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BRIEF DEFINITIVE REPORT

SARS-CoV-2 brainstem encephalitis in human
inherited DBR1 deficiency
Yi-Hao Chan1*, Vanja Lundberg2,3*, Jérémie Le Pen4*, Jiayi Yuan5*, Danyel Lee1,6,7**, Francesca Pinci8**, Stefano Volpi9,10**,
Koji Nakajima1, Vincent Bondet11, Sanna Åkesson3, Noopur V. Khobrekar5, Aaron Bodansky12, Likun Du13, Tina Melander14,
Alice-Andrée Mariaggi15, Yoann Seeleuthner6,7, Tariq Shikh Saleh16, Debanjana Chakravarty17,18, Per Marits19,20, Kerry Dobbs21,
Sofie Vonlanthen19,20, Viktoria Hennings2,3, Karolina Thörn3, Darawan Rinchai1, Lucy Bizien6,7, Matthieu Chaldebas1, Ali Sobh22,
Tayfun Özçelik23, Sevgi Keles24, Suzan A. AlKhater25,26, Carolina Prando27, Isabelle Meyts28, COVID Human Genetic Effort,
Michael R. Wilson17,18, Jérémie Rosain1,6,7, Emmanuelle Jouanguy1,6,7, Mélodie Aubart6,7,29, Laurent Abel1,6,7, Trine H. Mogensen30,
Qiang Pan-Hammarström13, Daxing Gao31,32, Darragh Duffy11, Aurélie Cobat6,7, Stefan Berg2, Luigi D. Notarangelo21, Oliver Harschnitz8***,
Charles M. Rice4***, Lorenz Studer5***, Jean-Laurent Casanova1,6,7,33,34***, Olov Ekwall2,3***, and Shen-Ying Zhang1,6,7***

Inherited deficiency of the RNA lariat–debranching enzyme 1 (DBR1) is a rare etiology of brainstem viral encephalitis. The cellular
basis of disease and the range of viral predisposition are unclear.We report inherited DBR1 deficiency in a 14-year-old boywho suffered
from isolated SARS-CoV-2 brainstem encephalitis. The patient is homozygous for a previously reported hypomorphic and pathogenic
DBR1 variant (I120T). Consistently, DBR1 I120T/I120T fibroblasts from affected individuals from this and another unrelated kindred
have similarly low levels of DBR1 protein and high levels of RNA lariats. DBR1 I120T/I120T human pluripotent stem cell (hPSC)–derived
hindbrain neurons are highly susceptible to SARS-CoV-2 infection. Exogenous WT DBR1 expression in DBR1 I120T/I120T fibroblasts
and hindbrain neurons rescued the RNA lariat accumulation phenotype. Moreover, expression of exogenous RNA lariats, mimicking
DBR1 deficiency, increased the susceptibility of WT hindbrain neurons to SARS-CoV-2 infection. Inborn errors of DBR1 impair hindbrain
neuron–intrinsic antiviral immunity, predisposing to viral infections of the brainstem, including that by SARS-CoV-2.
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Introduction
The first cases of SARS-CoV-2 encephalitis were described in
March 2020, about 5 mo after the start of the COVID-19 pan-
demic (Moriguchi et al., 2020; Ye et al., 2020). It progressively
became clear that encephalitis following SARS-CoV-2 infection
comprises several different types of encephalopathy, probably
due to different mechanisms of disease (Aubart et al., 2022; Cho
et al., 2023; Ellul et al., 2020; Siow et al., 2021). These SARS-CoV-
2–related forms of encephalitis have an estimated overall prev-
alence of about 2/10,000. In most cases, encephalitis occurs
weeks or months after the acute respiratory viral infection and
presents as post-infectious autoimmune encephalitis (Holroyd
and Conway, 2023). However, encephalitis may also occur in
severe cases of COVID-19 pneumonia or multisystem inflam-
matory syndrome in children (MIS-C) with the inflammation of
multiple organs, including the brain (Olivotto et al., 2021). No
particular distribution by age, sex, or ancestry has been ob-
served in either of these types of SARS-CoV-2–related enceph-
alitis, and overall mortality for these two forms is about 13%.
Isolated encephalitis, which defines a third class of SARS-CoV-
2–related encephalopathy, is extremely severe and has been
reported only rarely (Cho et al., 2023; Ellul et al., 2020;
Moriguchi et al., 2020; Siow et al., 2021; Ye et al., 2020). Acute
SARS-CoV-2 encephalitis often involves brainstem lesions, as
revealed by brain imaging data, but lesions in other parts of the
brain have also been reported. Over the last 3 years, we and
others have shown that critical COVID-19 pneumonia results
from inborn errors of, or autoantibodies against, type I inter-
ferons (IFNs) in about 15% of cases (Bastard et al., 2021a;
Casanova and Abel, 2021, 2022; Zhang et al., 2022). We also
recently discovered recessive deficiencies of the OAS-RNase L
pathway resulting in unchecked inflammatory responses to
SARS-CoV-2 in mononuclear phagocytes, underlying MIS-C in
about 1% of the patients studied (Lee et al., 2023). The patho-
genesis of SARS-CoV-2 encephalitis remains much less clear.
Based on our previous studies of other types of viral encepha-
litis, including herpes simplex virus 1 encephalitis in particular
(Zhang et al., 2021), we hypothesized that inborn errors of
brain-intrinsic immunity might underlie isolated SARS-CoV-2
encephalitis. We tested this hypothesis by performing whole-
exome/genome sequencing for a cohort of 16 patients from the
COVID Human Genetic Effort (https://www.covidhge.com) co-
hort who developed isolated encephalitis during acute SARS-
CoV-2 infection.

