster.

RESULTS

Family 1

Patient 1.—The patient is a 3-year-old boy, born to healthy non-consanguineous parents 

of Ethiopian origin. There is no family history of neurodevelopmental disorders, and they 

have a healthy 11-year-old daughter. Fetal ultrasound depicted absent cavum septi pellucidi, 

lateral ventricle synechiae, and wide subarachnoid spaces. Septo-optic dysplasia (SOD) 

was suspected. Fetal MRI demonstrated a structural midline malformation, including partial 

agenesis of septum pellucidum, suspected thin optic chiasm and thin CC. The frontal lobe 

volume was mildly reduced. A fetal echocardiogram was normal.

The patient was born at term following a normal delivery, with APGAR scores of 9/10, 

birth weight of 3105 g, and head circumference (HC) of 36 cm (85th centile). During 

the first days of life recurrent episodes of gaze deviation and desaturation were observed 

and diagnosed as non-motor, autonomic with behavior arrest seizures according to the 

ILEA 2017 seizure classification [5]. The patient was transferred to the neonatal intensive 

care unit. An EEG showed sharp activity with a normal background. He was treated with 

phenobarbital and levetiracetam. MRI during the neonatal period showed unseparated frontal 

horns with mild dilatation (12 mm), absence of the septum pellucidum and a thin CC 

(Fig. 1). An endocrinological evaluation of the pituitary axis and an ophthalmological 

examination were normal.

Gafner et al. Page 3

J Hum Genet. Author manuscript; available in PMC 2023 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



He presented to our clinic at the age of 4 months due to intractable daily seizures, 

characterized by rhythmic movements of the left arm and leg, and right head deviation, 

lasting 5–10 min, with no postictal phase.

On physical examination, HC was 43.5 cm (90th centile), weight was 8.2 kg (95th centile. 

Tall and broad forehead, hypertelorism, brushy eyebrows and thick vermilion were noted. 

He had not achieved any developmental milestones, he did not make eye contact, nor lift his 

head in the prone position.

An EEG showed multifocal sharp waves, spikes and polyspikes with phase reversal in the 

temporal areas.

Later the patient developed multiple seizure types: generalized tonic, clonic, atonic, and 

myoclonic seizures according to the ILEA 2017 seizure classification [5]. The seizures 

evolved and manifested as brief (seconds) rapid eye blinking, tonic posturing of arms and 

legs, and ictal laughter with a short postictal period. The seizures occurred daily, sometimes 

numerous seizures per hour. Convulsive status epilepticus occurred rarely.

The seizures were drug-resistant to the following medications: phenobarbital, levetiracetam, 

vigabatrin, topiramate, carbamazepine, hydantoin, lacosamide, clobazam, synacthen depot, 

medical cannabis, and the ketogenic diet.

A video EEG at the age of 1.10 years, performed during wakefulness, showed multifocal 

spikes and polyspikes.

At the age of 3 years the HC was 49 cm (50th centile) and weight was 13 kg (30th 

centile). Neurological examination revealed severe axial and appendicular hypotonia and 

fisted hands. Deep tendon reflexes were increased unilaterally with sustained clonus. His 

only developmental milestone was smiling in reaction to his parents’ voice and to music.

Patient 2.—The 6-month-old sibling of patient 1 was born at term following an uneventful 

delivery, birth weight and occipital frontal circumference were within normal ranges. The 

prenatal anatomical scans were normal.

On the second day of life he presented with seizures starting as bilateral eye blinking, left 

head deviation, and bilateral clonic movements of the hands continuing to left hemiclonic 

movements. Seizures were classified as motor clonic and myoclonic seizures [5]. The 

seizures abated following a phenobarbital load. EEG in quiet sleep showed a continuous 

and reactive background with sharp epileptic activity over the right hemisphere.

Brain MRI at the age of 1 month depicted a right temporal lobe parenchymal hematoma due 

to an accidental maternal trauma during pregnancy and right perisylvian PMG (Fig. 2).

He presented to our clinic at the age of 1 month. He was treated with phenobarbital due to 

daily seizures, characterized by flushing and left head deviation, lasting for several seconds. 

On physical examination, HC was 39 cm (50th centile), and he weighed 4800 g. The 

neurological exam was normal. Myoclonic jerks of the left arm were observed during sleep.
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At the last clinic visit at the age of 6 months he continued to display weekly seizures, 

characterized by brief clonic movements of both arms and legs, despite treatment with 

phenobarbital and levetiracetam. He showed severe global developmental delay. On physical 

examination HC was 44 cm (85th centile). Dysmorphic features included tall and broad 

forehead, hyperetelorism, brushy eyebrows and prominent thick vermilion. He did not fix or 

follow, nor smile. He had axial hypotonia with head lag. In the prone position he lifted his 

head up only for a few seconds. Reflexes were brisk on the right side with right Achilles 

clonus. Sudden sounds triggered an extreme startle reaction. A seizure was observed, with 

gaze and head deviation to the right, and bilateral clonic movements of arms and legs. 

