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ABSTRACT OF THE DISSERTATION

Meditations on Econometric Modeling

by

Manvendu Navjeevan

Doctor of Philosophy in Economics

University of California, Los Angeles, 2024

Professor Denis Nikolaye Chetverikov, Chair

The contents of this dissertation are split into three chapters, each of which covers a distinct

problem in econometrics.

The first chapter considers the problem of hypothesis testing in a weakly identified instrumental

variables models with a potentially large number of instrumental variables. Instrumental

variables strategies, where a causal effect is identified by exploiting exogenous variation in

the explanatory variable induced by changes in instrumental variables, are one of the most

common quasi-experimental research designs used in economics. In recent years, there has

been interest in using a large number of instruments in combination with some regularized

method, such as LASSO, in order to flexibly model the relationship between the instrumental

and explanatory variable. However, in these setting there has been little work on testing

hypotheses about the structural parameter when this first-stage relationship is weak. In this

chapter I propose a new test for the structural parameter in a instrumental variables models

that has correct asymptotic size even when the number of instruments is potentially much

larger than the sample size and identification is arbitrarily weak. The limiting distribution of

the test statistic is derived through a novel direct Gaussian approximation argument and is

combined with the sup-score test of Belloni et al. (2012a) in order to improve power against

certain alternatives. In both empirical data and simulation study the proposed methods are

shown to have favorable size control and power properties compared to existing methods.
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In the second chapter, coauthored with Adam Baybutt, we consider inference on the condi-

tional average treatment effect (CATE) under first stage model misspecification. Plausible

identification of CATEs can rely on controlling for a large number of variables to account for

confounding factors. In these high-dimensional settings, estimation of the CATE requires

estimating first-stage models whose consistency relies on correctly specifying their parametric

forms. While doubly-robust estimators of the CATE exist, inference procedures based on the

second stage CATE estimator are not doubly robust. Using the popular augmented inverse

propensity weighting signal, we propose an estimator for the CATE whose resulting Wald-

type confidence intervals are doubly robust. We assume a logistic model for the propensity

score and a linear model for the outcome regression, and estimate the parameters of these

models using an ℓ1 (Lasso) penalty to address the high dimensional covariates. Our proposed

estimator remains consistent at the nonparametric rate and our proposed pointwise and

uniform confidence intervals remain asymptotically valid even if one of the logistic propensity

score or linear outcome regression models are misspecified.

The final chapter, coauthored with Prof. Rodrigo Pinto, investigates the relationship among

monotonicity conditions in IV models with multiple choices and categorical instruments.

The comparison between monotonicity conditions of ordered and unordered choice models is

central to our analysis. We show that these seemingly unrelated conditions exhibit non-trivial

symmetries that can be traced back to a weaker condition called Minimal Monotonicity. This

novel condition captures an essential property for identifying causal parameters while being

necessary for ascribing causal interpretation to Two-Stage Least Squares (2SLS) estimands.

We show that minimal monotonicity naturally arises from a notion of rationality in revealed

preference analysis. The condition enables to describe non-standard choice behaviors and

serves as a building block for a wide range of economically-justified monotonicity conditions

that do not fit the narrative dictated by either ordered or unordered choice models.

iii



The dissertation of Manvendu Navjeevan is approved.

Rodrigo Ribeiro Antunes Pinto

Zhipeng Liao

Andres Santos

Denis Nikolaye Chetverikov, Committee Chair

University of California, Los Angeles

2024

iv



To my lovely mother, whom I am always laughing with, my dedicated father, who has cared

for me in a thousand ways, and my sister who has permanently brightened my life.

v



Contents

1 An Identification-and Dimensionality-Robust Test for Instrumental Vari-

ables Models 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Prior Literature and Empirical Practice . . . . . . . . . . . . . . . . . . . . . 7

1.3 Model and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Test Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Single Endogeneous Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Interpolation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.2 Limiting Behavior of Test Statistic . . . . . . . . . . . . . . . . . . . 23

1.5 Improving Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5.1 Local Power Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5.2 A Simple Combination Test . . . . . . . . . . . . . . . . . . . . . . . 30

1.6 Multiple Endogenous Variables . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.6.1 Modified Interpolation Approach . . . . . . . . . . . . . . . . . . . . 35

1.6.2 Limiting Behavior of Test Statistic . . . . . . . . . . . . . . . . . . . 38

1.6.3 Improving Power against Certain Alternatives . . . . . . . . . . . . . 40

1.7 Empirical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.8 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1.10 Appendix: Proofs of Main Results . . . . . . . . . . . . . . . . . . . . . . . . 58

1.10.1 Proofs of Results in Section 1.4 . . . . . . . . . . . . . . . . . . . . . 58

vi



1.10.2 Proofs of Results in Section 1.5 . . . . . . . . . . . . . . . . . . . . . 77

1.10.3 Proofs of Results in Section 1.6 . . . . . . . . . . . . . . . . . . . . . 79

1.10.4 Joint Gaussian Approximation of JK(β0) and C . . . . . . . . . . . . 81

1.10.5 Relevant Moment Bounds . . . . . . . . . . . . . . . . . . . . . . . . 91

1.10.6 Technical Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

1.10.7 Assorted Results from Literature . . . . . . . . . . . . . . . . . . . . 107

1.11 Appendix: Incorporating Exogenous Controls . . . . . . . . . . . . . . . . . 110

1.12 Appendix: Additional Tables from Simulation Study . . . . . . . . . . . . . 115

2 Doubly-Robust Inference for Conditional Average Treatment Effects with

High-Dimensional Controls 118

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

2.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

2.2.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

2.2.2 Estimator and Inference Procedure . . . . . . . . . . . . . . . . . . . 126

2.2.3 Penalty Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . 128

2.3 Theory Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

2.3.1 Uniform First-Stage Convergence . . . . . . . . . . . . . . . . . . . . 130

2.3.2 Managing First-Stage Bias . . . . . . . . . . . . . . . . . . . . . . . . 133

2.4 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

2.4.1 Pointwise Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

2.4.2 Uniform Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

2.4.3 Matrix Estimation and Uniform Inference . . . . . . . . . . . . . . . 141

2.5 Estimation of the Conditional Average Treatment Effect . . . . . . . . . . . 143

2.6 Empirical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

2.6.1 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

2.7 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

2.7.1 Simulation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

vii



2.7.2 Estimators and Implementation . . . . . . . . . . . . . . . . . . . . . 152

2.7.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

2.9 Appendix: Proofs for Results in Main Text . . . . . . . . . . . . . . . . . . . 156

2.9.1 Proofs for Main First Stage Results . . . . . . . . . . . . . . . . . . . 156

2.9.2 Proofs of Main Second Stage Results . . . . . . . . . . . . . . . . . . 162

2.9.3 Supporting Lemmas for First Stage . . . . . . . . . . . . . . . . . . . 172

2.9.4 Supporting High Dimensional Probability Results . . . . . . . . . . . 191

2.10 Appendix: Additional Second Stage Results . . . . . . . . . . . . . . . . . . 197

2.10.1 Concentration and Tail Bounds . . . . . . . . . . . . . . . . . . . . . 207

2.11 Appendix: Additional Details on Empirical Application . . . . . . . . . . . . 209

2.12 Appendix: Consistency between First Stage and Second Stage Assumptions . 211

2.12.1 Alternate Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

2.13 Appendix: Alternative CV-Type Method for Penalty Parameter Selection . . 214

2.13.1 Theory Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

2.13.2 Practical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 216

3 Ordered, Unordered, and Minimal Monotonicity 218

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

3.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

3.4 Ordered and Unordered Monotonicity . . . . . . . . . . . . . . . . . . . . . . 228

3.4.1 Expressing Monotonicities as Sequences of Counterfactual Choices . . 230

3.4.2 Characterizations of Unordered and Ordered Monotonicity . . . . . . 232

3.5 The Minimal Monotonicity Condition . . . . . . . . . . . . . . . . . . . . . . 236

3.5.1 Interpretable Causal Parameters . . . . . . . . . . . . . . . . . . . . . 238

3.5.2 Equivalence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

3.5.3 Relationship Between Monotonicity Criterion . . . . . . . . . . . . . 240

viii



3.6 An Economic Interpretation for Monotonicity Conditions . . . . . . . . . . . 243

3.7 Economic Examples of Monotonicity Conditions . . . . . . . . . . . . . . . . 246

3.7.1 A Case of Choice Incentives that Justify Unordered Monotonicity . . 246

3.7.2 A Case of Choice Incentives that Justify Ordered Monotonicity . . . . 250

3.7.3 Beyond Ordered or Unordered Monotonicity . . . . . . . . . . . . . . 251

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

3.9 Appendix: Proofs of Main Results . . . . . . . . . . . . . . . . . . . . . . . . 259

3.9.1 Lonesum Matrix Characterizations . . . . . . . . . . . . . . . . . . . 259

3.9.2 Proofs of Results in Section 3.4 . . . . . . . . . . . . . . . . . . . . . 263

3.9.3 Proofs of Results in Section 3.5 . . . . . . . . . . . . . . . . . . . . . 267

3.9.4 Proof of Theorem 3.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 271

3.9.5 Proof of Results in Section 3.6 . . . . . . . . . . . . . . . . . . . . . . 271

3.10 Appendix: 2SLS Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

3.10.1 Interpretation of 2SLS under Ordered and Unordered Monotonicity . 272

3.10.2 General Unique Decomposition . . . . . . . . . . . . . . . . . . . . . 273

3.11 Appendix: Ordered vs. Unordered Example . . . . . . . . . . . . . . . . . . 274

3.12 Appendix: Additional Information Regarding the Examples of Section 3.7 . . 277

3.12.1 Verifying Unordered Monotonicity . . . . . . . . . . . . . . . . . . . . 277

3.12.2 A Case of Choice Incentives for Ordered Monotonicity . . . . . . . . 278

3.12.3 MM under the Double Randomization Design . . . . . . . . . . . . . 281

3.12.4 MM under the Extensive Margin Compliers Only (EMCO) Design . . 282

3.12.5 MM under Orthogonal Array Design . . . . . . . . . . . . . . . . . . 284

ix



List of Figures

1.7.1 First Stage F-Statistic Experiment . . . . . . . . . . . . . . . . . . . . . . . 45

1.7.2 LASSO Selected First Stage F-Statistic in Data . . . . . . . . . . . . . . . . 46

1.8.1 Local Power Curves with 65 Instruments . . . . . . . . . . . . . . . . . . . . 53

1.8.2 Local Power Curves with 75 Instruments . . . . . . . . . . . . . . . . . . . . 56

2.6.1 Estimated CATE with 3 knots . . . . . . . . . . . . . . . . . . . . . . . . . . 147

2.6.2 Estimated CATE with 5 knots . . . . . . . . . . . . . . . . . . . . . . . . . . 149

2.6.3 Estimated CATE with First Degree splines . . . . . . . . . . . . . . . . . . . 150

List of Tables

1.2.1 Existing Robust Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7.1 Confidence Intervals based on Initial Instrument Set . . . . . . . . . . . . . 48

1.7.2 Confidence Intervals based on Restricted Instrument Set . . . . . . . . . . 49

1.7.3 Confidence Intervals based on Expanded Instrument Set . . . . . . . . . . 49

1.8.1 Simulated Size of Tests under Weak Identification . . . . . . . . . . . . . . 51

1.8.2 Simulated Size of Tests under Strong Identification . . . . . . . . . . . . . 52

1.12.1 Expanded Weak Identification Simulations . . . . . . . . . . . . . . . . . . 116

1.12.2 Expanded Strong Identification Simulations . . . . . . . . . . . . . . . . . 117

x



2.6.1 Smoothed Model Assisted ATE Estimates . . . . . . . . . . . . . . . . . . 148

2.7.1 Simulation study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

2.11.1 Summary of Data used in Emprical Exercise . . . . . . . . . . . . . . . . . 210

3.7.1 Applying Choice Rule (3.6.2) to Ti(z1) = t1 and Incentive Matrix (3.7.1) . 248

3.7.2 Choice Restrictions generated by Incentive Matrix (3.7.1) . . . . . . . . . . 249

3.12.1 Choice Restrictions generated by Incentive Matrix (3.12.1) . . . . . . . . . 280

3.12.2 Choice Restrictions generated by Incentive Matrix (3.7.4) . . . . . . . . . . 282

3.12.3 Choice Restrictions generated by Incentive Matrix (3.12.5) . . . . . . . . . 283

3.12.4 Choice Restrictions generated by Incentive Matrix (3.7.10) . . . . . . . . . 285

xi



ACKNOWLEDGMENTS

I would first like to thank my committe chair, Denis Chetverikov, for his guidance and insight

throughout my years at UCLA. While there were many times I entered his office discouraged

and confused, I always exited optimistic and with a more fundamental understanding of

econometrics. It is my sincere hope that I am half as helpful to students in the future. I

am thankful to Andres Santos for always making time for my questions and encouraging

me to think deeper about a problem. Even when I had not accomplished much, Andres

always made my thinking seem valuable. I am grateful to Rodrigo Pinto for his support

and friendship during the Ph.D and to Zhipeng Liao for his acuity and approachability. I

am thankful to my fellow econometric cohort mate, Danny Ober-Reynolds, for always being

willing to help when I would get stuck. Most broadly, I am grateful to everyone involved in

econometric theory during my time at UCLA. I have found it a very welcoming and exciting

place to be over the last six years.

I am grateful for every one of my twenty-five fellow Ph.D cohort members, who have made

life in grad school better in innumerable ways. Calvin, who always believed in me, and

Daniel, with whom I shared many adventures in LA, made unbeatable roommates. Nicole,

Adam, and Danny were excellent running partners who accomodated my frequent tardiness.

Domenico and Akira were officemates who I was always excited to see for lunch.

I am grateful to my childhood friends, Andy Kidder and Arjun Venkatesh, whose support of

me in this endeavor, and all others, has meant the world.

xii



VITA

Education

University of California, Los Angeles

M.A. in Economics 2018-2020

Carnegie Mellon University

B.S. in Economics and Mathematical Sciences 2014-2018

Relevant Positions

University of California Los Angeles

Teaching Assistant 2019-2024

Summer Instructor 2020-2023

Fellowships, Honors, and Awards

Perfect Score (170) on Math GRE. 2017

Dissertation Year Fellowship, Graduate Division, UCLA. 2023

Best Proseminar in Econometrics Award, UCLA. 2023

xiii



Chapter 1

An Identification-and Dimensionality-Robust Test for

Instrumental Variables Models

1.1. Introduction

Consider a linear instrumental variables (IV) model

yi = x′
iβ + z′1iΓ + ϵi, E[ϵi|zi] = 0 (1.1.1)

where yi ∈ R is an outcome of interest and xi ∈ Rdx is a vector of endogenous variables that

may be correlated with the structural error ϵi ∈ R. The variable zi = (z1i, z2i)
′ ∈ Rdc × Rdz

represents a vector of instrumental variables, of which a subvector of fixed dimension,

z′1i ∈ Rdc , is included in the structural equation (1.1.1) as exogenous control. I assume

that the researcher has access to n independent observations of (yi, x
′
i, z

′
i)

′. In this setting,

I propose a new test for a two-sided restriction on the structural parameter; H0 : β = β0

versus H1 : β ̸= β0. The proposed test has exact asymptotic size even when instruments are

potentially high-dimensional (dz ≫ n) and arbitrarily weak.

When instruments are suspected to be weak, researchers may want to test hypotheses about
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structural parameters using testing procedures that are robust to identification strength.

These identification-robust testing procedures all require some conditions on the rate of

growth of the number of instruments, dz, in relation to the sample size, n. The testing

procedure considered in this paper seeks to fill two perceived gaps in the literature. The

first is for the cases where the number of instruments is high-dimensional (dz ≫ n), which

can occur if the researcher chooses to enhance an initial set of instruments via polynomial

or other transformations in order to flexibly model the first stage relationship between the

endogenous variables and the instruments.

In these settings, Belloni et al. (2012a) show that, when identification is strong, LASSO,

post-LASSO, or other machine learning based estimators can be used in the first stage without

affecting the asymptotic normality of resulting second stage estimators. This is possible

because the conditional moment restriction in (1.1.1) implies a certain orthogonality that,

under strong identification, allows the researcher to ignore estimation error in the first stage.

However, when identification is sufficiently weak, the signal from the instruments can be on

a similar or lesser order to the first-stage estimation error and the limiting behavior of the

first-stage estimate must be explicitly accounted for (Mikusheva, 2023). This is problematic in

high-dimensional settings as the exact limiting behavior of machine learning based estimators

is typically not known. As such, there has been limited work on identification robust testing in

the high dimensional setting and existing identification robust tests that allow dz ≫ n (Belloni

et al., 2012a; Gautier and Rose, 2021; Mikusheva, 2023) either fail to incorporate first-stage

information or rely on sample splitting, both of which may reduce power in overidentified

models.

An second gap in the literature is for cases with a moderate number of instruments. The

initial identification robust tests of Anderson and Rubin (1949), Staiger and Stock (1997),

Moreira (2001, 2003), and Kleibergen (2002, 2005) are shown by Andrews and Stock (2007)

to control size under heteroskedasticity when the number of instruments cubed is negligible

2



compared to sample size, d3z/n → 0. Meanwhile, recent tests proposed in Mikusheva and

Sun (2021), Crudu et al. (2021), Matsushita and Otsu (2022), and Lim et al. (2022) allow

the number of instruments to be proportional to sample size, dz/n → ϱ ∈ [0, 1), but require

that the number of instruments be large, dz → ∞. In practice, these conditions can be

difficult to interpret and in settings with a moderate number of instruments it may be unclear

which test, if any, is applicable. As examples, consider the analyses of Derenoncourt (2022),

where dz = 9 and n = 239, and Paravisini et al. (2014), where dz = 10 and n = 5, 995. The

number of instruments cubed is non-negligible relative to the sample size, but asymptotic

approximations based on dz → ∞ seem unlikely to resemble the finite sample distribution.

In contrast, the test considered in this paper can be applied in any of the settings described

above. To test the null hypothesis I borrow an idea from Kleibergen (2002, 2005) and

use first stage estimates that are uncorrelated with the structural error under the null

hypothesis. These first-stage estimates are constructed using a jackknife ridge procedure

and the structural errors are partialled out via an auxiliary conditional slope parameter.

Combining the jackknife and partialing out approaches allows me to asymptotically remove

dependence of the first-stage estimates not only from an observations own structural error but

also from the structural error of other observations. So long as this auxiliary parameter can

be consistently estimated, the proposed test statistic has a limiting chi-squared distribution

with degrees of freedom equal to the number of structural parameters. The conditional slope

parameter is simple to estimate with out-of-the-box methods, and consistency is achievable

under approximate sparsity even when the number of instruments is much larger than the

sample size. This approximate sparsity assumption is trivially satisfied when the first- and

second-stage errors are homoskedastic.

Kleibergen’s original analysis relies on applying central limit and continuous mapping theorems

to show that variables in the model can be treated as if they were normally distributed. The

limiting distribution of Kleibergen’s K-statistic is then derived by conditioning on the first

3



stage estimates, exploiting the fact that uncorrelated jointly Gaussian random variables are

independent. When the number of instruments is large, however, standard asymptotic theory

cannot be applied. Instead, I develop new interpolation arguments to directly show that,

in local neighborhoods of the null characterized by a local power index, the distribution of

my proposed test statistic can be uniformly approximated by that of an analog statistic

which replaces each observation in the expression of the test statistic with a Gaussian version.

The interpolation arguments are based on Lindeberg’s interpolation method (Lindeberg,

1922), but are modified to accommodate a “divide-by-zero” problem that arises under weak

identification. These modifications are adaptable to other settings and may be of independent

interest to a growing literature on direct Gaussian approximation techniques (Chatterjee,

2006; Chernozhukov et al., 2017; Celentano et al., 2020). Interestingly, the interpolation

approach applied in this paper requires minimal conditions on the first-stage estimates. In

particular, these estimates are not required to be consistent so the researcher has some

flexibility in choosing how she constructs the first stage estimates. However, analysis of local

power suggests a bias-variance trade-off which guides the recommendation of using ridge

regression in the first stage.

When there is a single endogenous variable, a leading case in empirical applications, analysis

of limiting behavior is considerably simplified by taking advantage of the particular form

of the test statistic. In this case I show that, under an additional regularity condition,

an infeasible version of the test that could be constructed if the auxiliary parameter was

known to the researcher is consistent whenever the local power index diverges. When the

local power index is bounded, I examine the limiting power of the test by examining the

behavior of the analog statistic. Under the alternative hypothesis the analog statistic has a

nearly non-central χ2 distribution conditional on the first-stage estimates. The noncentrality

parameter is proportional to the correlation between the true first-stage model and the

first-stage estimates, but inversely proportional to the second moment of the first-stage

estimates. Unfortunately, partialling out the structural error may introduce bias into the

4



first-stage estimates under the alternate hypothesis. Against certain alternatives this bias

can be particularly pronounced and erase the first-stage signal from the instruments. This

issue is pointed out by Moreira (2001), Andrews et al. (2006), and Andrews (2016) in the

context of Kleibergen’s original K-statistic.

To address this, I propose a simple combination of the jackknife K-statistic with the sup-score

statistic of Belloni et al. (2012a) based on a thresholding rule. As with the Anderson-Rubin

statistic, while the sup-score statistic does not incorporate first-stage information, it does

not suffer from a loss of power against any particular alternative (Andrews et al., 2006;

Andrews, 2016). The combination test decides whether the jackknife K-test or the sup-score

test should be run by comparing the value of a conditioning statistic to a predetermined

cutoff value. In the approximating Gaussian regime, this conditioning statistic is marginally

independent of both the jackknife K-statistic and the sup-score statistic. This allows me to

show that the combination test controls size under the null without having to require that the

conditioning statistic converges in distribution to a stable limit. In a simulation study, I find

that taking this cutoff value to be the 75th quantile of the distribution of the conditioning

statistic delivers a reasonable balance of power against local and distant alternatives. Using

results in Chernozhukov et al. (2017) and Belloni et al. (2018) this quantile can be simulated

via a multiplier bootstrap procedure.

When there are multiple endogenous variables, I cannot take advantage of the simplified form

of the test statistic. Instead, I use a more involved interpolation argument that relies on

strengthened moment conditions. This modified argument has a clean geometric interpretation

explained in Section 1.6. Under these strengthened conditions I derive the limiting chi-squared

distribution of the jackknife K-statistic in the larger context and propose a generalization of

the thresholding test to improve power properties.

I apply the proposed testing procedures to the data of Gilchrist and Sands (2016) to

generate weak instrument-robust confidence intervals for the effect of social spillovers in movie
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consumption. Following Belloni et al. (2012a), the authors’ initial analysis uses conventional

heteroskedasticity-robust standard errors after estimating the first-stage via post-LASSO.

The validity of this analysis depends on the structural parameter being strongly identified.

Using a simple numerical demonstration, I argue that the first-stage F-statistics reported by

the authors may not be reliable indicators of identification strength when LASSO is used to

select instruments. The identification-robust confidence intervals generated by inverting the

jackknife K-statistic are larger than those implied by the initial analysis but do not rule out

the authors’ point estimates. Moreover, for the author’s main specification the confidence

intervals obtained using my proposed testing procedures are considerably smaller than those

obtained through inverting the sup-score test.

Finally, I examine the applicability of the theoretical results in this paper through a simulation

study. While existing tests seem to face size distortions in alternate regimes, the test based

on the jackknife K-statistic is has nearly exact size in a variety of settings. While the

jackknife K-statistic may have diminished power against certain alternatives, this deficiency

is ameliorated by combining the jackknife K-statistic with the sup-score statistic via the

thresholding test. Compared to the many-instrument tests of Mikusheva and Sun (2021)

and Matsushita and Otsu (2022) and the sup-score test of Belloni et al. (2012a), the tests

proposed in this paper also appear to have favorable power properties, particularly when the

instruments are highly correlated.

The outline of this paper is as follows. Section 1.3 formally defines the model considered

and introduces the jackknife K-statistic. Section 1.4 provides an overview of the Gaussian

approximation approach with a single endogenous variable and characterizes the limiting

behavior of the test statistic in this setting. Section 1.5 uses this characterization to examine

the power properties of the test and introduces the combination test to address power

deficiencies against certain alternatives. Section 1.6 extends the analyses of Sections 1.4 and 1.5

to the case of multiple endogenous variables and outlines the Gaussian approximation argument
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in this setting. Section 1.7 contains the empirical application while Section 1.8 provides

evidence from simulation study. Proofs of the main results are deferred to Sections 1.10.1–

1.10.4.

Notation. For any n ∈ N let [n] denote the set {1, . . . , n}. I work with a sequence of

probability measures Pn on the data {(yi, xi, zi) : i ∈ [n]}. To accommodate independent

but not identically distributed observations, let En[fi] = n−1
∑n

i=1 fi denote the empirical

expectation and Ē[f ] = En[E[fi]] denote the average expectation operator.

1.2. Prior Literature and Empirical Practice

When the first-stage F-statistic is small, standard asymptotic approximations may fail to

accurately describe the finite-sample behavior of IV estimates. This was first pointed out by

Nelson and Startz (1990) and Bound et al. (1995) who consider the finite-sample behavior of

two-stage least squares (2SLS) in alternate settings where the IV is only weakly correlated

with the endogenous variable. In a seminal paper, Staiger and Stock (1997) capture this

phenomena in an asymptotic framework by considering a sequence of first-stage models

that shrink to zero with the sample size. Under this framework, standard IV estimates are

no longer consistent and inference procedures based on these statistics fail to control size.

Because of these results, there has been a large interest in developing tests for the structural

parameter that control size regardless of identification strength.

To test hypotheses about the structural parameter when instruments are suspected to be

weak, Staiger and Stock (1997) propose the use of the Anderson-Rubin statistic, which does

not require any assumptions about identification strength to control size. Noting that the

Anderson-Rubin test is inefficient in overidentified models, Moreira (2001) and Kleibergen

(2002, 2005) propose the use of the (non-jackknife) K-statistic, which has a limiting null

distribution that does not depend on the number of instruments. Compared to the Anderson-

Rubin statistic, these tests have improved power in local neighborhoods of the null but can
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perform poorly against certain alternatives. To address this, Moreira (2003) and Kleibergen

(2005) suggest combinations of the K-statistic and Anderson-Rubin statistic based on a

conditioning statistic that is independent of them both under the null. Andrews et al. (2006)

characterize the power envelope in a homoskedastic weakly identified IV model and show that

the test based on the conditional likelihood ratio statistic of Moreira (2003) has nearly optimal

power in this setting. When errors are heteroskedastic, Andrews (2016) proposes alternate

combinations of the K-statistic and the Anderson-Rubin statistic based on a minimax regret

criterion.

These initial tests are developed under asymptotic frameworks that treat the number of

instruments as fixed or growing slowly relative to the sample size (Han and Phillips, 2006;

Newey and Windmeijer, 2009; Andrews and Stock, 2007). However, with the emergence of

large datasets and more sophisticated research designs, researchers may encounter scenarios

where the number of instruments may not be negligible as a ratio of sample size. A prominent

example of this is in judge-design settings where the number of instruments is equal to the

number of judges to whom an individual can be assigned to (Maestas et al., 2013; Sampat

and Williams, 2019; Dobbie et al., 2018). Since each judge can handle only a finite number

of cases the number of instruments is proportional to the sample size. Moreover, to flexibly

model the first-stage, researchers may generate a large number of instruments by enriching

a “small” initial set of instruments via polynomial (or other) transformations. Angrist and

Krueger (1991) famously interact quarter-of-birth, state-of-birth, and year-of-birth dummies

to construct a total of 180 instruments. Belloni et al. (2012a) show that, when identification

is strong, researchers can use a potentially high-dimensional, dz ≫ n, set of first-stage

instrument basis terms in conjunction with a regularized LASSO or post-LASSO estimate of

the first-stage. This strategy has been successfully employed in practice by Paravisini et al.

(2014), Gilchrist and Sands (2016), Derenoncourt (2022), and Jou and Morgan (2023).

To address these settings, there has been recent interest in developing weak instrument-robust

8



tests under asymptotic frameworks that do not require that the ratio of instruments to sample

size tends to zero. Crudu et al. (2021), Mikusheva and Sun (2021), and Matsushita and

Otsu (2022) take advantage of a new central limit theorem for quadratic forms developed

in Chao et al. (2012) and propose weak identification-robust tests that are valid even when

the number of instruments is proportional to sample size; dz/n → ϱ ∈ [0, 1). Following the

many instruments asymptotic framework first introduced by Bekker (1994), the analyses in

these papers rely on the number of instruments diverging. When the number of instruments

is fixed or diverges slowly to infinity, these asymptotic approximations may provide poor

characterizations of the proposed test statistics’ finite sample distribution.

Limited identification-robust testing procedures exist for the high-dimensional case, dz ≫ n.

To my knowledge, the only two options available are the sup-score test of Belloni et al.

(2012a) and the split-sample optimal instrument AR test developed in Mikusheva (2023).1

The sup-score test makes use of Gaussian approximations for maxima of high-dimensional

vectors developed in Chernozhukov et al. (2013) but suffers from the same issue as the

Anderson-Rubin test in that its critical value is increasing with the number of instruments.

The spilt sample optimal instrument AR test splits the dataset into two parts and uses one

split to estimate an optimal instrument and the other to test the null hypothesis. This may

lead to a loss of power as only half of the sample is being effectively used to test the null

hypothesis.

Weak instrument-robust tests may be particularly interesting in high-dimensional and het-

eroskedastic settings due to a lack of clarity on how to pretest for identification strength.

When the number of instruments is modeled as fixed and errors are homoskedastic, Stock and

Yogo (2005) propose pretesting for the strength of identification via the first-stage F-statistic.

Based on their results, common practice in empirical settings has been to use standard

Wald tests whenever the first-stage F-statistic exceeds 10. Lee et al. (2022) point out this

recommendation is not applicable in heteroskedastic models and update the recommended

1The sup-score test is also considered by Gautier and Rose (2021, 2022).
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F-statistic cutoff. To pretest for weak identification in the many-instruments asymptotic

framework, dz → ∞, Mikusheva and Sun (2021) propose a new F̃ -statistic and suggest using

identification-robust procedures when F̃ < 4.14. When the number of instruments is larger

than sample size there is no accepted full-sample pretest for identification strength.2 In

particular, I demonstrate in Section 1.7 that first-stage F-statistics resulting from first-stage

post-LASSO procedures can be misleading even if they are larger the standard cutoff of 10.

Asymptotic Regime Main Tests

Low-Dimensional:
d3z/n → 0

Anderson-Rubin
K/Lagrange Multiplier

Conditional Linear Combination

Many-Instruments:
dz/n → ϕ ∈ [0, 1)

dz → ∞

Jackknife-AR
Jackknife-LM

Conditional Linear Combination

High-Dimensional:
logM(dzn)/n → 0

Sup-Score Test
Split-Sample AR

Table 1.2.1: Existing Identification and Heteroskedasticity
Robust Tests for Linear IV models.

I contribute to these literatures by proposing a new identification-robust test for the structural

parameter that can work in potentially high-dimensional settings (dz ≫ n) without requiring

that the number of instruments diverges. The testing procedures in this paper may be

particularly applicable in intermediate cases where the number of instruments cubed may not

be negligible relative to sample size but it is unclear whether asymptotic approximations based

on dz → ∞ will accurately describe finite sample behavior. Examples of such intermediate

cases include the post-LASSO analyses of Derenoncourt (2022), where dz = 9 and n = 239,

Paravisini et al. (2014), dz = 10 and n = 5,995, and Gilchrist and Sands (2016), dz = 52 and

2Mikusheva (2023) suggests a split-sample pretest for use with the split-sample optimal-instrument AR
test.
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n = 1,671.

In addition to the literature on weak-instrument robust testing, I contribute to a growing

literature on direct Gaussian approximation and interpolation techniques (Chatterjee, 2006,

2010; Pouzo, 2015; Chernozhukov et al., 2013, 2017; Celentano et al., 2020). These techniques

have proven useful to approximate the behaviors of statistics in a variety of nonstandard

settings, such as high-dimensional random vectors or spectral analysis of random matrices.

Prior analysis of statistics via interpolation techniques has relied on the boundedness of the

derivatives of these statistics with respect to individual observations. This condition does not

hold in my setting as the denominator of my test-statistic is not bounded away from zero

under weak identification and, as such, derivatives of the jackknife K-statistic with respect to

terms in the denominator may be unbounded. This poses a number of technical challenges

for my interpolation argument that must be overcome in order to characterize the limiting

behavior of the jackknife K-statistic, particularly when dx > 1. I contribute to this literature

by proposing modifications of the original Lindeberg (1922) interpolation technique that can

accommodate statistics with unbounded derivatives.

1.3. Model and Setup

Though the analysis below allows for exogenous regressors, to simplify the exposition I follow

Mikusheva and Sun (2021) and assume that they have already been partialed out of both the

outcome, yi, and the endogenous regressors, xi. As the controls are assumed to be of fixed

dimension, this is without loss of generality.1 Along with the structural equation in (1.1.1),

the IV model can then be written with the first stage as a system of simultaneous equations:

yi = x′
iβ + εi

xi = Πi + vi

(1.3.1)

1For discussion refer to Section 1.11.
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The researcher observes the outcome yi ∈ R, the endogenous variable xi ∈ Rdx , and the

instruments zi ∈ Rdz but neither the structural error εi ∈ R nor the first-stage errors vi ∈ Rdx .

The structural error is assumed to be conditional-mean independent of the instruments,

E[εi|zi] = 0. I denote E[xi|zi] as Πi := E[xi|zi] and make no assumptions about the functional

form of the conditional expectation so the instruments are allowed to affect the endogenous

variable in a nonlinear fashion.

The random variables {(zi, εi, vi)}ni=1 are assumed to be independent across observations.

Observations need not be identically distributed but the errors are assumed to have a common

covariance structure conditional on the instruments zi:

Var((εi, vi)
′|zi) := Ω(zi) =

σ2
ϵϵ(zi) Σvϵ(zi)

Σϵv(zi) Σvv(zi)

 ∈ R(1+dx)×(1+dx)

As Ω(zi) is otherwise left unrestricted, the errors are allowed to be heteroskedastic. All results

in this paper hold conditionally on a realization of the instruments z := (z′1, . . . , z
′
n) ∈ Rn× dz

so from this point forth they are treated as fixed and all expectations can be understood as

conditional on the instruments.

Under this setup, the researcher wishes to test a two-sided restriction on the structural

parameter:

H0 : β = β0 vs. H1 : β ̸= β0

I am interested in constructing powerful tests for this null-alternate pair that are asymptotically

valid under arbitrarily weak identification and with minimal restrictions on the number of

instruments dz. To this end, define the null errors εi(β0) := yi − x′
iβ0. Using these, I

construct a variable, ri, that is a “partialed-out” version of the endogenous variable satisfying

Cov(ri, ϵi(β0)) = 0:

ri := xi − ρ(zi)ϵi(β0), ρ(zi) :=
Cov(ϵi(β0), xi)

Var(ϵi(β0))
∈ Rdx

12



=
Σvϵ(zi) + Σvv(zi)(β − β0)

(1, β − β0)′Ω(zi)′(1, β − β0)
.