Results and discussion
We analyzed the 16 exomes for candidate genotypes for the 19
known viral encephalitis–causing genes (TLR3, UNC93B1, TRIF,
TRAF3, TBK1, IRF3, NEMO, GTF3A, MDA5, DOCK2, POL3A, POL3C,
IFNAR1, STAT1, STAT2, TYK2, SNORA31, DBR1, and RIPK3)
(Casanova and Abel, 2021; Liu et al., 2023; Zhang et al., 2021),
and for another three genes implicated in inborn errors of im-
munity (IEI) and with functions closely related to those of the
known viral encephalitis–causing genes (IFNAR2, IRF9, and JAK1)

(Meyts and Casanova, 2021). We searched for rare (minor allele
frequency <0.01 in the Genome Aggregation Database and in our
in-house whole exome sequencing database containing about
20,000 exomes or genomes) non-synonymous or splicing (af-
fecting essential-splicing or intronic branch-point sites) variants
with a combined annotation-dependent depletion score (Kircher
et al., 2014) above the mutation significance cutoff (Itan et al.,
2016) for the 22 genes, all of which have a gene damage index
below 13.83 (Itan et al., 2015). We considered monoallelic and/or
biallelic variants in accordance with the known modes of in-
heritance of the genes concerned. Interestingly, this search re-
vealed that one patient (P1) was homozygous for a missense
mutation (I120T) of DBR1, which encodes the RNA lariat–
debranching enzyme 1 (DBR1), a previously reported genetic
etiology of brainstem viral encephalitis (BVE) (Zhang et al.,
2018). More specifically, a detailed analysis of the whole-
genome sequencing (WGS) data for P1 and his two parents re-
vealed that P1 was homozygous or compound heterozygous for
18 and 1 genes, respectively (Table S1). In addition, P1 was found
to be heterozygous for a known familial Mediterranean fever
(FMF)–causing pathogenic MEFV gene variant, M694V (Tirosh
et al., 2021), and another MEFV variant, E148Q, previously re-
ported to confermild genotypemodifications (Fig. 1 A). TheDBR1
variant of P1 was previously shown to be pathogenic, underlying
HSV-1 BVE (Zhang et al., 2018). An EstiAge analysis of se-
quencing data for P1 and a previously described patient with
HSV-1 BVE showed that they had a haplotype of about 6.61Mb in
common, estimated to have originated from a common ancestor
about 21 generations ago (95% confidence interval: 7–85 gen-
erations), corresponding to a period of about 567 years (297–2,295
years) (Fig. 1 B). None of the other genes were deemed plausible
candidates to explain SARS-CoV-2 encephalitis based on the
biochemical nature of the variant, the reported tissue expres-
sion of the corresponding gene, or the known function of its
products.

P1 is a 14-year-old boy born to nonconsanguineous parents of
Syrian origin living in Sweden. P1 and one of his six siblings (S6)
had a clinical history of FMF, with recurrent episodes of sero-
sitis. The familial segregation of the DBR1 I120T and MEFV
M694V variants suggested incomplete penetrance of the two
genotypes for the BVE and FMF clinical phenotypes, respectively
(Fig. 1 A). In February 2022, P1 presented with a sore throat and
fever at a time at which other members of his family had mild
COVID-19. 1 wk later, he was admitted to an intensive care unit
at Umeå University Hospital, Sweden, for acute dizziness,
vomiting, and loss of consciousness. Magnetic resonance imag-
ing (MRI) showed brainstem encephalitis, with lesions in the
pons, mesencephalon, and cerebellum, and evidence of an in-
crease in intracranial pressure (Fig. 1 C). At admission, PCR on a
nasopharyngeal sample was positive for SARS-CoV-2, but no IgG
against SARS-CoV-2 was detected in the blood or cerebral spinal
fluid (CSF). SARS-CoV-2 was therefore considered to be the vi-
rus responsible for encephalitis (Table S2). Extensive searches
for other pathogens in the blood and CSF, and screening for
neuronal autoantibodies in the blood yielded negative results
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(Table S3). P1 was treated with an external ventricular drain,
corticosteroids, remdesivir, and IL1 blockade, and has no se-
quelae 15 mo after the encephalitis episode. Immunological
studies 6 mo after the recovery of the patient showed leukocyte
subset counts and proliferation to be normal. The activation of T
and B lymphocytes, and the functions of neutrophils, phag-
ocytes, and the complement systemwere also normal (Table S3).
P1 tested positive for SARS-CoV-2 IgG in serological tests per-
formed at this time point and presented a robust T cell response
to the SARS-CoV-2 spike 1 (S1), spike (S), membrane (M), and
nucleocapsid (N) peptides, further confirming the history of
SARS-CoV-2 infection in this patient.