Myoclonic jerks were also seen. These seizures were classified as motor generalized clonic 

and myoclonic seizures according to the ILAE 2017 [5].

An EEG at the age of 6 months showed high voltage bilateral continuous irregular slow 

activity intermixed with spikes and polyspikes more prominent over the left hemisphere.

Family 2

Patient 3.—A 7-year-old boy presented with profound intellectual disability with an 

intellectual quotient of 17, autistic behavior, and intractable epilepsy. Seizure control failed 

despite multiple antiepileptic drugs including oxcarbazepine, clobazam, levetiracetam, and 

others.

Brain MRI demonstrated complete agenesis of CC.

Further clinical information is not available due to follow-up discontinuation.

WES results

The genetic test in the first family revealed a novel variant of uncertain significance in 

the BCORL1 gene: NM_021946.5 (BCORL1): c.796C>T; p.Pro266Ser, both patients are 

hemizygous and the mother is a heterozygous carrier (Fig. 3). This variant is located in 

a proline rich area in the protein and changes the conserved 266 proline into serine, it is 

extremely rare, and was not found in public databases (GNOMAD, EXAC) and is predicted 

to be deleterious by part of the in silico predicting softwares (SIFT and PolyPhen-2), the 

variant is classified as variant of uncertain significance according to ACMG guidelines. 

No other pathogenic or likely pathogenic variants were identified that can be associated 

with the patients’ phenotype, no other VUS (non-GNOMAD) were shared by both patients. 

Unfortunately, expression studies could not be performed in our patients.

The genetic test in the second family, patient 3, revealed a novel hemizygous variant of 

uncertain significance in the BCORL1 gene: NM_021946.5 (BCORL1): c.3376G>A; p. 

Asp1126Asn, inherited from the mother who is a heterozygous carrier. The c.3376G>A 

variant results in a substitution of the negatively charged Aspartate to uncharged Aspargine 

at position 1126, p. Asp1126Asn. This variant is exceedingly rare, was not found in public 

databases (GNOMAD, EXAC) and is predicted to be deleterious by part of the in silico 

predicting softwares, the variant is also classified as a variant of uncertain significance 

according to ACMG guidelines.
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DISCUSSION

We describe three male patients from two unrelated families with neonatal onset intractable 

epilepsy, profound global developmental delay consistent with a developmental and epileptic 

encephalopathy, and major brain malformations.

WES analysis revealed only one genetic abnormality-previously unreported variants in 

BCORL1: NM_021946.5 (BCORL1):c.796C>T; p.Pro266Ser in two siblings, and BCORL1 
NM_021946.5 (BCORL1): c.3376G>A; p. Asp1126Asn in the third unrelated patient, both 

inherited from healthy mothers, thus making these variants the most likely cause. So far, 

ten patients harboring hemizygous BCORL1 variants have been reported (Table 1). The 

BCORL1-related phenotype has been named Shukla-Vernon syndrome. The phenotype is 

clinically hetero-geneous, but almost all described patients presented with severe intellectual 

disability and early onset epilepsy (Table 1) [1–4]. Brain MRI was performed in only 

four reported cases and in two of them cerebellar atrophy was depicted. All our patients 

demonstrate more severe clinical manifestations and brain malformations that have not been 

previously reported and include CC dysgenesis in two patients associated with agenesis 

of the septi pellucidi in one, and unilateral perisylvian PMG in the younger sibling. Our 

patients’ phenotype expands the Shukla-Vernon syndrome and demonstrates new features of 

the BCORL1-related spectrum of neurodevelopmental disorders.

The major brain malformations of our patients originate at distinct stages of embryogenesis.

Can BCORL1 variants be responsible for these developmental brain anomalies?

The septum pellucidum is typically comprised of two adjacent laminae of white matter [6], 

that extend from the inner surface of the rostrum, genu, and body of the CC to the superior 

surface of the fornix. The cavum starts to develop during the 8th week of gestation [7]. Its 

development is linked to rapid growth of the forebrain commissures (particularly the CC). 

ASP can be associated with CC agenesis, schizencephaly, and SOD [8–11]. The genetic 

origin underlying isolated ASP, is not clear, however, the related syndrome—SOD, has been 

reported in association with variants in the HESX1 [12], SOX2, SOX3, and OTX2 genes 

[13–16], that have also been implicated in anomalies of the CC. They all encode regulatory 

transcription factors, playing an essential role in early fetal development [12–16]. Disturbed 

interaction between HESX1 and nuclear co-repressors, resulting in its enhanced repression, 

has been suggested as a pathogenic mechanism of SOD [17].