Each element of the nuisance parameter ρ(zi), ρℓ(zi) for ℓ = 1, . . . , dx, can be interpreted as

the (conditional) slope coefficient from a simple linear regression of xℓi on ϵi(β0). Thus, if

ρℓ(·) falls in some function class Φ it can be estimated directly under H0 by solving empirical

analogs of:2

ρℓ(zi) = argmin
φ∈Φ

Ē[(xℓi − ϵi(β0)φ(zi))
2].

I will largely work under the assumption that ρ(zi) has an approximately sparse representation

in some (growing) basis b(zi) := (b1(zi), . . . , bdb(zi))
′ ∈ Rdb , that is ρℓ(zi) = b(zi)

′ϕℓ + ξℓi

where ξℓi represents an approximation error that tends to zero with the sample size and ϕℓ

is sparse in the sense that many of its coefficients are zero. This allows for nesting of the

low-dimensional case, where the number of instruments is fixed, and the high dimensional

case, where the number of instruments is potentially much larger than the sample size, under

a unified estimation procedure. Under homoskedasticity, ρℓ(zi) is a constant function and

thus has a spare representation in any basis that contains a constant term. In general, the

aproximate sparsity assumption can either be interpreted as an assumption that there are

only a few instruments that are important for explaining variation in the covariance matrix

Ω(zi) or as an assumption that the function ρ(zi) can be accurately approximated using only

a smaller set of basis terms in b(zi).

As in Chernozhukov et al. (2022), the parameter ϕℓ can be estimated via LASSO:

ϕ̂ℓ = arg min
ϕ∈Rdb

En[(xℓi − ϵi(β0)b(zi)
′ϕ)2] + λ∥ϕ∥1, (1.3.2)

or via post-LASSO, refitting an unpenalized version of (1.3.2) using only the basis terms

associated with nonzero coeffecients in the inital LASSO regression. The estimating procedure

2Under H1, ρℓ(zi) can be estimated directly by solving empirical analogs of ρℓ(zi) = argminϕ∈Φ E[(xℓi −
ηi(β0)ϕ(zi))

2] where ηi(β0) = ϵi(β0)− E[ϵi(β0)|zi]. This requires an initial estimate of E[ϵi(β0)|zi], however.
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in (1.3.2) is a simple ℓ1-penalized regression of xℓi against ϵi(β0)b(zi). It can be easily

implemented using out-of-the-box software available on most platforms. Under standard

conditions, this leads to a consistent estimate of ρℓ(zi) as long as the sparsity condition

s2 logM(dbn)/n → 0 where s is the number of nonzero elements of ϕℓ and M is a positive

constant that depends on the moment bounds imposed. The estimation procedure is discussed

in more detail in Section 1.4.2. With ρ̂(zi) := b(zi)
′ϕ̂ℓ, I construct the estimated version of

rℓi, r̂ℓi := xi − ρ̂(zi)ϵi(β0) for each ℓ ∈ [dx].

1.3.1. Test Statistic

The test statistic is based on an arbitrary jackknife-linear estimate of the first stage,

Π̂ℓi =
∑
j ̸=i

hij r̂ℓj, ℓ ∈ [dx]

for some “hat” matrix H = [hij ] ∈ Rn×n. The phrase “hat matrix” is borrowed from ordinary

least squares (OLS) where the projection matrix, z(z′z)−1z′, is sometimes referred to as the

hat matrix in the sense that x̂ = z(z′z)−1z′x. In practice, the hat matrix, H, can be any

matrix that depends only on z. It is important to note that while Π̂ℓi does not depend on r̂ℓi,

it may depend on zi through the hat matrix H. This gives the test power against alternatives

where E[ϵi(β0)zi] ̸= 0. For technical reasons, I will assume that hii = 0 for each i ∈ [n] so

that Π̂ℓi can be written as Π̂ℓi =
∑n

j=1 hijrℓj.

Formally, the only structure I require on the hat matrix H is a balanced-design condition

described in Section 1.4. However, for reasons explained in Section 1.5 it may be optimal to

introduce some regularization in estimating the first-stage models Π̂ℓi so I suggest using the

deleted diagonal ridge-regression hat matrix H(λ⋆):

[H(λ⋆)]ij =


[z(z′z + λ⋆Idz)

−1z′]ij if i ̸= j

0 otherwise

(1.3.3)
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where, following recommendations in Harrell (2015) and van Wieringen (2023), the penalty

parameter λ⋆ is set so that the effective degrees of freedom of the resulting hat matrix is no

more than a fraction of the sample size:

λ⋆ = inf{λ ≥ 0 : trace(z(z′z + λIdz)
−1z′) ≤ n/5}

The ridge hat matrix has the benefit of being well defined even when the number of instruments

is larger than the sample size. I stress, though, that the Π̂ℓi estimators are not required to be

consistent and the researcher may use any other hat matrix that she believes will lead to

plausible first-stage estimates. Other possible choices of hat matrix include the jackknife OLS

hat matrix of Angrist et al. (1999), the deleted diagonal projection matrix introduced in Chao

et al. (2012) and successfully used in Kline et al. (2020), Crudu et al. (2021), Mikusheva and

Sun (2021), and Matsushita and Otsu (2022), or hat matrices based on selecting instruments

via some preliminary unsupervised technique such as principal component analysis (PCA).

Remark 1.4.1 below discusses how the balanced-design condition may be verified for arbitrary

choices of hat matrices.

For each i = 1, . . . , n, define Π̂i = (Π̂1i, . . . , Π̂dxi) ∈ Rdx and Π̂ϵi = ϵi(β0)Π̂i. Collect these in

the matrices

ε(β0) =
(
ε1(β0), . . . , εn(β0)

)′ ∈ Rn

Π̂ =
(
Π̂′

1, . . . , Π̂
′
n

)′ ∈ Rn× dx

Π̂ε =
(
Π̂′
ϵ1, . . . , Π̂

′
ϵn

)′ ∈ Rn× dx

(1.3.4)

The jackknife K-statistic can then be defined

JK(β0) = ϵ(β0)
′Π̂
(
Π̂′
ϵΠ̂ϵ

)−1
Π̂′ϵ(β0)× 1{λmin(Π̂

′
ϵΠ̂ϵ) > 0} (1.3.5)

I will show that, under appropriate moment bounds and conditions on the hat matrix,
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H, the limiting distribution of JK(β0) under H0 is χ2
dx
. For exposition, I will largely

focus on the case where dx = 1, in which case the form of the test statistic simplifies to

JK(β0) =
(∑n

i=1 ϵi(β0)Π̂i

)2
/
∑n

i=1 ϵ
2
i (β0)Π̂

2
i . The extension to dx > 1 is not immediate but is

possible under strengthened moment conditions and is explored in Section 1.6.

Remark 1.3.1. While use of first-stage estimates that are uncorrelated with the structural

error is inspired by Kleibergen (2002, 2005), the form of the jackknife K-statistic is distinct

from that of the original K-statistics. One major difference is in how both test statistics account

for heteroskedasticity. The K-statistic of Kleibergen (2005) accounts for heteroskedastic

errors using a dz × dz matrix, which cannot be consistently estimated when dz is large.

In contrast, the jackknife K-statistic uses the heteroskedasticity robust variance estimate

(Π̂′
ϵΠ̂ϵ)

−1 ∈ Rdx × dx . Showing that these variance estimates can be used to account for

heteroskedasticity is a feature of the direct Gaussian approximation approach. Under weak

identification the distribution of the variance estimate is relevant to the distribution of the

test-statistic. However, even when dz ≪ n, the distribution of this variance estimate would be

difficult to analyze using traditional central limit theorems as it is not a continuous function

of a sample mean or even of a quadratic form.

1.4. Limiting Behavior with a Single Endogenous Variable

The limiting behavior of the test statistic is analyzed via a direct Gaussian approximation

technique. When there is a single endogenous variable this approach can be considerably

simplified. In this section, I detail the approach and take advantage of the simplified analysis

to characterize the limiting behavior of the test statistic under local alternatives to H0. This

direct approach has the advantage of not relying on any particular central limit theorem,

which allows a great deal of flexibility in the choice of hat matrix H.

For each i ∈ [n], let (ϵ̃i(β0), r̃i)
′ be jointly Gaussian random variables generated (i) indepen-

dently of each other and the data and (ii) with the same mean and covariance matrix as
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(ϵi(β0), ri)
′. In addition, define Π̃i :=

∑
j ̸=i hij r̃j. The goal will be to show that the quantiles

of JK(β0) can be approximated by corresponding quantiles of the Gaussian statistic,

JKG(β0) :=
(
∑n

i=1 ϵ̃i(β0)Π̃i)
2∑n

i=1 E[ϵ2i (β0)]Π̃2
i

(1.4.1)

Since uncorrelated jointly Gaussian random variables are independent, under H0 the vector

(ϵ̃1(β0), . . . , ϵ̃n(β0))
′ is mean zero and independent of (r̃1, . . . , r̃n)

′. The null distribution of

JKG(β0) conditional on any realization of (r̃1, . . . , r̃n)
′ is then χ2

1 and so its unconditional null

distribution is also χ2
1.

1.4.1. Interpolation Approach

Error arising from estimation of ρ(zi) prevents immediate comparison of the distribution of

JK(β0) to the distribution of JKG(β0). As such, I begin by considering the distribution of an

infeasible statistic, JKI(β0), which could be constructed if ρ(zi) were known to the researcher:

JKI(β0) :=

(∑n
i=1 ϵi(β0)Π̂

I
i

)2∑n
i=1 ϵ

2
i (β0)

(
Π̂I
i

)2 × 1
{ n∑

i=1

ϵ2i (β0)
(
Π̂I
i

)2
> 0
}

where Π̂I
i =

∑
j ̸=i hijrj. To show that the distribution of JKI(β0) can be approximated by

the distribution of JKG(β0), I adapt Lindeberg’s interpolation method, first introduced by

Lindeberg (1922) in an elegant proof of the central limit theorem. This method consists

of one-by-one replacment of the terms (ϵi(β0), ri) in the expression of JKI(β0) with their

Gaussian analogs, (ϵ̃i(β0), r̃i), and bounding the resulting one-step distributional changes.

Applying the interpolation method directly on the statistics JKI(β0) and JKG(β0), however,

is not tractable as it requires bounding expectations of derivatives with respect to terms in

the denominator. When identification is weak, the denominators of JKI(β0) and JKG(β0)

may both be arbitrarily close to zero with positive probability. Derivatives with respect to

terms in the denominators thus may not have finite expectations.
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Instead, I consider a different approach. For a scaling factor sn, introduced below, define the

scaled numerators and denominators

N :=
( sn√

n

n∑
i=1

ϵi(β0)Π̂
I
i

)2
Ñ :=

( sn√
n

n∑
i=1

ϵ̃i(β0)Π̃i

)2
D :=

s2n
n

n∑
i=1

ϵ2i (β0)
(
Π̂I
i

)2
D̃ :=

s2n
n

n∑
i=1

E[ϵ2i (β0)]
(
Π̃i

)2
and for any a ≥ 0, define the decomposed statistics

JKa
I(β0) := N − aD JKa

G(β0) := Ñ − aD̃

Since D = 0 implies N = 0 and since D̃ ̸= 0 almost surely, the events ({JKI(β0) ≤

a}, {JKG(β0) ≤ a}) are almost surely equivalent to the events ({JKa
I(β0) ≤ 0}, {JKa

G(β0) ≤

0}). The decomposed statistics no longer have denominators to be dealt with and are

tractable for the interpolation argument. I show for any φ(·) ∈ C3
b (R), the space of all thrice

continuously differentiable functions with bounded derivatives up to the third order, that

there is a fixed constant M > 0 such that

|E[φ(JKa
I)− φ(JKa

G)]| ≤
M(a3 ∨ 1)√

n
(L2(φ) + L3(φ)) (1.4.2)

where L2(φ) := supx |φ′′(x)| and L3(φ) := supx |φ′′′(x)|. By taking φ(·) to be a sequence of

functions approximating the indicator function, 1{x ≤ 0}, the result in (1.4.2) can be used

to show that the cumulative distribution function (CDF) of the infeasible statistic JKI(β0)

can be approximated by the CDF of the Gaussian statistic JKG(β0) at each point a ∈ R. A

Glivenko-Cantelli type argument is then be applied to show the approximation holds uniformly

over all points on the real line. The Lindeberg interpolation argument on the decomposed

test statistics makes use of the fact that the numerator and denominator of the Gaussian test

statistic are functions of quadratic forms in the random vectors ϵ(β0) := (ϵ1(β0), . . . , ϵn(β0))
′
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and r := (r1, . . . , rn)
′.1

Moving from approximation of expectations of smooth functions to approximation of the

CDF relies on a particular anticoncentration bound on D̃. I show that that this bound

can be established under either weak or strong identification. This allows for the limiting

null distribution of the test statistic under various identification regimes to be derived via

a unifying argument. Additionally, even though (N,D, Ñ, D̃) may all have nonnegligible

distributions when identification is weak, the interpolation argument does not require any of

these to individually converge in distribution or probability anywhere stable. This allows for

a wide range of possible hat matrices H to be used in constructing the first stage estimates,

(Π̂1, . . . , Π̂n). In particular, no assumption need be made on the number of instruments used

to construct H nor any requirement imposed that the first-stage estimates (Π̂1, . . . , Π̂n) are

consistent.

I now detail the assumptions needed for the argument. Define ηi := (β − β0)vi + ϵi and

ζi := vi − ρ(zi)ηi, noting ηi = ϵi(β0) − E[ϵi(β0)] and ζi = ri − E[ri]. In what comes below

c > 1 can be considered an arbitrary constant that may be updated upon each use but that

does not depend on sample size n.

Assumption 1.4.1 (Moment Conditions). There is a fixed constant c > 1 such that (i)

{|Πi| + |(β − β0)| + |ρ(zi)|} ≤ c, and (ii) for any l, k ∈ N ∪ {0} such that l + k ≤ 6,

c−1 ≤ E[|ηi|l|ζi|k] ≤ c.

Assumption 1.4.2 (Balanced Design). (i) For s−2
n = maxi E[(Π̂I

i )
2] the following is bounded

away from zero, c−1 ≤ E[ s
2
n

n

∑n
i=1(Π̂

I
i )

2]; (ii) maxi s
2
n

∑
j ̸=i h

2
ji ≤ c; and (iii) the following

ratio is bounded away from zero:
∑n

k=2 λ
2
k(HH

′)∑n
k=1 λ

2
k(HH

′)
≥ c−1 where λk(HH ′) represents the kth largest

eigenvalue of the matrix HH ′.

Assumptions 1.4.1 and 1.4.2 allow characterization of the null distribution of JK(β0). As-

1See Pouzo (2015) for another example of the Lindeberg interpolation method applied to approximate the
distribution of quadratic forms.
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sumption 1.4.1 imposes light moment conditions on the random variables ηi and ζi, which

in turn imply restrictions on ϵi(β0) and ri. In particular, Assumption 1.4.1(i) imposes that

ϵi(β0) and ri have finite means while Assumption 1.4.1(ii) bounds, both from above and away

from zero, the first through sixth central moments of the random variables.

Assumption 1.4.2(i) requires that the average second moment of the infeasible first-stage

estimators be on the same order as the maximum first-stage estimator second moment.

This is imposed mainly to rule out hat matrices that are all zeroes or nearly all zeros so

that the effective number of observations used to test the null is growing with the sample

size. Remark 1.4.1 below discusses how this assumption and Assumption 1.4.2(ii) may be

verified in practice. Remark 1.4.2 compares this balanced design assumption to that in the

many-instruments literature (Crudu et al., 2021; Mikusheva and Sun, 2021; Matsushita and

Otsu, 2022; Lim et al., 2022), noting that their balanced design neither implies nor is implied

by the one in this paper.

Assumption 1.4.2(ii) requires that the maximum leverage of any observation be bounded.

When H is symmetric, it is automatically satisfied under Assumption 1.4.1(i) and the

definition of sn.
2 The scaling factor sn captures both the “size” of the elements in the hat

matrix H and the strength of identification. If elements of the hat matrix are on the same

order as a constant, one would expect sn = O(n−1) under strong identification (Πi ∝ 1) while

sn = O(n−1/2) under weak identification (Πi ≲ n−1/2). Assumption 1.4.2(iii) can be viewed

as a technical requirement that there be more than one “effective” instrument in the hat

matrix.3 This condition can be easily verified in practice by examining the eigenvalues of

HH ′.

In addition to characterizing the limiting distribution of JK(β0) under H0, I also examine

2To see this, notice that s−2
n = maxi E[(Π̂I

i )
2] ≥ maxi Var(Π̂

I
i ) = maxi

∑
j ̸=i h

2
ij Var(rj). By Assump-

tion 1.4.1, Var(rj) is bounded from below by c−1. Inverting this chain of inequalities yields that s2n
∑

j ̸=i h
2
ij

is bounded from above uniformly over all i ∈ [n].
3In the case of a standard projection matrix (no deleted diagonal), Assumption 1.4.2(iii) would be satisfied

whenever rank(z(z′z)−1z) > 1.
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the behavior of JK(β0) in local neighborhoods of the null. These local neighborhoods are

characterized by the local power index P , defined below, as well as an additional regularity

condition that restricts the size of E[ϵi(β0)] relative to E[ri].

P := (β − β0)
2E
[(

sn√
n

n∑
i=1

ΠiΠ̂
I
i

)2]

Assumption 1.4.3 (Local Identification). (i) The local power index P is bounded, P ≤ c;

and (ii) maxi E[(sn
∑

j ̸=i hjiϵj(β0))
2] ≤ c.

Under H0, Assumption 1.4.3 is trivially satisfied since (β − β0) = 0 and
∑

j ̸=i s
2
nh

2
ji ≤ c. The

local power index is the second moment of the scaled numerator, N and is a measure of the

association between the true first stage Πi and the first-stage estimates Π̂i. In Section 1.5, I

discuss how the strength of this association is related to the power of the test under local

alternatives. Proposition 1.4.1 below shows that when Assumption 1.4.3(ii) holds, P → ∞

implies that the test based on the infeasible statistic JKI(β0) is consistent.

Assumption 1.4.3(ii) is an additional technical condition that requires that the maximum

value of E[(
∑

j ̸=i hjiϵj(β0))
2] be on the same or lesser order than the maximum value of

E[(
∑

j ̸=i hijrj)
2]. Using the moment bounds in Assumption 1.4.1 and Assumption 1.4.2(ii)

one can verify that Assumption 1.4.3(ii) is equivalent to the existence of constants C1, C2 > 0

such that

max
i

(∑
j ̸=i

hjiE[ϵj(β0)]
)2 ≤ C1max

i
E
[
(
∑
j ̸=i

hijrj)
2
]
+ C2

= C1max
i

{∑
j ̸=i

h2
ij Var(rj) +

(∑
j ̸=i

hijE[rj]
)2}

+ C2

for all i ∈ [n]. It is always satisfied whenever E[ϵi(β0)] = Πi(β − β0) is in a
√
n-neighborhood

of zero in the sense that |Πi(β− β0)| ≤ C/
√
n for all i ∈ [n] and some constant C. In general,

Assumption 1.4.3(ii) can be roughly interpreted as requiring the local neighborhoods of H0
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considered to be those in which the means of (ϵ1(β0), . . . , ϵn(β0)) are of the same or lesser

order than the means of (r1, . . . , rn).

Under Assumptions 1.4.1–1.4.3, I establish a main technical lemma stating that the CDF of

the infeasible statistic, JKI(β0), can be uniformly approximated by the CDF of the Gaussian

statistic, JKG(β0). This result does not require JKG(β0) to have a fixed limiting distribution.

Lemma 1.4.1 (Infeasible Uniform Approximation). Suppose that Assumptions 1.4.1–1.4.3

hold. Then,

sup
a∈R

∣∣Pr(JKI(β0) ≤ a)− Pr(JKG(β0) ≤ a)
∣∣→ 0

I additionally show that the test based on the JKI(β0) statistic is consistent whenever the

power index diverges, P → ∞, and Assumption 1.4.3(ii) holds.

Proposition 1.4.1 (Consistency). Suppose that Assumptions 1.4.1, 1.4.2, and 1.4.3(ii)

hold. Then if P → ∞ the test based on JKI(β0) is consistent; i.e for any fixed a ∈ R,

Pr(JKI(β0) ≤ a) → 0.

The dependence of the consistency result on Assumption 1.4.3(ii) is a nontrivial restriction

because of the bias taken on in constructing ri. In particular, against certain alternatives it

is possible that E[Π̂I
i ] = 0 for all i ∈ [n] even under strong identification. This is an extreme

case, however. In general, bias in E[ri] does not imply a violation of Assumption 1.4.3(ii),

which requires only that the size of E[ri] be of a weakly greater order than that of E[ϵi(β0)].

Moreover, as discussed in Remark 1.4.5, Proposition 1.4.1 does not necessarily rule out

consistency when P → ∞ but Assumption 1.4.3(ii) fails.

Regardless, bias taken on in constructing ri has consequences for the power of the test in finite

samples. This is particularly true when the mean of ri is of a lesser order than that of ϵi(β0)

as will be discussed in Section 1.5. To rectify this deficiency in tests based on the jackknife

K-statistic, I suggest a thresholding test that decides whether to use the jackknife K-statistic

or the sup-score Belloni et al. (2012a) statistic based on the value of the conditioning statistic.
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This conditioning statistic, in turn, is based on a test statistic for the null hypothesis that

E[Π̂I
i ] = 0 for all i ∈ [n].

1.4.2. Limiting Behavior of Test Statistic

The final step in characterizing the limiting behavior of the feasible test statistic is to show

that the difference between the infeasible and feasible statistics is negligible. I begin with a

technical lemma stating that the difference between JK(β0) and JKI(β0) is asymptotically

negligible whenever the differences between the scaled numerators and the scaled denominators

are asymptotically negligible. Define these differences:

∆N :=
sn√
n

n∑
i=1

ϵi(β0)(Π̂i − Π̂I
i )

∆D :=
s2n
n

n∑
i=1

ϵ2i (β0)(Π̂
2
i − (Π̂I

i )
2)

Lemma 1.4.2. Suppose Assumptions 1.4.1–1.4.3 hold and (∆N ,∆D)
′ →p 0. Then |JK(β0)−

JKI(β0)| →p 0.

While Lemma 1.4.2 is a simple statement, it is not obvious. In particular, showing that the

difference between the infeasible and feasible statistics is negligible requires showing that

1/(D+∆D) is bounded in probability, where D represents the scaled denominator of JKI(β0).

In a standard analysis, this would be done by arguing that D converges in distribution to

a stable limit and then applying the continuous mapping theorem.4 This approach is not

applicable here as neither the scaled numerator nor the scaled denominator has a limiting

distribution.

Instead, I directly show that 1/(D+∆D) is bounded in probability by showing Pr(D ≤ δn) → 0

for any sequence δn → 0. This is done by first establishing that quantiles of D can be

approximated by quantiles of D̃, the scaled denominator of JKG(β0). If the variance of D̃

4This is the approach taken by Kleibergen (2002, 2005)
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is bounded away from zero, its density can also be bounded with new bounds on Gaussian

quadratic form densities from Götze et al. (2019), which yields the result. Otherwise, if

Var(D̃) → 0, the result holds by an application of Chebyshev’s inequality and E[D] > c−1

from Assumption 1.4.2(i). This particular anticoncentration bound for D̃ is also important

in the proof of Lemma 1.4.1 to establish anticoncentration for the decomposed Gaussian test

statistic.

Lemma 1.4.2 allows the researcher to use alternate choices of estimators for ρ(zi), so long

as they can verify that (∆N ,∆D)
′ →p 0. Below, I verify that this condition can be satisfied

for the ℓ1-penalized estimation procedure proposed in (1.3.2). This requires a strengthened

moment condition on ηi. Given a random variable X and υ > 0 the Orlicz (quasi-)norm is

defined

∥X∥ψυ
:= inf{t > 0 : E exp(|X|υ/tυ) ≤ 2}

Random variables with a finite Orlicz norm for some υ ∈ (0, 1] ∪ {2} are termed α-sub-

exponential random variables (Gotze et al., 2021; Sambale, 2022). This class encompasses a

wide range of potential distributions including all bounded and sub-Gaussian random random

variables (with υ = 2), all sub-exponential random variables such as Poisson or noncentral

χ2 random variables (with υ = 1), as well as random variables with “fatter” tails such as

Weibull distributed random variables with shape parameter υ ∈ (0, 1].

Assumption 1.4.4 (Estimation Error). (i) There is a fixed constant υ ∈ (0, 1] ∪ {2} such

that ∥ηi∥ψυ ≤ c; (ii) The basis terms b(zi) are bounded, ∥b(zi)∥∞ ≤ C for all i = 1, . . . , n;

(iii) the approximation error satisfies (En[ξ2i ])1/2 = o(n−1/2); (iv) the researcher has access

to an estimator ϕ̂ of ϕ that satisfies log(dbn)
2/(υ∧1)∥ϕ̂− ϕ∥1 →p 0; (v) the following moment

bounds hold

(va) max1≤ℓ≤db
∣∣E[ sn√

n

∑n
i=1

∑
j ̸=i hijϵi(β0)bℓ(zj)ϵj(β0)

]∣∣ ≤ c

(vb) max 1≤i≤n
1≤ℓ≤db

|E[sn
∑

j ̸=i hijbℓ(zj)ϵj(β0)]| ≤ c.
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Assumption 1.4.4(i) strengthens the moment condition on ηi to require that ηi be in the

class of α-sub-exponential random variables. While this condition is more restrictive than

the moment condition in Assumption 1.4.1, as discussed above, it still allows for a wide

range of potential distributions. Assumption 1.4.4(ii) is a standard condition in ℓ1-penalized

estimation. At the cost of extra notation, it can be relaxed and the sup-norm of the basis

terms can be allowed to grow slowly with the sample size to accommodate bases such as

normalized b-splines or wavelets. Assumption 1.4.4(iii) is a bound on the rate of decay of the

approximation error, similar to the approximate sparsity condition of Belloni et al. (2012a).

Assumption 1.4.4(iv) is a high-level condition on the rate of consistency of the parameter

estimate ϕ̂ in the ℓ1 norm. This can be verified under approximate sparsity for both the

LASSO estimator in (1.3.2) or post-LASSO procedures based on refitting an unpenalized

version of (1.3.2) only using the basis terms selected in a LASSO first stage. See Belloni et al.

(2012a), van der Greer (2016), Tan (2017), and Chetverikov and Sørensen (2021) for references

under various choices of penalty parameter. This condition allows for the dimensionality of

the basis terms, db, to grow near exponentially as a function of the sample size. Following

the analysis of Tan (2017) one can see that, under appropriate choice of penalty parameter,

this may be satisfied as long as s2 log2(υ+1)/υ(dbn)/n → 0, where the sparsity index s denotes

the number of nonzero elements of ϕ.

Assumption 1.4.4(v) is a strengthening of the definition of local neighborhoods and can

be interpreted similarly to Assumption 1.4.3(ii). Since the moment conditions in Assump-

tion 1.4.4(va,vb) hold with bℓ(zj)ϵj(β0) replaced with rj, Assumption 1.4.4(v) can be in-

terpreted as requiring that |E[
∑

j ̸=i hijbℓ(zj)ϵj(β0)]| is on the same order as |E[
∑

j ̸=i hijrj]|

for all i = 1, . . . , n and ℓ = 1, . . . , db. As with Assumption 1.4.3(ii), it is trivially satisfied

under H0 or, using the fact that maxi
∑

j ̸=i s
2
nh

2
ij ≤ c, whenever E[ϵi(β0)] = Πi(β − β0) is in

a
√
n-neighborhood of zero.

Under Assumptions 1.4.1–1.4.4, I establish that the difference between the infeasible and

25



feasible statistics can be treated as negligible when the estimation procedure proposed in

(1.3.2) is used.

Lemma 1.4.3. Suppose that Assumptions 1.4.1–1.4.4 hold. Then (∆N ,∆D)
′ →p 0.

Lemmas 1.4.1–1.4.3 are combined for the main result, local approximation of the distribution

of the feasible test statistic, JK(β0), by the distribution of the Gaussian statistic, JKG(β0).

An immediate corollary is that the limiting null distribution of JK(β0) is χ
2
1.

Theorem 1.4.1 (Uniform Approximation). Suppose that Assumptions 1.4.1–1.4.4 hold.

Then

sup
a∈R

∣∣Pr(JK(β0) ≤ a)− Pr(JKG(β0) ≤ a)
∣∣→ 0

Corollary 1.4.1 (Size Control). Suppose that Assumptions 1.4.1, 1.4.2 and 1.4.4 hold. Then,

under H0, JK(β0)⇝ χ2
1.

If the limiting JKG(β0) had a fixed distribution under H1, Theorem 1.4.1 would follow

immediately from Lemmas 1.4.1–1.4.3, and an application of Slutsky’s lemma. However,

under H1, there is nothing preventing the distribution of JKG(β0) changing with the sample

size. Instead I establish Theorem 1.4.1 directly using the fact that both JK(β0) and JKG(β0)

are bounded in probability and that JKG(β0) has a density that is bounded uniformly over n.

While JKG(β0) does not have a fixed distribution, examining its behavior is still tractable and

allows for insight into the power properties of the jackknife K-test. In the next section, I use

this result to analyze the local power of the proposed test. To improve power against certain

alternatives, I suggest a combination with the sup-score statistic of Belloni et al. (2012a).

Remark 1.4.1. A sufficient condition for Assumption 1.4.2(i) is that there is some fixed

quantile q ∈ (0, 100) such that (cq)−1 ≤ qth-quantile of E[(Π̂I
i )

2]

maxi E[(Π̂I
i )

2]
. In practice this can be verified
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by checking that there is some quantile q such that both

qth-quantile of
∑

j ̸=i h
2
ij

maxi
∑

j ̸=i h
2
ij

and
qth-quantile of (

∑
j ̸=i hij r̂j)

2

maxi(
∑

j ̸=i hij r̂j)
2

(1.4.3)

are bounded away from zero. Similarly, Assumption 1.4.2(ii) can be verified by checking that

maxi
∑

j ̸=i h
2
ji/maxi

∑
j ̸=i h

2
ij is bounded from above.

Remark 1.4.2. The balanced-design condition in Assumption 1.4.2(i) is neither weaker nor

stronger than that in the many instruments literature (Crudu et al., 2021; Mikusheva and

Sun, 2021; Matsushita and Otsu, 2022; Lim et al., 2022). These papers require that the

projection matrix P = z(z′z)−1z′ satisfies [P ]ii ≤ δ ≤ 1 for some value δ and all i ∈ [n].

Since P is idempotent, [P ]ii = 1 for some i ∈ [n] implies that [P ]ij = 0 for j ̸= i.5 This

would not violate Assumption 1.4.2 if one were to take H such that hij = [P ]ij1{i ̸= j};

E[(Π̂I
i )

2] = 0 is allowed for a constant share of i ∈ [n]. Conversely, if the instruments are

fixed or grow slowly, it is possible to construct a projection matrix P of rank dz where [P ]ii

is bounded away from one for all i ∈ [n], but “most” of the rows are zero. I view this as a

theoretical edge case, however, that seems unlikely to result from real data.

Remark 1.4.3. The Lindeberg interpolation method allows me to give a nearly uniform

explicit bound on the Gaussian approximation error. In particular, using the bound in (1.4.2),

I show that for any fixed value ∆ > 0;

sup
a≤∆

∣∣Pr(JKI(β0) ≤ a)− Pr(JKG(β0) ≤ a)
∣∣ ≤ Cn−2/13

where C is a constant that depends only on (c,∆). Lemma 1.4.1 makes use of the fact that

the limiting statistic JKG(β0) is bounded in probability and extends this result to show that

the approximation error tends to zero uniformly over the real line. While it does not account

for estimation error in ρ̂(·), obtaining an explicit bound reflects an improvement over the

5Since P is idempotent, [P ]ii =
∑n

i=1[P ]2ij = [P ]2ii +
∑

j ̸=i[P ]2ij .
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original analyses of K-statistics in Kleibergen (2002, 2005). These original studies rely on

continuous mapping theorems to obtain the limiting chi-squared distributions, making the

rate of decay of the approximation error difficult to analyze.

Remark 1.4.4. The interpolation argument relies on the fact that the first and second

moments of (ϵ̃i(β0), r̃i) are the same as the first and second moments of (ϵi(β0), ri) to match

the first and moments of one-step deviations with Gaussian analogs. Without the jackknife

form of Π̂I
i , these one step deviations would additionally contain cross-terms such as hiiriϵi(β0),

for i ∈ [n]. While the first moment of this cross-term is matched by the first moment of

the Gaussian analog, hiiϵ̃i(β0)r̃i, the second moment is not matched. This is manageable,

however, so long as the terms hii are “small.” An example of when the hii terms are small

is when H is taken to be the OLS projection matrix, H = z(z′z)−1z, and the number of

instruments satisfies d3z/n → 0. See Sections 1.10.1 and 1.11 for details.

Remark 1.4.5. Proposition 1.4.1 does not necessarily rule out that a test based on JKI(β0) is

consistent when P → ∞ but Assumption 1.4.3(ii) fails to hold. The proof of Proposition 1.4.1

relies on showing that, when P → ∞ and Assumption 1.4.3(ii) holds, E[|N |] → ∞ while

Var(|N |) and E[D] are bounded. These facts can be combined to show that Pr(N2 − aD ≤

0) → 0 for any fixed a ∈ R. When Assumption 1.4.3(ii) fails, P → ∞ may imply that

Var(|N |) → ∞ as well, making the limiting behavior of the test difficult to analyze. There is

reason to believe that this issue can be overcome, Andrews et al. (2004) show that the K-

statistic of Kleibergen (2002) is consistent against fixed alternatives under strong identification.

However, a full consistency result is not pursued here and left to future work.

Remark 1.4.6. Approximate sparsity of ρ(zi) may be a particularly palatable assumption in

cases where the instrument set is generated by functions of a smaller initial set of instruments,

as in Angrist and Krueger (1991), Paravisini et al. (2014), Gilchrist and Sands (2016), and

Derenoncourt (2022). In these cases, the dimensionality of the basis, db, may not need to be

much larger than the dimensionality of the instruments, dz, to provide a good approximation
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of ρ(zi). Interestingly, if taking b(zi) = zi provides a good approximation of ρ(zi), the Tan

(2017) result suggests that consistency of ρ̂(·) is achievable under d2z log
2(υ+1)/υ(dzn)/n → 0

even if ϕ is fully dense. This requirement is weaker than the d3z/n → 0 requirement of the

standard K-statistic.

1.5. Improving Power against Certain Alternatives

Using the characterization of the limiting behavior of the test statistic derived in Section 1.4, I

analyze the local power properties of the test. Unfortunately, against certain alternatives the

test statistic may have trivial power, a deficiency shared with the K-statistics of Kleibergen

(2002, 2005). To combat this, I propose a simple combination with the sup-score statistic of

Belloni et al. (2012a) based on a thresholding rule.