DBR1 has only one known cellular function, as the only in-
tronic RNA lariat debranching enzyme (Chapman and Boeke,
1991). We previously reported autosomal recessive DBR1 defi-
ciency in five children from three kindreds with brainstem
encephalitis due to infection with HSV-1, influenza B virus, or
norovirus, with complete clinical penetrance for at least one
type of viral encephalitis (Zhang et al., 2018). The I120T muta-
tion was previously found in the homozygous state in two pa-
tients with HSV-1 BVE. The I120T variant has been shown to be
biochemically deleterious, as it results in abnormally low levels
of the corresponding protein and RNA lariat–debranching ac-
tivity (Zhang et al., 2018). P1 and three of his siblings, aged 6

(S6), 10 (S4), and 20 (S2) years, were found to be homozygous
for the I120T variant. None of these three siblings of P1 devel-
oped SARS-CoV-2 encephalitis or another severe infection, de-
spite living in the same household as P1 and probably being
exposed to the same infectious agents as P1, including viruses
(Fig. S1 A). The 6-year-old sibling (S6) was the only sibling with
a positive T cell response to SARS-CoV-2 S1 and SMN peptides at
the latest follow-up, and this child also had a positive result
in the anti-SARS-CoV-2 spike protein serological test (Table S4).
The parents were heterozygous and the other three siblings
tested (S1, S3, and S5) were heterozygous or WT at the I120
position (Fig. 1 A and Fig. S1 B). These findings are suggestive of
autosomal recessive DBR1 deficiency underlying SARS-CoV-2
brainstem encephalitis with incomplete clinical penetrance,
consistent with previous reports of IEIs underlying sporadic
severe viral diseases (Casanova and Abel, 2021, 2022).

For confirmation of the DBR1 deficiency in P1 at the cellular
level, we first studied SV40-transformed fibroblasts (SV40-fi-
broblasts) as a surrogate cellular model for tissue-resident cells,
as in our previous studies (Zhang et al., 2018). SV40-fibroblasts
from P1 and one of his siblings (S2) homozygous for DBR1 I120T
contain low levels of DBR1 protein and high levels of DKK1 and
ID1 RNA lariats, like SV40-fibroblasts from one of the previously
reported I120T homozygotes (Zhang et al., 2018). This was not

Figure 1. A patient with SARS-CoV-2 brainstem encephalitis homozygous for a DBR1mutation. (A) Family pedigree of index patient 1 (P1) homozygous
for the DBR1 I120T/I120T mutation. The segregations of the DBR1 (I120T) andMEFV (M694V, E148Q) variants are indicated. Pathogenic mutations are shown in
red for DBR1 and in blue for MEFV. Siblings are labeled from sibling 1 (S1) to S6. (B) Estimation of a potential common haplotype surrounding the DBR1 I120T
mutation, as predicted by EstiAge analysis, for P1 and a previously reported patient with HSV-1 BVE. (C)MRI fluid–attenuated inversion recovery images taken
on day 2 of encephalitis in P1.
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the case for the siblings of P1 heterozygous for I120T or WT at
this position (Fig. 2, A–C and Fig. S1 B). Exogenous WT DBR1
expression in SV40-fibroblasts from P1 rescued DBR1 protein
levels and decreased DKK1 and ID1 RNA lariat levels to values
similar to those in healthy control cells (Fig. 2, D–F). A previous
study reported abnormally high levels of IFN-γ in the blood of
FMF patients even during attack-free periods (Köklü et al.,
2005). However, the carriers of the FMF genotype (M694V)
from this family had basal circulating IFN-α, -β, and -γ levels
similar to those in individuals not carrying this variant (Fig. S1
C). The FMF genotype of this family does not, therefore, appear
to affect the penetrance or expressivity of DBR1 deficiency
through changes in blood type I or II IFN levels in the context of

viral infection. Autosomal recessive DBR1 deficiency may,
therefore, underlie brainstem SARS-CoV-2 encephalitis in P1.

We previously showed that inherited DBR1 deficiency results
in high levels of RNA lariat accumulation, particularly during
viral infection, thereby impairing cell-intrinsic antiviral
immunity in human fibroblasts (Zhang et al., 2018). The
brain-specific mechanisms of DBR1 deficiency impairing cell-
intrinsic immunity to viruses remain unclear. DBR1 expression
is strongest in the brainstem in humans, consistent with the
clinical presentation of the known DBR1-deficient patients, who
display selective susceptibility to BVE. We hypothesized that
DBR1 deficiency due to homozygosity for the I120T variant
would result in uncontrolled SARS-CoV-2 infection in

Figure 2. Intronic RNA lariat levels in patient-derived fibroblasts homozygous for a DBR1mutation. (A and B) DBR1 mRNA levels (A) and DBR1 protein
levels (B) in fibroblasts from two healthy controls, a DBR1 WT/WT sibling (S3), a DBR1 WT/I120T sibling (S1), and a DBR1 I120T/I120T sibling (S2) of P1, P1, and
a previously reported DBR1 I120T/I120T patient with HSV-1 brainstem encephalitis. (C) ID1 and DKK1mRNA and intronic RNA lariat levels, in fibroblasts, as in A
and B, as measured by RT-qPCR. Statistical analysis was performed with two-tailed Mann–Whitney U test. ***P < 0.001. (D and E) DBR1 mRNA levels (D) and
DBR1 protein levels (E) in fibroblasts from one healthy control and P1 transduced with empty vector, I120T DBR1, or WT DBR1. (F) ID1 and DKK1 intronic RNA
lariat levels, in fibroblasts, as in D and E, as measured by RT-qPCR. Statistical analysis was performed with two-tailed Mann–Whitney U test. **P < 0.01. Data
from A, C, D, and F are presented as the means ± SEM from three independent experiments, with two biological replicates for each experiment. Data shown in
B and E are representative of three independent experiments. Source data are available for this figure: SourceData F2.
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brainstem-resident neuronal cells due to the accumulation of
RNA lariats. Hindbrain neurons differentiated from human
pluripotent stem cells (hPSC) express angiotensin-converting
enzyme 2 (ACE2) and should therefore be permissive for
ACE2-mediated SARS-CoV-2 entry (Fig. 3 A). We first assessed
the levels of RNA lariats in hindbrain neurons derived from
hPSCs from a previously reported DBR1-deficient patient ho-
mozygous for the same I120T variant and for similar cells de-
rived from a healthy control (H9). We then assessed the
susceptibility to SARS-CoV-2 infection of these cells relative to
previously reported patients with forebrain HSV-1 encephalitis
and deficiencies of TLR3 or IFNAR1 (TLR3−/−, IFNAR1−/−)
(Bastard et al., 2021b; Guo et al., 2011) and a healthy control (Fig.
S2, A and B). Like P1-derived SV40-fibroblasts, DBR1 I120T/
I120T hPSC-derived hindbrain neurons had higher levels of ID1
and DKK1 RNA lariats than healthy control neurons (Fig. 3, B and
C), and exogenous WT DBR1 expression decreased the levels of
these RNA lariats (Fig. 3 D). SARS-CoV-2 infection also resulted
in an increase in DKK1 lariat levels in both healthy control and
DBR1 I120T/I120T hindbrain neurons (Fig. 3 E), as previously

