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1. INTRODUCTION

During the last few years, computing systems have become more and
more complex and, in many cases, are composed of several, almost
independent, units working in a parallel mode. This characterization
seems to be clear for distributed computer systems as well as for the
Centralized systems. Today, "cne" computer is composed by several CPU's,
memories, I/0 processors, pieces of software, and each of these units are
almost independent. zSeveral computer networks, connecting tens of computers
and serving a wide range cf users, have been developed and operating. This
movement through the complexity of the computing systems will, probably,
continue in the future [FALK],
With the increased number of elements that compose computer systems,
the probability of failure of at least one of these elements is relatively
high. In this case, it is important to protect the remaining elements.
-Thet means it is necessary to organize the systems so that if parts of its
elements are malfunctioning, the rest of the elements will continue to work
correctly. In this case, the total performance of the system can be reduced
by a failure, but one or a few elements may not cause the entire system to
collapse. This philosophy is called the "best-effort" [FARB, METC].

\ To deal with the complexity of the systems, the concept of "process®
was introduced [DENNIS,SALT,HORN,DENNING and many others]. To study the
properties of processes, several models were proposed [PETRI, ESTR, KARP, .

GOST, CERF, POSTEL, LARSON, GOST1]. But, a great amount of obscurity covers

part of this concept. Many properties of processes are not undersiood to
date. h




The concept of failure recoverable processes and failure immune
processes have almost not been theoretically studied. Without a better
understanding of these two concepts, it is unlikely to expect a good
implementation of the “best-effort" phiiosophy in éomplex systems that will
be designed in the near future.

This manuscript proposes an approach to the study of failure recoverable
processes and for the analysis of the possible sequences of events that
happens when a failure occurs. This approach is based on a model of
processes behavior in which the concept of a failure is introduced. Section 2
describes the model and points out the necessary and sufficient conditions for
the recoverability of a process if a given failure occurs. Section 2 also
describes the case of ruitiple failures and an algorithm for the anaIysfs
of multifailures of the same kind is given. The algorithm can be extended

for the general case of multiple failures. Section 3 discusses recoverability

in a system of interacting processas.
¢. THE MODEL
The proposed mode?! is based on a variation of Petri nets.

2.1. PETRI NETS

Petri nets were developed by Carl Adam Petri and further elaborated
by Anatol Holt [HOLT]. Petri nets model conditions represented by nodes

ard events represented by transition bars. The holding of a condition

is represented by placing a token on that node. Directed arcs connect nodes

to bars and bars to nodes. A transition bar (event) can fire (occur) if ail
the nodes (conditions) input to that transition bar (events) have tokens
(hold). When a transition bar fires it removes one token from each input

node and places one token on each output arc.




Figure 1 shows, as an example of Petri net use, the model of a simple
orotocel, P3, connecting between processes P1 and P2. Note that protocols
are a special kind of processes [GOST1]. In this protocol, when P1 is ready to
send a message (A holds a token) fl1 fires. Then a message is sent (M holds
a token) and the sender enter in the state of waiting for the acknowledge
(W holds a token). When P2 is ready to receive the message (B holds a token)
fé will be fired. C holds a token (the message is received). In this
position ¥4 can fire and the token of C pass to E and to K. A token on E is
the notification to P2 that the message was received, and the token in K
represents that the acknowledge is sent. Now f3 can fire removing the token
from W and K and putting a token on D. The token on D represents the notification
to P1 that the transfer was finished. P1 can remove the token from D, and
trigger again the process P3 by putting a token on A. In the other side,
P2 can remove the token from E and to start his part in the protocol by putting
’a token in B.

The state of the Petri net is defined by the set of nodes holding tokens.

A1l the possible states in which a Petri net can stay and the possible

transitions between them define a state machine called Token Machine (TH).

The TM for the net of figure 1 is shown in figure 2, assuming initial condition
AB.

The description above is correct only if all the components of the
protecol P3 work prOperly: But, what happens'if the message M is lost?
What is the behavior of P1 and P2 under this failure? With the tools
developed to date we can not answer this question in general. In the next

section we will develop new tools for a better understanding of these questions.