1.5.1. Local Power Properties

In local neighborhoods of H0, as defined in Assumptions 1.4.3 and 1.4.4, Theorem 1.4.1

implies that the limiting behavior of JK(β0) can be analyzed by examining the behavior

of the Gaussian analog statistic, JKG(β0). Conditional on the vector r̃ = (r̃1, . . . , r̃n),

the distribution of JKG(β0) is nearly non-central χ2
1 with noncentrality parameter µ(r̃),

JKG(β0)|r̃ ∼ A2(r̃) · χ2
1(µ(r̃)):

A(r̃) =

∑n
i=1Var(ηi)Π̃

2
i∑n

i=1{Π2
i (β − β0)2 +Var(ηi)}Π̃2

i

µ2(r̃) = (β − β0)
2

(∑n
i=1ΠiΠ̃i

)2∑n
i=1{Π2

i (β − β0)2 +Var(ηi)}Π̃2
i

.

Under local alternatives, the terms Π2
i (β−β0)

2 → 0 so that A(r̃) → 1 and |µ2(r̃)−µ2
∞(r̃)| → 0,

where

µ2
∞(r̃) = (β − β0)

2

(∑n
i=1ΠiΠ̃i)

2∑n
i=1Var(ηi)Π̃

2
i

. (1.5.1)
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The numerator of µ2
∞(r̃) suggests that power is maximized when the first-stage estimate

Π̃i is close to the true first stage value Πi. Indeed, when errors are homoskedastic µ2
∞(r̃)

is maximized by setting Π̃i = Πi reflecting the classical result of Chamberlain (1987). The

denominator of µ2
∞(r̃) suggests that having first-stage estimates Π̃i with low second moments

may increase power. This guides the recommendation for the use of ℓ2-regularization in

constructing the hat matrix, H.

Unfortunately, estimators of Πi based on ri = xi − ρ(zi)ϵi(β0) may not be close to Πi under

H1. This is because the mean of ri will in general differ from Πi

E[ri] = Πi − ρ(zi)Πi(β − β0)

This deficiency is inherited from the similarity of the JK(β0) statistic to the K-statistic. As

pointed out by Moreira (2001), this need not be an issue as long as there is a fixed constant

C ̸= 0 such that E[ri] = CΠi for all i ∈ [n]. However, in general, this will introduce bias into

the first-stage estimates Π̂i under H1. The power implications of this bias are particularly

pronounced when ρ(zi) is a constant (β − β0) = 1/ρ(zi). In this case, E[ri], and thus E[Π̃i],

will equal zero for each i ∈ [n], and the JK(β0) statistic will select a direction completely at

random to direct power into.1

1.5.2. A Simple Combination Test

To combat this loss of power for tests based on the K-statistic, a common strategy is to

combine the K-statistic with the Anderson-Rubin statistic based on a conditioning statistic.

While the Anderson-Rubin statistic does not have optimal power on its own, it has the benefit

of directing power equally in all directions avoiding the pitfalls of the K-statistic which lacks

power in certain directions. Prominent examples of such tests are the conditional likelihood

ratio test of Moreira (2003), the GMM-M test of Kleibergen (2005), and the minimax regret

1Andrews et al. (2006) and Andrews (2016) point out this deficiency in the context of the K-statistics of
Kleibergen (2002, 2005).
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tests of Andrews (2016). These combinations make use of the fact that the Anderson-Rubin

statistic is asymptotically independent of both the K-statistic and the conditioning statistic.

Unfortunately, the asymptotic validity of these tests under heteroskedasticity is based on

the assumption that d3z/n → 0, which may not reasonably describe many settings discussed

above. Instead, to improve the power of tests based on the jackknife K-statistic, I consider a

simple combination with the sup-score statistic of Belloni et al. (2012a). The test based on

the sup-score statistic (1.5.2) is similar in spirit to the Anderson-Rubin test but controls size

even when dz grows near exponentially as a function of the sample size.

S(β0) := sup
1≤ℓ≤dz

∣∣∣∣∑n
i=1 ϵi(β0)zℓi

(
∑n

i=1 z
2
ℓi)

1/2

∣∣∣∣ (1.5.2)

A size θ ∈ (0, 1) test based on the sup-score statistic rejects whenever S(β0) > cS1−θ where, for

e1, . . . , en iid standard normal and generated independently of the data, cS1−θ is the simulated

multiplier bootstrap critical value:

cS1−θ := (1− θ) quantile of sup
1≤ℓ≤dz

∣∣∣∣∑n
i=1 eiϵi(β0)zℓi
(
∑n

i=1 z
2
ℓi)

1/2

∣∣∣∣ conditional on {(yi, xi, zi)}ni=1.

As with the Anderson-Rubin test, tests based on the sup-score statistic may have suboptimal

power properties in overidentified models as it does not incorporate first-stage information.

However, the sup-score statistic does retain the benefit of directing power evenly in all

directions, avoiding pitfalls of tests based on JK(β0) against certain alternatives.

The combination test will be based on an attempt to detect whether the alternative β is

such that E[Π̂I
i ] = 0 for all i = 1, . . . , n. When this is the case, the test based on JK(β0) will

choose a direction completely at random to direct power into. It would then be optimal for

the researcher to test the null hypothesis using the sup-score statistic. Detection of whether
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E[Π̂I
i ] = 0 is based on the conditioning statistic:

C = max
1≤i≤n

∣∣∣∣
∑

j ̸=i hij r̂j

(
∑

j ̸=i h
2
ij)

1/2

∣∣∣∣. (1.5.3)

Under the assumption that E[Π̂I
i ] = 0 for all i ∈ [n], quantiles of the conditioning statistic

can be simulated analogously to the sup-score critical value. For a new set of e1, . . . , en iid

standard normal and generated independently of the data, and for any θ ∈ (0, 1), define the

conditional quantile

cC1−θ := (1− θ) quantile of max
1≤i≤n

∣∣∣∣
∑

j ̸=i eihij r̂j

(
∑

j ̸=i h
2
ij)

1/2

∣∣∣∣ conditional on {(yi, xi, zi)}ni=1 (1.5.4)

Depending on the value of the conditioning statistic, the thresholding test decides whether

the test based on JK(β0) or one based on S(β0) should be run.

T (β0; τ) =


1{JK(β0) > χ2

1;1−α} if C ≥ τ

1{S(β0) > cS1−α} if C < τ

(1.5.5)

for some cutoff τ , which I take in the simulation study and empirical exercise to be the 75th

quantile of the distribution of C under the assumption that E[Π̂I
i ] = 0,∀i ∈ [n].

To show that the thresholding test controls size, I compare the rejection probability to that

of a Gaussian analog. In addition to JKG(β0), defined in (1.4.1), define the Gaussian analogs

of S(β0) and the conditioning statistic C:

SG(β0) := sup
1≤ℓ≤dz

∣∣∣∣∑n
i=1 ϵ̃i(β0)zℓi

(
∑n

i=1 z
2
ℓi)

1/2

∣∣∣∣ CG := sup
1≤i≤n

∣∣∣∣
∑

j ̸=i hij r̃j

(
∑

j ̸=i h
2
ij)

1/2

∣∣∣∣
where, as in Section 1.4, (ϵ̃i(β0), r̃i)

′ are generated independently of each other and the data

following a Gaussian distribution with the same mean and covariance matrix as (ϵi(β0), ri).

Since Cov(ϵ̃i(β0), r̃i) = 0 under H0, the statistics CG and SG(β0) are independent under the

32



null. Similarly, the null distribution of JKG(β0) is the same conditional on any realization of

(r̃1, . . . , rn); it is also independent of CG under the null. The Gaussian analog thresholding

test decides whether the researcher should run a test based on SG(β0) or JKG(β0) depending

on the value of CG as in (1.5.5).

The test statistics JKG(β0) and SG(β0) are only marginally independent of the conditioning

statistic CG under the null. This limits the ways in which the test statistics can be combined

using the conditioning statistic while still controlling size. This marginal independence in

the Gaussian limit is enough, however, for the asymptotic validity of the thresholding test,

T (β0; τ). To establish that the behavior of the pairs (C, JK(β0)) and (C, S(β0)) can be

approximated by the behavior of (CG, JKG(β0)) and (CG, SG(β0)), respectively, I rely on the

following assumption:

Assumption 1.5.1 (Combination Conditions). Assume that (i) there is a υ ∈ (0, 1]∪{2} such

that ∥ζi∥ψυ ≤ c; (ii) maxi,j | hij
(En[h2ij ])

1/2 |+maxl,i | zli
(En[z2li])

1/2 | ≤ c; and (iii) log7+4/υ(dzn)/n → 0.

Assumption 1.5.1(i) is a strengthening of the moment bound on ri similar to that of Assump-

tion 1.4.4(i). As discussed, while more restrictive than the condition in Assumption 1.4.1,

this still allows for a wide range of potential distributions for ri. Assumption 1.5.1(ii) requires

that the number of observations used to test E[Π̂i] = 0 via the conditioning statistic and the

number of observations used to test the null hypothesis via the sup-score test are both growing

with the sample size. It can be verified by looking at the hat matrix H and the instruments.

Finally, Assumption 1.5.1(iii) is a light requirement on the number of instruments dz needed

for the validity of the sup-score test. It allows the number of instruments to grow near

exponentially as a function of sample size.

Theorem 1.5.1. Suppose Assumptions 1.4.1–1.4.4 and 1.5.1 hold. Then,

1. the test based on T (β0; τ) has asymptotic size α for any choice of cutoff τ , and

2. if E[Π̂I
i ] = 0 for all i ∈ [n], there exist sequences δn ↘ 0 and βn ↘ 0 such that with
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probability at least 1− δn,

sup
θ∈(0,1)

∣∣Pre(C ≤ cC1−θ)− (1− θ)
∣∣ ≤ βn,

where Pre(·) denotes the probability with respect to only the variables e1, . . . , en.

The first part of Theorem 1.5.1 establishes the asymptotic validity of the thresholding test

T (β0; τ) for any choice of cutoff τ . The proof of this statement follows the logic outlined

above. The second part of Theorem 1.5.1 establishes the validity of the multiplier bootstrap

procedure to approximate quantiles of the conditioning statistic. It follows directly from

results in Belloni et al. (2018) after verifying that the conditions needed for error taken on

from estimation of ρ(zi) can treated as negligible under Assumption 1.4.4.

In Section 1.8, I investigate the power properties of the thresholding test via simulation study.

I find that combining the JK(β0) statistic with the sup-score statistic based on C improves

power against distant alternatives and helps alleviate a power decline suffered by the JK(β0)

statistic against a particular set of alternatives.

Remark 1.5.1. As mentioned by Andrews (2016) in the context of the standard K-statistic,

this attempt to rectify the power deficiency via this particular conditioning statistic is not

perfect. In particular, under heteroskedasticity, the means of the partialed-out endogenous

variables, E[ri], may not be scaled versions of the true first stages. However, as long as

E[ri] ̸= 0, one can still expect E[Π̂I
i ] =

∑
j ̸=i hijΠi + (β − β0)

∑
j ̸=i hijρ(zi)Πi to be related

to the true fist stage Πi and for the test to have nontrivial power. Moreover, in light of the

dependence of the consistency result in Proposition 1.4.1 on Assumption 1.4.3(ii), in the case

where E[Π̂i] = 0 for all i ∈ [n] it may be particularly important to avoid using the jackknife

K-statistic to test H0.
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1.6. Analysis with Multiple Endogenous Variables

To analyze the limiting behavior of the test statistic when dx > 1, I follow the basic idea of

Section 1.4, which is to show that quantiles of the jackknife K-statistic can be approximated

by analogous quantiles of the Gaussian statistic:

JKG(β0) := ϵ̃(β0)Π̃(Π̃
′
ϵΠ̃ϵ)

−1Π̃′ϵ̃(β0);

where (ϵ̃i(β0), r̃i)
′ are Gaussian with the same mean and covariance matrix as (ϵi(β0), ri)

′ and

for Π̃ℓi =
∑

j ̸=i hij r̃ℓj define Π̃i := (Π̃1i, . . . , Π̃dxi)
′ ∈ Rdx , Π̃ϵi := (E[ϵ2i (β0)])

1/2Π̃i, and

ϵ̃(β0) := (ϵ̃1(β0), . . . , ϵ̃n(β0))
′ ∈ Rn

Π̃ := (Π̃1, . . . , Π̃n)
′ ∈ Rn×dx

Π̃ϵ := (Π̃ϵ1, . . . , Π̃ϵn)
′ ∈ Rn×dx

As in Section 1.4, notice that, since uncorrelated random variables are independent, under

H0 the vector ϵ̃(β0) is mean zero and independent of (Π̃, Π̃ϵ). Conditional on any realization

of (Π̃, Π̃ϵ) the JKG(β0) statistic then follows a χ2
dx

distribution, and thus, its unconditional

distribution is also χ2
dx
.

In addition to characterizing the local behavior of JK(β0) with multiple endogenous variables,

I show that the thresholding test of Section 1.5.2 can be applied with multiple endogenous

variables with a generalized conditioning statistic.

1.6.1. Modified Interpolation Approach

As with a single endogenous variable, error taken on from the estimation of ρ(zi) prevents

immediate comparison of JK(β0) to JKG(β0). Instead as an intermediate step consider

showing that the quantiles of JKI(β0) can be approximated by corresponding quantiles of
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JKG(β0) where JKI(β0) is an infeasible statistic:

JKI(β0) := ϵ(β0)(Π̂
I)((Π̂I

ϵ )
′(Π̂I

ϵ ))
−1(Π̂I)′ϵ(β0),

for Π̂I and Π̂I
ϵ defined the same way as Π̂ and Π̂ϵ in (1.3.4), respectively, but using the true

values (r1, . . . , rn)
′ in place of their estimates (r̂1, . . . , r̂n)

′.

When there are multiple endogenous variables, dx > 1, I cannot take advantage of the

simplified form of the test statistic to establish this approximation as in Section 1.4. Instead

I deal directly with the test statistics themselves. Consider functions φγ(·) ∈ C3
b (R) that

approximate the indicators 1{· ≤ a}, where a ∈ R is arbitrary and γ is a scaling factor

inversely proportional to the quality of the approximation but positively proportional to the

derivatives of φγ. The goal is to show, for a sequence γn tending to zero, that

E[φγn(JKI(β0))− φγn(JKG(β0))] → 0 (1.6.1)

The classical interpolation argument of Lindeberg (1922) would attempt to show (1.6.1) by

one-by-one replacement of each pair, (ϵi(β0), ri)
′, in the expression of φγn(JKI(β0)) with

its Gaussian analog, (ϵ̃i(β0), r̃i)
′, and bounding of the size of each of these deviations. As

mentioned in Section 1.4, the problem arises as the derivative of the test statistic, JKI(β0),

with respect to terms in the denominator matrix, Π̂′
ϵΠ̂ϵ, may be as large as the inverse of the

minimum eigenvalue of the denominator matrix. When identification is sufficiently weak, the

denominator matrix will have a nonnegligible distribution and the inverse of its minimum

eigenvalue may not have finite moments.

To get around this, I modify the argument by considering a “data-dependent” choice of

approximation parameter γn. This choice of approximation parameter inversely scales with

the determinant of the denominator matrix and thus, since the determinant is the product of
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the eigenvalues, inversely scales with the minimum eigenvalue.1 Geometrically, this approach

can be thought of as “stretching out” the function φγn(·) in directions where the minimum

eigenvalue of the denominator matrix is close to zero. Since the overall derivatives of

φγn(JKI(β0)) with respect to (ϵi(β0), ri)
′ depend on the product of derivatives with respect

to the test statistic and derivatives of φγn(·), which scale inversely with the approximation

parameter, this adjustment of the approximation parameter allows control of the overall

derivative. Details of this approach can be found in Section 1.10.4.

This approach relies on stronger moment conditions, which I detail below. These strengthened

moment conditions are needed mainly needed to bound moments of the determinant of the

denominator matrix. For all ℓ = 1, . . . , dx let ζℓi := vi − ρℓ(zi)ηi, noting that ζℓi = rℓi − E[rℓi].

Recall also the definition of ηi = ϵi − v′i(β − β0), which is equal to ϵi(β0)− E[ϵi(β0)].

Assumption 1.6.1 (Moment Conditions). Assume (i) there are constants c > 1 and

υ ∈ (0, 1] ∪ {2} such that ∥ϵi∥ψa ≤ c and ∥ζℓi∥ψυ ≤ c, and (ii) c−1 ≤ λmin(E[ηiη′i]) ≤

λmax(E[ηiη′i]) ≤ c.

Assumption 1.6.2 (Balanced Design). (i) For any ℓ = 1, . . . , dx let s
−2
ℓ,n = max1≤i≤n E[(Π̂I

ℓi)
2];

then, the minimum eigenvalue of the following matrix is bounded away from zero:

c−1 ≤ λminE
(
sℓ,nsk,n

n

∑n
i=1(Π̂

I
ℓi)(Π̂

I
ki)

)
1≤ℓ≤dx
1≤k≤dx

(ii) maxi sn
∑

j ̸=i h
2
ji ≤ c; and (iii) the following is bounded away from zero:

∑n
k=2 λ

2
k(HH

′)∑n
k=1 λ

2
k(HH

′)
≥ c−1

where λk(HH ′) represents the kth largest eigenvalue of the matrix HH ′.

Assumption 1.6.1(i) strengthens Assumption 1.4.1 to require that the random variables (ηi, ζi),

and thus, by extension, (ϵi(β0), ri) are υ-sub-exponential. As discussed below Assumption 1.4.4

this is more restrictive than the finite sixth moments needed to establish Lemma 1.4.1 but

1The determinant has the benefit of being a smooth function of elements of the matrix. This makes it
nicer to work with than the minimum eigenvalue itself, which loses differentiability when the dimension of its
eigenspace is larger than one.
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still allows for a wide range of possible distributions. Assumption 1.6.1(ii) is a light regularity

condition requiring that the random variables (η1i, . . . , ηdxi) be linearly independent.

Assumption 1.6.2(i) is a natural extension of Assumption 1.4.2(i) to the setting where dx > 1.

It requires that the average second moment of any linear combination of the first-stage

estimates is proportional to the maximum second moment of the same linear combination.

Assumption 1.6.2(ii,iii) are the same conditions as Assumption 1.4.2(ii,iii) and can again

be implicitly thought of as requiring that the maximum leverage of any one observation be

bounded and there be than two effective instruments in the hat matrix. Assumption 1.6.2

thus reduces to Assumption 1.4.2 when dx = 1.

Assumption 1.6.3 (Local Identification). (i) The local power index is bounded P ≤ c for

P =
dx∑
ℓ=1

E
[(

sℓ,n√
n

n∑
i=1

Π̂I
ℓiΠ

′
i(β − β0)

)2]

(ii) E[(sn,ℓ
∑

j ̸=i hjiϵj(β0))
2] ≤ c for all ℓ = 1, . . . , dx.

Lemma 1.6.1 (Infeasible Uniform Approximation). Suppose that Assumptions 1.6.1–1.6.3

hold. Then

sup
a∈R

|Pr(JKI(β0) ≤ a)− Pr(JKG(β0)) ≤ a)| → 0

1.6.2. Limiting Behavior of Test Statistic

Having derived the limiting behavior of the infeasible statistic, I next present a high-level

condition under which estimation error taken on from estimation of ρ(zi) can be treated as

negligible. I then verify this high-level condition for the ℓ1-regularized estimators proposed in

(1.3.2). For any ℓ = 1, . . . , dx define the scaled differences

∆N,ℓ :=
sℓ,n√
n

n∑
i=1

ϵi(β0)(Π̂ℓ,i − Π̂I
ℓ,i)
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∆D,ℓ :=
s2ℓ,n
n

n∑
i=1

ϵ2i (β0)(Π̂
2
ℓ,i − (Π̂I

ℓ,i)
2)

As long as these scaled differences tend to zero, Lemma 1.6.2 shows that the difference

between the feasible and infeasible test statistics converges to zero:

Lemma 1.6.2. Suppose that Assumptions 1.6.1–1.6.3 hold and that (∆N,ℓ,∆D,ℓ) →p 0 for

all ℓ = 1, . . . , dx. Then |JK(β0)− JKI(β0)| →p 0.

As with Lemma 1.4.2, while Lemma 1.6.2 is a simple statement, it is not immediate. In

particular, establishing Lemma 1.6.2 requires showing that λmax(D
−1) is bounded in proba-

bility, where D represents a scaled version of the denominator matrix. This requires some

work as the scaled denominator matrix is not required to converge in distribution to a stable

limit. Instead I directly show that λmax(D
−1) is bounded in probability by showing that

Pr(λmin(D) ≤ δn) → 0 for any sequence δn → 0.

To do this, I first demonstrate that it is sufficient to show that Pr(a′Da ≤ δn) → 0 for any

δn → 0 and fixed a ∈ Sdx−1 = {v ∈ Rdx : ∥v∥ = 1}. I then establish the claim for an arbitrary

choice of a. As in Lemma 1.4.2 I do this by comparing the scaled quadratic form of the

denominator matrix to a Gaussian analog and then establishing the corresponding result

for the Gaussian analog. This corresponding result is again also useful for establishing the

validity of the interpolation approach with a dynamic choice of approximation parameter.

I state conditions under which (∆N,ℓ,∆D,ℓ) →p 0 holds for the ℓ1-regularized estimation

procedure proposed in (1.3.2). These conditions are equivalent to those in Assumption 1.4.4

but hold for each the dx estimation procedures.

Assumption 1.6.4 (Estimation Error). (i) The basis terms b(zi) are bounded, ∥b(zi)∥∞ ≤ C

for all i = 1, . . . , n; (ii) the approximation error satisfies (En[ξ2ℓi])1/2 = o(n−1/2); (iii) the

researcher has access to estimators ϕ̂ℓ of ϕℓ that satisfy log(dbn)
2/(υ∧1)∥ϕ̂ℓ − ϕℓ∥1 →p 0 for

each ℓ ∈ [dx]; and (iv) locally identified in the sense that
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(iva) max1≤ℓ≤dx
1≤k≤db

∣∣E[ sn,ℓ√
n

∑n
i=1

∑
j ̸=i hijϵi(β0)bk(zj)ϵj(β0)

]∣∣ ≤ c

(ivb) max 1≤i≤n
1≤ℓ≤db

|E[sn,ℓ
∑

j ̸=i hijbℓ(zj)ϵj(β0)]| ≤ c.

Under Assumption 1.6.4 the conditions of Lemma 1.6.2 are satisfied. If these conditions

are satisfied, Lemmas 1.6.1 and 1.6.2 can be combined to analyze the behavior of JK(β0)

statistics in local neighborhoods of the null.

Theorem 1.6.1 (Uniform Approximation). Suppose that Assumptions 1.6.1–1.6.4 hold.

Then,

sup
a∈R

|Pr(JK(β0) ≤ a)− Pr(JKG(β0) ≤ a)| → 0

In particular, under H0, JK(β0)⇝ χ2
dx
.

As in Lemma 1.4.1, the result in Theorem 1.6.1 does not require JKG(β0) to have a stable

limiting distribution under H1.

1.6.3. Improving Power against Certain Alternatives

As discussed in Section 1.5.1, tests based on the jackknife K-statistic may suffer from

suboptimal power properties. These properties are particularly bad whenever E[Π̂ℓi] = 0 for

some ℓ ∈ [dx] and all i ∈ [n]. To improve power in this direction, I propose a generalization

of the thresholding test in Section 1.5.2 based on the conditioning statistic C

C := min
1≤ℓ≤dx

max
1≤i≤n

∣∣∣∣
∑

j ̸=i hij r̂ℓj

(
∑

j ̸=i h
2
ij)

1/2

∣∣∣∣ (1.6.2)

The conditioning statistic C attempts to detect whether, for some ℓ ∈ [dx], E[Π̂I
ℓi] = 0

for all i ∈ [n]. Under the assumption that E[Π̂I
ℓi] = 0,∀i ∈ [n], ℓ ∈ [dx], quantiles of C

can be simulated by multiplier bootstrap. Let e1, . . . , en be generated iid standard normal

independent of the data and for any θ ∈ (0, 1), define the conditional bootstrap quantile:

cC1−θ := (1− θ) quantile of min
1≤ℓ≤dx

max
1≤i≤n

∣∣∣∣
∑

j ̸=i ejhij r̂j

(
∑

j ̸=i h
2
ij)

1/2

∣∣∣∣ conditional on {(yi, xi, zi)}ni=1
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Based on the value of the conditioning statistic the researcher can decide whether to run a

test based on JK(β0) or a test based on the sup-score statistic S(β0).

T (β0; τ) :=


1{JK(β0) > χ2

dx;1−α} if C > τ

1{S(β0) > cS1−α} if C ≤ τ

(1.6.3)

As with Theorem 1.5.1, I show the asymptotic validity of the thresholding test by first

establishing that quantiles of (JK(β0), C) and (S(β0), C) can jointly be approximated by

Gaussian analogs and then using the marginal independence of the Gaussian analog testing

and conditioning statistics under the null; (JK(β0) ⊥ C) and (Sβ0) ⊥ C) under H0.

Theorem 1.6.2. Suppose that Assumptions 1.5.1(ii,iii), 1.6.1, 1.6.2, and 1.6.4 hold. Then,

1. the test based on T (β0; τ) has asymptotic size α for any choice of cutoff τ , and

2. if E[Π̂I
ℓi] = 0 for all i ∈ [n] and ℓ ∈ [dx], there exist sequences δn ↘ 0 and βn ↘ 0 such

that with probability at least 1− δn,

sup
θ∈(0,1)

|Pre(C ≤ cC1−θ)− (1− θ)| ≤ βn

where Pre(·) denotes the probability with respect to only the variables e1, . . . , en.

The first part of Theorem 1.6.2 establishes the validity of the test based on the thresholding

statistic for any choice of cutoff τ . In practice, I recommend taking the cutoff, τ , to be the

75th quantile of the distribution of C under the assumption that E[Π̂I
ℓi] = 0 for all ℓ ∈ [dx]

and i ∈ [n]. The second part of Theorem 1.6.2 establishes that this quantile can be simulated

via the multiplier bootstrap procedure described above.
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1.7. Empirical Application

I apply the testing procedures proposed in this paper to the data of Gilchrist and Sands

(2016), who seek to determine the effect of social spillovers in movie consumption. The

sample consists of all 1,671 opening weekend days1 between January 1, 2002 and January 1,

2012. For each opening weekend, the authors observe gross ticket sales for all movies wide

released in theaters in the United States.2 The data are obtained through Box Office Mojo,

a subsidiary of the Internet Movie Database (IMDb). To focus on movies in theaters long

enough for social spillovers to be a relevant factor, the authors consider only movies that

remain in theaters for at least six weeks.

The outcome variables of interest are gross ticket sales of movies that opened in a given

weekend in the second through sixth weeks of their run, while the endogenous variable is the

gross ticket sales of a movie in its opening weekend. To control for seasonal periodicity in

both the supply of and demand for movies, a vector of date controls are included. Formally,

Gilchrist and Sands (2016) are interested in the parameters βw, w = 2, . . . , 7 from the linear

IV model(s):

Sales⊥wi = βwSales
⊥
1i + ϵwi (1.7.1)

where, for i = 1, . . . , 6, Sales⊥wi represents gross national ticket sales, after the partialing out

of date controls and a constant, 7w days after day i, of movies that opened on the opening

weekend of i. The variable Sales⊥7i =
∑6

w=1 Sales
⊥
wi denotes the cumulative national ticket

sales from the second through sixth running weekends of movies who opened in weekend i,

after the partialing out of date controls and a constant. The parameter βw represents the

social spillover effect of strong opening weekend sales on sales in later weeks; more people

seeing a movie on its opening weekend will mean more people telling their friends about the

movie potentially leading to larger sales later on.

1An opening weekend day is a Friday, Saturday, or Sunday of opening weekend.
2A wide released movie is any movie that ever shows on 600 or more screens.
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Because movies with high first-week sales may have high sales in succeeding weeks for

reasons other than word of mouth spillover effects (e.g the movie may receive positive

critical reviews prerelease or be part of a previously successful franchise), the parameter βw

cannot be plausibly recovered from ordinary least squares regression of Sales⊥wi on Sales⊥1i. To

identify the structural parameter, Gilchrist and Sands (2016) employ a vector of nationally

aggregated weather measures. These weather measures reflect the proportion of movie theaters

experiencing a particular type of weather on a particular weekend. The measures include

the proportion of movie theaters experiencing maximum temperatures in 5◦ Fahrenheit bins

on the interval [10◦, 100◦], the proportion of movie theaters experiencing precipitation levels

in 0.25 inch per hour increments on the interval [0, 1.5], and the proportions of theaters

experiencing any type of snow and of theaters experiencing any type of rain.

The nationally aggregated weather conditions on opening weekend days serve as plausibly

exogenous instrumental variables, affecting ticket sales in later weeks only through their

effect on opening-weekend-day sales. Same-day weather conditions may also have an effect

on movie ticket sales: when the weather is particularly nice, people may be more inclined

to engage in outdoor activities while in poorer, weather people may choose to stay indoors

and see a new movie. Putting together the nationally aggregated weather measures leaves

Gilchrist and Sands (2016) with a vector of 52 instrumental variables. After the partialing

out a constant and the date controls, four of these are linearly dependent. I discard these

and work with the remaining 48 partialed-out instruments in my analysis.

To handle the large number of instruments, the authors follow Belloni et al. (2012a) and

employ a post-LASSO estimate of the first stage. In their main specifications, they set the

first-stage penalty parameter so that the number of instrument selected is one, two, or three.

The resulting first-stage F-statistics using the selected instrument(s), 38.80, 25.86, and 20.95,

respectively, seem to indicate strong identification.3 However, the first-stage F-statistic on

the full set of instrumental variables is only 3.80. Moreover, since the LASSO objective is an

3Typical empirical practice is to use the Wald test when the first stage F-statistic is larger than 10.
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ℓ1 penalized version of the OLS loss, using the variables selected by LASSO may mechanically

lead to higher F-statistics even if the underlying relationship between the instruments and

the endogenous variables is weak.

Figure 1.7.1 provides evidence from a simple simulation experiment to demonstrate this. For

the simulation experiment I generate an iid sample of 10 IVs, {Z1i, . . . , Z10i}ni=1 from a normal

distribution with a Toeplitz covariance structure, Cov(Zℓi, Zki) = (1.1)−|j−k|, 1 ≤ j, k ≤ 10.

The endogenous variable is generated to only have a weak relationship with the instruments

Xi =
1√
n

∑10
ℓ=1 0.7 · Zℓi + vi, where the first-stage errors vi are independent standard normals.

From this initial set of 10 instrumental variables I generate an additional 55 technical

instruments by squaring and taking all interactions between variables in the initial set. These

generated instruments are correlated with the initial instruments but do not directly enter

the first stage.

I then set the LASSO penalty so that only a certain number of instruments are chosen

and report the resulting average first stage F-statistics over one thousand simulations. As

seen in Figure 1.7.1, these first-stage F-statistics increase significantly as the number of

selected instruments decreases. While the “true” F-statistic, computed with only the 10

initial instruments directly relevant for the first stage, is only 5.234, the average F-statistic

on the selected variables can be larger than 40. The persistence of this pattern between

sample sizes n = 500 and n = 1000 suggests that this is not a small-sample issue and that

pretesting for weak identifications based on post-LASSO F-statistics may be problematic

generally. Figure 1.7.2 shows how the first stage F-statistic changes with the number of

LASSO-selected variables in the Gilchrist and Sands (2016) data. The pattern is similar to

that seen in the Figure 1.7.1 simulation experiment.

Given a lack of clarity on the strength of identification, I seek to validate the results of

Gilchrist and Sands (2016) using the weak identification testing procedures proposed in this

paper. The setting is particularly suitable for weak IV testing using the jackknife K-statistic.
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Figure 1.7.1: Results from Simulation Experiment. The endogenous variable is
generated to be weakly related to a set of ten initial instruments. I take quadratic
powers and interactions of these ten initial instruments to create an additional 55
technical instruments that do not directly enter the first stage. The LASSO penalty
is then set to select a certain number of variables and I report the resulting average
post-LASSO F-statistics over 1000 simulations. The average F-statistic using only
the relevant ten initial instruments is 5.234 for both n = 500 and n = 1000.
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Figure 1.7.2: First-Stage F-statistic as Function of Number of LASSO-Selected
Variables in the Data of Gilchrist and Sands (2016). When selecting variables using a
cross-validated choice of LASSO penalty parameter, the first-stage F-statistic is 6.42.
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With 48 instruments and a sample size of 1671, d3z = 110,592 ≫ n, making the tests of

Moreira (2003, 2009), Kleibergen (2005), and Andrews (2016) inapplicable. On the other

hand, it is unclear whether asymptotic approximations based on dz → ∞ will accurately

describe the finite-sample distribution of test statistics with 48 instruments. Moreover, since

fluctuations in movie theater attendance seem to be largely driven by either particularly

cold or particularly hot weather (see Figure 4 in Gilchrist and Sands (2016)), the nuisance

parameter ρ(zi) is plausibly approximately sparse.

Table 1.7.1 compares the 95% confidence intervals for β1, . . . , β7 generated by the jackknife K

test to the confidence intervals generated by the sup-score test of Belloni et al. (2012a) and

the jackknife LM test (JLM) test of Matsushita and Otsu (2022). I form these confidence

intervals by running the tests for each β0 on a 300 point grid between zero and two and

inverting the results; a point β0 is included in the 95% confidence interval if the test fails to

reject the null that βw = β0 at level α = 0.05. For the JK(β0) statistic I use the choice of

hat matrix in (1.3.3) and estimate the auxiliary parameter ρ(zi) as in (1.3.2). The penalty

parameter λ is chosen with leave-one-out cross-validation using the cv.glmnet command

from the glmnet package in R (R Core Team, 2021; Friedman et al., 2010). The critical

value for the sup-score statistic S(β0) is simulated using 2,500 bootstrap draws. Confidence

intervals based on the combination test, T (β0; τ), are not directly reported as the pretesting

procedure based on simulating the 75th quantile of C as in (1.5.4) always suggests using the

JK(β0) statistic.

For reference, I also provide point estimates and standard errors for β1, . . . , β7 from Gilchrist

and Sands (2016), Table 2. To facilitate comparison, these point estimates and standard

errors come from a specification that uses all the instruments in the first stage of a 2SLS

procedure. While the Gilchrist and Sands (2016) point estimates are always in the 95%

confidence intervals generated by the JK(β0) and JLM tests, the confidence intervals from the

identification-robust procedures are significantly wider than those generated with the 2SLS
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standard errors. Interestingly, the confidence intervals from inverting the jackknife K-test

tend to be quite similar to the confidence intervals from the JLM test. This is surprising

given the distinct forms of the JK(β0) and the JLM test statistics.