reported for the infection of DBR1-mutated dermal fibroblasts
with HSV-1 (Zhang et al., 2018). It is, therefore, plausible that
SARS-CoV-2 infection is uncontrolled in DBR1-deficient hind-
brain neurons due to the accumulation of intronic RNA lariats.

Finally, we studied the susceptibility to SARS-CoV-2 of DBR1-
deficient hindbrain neurons relative to cells from TLR3- or
IFNAR1-deficient patients with forebrain herpes simplex en-
cephalitis (Bastard et al., 2021b; Guo et al., 2011) and a healthy
control. Interestingly, deficiencies of TLR3 or IFNAR1 did not
render hindbrain neurons more susceptible to SARS-CoV-2
replication (Fig. 4, A–C; and Fig. S3 A), despite the demonstrated
role of such deficiencies in defects of the control of HSV-1 in-
fection in hPSC-derived cortical neurons and of the control of
HSV-1, SARS-CoV-2, and other viral infections in human SV40-
fibroblasts (Guo et al., 2011; Lim et al., 2019; Zhang et al., 2020;
Bastard et al., 2021b). By contrast, DBR1 I120T/I120T hindbrain
neurons displayed markedly higher rates of SARS-CoV-2 repli-
cation from 24 to 96 h after infection than hindbrain neurons
derived from a healthy control or from TLR3−/− or IFNAR1−/−

patients (Fig. 4, A–C; and Fig. S3 B). The TLR3−/− and IFNAR1−/−

Figure 3. Intronic RNA lariat levels in hPSC-
derived hindbrain neurons homozygous for a
DBR1 mutation. (A) Angiotensin-converting en-
zyme 2 (ACE2) mRNA levels were determined by
RT-qPCR in SV-40 transformed fibroblasts
(SV40-F) from healthy controls (C1, C2) and P1,
A549 lung carcinoma cells with or without ACE2
transduction, and hPSC-derived hindbrain neu-
rons (HB neurons) from a healthy control (H9)
and a previously reported patient with the DBR1
mutation (DBR1 I120T/I120T). The data shown
are the mean ± SEM from two independent ex-
periments, with two technical replicates for each
experiment. The limit of detection (LOD) is set as
the median of ACE2 mRNA levels in SV40-F,
which does not express ACE2. (B and C) DBR1
mRNA levels (B) and ID1 and DKK1 RNA lariat
levels (C) in hindbrain neurons derived from
healthy control (H9) and DBR1 I120T/I120T pa-
tient hPSCs, as measured by RT-qPCR. The data
from B and C are presented as means ± SEM from
two independent experiments, with two biologi-
cal replicates for each experiment. (D) DBR1
mRNA levels and ID1 and DKK1 RNA lariat levels in
hindbrain neurons derived from healthy control
and DBR1 I120T/I120T patient hPSCs transduced
with empty vector, I120T DBR1, or WT DBR1, as
measured by RT-qPCR. The data from D are
presented as means ± SEM from two indepen-
dent experiments, with two biological replicates
for each experiment. (E) DKK1 lariat RNA levels in
hindbrain neurons derived from healthy control
and DBR1 I120T/I120T patient hPSCs with or
without SARS-CoV-2 infection (MOI 1, 24 hpi).
The data shown are the mean ± SEM from three
independent experiments, with two technical
replicates for each experiment.
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Figure 4. SARS-CoV-2 infection in hPSC-derived hindbrain neurons. (A) Representative immunofluorescence images of hPSC-derived hindbrain neurons
infected with SARS-CoV-2 (MOI 0.1) at 72 h post-infection (hpi) for a healthy control (H9), a previously reported patient with the DBR1mutation (DBR1 I120T/
I120T), and patients with complete TLR3 (TLR3−/−) or IFNAR1 (IFNAR1−/−) deficiency. Cells were stained with antibodies against the SARS-CoV-2 nucleocapsid
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hindbrain neurons are normally resistant to SARS-CoV-2 infec-
tion. Moreover, despite normal cellular responses to IFN-β
(Fig. 4 D and Fig. S3 C), prior treatment with IFN-β only partially
restricted the replication of the virus in DBR1 I120T/I120T
hindbrain neurons at a low multiplicity of infection (MOI 0.1),
with no detectable restriction at a high MOI (MOI 10) (Fig. 4,
A–C; and Fig. S3 A). IFN-β treatment also had no detectable ef-
fect in control neurons (Fig. 4, A–C; and Fig. S3 A). Importantly,
exogenous DKK1 RNA lariat expression rendered DBR1 WT
healthy control hindbrain neurons susceptible to SARS-CoV-2
infection, mimicking DBR1-deficient neurons (Fig. 4, E and F).
These findings suggest that type I IFNs are not necessary to
control SARS-CoV-2 in hindbrain neurons and that DBR1 is a
critical viral restriction factor in these cells.