Figure 1: Petri-net representation of processes




2.2 THE REPRLSENTATION OF POSSIBLE FAILURE

Suppose that a cendition in a Petri net may fail. In this- case,

1 token held by this condition may di

this char

gaisappear. It is possible to represent

acteristic by adding a new branch to the TM. This branch will

epresent the possible flow of the execution when the “problematic® token

lisappears. For illustration, Suppose that the message M in figure 1 can be

ost. It means that when M holds a token, this token can disappear. This

ituation can be répresented by adding an arc from state WMB (figure 2)

0 a new state WB. Since in state WB no bars can fire, WB is a final state.

his new TM is shown in figure 3; thick lines represent the TM in the case

hat no failures occur, and thin lines describe the paths added since a failure.

N the arc connecting these two parts,

we write the name of the failing
ondition (M in the‘exampie).

The same representation will be used in the

2llowing TM's figures in this work. This new machine, including the TM and

e added paths for possible errors, will be called

» in general, ERROR TOKEN
\CHINE (ETH).

In the ETM, we call its states that exi

st also in the TM “LEGAL STATESvY,
le other states are called "ILLEGAL STATES™,

Note that a process may be
I an "illegal state" only if a failure has occured.,

From Figure 3, we can conclude that the process represented in figure 1

not recoverable from a failure in M, because under such failure the execution

quence arrive at a state (WB) where there is no way to return to normal
ecution (a legal state).

Note that in general, the ETM for a possible failure include all the

ssible paths in which the executton can flow if th?S failure occurs. It means,

is necessary to add to the TM new branches ex1t1ng from all the states that
clude the possible faulting condition.




Figure 2: Token Machine for Petri-net of Figure 1




Figure 3: ETM for Figure 2 under a failure in M




At this point, we can state the conditions for recovery:
"A process P is recoverable from failure F if and only if in

the ETH of P for failure F, all the directed paths through illegal
states arrive to legal states.*
It means, after a failure, the execution sequence must return to normal
execution after a finite number of steps.

From the properties of directed graphs, we can derive an
equivalent set of conditions:

"A process P is recoverable from failure F if and only if in the

ETH of P for failure F:

1. The number of illegal states is finite.

2. There are no final illegal states.

3. There are no directed loops including only illegal states.”

In the previous discussion we deal only with the case that a token may
disappear. But in the same way, because of a fault, a node in a Petri net may
generate a token. This situation may also be represented by adding new branches

to the correspondent nodes in the TM. The approach is similar to the previous

case. In the following sections, we deal only with the first kind of failures.
2.3 MULTIPLE FAILURES

In this section the previous approach is extended to the case that

several failures can occur. This extention is introduced by the two

following examples.
2.3.1 EXAMPLE -

Figure 4 describes a variation of the protocol shown in figure 1. Assume
(for simplicity) that arc T can be activated only after "a long time*. This
assumption is not mathematicaly represented in our model and we leave this

point to further exploration in the future.
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Figure 4: Petri Net of example 2.3.1




Figure 5 shows the ETM for this protocol (assuming initial condition AB)
for the case that M may fail, The ETM of figure 5 shows that in spite of the
failure in M the execution sequance {in the case of failure) return to a
legal state (DE), It means, the protocol described in figure 4 is recoverable
from one faiiure in M.

Suppose now, that a second failure may occur in M. In this case, a
new branch will pe added, but now to the node LMB (figure 5). This procedure
can be applied again for a given number of possible failures. MNote that this
procedure is suitable not only for the case of multiple failures in one condition,
1t can be applied in general when several conditions may fail.

Figure 6 shows the ETM for the process of figure 4 in the case that
three failures in M may occur, in this ETM we can see that the process is

recoverable from one or two failures but not for the third. Paths 1 and 2
return to a legal state, but not path 3,

2.3.2 EXAMPLE

ecoverable,

Suppose now, that two faults may occur in M. In this case, the sequence in

1€ ETM of figure 8 will be:

AB > WMB -+ WB » AB > WMB + WB - AB (1)
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Figure 5: EMT of example 2.3.1
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Figure 7: Petri-net of example 2.3.2
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Figure 8: ETM of example 2.3.2
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It means, for one or two failures, the machine executes the same sequence

around the loop:

WB + AB - WMB (2)
P’W/

The result is similar for more than two errors in M. Loop (2) will be
executed as many times as a failure in M may occur. But always, the execution

sequence will return to a legal state. It means, this protocol is recoverable
from any number of failures in M.