For the parameters β2, β4, β5, and β6, the confidence intervals generated by the sup-score

statistic are empty while the sup-score confidence interval for β2 is nearly empty. This is also

the case when using the jackknife AR-statistic of Crudu et al. (2021) and Mikusheva and

Sun (2021), whose confidence intervals are not reported as they are always empty. With 48

instruments and a single parameter the linear IV model in (1.7.1) is overidentified and as such

the empty confidence intervals could be interpreted as evidence of model misspecification.

For the parameter β7 the confidence interval generated by inverting the sup-score statistic

is not empty and is instead 36% larger than the JK(β0) confidence interval and 41% larger

than the JLM confidence interval. This result suggests that the jackknife K tests and JLM

tests may have better power properties than the sup-score test in this setting.

Parameter β2 β3 β4 β5 β6 β7

Estimate
(s.e.)

0.475
(0.024)

0.269
(0.023)

0.164
(0.017)

0.121
(0.013)

0.093
(0.010)

1.222
(0.074)

JK(β0) [0.436, 0.557] [0.227, 0.334] [0.134, 0.214] [0.100, 0.167] [0.080, 0.134] [1.003, 1.391]
S(β0) ∅ [0.294, 0.334] [0.087, 0.094] ∅ ∅ [0.990, 1.518]
JLM [0.436, 0.557] [0.227, 0.334] [0.134, 0.214] [0.107, 0.167] [0.087, 0.134] [1.010, 1.384]

Table 1.7.1: 95% Confidence Intervals based on inverting various test statistics. Instrument
set used is the same as the Gilchrist and Sands (2016) instrument set less four collinear
instruments; dz = 48 with n = 1, 671. Thresholding test confidence intervals are not reported
as they coincide with confidence intervals for JK(β0).

Tables 1.7.2 and 1.7.3 repeat the analysis of Table 1.7.1 but with alternative instrument sets.

The confidence intervals of Table 1.7.2 use only 5◦ Fahrenheit temperature bins (dz = 36) while

the confidence intervals of Table 1.7.3 include all the instruments used in Table 1.7.1 and all

interactions between the 5◦ Fahrenheit temperature bins and the other weather measures for

a total of 524 instruments.4 For the most part, the confidence intervals generated by inverting

the jackknife K-statistic are similar across Tables 1.7.1-1.7.3. The confidence intervals for

4The instrument set of Table 1.7.3 does not include interactions between temperature bins nor interactions
between other weather measures.
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the jackknife LM statistic however, become much narrower when using the largest set of

instruments is used. This is interesting as the results from the JK(β0) test as well as the

power analysis in Section 1.5 seem to suggest that use of the extra isntruments does not lead

to better first-stage estimates. Interestingly, the JLM confidence intervals in for β6, β7 in

Table 1.7.3 do not contain the point estimates for β6 and β7 from Gilchrist and Sands (2016).

As with Table 1.7.1, Tables 1.7.2 and 1.7.3 do not report confidence intervals from T (β0; τ)

as these always agree with the JK(β0) confidence intervals and do not report jackknife AR

confidence intervals as these are always empty.

Parameter β2 β3 β4 β5 β6 β7

Estimate
(s.e.)

0.475
(0.024)

0.269
(0.023)

0.164
(0.017)

0.121
(0.013)

0.093
(0.010)

1.222
(0.074)

JK(β0) [0.449, 0.597] [0.255, 0.389] [0.148, 0.248] [0.114, 0.194] [0.094, 0.154] [1.086, 1.555]
S(β0) ∅ [0.302, 0.329] ∅ ∅ ∅ ∅
JLM [0.449, 0.597] [0.255, 0.389] [0.154, 0.248] [0.114, 0.194] [0.094, 0.154] [1.092, 1.555]

Table 1.7.2: 95% Confidence Intervals based on inverting various test statistics. Instrument
set used includes only temperatures measures; dz = 36, with n = 1, 671. Thresholding test
condidence intervals are not reported as they coincide with confidence intervals for JK(β0).

Parameter β2 β3 β4 β5 β6 β7

Estimate
(s.e.)

0.475
(0.024)

0.269
(0.023)

0.164
(0.017)

0.121
(0.013)

0.093
(0.010)

1.222
(0.074)

JK(β0) [0.443, 0.604] [0.215, 0.342] [0.094, 0.228] [0.087, 0.154] [0.054, 0.121] [0.916, 1.435]
S(β0) [0.416, 0.477] ∅ ∅ [0.034, 0.121] [0.121, 0.208] [0.918, 1.562]
JLM [0.463, 0.497] [0.268, 0.282] [0.161, 0.174] [0.101, 0.107] [0.063, 0.084] [1.059, 1.137]

Table 1.7.3: 95% Confidence Intervals based on inverting various test statistics. Instrument set
used includes the original instrument set along with interactions of the temperature measures
set with all other aggregated weather measures; dz = 524, with n = 1, 671. Thresholding test
confidence intervals are not reported as they coincide with confidence intervals for JK(β0).

1.8. Simulation Study

In this simulation study, I examine the performance of tests based on the JK(β0) statistic

and compare it with that of other tests that may be used in settings where the number of

instruments is nonnegligible as a fraction of sample size. I consider a reduced-form data-

generating process (DGP) similar to that of Matsushita and Otsu (2022). The outcome
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variable, yi, and endogenous variable, xi, are generated according to

yi = xi + ϵi

xi = Πi + vi

(1.8.1)

where Πi =
1
rn

∑5
k=1

3
4
z̄ki +

1
4
z̄2ki +

1
4
z̄3ki is a transformation of an initial set of instruments

z̄i ∈ R10 generated as described below. The value of rn varies depending on the strength of

identification considered; for strong identification, rn = 1, while under weak identification,

rn = 1/
√
n. To model heteroskedasticity, the errors (ei, vi) are generated ϵi = (1+ϱ1(z̄

2
1i+ z̄22i+

z̄2iz̄3i))e1i, and vi = ϱ2(1 + z̄1i)ϵi + (1− ϱ2)
2e2i where e1i and e2i are generated independently

of each other and other variables in the model according to a Laplace distribution with

location parameter µ = 0 and scale parameter b = 1.1 Since the limiting χ2 distribution of

the jackknife K-statistic is exact when the errors are jointly Gaussian and ρ(zi) is known,

I purposefully avoid normally distributed errors to investigate the quality of asymptotic

approximations to the finite-sample behavior of the test. The parameters ϱ1 and ϱ2 control

the degree of heteroskedasticity and endogeneity, respectively.

In addition to considering the behavior of tests under both weak and strong identification, I

examine the size of the test under three different instrument regimes. In all three regimes, I

begin with an initial set of instruments z̄i = (z̄1i, . . . , z̄10i)
′ generated independently across

indices according to a multivariate Gaussian distribution with Toeplitz covariance structure,

Cov(z̄ℓi, z̄ki) = 2−|ℓ−k|. In the first regime, the full set instruments zi is taken to be equal to

z̄i so that dz = 10. In the second regime, the full set of instruments zi additionally includes

all quadratic and cubic terms, (z2ℓi, z
3
ℓi), ℓ = 1, . . . , 10 so that in total dz = 30. In the third

regime, the full set of instrument includes the initial set of instruments, z̄i, and all quadratic

terms (10 additional terms) and interactions of the initial set of instruments (
(
10
2

)
= 45

1The Laplace distribution is often referred to as a “double exponential” distribution. If X1 and X2 are
independently distributed according Exponential(1), then Y = X1 − X2 has a Laplace distribution with
parameters µ = 0 and b = 1. If X has a Laplace distribution with parameters µ = 0 and b = 1, then
|X| ∼ Exponential(1).
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DGP Testing Procedure

n dz ϱ1 ϱ2 JK(β0) S(β0) T (β0; τ0.3) T (β0; τ0.75) A.Rbn. JAR JLM

200 10 0.2 0.3 0.0516 0.0352 0.0406 0.0406 0.0296 0.0766 0.0502
0.2 0.6 0.0542 0.0306 0.0442 0.0384 0.0258 0.0748 0.0400
0.5 0.3 0.0470 0.0338 0.0416 0.0418 0.0238 0.0784 0.0460
0.5 0.6 0.0506 0.0350 0.0416 0.0390 0.0280 0.0676 0.0384

30 0.2 0.3 0.0570 0.0124 0.0422 0.0200 0.0088 0.1000 0.0382
0.2 0.6 0.0564 0.0126 0.0408 0.0208 0.0124 0.0962 0.0322
0.5 0.3 0.0498 0.0100 0.0366 0.0190 0.0096 0.1090 0.0318
0.5 0.6 0.0562 0.0118 0.0420 0.0216 0.0088 0.1104 0.0292

65 0.2 0.3 0.0542 0.0316 0.0428 0.0370 0.0314 0.0764 0.0420
0.2 0.6 0.0532 0.0366 0.0418 0.0398 0.0250 0.0780 0.0376
0.5 0.3 0.0474 0.0308 0.0388 0.0362 0.0244 0.0748 0.0354
0.5 0.6 0.0484 0.0324 0.0366 0.0388 0.0282 0.0708 0.0402

500 10 0.2 0.3 0.0590 0.0468 0.0478 0.0516 0.0376 0.0652 0.0452
0.2 0.6 0.0530 0.0420 0.0460 0.0466 0.0366 0.0692 0.0434
0.5 0.3 0.0496 0.0370 0.0408 0.0368 0.0338 0.0710 0.0464
0.5 0.6 0.0512 0.0426 0.0456 0.0438 0.0334 0.0696 0.0404

30 0.2 0.3 0.0522 0.0202 0.0386 0.0278 0.0238 0.0818 0.0322
0.2 0.6 0.0558 0.0208 0.0408 0.0310 0.0266 0.0888 0.0342
0.5 0.3 0.0554 0.0178 0.0392 0.0280 0.0174 0.0940 0.0272
0.5 0.6 0.0570 0.0156 0.0426 0.0236 0.0206 0.0984 0.0280

65 0.2 0.3 0.0542 0.0372 0.0434 0.0432 0.0384 0.0754 0.0464
0.2 0.6 0.0584 0.0442 0.0482 0.0470 0.0334 0.0676 0.0438
0.5 0.3 0.0614 0.0460 0.0504 0.0496 0.0316 0.0708 0.0434
0.5 0.6 0.0526 0.0378 0.0434 0.0420 0.0298 0.0692 0.0358

Table 1.8.1: Simulated Size of Identification and Heteroskedasticity Robust Tests under Weak
Identification. Each DGP is simulated 5000 times. Critical values of the sup-score statistic and
quantiles of the conditioning statistic are calculated using 1000 multiplier bootstrap simulations.

additional terms), so that in total dz = 65. Under each regime, the full set of instruments is

passed to the test statistics with no indication about which instruments correspond to the

initial set, and thus no indication about which instruments are relevant to the DGP.

I compare the simulated size of the jackknife K test and to the performance of the sup-score
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DGP Testing Procedure

n dz ϱ1 ϱ2 JK(β0) S(β0) T (β0; τ0.3) T (β0; τ0.75) A.Rbn. JAR JLM

200 10 0.2 0.3 0.0474 0.0420 0.0474 0.0468 0.0308 0.0728 0.0424
0.2 0.6 0.0512 0.0386 0.0512 0.0506 0.0304 0.0764 0.0378
0.5 0.3 0.0416 0.0318 0.0414 0.0414 0.0248 0.0794 0.0428
0.5 0.6 0.0446 0.0342 0.0446 0.0442 0.0244 0.0806 0.0384

30 0.2 0.3 0.0482 0.0122 0.0448 0.0264 0.0110 0.1048 0.0370
0.2 0.6 0.0498 0.0120 0.0480 0.0312 0.0118 0.0980 0.0378
0.5 0.3 0.0456 0.0126 0.0410 0.0262 0.0082 0.1146 0.0268
0.5 0.6 0.0482 0.0110 0.0474 0.0308 0.0094 0.1090 0.0302

65 0.2 0.3 0.0528 0.0380 0.0526 0.0510 0.0276 0.0696 0.0460
0.2 0.6 0.0464 0.0360 0.0464 0.0468 0.0302 0.0728 0.0416
0.5 0.3 0.0482 0.0298 0.0480 0.0466 0.0246 0.0738 0.0412
0.5 0.6 0.0396 0.0320 0.0390 0.0386 0.0258 0.0748 0.0356

500 10 0.2 0.3 0.0524 0.0444 0.0524 0.0524 0.0394 0.0684 0.0472
0.2 0.6 0.0476 0.0430 0.0476 0.0476 0.0400 0.0644 0.0490
0.5 0.3 0.0434 0.0410 0.0434 0.0434 0.0340 0.0702 0.0404
0.5 0.6 0.0448 0.0382 0.0448 0.0448 0.0350 0.0736 0.0432

30 0.2 0.3 0.0502 0.0214 0.0502 0.0498 0.0240 0.0854 0.0368
0.2 0.6 0.0522 0.0208 0.0522 0.0524 0.0224 0.0858 0.0392
0.5 0.3 0.0456 0.0202 0.0456 0.0434 0.0220 0.0918 0.0264
0.5 0.6 0.0500 0.0186 0.0500 0.0498 0.0204 0.0924 0.0268

65 0.2 0.3 0.0490 0.0426 0.0490 0.0490 0.0350 0.0742 0.0472
0.2 0.6 0.0522 0.0458 0.0522 0.0522 0.0436 0.0652 0.0442
0.5 0.3 0.0542 0.0476 0.0542 0.0542 0.0294 0.0712 0.0446
0.5 0.6 0.0438 0.0420 0.0438 0.0438 0.0306 0.0666 0.0500

Table 1.8.2: Simulated Size of Identification and Heteroskedasticity Robust Tests under Strong
Identification. Each DGP is simulated 5000 times. Critical values of the sup-score statistic and
quantiles of the conditioning statistic are calculated using 1000 multiplier bootstrap simulations.

test, S(β0), of Belloni et al. (2012a), the thresholding test introduced in Section 1.5.2, the

standard Anderson-Rubin (A.Rbn.) test of Anderson and Rubin (1949) and Staiger and

Stock (1997), the jackknife AR test (JAR) of Crudu et al. (2021) and Mikusheva and Sun

(2021), and the jackknife LM test (JLM) of Matsushita and Otsu (2022). To estimate the

parameter ρ(zi), I implement the ℓ1-penalized procedure of (1.3.2) via the glmnet package in
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Figure 1.8.1: Calibrated Local Power Curves under Intermediate Identification Strength and 65
Instruments. Sample size is 500 and rejection probability is calculated on a grid of 100 (β0 − β)
points between -4 and 4. At each point the DGP is simulated 2000 times.

R (Friedman et al., 2010). The penalty parameter λ is selected via tenfold cross-validation. I

use the full vector of instruments as the basis to approximate ρ(zi). For the jackknife AR

test I use cross-fit estimates of test statistic variances proposed and shown to improve power

by Mikusheva and Sun (2021). Critical values of the sup-score and conditioning statistic are

simulated with the procedures described in Section 1.5 with 1000 bootstrap replications. For
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the combination test cutoff, I consider two different quantiles of the conditioning statistic

under the assumption that E[Π̂I
i ] = 0 for all i ∈ [n]; τ0.3 corresponding to the 30th quantile

and τ0.75 corresponding to the 75th quantile.

Tables 1.8.1 and 1.8.2 report the simulated size for all tests under weak and strong identifica-

tion, respectively. One can see that the JK(β0) statistic has nearly exact size in almost all

the setups considered. In contrast, the jackknife AR test seems to overreject in nearly all the

simulation setups considered. This is also the case in the simulation study of Matsushita and

Otsu (2022) and so may be an artifact of the similarity of my simulation design to theirs.

The sup-score, jackknife AR, and jackknife LM test all seem to have particularly poor

performance under both weak and strong identification when dz = 30. This is the setup

with the most correlation between the instruments. While tests based on the jackknife AR

statistic can have a simulated size that is nearly double the nominal size in this setting, both

the sup-score and and jackknife LM tests appear to be conservative. The size of the sup-score

test is always under 0.025 while the size of the JLM test can be under half of the nominal

size. Notably, the size properties of the sup-score test do seem to improve under both weak

and strong identification when the sample size increases from n = 200 to n = 500. This is in

line with theoretical results showing that the sup-score test has exact asymptotic size under

standard conditions. In contrast, the size properties of the jackknife LM test do not seem to

improve when the sample size increases and indeed worsen for three out of the four DGPs

considered under both weak and strong identification. This suggests that the requirement

of dz → ∞ may be important for the quality of finite-sample approximation by its limiting

distribution.

The thresholding test seems to control size in all the setups considered. However, under

weak identification the thresholding test appears to inherit the conservative nature of the

sup-score test, even in the “large” sample size regime of n = 500. This is not the case

under strong identification, suggesting that the thresholding-test is choosing to run tests
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based on the JK(β0) with high probability in this regime. This behavior is similar to the

conditional combination tests of Moreira (2003), Andrews (2016) which weigh the K-statistic

more under strong identification. This behavior is optimal as the K-statistic yields effecient

inference when the data is informative about the structural parameter (Andrews et al., 2004,

2006). When errors are homoskedastic and the number of instruments is fixed, the jackknife

K-statistic can also be shown to yield effecient inference under strong identification.

Figure 1.8.1 plots calibrated local power curves under an intermediate-strength identification

where the first stage is in a n−1/3 neighborhood of zero, dz = 65, ϱ1 ∈ {0.2, 0.5} and

ϱ2 ∈ {0.3, 0.6}. The critical value of each test is set to simulated 95th quantile of the

distribution of the corresponding test-statistic under H0. I compare the calibrated local

power curves of the JK(β0) test, the combination test with cutoff τ0.75, the jackknife AR test,

the Jackknife LM test, and the sup-score test. The jackknife K-test appears to have stronger

power than the jackknife AR, jackknife LM, and sup-score tests in local neighborhoods of

the null as well as for negative values of (β0 − β). For values of (β0 − β) larger than 1.5,

tests based on the jackknife K-statistic appear to suffer from a loss of power as described in

Section 1.5. This power decline appears to be largerly ameliorated by combining the jackknife

K-statistic with the sup-score statistic and the thresholding test appears to have good power

properties over all alternatives considered. However, tests based on the jackknife AR or

jackknife LM statistic may still provide better power than the threshholding test for very

positive values of (β0 − β).

In order to consider the effect of correlated instruments on the power properties of the test in

a setting with plausibly many instruments, I additionally examine local power under a fourth

instrument regime. This setup adds the ten cubic terms z3ℓi, ℓ = 1, . . . , 10 to the interactions

and quadratic terms of the third instrument regime for a total of 75 instruments, dz = 75.

Section 1.12 provides the simulated sizes of tests under this fourth regime. Figure 1.8.2 plots

calibrated local power curves under this fourth instrument regime. While all tests have lower
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Figure 1.8.2: Calibrated Local Power Curves under Intermediate identification Strength and 75
Instruments. Sample size is 500 and rejection power is calculated on a grid of 100 (β0 − β)
points between -4 and 4. At each point the DGP is simulated 2000 times.

power in this regime than in the regime considered in Figure 1.8.1, the many instrument

jackknife AR and jackknife LM tests appear to face a steeper power decline than tests based

on the jackknife K-statistic or the thresholding statistic.

These results should not be interpreted as critiques of the benchmark testing procedures of
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Anderson and Rubin (1949), Staiger and Stock (1997), Belloni et al. (2012a), Crudu et al.

(2021), Mikusheva and Sun (2021), and Matsushita and Otsu (2022), whose work I rely on

and was inspired by.

1.9. Conclusion

I propose a new test for the structural parameter in a linear instrumental variables model.

This test is based on a jackknife version of the K-statistic and the limiting behavior of the

test is analyzed via a novel direct Gaussian approximation argument. I show that, as long as

an auxiliary parameter can be consistently estimated, the test is robust to both the strength

of identification and the number of instruments; the limiting distribution of the test statistic

does not depend on either of these factors. Consistency of the auxiliary parameter can be

achieved under approximate sparsity using simple-to-implement ℓ1-penalized methods.

I characterize the behavior of the jackknife K-statistic in local neighborhoods of the null.

To address a power deficiency that tests based on jackknife K-statistic inherit from their

non-jackknife namesakes, I propose a testing procedure that decides whether the researcher

should run a test via the jackknife K-statistic or one via the sup-score statistic based on the

value of a conditioning statistic. While this combination may not fully address the power

decline, I show that it works well in a simulation study and leave further refinements to

future work.
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1.10. Appendix: Proofs of Main Results

1.10.1. Proofs of Results in Section 1.4

Proof of Lemma 1.4.1

The statement supa<0

∣∣Pr(JKI(β0) ≤ a) − Pr(JKG(β0) ≤ a)
∣∣ = 0 is immediate since both

JKI(β0) and JKG(β0) are always weakly positive. It thus suffices to show

sup
a≥0

∣∣Pr(JKI(β0) ≤ a)− Pr(JKG(β0) ≤ a)
∣∣→ 0

Before proceeding, we will introduce some notation. Let H̃ = snH and h̃ij = snhij, where sn

is as in Assumption 1.4.2. Recall that h̃ii = 0 and define

N :=
1√
n

n∑
i=1

ϵi(β0)
n∑
j=1

h̃ijrj Ñ :=
1√
n

n∑
i=1

ϵ̃i(β0)
n∑
j=1

h̃ij r̃j

D :=
1

n

n∑
i=1

ϵ2i (β0)
( n∑
j=1

h̃ijrj
)2

D̃ :=
1

n

n∑
i=1

κ2
i (β0)

( n∑
j=1

h̃ij r̃j
)2

where (ϵ̃i(β0), r̃i) are jointly Gaussian with the same mean and covariance matrix as (ϵi(β0), ri)

and κ2
i (β0) = E[ϵ2i (β0)]. Under this notation we can write JKI(β0) =

N2

D
1{D>0} and JKG(β0) =

Ñ2

D̃
. Dealing with these forms of the statistics is difficult for the interpolation argument,

since the denominator is random. Instead, we will notice that since D = 0 =⇒ N = 0 and

Pr(D̃ > 0) = 1, for any a ≥ 0 we can rewrite the events

{JKI(β0) ≤ a} = {N2 − aD ≤ 0} and {JKG(β0) ≤ a} a.s
= {Ñ2 − aD̃ ≤ 0} (1.10.1)

With this in mind define

JKa := N2 − aD and J̃K
a
:= Ñ2 − aD̃
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Showing Lemma 1.4.1 is then equivalent to showing that supa |Pr(JKa ≤ 0) − Pr(J̃K
a ≤

0)| → 0. We do so in a few lemmas, the final result being shown in Lemma 1.10.6 at the

bottom of this subsection.

Lemma 1.10.1 (Lindeberg Interpolation). Suppose that Assumptions 1.4.1–1.4.3 hold. Let

φ(·) : R → R be such that φ(·) ∈ C3
b (R) with L2(φ) = supx |φ′′(x)| and L3(φ) = supx |φ′′′(x)|.

Then, there is a constant M that depends only on the constant c such that:

|E[φ(JKa)− φ(J̃K
a
)]| ≤ M(a3 ∨ 1)√

n
(L2(φ) + L3(φ))

Proof of Lemma 1.10.1. Begin by defining the leave-one-out numerator, denominator, and

decomposed statistics

N−i :=
1√
n

∑
j ̸=i

ϵ̇j(β0)
∑
ℓ̸=i

h̃jℓṙℓ D−i :=
1

n

∑
j ̸=i

ϵ̈2j(β0)
(∑
ℓ ̸=i

h̃jℓṙℓ
)2

JK−i := N2
−i − aD−i

where for each ℓ ∈ [n], ϵ̇ℓ(β0) is equal to ϵℓ(β0) if ℓ > i and ϵ̃ℓ(β0) if ℓ < i, ṙℓ is equal to rℓ

if ℓ > i and r̃ℓ if ℓ < i, and ϵ̈2ℓ(β0) is equal to κ2
ℓ(β0) if ℓ < i and ϵ2ℓ(β0) if ℓ > i. While the

definitions of ϵ̇ℓ, ṙℓ, and ϵ̈ℓ depend on i because we will be considering only one deviation at a

time, we will supress the dependence of these variables on i to simplify notation.
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Next, define the one-step deviations

∆1i := ϵi(β0)
n∑
j=1

h̃ij ṙj + ri

n∑
j=1

h̃jiϵ̇j(β0)

∆̃1i := ϵ̃i(β0)
n∑
j=1

h̃ij ṙj + r̃i

n∑
j=1

h̃jiϵ̇j(β0)

∆2i := aϵ2i (β0)(
n∑
j=1

h̃ij ṙj)
2 + ar2i

n∑
j=1

h̃2
jiϵ̈

2
j(β0)︸ ︷︷ ︸

∆a
2i

+2ari

n∑
j=1

ϵ̈2j(β0)
∑
ℓ̸=i

h̃jℓh̃jiṙℓ︸ ︷︷ ︸
∆b

2i

∆̃2i := aκ2
i (β0)(

n∑
j=1

h̃ij ṙj)
2 + ar̃2i

n∑
j=1

h̃2
jiϵ̈

2
j(β0)︸ ︷︷ ︸

∆a
2i

+2ar̃i

n∑
j=1

ϵ̈2j(β0)
∑
ℓ ̸=i

h̃jℓh̃jiṙℓ︸ ︷︷ ︸
∆̃b

2i

(1.10.2)

These one-step deviations contain all the terms associated with observation i in the expression

of the numerator and denominator of the test statistics. To demonstrate, note that these

one-step deviations satisfy N−1 + n−1/2∆11 = N and aD−1 + n−1∆21 = aD as

N =
1√
n

n∑
i=1

ϵi(β0)
n∑
j=1

h̃ijrj

=
1√
n

∑
j>1

ϵj(β0)
n∑
ℓ=1

h̃jℓrj + ϵ1(β0)
1√
n

∑
j>1

h̃1jrj

=
1√
n

∑
j>1

ϵj(β0)
{
h̃j1r1 +

∑
ℓ>1

hjℓrℓ

}
+ ϵ1(β0)

1√
n

∑
j>1

h̃1jrj

=
1√
n

∑
j>1

ϵj(β0)
∑
ℓ>1

hjℓrℓ︸ ︷︷ ︸
N−1

+ ϵ1(β0)
1√
n

∑
j>1

h̃1jrj + r1
1√
n

∑
j>1

h̃j1ϵj(β0)︸ ︷︷ ︸
n−1/2∆11

and

D =
1

n

n∑
i=1

ϵ2i (β0)
( n∑
j=1

h̃ijrj)
2

=
1

n

∑
j>1

ϵ2j(β0)
( n∑
ℓ=1

h̃jℓrℓ
)2

+ ϵ21(β0)
1

n

(∑
j>1

h̃1jrj
)2
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=
1

n

∑
j>1

ϵ2j(β0)
(
h̃j1r1 +

∑
ℓ̸=1

h̃ℓjrℓ
)2

+ ϵ21(β0)
1

n

(∑
j>1

h̃1jrj
)2

=
1

n

∑
j>1

ϵ2j(β0)
(∑
ℓ>1

h̃ℓ,jrℓ
)2

︸ ︷︷ ︸
D−1

+ ϵ21(β0)
1

n

(∑
j>1

h̃1jrj
)2

+ r21
1

n

∑
j>1

h̃2
j1ϵ

2
j(β0) + 2r1

1

n

∑
j>1

ϵ2j(β0)
∑
ℓ>1

h̃ℓjrℓ︸ ︷︷ ︸
(an)−1∆21

Using the one-step deviations, write the difference E[φ(Ka)− φ(K̃a)] as a telescoping sum,

one by one replacing (∆1i,∆2i) with (∆̃1i, ∆̃2i) in the expressions of JKa = N2 − aD until we

arrive at J̃K
a
= Ñ2 − aD̃.

E[φ(JKa)− φ(J̃K
a
)] =

n∑
i=1

E[φ(JK−i + n−1/2N−i∆1i + n−1∆2
1i − n−1∆2i)]

− E[φ(JK−i + n−1/2N−i∆̃1i + n−1∆̃2
1i − n−1∆̃2i)]

(1.10.3)

Via a second-order Taylor expansion, we can write each term inside the summand

E[Termi] = E[φ′(JK−i){2n−1/2N−i(∆1i − ∆̃1i) + n−1(∆2
1i −∆2

1i)− n−1(∆2i − ∆̃2i)}]

+ E[φ′′(JK−i){4n−1N2
−i(∆

2
1i − ∆̃2

1i) + n−2(∆4
1i − ∆̃4

1i)− n−2(∆2
2i −∆2

2i)}]

+ E[φ′′(JK−i){4n−3/2N−i(∆
3
1i − ∆̃3

1i) + 4n−3/2N−i(∆1i∆2i − ∆̃1i∆̃2i)}]

+ E[φ′′(JK−i){2n−2(∆2
1i∆2i − ∆̃2

1i∆̃2i)}] +Ri + R̃i

where Ri and R̃i are remainder terms to be examined later. Let F−i denote the sigma algebra

generated by all random variables whose index is not equal to i. Since (a) for each i ∈ [n] the

mean and covariance matrix of (ϵi(β0), ri) is the same as the mean and covariance matrix of

(ϵ̃i(β0), r̃i), (b) E[ϵ2i (β0)] = κ2
i (β0), and (c) random variables are independent across indices,

61



we have that

E[∆1i − ∆̃1i|F−i] = E[∆2
1i − ∆̃2

1i|F−i] = E[∆2i − ∆̃2i|F−i]

= E[∆b
2i − ∆̃b

2i|F−i] = E[∆1i∆
b
2i − ∆̃1i∆̃

b
2i|F−i] = 0

(1.10.4)

Using this we can simplify the prior display

E[Termi] = n−2E[φ′′(JK−i)(∆
4
1i −∆4

1i)]︸ ︷︷ ︸
Ai

−n−2E[φ′′(JK−i)((∆
a
2i)

2 − (∆̃a
2i)

2)]︸ ︷︷ ︸
Bi

− 2n−2E[φ′′(JK−i)(∆
a
2i∆

b
2i − ∆̃a

2i∆̃
b
2i)]︸ ︷︷ ︸

Ci

+4n−3/2E[φ′′(JK−i)N−i(∆
3
1i − ∆̃3

1i)]︸ ︷︷ ︸
Di

+ 4n−3/2E[φ′′(JK−i)N−i(∆1i∆
a
2i − ∆̃1i∆̃

a
2i)]︸ ︷︷ ︸

Ei

+2n−2E[φ′′(JK−i)(∆
2
1i∆2i − ∆̃2

1i∆̃2i)︸ ︷︷ ︸
Fi

+Ri + R̃i

where for some J̄K1i and J̄K2i we can write

Ri = E[φ′′′(J̄K1i){n−1/2N−i∆1i + n−1∆2
1i + n−1∆2i}3]

R̃i = E[φ′′′(J̄K2i){n−1/2N−i∆̃1i + n−1∆̃2
1i + n−1∆̃2i}3]

Applications of Lemmas 1.10.18 and 1.10.19, Cauchy-Schwarz, and the generalized Hölder

inequality,1 will allow us to bound for a fixed constant M that depends only on c,

|Ai| ≤
M

n2
L2(φ) |Bi| ≤

Ma2

n2
L2(φ) |Ci| ≤

Ma2

n3/2
L2(φ)

|Di| ≤
M

n3/2
L2(φ) |Ei| ≤

M(a ∨ 1)

n3/2
L2(φ) |Fi| ≤

Ma3

n3/2
L2(φ)

and

|Ri|+ |R̃i| ≤
M

n3/2
L3(φ) +

Ma3

n3
L3(φ)

1E[|fgk|]3 ≤ E[|f |3]E[|g|3]E[|k|3]
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Combining these bounds and summing over n gives the result.

Lemma 1.10.2 (Gaussian Denominator Anti-Concentration). Suppose that Assumptions 1.4.1

and 1.4.2 hold. Then for any sequence δn ↘ 0,

Pr(D̃ ≤ δn) → 0

Proof of Lemma 1.10.2. By Assumption 1.4.1, we know that κ2
i (β0) ∈ [c−1, c] for all i =

1, . . . , n so that D̃ ≥ c−1

n

∑n
i=1(
∑n

j=1 h̃ijrj)
2. Then

Pr(D̃ ≤ δn) ≤ Pr
( 1
cn

n∑
i=1

( n∑
j=1

h̃ij r̃j
)2 ≤ δ̃n

)
= Pr

(
∥r̃′H̄1/2∥2 ≤ δn

)
(1.10.5)

where r̃ := (r̃1, . . . , r̃n)
′ ∈ Rn and H̄ := 1

cn
H̃H̃ ′ ∈ Rn×n. H̄ is symmetric and positive

semidefinite so we can take H̄1/2 to be its symmetric square root, which will also be symmetric

and positive semidefinite (and thus not necessarily equal to
√

c
n
H̃). I provide two bounds on

(1.10.5), the first of which corresponds to the strong identification setting while the second

corresponds to weak identification.

First Bound. Since δn ↘ 0 we will eventually have that δn < c−1/2. When this happens we

can bound using Chebyshev’s inequality and c−1 < E[r′H̄r] < c:

Pr(r̃′H̄r̃ ≤ δn) = Pr(r̃′H̄r̃ − E[r̃′H̄r̃] ≤ δn − E[r̃′H̄r̃])

≤ Pr(r̃′H̄r̃ − E[r′H̄r] ≥ E[r̃′H̄r̃]− δn)

≤ Pr(|r̃′H̄r̃ − E[r′H̄r]| ≥ 1

2c
)

≤ 2cVar(r′H̄r) (1.10.6)

Under strong identification we will expect Var(r′H̄r) → 0.
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Second Bound. For the second bound, we will directly use bounds on the density of Gaussian

quadratic forms from Götze et al. (2019). The vector r′H̄1/2 is Gaussian with covariance

matrix Σr = H̄1/2RH̄1/2 where R = diag(Var(r1), . . . ,Var(rn)). Let Λ1 =
∑n

k=1 λ
2
k(Σr) and

Λ2 =
∑n

k=2 λ
2
k(Σr). By Assumption 1.4.2 and Lemma 1.10.37, Λ2/Λ1 is bounded away from

zero. Using Theorem 1.10.4 we can then bound for some constant C > 0

Pr(∥r′H∥1/2 ≤ δn) ≤ CδnΛ
−1
1

(1.10.7)

Combining Bounds. To combine the bounds in (1.10.6) and (1.10.7), first write

Var(r̃′H̄r̃) = 2trace(RH̄RH̄) + 4µrH̄RH̄µr

for µr = E[r]. Using the fact that H̄1/2RH̄1/2 is symmetric positive definite we can bound:

µ′
rH̄RH̄µr = (µ′

rH̄
1/2)′(H̄1/2RH̄1/2)(H̄1/2µr)

≤ λ1(H̄
1/2RH̄1/2)∥µ′

rH̄
1/2∥2

=
√

λ2
1(H̄

1/2RH̄1/2)∥µ′
rH̄

1/2∥2

=
√

λ1(H̄1/2RH̄RH̄1/2)∥µ′
rH̄

1/2∥2

≤
√
trace(H̄1/2RH̄RH̄1/2)∥µ′

rH̄
1/2∥2

=
√
trace(RH̄RH̄)∥µ′

rH̄∥2 ≤ c2Λ
1/2
1 (1.10.8)

where the first equality uses the symmetric square root of H̄, the first inequality comes from

Courant-Fischer minmax principle and the third equality uses the fact that the eigenvalues of

A2 are the squares of the eigenvalues of A, for any generic symmetric matrix A. The second

inequality comes from the fact that a matrix times its transpose is always positive semidefinite

and that for M psd, λ1(M) ≤
√

trace(M2) since the trace is the sum of the (weakly positive)

eigenvalues. The final inequality uses µ′
rH̄µr =

c
n

∑n
i=1(E[Π̃i])

2 ≤ c
n

∑n
i=1 E[(Π̃i)

2] ≤ c2.
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Combining (1.10.6), (1.10.7), and (1.10.8) gives us

Pr(D̃ ≤ δn) ≤ Cmin
{
Λ1 + Λ

1/2
1 , δnΛ

−1
1

}
(1.10.9)

Regardless of the behavior of Λ1, this tends to zero as δn → 0.