This study thus identifies inherited DBR1 deficiency as a
genetic cause of SARS-CoV-2 brainstem encephalitis. Mecha-
nistically, DBR1 deficiency disrupts intrinsic immunity to SARS-
CoV-2 in the human hindbrain, resulting in uncontrolled viral
replication and brainstem encephalitis. SARS-CoV-2 is known to
be able to invade the central nervous system via the olfactory
bulb (Yang et al., 2020; Ziegler et al., 2020), but SARS-CoV-2
encephalitis has generally been considered to be more of an
inflammatory condition than a viral condition due to the lack of
positive results for SARS-CoV-2 in PCR on the CSF, the observed
responsiveness to immunomodulatory or immunosuppressive
treatments, such as immunoglobulins or corticosteroids, and the
delayed onset relative to infection in some patients (Cho et al.,
2023; Ellul et al., 2020; Siow et al., 2021). Our in vitro findings
suggest that brain inflammation may stem from uncontrolled
SARS-CoV-2 replication, at least in this patient with inherited
DBR1 deficiency who developed encephalitis during acute
SARS-CoV-2 infection, but we cannot exclude a role for other
cellular mechanisms in vivo. It is possible that similar viral
replication–related disease mechanisms occurred in other pa-
tients with isolated SARS-CoV-2 encephalitis or encephalitis
together with a severe infection of the lung or other organs. It is
therefore advisable to administer an antiviral treatment, par-
ticularly during the early stage of SARS-CoV-2 encephalitis.
Future studies should search for mutations of the genes encod-
ing DBR1 and related molecules in other patients with SARS-
CoV-2 encephalitis. Our findings also confirm that DBR1 is a
gatekeeper of the human brainstem against various viruses,
including not only HSV-1, influenza B virus, and norovirus, but
also SARS-CoV-2. Patients with DBR1 deficiency should be

vaccinated not only against SARS-CoV-2 but probably also
against a broader range of viruses; live-attenuated vaccines may
be contraindicated and should be avoided. Despite the recessive
mode of inheritance of DBR1 deficiency, its penetrance for viral
encephalitis appears to be incomplete. It will now be important
to decipher the detailed molecular mechanisms by which the
accumulation of intronic lariats impairs cell-intrinsic immunity
to viruses in the brainstem. Such studies may pave the way for
the development of effective preventive or therapeutic mea-
sures for patients prone to brainstem encephalitis.

Materials and methods
Human subjects
Informed consent was obtained in Sweden, in accordance with
local regulations and a protocol for research on human subjects
approved by the Swedish Ethical Review Authority (Dnr 2021-
06541-01). Experiments were conducted in the United States and
France, in accordance with local regulations and with the ap-
proval of the institutional review board of the Rockefeller Uni-
versity and the Institut National de la Santé et de la Recherche
Médicale, respectively. Approval was obtained from the French
Ethics Committee (Comité de Protection des Personnes), the
FrenchNational Agency forMedicine andHealth Product Safety,
the Institut National de la Santé et de la Recherche Médicale in
Paris, France (protocol no. C10-13), and the Rockefeller Uni-
versity Institutional Review Board in New York, USA (protocol
no. JCA-0700).

WGS
WGS was performed with the Truseq DNA PCR-free protocol
(IIIumina) according to the manufacturer’s instructions. Briefly,
1,100 ng genomic DNA was fragmented into fragments of about
350 bp in length with a Covaris E220. Fragmentation was con-
trolled with a Tapestation 4200 (Agilent). The fragments were
subjected to end repair and an A-tail and dual-index adaptors
(IDT for Illumina; TruSeq DNA UDI) were ligated to the frag-
ments, which were then subjected to double-sided purification
to create a narrow fragment-size distribution. Library quanti-
fication was performed with the KAPA Library Quantification
Kit (Roche). Sequencing was performed on S4 flow cells with a
NovaSeq 6000 sequencer (Illumina) in paired-end 150-bp
readout mode with the aim of obtaining 400 million read pairs
(a mean coverage of about 30×). Demultiplexing was performed

protein (N, red) and a neuron-specific microtubule-associated protein 2 (MAP2, green). A/T-rich chromosomal DNA was stained with DAPI (blue). Bar: 150 µm.
The data shown are representative of three independent experiments. (B and C) Percentage of hindbrain neurons (MAP2+) positive for the SARS-CoV-2 N
protein, at various time points (hpi), with and without IFN-β pretreatment, for cells infected with SARS-CoV-2 at an MOI of 0.1 (B) or 10 (C). The data points are
the means ± SEM from three independent experiments with three technical replicates per experiment. Statistical analysis was conducted with Kruskal–Wallis
tests, with Dunn’s test for multiple comparisons. *P < 0.05; **P < 0.01; ***P < 0.001. (D) Scatterplots of the mean log2 fold-changes in RNAseq-quantified gene
induction following stimulation with 100 IU/ml of IFN-β for 8 h, in hPSC-derived hindbrain neurons from a healthy control (H9), a previously reported patient
with the DBR1mutation (DBR1 I120T/I120T), and patients with complete TLR3 (TLR3−/−) or IFNAR1 (IFNAR1−/−) deficiency. Each point represents a single gene.
Genes with an absolute fold-change in expression >2 in response to IFN-β treatment relative to NS samples in the control (Ctrl) group are plotted. (E and F) ID1
and DKK1 intronic RNA lariat levels (E) and SARS-CoV-2 nucleocapsid 2 (SCV-2 N2) and RNA-dependent RNA polymerase (SCV-2 RdRp) mRNA levels (F), in
hPSC-derived hindbrain neurons from a healthy control (H9) transduced with DKK1 lariat-expressing lentivirus, as measured by RT-qPCR, after infection with
SARS-CoV-2 (MOI 0.1), 2 hpi, 24 hpi and 36 hpi. The data shown are the mean ± SEM from two independent experiments, with two biological replicates for
each experiment.
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with bcl2fastq2 Conversion Software v2.20 (Illumina). The se-
quences were alignedwith the reference human genome sequence
(GRCh37) with BWA. Downstream processingwas performedwith
the Genome Analysis Toolkit (GATK), SAM tools, and Picard Tools
(https://broadinstitute.github.io/picard/). Variants were called
with GATK Unified Genotyper. All calls with a Phred-scaled SNP
quality ≤20 were filtered out.