PMG is a relatively common malformation of cortical development, characterized by an 

irregular cortical surface with multiple small gyri and abnormal sulcation, abnormal cortical 

lamination, and overfolding and fusion of the molecular layer of nearby gyri [18, 19]. 

Multiple mechanisms, leading to the development of PMG, have been proposed [18, 20–23]. 

The leptomeninges may also have a role in the development of PMG [19, 24, 25]. They also 

have a role in the regulation of callosal development [21, 26, 27].

The association between agenesis of the septum pellucidum, PMG and anomalies of the 

CC has been reported in several case reports [9, 28–30]. Mellado et al. [31] reported three 

patients with absent septum pellucidum and PMG, two of them also had a hypoplastic CC; 
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clinically they demonstrated either seizures or developmental delay. Analysis of LHX2, 

HESX1, and SOX2 sequencing did not disclose any pathogenic mutations. Becker et al. 

also described a patient with opercular PMG and absent septum pellucidum, with childhood 

onset seizures and speech delay [30]. No genetic testing was performed.

BCORL1 is a transcriptional co-repressor, an exclusively nuclear protein, involved in 

negative gene regulation through associations with other repressors and protein complexes 

[32]. Germline mutations have been reported in association with the X-linked recessive 

Shukla-Vernon syndrome [2].

Repressors play a crucial role in negative gene regulation and their dysfunction can lead to 

developmental disorders and cancers [17, 33].

BCORL1 is a homolog of BCOR and both of them play a key role in early embryonic 

development of the cerebral cortex and cerebellum [34, 35].

BCOR functions as a transcriptional co-repressor for BCL6 repressor protein. BCL6 
downregulation in a mouse model leads to cerebellar degeneration [36, 37]. Therefore, the 

mechanism underlying the cerebellar atrophy, described in two patients reported by Shukla 

et al. may be BCL6 downregulation by a mutated BCORL1.

BCL6 has also been found to be involved in controlling laminar identity and neuronal 

migration in the developing cortex [38], thus contributing to the PMG, seen in our patient.

CtBP, another co-repressor of BCORL1, is a critical component of many transcriptional 

repression complexes and has an essential role in neurogenesis [39]. CtBP knockdown in 

mouse results in decreased proliferation and disruption of the cortical migration process 

[40]. The interaction between CtBP and BCORL1 can add to the understanding of the 

pathogenic role of BCORL1 in PMG.

Another BCORL1 partner is E-cadherin. It is essential for early cerebellar development [41, 

42] and is involved in neuronal maturation, axonal outgrowth and guidance, and synapse 

formation and plasticity. BCORL1 contributes to the repression of E-cadherin since it is 

located on its promoter. The repression of E-cadherin may be a link between abnormal 

development of the leptomeninges, PMG and the CC hypoplasia, which subsequently 

influences the development of the septi pellucidi.

According to this data we hypothesize that BCORL1 function in brain development 

is based on its interaction with other transcriptional co-repressors and their established 

neurodevelopmental role.

CONCLUSIONS

We suggest that BCORL1 variants can present a spectrum of neurodevelopmental disorders: 

Shukla-Vernon syndrome-early onset epilepsy associated with developmental, intellectual 

and communication difficulties and a more severe phenotype: a developmental and epileptic 

encephalopathy accompanied by complex brain malformations.
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Although the precise function of BCORL1 in neurogenesis is still unclear, the contribution 

of its interacting co-repressors to neuronal migration, differentiation and maturation, as well 

as cerebellar development and protection may shed a light on its role in embryonic brain 

development at different stages.

We suggest adding BCORL1 to the list of genetic causes of PMG, ASP, and CC dysgenesis. 

Further functional studies are needed to prove our theory.
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Fig. 1. 
T1 weighted images, patient 1: axial (A) and coronal (B) demonstrate absence of the septum 

pellucidum. Sagittal (C) shows hypoplasia of the corpus callosum
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Fig. 2. 
T1 weighted axial images, patient 2: axial (A) and coronal (B) demonstrate right perisylvian 

polymicrogyria (arrow), sagittal image (C) shows perisylvian polymicrogyria of the right 

hemisphere, and sagittal image (D) demonstrates normal cortex of the left hemisphere 

(arrows); coronal (B) and sagittal (C) images demonstrate a right temporal lobe parenchymal 

hematoma due to an accidental maternal abdominal trauma during pregnancy (arrow head)
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Fig. 3. 
The figure demonstrates six variants reported so far and two novel variants described 

here (in bold): c.796 C > T; p.Pro266Ser and c.3376 G > A; p. Asp1126Asn. Protein 

domain structure of BCORL1 (1711 Amino Acids): 198–649-Proline rich region (black); 

1328–1336-Nuclear localization signal (dots); 1455–1549-ANK 1–3 repeats (diagonal bars); 

1594–1711-PCGF Ub-like fold domain (PUFD), that is required for the interaction with 

KDM2B-SKP1 heterodimeric complex (gray)
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