Remark 1.10.1 (Final Anticoncentration Bound). To give an explicit bound on (1.10.9) in

terms of δn we note that, if x⋆ solves

x⋆ +
√
x⋆ =

c

x⋆

then for any x ≥ 0, min{x+
√
x, c/x} ≤ x⋆+

√
x⋆. Using this, notice that (x⋆)2 + (x⋆)3/2 = c

so that x⋆ ≤
√
c. This allows us to bound (1.10.9)

Pr(D̃ ≤ δn) ≤ Cmin{Λ1 + Λ
1/2
1 , δnΛ

−1
1 } ≤ C(δ1/2n + δ1/4n )

Lemma 1.10.3. Let Xn and Yn be two sequences of random variables and let Wn = Xn/Yn.

Then for any c ∈ R and any δ > 0:

Pr(0 ≤ Xn − cYn ≤ δ) ≤ Pr(c ≤ Wn ≤ δ1/2 + c) + Pr(Yn ≤ δ1/2)

and

Pr(−δ ≤ Xn − cYn ≤ 0) ≤ Pr(c− δ1/2 ≤ Wn ≤ c) + Pr(Yn ≤ δ1/2)

Proof. Define the event Ω = {Yn ≥ δ1/2}. We can bound

Pr(0 ≤ Xn − cYn ≤ δ) = Pr(cYn ≤ Xn ≤ δ + cYn)

≤ Pr({cYn ≤ Xn ≤ δ + cYn} ∩ Ω) + Pr(Ωc)
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= Pr({c ≤ Wn ≤ δ/Yn + c} ∩ Ω) + Pr(Ωc)

≤ Pr(c ≤ Wn ≤ δ1/2 + c) + Pr(Ωc)

The second statement of the lemma follows symmetrically.

Lemma 1.10.4. Suppose that Xn and Yn are sequences of (real-valued) random variables

such that Yn = Op(1) and for any x ∈ R

|Pr(Xn ≤ x)− Pr(Yn ≤ x)| → 0

Then Xn = Op(1).

Proof. Pick any ϵ > 0, and let Mϵ/2 be such that Pr(Yn > Mϵ/2) ≤ ϵ/2 for all n ≥ Nϵ. In

addition, let Ñϵ be such that |Pr(Xn ≤ Mϵ/2)− Pr(Yn ≤ Mϵ/2)| ≤ ϵ/2 for all n ≥ Ñϵ. Then

for all n ≥ Nϵ ∨ Ñϵ/2,

Pr(Xn > Mϵ/2) ≤ Pr(Yn > Mϵ/2) + |Pr(Xn > Mϵ/2)− Pr(Yn > Mϵ/2)|

≤ ϵ/2 + |Pr(Yn ≤ Mϵ/2)− Pr(Xn ≤ Mϵ/2)|

≤ ϵ/2 + ϵ/2 = ϵ

Lemma 1.10.5. Suppose that Xn and Yn are sequences of (real-valued) random variables

such that Yn = Op(1) and for any ∆ ∈ R

sup
x≤∆

|Pr(Xn ≤ x)− Pr(Yn ≤ x)| → 0

Then supx∈R |Pr(Xn ≤ x)− Pr(Yn ≤ x)| → 0.

Proof. Pick an ϵ > 0. By Lemma 1.10.4, Xn = Op(1). Pick a constant Mϵ/3 such that
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Pr(Xn > Mϵ/3) ≤ ϵ/3 and Pr(Yn > Mϵ/3) ≤ ϵ/3. Then for any x ∈ R we can bound

|Pr(Xn ≤ x)− Pr(Yn ≤ x)| by considering two cases:

Case 1. If x ≤ Mϵ/3, then,

|Pr(Xn ≤ x)− Pr(Yn ≤ x)| ≤ sup
x≤Mϵ/3

|Pr(Xn ≤ x)− Pr(Yn ≤ x)| (1.10.10)

by hypothesis, there is an Nϵ such that for n ≥ Nϵ the RHS of (1.10.10) is less than ϵ.

Case 2. If x > Mϵ/3 we can bound

|Pr(Xn ≤ x)− Pr(Yn ≤ x)| ≤ |Pr(Xn ≤ Mϵ/3)− Pr(Yn ≤ Mϵ/3)|

+ |Pr(Mϵ/3 < Xn ≤ x)− Pr(Mϵ/3 < Yn ≤ x)|

≤ |Pr(Xn ≤ Mϵ/3)− Pr(Yn ≤ Mϵ/3)|+ ϵ/3 + ϵ/3 (1.10.11)

By hypothesis, there is an Nϵ/3 such that |Pr(Xn ≤ Mϵ/3)− Pr(Yn ≤ Nϵ/3)| ≤ ϵ/3.

WLOG Nϵ/3 ≥ Nϵ. Combining the bounds in (1.10.10) and (1.10.11), for any n ≥ Nϵ/3 and

any x ∈ R,

|Pr(Xn ≤ x)− Pr(Yn ≤ x)| ≤ ϵ

Since this holds for all x, this gives the result.

Lemma 1.10.6 (Approximate Distribution). Under Assumptions 1.4.1–1.4.3

sup
a∈R

|Pr(JKI(β0) ≤ a)− Pr(JKG(β0) ≤ a)| → 0

Proof of Lemma 1.10.6. First, fix a ∆ ≥ 0 and consider any a ≤ ∆. As in Lemma 1.10.2, let

φ̃(·) : R → R be three times continuously differentiable with bounded derivatives up to the

third order such that φ̃(x) is 1 if x ≤ 0, φ̃(x) is decreasing if x ∈ (0, 1), and φ̃(x) is zero if

x ≥ 1. Consider a sequence γn ↘ 0 slowly enough such that (γ−2
n + γ−3

n )/
√
n → 0 and define
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φn(x) = φ̃( x
γn
).

By Lemma 1.10.1 we can write for some constant M that depends only on ∆:

Pr(JKI(β0) ≤ a) = Pr(JKa ≤ 0) ≤ E[φn(JKa)]

≤ E[φn(J̃K
a
)] +

M√
n
(γ2
n + γ−3

n )

≤ Pr(J̃K
a ≤ 0) + Pr(0 ≤ Ñ2 − aD̃ ≤ γn) +

M√
n
(γ2
n + γ−3

n )

Applying Lemma 1.10.3 and {J̃Ka ≤ 0} = {JKG(β0) ≤ a} gives:

≤ Pr(JKG(β0) ≤ a) + Pr(a ≤ Ñ2/D̃ ≤ a+ γ1/2
n )︸ ︷︷ ︸

A

+ Pr(D̃ ≤ γ1/2
n )︸ ︷︷ ︸

B

+
M√
n
(γ−2
n + γ−3

n )

By Lemma 1.10.20, we can bound A ≤ Mγ
1/2
n while by Lemma 1.10.2 and Remark 1.10.1,

B ≤ Mγ
1/4
n . Since γn is chosen such that M√

n
(γ−2
n + γ−3

n ) → 0 we can conclude that

Pr(JKI(β0) ≤ a) ≤ Pr(JKG(β0) ≤ a) + o(1). A symmetric argument with φn(x) = φ̃(1− x
γn
)

gives a lower bound so that, in total

Pr(JKG(β0) ≤ a)− e ≤ Pr(JKI(β0) ≤ a) ≤ Pr(JKG(β0) ≤ a) + e

where

e = M
(γ−2

n + γ−3
n√

n
+ γ1/2

n + γ1/4
n

)
= o(1)

Since the constant M depends only on ∆, this gives us that for any fixed ∆ > 0

sup
a≤∆

∣∣Pr(JKI(β0) ≤ a)− Pr(JKG(β0) ≤ a)
∣∣ ≤ C

(γ−2
n + γ−3

n√
n

+ γ1/2
n + γ1/4

n

)
= o(1) (1.10.12)

where C is a constant that depends only on ∆. Noting that the numerator JKG(β0) is
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Op(1) under Assumption 1.4.3 while the inverse of the denominator of JKG(β0) is Op(1) by

Lemma 1.10.2, we can apply Lemma 1.10.5. This step shows that the result in (1.10.12)

implies that the approximation error tends to zero uniformly over the real line, which is the

desired result. Optimizing over γn in the expression of (1.10.12) yields the rate of decay in

Remark 1.4.3.

Proof of Proposition 1.4.1

Proof of Proposition 1.4.1. As at the top of Section 1.10.1, recall that h̃ii = 0, and define

N =
1√
n

n∑
i=1

ϵi(β0)
n∑
j=1

h̃ijrj D =
1

n

n∑
i=1

ϵ2i (β0)(
n∑
j=1

h̃ijrj)
2

where h̃ij = snhij. The goal is to show that Pr(JKI(β0) ≤ a) → 0 for any fixed a ∈ R+. The

event {JKI(β0) ≤ a} is equivalently expressed {N2 − aD ≤ 0} so that Pr(JK(β0) ≤ a) =

Pr(N2 − aD ≤ 0). Under Assumptions 1.4.1 and 1.4.2, aD = Op(1) so by Lemma 1.10.8 it

suffices to show that Pr(|N | ≤ M) → 0 for any fixed M ≥ 0. By assumption P = E[N2] → ∞

so we move to show that Var(N) = O(1) and then apply Lemma 1.10.7 to conclude. To this

end, recall the definition of ηi = ϵi(β0)−E[ϵi(β0)], define µi = E[ϵi(β0)] = Πi(β − β0), and let

N1 :=
1√
n

n∑
i=1

ηi

n∑
j=1

h̃ijrj N2 :=
1√
n

n∑
i=1

µi

n∑
j=1

h̃ijrj

Notice that N = N1 +N2. To show that Var(N1) = O(1), define ai = ηi
∑n

j=1 h̃ijrj. Since

E[ηiri] = 0, we have that Cov(ai,aj) = 0 for i ̸= j. Thus,

Var(N1) = Var(
n∑
i=1

ai/
√
n) = n−1

n∑
i=1

Var(ai) = n−1

n∑
i=1

Var(ηi)E[(
n∑
j=1

h̃ijrj)
2] ≤ c2

where the final inequality follows from an upper bound on Var(ηi) from Assumption 1.4.1

and by definition of h̃ij = snhij from Assumption 1.4.2.
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To show that Var(N2) = O(1) let bi =
∑n

j=1 h̃jiΠ̃j(β − β0) and rewrite N2 =
1√
n

∑n
i=1 ribi.

Under Assumption 1.4.3(ii), |bi| = |E[
∑n

j=1 h̃jiϵj(β0)]| ≤ c1/2, so we can bound

Var(N2) = Var(
n∑
i=1

ribi/
√
n) = n−1

n∑
i=1

b2i Var(ri) ≤ c2

Since Var(N) ≤ 2Var(N1) + 2Var(N2), we can conclude.

Lemma 1.10.7. Suppose that Xn is a sequence of random variables such that E[X2
n] → ∞

while Var(Xn) = O(1). Then, for any M ≥ 0, Pr(|Xn| ≤ M) → 0.

Proof. First, note that Var(|Xn|) ≤ Var(Xn) so Var(|Xn|) = O(1). Moreover Var(|Xn|) =

E[X2
n]− (E[|Xn|])2, so E[X2

n] → ∞ and Var(|Xn|) = O(1) implies that E[|Xn|] → ∞. Then,

Pr(|Xn| ≤ M) = Pr(|Xn| − E[|Xn|] ≤ M − E[|Xn|])

= Pr(E[|Xn|]− |Xn| ≥ E[|Xn| −M)

≤ Pr(|E[|Xn|]− |Xn|| ≥ E[|Xn|]−M)

≤ Var(|Xn|)
E[|Xn|]−M

Since Var(|Xn|) = O(1) but E[|Xn|] → ∞, this tends to zero.

Lemma 1.10.8. Suppose that Xn and Yn are random variables such that Yn = Op(1) and,

for any M ≥ 0, Pr(|Xn| ≤ M) → 0. Then, for any M1 ≥ 0, Pr(X2
n − Yn ≤ M1) → 0.

Proof. Pick any ϵ > 0. We want to show that, eventually, Pr(X2
n − Yn > M1) ≥ 1 − ϵ.

Since Yn = Op(1), there is a fixed constant MY such that Pr(|Yn| ≤ MY ) ≥ 1 − ϵ/2.

Since Pr(|Xn| ≤ M) → 0 for any M ≥ 0, there exists an NX such that, for n ≥ NX ,

Pr(X2
n ≤ M1 + MY ) ≤ ϵ/2. A union bound completes the argument (on the eventuality
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n ≥ NX):

Pr(X2
n − Yn > M) ≥ Pr(X2

n > M1 +MY , |Yn| ≤ MY )

= 1− Pr({X2
n < M1 +MY } ∪ {|Yn| > MY })

≥ 1− ϵ/2− ϵ/2 = 1− ϵ

Proof of Lemma 1.4.2

Proof of Lemma 1.4.2. For N and D defined at the top of Section 1.10.1 define N̂ = N +∆N

and D̂ = D +∆D. We can then write JK(β0) = N̂2/D̂ and rewrite

JK(β0)− JKI(β0) =
2ND∆N +D∆N −N2∆D

D2 +D∆D

Apply Lemma 1.10.19 to see that N2 = Op(1) while under Assumption 1.4.2, D = Op(1).

Thus, 2ND∆n +D∆n −N2∆D = op(1). Meanwhile, by Lemma 1.10.11, Pr(D2 ≤ δn) → 0

for any sequence δn → 0. Apply Lemma 1.10.9 to conclude.

Lemma 1.10.9. Let An, Bn and Yn be sequences of random variables such that An = op(1)

and Bn = op(1). If Yn is such that for any sequence δn → 0, Pr(|Yn| ≤ δn) → 0, then,

∣∣∣∣ An

Yn +Bn

∣∣∣∣ = op(1)

Proof. Fix any ϵ > 0. We show that

∣∣∣∣ An

Yn +Bn

∣∣∣∣ ≤ ϵ

on an intersection of events whose probability tends to one. By Lemma 1.10.33 there is a
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sequence ϵn ↘ 0 such that

Pr(|An| ≤ ϵn) → 1 and Pr(ϵ|Bn| ≤ ϵn) → 1

Consider the intersection of events Ω1 ∩ Ω2 ∩ Ω3 where

Ω1 := {ϵ|Yn| ≥ 2ϵn}, Ω2 := {ϵ|Bn| ≤ ϵn}, Ω3 := {|An| ≤ ϵn}

By assumption, Pr(Ω1 ∩ Ω2 ∩ Ω3) → 1. On this event |Yn +Bn| ≥ ϵn/ϵ > 0 and |An| ≤ ϵn so

that |An/(Yn +Bn)| ≤ |ϵn/(ϵn/ϵ)| ≤ ϵ.

Lemma 1.10.10 (Denominator Interpolation). Suppose that Assumptions 1.4.1 and 1.4.2

hold. Let φ(·) : R → R be such that φ(·) ∈ C3
b (R) with L2(φ) = supx |φ′′(x)| and L3(φ) =

supx |φ′′′(x)|. Then there is a constant M that depends only on the constant c such that:

|E[φ(D)− φ(D̃)]| ≤ M√
n
(L2(φ) + L3(φ))

Proof of Lemma 1.10.10. We inherit the definitions of D−i, ∆
a
2i, ∆

b
2i, ∆̃

a
2i, and ∆̃b

2i from the

proof of Lemma 1.10.1 with a = 1. Then, as before we can write

E[φ(D)− φ(D̃)] =
n∑
i=1

E[φ(D−i + n−1∆a
2i + n−1∆b

2i)]

− E[φ(D−i + n−1∆̃a
2i + n−1∆̃b

2i)]

We examine each term via a second-order Taylor expansion around D−i

E[Termi] =
1

n
E[φ′(D−i){(∆a

2i − ∆̃a
2i) + (∆b

2i − ∆̃b
2i)}]

+
1

2n2
E[φ′′(D−i){((∆a

2i)
2 − (∆̃a

2i)
2) + 2(∆a

2i∆
b
2i − ∆̃a

2i∆̃
b
2i) + ((∆b

2i)
2 − (∆b

2i)
2)}]

+Ri + R̃i
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where Ri and R̃i are remainder terms to be analyzed later. Using the restrictions in (1.10.4)

we can simplify the above display:

E[Termi] = 0.5n−2E[φ′′(D−i)((∆
a
2i)

2 − (∆̃a
2i)

2)]︸ ︷︷ ︸
Ȧi

+n−2E[φ′′(K−i)(∆
a
2i∆

b
2i − ∆̃a

2i∆̃
b
2i)︸ ︷︷ ︸

Ḃi

+Ri + R̃i

Using Lemma 1.10.18 we can bound

|Ai| ≤
M

n2
L2(φ) |Bi| ≤

M

n3/2
L2(φ)

For some D̄1i and D̄2i we can express

Ri = E[φ′′′(D̄1i){n−1∆a
2i +∆b

2i}3] ≤
M

n3/2
L3(φ) +

M

n3
L3(φ)

Ri = E[φ′′′(D̄2i){n−1∆̃a
2i + ∆̃b

2i}3] ≤
M

n3/2
L3(φ) +

M

n3
L3(φ)

where the inequalities again come from applications of Lemma 1.10.18. Combining these

bounds and summing over the n terms gives the result.

Lemma 1.10.11 (Denominator anti-concentration). Suppose that Assumptions 1.4.1 and 1.4.2

hold. Then, for any sequence δn ↘ 0,

Pr(D ≤ δn) → 0

Proof of Lemma 1.10.11. Let φ̃(·) : R → R be three times continuously differentiable with

bounded derivatives up to the third order such that φ̃(x) is 1 if x ≤ 0, φ̃(x) is decreasing

if x ∈ (0, 1), and φ̃(x) is zero if x ≥ 1. Consider a second sequence γn ↘ 0 slowly enough

such that (γ−2
n + γ−3

n )/
√
n → 0. Take φn(x) = φ̃(x−δn

γn
). By Lemma 1.10.10 and since φ̃(·)

has bounded derivatives up to the third order, there is a fixed constant M1 > 0 that depends
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only on c such that

Pr(D ≤ δn) ≤ Pr(D̃ ≤ δn + γn) +
M1√
n
(γ−2
n + γ−3

n )

Let γn be a sequence tending to zero such that (γ−2
n +γ−3

n )/
√
n → 0 and conclude by applying

Lemma 1.10.2.

Proof of Lemma 1.4.3

For any j = 1, . . . , db define the matrix Bj = diag(bj(z1), . . . , bj(zn)) and collect observations

ϵ(β0) = (ϵ1(β0), . . . , ϵn(β0))
′ ∈ Rn, r = (r1, . . . , rn)

′ ∈ Rn, r̂ = (r̂1, . . . , r̂n)
′ ∈ Rn, and ξ =

(ξ1, . . . , ξn)
′ ∈ Rn. In addition, collect bϵ = (bϵ1, . . . , bϵn) ∈ Rdb×n where bϵi = ϵi(β0)b(zi) ∈ Rdb .

Finally, let H = sn√
n
H, H̃ = snH and h̃ij = snhij.

Step 1: ∆N →p 0. To show that ∆N →p 0 write

∆N = |ϵ(β0)
′H(r̂ − r)|

= |ϵ(β0)
′H(b′ϵγ̂ − b′ϵγ)− ϵ(β0)

′Hξ|

≤ max
1≤j≤db

|ϵ(β0)
′HBjϵ(β0)|∥γ̂ − γ∥1︸ ︷︷ ︸

A

+ ∥ϵ(β0)
′H∥2∥ξ2∥2︸ ︷︷ ︸
B

To bound A we move to apply Theorem 1.10.1 to the quadratic form ϵ(β0)
′(HBj)ϵ(β0). First

notice that, under Assumption 1.4.4(v), we have

∥E[Hbjϵ(β0)]∥2 =
1

n

n∑
i=1

(E[sn
∑
j ̸=i

hijb(zj)ϵj(β0)])
2 ≤ c2

In the notation of Theorem 1.10.1 this give us an upper bound on ∥Ef (1)(X)∥HS. Next,

Assumption 1.4.2 gives us that the Frobenius norm of H = sn√
n
H is bounded, since the

rows of snH are square summable,
∑

j ̸=i(snhij)
2 ≤ c for all i = 1, . . . , n. In the notation of

Theorem 1.10.1 this gives us an upper bound on ∥Ef (2)(X)∥HS. Applying Theorem 1.10.1
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and a union bound then gives us that

max
1≤j≤db

|ϵ(β0)
′HBjϵ(β0)− E[ϵ(β0)

′HBjϵ(β0)]| = Op(log
2/a(db)) (1.10.13)

Since max1≤j≤db |E[ϵ(β0)
′HBjϵ(β0)]| ≤ c under Assumption 1.4.4(v), (1.10.13) gives that

max
1≤j≤db

|ϵ(β0)
′HBjϵ(β0)| = Op(log

2/a(db))

Since log2/a(db)∥γ̂ − γ∥1 →p 0 by assumption, this yields that A →p 0.

To bound B see that ∥ϵ(β0)
′H∥2 = s2n

n

∑n
i=1(
∑

j ̸=i hijϵi(β0))
2 = Op(1) under Assump-

tion 1.4.3(ii) while under Assumption 1.4.4 ∥ξ∥2 = o(1).

Step 2: ∆D →p 0. Notice that a2 − b2 = 2b(a− b) + (a− b)2 and bound:

|∆D| ≤
1

n

n∑
i=1

ϵ2i (β0)
∣∣∑
j ̸=i

h̃ijrj
∣∣

︸ ︷︷ ︸
E

×max
i

|
∑
j ̸=i

h̃ij(r̂j − rj)|

+
1

n

n∑
i=1

ϵ2i (β0)︸ ︷︷ ︸
F

×max
i

|
∑
j ̸=i

h̃ij(r̂j − rj)|2

Since both E = Op(1) and F = Op(1) under Assumptions 1.4.1 and 1.4.2, it suffices to show

that

max
i

|
∑
j ̸=i

h̃ij(r̂j − rj)| →p 0

To do so write

max
i

∣∣∑
j ̸=i

h̃ij{r̂j − rj}
∣∣ ≤ max

1≤i≤n
1≤j≤db

∣∣∑
j ̸=i

h̃ijb(zj)ϵj(β0)
∣∣∥γ̂ − γ∥1︸ ︷︷ ︸

A

+ max
1≤i≤n
1≤j≤db

∣∣∑
j ̸=i

h̃ijb(zj)ξj
∣∣

︸ ︷︷ ︸
B

To bound A, note that by Assumption 1.4.4(v) maxi,j |E[
∑

j ̸=i h̃ijb(zj)ϵj(β0)| ≤ c. Under
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Assumptions 1.4.2 and 1.4.4(ii), maxi,j
∑

j ̸=i h̃
2
ijb

2(zj) ≤ c2 so we can apply Theorem 1.10.1

and a union bound to obtain that

max
1≤i≤n
1≤j≤db

∣∣∑
j ̸=i

h̃ijb(zj)ϵj(β0)
∣∣ = Op(log

1/a(dbn))

Along with the implied rate on ∥γ̂ − γ∥1 from Assumption 1.4.4(iv) this shows that A →p 0.

To show that B → 0, use Cauchy-Schwarz,
∑

j ̸=i h̃
2
ijb

2(zj) ≤ c for any i, j by Assumptions 1.4.2

and 1.4.4(ii), and
∑n

i=1 ξ
2
i = o(1) by Assumption 1.4.4(iii).

Proof of Theorem 1.4.1

Apply Lemma 1.10.12 with Xn = JK(β0), Yn = JKI(β0) and Zn = JKG(β0). The density of

Zn is uniformly bounded by Lemma 1.10.20.

Lemma 1.10.12. Let Xn, Yn, and Zn be sequences of random variables such that |Xn−Yn| →p

0, the distribution of Zn is absolutely continuous with respect to Lebesgue measure and the

density functions of Zn are uniformly bounded and supa∈R |Pr(Yn ≤ a)− Pr(Zn ≤ a)| → 0.

Then supa∈R |Pr(Xn ≤ a)− Pr(Zn ≤ a)| → 0.

Proof. For any a ∈ R and ϵ > 0 we have that {Xn ≤ a} ⊆ {Yn ≤ a+ ϵ} ∪ {|Xn − Yn| > ϵ};

thus, by applying union bound and rearranging we obtain:

Pr(Xn ≤ a) ≤ Pr(Yn ≤ a+ ϵ) + Pr(|Yn −Xn| > ϵ)

≤ Pr(Zn ≤ a+ ϵ) + |Pr(Yn ≤ a+ ϵ)− Pr(Zn ≤ a+ ϵ)|

+ Pr(|Yn −Xn| > ϵ)

so that

Pr(Xn ≤ a)− Pr(Zn ≤ a) ≤ Pr(a < Zn ≤ a+ ϵ) + |Pr(Yn ≤ a+ ϵ)− Pr(Zn ≤ a+ ϵ)|
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+ Pr(|Yn −Xn| > ϵ)

Let ϵn → 0 be a sequence tending to zero such that Pr(|Xn−Yn| > ϵn) → 0 (Lemma 1.10.33).

Applying a supremum to the above display yields

sup
a∈R

Pr(Xn ≤ a)− Pr(Zn ≤ a) ≤ sup
a∈R

Pr(a < Zn ≤ a+ ϵn)

+ sup
a∈R

|Pr(Yn ≤ a+ ϵn)− Pr(Zn ≤ a+ ϵn)|

+ Pr(|Yn −Xn| > ϵn)

The first term goes to zero as ϵn → 0 since Zn has a uniformly bounded density; the second

term goes to zero by supa∈R |Pr(Yn ≤ a)− Pr(Zn ≤ a)| → 0 and the third term goes to zero

by definition of ϵn and |Yn −Xn| →p 0.

We can apply a symmetric argument to show that supa∈R Pr(Zn ≤ a)− Pr(Xn ≤ a) ≤ o(1)

which completes the claim of the lemma.

1.10.2. Proofs of Results in Section 1.5

The statement of Theorem 1.5.1 relies on showing

sup
(a1,a2)∈R2

∣∣Pr(JK(β0) ≤ a1, C ≤ a2)− Pr(JKG(β0) ≤ a1, CG ≤ a2)
∣∣→ 0

and sup
(a1,a2)∈R2

∣∣Pr(S(β0) ≤ a1, C ≤ a2)− Pr(SG(β0) ≤ a1, CG ≤ a2)
∣∣→ 0

In particular, since (JKG(β0) ⊥ CG) and (SG(β0) ⊥ CG) under H0, showing the above will

imply the test based on T (β0; τ) has asymptotic size α for any choice of cutoff τ . The

second line in the above display follows imediately from Theorem 1.10.5 after verifying

Assumption 1.10.2, below.

The first line in the top display relies on a joint interpolation of the infeasible JKI(β0) test
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statistic and the infeasible conditioning statistic CI , which could be constructed if ρ(zi) was

known to the researcher.

CI := max
1≤i≤n

∣∣ 1√
n

n∑
i=1

hijrj
/
(n−1

n∑
i=1

h2
ij)

1/2
∣∣ (1.10.14)

This joint interpolation argument is rather involved however, and deferred to Section 1.10.4.

The interpolation argument for the conditioning statistic very closely follows the results

in Chernozhukov et al. (2013). The results of Section 1.5 rely on showing that the dif-

ference between C and CI can be treated as negligible. This in turn reduces to verifying

Assumption 1.10.2, which is done in Lemma 1.10.13, below.

Lemma 1.10.13. Suppose that Assumption 1.4.4 holds. Then there are sequences δn ↘ 0,

βn ↘ 0 such that

Pr
(
max
i∈[n]

n−1

n∑
j=1

ḣ2
ij(r̂j − rj)

2 > δ2n/ log
2(n)

)
≤ βn

where ḣij = hij/(n
−1
∑n

j=1 h
2
ij)

1/2.

Proof. In view of Lemma 1.10.33 it suffices to show

max
1≤i≤n

1

n

n∑
j=1

ḣ2
ij(r̂i − ri)

2 = op(1/ log
2(n)) (1.10.15)

Notice that we can bound

max
1≤i≤n

1

n

n∑
j=1

(r̂i − ri)
2 = max

1≤i≤n

∣∣(γ̂ − γ)′n−1

n∑
j=1

ϵ2j(β0)b(zi)b(zj)
′(γ̂ − γ)

∣∣
+ max

1≤i≤n
|n−1

n∑
j=1

ḣ2
ijξ

2
j |

≤ max
1≤i≤n

1≤j,k≤db

∣∣n−1

n∑
j=1

ϵ2j(β0)bj(zj)bk(zj)
∣∣

︸ ︷︷ ︸
Aijk

∥γ̂ − γ∥21
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+ n−1/2 max
1≤i≤n

(n−1

n∑
j=1

ḣ4
ij)

1/2(
n∑
j=1

ξ4j )
1/2

Under Assumption 1.4.4(i,ii) each Aijk is υ-sub-exponential by Theorem 1.10.1 (that is

∥Aijk∥ψυ is bounded). An application of Lemma 1.10.34 then yields that maxi,j,k |Aijk| =

Op(log
1/ν(dbn)). Along with Assumption 1.4.4(iv) this gives that maxi,j,k |Aijk|∥γ̂ − γ∥1 =

Op(log
−3/(v∧1)(dbn)) = op(log

−2(n)). Meanwhile by definition of ḣij , maxi(n
−1
∑n

j=1 ḣ
4
ij)

1/2 =

O(1) while by Assumption 1.4.4(iii) (
∑n

j=1 ξ
4
j )

1/2 = o(1). Since log2(n)/
√
n → 0 this shows

(1.10.15).

Proof of Theorem 1.5.1

The first result in Theorem 1.5.1 with JK(β0) and C replaced with their infeasible analogs

JKI(β0) and CI follows from the argument in Section 1.10.4. After verifying that |JK(β0)−

JK(β0)| →p 0 via Lemma 1.4.3 and that Assumption 1.10.2 is satisfied via Lemma 1.10.13

follow the same steps as in the proof of Belloni et al. (2018), Theorem 2.1 to see that

approximation result holds for the feasible JK(β0) and C.

For the second statement, I show that the conditions of Theorem 1.10.6 are satisfied. To

see that Assumption 1.10.1(i,ii) is satisfied under Assumption 1.4.1 use (i) the definition of

ḣij = hij
/
(n−1

∑n
j=1 h

2
ij)

1/2; (ii) that the variance of each rj is bounded away from zero and

(iii) that the fourth moments of rj are bounded from above. Assumption 1.10.1(iii) is satisfied

with Bn = log1/υ(n) by Assumption 1.5.1(i,iii) and Lemma 1.10.34. Finally Assumption 1.10.2

is satisfied by applying Lemma 1.10.13. Apply Theorem 1.10.6 to conclude.

1.10.3. Proofs of Results in Section 1.6

Throughout this section, define the scaled elements of the infeasible and gaussian numerators

and denominators

Nℓ =
sn,ℓ√
n

n∑
i=1

ϵi(β0)
n∑
j=1

hijrj Ñℓ =
sn,ℓ√
n

n∑
i=1

ϵ̃i(β0)
n∑
j=1

hij r̃j
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Dℓk =
sℓ,nsm,k

n

n∑
i=1

ϵ2i (β0)(

n∑
j=1

hijrℓj)(

n∑
j=1

hijrkj) D̃ℓk =
sℓ,nsm,k

n

n∑
i=1

ϵ2i (β0)(

n∑
j=1

hij r̃ℓj)(

n∑
j=1

hij r̃kj)

Collect these in N = (N1, . . . Ndx)
′ ∈ Rdx , Ñ = (Ñ1, . . . , Ñdx)

′ ∈ Rdx , D = [Dℓk]ℓ,k∈[dx] ∈

Rdx×dx , and D̃ = [D̃ℓk]ℓ,k∈[dx] ∈ Rdx×dx . After multiplying by scaling matrix diag(s1,n, . . . , sdx,n)

and the inverse of the scaling matrix we rewrite the infeasible and gaussian test statistics

JKI(β0) = N ′D−1N1{λmin(D)>0} JKG(β0) = Ñ ′D̃−1Ñ

These are the representations of the test statsitics we will largely work through in this section.

Proof of Lemma 1.6.1

Lemma 1.6.1 follows immediately from the joint gaussian approximation argument established

in Section 1.10.4.

Proof of Lemma 1.6.2

Define the matrix ∆D = [(∆D)ℓk]ℓ,k∈[dx] and the vector ∆N = [(∆N)ℓ]ℓ∈[dx] where

(∆D)ℓk :=
sℓ,nsk,n

n

n∑
i=1

ϵ2i (β0)
(
Π̂ℓ,iΠ̂k,i − Π̂I

ℓ,iΠ̂
I
k,i

)
(∆N)ℓ :=

sℓ,n√
n

n∑
i=1

ϵi(β0)(Π̂ℓ,i − Π̂I
ℓ,i)

Under the conditions of Lemma 1.6.2 we have that ∥∆D∥ →p 0 and ∥∆N∥ →p 0. Using this

notation, we can write the infeasible version of the test statistic as JKI(β0) = N ′D−1N while

the feasible version is written JK(β0) = (N +∆N )
′(D +∆D)

−1(N +∆N ). Add and subtract

D−1 to get

JK(β0) =
(
N +∆N

)′(
(D +∆D)

−1 ±D−1
)(
N +∆N

)
= JKI(β0) +N ′((D +∆D)

−1 −D−1
)
N +∆N

(
(D +∆D)

−1 −D−1)N
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+∆′
N

(
(D +∆D)

−1 −D−1
)
∆N +N ′D−1∆N +∆ND

−1N +∆ND
−1∆N

Via Lemma 1.10.15 we have that ∥D−1∥ = (λmin(D))−1 = Op(1) and by assumption we have

that ∆N →p 0. It therefore suffices to show that

∥(D +∆D)
−1 −D−1∥ →p 0 (1.10.16)

To do so, we can use the following equality from Horn and Johnson (2012), p. 381.

∥(D +∆D)
−1 −D−1∥ ≤ ∥D−1∥2∥∆D∥

1− ∥D−1∆D∥

Since ∥D−1∥ = Op(1) and ∆D →p 0, this gives (1.10.16).