Pan-viral serology using VirScan
The VirScan methodology employs programmable phage
immunoprecipitation-sequencing (PhIP-Seq), where viral pep-
tides are epitomized on the outer surface of the T7 bacteriophage
for precise antibody detection, followed by next-generation deep
sequencing as described in the previous studies (Schubert et al.,
2019; Xu et al., 2015). The extensive VirScan library comprises
481,966 62-amino acid peptides, designed with a 14-amino acid
overlap, spanning comprehensively across full-length vertebrate,
mosquito-borne, and tick-borne viral genomes. Our approach
to phage immunoprecipitation and sequencing incorporated
nuanced modification of well-established PhIP-Seq protocols
(Mandel-Brehm et al., 2019; O’Donovan et al., 2020; Schubert
et al., 2019). Briefly, 1 μl of human sera was incubated with
500 μl of the VirScan library for 12–18 h at 4°C. All samples were
run in two technical replicates. Antibody-bound phages were
further subjected to two rounds of immunoprecipitation utiliz-
ing a mix of protein A and protein G magnetic beads (Thermo
Fisher Scientific), followed by elution and sequencing to unveil
the unknown antigen(s).

Western blot
Total cell extracts were prepared from SV40-fibroblasts from
patients or healthy controls. Equal amounts of protein from each
sample were separated by SDS-PAGE and blotted onto poly-
vinylidene difluoride membranes (Bio-Rad). The membranes
were then probed with an anti-human DBR1 antibody (Pro-
teinTech). They were then stripped and reprobed with an anti-
GAPDH antibody (Santa-Cruz) to control for protein loading.
Antibody binding was detected by enhanced chemiluminescence
(ECL; Amersham-Pharmacia-Biotech) with an Amersham Im-
ager 600 (GE Life Sciences).

Reverse transcription–quantitative PCR (RT-qPCR)
Total RNAwas isolated from the patient’s SV-40 fibroblasts with
the Quick-RNA Microprep kit (Zymo Research). We reverse-
transcribed the extracted total RNA with random hexamers and
the SuperScript III First-Strand Synthesis system (#18080051;
Thermo Fisher Scientific). RT-qPCR was performed with Applied
Biosystems TaqMan assays with Hs01113902_m1 (spanning DBR1
exons 2–3) and Hs01113907_m1 (exons 7–8) probes for DBR1 and
with the β-glucuronidase (#4310888E; GUS) housekeeping gene
used for normalization. Results were expressed according to the
ΔΔCt method, performed in accordance with the manufacturer’s
instructions.

For the quantification of ID1 and DKK1 intron lariats, we
reverse-transcribed the extracted total RNA with 0.5 µM branch
point-specific reverse primer for ID1 or DKK1 and a reverse
primer for β-glucuronidase (GUS) for normalization. The ID1

and DKK1 mRNA transcripts were reverse-transcribed with
random hexamers and quantified with primers for ID1 or DKK1
transcripts in the Fast SYBR Green System (#4385616; Thermo
Fisher Scientific). The levels of ID1 and DKK1 lariats and tran-
scripts were normalized relative to that of GUS transcripts and
calculated according to the ΔCT method. The sequences of the
primers used have been reported elsewhere (Zhang et al., 2018).

SIMOA digital ELISA
Pan-IFNα, IFNγ (duplex), and IFNβ (single-plex) protein concen-
trations were quantified in SIMOA digital ELISA assays developed
as Quanterix Homebrews according to the manufacturer’s in-
structions. The limit of detection of these assayswas 0.8 fgml−1 for
IFN-α, 20 fg ml−1 for IFN-γ, and 0.2 pg ml−1 for IFN-β, considering
the dilution factor applied.

Fibroblast cell culture
Primary fibroblasts were isolated from skin punch biopsy
specimens under sterile conditions and were cultured in DMEM
(GIBCO BRL; Invitrogen) supplemented with 10% fetal calf
serum (FCS) (GIBCO BRL; Invitrogen). Immortalized SV40-
transformed fibroblast cell lines (SV40-fibroblasts) were cre-
ated by the electroporation of about five million cells with 4 mg
of a plasmid containing T-antigen DNA. The transfected cells
were transferred to two fresh 75-cm2 flasks, each containing
12 ml DMEM (GIBCO BRL; Invitrogen) supplemented with 10%
FCS (GIBCO BRL; Invitrogen). SV40-fibroblast clones appeared
after about 15 days. These clones were cultured and passaged for
experimental use.