2.3.3 TEST FOR RECOVERY UNDER MULTIPLE FAILURES OF THE SAME KIND

Define the set €1 of conditions such that:

L]

1. The number of illegal states is finite,
2. Tnere are no final illegal states,
3. There are no directed loops including only illegal states.
- Mgorithm: (suppose P is a process and F a possible failure.)
(1) ETMI ~ TM; name the nodes of ETM1 "new rodes".
(2) 1<«0.
(3) add to the "new nodes" of ETM! branches for the case that F fail;
. name this new graph ETM; name only, the added nodes 'new nodes".
(4) if ETM=ETM1 (end; P is recoverable from any number of failures F).
(5} if C1 (I « I+1; ETMI « ETM: go to (3)).
(6) end; P is recoverable from up to I failures in F
This algorithm has several interesting properties:
1. The trivial case is when after the first execution of (3) there is a
directed loop including legal and illegal necdes, and F is not included
in the illegals. In this case, in the second execution of (3) win

be no change in ETM, so that (4) holds and the alqorithm terminates.

Figure 7 and 8 (section 2.3.2) shows an example of this simple case.

2. The algorithm may not terminate.
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3. "Recovery from any number of failures F" includes the case that
after the occurrence of certain numbers of failures F the control
continues executing a sequence of legal states that do not include

the condition F. In this case the failure F cannot occur more.

So that, “recoverable from any number of failures F" means, in
general, that faults in F can not inhibit the process to return
to normal execution.

2.4 DISCUSSION

In the previous sections, a method has been developed for checking if

a process is recoverable from a given possible failure. The fact that all

the exampies that introduce the methad are related to protocols does not

restrict its generality. A1l the methods presented and all the characteristics

described in this manuscript apply to proéesses in general,

In section 2.3 the method has been extended for the case that several

failures of the same kind can occur., In:isection 2.3.3 an algorithm is

presented, This algorithm tests the behavior of a process under any
number of occurrences of a given failure, especially from the point of view

of recoverability. This approach can be generalized to study the case of any
number of occurrences of several distrinct'fai1ures.

The presented method allews one not only to know if a process is

recoverabie under failures, but also to know what are the possible sequences éf
events under those failures. As shown in the following section, this knowledge
is important for the study of the fnteraction between processes in the case
of failures.

| In the next section, the behavier of processes and failures is analyzed
in a more complex environment of processes relations. The tools developed in

this section will be used.




-17 -

3. FAILURES IN INTERACTING PROCESSES

In real systems, usually the relations between the processes is much more
complex than the presented in the previous section. In general, processes are
interpreted (or executed) by processors (real or virtual). These processors
are alsc processes interpreted by processors of a lower level; and so on. It
.-means, processes are organized in an hierarchical structure of layers. In the
examples of section 2, only one level of this structure is represented. Figure 7,
for example, describes in general the mechanism that process P9 uses to transfer
the message M from process P7 to process P8. The message is represented as a
closed unit (a token in M) and no reference is made about its content. The
handling of this content (the encoded data) is a higher level in the structure
of the processes. The lower level proces§ {figure 7} executes the higher level

process, it transfers the encoded data from P7 to PS.

In general, there exists interactions between processes at different levels,
‘as well as processes at the same level. In this structure of layers'and
interactions, what are the effects of a failure in one {or more) process to
the behavior of other processes? A partial answer to this question is given
in this section.

A simplified version of the approach proposed by Gostelow-van Weert [GOST1)
is used as a basis for the modeling of the processes’ layers. In this approach,
processes are encoded in its processors (by means of nodes and tokens) and the
processor is in charge of the execution of the enceded process.

The proposed method for the study of recoverability is introduced by the
twe following examples.

3.1 EXAMPLE

Suppose that a condition of a process is encoded in its processor as a pair

of nodes. Figure 9(a) shows the condition I when it is true (a token is in I)
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aﬁd figure 9(b) shows I when it is false {a token is in 1).