Proof of Theorem 1.6.1

Under Assumption 1.6.4, the conditions of Lemma 1.6.2 can be verified following the same

steps as the proof of Lemma 1.4.3. Combine Lemma 1.6.2 and Lemma 1.6.1 as in the proof

of Theorem 1.4.1 to conclude.

Proof of Theorem 1.6.2

Follows from the same argument as the proof of Theorem 1.6.1 using the joint interpolation

of JK(β0) and C established in Section 1.10.4.

1.10.4. Joint Gaussian Approximation of JK(β0) and C

The main results of Sections 1.5 and 1.6 rely on a joint interpolation of the conditioning and

testing statistics as well as a joint interpolation of the conditioning and testing statistics.

The joint interpolation of JK(β0) and the conditioning statistic C is given in Section 1.10.4

after introducing some notation in Section 1.10.4. The joint gaussian approximation of S(β0)

and C follows immediately from results in Belloni et al. (2018), Chernozhukov et al. (2017).
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The result is presented below for the general form of the JK(β0) statistic under H0 however

the proof strategy is very similar when using the decomposed form of JK(β0) when dx = 1.

This proof is available on request.

Notation

Jackknife Statistic Definitions. Define h̃ℓ,ij = sn,ℓhij for each ℓ = 1, . . . , dx and the

scaled leave-one-out quasi-numerator and denominators

U−i =

[
1√
n

n∑
j=1

ϵ̇j(β0)
∑
k ̸=i

h̃ℓ,jkṙℓk

]
1≤ℓ≤dx

∈ Rdx

D−i =

[
1

n

n∑
j=1

ϵ̈2i (β0)
(∑
k ̸=i

h̃ℓ,ij ṙℓj
)(∑

k ̸=i

h̃ℓ,ij ṙmj
)]

1≤ℓ≤d
1≤m≤dx

∈ Rdx×dx

where ϵ̇j(β0) is equal to ϵ̃j(β0) if j < i and equal to ϵj(β0) if j > i, ṙℓj is equal to r̃ℓj if j < i

and equal to rj if j > i, and ϵ̈j(β0) is equal to E[ϵ2j(β0)] if j < i and equal to ϵj(β0) if j > i.

As in the proof of Lemma 1.4.1 while the definitions of ϵ̇j(β0), ṙℓj, and ϵ̈j(β0) depend on i

this dependence is suppressed to conslidate notation and since we only consider one step

deviations at a time.

Also define the one step deviations

∆Ui =
[
ϵi(β0)

n∑
j=1

h̃ℓ,ij ṙℓj + rℓi

n∑
j=1

h̃ℓ,jiϵ̇j(β0)
]
1≤ℓ≤d ∈ Rd

∆̃Ui =
[
ϵ̃i(β0)

n∑
j=1

h̃ℓ,ij ṙℓj + r̃ℓi

n∑
j=1

h̃ℓ,jiϵ̇j(β0)
]
1≤ℓ≤d ∈ Rd

∆Di =
[
(∆a

Di)ℓm
]
1≤ℓ≤d
1≤m≤d︸ ︷︷ ︸

∆a
Di

+
[
(∆b

Di)ℓm
]
1≤ℓ≤d
1≤m≤d︸ ︷︷ ︸

∆b
Di

∆̃Di =
[
(∆̃a

Di)ℓm
]
1≤ℓ≤d
1≤m≤d︸ ︷︷ ︸

∆̃a
Di

+
[
(∆̃b

Di)ℓm
]
1≤ℓ≤d
1≤m≤d︸ ︷︷ ︸

∆̃b
Di
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where

(∆a
Di)ℓm = ϵ2i (β0)

( n∑
j=1

h̃ℓ,ijrℓj
)( n∑

j=1

h̃ℓ,ij ṙℓj
)( n∑

j=1

hm,ijrm,ij
)2

+ rℓirki

n∑
j=1

h̃ℓ,ijh̃m,ij ϵ̈
2
j(β0)

(∆̃a
Di)ℓm = ϵ̃2i (β0)

( n∑
j=1

h̃ℓ,ijrℓj
)( n∑

j=1

h̃ℓ,ij ṙℓj
)( n∑

j=1

hm,ijrm,ij
)2

+ r̃ℓir̃ki

n∑
j=1

h̃ℓ,ijh̃m,ij ϵ̈
2
j(β0)

(∆b
Di)ℓm = rℓi

n∑
j=1

ϵ̈2j(β0)
∑
k ̸=i

h̃ℓ,jih̃m,jkṙmk + rki

n∑
j=1

ϵ̈2j(β0)
∑
k ̸=i

h̃ℓ,jih̃m,jkṙℓk

(∆̃b
Di)ℓm = r̃ℓi

n∑
j=1

ϵ̈2j(β0)
∑
k ̸=i

h̃ℓ,jih̃m,jkṙmk + r̃ki

n∑
j=1

ϵ̈2j(β0)
∑
k ̸=i

h̃ℓ,jih̃m,jkṙℓk

Notice that in this notation we can write the test statistic and gaussian test statistics, after

scaling by diag(sn,1, . . . , sn,dx), as

C(β0) = (U−1 +∆U1/
√
n)′(D−1 +∆D1/n)

−1(U−1 +∆U1/
√
n)1{λmin(D−1 +∆D1)

−1) > 0}

C̃(β0) = (U−n + ∆̃Un/
√
n)′(D̃−1 + ∆̃D1/n)

−1(U−n + ∆̃U1/
√
n)

In this proof we will use these representations for the test statistics. Finally define

U = U−1 +∆U1/
√
n Ũ = U−n + ∆̃Un/

√
n

D = D−1 +∆D1/n D̃ = D−n +∆Dn/n

Conditioning Statistic Definitions. Let hℓ,ii = 0 for any ℓ = 1, . . . , dx and i = 1, . . . , n.

Define h̃ℓ,ij = hℓ,ij/ωℓi for ωℓi = n−1
∑n

j=1 |hℓ,ij|. Also define the one-step deviations:

∆Ci := (h̃1,jir1i,−h̃1,jir1i, . . . , h̃dx,jirdxi,−h̃dx,jirdxi)
′
1≤j≤n ∈ R2ndx

∆Ci := (h̃1,jir̃1i,−h̃1,jir̃1i, . . . , h̃dx,jir̃dxi,−h̃dx,jir̃dxi)
′
1≤j≤n ∈ R2ndx
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And the leave-one-out vector

C−i :=
1√
n

∑
j<i

∆̃Cj +
1√
n

∑
j>i

∆Cj ∈ R2ndx

Notice that C = max1≤ι≤2ndx(C−1 +
1√
n
∆C1)ι while C̃ = max1≤ι≤2ndx(C−n +∆Cn)ι.

Function Definitions. As in Chernozhukov et al. (2013) consider the “smooth max”

function, Fβ : Rp → R defined

Fβ(z) = β−1 log

( n∑
i=1

exp(βzi)

)

which satisfies

0 ≤ Fβ(z)− max
1≤i≤n

zi ≤ β−1 log p.

Section 1.10.5 notes some useful properties of the smooth max function which we will use

in the joint interpolation argument. In addition let φ(·) ∈ C3
b (R) be such that φ(x) = 1 if

x ≤ 0, φ′(x) < 0 for x ∈ (0, 1), and φ(x) = 0 for x ≥ 1. For any γ > 0 and a = (a1, a2)
′ ∈ R2

define the function φ̃(·, ·, ·) : Rdx × vec(Rdx×dx)× R2ndx → R via

φ̃γ,a(u, vec(d), c) := ϕγ,a1(u, vec(d))τγ,a2(c) (1.10.17)

where

ϕγ,a1(u, vec(d)) := φ

(
u′d−1u− a1
γλ5

min(d)

)

τγ,a(c) := φ

(
F1/γ(c)− a2

γ

)

The function φ̃γ,a(·, ·, ·) is meant to approximate the indicator function 1{K(β0) ≤ a1}1{C ≤

a2} with γ governing the quality of approximation. Where it is obvious, we will supress the
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subscripts γ, a from our notation.

Main Argument

Lemma 1.10.14 (Joint Lindeberg Interpolation). Suppose that Assumptions 1.6.1–1.6.3

hold. Then there is a fixed constant M

∣∣∣E[φ̃γ,a(U, vec(D), C)− φ̃γ,a(Ũ , vec(D̃), C̃)]
∣∣∣ ≤ M1 log

M2(n)√
n

(γ−1 + γ−2 + γ−3) (1.10.18)

Proof of Lemma 1.10.14. We can bound the difference on the left hand side of (1.10.18)

using the telescoping sum

n∑
i=1

∣∣E[φ̃γ,a(U−i +∆Ui/
√
n, vec(D−i +∆Di/n), C−i +∆Ci/

√
n)]

− E[φ̃γ,a(U−i +∆Ui/
√
n, vec(D−i +∆Di/n), C−i +∆Ci/

√
n)]
∣∣ (1.10.19)

By second degree Taylor expansion, we break each of the summands in (1.10.19) into first

order, second order, and remainder terms; each of which are bounded below. We make

use of the following moment conditions implied by (i) indpendence of observations across

i = 1, . . . , n and (ii) the mean and covariance matrix of (ϵi(β0), ri) being equal to the mean

and covariance matrix of (ϵ̃i(β0), ri)

0 = E[∆Ui − ∆̃Ui|F−i] = E[∆Ui∆
′
Ui − ∆̃Ui∆̃

′
Ui|F−i] = E[vec(∆Di)− vec(∆̃Di)|F−i]

= E[∆Ci − ∆̃Ci|F−i] = E[∆Ui ⊗ vec(∆b
Di)

′ − ∆̃Ui ⊗ vec(∆̃b
Di)

′|F−i]

= E[∆Ci ⊗∆Ui − ∆̃Ci ⊗ ∆̃Ui|F−i] = E[∆Ci ⊗ vec(∆̃b
Di)− ∆̃Ci ⊗ vec(∆̃b

Di)|F−i]

= E[vec(∆b
Di)vec(∆

b
Di)

′ − vec(∆̃b
Di)vec(∆̃

b
Di)

′|F−i]

(1.10.20)

where F−i denotes the sub-sigma algebra generated by all observations not equal to i, ⊗

denotes the Kronecker product, and I apologize for the abuse of the equal sign in the above
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display.

First Order Terms. First order terms can be expressed

First Orderi =
dx∑
ℓ=1

E
[

∂

∂Uℓ
φ̃(U−i, vec(D−i), C−i)((∆Ui)ℓ − (∆̃Ui)ℓ)

]
/
√
n

+
dx∑
ℓ=1

dx∑
m=1

E
[

∂

∂Dℓm

φ̃(U−i, vec(D−i), C−i)((∆Di)ℓm − (∆̃Di)ℓm)

]
/n

+
2ndx∑
ℓ=1

E
[

∂

∂Cℓ
φ̃(U−i, vec(D−i), C−i)((∆Ci)ℓ − (∆̃Ci)ℓ)

]
/
√
n

These terms are all equal to zero after applying the matched moments in (1.10.20).

Second Order Terms. After canceling out terms using the matched moments in (1.10.20)
the second order terms that remain can be expressed

2nd Orderi =
1

n3/2

dx∑
ℓ=1

dx∑
m=1

dx∑
n=1

E
[

∂2

∂Uℓ∂Dmn
φ̃(U−i, vec(D−i), C−i)((∆Ui)ℓ(∆

a
Di)mn − (∆̃Ui)ℓ(∆̃

a
Di)mn)

]
︸ ︷︷ ︸

Aℓmn

=
1

n2

dx∑
ℓ=1

dx∑
m=1

dx∑
n=1

dx∑
o=1

E
[

∂2

∂Uℓ∂Dmn
φ̃(U−i, vec(D−i), C−i)((∆

a
Di)ℓm(∆

a
Di)no − (∆̃

a
Di)ℓm(∆̃

a
Di)no)

]
︸ ︷︷ ︸

Bℓmno

=
2

n2

dx∑
ℓ=1

dx∑
m=1

dx∑
n=1

dx∑
o=1

E
[

∂2

∂Uℓ∂Dmn
φ̃(U−i, vec(D−i), C−i)((∆

b
Di)ℓm(∆

a
Di)no − (∆̃

a
Di)ℓm(∆̃

b
Di)no)

]
︸ ︷︷ ︸

Cℓmno

=
1

n3/2

2ndx∑
ℓ=1

dx∑
m=1

dx∑
n=1

E
[

∂2

∂Cℓ∂Dmn
φ̃(U−i, vec(D−i), C−i)((∆Ci)ℓ(∆

a
Di)mn − (∆̃Ci)ℓ(∆̃

a
Di)mn)

]
︸ ︷︷ ︸

Dℓmn

To bound each Aℓmn, Bℓmno, and Cℓmno we use the fact that the second order derivatives

of φ̃ are bounded up to a log power of n via repeated application of Lemmas 1.10.29

and 1.10.32. Under Assumption 1.6.1 the absolute value of terms (∆Ui)ℓ,|∆a
Di|mn, and

(∆b
Di/

√
n)no can also be shown to have bounded third moments via the exact same steps as

in the proof of Lemma 1.10.18. Putting these together with generalized Holder’s inequality

will yield a finite constants M1 and M2 such that |Almn| ≤ M1 log
M2(n)(γ−1 + γ−2), Bℓmno ≤

M1 log
M2(n)(γ−1 + γ−2), and |Cℓmno| ≤ M1 log

M2(n)n1/2(γ−1 + γ−2). To bound Dℓmn terms

notice that

2ndx∑
ℓ=1

Dℓmn =

2ndx∑
ℓ=1

E
[

∂

∂Dmn
ϕ(U−i, vec(D−i))

∂

∂Cℓ
τ(C−i)((∆C−i)ℓ(∆

a
Di)mn − (∆̃Ci)ℓ(∆̃

a
Di)mn))

]
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Apply Lemma 1.10.18 to bound ∆a
Di, and Lemmas 1.10.29 and 1.10.32 to bound the derivative of

ϕ(·) and Cauchy-Schwarz to split up the ∆Ci and ∆Di terms

≤
√

M1 log
M2(n)γ−2E

[ 2ndx∑
ℓ=1

(∂ℓτ(C−i))
2((∆Ci)ℓ + (∆̃Ci)ℓ)

2

]1/2

≤
√
M1 log

M2(n)γ−2E
[
max
1≤ℓ≤n

((∆Ci)2ℓ + (∆̃Ci)2ℓ)
2
2ndx∑
ℓ=1

(∂ℓτ(C−i))
2

]1/2

By Lemma 1.10.25 and chain rule we have that
∑2ndx

ℓ=1 (∂ℓτ(C−i))
2 ≤ γ−2. Moreover (∆Ci)

a/2
ℓ is

sub-exponential so via Lemma 1.10.34 the second moment of the maximum is bounded by a power

of log(n). After updating the constant M1 and M2 this yields

≤ M1 log
M2(n)γ−2

Putting these all together and summing over the remaining indices gives

|Second Orderi| ≤
M1 log

M2(n)

n3/2
(γ−1 + γ−2) (1.10.21)

Remainder Terms. The first remainder term can be expressed

Remainderi =
1

n3/2

dx∑
ℓ=1

dx∑
m=1

dx∑
n=1

E
[

∂3

∂Uℓ∂Um∂Un
φ̃(Ū , vec(D̄), C̄)(∆Ui)ℓ(∆Ui)m(∆Ui)n

]
+

1

n3

∑
(ℓ,m)

∑
(n,o)

∑
(q,p)

E
[

∂3

∂Dℓm∂Dno∂Dpq
φ̃(Ū , vec(D̄), C̄)(∆Di)ℓm(∆Di)no(∆Di)qp

]

+
1

n3/2

2ndx∑
ℓ=1

2ndx∑
m=1

2ndx∑
n=1

E
[

∂3

∂Cℓ∂Cm∂Cn
φ̃(Ū , vec(D̄), C̄)(∆Ci)ℓ(∆Ci)m(∆Ci)n

]

+
1

n2

dx∑
ℓ=1

dx∑
m=1

∑
(n,o)

E
[

∂3

∂Uℓ∂Um∂Dno
φ̃(Ū , vec(D̄), C̄)(∆Ui)ℓ(∆Ui)m(∆Di)no

]

+
1

n5/2

dx∑
ℓ=1

∑
(m,n)

∑
(o,p)

E
[

∂3

∂Uℓ∂Dmn∂Dop
φ̃(Ū , vec(D̄), C̄)(∆Ui)ℓ(∆Di)mn(∆Di)op

]

+
1

n5/2

2ndx∑
ℓ=1

∑
(m,n)

∑
(o,p)

E
[

∂3

∂Cℓ∂Dmn∂Dop
φ̃(Ū , vec(D̄), C̄)(∆Ci)ℓ(∆Di)mn(∆Di)op

]
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+
1

n2

2ndx∑
ℓ=1

2ndx∑
m=1

∑
(n,o)

E
[

∂3

∂Cℓ∂Cm∂Dno
φ̃(Ū , vec(D̄), C̄)(∆Ci)ℓ(∆Ci)m(∆Di)no

]

+
1

n3/2

2ndx∑
ℓ=1

2ndx∑
m=1

dx∑
n=1

E
[

∂3

∂Cℓ∂Cm∂Un
φ̃(Ū , vec(D̄), C̄)(∆Ci)ℓ(∆Ci)m(∆Ui)n

]

+
1

n2

2ndx∑
ℓ=1

2ndx∑
m=1

dx∑
n=1

E
[

∂3

∂Cℓ∂Cm∂Un
φ̃(Ū , vec(D̄), C̄)(∆Ci)ℓ(∆Ci)m(∆Ui)n

]

where Ū , vec(D̄), and C̄ vary term by term but are always in the hyper-rectangles [U−i, U +

∆Ui], [vec(D−i), vec(D−i +∆Di)], and [C−i, C−i +∆Ci], respectively. As such, any moment

conditions that apply to U,D,C also apply to (Ū , D̄, C̄). Repeated application of generalized

Hölder inequality, Lemma 1.10.18 to bound moments of ∆Ui and (∆Di/
√
n), Lemma 1.10.32 to

bound moments of the second and third derivatives of ϕ(Ũ , vec(D̃)), Lemma 1.10.28 to bound

the sums of derivatives of τ(C̃), and Lemma 1.10.34 to bound moments of max1≤ℓ≤n(∆Ci)ℓ

will yield that

|Remainderi| ≤
M1 log

M2(n)

n3/2
(γ−1 + γ−2 + γ−3) (1.10.22)

Symmetric logic will bound the other remainder term. Summing (1.10.21) and (1.10.22) over

indices gives the result.

Lemma 1.10.15 (Denominator Anticoncentration). Suppose that Assumptions 1.6.1–1.6.3

hold. Then for any sequence δn → 0 we have that Pr(λmin(D̃) ≤ δ̃n) → 0.

Proof. By Lemma 1.10.17 it suffices to show that for any fixed a ∈ Sdx−1 and any δn → 0,

Pr(a′Da ≤ δn) → 0. For any such a write:

a′D̃a =
1

n

n∑
i=1

E[ϵ2i (β0)]
( dx∑
ℓ=1

n∑
j=1

aℓh̃ℓ,ijrℓ,j
)2

≥ 1

cn

n∑
i=1

( dx∑
ℓ=1

n∑
j=1

aℓh̃ℓ,ijrℓ,j
)2
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Define ṡn,j = max{ℓ:aℓ ̸=0} sn,ℓ and ḣij = snhij

=
1

cn

n∑
i=1

( n∑
j=1

ḣij

dx∑
ℓ=1

aℓsn,ℓ
sn

rℓ,j
)2

By Assumption 1.6.1 we have λmin(E[D]) ≥ c so E[ 1
n

∑n
i=1

(∑dx
ℓ=1

∑n
j=1 aℓh̃ℓ,ijrℓ,j

)2
] ≥ c−1.

Moreover, by Assumption 1.6.1, Var(
∑dx

ℓ=1
aℓsn,ℓ

sn
) is bounded from above and below. Define

the matrix H̃ = [ḣij]ij and follow the same steps as Lemma 1.10.15 to conclude.

Lemma 1.10.16 (Gaussian Approximation). Suppose that Assumptions 1.6.1–1.6.3 hold.

Then

sup
a∈R

∣∣Pr(JKI(β0) ≤ a)− Pr(JKG(β0) ≤ a)
∣∣→ 0

Proof. Let a = (a1, a2) and ϕ̃γ,a be as in (1.10.17):

Pr(N ′D−1N ≤ a1, C ≤ a2) ≤ E[ϕ̃γ,a(U, vec(D), C)]

≤ E[ϕ̃γ,a(Ũ , vec(D̃), C̃)] +
M1 log

M
2 (n)√
n

(γ−1 + γ−2)

≤ Pr(Ñ ′D̃−1Ñ ≤ a1, C̃ ≤ a2) + Pr(a1 ≤ Ñ ′D̃−1N ≤ a1 + γλ5
min(D))

+ Pr(a2 ≤ C ≤ a2 + γ) +
M1 log

M2
2 (n)√
n

(γ−1 + γ−2 + γ−3)

≤ Pr(Ñ ′D̃−1Ñ ≤ a1, C̃ ≤ a2) + Pr(a1 ≤ Ñ ′D̃−1N ≤ a1 + γλ5
min(D))

+ Pr(a2 ≤ C ≤ a2 + γ) +
M1 log

M2
2 (n)√
n

(γ−1 + γ−2 + γ−3)

Let γ → 0 at a rate such that logM2 (n)√
n

γ−3 → 0 and apply Lemmas 1.10.14 and 1.10.15 to

conclude as in the proof of Lemma 1.10.6. A symmetric argument shows that the lower

bound tends to zero.
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Lemma 1.10.17. Let Σn ∈ Rd×d be a sequence of random positive-semidefinite matrices.

Suppose that for any fixed a ∈ Sd−1 and any δn → 0 we have that Pr(a′Σna ≤ δn) → 0 and

Pr(λ2
max(Σn) ≥ δ−1

n ) → 0. Then for any δn → 0, Pr(λ2
min(Σn) ≤ δn) → 0.

Proof. Take any preliminary sequence δn → 0. It suffices to show that there is another

sequence δ̃n weakly larger than δn/2 such that Pr(λ2
min(Σn) ≤ δ̃n) → 0. For any m ∈ N let

Am be a set of points in Sd−1 such that

max
a∈Sd−1

min
ã∈Am

∥a− ã∥ ≤ δ2m

From here let ñj be defined

ñj = inf{n ≥ j : min
ã∈An,j

Pr(ã′Σna ≤ 2δnj
) < δnj

}

Define a new sequence δ̃n → 0, weakly larger than δn, via

δ̃n =


1 if 0 ≤ 0 ≤ n < ñ1

δi if ñi ≤ n < ñi+1

and notice that, by definition Pr(mina∈Añj
a′Σna ≤ 2δ̃n) < δñj

. We wish to show that

λ2
min(Σn) > δ̃n on an intersection of events whose probability tends to one. Since Σn is

positive semi-definite, ∥x∥2Σn
= x′Σnx defines a seminorm. By triangle inequality

λ2
min(Σnj

) ≥ min
Anj

a′Σnj
a− λ2

max(Σn)δ̃
2
nj
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Define the events

Ω1 = {min
Añj

a′Σna ≥ 2δ̃n} and Ω2 = {λmax(Σn) ≤ δ̃−1/2
n }

On the intersection of these events, whose probabilities tend to one, we have λ2
min(Σn) ≥ δ̃n.

1.10.5. Relevant Moment Bounds

Moment Bounds for Section 1.4

Here I provide some lemmas that are useful in the proof of Lemmas 1.10.1–1.10.6

Lemma 1.10.18. Let ∆1i, ∆̃1i,∆
a
2i, ∆̃

a
2i,∆

b
2i,∆̃

b
2i be as in (1.10.2). Then under Assump-

tions 1.4.1 and 1.4.2 there is a constant M > 0 such that for any k = 1, . . . , 6:

E[|∆1i|k] ≤ M E[|∆̃1i|k] ≤ M

and for any k = 1, . . . , 3:

E[|∆a
2i|k] ≤ Mαk E[|∆̃k

2i|] ≤ Mαk

E[|∆b
2i/

√
n|k] ≤ Mαk E[|∆̃b

2i/
√
n|k] ≤ Mαk

Proof. First, since
n∑
j=1

h2
ijE[(rj − E[rj])2 ≤ E[(

n∑
i=1

h̃ijrj)
2] ≤ 1

the constants are bounded,
∑n

i=1 h̃
2
ij ≤ c. Applying Lemma 1.10.21 with Xi = hijrj and

Xi = hijϵj(β0) we see that there is a constant A such that for any k = 1, . . . , 6

E
[∣∣ n∑

i=1

h̃ijrj
∣∣k] ≤ A and E

[∣∣ n∑
i=1

h̃ijϵj(β0)
∣∣k] ≤ A (1.10.23)

The bounds on E[|∆k
1i|] and E[|∆̃k

1i|] immediately follow from this result and the bounds on
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moments of ri and ϵi(β0) in Assumption 1.4.1. The bounds on E[|∆a
2i|k] and E[|∆̃a

2i|k] also

follow from (1.10.23) after noting that there is a finite constant B such that:

E[(
n∑
i=1

h̃2
ijϵ

2
i (β0))

k] ≤ B

Finally to bound E[|∆b
2i/

√
n|k] and E[|∆̃b

2i/
√
n|k] apply Lemma 1.10.23 with

vj = ϵ2j(β0)
∑
k ̸=i,j

h̃jkrk

, noting that E[|vj|3] is bounded by (1.10.23).

Lemma 1.10.19. Let N and N−i be defined as in Section 1.10.1. Under Assumptions 1.4.1–

1.4.3 there is a fixed constant M such that for all i = 1, . . . , n and any k = 1, . . . , 6,

E[|N |k] + E[|N−i|k] ≤ M

Proof. We show the bound for E[|N |k] and note that the bound for N−i follows from symmetric

logic. Write ϵi(β0) = ηi + γi where γi = Πi(β − β0) and ηi is mean zero. Decompose

N = N1 +N2 +N3:

N1 =
1√
n

n∑
i=1

ηi

n∑
j=1

h̃ij ṙj, N2 =
1√
n

n∑
i=1

ri

n∑
j=1

h̃jiγj, and N3 =
1√
n

n∑
i=1

ηi

n∑
j=1

h̃ijE[rj]

where ṙj = rj − E[rj].

Since via Assumption 1.4.2,
∑n

i=1 h
2
ji ≤ c and via Assumption 1.4.1, |γj| ≤ c, we can bound,

(
n∑
j=1

hjiγj/
√
n)4 ≤ (

c√
n

n∑
i=1

|hji|)4 ≤ c8 =⇒ (
n∑
j=1

hjiγj/
√
n)6 ≤ c8(

n∑
j=1

hjiγj/
√
n)2

Under Assumption 1.4.3, E[N2
2 ] ≤ c while Assumption 1.4.2 implies that (

∑n
i=1 hijE[rj ])2 ≤ c
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so that E[N2
3 ] ≤ c2.

An absolute bound on the higher moments of N2 then follows from an application of

Lemma 1.10.21 with Xi = ri
∑n

j=1 hjiγj/
√
n. An absolute bound on the higher moments of

N3 follows from symmetric logic.

To bound higher moments ofN1 define vi =
∑

j<i{ηihijrj+ṙihjiηj} and writeN1 =
1√
n

∑n
i=2 vi.

The sequence v2, . . . , vn is a martingale difference array. Via the same procedure as the

bounds on E[|∆1i|k] as in Lemma 1.10.18 one can verify that there is a fixed constant M such

that E[|vi|k] ≤ M for all k = 1, . . . , 6. The bound on the higher moments of N then follows

from Lemma 1.10.24.

The bounds for moments of N−i follow symmetric logic.

Lemma 1.10.20. Let Ñ and D̃ be defined as in Section 1.10.1. Let f(·, r̃) be the density

function of Ñ
D̃1/2 |r̃. Under Assumptions 1.4.1 and 1.4.3 there is a constant M > 0 such that

supx |f(x, r̃)| ≤ M for almost all r̃.

Proof. Recall that

Ñ =
1√
n

n∑
i=1

ϵ̃i(β0)
n∑
j=1

h̃ij r̃j and D̃1/2 =

√√√√ 1

n

n∑
i=1

κ2
i (β0)(

n∑
j=1

h̃ij r̃j)2

The distribution of ϵ̃i(β0)|r̃i is

ϵ̃i(β0)|r̃ ∼ N
(
µi(ri), (1− ρ2i )Var(ϵi(β0))

)
where µi(ri) = Πi(β − β0) +

Cov(ϵi(β0),ri)
Var(ri)

(ri − E[ri]) and ρi = corr(ϵi(β0), ri). Define Π̄i :=∑n
j=1 h̃ij r̃j. Then, conditional on r̃,

Ñ

D̃1/2
∼ N

( 1√
n

∑n
i=1 µi(ri)Π̄i√

1
n

∑n
i=1 κ

2
i (β0)Π̄2

i

,
1
n

∑n
i=1(1− ρ2i )Var(ϵi(β0))Π̄

2
i

1
n

∑n
i=1 κ

2
i (β0)Π̄2

i

)
(1.10.24)

93



The maximum of the normal density is proportional to the inverse of the standard deviation

so it suffices to show that the variance in (1.10.24) is bounded away from zero. To this end,

notice that under Assumptions 1.4.1 and 1.4.3

(1− δ2)c−2 ≤ (1− ρ2i )
Var(ϵi(β0))

κ2
i (β0)

≤ c2

By Lemma 1.10.40 to this gives that the conditional variance is also larger than (1−δ2)c−2 > 0.

Lemma 1.10.21. Let X1, . . . , Xn be such that E[Xi] = µi and E[(
∑n

i=1Xi)
2] ≤ C. Suppose

that for any i = 1, . . . , n there is a constant U such that

E[(Xi − µi)
3] ≤ UE[(Xi − µi)

2] and E[(Xi − µi)
6]1/3 ≤ UE[(Xi − µi)

2]

Then E[(
∑n

i=1Xi)
6] ≤ 64U3C3 + 32C3.

Proof. First write

E[(
n∑
i=1

Xi)
2] =

n∑
i=1

E(Xi − µi)
2 + (

n∑
i=1

µi)
2 ≤ C

To bound E[(
∑n

i=1Xi)
6] expand out

E[(
n∑
i=1

Xi)
6] = E[(

n∑
i=1

(Xi − µi) +
n∑
i=1

µi)
6]

≲ E[(
n∑
i=1

(Xi − µi))
6] + (

n∑
i=1

µi)
6

=
n∑
i=1

E[(Xi − µi)
6] +

n∑
i=1

n∑
j=1

E[(Xi − µi)
3(Xj − µj)

3]

+
n∑
i=1

n∑
j=1

E[(Xi − µi)
4(Xj − µj)

2]
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+
n∑
i=1

n∑
j=1

∑
k ̸=i,j

E[(Xi − µi)
2(Xj − µi)

2(Xk − µk)
2] + (

n∑
i=1

µi)
6

≤
n∑
i=1

E[(Xi − µi)
6] +

n∑
i=1

n∑
j=1

E[(Xi − µi)
3]E[(Xj − µj)

3]

+
n∑
i=1

n∑
j=1

E[(Xi − µi)
6]4/6E[(Xj − µj)

6]2/6

+
n∑
i=1

n∑
j=1

∑
k ̸=i,j

E[(Xi − µi)
6]1/3E[(Xj − µi)

6]1/3E[(Xk − µk)
6]1/3

+ C3

=

( n∑
i=1

(E[(Xi − µi)
6])1/3

)3

+
n∑
i=1

n∑
j=1

E[(Xi − µi)
3]E[(Xj − µj)

3] + C3

≤
( n∑

i=1

(E[(Xi − µi)
6])1/3

)3

+

( n∑
i=1

E[(Xi − µi)
3]

)2

+ C3

≤ 2U3

( n∑
i=1

E[(Xi − µi)
2]

)3

+ C3

≤ 2U3C3 + C3

where the implied constant in the second line is 32 by an application of Lemma 1.10.40, the

third line comes from expanding out the power, the first inequality by application of Hölder’s

inequality, and the penultimate inequality comes from applying bounds on the third and

sixth central moments in terms of the second moments.

Lemma 1.10.22. Let h = (h1, . . . , hn) ∈ Rn be such that
∑n

i=1 h
2
i ≤ b. Suppose that

X1, . . . , Xn are such that E[|Xi|k] ≤ M for all k = 1, 2, 3. Then

E
[∣∣ n∑

i=1

h2
iXi

∣∣3] ≤ b3M3
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Proof. We can expand out

E
[∣∣ n∑

i=1

h2
iXi

∣∣3] ≤ n∑
i=1

n∑
j=1

n∑
k=1

h2
ih

2
jh

2
kE[|Xi||Xj||Xk|]

≤ M3

n∑
i=1

h2
i

n∑
j=1

h2
j

n∑
k=1

h2
k

≤ M3
( n∑
i=1

h2
i )

3 ≤ c3M3

Lemma 1.10.23. Let v1, . . . , vn be random variables such that E[|vi|3] ≤ M for all i =

1, . . . , n. Let h = (h1, . . . , hn) ∈ Rn be a vector of weights such that ∥h∥2 ≤ c. Then

E
[∣∣ 1√

n

n∑
i=1

hivi
∣∣3] ≤ c3M

Proof. We can expand out

E
[∣∣ 1√

n

n∑
i=1

hivi
∣∣3] ≤ 1

n3/2

n∑
i=1

n∑
j=1

n∑
k=1

|hi||hj||hk|E[|vi||vj||vk|]

≤ M

n3/2

n∑
i=1

|hi|
n∑
j=1

|hj|
n∑
k=1

|hk| ≤
M

n3/2
∥h∥31 ≤ Mc3

where the second inequality follows from generalized Hölder’s inequality,

|E[fgh]| ≤ (E[|f |3]E[|g|3]E[|h|3])1/3

and the fourth inequality from ∥h∥1 ≤
√
n∥h∥2.

Lemma 1.10.24. Let v1, . . . , vn be a martingale difference array such that E[|vi|l] ≤ M for
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all l = 1, . . . , k. Then there is a fixed constant Ck that only depends on k such that

E[(
1√
n

n∑
i=1

vi)
k] ≤ CkM

Proof. We move to apply Theorem 1.10.3 with Xt =
∑t

i=1 vi/
√
n.

E[(
1√
n

n∑
i=1

vi)
k] ≤ E[(max

s≤n

s∑
t=1

Xs)
k]

≤ CkE
[( n∑

i=1

v2i /n
)k/2] ≤ CkE

[ 1
n

n∑
i=1

vki
]
≤ CkM

where the second inequality comes from Theorem 1.10.3 and the third comes from an

application of Jensen’s inequality to the sample mean.