Plasmids
The DBR1 (accession #Q9UK59) cDNA was inserted into the
pDONOR vector. Site-directed mutagenesis was performed to
obtain the mutant I120T DBR1 construct. WT DBR1 and I120T
DBR1 constructs were then inserted into the pTRIP vector. To
generate DKK1 lariat copGFP-split plasmid, the copGFP fragment
was PCR-amplified from the PTY-copGFP plasmid and assem-
bled with DKK1 into a PTY plasmid. DKK1 lariat copGFP con-
structs were then inserted into the pTRIP vector. All primers
used for site-directed mutagenesis or subcloningwere generated
by SnapGene software (version 7). For lentiviral vector pro-
duction, envelope plasmid pCMV-VSV-G, packaging plasmid
PsPAX2, and transfer plasmid pTRIP were used. Lentivirus was
concentrated with a Lenti-X concentrator (Takara Bio). All
constructs were sequenced to ensure that no adventitious mu-
tations were generated during the cloning process.

Patient-specific induced pluripotent stem cell (iPSC)
reprogramming, culture, and characterization
Patient-specific iPSCs were obtained by reprogramming the
patient’s primary fibroblasts by infection with the nonintegrating
CytoTune Sendai viral vector kit (Life Technologies). All re-
programmed cells were karyotyped to ensure that they carried
no chromosomal abnormalities. Patient-specific DBR1 muta-
tions were confirmed by Sanger sequencing of genomic
DNA extracted from the iPSC lines. Human iPSC cultures
were maintained in Essential 8 medium (#A1517001; Life
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Technologies) on vitronectin-N (VTN-N, #A14700; Thermo
Fisher Scientific)-coated plates. Healthy control hESC line H9
and two experimental control iPSC lines from a TLR3−/− patient
and an IFNAR1−/− patient with established deficiencies of the
TLR3-type-I IFN circuit (Bastard et al., 2021b; Guo et al., 2011)
were used in this study.

Hindbrain neuron differentiation from hPSCs
The differentiation of hESCs or iPSCs (referred to jointly as
hPSCs) into hindbrain neurons was induced by dual-SMAD in-
hibition (Chambers et al., 2009), with correct anterior-to-pos-
terior patterning achieved by Wnt activation. Briefly, hPSCs
were dissociated into a single-cell suspension with Accutase
(#AT104; Innovative Cell Technologies) and used to seed Geltrex
(#A1413202; Thermo Fisher Scientific)-coated plastic plates at a
density of 250,000 cells/cm2 in E8 medium supplemented with
10 μMROCK inhibitor (Y-27632; 10 µM#1254/10; R&D Systems).
The cells were then transferred to neural induction medium for
11 days. This medium consisted of E6 medium supplemented
with LDN193189 (100 nM #04-0074; Reprocell) and SB431542
(10 μM#1614/50; R&D Systems), with the addition of CHIR99021
(3 μM #4423; Tocris Bioscience) for the first 2 days. After 11
days, this medium was replaced by neural differentiation me-
dium consisting of 1:1 DMEM/F12 and Neurobasal, 1× N2 sup-
plement (#17502-048; Thermo Fisher Scientific), 1× B27 without
vitamin A (#12587010; Thermo Fisher Scientific), and 1× peni-
cillin/streptomycin (#15-140-122; Thermo Fisher Scientific). The
cells were incubated in this neural differentiation medium for
4 days, and hindbrain neural progenitors were then either
cryopreserved in Stem Cellbanker (#11924; Amsbio) or re-
plated onto poly-ornithine/laminin/fibronectin plates at a
density of 1.5 × 105 cells/cm2 in maturation medium consisting
of Neurobasal, medium 1× B27 without vitamin A, 1× penicil-
lin/streptomycin, 2 mM L-glutamine (#25030081; Thermo
Fisher Scientific), dibutyryl cAMP (#D0627; Sigma-Aldrich),
10 μM DAPT (#2634; Tocris), 250 μM ascorbic acid (#A4034;
Sigma-Aldrich), 10 ng/ml glial cell line–derived neurotrophic
factor, and 10 ng/ml brain-derived neurotrophic factor. We
added 10 μM Y-27632 at replating. The medium was replaced
every 5 days until day 30, when the hindbrain neurons were
used for experiments.

Virus propagation
The SARS-CoV-2 NYC isolate was obtained from the saliva of a
deidentified patient on July 28, 2020. The sequence of the virus
is publicly available (GenBank OM345241). The virus isolate was
initially amplified in Caco-2 cells (passage 1, or P#1 stock). For
the generation of P#2 and P#3 working stocks, Caco-2 cells were
infected with the P#1 and P#2 viruses, respectively, at a MOI of
0.05 plaque-forming units (PFU)/cell and incubated for 6 and 7
days, respectively, at 37°C. The virus-containing supernatant
was then harvested, clarified by centrifugation (3,000 × g for
10 min), and filtered through a disposable vacuum filter system
with 0.22 mm pores. The P#3 stock used in this study had a titer
of 3.4 × 106 PFU/ml, as determined on Vero E6 cells with a 1%
methylcellulose overlay, as previously described (Mendoza
et al., 2020).

Quantification of SARS-CoV-2 infection
Hindbrain neuron progenitors were used to seed 96-well plates
at a density of 1.5 × 105 cells/cm2 and were differentiated into
dorsal hindbrain neurons. After 4 wk in culture, the neurons
were left untreated or were treated with IFN-β (1,000 IU/ml) for
18 h and were then infected with SARS-CoV-2 for 24, 48, 72, and
96 h. The cells were fixed with 10% neutral-buffered formalin
and stained for SARS-CoV-2 nucleocapsid (#GTX135357; Gene-
Tex) and neuron-specific cytoskeletal protein microtubule-
associated protein 2 (MAP2, Ab11267; Abcam). Alexa Fluor
647– and Alexa Fluor 488–conjugated secondary antibodies
(Invitrogen), respectively, were used for counterstaining. Plates
were imaged with the ImageXpress micro XL High-Content
Screening System, and data were analyzed with MetaXpress
(Molecular Devices).