In figure 10, four interconnected processes are described. Processes P12
and P13 represent a protocol cornecting between P10 and P11, This system is
a variaticn of the System shown in figure 7. 1In figure 10, P13 is the encoding
of certain leveis of details of the content of the message. S is the encoding
of a condition or property of the message (say checksum, Parity or other), s
Is transmitted by P12 to S1 under control of R and C (Rand C represent the node
C of figure 7). Note the difference between M that represents the message

and S or S1 that represents a condition of the content of the message.

In this particular example, S has to be always true (for example, the
checksum has to be always true). If s is true G will receive 2 token and the
acknowledge is sent (K). If St is false ibecause of a fajlure in the transmission)
G receives a token and the system will wait for retransmission. Note that S has
to be set to "trye® (by P10) before the message is sent.

. Figure 11 describes the ETM of this system (assuming initial conditions ABS)
when a failure May occur in M (a token is Tost} or in the condition $1 ($1 receives
a token instead of S1). The £TM shows that the system is recoverable from any

number of failures inMor in S}, If one of these faijures occur, the systenm

returns to the initial state and a retransmission will take place.
3.2 EXAMPLE

In this section, the previous example is generalized. Figure 12 shows an
extension of the system described in figure 10 and figure 15 shows a Schematic
diagram of the processes and jts sharing areas, In this example, the transmitted
data is represented by a vector ¢f corditions {1 in the sender and J in the
"eceiver). Fach element of the vector may represent a data item (a bit) or
I condition that the message has to fit (for example true checksum). The
‘condition checker" in figure 12 represnts a Petri net; its function is to

.est the conditions Jd and to transfer the result (by a token in G or G) to P12.

b
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Figure 9(a): enceding of Figure 9(b): encoding of the binary
binary variable 1="§" variable I="Q"




Figure 10.

Petri-net of examplie 3.1




.21 -

T Is ACTIVATED

Figure 11: ETM of example 3.1
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he “"condition checker" can evaluate any binary function of thg variables J.
his function may be unchangeable {if the "condition checker” is a low level
wocess) or Qariab?e (if the “"condition checker" is encoded in a low level
rocessor and this processor is enabled to change the encoding). As an example
»f unchangeable function, the condition checker can be designed to test the
arity of the vector J. A variable function is when another process decides

that test the condition checker will execute and changes the encoding appropriately.

Figure 13 shows a symbolic representation of the ETM of the system for the

ase when an error may occur in M or in the received conditions J. This is

symbolic representation because the complete ETH has different branches for
ach different value of the vector 1. It means, the ETM of figure 13 is a
unction of 1. In the same way, there has to be different branches for different
rrors in J; but the effects of all the errors are functionally similar so that
‘& choose to represent the failures of J in general, as a vector J*,

© Note that the transition from state anl.to wc"gg_is not effected in cne

.tep. Furthermore, there are several paths in which this transition can take
face; the different paths are dependent in the order that the tokens from I
irrive to J.  This characteristic is represented in figure 13 by a star marking
his transition as a "module”. Im figure 13 there are other modular
ransitions, for example, the transition from utﬂlg_ta NC”G;_that represents
he execution of the "condition checker”. .

The modularity introduced with the division of the system into its
wrocesses, as well as the use of modular transitions in the £TM, and the symbolic
‘epresentation of variables (I,J and J*) of the higher level simplify the
inderstanding of the system behavior,

Figure 13 shows that the system is reca#erab]e from failures in M and in J.
inder these faflures, the system returns to its initial condition and starts its

speration again,
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Figure 13;

ETM of example 3.2
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Figure 14 shows the ETH for process P13 for the case that a failure in

J may occur. Process P13 is not recoverable from these failures.

In this example, there exists a very interesting interacticon between the

processes, A failure in a not recoverable precess (P13) is not spread to the

other processes in the system. The failure is detected by the condition checker
and the control process P12 is notified. P12 is in charge of the recovery of
the system in case of failure. The result is a recoverab?e system as shown
in the ETM of figure 13.

This example shows a way of analyzing a system of processes in case of
possible failures, and points out that in a well structured system, the system

can defend itself against failures in part of its processes.




Figure 14: ETM of process P13
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Figure 15: Diagram of processes in example 3.2
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