Useful Properties of Smooth Max

Lemma 1.10.25 (Chernozhukov et al. (2013), Lemma A.2). For every 1 ≤ j, k, l ≤ p,

∂jFβ(z) = πj(z), ∂j∂kFβ(z) = βwjk(z), ∂j∂k∂lFβ(z) = β2qjkl(z)

where for δjk := 1{j = k},

πj(z) := eβzj
/ n∑

i=1

eβzi , wjk := (πjδjk − πjπk)(z)

qjkl(z) := (πjδjlδjk − πjπlδjk − πjπk(δjl + δkl) + 2πjπkπl)(z)

Moreover,

πj(z) ≥ 0,

p∑
j=1

πi(z) = 1,

p∑
j,k=1

|wjk(z)| ≤ 2,

p∑
j,k,l=1

|qjkl| ≤ 6
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Lemma 1.10.26 (Chernozhukov et al. (2013), Lemma A.3). For every x, z ∈ Rp,

|Fβ(x)− Fβ(z)| ≤ max
1≤j≤p

|xj − zj|.

Lemma 1.10.27 (Chernozhukov et al. (2013), Lemma A.4). Let φ(·) : R → R be such that

φ ∈ C3
b (R) and define m : Rp → R, z 7→ φ(Fβ(z)). The derivatives (up to the third order) of

m are given

∂jm(z) = (∂g(F (β))πj)(z)

∂j∂km(z) = (∂2g(Fβ)πjπk + ∂g(Fβ)βwjk)(z)

∂j∂k∂lm(z) = (∂3g(Fβ)πjπkπl + ∂2g(Fβ)β(wjkπl + wjlπk + wklπj) + ∂g(Fβ)β
2qjkl)(z)

where πj, wjk, qjkl are as described in Lemma 1.10.25.

Lemma 1.10.28 (Chernozhukov et al. (2013), Lemma A.5). Define

L1(φ) = sup
x

|φ′(x)|, L2(φ) = sup
x

|φ′′(x)|, and L3(φ) = sup
x

|φ′′′(x)|

For every 1 ≤ j, k, l ≤ p,

|∂j∂km(z)| ≤ Ujk(z) and |∂j∂k∂lm(z)| ≤ Ujkl(z)

where for Wjk(z) := (πjδjk + πjπk)(z),

Ujk(z) := (L2πjπk + L1βWjk(z)

Ujkl(z) := (L3πjπkπl + L2β(Wjkπl +Wjlπk +Wklπj) + L1β
2Qjkl)(z)

Qjkl(z) := (πjδjlδjk + πjπkδjk + πjπk(δjl + δkl) + 2πjπkπl)(z).
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Moreover,

p∑
j,k=1

Ujk(z) ≤ (L2 + 2L1β) and

p∑
j,k,l=1

Ujkl(z) ≤ (L3 + 6L2β + 6L1β
2).

Moment Bounds for Sections 1.5 and 1.6

Lemma 1.10.29. Suppose that Assumption 1.6.1 holds and let N and D be as defined at the

top of Section 1.10.4 Then under H0, for any k there is a fixed constant Ck such that for any

ℓ = 1, . . . , dx

E[|Nℓ|k] ≤ Ck and E[|Dℓℓ|k] ≤ Ck log
2k/a(n)

Proof. Let ηℓi = ri − E[ri] and write

Nℓ =
1√
n

n∑
i=1

ϵi(β0)
n∑
j=1

h̃ijηℓj︸ ︷︷ ︸
N1

ℓ

+
1√
n

n∑
i=1

ϵi(β0)
n∑
j=1

h̃ijE[rℓj]︸ ︷︷ ︸
N2

ℓ

To bound moments of N1
ℓ use the fact that N1

ℓ is a quadratic form in mean-zero a-sub-

exponential variables. By Theorem 1.10.1, N1
ℓ is therefore also a-sub-exponential with param-

eter a/2; thus (N1
ℓ )
a/2 is sub-exponential and Lemma 1.10.34 provides the moment bound for

arbitrary moments. To bound moments of N2
ℓ we use the fact that maxi

∣∣∑n
j=1 h̃ijE[rℓj]

∣∣ is
bounded by assumption and apply Burkholder-Davis-Gundy (Theorem 1.10.3) after adding

and subtracting E[ϵi(β0)].

To bound moments of Dℓℓ we decompose

|D| ≤ 1

n

n∑
i=1

ϵ2i (β0) max
1≤i≤n

∣∣ n∑
j=1

hijrj
∣∣2

Apply Theorem 1.10.1 to see that
∑n

j=1 hijrj is α-sub-exponential and Lemma 1.10.34 to

bound the RHS by a log-power of n.
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Matrix Derivative Lemmas

The purpose of this section is largely to establish some matrix derivative expressions that

will be useful for the Lindeberg interpolation in

Lemma 1.10.30. Let D ∈ Rd×d be a symmetric, real matrix such that det(D) ̸= 0. Let

N ∈ Rd be a vector. The derivatives up to the derivatives of quadratic form N ′D−1N are

given.

First Order:

∂

∂Nl

= 2
d∑

j=1

(D
−1

)jlNj ,
∂

∂Dlm

= −2
d∑

j=1

d∑
k=1

(D
−1

)jl(D
−1

)kmNjNk,

Second Order:

∂2

∂NlNm
= 2(D

−1
)lm,

∂2

∂Nl∂Dpq
= −2

d∑
j=1

(D
−1

)jp(D
−1

)qlNj ,

∂2

∂Dlm∂Dqj

=

d∑
j=1

d∑
k=1

{
(D

−1
)lp(D

−1
)qj)(D

−1
)km + (D

−1
)kp(D

−1
)mq(D

−1
)lj

}
NjNk

Third Order:

∂3

∂Nl∂Nm∂Np
= 0,

∂3

∂Nl∂Nm∂Dpq
= −2(D

−1
)lp(D

−1
)qm

∂3

∂Dlm∂Dpq∂Nr
= 2

d∑
j=1

{
(D

−1
)lp(D

−1
)qj(D

−1
)rm + (D

−1
)rp(D

−1
)mq(D

−1
)lj

}
Nj

∂3

∂DlmDpqDrs
= 2

d∑
j=1

d∑
j=1

{
(D

−1
)lr(D

−1
)ps(D

−1
)qj(D

−1
)km + (D

−1
)lp(D

−1
)qr(D

−1
)js(D

−1
)km

+ (D
−1

)lp(D
−1

)qj(D
−1

)kr(D
−1

)ms + (D
−1

)kr(D
−1

)ps(D
−1

)mq(D
−1

)lj

+ (D
−1

)kp(D
−1

)mr(D
−1

)qs(D
−1

)lj + (D
−1

)rp(D
−1

)mq(D
−1

)lr(D
−1

)js

}
NjNk

Proof. The derivative of an element of the the inverse of a matrix X can be expressed

(Petersen and Pedersen, 2012)

∂(X−1)kl
∂Xij

= −(X−1)ki(X
−1)jl (1.10.25)
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repeated application of this identity as well as the expression of the quadratic form

N ′D−1N =
d∑
j=1

d∑
k=1

(D−1)jkNjNk

leads to the result, bearing in mind that the inverse of a symmetric matrix is symmetric.

Lemma 1.10.31. Let D be a symmetric positive definite matrix. Then, for any p > 3, the

derivatives of (det(D))p are given up to the third order by

∂ (det(D))p

∂Dlm

= p(det(D))p−1(D−1)lm

∂2 (det(D))p

∂Dlm∂Dpq

=
p!

(p− 2)!
(det(D))p−2(D−1)pq(D

−1)lm

+ p(det(D))p−1(D−1)lp(D
−1)mq

∂3 (det(D))p

∂Dlm∂Dpq∂Drs

=
p!

(p− 3)!
(det(D))p−3(D−1)rs(D

−1)pq(D
−1)lm

+
p!

(p− 2)!
(det(D))p−2

{
(D−1)pq(D

−1)lr(D
−1)ps + (D−1)pr(D

−1)qs(D
−1)lm

+ (D−1)rs(D
−1)lp(D

−1)mq

}
+ p(det(D))p−1

{
(D−1)lr(D

−1)qs(D
−1)mq + (D−1)lp(D

−1)mr(D
−1)qs

}

Proof. We can express the derivative of the detrminant (Petersen and Pedersen, 2012),

∂, det(X)

∂Xij

= det(X)(X−1)ij (1.10.26)

Repeated application of this and (1.10.25) yields the result.

Lemma 1.10.32. For any p > 4 define the function γ(N, vec(D)) : Rd × Rd2 by

γ(N, vec(D)) :=


(det(D))p(N ′D−1N − c) if det(D) ̸= 0

0 if det(D) = 0
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This function is thrice continously differentiable. Futher the kth moments of all partial

derivatives of this function up to the third order are bounded

E[(∂αγ(N, vec(D))k] ≤ Ck(max
ι≤d

E[|Dιι|2pdk] ∨max
ι≤d

E[|Nιι|6k)

where Ck is a positive constant that only depends on k and d.

Proof. The first statement is clear by examination of the derivatives in Lemmas 1.10.30

and 1.10.31 as well as the inequality (1.10.27) below. For the moment bounds, we may

extensive use of following bounds on elements of D−1 for a positive-definite D−1:

| det(D)(D−1)jk| ≤ det(D)trace(D−1) ≤ dλmax(D
−1)
( d∏
m=1

λm(D)
)

= d
d∏

m=2

λm(D)

≤ d
( d∑
m=2

λm(D)
)d−1

≤ d(trace(D))d−1

(1.10.27)

where the first inequality uses the fact that the largest element of a positive semidefinite

matrix is on the diagonal and the fact that the diagonal elements of a positive semidefinite

matrix are weakly positive, the second inequality uses the fact that the trace is the sum of

the eigenvalues and the determinant is the product of the eigenvalues, the equality comes

from 1
λmin(D)

= λmax(D
−1), the third inequality uses the AM-GM inequality and the fourth

again uses that the trace is the sum of the (weakly positive) eigenvalues.

The moment bounds follow from (1.10.27) and the expressions in Lemmas 1.10.30 and 1.10.31.

We give an example of how this is done for the first order derivatives, higher order derivatives

follow from similar logic. For the following let A be an arbitrary random variable. First
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Order.

E
∣∣∣∣A ∂γ

∂Nl

∣∣∣∣k ≲ d∑
j=1

E|(trace(D))kdpNk
j A

k|

≲
d∑
j=1

d∑
ι=1

E[Dkdp
ιι Nk

j A
k]

≤
d∑
j=1

d∑
ι=1

γ2kdpE[N2k
j A2k]

E
∣∣∣∣A ∂γ

∂Dlm

∣∣∣∣k = pE
∣∣∣∣A det(D)p−1

d∑
j=1

d∑
j′=1

(D−1)lm(D
−1)jj′NjNj′

∣∣∣∣k

≲ p
d∑
j=1

d∑
j′=1

E[|(trace(D))2k(d−1)+(p−3)kdAkNk
j N

k
j′|

≤
d∑
j=1

d∑
j′=1

γ2kd(p−1)E[A2kN2k
j N2k

j′ ]

1.10.6. Technical Lemmas

Probability Lemmas

Lemma 1.10.33. Let Xn be a sequence of random variables such that Xn = op(1), that is for

any δ > 0, Pr(|Xn| ≥ δ) → 0. Then, there is a sequence δn → 0 such that Pr(|Xn| ≥ δn) → 0.

Proof. Take a preliminary sequence δ̃n → 0 and define

ñj = inf{n : Pr(|Xn| > δ̃j) < δ̃j}

Because Pr(|Xn| > δ) → 0 for any fixed δ, we know that nj is finite. Define a new sequence
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δn → 0 as below:

δn =


1 if 0 ≤ n < ñ1

δ̃i if ñi ≤ n < ñi+1

(1.10.28)

By construction, this sequence satisfies Pr(Xn ≥ δn) ≤ δn whenever n ≥ n1.

Lemma 1.10.34. Suppose that X1, . . . , Xn are α-subexponential such that Pr(|Xi| ≥ t) ≤

2 exp(−tα/K) for all t ≥ 0 and fixed constants K. For any p ≥ 1 there is a constant C that

depends only on p,K such that:

E
[
max
i≤n

|Xj|p

(1 + log i)p/α

]
≤ C

As a consequence

E
[
max
i≤n

|Xi|p
]
≤ C(log n)p/α

Proof. Argument below is provided for α = 1. This can be extended to α ̸= 1 by noting that

if Pr(|Xi| ≥ t) ≤ 2 exp(−tα/K) for some α > 0 then Pr(|Xi|α ≥ t) ≤ 2 exp(−t/K).

Emax
i≤n

|Xi|p

(1 + log i)p
=

∫ ∞

0

Pr

(
max
i

|Xi|p

(1 + log i)p
> t

)
dt

=

∫ 2p/α

0

Pr

(
max
i

|Xi|p

(1 + log i)p
> t

)
dt+

∫ ∞

2p/α
Pr

(
max
i

|Xi|p

(1 + log i)p
> t

)
dt

≤ 2p +

∫ ∞

2p/α

n∑
i=1

Pr

(
|Xi|

1 + log i
> t1/p

)
dt

≤ 2p +

∫ ∞

2p

n∑
i=1

2 exp

(
− t1/p(1 + log i)

K

)
dt

= 2p + 2
n∑
i=1

∫ ∞

2p
exp

(
− t1/p

K

)
i−t

1/p

dt

≤ 2p + 2
n∑
i=1

∫ ∞

2p
exp(−t−1/p/K)i−2 dt
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≤ 2p + 2

( n∑
i=1

i−2

)(∫ ∞

2p
exp(−t−1/p/K) dt

)

Both the integral and the summation are bounded, which gives the result.

Matrix Lemmas

Lemma 1.10.35. Given a matrix M and a matrix P of full rank, the matrix M and the

matrix P−1MP have the same eigenvalues.

Proof. Suppose λ is a eigenvalue of P−1MP with eigenvector p. Then

P−1MPv = λv =⇒ M(Pv) = λPv

Hence Pv is an eigenvector of M with eigenvalue λ. Similarly, given an eigenvector v of M ,

it can be shown that P−1v is an eigenvector of P−1MP ;

P−1MP (P−1v) = P−1Mv = λP−1v

Lemma 1.10.36. Let A ∈ Rn×n and B ∈ Rn×n be real symmetric positive semidefinite

matrices. For an arbitary square matrix M let λk(M) denote the kth largest eigenvalue of M .

Then for any k = 1, . . . , n:

λk(A)λn(B) ≤ λk(AB) ≤ λk(A)λ1(B)

Lemma 1.10.37. Let D ∈ Rn×n be a diagonal real matrix such that dii ∈ [u, U ] for all

i = 1, . . . , n. Let A ∈ Rn×n be a symmetric real matrix. For an arbitrary square matrix M ,
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let λk(M) denote the kth largest eigenvalue of M . Then for any k = 1, . . . , n:

uλk(A
2) ≤ λk(ADA) ≤ Uλk(A

2)

Proof. Consider any vector a ∈ Rn and define a = a′H. Then

α′HDHα = a′Da =
n∑
i=1

dii(ai)
2 ∈

[
u

n∑
i=1

(ai)
2, U

n∑
i=1

(ai)
2

]
=

[
u× a′H2a, U × a′H2a

]

The result then follows from an application of Courant-Fischer-Weyl min-max principle.

Lemma 1.10.38. Let X1, . . . , Xn denote i.i.d standard normal random variables and a1, . . . , an

denote weakly positive constants. Then

Pr

 n∑
i=1

aiX
2
i ≤ ϵ

n∑
i=1

ai

 ≤
√
eϵ

Miscellaneous Lemmas

Lemma 1.10.39. Let a1, . . . , an and b1, . . . , bn be two sequences of real numbers. If ai ≤ Ubi

for some U > 0, then
∑

i ai/
∑

i bi ≤ U . Conversely if ai ≥ Lbi for some L > 0 then∑
i ai/

∑
i bi ≥ L.

Proof. Replace ai ≤ Ubi for the upper bound and ai ≥ Lbi for the lower bound.

The following is a standard bound, but it is used a lot so it is restated here.

Lemma 1.10.40. Let a1, . . . , am be constants and p > 1. Then

|a1 + . . . am|p ≤ mp−1

m∑
i=1

|ai|p
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Proof. Apply Hölder’s inequality with 1
p
+ p−1

p
= 1 to the vectors (a1, . . . , am) ∈ Rm and

(1, . . . , 1) ∈ Rm

1.10.7. Assorted Results from Literature

Concentration Inequalities and Tail Bounds

Theorem 1.10.1 (Gotze et al. (2021)*Theorem 1.2). Let X1, . . . , Xn be independent random

variables satisfying ∥Xi∥Ψa ≤ M for some a ∈ (0, 1]∪{2} and let f : Rn → R be a polynomial

of total degree D ∈ N. Then for all t > 0;

Pr(|f(X)− E[f(X)]| ≥ t) ≤ 2 exp

(
− 1

CD,a
min

1≤d≤D

(
t

Md∥Ef (d)(X)∥HS

)a/d)

In particular, if ∥Ef (d)(X)∥HS ≤ 1 for d = 1, . . . D, then

E exp

(
CD,a
Ma

|f(X)|
a
D

)
≤ 2,

or equivalently

∥f(X)∥Ψ a
D
≤ Cd,aM

D

Theorem 1.10.2 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent, mean-zero sub-

gaussian random variables, and let a = (a1, . . . , an) ∈ Rn. Then, for every t ≥ 0, we

have

Pr

{∣∣∣∣ n∑
i=1

aiXi

∣∣∣∣ ≥ t

}
≤ 2 exp

(
− ct2

K2∥a∥22

)
where K = maxi ∥Xi∥ψ2.

Theorem 1.10.3 (Burkholder-Davis-Gurdy for Discrete Time Martingales). For any 1 ≤

k < ∞ there exist positive constants ck and Ck such that for all local martingales with X0 = 0
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and stopping times τ

ckE
[( τ∑

t=1

(Xt −Xt−1)
2
)k/2] ≤ E

[
(sup
t≤τ

Xt)
k
]
≤ CkE

[( τ∑
t=1

(Xt −Xt−1)
2
)k/2]

Anticoncentration Bounds

Let ξ ∈ Rn follow a normal distribution on Rn with mean zero and covariance matrix Σξ.

Order the eigenvalues of Σξ in non-increasing order λ1ξ ≥ λ2ξ ≥ ... ≥ λnξ. Define the

quantities

Λ2
kξ =

∞∑
j=k

λ2
jξ, k = 1, 2

Theorem 1.10.4 (Götze et al. (2019), Theorem 2.6). Let ξ be a gaussian element with zero

mean and covariance Σξ. Then it holds for any a ∈ Rn that

sup
x≥0

pξ(x,a) ≲ (Λ1ξΛ2ξ)
−1/2

where pξ(x, a) denotes the p.df of ∥ξ − a∥2.

We use the following anticoncentration lemma from Nazarov (2003) noted in Chernozhukov

et al. (2017).

Lemma 1.10.41. Let Y = (Y1, . . . , Yp)
′ be a centered Gaussian random vector in Rp such

that E[Y 2
j ] ≥ b for all j = 1, . . . , p and some constant b > 0. Then for every y ∈ Rp and

a > 0,

Pr(Y ≤ y + a)− Pr(Y ≤ y) ≤ Ca
√

log(p)

where C is a constant only depending on b.
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Gaussian Comparasions and Approximations

We also use the following gaussian approximation results from Belloni et al. (2018), Cher-

nozhukov et al. (2017). Let X1, . . . , Xn ∈ Rp be independent, mean zero, random vectors and

let Y1, . . . , Yn ∈ Rp be independent random vectors such that Yi ∼ N(0,E[XiX
′
i]). Suppose

that the researcher does not directly observe X1, . . . , Xn but instead observes noisy estimates

X̂1, . . . , X̂n ∈ Rp.

Define the sums

SXn =
1√
n

n∑
i=1

X̂i SYn =
1√
n

n∑
i=1

Yi

Let Are be the class of all hyperrectangles in Rp; that is, Are consists of all sets A of the form

A = {w ∈ Rp : aj ≤ wj ≤ bj for all j = 1, . . . , p}

for some −∞ ≤ aj ≤ bj ≤ ∞, j = 1, . . . , p. Define

ρn(Are) := sup
A∈Are

∣∣Pr(SXn ∈ A)− Pr(SYn ∈ A)
∣∣

Bounding ρn(Are) relies on the following moment conditions:

Assumption 1.10.1. Suppose there are constants Bn ≥ 1, b > 0, q > 0 such that

(i) n−1
∑n

i=1 E[X2
ij] ≥ b for all j = 1, . . . , p

(ii) n−1
∑n

i=1 E[|Xij|2+k] ≤ Bk
n for all j = 1, . . . , p and k = 1, 2.

(iii) E[(max1≤j≤p |Xij|/Bn)
4] ≤ 1 for all i = 1, . . . , n and

(
B4

n ln7(pn)
n

)1/6
≤ δn.

as well as the following bounds on the estiamtion error
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Assumption 1.10.2. The estimates X̂1, . . . , X̂n satisfy

Pr

(
max
1≤j≤p

En[(X̂ij −Xij)
2] > δ2n/ log

2(pn)

)
≤ βn

Theorem 1.10.5 (Belloni et al. (2018), Theorem 2.1). Suppose that Assumptions 1.10.1

and 1.10.2 hold. Then there is a constant C which depends only on b such that

ρn(Are) ≤ C{δn + βn}

Let e1, . . . , en
iid∼ N(0, 1) be generated independently of the data. A gaussian bootstrap draw

is defined

SX,⋆n :=
1√
n

n∑
i=1

eiX̂i

Theorem 1.10.6 (Belloni et al. (2018), Theorem 2.2). Suppose that Assumptions 1.10.1

and 1.10.2 hold. Then there is a constant C which depends only on b such that

sup
A∈Are

∣∣Pre(SX,⋆n ∈ A)− Pr(SYn ∈ A)
∣∣ ≤ Cδn

with probability at least 1− βn − (log n)−2 where Pre(·) denotes the probability measure only

taken with respect to the variables e1, . . . , en conditional on the data used to estimate X̂.

1.11. Appendix: Incorporating Exogenous Controls

In this section, I analyze the model with exogeneous controls. To this end, define the vector

z2 = (z′21, . . . , z
′
2n)

′ ∈ Rn×dc . Let P2 = z2(z
′
2z2)

−1z′2 ∈ Rn×n denote the projection onto the

column space of z2 and M2 = In − P2 denote the projection onto to orthocomplement of the

column space. Focus will be on the case where dx = 1 to simplify notation, but the basic

concepts apply generally to dx > 1.
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For y := (y1, . . . , yn)
′ ∈ Rn and x := (x′

1, . . . , x
′
n)

′ ∈ Rn× define y⊥ := M2y and x⊥ := M2x as

the “partialled out” versions of y and x, respectively. Let y⊥i be the ith element of y⊥ and x⊥
i

be the ith element of x⊥. From here we can define ϵ(β0) := y − xβ0, ϵ
⊥(β0) = M2ϵ(β0) and

r⊥ := M2r where as in the main text r = (r1, . . . , rn)
′ is constructed ri = xi − ρ(zi)ϵi(β0).

The definition of ρ(zi) does not change after partialling out z2 since all expectations are

understood to be conditional on the instruments z. Notice that ϵ⊥(β0) is mean zero. Finally

I assume that the controls have been partialled out of hat matrix so that the effective hat

matrix is M2H and the vector Π̂ ∈ Rn is defined Π̂ = (M2H)(M2r). This does not make a

difference for the numerator of the JK(β0) statistic but does affect the denominator slightly.

When this is not done, inference may be conservative.

Using matrix notation in the numerator to make things clear, we can write the version of

the JK(β0) statistic with the partialled out vectors, ϵ⊥(β0) and r⊥, in terms of the original

vectors, ϵ(β0) and r,

JKI(β0) =

(
1√
n
ϵ(β0)

′M2H̃M2r
)2

1
n

∑n
i=1(ϵ

⊥
i (β0))2

(∑n
j=1 hijrj

)2
=

(
1√
n

∑n
i=1 ϵi(β0)

∑n
j=1 hijrj

)2
1
n

∑n
i=1(ϵ

⊥
i (β0))2

(∑n
j=1 hijrj

)2
where hij = [M2H̃M2]ij, H̃ = snH, and mij = [M2]ij. I seek to characterize the limiting

distribution of JK(β0) underH0. To do so, we show that quantiles JK(β0) can be approximated

by quantiles of the gaussian analog statistic

JKG(β0) =

(
1√
n
ϵ̃(β0)

′M2H̃M2r̃
)2

1
n

∑n
i=1Var(ϵi)

(∑n
j=1 hij r̃j

)2
where (ϵ̃i, ϵ̃i(β0), r̃i) are generated gaussian independent of the data and with the same mean

and covariance as (ϵi, ϵi(β0), ri). Since Var(ϵ̃(β0)) = Var(ϵi) under H0, E[ϵ̃(β0)
′M2] = 0, and

r̃ ⊥ ϵ̃(β0), this gaussian analog statistic has a χ2
1 distribution conditional on any realization
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of r̃ and thus its unconditional distribution is also χ2
1.

Showing that quantiles of JK(β0) can be approximated by quantiles of J̃K(β0) proceeds in

two steps. In the first step, we show that JK(β0) converges in probability to an intermediate

statistic.

JKint(β0) =

(
1√
n

∑n
i=1 ϵi(β0)

∑n
j=1 hijrj

)2
1
n

∑n
i=1 ϵ

2
i (
∑

j ̸=i hijrj)
2

We will then show that quantiles of this intermediate statistic can be approximated by

quantiles of J̃K(β0). In view of Lemma 1.4.2, it suffices to show for the first step that

∆D →p 0, where

∆D =
1

n

n∑
i=1

((ϵ⊥i (β0))
2 − ϵ2i )Π̂

2
i

To do this, notice that underH0 we can write ϵ⊥i (β0) = ϵi+z′2i(Γ̂−Γ) where Γ̂ = (z′2z2)
−1z2ϵ(β0)

is a
√
n-consistent estimate of Γ. Exploiting this fact we get

∆D = (Γ̂− Γ)′
1

n

n∑
i=1

(Π̂i)
2z2iz

′
2i(Γ̂− Γ) + 2(Γ̂− Γ)′

1

n

n∑
i=1

ϵiz2iΠ̂i

Both of these terms will tend to zero by the consistency Γ̂ to Γ, giving that ∆D →p 0.

In our second step, we argue that quantiles of JKint(β0) can be approximated by quantiles

of JKG(β0). To make this comparasion, we can follow almost exactly the same steps as in

Section 1.10.1. The only difference between analysis in this case and analysis in the original

case is that the partialling out of controls leads the test statistic to not strictly have a

jackknife form; the effective hat matrix M2HM2 no longer has a deleted diagonal. However,

as I will argue below, this will not make a difference in the interpolation argument since the

diagonal terms of [P2]ii are small in the sense that they sum to dc.
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The (1.10.2) analog one step deviations for the numerator are given

∆1i = ϵi(β0)
∑
j ̸=i

hij ṙj + ri
∑
j ̸=i

hjiϵ̇j(β0) + hiiϵi(β0)ri

∆̃1i = ϵ̃i(β0)
∑
j ̸=i

hij ṙj + r̃j
∑
j ̸=i

hjiϵ̇j(β0) + hiiϵ̃i(β0)r̃i

where as Section 1.10.1, a dotted variable is equal to the gaussian analog if j > i but equal to

the standard version otherwise. The first and second moments of the first two terms in ∆1i

can be matched with their gaussian analog terms as in the proof of Lemma 1.10.1. While we

cannot match seconds moments of the third term in the one step deviation, this sum of all

these third terms can be treated as negligible after scaling by 1/
√
n as

∑n
i=1 |hii| ≲ dc. This

is because M2H̃M2 = H̃ − P2H̃ − H̃P2 − P2H̃P2. The matrix H̃ has zeros on it’s diagonal.

Meanwhile

|[P2H̃]ii|2 =
∣∣∣ n∑
j=1

[P2]ijH̃ji

∣∣∣2 ≤ ( n∑
j=1

[P2]
2
ij

)(∑
j ̸=i

H2
ji

)
≲ [P2]ii

where the final inequality comes because the matrix P2 is symmetric and idempotent and

since
(∑

j ̸=iH
2
ji

)
≲ 1 by Assumption 1.4.2(ii). A similar argument can be used to show that

[P2H̃P2]
2
ii ≲ [P2]ii. Since P2 is a projection matrix we must have that ∥P2Hej∥ ≤ ∥Hej∥ for

any basis vector ej ∈ Rn. Thus
∑n

j=1[P2H]2ji ≤
∑n

j=1[H]2ji. Finally, we can use the fact that

the trace of P2 is equal to its rank to show that
∑n

i=1 |hii| ≲ dc

The one step deviations in the denominator can be bounded using the same logic. These one

step deviations are given

∆2i = ϵ2i (
∑
j ̸=i

hij ṙj)
2 + r2i

∑
j ̸=i

h2
jiϵ̈

2
j + ri

∑
j ̸=i

ϵ̈j
(∑
k ̸=j,i

hjihjkrk
)

+ ϵ2i
(
h2
iir

2
i + 2hiirj

∑
j ̸=i

hijrj)
2
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∆̃2i = ϵ̃2i (
∑
j ̸=i

hij ṙj)
2 + r̃2i

∑
j ̸=i

h2
jiϵ̈

2
j + r̃i

∑
j ̸=i

ϵ̈j
(∑
k ̸=j,i

hjihjkrk
)

+ ϵ2i
(
h2
iir

2
i + 2hiirj

∑
j ̸=i

hijrj)
2

where ϵ̈j is equal to Var(ϵj) if j < i and equal to ϵj if j > i. The first three terms in this

expansion are can be dealt with exactly as in the proof of Lemma 1.10.1. The fourth term

is new, however summing over the fourth terms and scaling by 1/n will be negligible as∑n
i=1 |hii| ≲ dc. After showing the lindeberg interpolation step, the rest of the proof follows

exactly as in Section 1.10.1.
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1.12. Appendix: Additional Tables from Simulation Study
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DGP Testing Procedure

n dz ϱ1 ϱ2 JK(β0) S(β0) T (β0; τ0.3) T (β0; τ0.75) A.Rbn. JAR JLM

200 10 0.2 0.3 0.0516 0.0352 0.0406 0.0406 0.0296 0.0766 0.0502
0.2 0.6 0.0542 0.0306 0.0442 0.0384 0.0258 0.0748 0.0400
0.5 0.3 0.0470 0.0338 0.0416 0.0418 0.0238 0.0784 0.0460
0.5 0.6 0.0506 0.0350 0.0416 0.0390 0.0280 0.0676 0.0384

30 0.2 0.3 0.0570 0.0124 0.0422 0.0200 0.0088 0.1000 0.0382
0.2 0.6 0.0564 0.0126 0.0408 0.0208 0.0124 0.0962 0.0322
0.5 0.3 0.0498 0.0100 0.0366 0.0190 0.0096 0.1090 0.0318
0.5 0.6 0.0562 0.0118 0.0420 0.0216 0.0088 0.1104 0.0292

65 0.2 0.3 0.0542 0.0316 0.0428 0.0370 0.0314 0.0764 0.0420
0.2 0.6 0.0532 0.0366 0.0418 0.0398 0.0250 0.0780 0.0376
0.5 0.3 0.0474 0.0308 0.0388 0.0362 0.0244 0.0748 0.0354
0.5 0.6 0.0484 0.0324 0.0366 0.0388 0.0282 0.0708 0.0402

75 0.2 0.3 0.0512 0.0122 0.0364 0.0210 0.0150 0.0972 0.0422
0.2 0.6 0.0564 0.0162 0.0416 0.0272 0.0152 0.0974 0.0414
0.5 0.3 0.0488 0.0136 0.0368 0.0208 0.0168 0.1144 0.0380
0.5 0.6 0.0516 0.0128 0.0390 0.0224 0.0122 0.1166 0.0390

500 10 0.2 0.3 0.0590 0.0468 0.0478 0.0516 0.0376 0.0652 0.0452
0.2 0.6 0.0530 0.0420 0.0460 0.0466 0.0366 0.0692 0.0434
0.5 0.3 0.0496 0.0370 0.0408 0.0368 0.0338 0.0710 0.0464
0.5 0.6 0.0512 0.0426 0.0456 0.0438 0.0334 0.0696 0.0404

30 0.2 0.3 0.0522 0.0202 0.0386 0.0278 0.0238 0.0818 0.0322
0.2 0.6 0.0558 0.0208 0.0408 0.0310 0.0266 0.0888 0.0342
0.5 0.3 0.0554 0.0178 0.0392 0.0280 0.0174 0.0940 0.0272
0.5 0.6 0.0570 0.0156 0.0426 0.0236 0.0206 0.0984 0.0280

65 0.2 0.3 0.0542 0.0372 0.0434 0.0432 0.0384 0.0754 0.0464
0.2 0.6 0.0584 0.0442 0.0482 0.0470 0.0334 0.0676 0.0438
0.5 0.3 0.0614 0.0460 0.0504 0.0496 0.0316 0.0708 0.0434
0.5 0.6 0.0526 0.0378 0.0434 0.0420 0.0298 0.0692 0.0358

75 0.2 0.3 0.0522 0.0234 0.0428 0.0316 0.0280 0.0818 0.0430
0.2 0.6 0.0518 0.0252 0.0412 0.0318 0.0274 0.0916 0.0422
0.5 0.3 0.0500 0.0240 0.0400 0.0316 0.0274 0.1028 0.0470
0.5 0.6 0.0522 0.0220 0.0434 0.0328 0.0230 0.1002 0.0434

Table 1.12.1: Simulated Size of Identification and Heteroskedasticity Robust Tests under Weak
Identification. Each DGP is simulated 5000 times. Critical values of the sup-score statistic and
quantiles of the conditioning statistic are calculated using 1000 multiplier bootstrap simulations.
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DGP Testing Procedure

n dz ϱ1 ϱ2 JK(β0) S(β0) T (β0; τ0.3) T (β0; τ0.75) A.Rbn. JAR JLM

200 10 0.2 0.2 0.0474 0.0420 0.0474 0.0468 0.0308 0.0728 0.0424
0.2 0.6 0.0512 0.0386 0.0512 0.0506 0.0304 0.0764 0.0378
0.5 0.2 0.0416 0.0318 0.0414 0.0414 0.0248 0.0794 0.0428
0.5 0.6 0.0446 0.0342 0.0446 0.0442 0.0244 0.0806 0.0384

30 0.2 0.2 0.0482 0.0122 0.0448 0.0264 0.0110 0.1048 0.0370
0.2 0.6 0.0498 0.0120 0.0480 0.0312 0.0118 0.0980 0.0378
0.5 0.2 0.0456 0.0126 0.0410 0.0262 0.0082 0.1146 0.0268
0.5 0.6 0.0482 0.0110 0.0474 0.0308 0.0094 0.1090 0.0302

65 0.2 0.2 0.0528 0.0380 0.0526 0.0510 0.0276 0.0696 0.0460
0.2 0.6 0.0464 0.0360 0.0464 0.0468 0.0302 0.0728 0.0416
0.5 0.2 0.0482 0.0298 0.0480 0.0466 0.0246 0.0738 0.0412
0.5 0.6 0.0396 0.0320 0.0390 0.0386 0.0258 0.0748 0.0356

75 0.2 0.2 0.0516 0.0120 0.0498 0.0406 0.0188 0.1070 0.0414
0.2 0.6 0.0444 0.0130 0.0436 0.0392 0.0198 0.1052 0.0408
0.5 0.2 0.0416 0.0100 0.0408 0.0328 0.0128 0.1094 0.0412
0.5 0.6 0.0480 0.0128 0.0474 0.0432 0.0122 0.1096 0.0430

500 10 0.2 0.2 0.0524 0.0444 0.0524 0.0524 0.0394 0.0684 0.0472
0.2 0.6 0.0476 0.0430 0.0476 0.0476 0.0400 0.0644 0.0490
0.5 0.2 0.0434 0.0410 0.0434 0.0434 0.0340 0.0702 0.0404
0.5 0.6 0.0448 0.0382 0.0448 0.0448 0.0350 0.0736 0.0432

30 0.2 0.2 0.0502 0.0214 0.0502 0.0498 0.0240 0.0854 0.0368
0.2 0.6 0.0522 0.0208 0.0522 0.0524 0.0224 0.0858 0.0392
0.5 0.2 0.0456 0.0202 0.0456 0.0434 0.0220 0.0918 0.0264
0.5 0.6 0.0500 0.0186 0.0500 0.0498 0.0204 0.0924 0.0268

65 0.2 0.2 0.0490 0.0426 0.0490 0.0490 0.0350 0.0742 0.0472
0.2 0.6 0.0522 0.0458 0.0522 0.0522 0.0436 0.0652 0.0442
0.5 0.2 0.0542 0.0476 0.0542 0.0542 0.0294 0.0712 0.0446
0.5 0.6 0.0438 0.0420 0.0438 0.0438 0.0306 0.0666 0.0500

75 0.2 0.2 0.0480 0.0220 0.0480 0.0480 0.0314 0.0880 0.0394
0.2 0.6 0.0492 0.0284 0.0492 0.0492 0.0278 0.0874 0.0470
0.5 0.2 0.0404 0.0190 0.0404 0.0404 0.0254 0.0992 0.0426
0.5 0.6 0.0470 0.0226 0.0470 0.0468 0.0182 0.0960 0.0418

Table 1.12.2: Simulated Size of Identification and Heteroskedasticity Robust Tests under Strong
Identification. Each DGP is simulated 5000 times. Critical values of the sup-score statistic and
quantiles of the conditioning statistic are calculated using 1000 multiplier bootstrap simulations.
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Chapter 2

Doubly-Robust Inference for Conditional Average

Treatment Effects with High-Dimensional Controls

2.1. Introduction

Consider a potential outcomes framework (Rubin, 1974a, 1978a) where an observed outcome

Y ∈ R and treatment D ∈ {0, 1} are related to two latent potential outcomes Y1, Y0 ∈ R via

Y = DY1 + (1−D)Y0. To account for unobserved confounding factors a common strategy

is to assume the researcher has access to a vector of covariates, Z = (Z ′
1, X

′)′ ∈ Z1 × X ⊆

Rdz−dx×Rdx , such that the potential outcomes are independent of the treatment decision after

conditioning on the observed covariates, (Y1, Y0) ⊥ D|Z. In this setting, we are interested in

estimation of and inference on the conditional average treatment effect (CATE):

E[Y1 − Y0 | X = x]. (2.1.1)

Estimation of the CATE generally requires first fitting propensity score and/or outcome

regression models. When the number of control variables Z is large (dz ≫ n), these first-

stage models must be estimated using regularized methods which converge slower than the

nonparametric rate and typically rely on the correctness of parametric specifications for
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consistency.1

Fortunately, if both models are correctly specified, one can obtain a nonparametric-rate

consistent estimator and valid inference procedure for the CATE by using the popular

augmented inverse propensity weighted (aIPW) signal (Semenova and Chernozhukov, 2021;

Fan et al., 2022). This is because the aIPW signal obeys an orthogonality condition at,

crucially, the true nuisance model values that limits the first-stage estimation error passed on

to the second-stage estimator. Moreover, estimators based on the aIPW signal are doubly-

robust; consistency of the resulting second-stage estimators requires correct specification of

only one of the first-stage propensity score or outcome regression models. However inference

based on these estimators is not doubly-robust. The orthogonality of the aIPW signal fails

under misspecification and the resulting testing procedures and confidence intervals are

rendered invalid.