Statistical analysis
The data for hindbrain neuron infection with SARS-CoV-2 were
obtained from three biological replicates in three independent
experiments. For each biological replicate, three technical rep-
licates were performed and averaged for downstream analyses.
Statistical analysis was performed with Kruskal–Wallis tests
with Dunn’s correction, and the results are indicated in the
corresponding figures and legends (ns, not significant; *P < 0.05;
**P < 0.01; ***P < 0.001).

Online supplemental material
Fig. S1 shows detailed VirScan, DBR1 Sanger sequencing, and
levels of circulating type I and II IFNs of P1, his family members,
and healthy controls enrolled in the study. Fig. S2 shows the
characterization of hPSC-derived hindbrain neurons. Fig. S3
shows the evaluation of SARS-CoV-2 infection in hPSC-derived
hindbrain neurons. Table S1 shows the homozygous or com-
pound heterozygous rare nonsynonymous or essential splicing
variants found in P1’s WGS data. Table S2 shows the viral PCR
and viral antibody serological results of P1. Table S3 shows the
leukocyte immunological functional tests for the patient. Table
S4 shows the viral serological data from P1 and the family
members of the patient.

Data availability
All data supporting the findings of this study are available in the
published article and its online supplemental material or avail-
able from corresponding authors upon reasonable request in
accordance with local regulations and ethical approvals related
to studies of human subjects. The raw RNA sequencing (RNA-
seq) data generated from this study are deposited in the NCBI
database under the NCBI-SRA project PRJNA1123312.
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Supplemental material

Figure S1. Homozygosity for the I120T DBR1 variant in a child with isolated SCV-2 BVE. (A) VirScan test for antibodies against a wide range of viruses in
the serum of P1, his siblings, and their parents. Hierarchically clustered (Pearson) heatmap showing PhIP-Seq antibody enrichment (z-score relative to mock
immunoprecipitation [IP]) for each of the 30 viruses detected in at least one member of the family. All values are the means of technical duplicates.
(B) Electropherogram showing the DBR1 gDNA sequence surrounding the I120T mutation, in P1 and his older siblings (S1 [born 2000], S2 [born 2002], and S3
[born 2004]). (C) IFN-α, -β, and -γ levels in the plasma of various members of the family and 30 other healthy controls, as measured by SIMOA digital ELISA.
Statistical analysis was conducted with Mann–Whitney U tests. ns: not significant.
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Figure S2. Characterization of hPSC-derived hindbrain neurons. (A and B) Abundance of mRNA for the neuronal markers GABAR1, TUBB2B, and SLC17A7
(A), and for the hindbrain neuron–specific markers GBX2, HOXA2, HOXB2, and HOXB4 (B), as assessed by RNAseq, in hPSC-derived hindbrain neurons derived
from a healthy control (H9), a DBR1 I120T/I120T patient, an IFNAR1−/− patient, and a TLR3−/− patient. SV40-fibroblasts from a healthy control (C1), a DBR1
I120T/I120T patient, an IFNAR1−/− patient, and a TLR3−/− patient were included as negative controls for the detection of these neuron-specific markers.
Triplicates were studied for each sample in A and B.
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Figure S3. SARS-CoV-2 infection in hPSC-derived hindbrain neurons with and without IFN-β pretreatment. (A) Representative immunofluorescence
images of hPSC-derived hindbrain neurons infected with SARS-CoV-2 (MOI 10) at 72 hpi, for a healthy control (H9), a previously reported patient with the DBR1
mutation (DBR1 I120T/I120T), and patients with complete TLR3 (TLR3−/−) or IFNAR1 (IFNAR1−/−) deficiency. Cells were stained with antibodies against the
SARS-CoV-2 nucleocapsid protein (N, red) and a neuron-specific microtubule-associated protein 2 (MAP2, green). A/T-rich chromosomal DNA was stained with
DAPI (blue). Bar: 150 µm. Data shown are representative of three independent experiments. (B) Quantification of the SARS-CoV-2 nucleocapsid (N2) (upper
panel) and the RNA-dependent RNA polymerase (RdRp) (lower panel) by TaqMan real-time qPCR, at 2, 24, 48, 72, and 96 h after SARS-CoV-2 infection (MOI 1).
Data are presented as the mean ± SEM and are representative of two independent experiments with biological triplicates in each experiment. (C) Heatmaps of
RNAseq-quantified gene expression (z-score-scaled DESeq2 vst-normalization) in hPSC-derived hindbrain neurons from a healthy control (H9), a previously
reported patient with the DBR1mutation (DBR1 I120T/I120T), an IFNAR1−/− patient, and a TLR3−/− H patient, not stimulated (NS) or stimulated with IFN-β for
8 h. Duplicates were studied for each set of conditions and mean gene expression levels were used for subsequent analyses. The heatmap includes genes with
a relative fold-change in expression >2 in response to IFN-β treatment relative to NS samples in the control group.
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Provided online are Table S1, Table S2, Table S3, and Table S4. Table S1 shows homozygous or compound heterozygous rare
nonsynonymous or essential-splicing variants found in the patient’s WGS data. Table S2 shows viral PCR and antibody studies for
the patient. Table S3 shows leukocyte immunological functional tests for the patient. Table S4 shows viral serological data from the
family members.
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