This paper proposes a doubly-robust estimator and inference procedure for the conditional

average treatment effect when the number of control variables, dz, is potentially much larger

than the sample size, n. The dimensionality of the conditioning variable, dx, remains fixed

in our analysis. Our approach is based on Tan (2020) wherein doubly-robust inference is

developed for the average treatment effect. We take a series approach to estimating the

CATE, using a quasi-projection of the aIPW signal onto a growing set of basis functions. By

assuming a logistic form for the propensity score model and a linear form for the outcome

regression model, we construct novel ℓ1-regularized first-stage estimating equations to recover

a partial orthogonality of the aIPW signal at the limiting values of the first-stage estimators.

So long as the limiting values of the first stage estimators have sparse representations this

restricted orthogonality is enough to achieve doubly-robust pointwise and uniform inference;

pointwise and uniform confidence intervals centered at the second-stage estimator are valid

even if one of the logistic or linear functional forms is misspecified.

1Recent works by Bauer and Kohler (2019), Schmidt-Hieber (2020) provide some limited nonparametric
results in high-dimensional settings using deep neural networks.
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To achieve this restricted orthogonality at all points in the support of the conditioning

variable, we employ distinct first-stage estimating equations for each basis term used in the

second-stage series approximation. This results in the number of first-stage estimators growing

with the number of basis terms. These estimators converge uniformly to limiting values

under standard conditions in high-dimensional analysis. Improving on prior work in doubly-

robust inference, our ℓ1 regularized first-stage estimation incorporates a data-dependent

penalty parameter based on the work of Chetverikov and Sørensen (2021). This allows

practical implementation of our proposed estimation procedure with minimal knowledge of

the underlying data generating process.

The use of multiple pairs of nuisance parameter estimates leaves us with multiple limiting

values for the aIPW signals. So long as one of the nuisance models is correctly specified

these limiting values share a conditional mean function. However, the various limiting values

may all have different error terms describing their deviations from the conditional mean.

This limits our ability to straightforwardly apply existing nonparametric results for series

estimators (Newey, 1997; Belloni et al., 2015). Under modified conditions, we analyze the

asymptotic properties of our second-stage series estimator to re-derive pointwise and uniform

inference results. These modified conditions are in general slightly stronger than those of

Belloni et al. (2015), though in certain special cases collapse exactly to the conditions of

Belloni et al. (2015).

Prior Literature. Chernozhukov et al. (2018) analyze the general problem of estimating

finite dimensional target parameters in the presence of potentially high-dimensional nuisance

functions. Using score functions that are Neyman-orthogonal with respect to nuisance

parameters they show that it is possible to obtain target parameter estimates that are

√
n-consistent and asymptotically normal so long as the nuisance parameters are consistent

at rate n−1/4, a condition satisfied by many machine learning-based estimators. Semenova

and Chernozhukov (2021) take advantage of new results for series estimation in Belloni et al.
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(2015) and consider series estimation of functional target parameters after high-dimensional

nuisance estimation.2 The inference results of these papers are highly dependent on the

orthogonality of their second stage estimators to first stage estimation error, making it difficult

to directly extend these analyses when the first stage estimators are not consistent and the

orthogonality cannot be applied.

In the same setting as this paper, Tan (2020), Bradic et al. (2019) consider estimation of the

average treatment effect. After assuming a logistic form for the propensity score and a linear

form for the outcome regression, both papers propose ℓ1-regularized first-stage estimators that

allow for partial control of the derivative of the aIPW signal away from true nuisance values

and thus allow for doubly-robust inference. Bradic et al. (2019) differs from Tan (2020) in

their use of sample splitting, which allows them to achieve a “sparsity double robust” estimate

of the ATE; so long as one nuisance model is sufficiently sparse the other may be more dense.

Smucler et al. (2019) extends the analysis of Tan (2020) to consider doubly-robust inference

for a larger class of finite dimensional target parameters with bilinear influence functions.

Wu et al. (2021) provide doubly-robust inference procedures for covariate-specific treatment

effects with discrete conditioning variables; their results depend on exact representation

assumptions that are unlikely to hold with continuous covariates. Moreover, no uniform

inference procedures are described.

These papers pioneered the approach that we will employ below, which is to directly use the

first order conditions of the first stage estimators to control second stage estimation error.

However, it is not a priori clear how to extend this approach to control the estimation error

passed onto an infinite dimensional target parameter like the CATE. As discussed above, our

analysis requires re-deriving pointwise and uniform inference results for nonparametric series

estimators under modified conditions. We do not consider the sample splitting approach

of Bradic et al. (2019), which may allow for relaxed sparsity conditions on our nuisance

parameter estimates, but consider this an interesting future extension.

2Fan et al. (2022) provides a similar analysis using a second-stage kernel estimator.
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Chetverikov and Sørensen (2021) propose a data-driven “bootstrap after cross-validation”

approach to penalty parameter selection that is modified for and implemented in our setting.

This work is related to other work on the lasso (Tibshirani, 1996; Bickel et al., 2009; Belloni

and Chernozhukov, 2013; Chetverikov et al., 2021) and ℓ1-regularized M-estimation in high-

dimensional settings (van der Greer, 2016; Tan, 2017).

Paper Structure. This paper proceeds as follows. Section 2.2 defines the problem and

introduces our methods for estimation and inference. Section 2.3 provides intuition for how

the first-stage estimation procedure allows for doubly-robust estimation and inference on

the CATE as well as formally establishes the necessary first-stage convergence. Section 2.4

presents the main results: valid pointwise and uniform inference for the second-stage series

estimator if either the first-stage logistic propensity score model or linear outcome regression

model is correctly specified. Section 2.5 ties up a technical detail. Section 2.6 applies our

proposed estimator to examine the effect of maternal smoking on infant birth weight while

Section 2.7 provides evidence from simulation study. Section 2.8 concludes. Proofs of main

results are deferred to Section 2.9.

Notation. For any measure F and any function f , define the L2 norm, ∥f∥F,2 = (EF [f 2])1/2

and the L∞ norm ∥f∥F,∞ = ess supF |f |. For any vector in Rp let ∥ · ∥p for p ∈ [1,∞] denote

the ℓp norm, ∥a∥p = (
∑p

l=1 a
p
l )

1/p and ∥a∥∞ = max1≤l≤∞ |al|. If the subscript is unspecified,

we are using the ℓ2 norm. For two vectors a, b ∈ Rp, let a◦ b = (aibi)
p
i=1 denote the Hadamard

(element-wise) product. We adopt the convention that for a ∈ Rp and c ∈ R, a+c = (ai+c)pi=1.

For a matrix A ∈ Rm×n let ∥A∥ = max∥v∥ℓ2≤1 ∥Av∥ℓ2 denote the operator norm and ∥A∥∞ =

sup1≤r≤m,1≤s≤n |Ars|. For any real valued function f let En[f(X)] = 1
n

∑n
i=1 f(Xi) denote the

empirical expectation and Gn[f(X)] = 1√
n

∑n
i=1(f(Xi)− E[Xi]) denote the empirical process.

For two sequences of random variables {an}N and {bn}N, we say an ≲P bn or an = Op(bn) if

an/bn is bounded in probability and say an = op(bn) if an/bn →p 0.
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2.2. Setup

In this section, we formally define the setting and identification strategy that we consider.

We then introduce our doubly-robust estimator and inference procedure. The parameter of

interest is the conditional average treatment effect: E[Y1 − Y0 | X = x]. However, for this

paper we largely focus on estimation and inference for the conditional average counterfactual

outcome:

g0(x) := E[Y1 | X = x]. (2.2.1)

Doubly-robust estimation and inference on E[Y0 |X = x] follows a similar procedure and is

described in Section 2.5. The procedures can be combined for doubly-robust estimation and

inference for the CATE.

2.2.1. Setting

We assume the researcher observes i.i.d data and conditioning on Z is sufficient to control for

all confounding factors affecting both the treatment decision D and the potential outcomes,

Y1 and Y0. Our analysis allows the dimensionality of the controls, Z = (Z1, X), to grow much

faster than the sample size (dz ≫ n), while assuming the dimensionality of the conditioning

variables, X, remains fixed (dx ≪ n).

Assumption 2.2.1 (Identification).

(i) {Yi, Di, Zi}ni=1 are independent and identically distributed.

(ii) (Y1, Y0) ⊥ D | Z.

(iii) There exists a value η ∈ (0, 1) such that η < E[D | Z = z] < 1− η almost surely in Z.

To obtain doubly-robust estimation and inference we use the augmented inverse propensity
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weighted (aIPW) signal,

Y (π,m) =
DY

π(Z)
−
(

D

π(Z)
− 1

)
m(Z), (2.2.2)

which is a function of a fitted propensity score model, π(Z), and a fitted outcome regression

model, m(Z), whose true values are given π⋆(Z) := E[D | Z] and m⋆(Z) := E[Y | D = 1, Z].

Under Assumption 2.2.1, the aIPW signal Y (·, ·) provides doubly-robust identification of

g0(x). That is, for integrable π ̸= π⋆ and m ̸= m⋆,

E[Y1 | X = x] = E[Y (π⋆,m⋆) | X = x]

= E[Y (π ,m⋆) | X = x]

= E[Y (π⋆,m ) | X = x].

(2.2.3)

We use a series approach to estimate g0(x), taking a quasi-projection of the aIPW signal onto

a growing set of k weakly positive basis terms:

pk(x) :=
(
p1(x), . . . , pk(x)

)′ ∈ Rk
+. (2.2.4)

The basis terms are required to be weakly positive as they are used as weights within the convex

first-stage estimators estimating equations.1Examples of weakly positive basis functions are

B-splines or shifted polynomial series terms. To ensure that the basis terms are well behaved,

we assume regularity conditions on ξk,∞ := supx∈X ∥pk(x)∥∞, ξk,2 := supx∈X ∥pk(x)∥2, and

the eigenvalues of the design matrix Q := E[pk(x)pk(x)′].

For each basis term pj(x), j = 1, . . . , k, we estimate a separate propensity score model, π̂j(Z),

and outcome regression model, m̂j(Z). Under standard moment and sparsity conditions, these

converge uniformly over j = 1, . . . , k to limiting values π̄j(Z) and m̄j(Z). If the propensity

score model and outcome regression models are correctly specified these limiting values

coincide with the true values π⋆(Z) and m⋆(Z). However, in general the limiting and true
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values may differ. The double robustness of the aIPW signal allows for identification of the

CATE even if only one of the nuisance models is correctly specified. If either π̄j = π⋆ or

m̄j = m⋆, we can write for all j = 1, . . . , k:

Y (π̄j, m̄j) = g0(x) + ϵj, E[ϵj | X] = 0

= gk(x) + rk(x) + ϵj

(2.2.5)

where g0(x) is the conditional counterfactual outcome (2.2.1), gk(x) := pk(x)′βk is the

projection of g0(x) onto the first k basis terms, and rk(x) := g0(x) − gk(x) denotes the

approximation error from this projection. Note the separate error terms for each j = 1, . . . , k

in (2.2.5), which are collected together in the vector ϵk := (ϵ1, . . . , ϵk). As long as one of

the first-stage models is correctly specified, the least squares parameter βk governing the

projection in gk(x) can be identified by the projection of the aIPW signal onto the basis

terms pk(x):

βk := Q−1E[pk(X)Y1]

= Q−1E[pk(X)Y (π⋆,m⋆)]

= Q−1E[pk(X)Y (π̄j, m̄j)], ∀j = 1, . . . , k.

(2.2.6)

1In case the researcher wants to use a second-stage basis that cannot be transformed to be weakly positive,
we have shown a slightly modified method of constructing our doubly-robust estimator and inference procedure
that does not require the first-stage weights to directly be the second-stage basis terms. This is available on
request.
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2.2.2. Estimator and Inference Procedure

We assume a logistic regression form for the propensity score model and a linear form for the

outcome regression model:

π(Z; γ) =
(
1 + exp(−γ′Z)

)−1
,

m(Z;α) = α′Z.

(2.2.7)

For each j = 1, . . . , k, the parameters of (2.2.7), γ, α ∈ Rdz , are estimated, respectively, by

γ̂j := argmin
γ

En[pj(X){De−γ
′Z + (1−D)γ′Z}] + λγ,j∥γ∥1, (2.2.8)

α̂j := argmin
α

En[pj(X)De−γ̂
′
jZ(Y − α′Z)2]/2 + λα,j∥α∥1. (2.2.9)

The penalty parameters λγ,j and αγ,j are chosen via a data dependent technique described

below. Under standard assumptions the parameter estimators γ̂j, α̂j will converge uniformly

over j = 1, . . . , k to population minimizers

γ̄j := argmin
γ

E[pj(X){De−γ
′Z + (1−D)γ′Z}], (2.2.10)

ᾱj := argmin
α

E[pj(Z)De−γ̄
′
jZ(Y − α′Z)2]. (2.2.11)

which we assume are sufficiently sparse. Our first-stage estimators are then π̂j(Z) := π(Z; γ̂j)

and m̂j(Z) := m(Z; α̂j) with limiting values π̄j(Z) := π(Z; γ̄j) and m̄j(Z) := m(Z; ᾱj),

respectively.

After plugging in the functional forms of π̄j(Z) and m̄j(Z) into the aIPW signal one can

verify that the derivatives of the aIPW signal with respect to the parameters γj and αj are

almost identical to the first order conditions of the minimization problems in (2.2.10)-(2.2.11)

. Optimality of γ̄j and ᾱj will thus imply that the gradient of the limiting aIPW signal,

weighted by pj(X), is mean zero even when the limiting values π̄j(Z) and m̄j(Z) differ from
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the true values π⋆(Z) and m⋆(Z). This allows us to control how sensitive the second stage

CATE estimator is to first stage nuisance model estimation error even under misspecification

and achieve doubly robust inference. The importance of this fact and why it is useful is

discussed at greater depth in Section 2.3.

Our second-stage estimator is defined ĝ(x) := pk(x)′β̂k where β̂k is an estimate of the

population projection parameter, βk, obtained by combining all k pairs of first-stage estimators

β̂k := Q̂−1En


p1(X)Y (π̂1, m̂1)

...

pk(X)Y (π̂k, m̂k)

 , (2.2.12)

and Q̂ := En[pk(X)pk(X)′]. We estimate the variance of ĝ(x) using σ̂(x) := ∥Ω̂1/2pk(x)∥/
√
n

where

Ω̂ := Q̂−1En[{pk(X) ◦ ϵ̂k}{pk(X) ◦ ϵ̂k}′]Q̂−1, (2.2.13)

and ◦ represents the Hadamard element-wise product. The vector ϵ̂k collects the various

estimated error terms; ϵ̂k := (ϵ̂1, . . . , ϵ̂k) for ϵ̂j := Y (π̂j, m̂j)− ĝ(x), j = 1, ..., k. Inference is

based on the 100(1− η)% confidence bands

[
i(x), ī(x)

]
:=
[
ĝ(x)− c⋆

(
1− η/2

)
σ̂(x), ĝ(x) + c⋆

(
1− η/2

)
σ̂(x)

]
. (2.2.14)

For pointwise inference, the critical value c⋆(1− η/2) is taken as the (1− η/2) quantile of a

standard normal distribution. For uniform inference c⋆(1− η/2) is taken

c⋆u(1− η/2) := (1− η/2)-quantile of sup
x∈X

∣∣∣∣∣pk(x)Ω̂1/2

σ̂(x)
N b
k

∣∣∣∣∣
where N b

k is a bootstrap draw from N(0, Ik). Sections 2.3 and 2.4 show that, under standard

sparsity and moment conditions, these pointwise and uniform inference procedures remain

valid even under misspecification of either first-stage model.
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2.2.3. Penalty Parameter Selection

To select the penalty parameters λγ,j and λα,j in (2.2.8)-(2.2.9) we propose a data driven two-

step procedure based on the work of Chetverikov and Sørensen (2021). For each j = 0, 1 . . . , k,

we start with pilot penalty parameters given by

λpilot

γ,j = cγ,j ×

√
ln3(dz)

n
and λpilot

α,j = cα,j ×

√
ln3(dz)

n
(2.2.15)

for some constants cγ,j, cα,j selected from the interval [cn, c̄n] with cn > 0. In practice, the

researcher has a fair bit of flexibility in choosing these constants. The optimal choice of these

constants may depend on the underlying data generating process. We recommend using

cross validation to pick these constants from a fixed-cardinality set of possible values. In line

with Assumption 2.3.1(vi), the values in the set should be chosen to be on the order of the

maximum value of ∥pk(Xi)∥∞ observed in the data.

Using λpilot

γ,j and λpilot

α,j in lieu of λγ,j and λα,j in (2.2.8)-(2.2.9) we generate pilot estimators

γ̂pilot

j and α̂pilot

j . These pilot estimators are used to generate plug in estimators Ûγ,j and Ûα,j

of the residuals

Ûγ,j := −pj(X){D(1 + e−γ̂
pilot′
j Z)− 1}

Ûα,j := −pj(X)De−γ̂
pilot′
j Z(Y − α̂pilot′

j Z).

(2.2.16)

whose true values are given

Uγ,j := −pj(X){D(1 + e−γ̄
′
jZ)− 1}

Uα,j := −pj(X)De−γ̄
′Z(Y − ᾱ′Z)

(2.2.17)

These true residuals are the derivatives of the minimization problems in (2.2.10)-(2.2.11)

evaluated at minimizing values γ̄j and ᾱj. After generating the residual estimates, we use a
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multiplier bootstrap procedure to select final penalty parameters λγ,j and λα,j.

λγ,j = c0 × (1− ϵ)-quantile of max
1≤l≤dz

|En[eiÛγ,jZl]| given {Yi, Di, Zi}ni=1,

λα,j = c0 × (1− ϵ)-quantile of max
1≤l≤dz

|En[eiÛα,jZl]| given {Yi, Di, Zi}ni=1

(2.2.18)

where e1, . . . , en are independent standard normal random variables generated independently

of the data {Yi, Di, Xi}ni=1 and c0 > 1 is a fixed constant.2 In line with other work we find

c0 = 1.1 works well in simulations. So long as our residual estimates converge in empirical

mean square to limiting values and kϵ → 0, the choice of penalty parameters in (2.2.18) will

ensure that the penalty parameters dominate the noise with probability approaching one

uniformly over the k first stage estimation procedures. This allows for consistent variable

selection and coefficient estimation.

2.3. Theory Overview

We begin with a main technical lemma which provides a bound on rate at which first-stage

estimation error is passed on to the second-stage CATE and variance estimators. This bound

is comparable to others seen in the inference after model-selection literature (Belloni et al.,

2013; Tan, 2020) and is achieved under standard conditions in the ℓ1-regularized estimation

literature (Bickel et al., 2009; Bühlmann and van de Geer, 2011; Belloni and Chernozhukov,

2013; Chetverikov and Sørensen, 2021). However, this bound is achieved at the limiting

values of the propensity score and outcome regression models which may differ from the true

values π⋆ and m⋆ under misspecification.

The potential misspecification of the first-stage models means we cannot directly apply

orthogonality of the aIPW signal, discussed below, to show that the effect of first-stage

estimation error on the second-stage is negligible. Instead, we use the first order conditions for

2The constant c0 can be different for the propensity score and outcome regression models and can also
vary for each j = 1, . . . , k. All that matters is that each constant satisfies the requirements of Lemma 2.3.1.
This complicates notation, however.
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γ̂j and α̂j to directly control this quantity. After presenting the lemma Section 2.3.2 provides

some intuition for how this is done. Controlling the rate at which first-stage estimation error

is passed on to the second-stage estimator even at points away from the true values π⋆ and

m⋆ is key for obtaining doubly-robust inference for the CATE.

2.3.1. Uniform First-Stage Convergence

To show uniform convergence of the first-stage estimators and thus uniform control of the

bias passed on from the first-stage estimation to the second-stage estimator we rely on

Assumption 2.3.1, below. The conditions in Assumption 2.3.1(v,vi) depend on the sup-norm

of the basis functions, ξk,∞ = supx∈X ∥pk(x)∥∞.

Assumption 2.3.1 (First-Stage Convergence).

(i) The regressors Z are bounded, max1≤l≤dz |Zl| ≤ C0 almost surely.

(ii) The errors Y1 − m̄j(Z) are uniformly subgaussian conditional on Z in the following

sense. There exists fixed positive constants G0 and G1 such that for any j:

G0E
[
exp

(
{Y1 − m̄j(Z)}2/G2

0

)
− 1 | Z

]
≤ G2

1

almost surely.

(iii) There is a constant B0 such that γ̄′
jZ ≥ B0 almost surely for all j.

(iv) There exists fixed constants ξ0 > 1 and 1 > ν0 > 0 such that for each j = 1, . . . , k

the following empirical compatibility condition holds for the empirical hessian matrix

Σ̃γ,j := En[De−γ̄
′
jZZZ ′]. For any b ∈ Rdz and Sj = {l : |γ̄j,l| ∨ |ᾱj,l| ≠ 0}:

∑
l ̸∈Sj

|bl| ≤ ξ0
∑
l∈Sj

|bl| =⇒ ν2
0

(∑
l∈Sj

|bl|
)2

≤ |Sj|
(
b′Σ̃γ,jb

)
.

(v) There exists fixed constants cu and CU > 0 such that for all j = 1, . . . , k, E[U4
γ,j] ≤
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(ξk,∞CU)
4 and min1≤l≤dz E[U2

γ,jZ
2
l ] ≥ cu.

(vi) The constant cn is chosen such that ξk.∞ ≲ cn and the following sparsity bounds hold

for sk = max1≤j≤k |Sj|

ξk,∞s2kc̄
2
n ln

5(dzn)

n
→ 0, and

ξ4k,∞ ln7(dzkn)

n
→ 0.

The first part of Assumption 2.3.1 assumes that the regressors are bounded while the second

assumes that tail behavior of the outcome regression errors are uniformly thin. Both of

these can be relaxed somewhat with sufficient moment conditions on the tail behavior of

the controls and errors. We should note that compactness of X is generally required by

nonparametric estimators. The third part of the assumption bounds all limiting propensity

scores π̄j(Z) away from zero uniformly. The fourth assumption is an empirical compatibility

condition on the weighted first-stage design matrix. It is slightly weaker than the restricted

eigenvalue conditions often assumed in the literature (Bickel et al., 2009; Belloni et al., 2012b).

The penultimate condition is an identifiability constraint that limits the moments of the

noise and bounds it away from zero uniformly over all estimation procedures. Many of the

constants in Assumption 2.3.1 are assumed to be fixed across all j. This is mainly to simplify

the exposition of the results below and in practice all constants can be allowed to grow slowly

with k. However, the growth rate of these terms affects the required first-stage sparsity.

The last condition is required for the validity of the bootstrap penalty parameter selection

procedure and is comparable to the requirements needed for the bootstrap after cross

validation technique described by Chetverikov and Sørensen (2021). The main difference is

the additional assumption on the growth rate of the basis functions, ξk,∞ which is to ensure

uniform stability of the estimation procedures (2.2.8)-(2.2.9) as well as some assumptions on

the order of the constants cγ,j and cα,j in (2.2.15).

Assumptions 2.3.1(v,vi) depend on the sup-norm of the basis functions, ξk,∞. This growth
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rate of this quantity will depend on the form of basis used for the second stage nonparametric

estimator. In both our simulation study as well as our empirical exercise we use B-splines for

which ξk,∞ ≲
√
k. Other common bases used in nonparametric estimation are polynomial

series for which ξk ≲ k, or wavelets for which ξk,∞ ≲
√
k. Belloni et al. (2015) provide a

discussion for other choices of basis terms.

Lemma 2.3.1 (First-Stage Convergence). Suppose that Assumption 2.3.1 holds. In addition

assume that c0 > (ξ0 + 1)/(ξ0 − 1), k/n → 0, kϵ → 0, and there is a fixed constant c > 0

such that for all j, λα,j/λγ,j ≥ c.1Then the following weighted means converge uniformly in

absolute value at least at rate:

max
1≤j≤k

∣∣En[pj(X)Y (π̂j, m̂j)]− En[pj(X)Y (π̄j, m̄j)]
∣∣ ≲P sk ξ

2
k,∞ ln(dz)

n
(2.3.1)

and in empirical mean square at least at rate:

max
1≤j≤k

En[p2j(X)(Y (π̂j, m̂j)− Y (π̄j, m̄j))
2] ≲P

s2k ξ
4
k,∞ ln(dz)

n
(2.3.2)

Lemma 2.3.1 provides a tight bound on the first-stage estimation error passed on to the

second-stage estimator even when the first-stage estimators converge to values that are not

the true propensity score or outcome regression. In particular under the sparsity bound

skξ
2
k,∞k1/2 ln2(dz)/

√
n → 0, any linear combination of the means in both (2.3.1) and (2.3.2)

is op(
√
n). This allows us to obtain doubly-robust inference for the CATE. This sparsity

bound is similar in form to others in the literature (Belloni et al., 2012b; van der Greer,

2016; Chetverikov and Sørensen, 2021) however is somewhat stronger due to the additional

dependence on ξ2k,∞k1/2.

1The requirement λα,j/λγ,j ≥ c may seem a bit unnatural, but it can be enforced in practice without
upsetting any assumptions by using the alternative linear penalty λratio

α,j := max{λγ,j ≥ c, λα,j}. In simulations,
we find this constraint is rarely binding. The constant c here is arbitrary, it is only important that the ratio
λγ,j/λα,j is bounded from above.
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2.3.2. Managing First-Stage Bias

We now provide some intuition for how this result is obtained and the role our particular

estimating equations play in establishing this fact. We focus on control of the vector Bk,

defined in (2.3.3), which measures the bias passed on from first-stage estimation to the

second-stage estimate β̂k. Limiting the size of Bk is crucial in showing convergence of β̂k to

the true parameter βk and thus consistency of the nonparametric estimator ĝ(x).

Bk := En


p1(X)

{
Y (π̂1, m̂1)− Y (π̄1, m̄1)

}
...

pk(X)
{
Y (π̂k, m̂k)− Y (π̄k, m̄k)

}
 . (2.3.3)

For exposition, we consider a single term of (2.3.3), Bk
j , which roughly measures the first-stage

estimation bias taken on from adding the jth basis term to our series approximation of g0(x).

The discussion that follows is a bit informal, instead of considering the derivatives with

respect to the true parameters below our proof strategy will directly use the Kuhn-Tucker

conditions of the optimization routines in (2.2.8)-(2.2.9). However, the general intuition is

the same as is used in the proofs.

In addition to the doubly-robust identification property (2.2.3), the aIPW signal is typically

useful in the high-dimensional setting because it obeys an orthogonality condition at the true

values (π⋆,m⋆):2

E[∇π,mY (π⋆,m⋆) | Z] = 0. (2.3.4)

When both the propensity score model and outcome regression model are correctly specified

we can (loosely speaking) examine the bias Bk
j by replacing π̄j = π⋆ and m̄j = m∗ and

2Robustness and orthogonality are indeed closely related, see Theorem 6.2 in Newey and McFadden (1994)
for a discussion.
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considering the following first order expansion:

Bk
j = En[pj(X)Y (π̂j, m̂j)]− En[pj(X)Y (π⋆,m⋆)]

= En[pj(X)∇π,m Y (π⋆,m⋆)]︸ ︷︷ ︸
Op(n−1/2) by (2.3.4)

 π̂j − π⋆

m̂j −m⋆

+ op(n
−1/2).

(2.3.5)

By orthogonality of the aIPW signal the gradient term is close to zero, which guarantees

that the bias is asymptotically negligible even if the nuisance parameters converge slowly

to the true values, π⋆ and m⋆.3 This allows the researcher to ignore first-stage nuisance

parameter estimation error and treat π⋆ and m⋆ as known when analyzing the asymptotic

properties of the second-stage series estimator. Indeed, since the aIPW signal orthogonality

holds conditional on Z = (Z1, X), if both models are correctly specified only a single pair of

first-stage estimators would be needed to provide control over all the elements in Bk. This is

the approach followed by Semenova and Chernozhukov (2021).

So long as either one of π̄j = π⋆ or m̄j = m⋆ we still have that E[pj(X)Y1] ≈ En[pj(X)Y (π̄j, m̄j)]

by double-robustness of the aIPW signal (2.2.3). However, the aIPW orthogonality tells

us nothing about the expectation of the gradient away from the true parameters, π⋆,m⋆; if

either π̄j ̸= π⋆ or m̄j ̸= m⋆ there is no reason to believe that the gradient on the right hand

side of (2.3.5) is mean zero when evaluated instead at Y (π̄j, m̄j). In general, the bias Bk
j will

then diminish at the rate of convergence of our nuisance parameters. Because we have high

dimensional controls, this convergence rate will generally be much slower than the standard

nonparametric rate (Newey, 1997; Belloni et al., 2015).

To get around this, we design the first-stage objective functions (2.2.8)-(2.2.9) such that the

resulting first-order conditions control the bias passed on to the second-stage. Consider the

3Typically all that is required is that ∥π̂j − π⋆∥ = op(n
−1/4) and ∥m̂j −m⋆∥ = op(n

−1/4) in order to make
the second order remainder term

√
n-negligible
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following expansion instead around the limiting parameters γ̄j and ᾱk.

Bk
j = En[pj(X)Y (π̂j, m̂j)]− En[pj(X)Y (π̄j, m̄j)]

= En[pj(X)∇γj ,αj
Y (π̄j, m̄j)]

 γ̂j − γ̄j

α̂j − ᾱj

+ op(n
−1/2)

(2.3.6)

After substituting the forms of π̄j(z) = π(z; γ̄j) and m̄j(z) = m(z; ᾱj) described in (2.2.7)

and differentiating with respect to γj and αj we obtain

E[pj(X)∇γj ,αj
Y (π̄j, m̄j)] = E

 −pj(X)De−γ̄
′
jZ(Y − ᾱ′

jZ)Z

−pj(x){D(1 + e−γ̄
′
jZ)Z − Z}

 (2.3.7)

However, by definition γ̄j and ᾱj solve the minimization problems defined in (2.2.10)-(2.2.11),

the population analogs of our finite sample estimating equations. The first order conditions

of these minimization problems yield

E

First order condition of γ̄j︷ ︸︸ ︷−pj(X){D(1 + eγ̄
′Z)Z − Z}

−pj(X)De−γ̄
′Z(DY − ᾱ′Z)Z


︸ ︷︷ ︸

First order condition of ᾱj

= 0 =⇒ E[pj(X)∇γj ,αj
Y (π̄j, m̄j)] = 0 (2.3.8)

Examining the first order conditions in (2.3.8), we see that they exactly give us control over

the gradient (2.3.7). Under suitable convergence of the first-stage parameter estimates, this

guarantees the bias examined in expansion (2.3.6) is negligible even under misspecification of

the propensity score or outcome regression models.

Control of this gradient under misspecification is not provided using other estimating equations,

such as maximum likelihood for the logistic propensity score model or ordinary least squares

for the linear outcome regression model. Moreover, control over the gradient of Bk
j from
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(2.3.3) is not provided by the first-order conditions for γ̄l and ᾱl for l ̸= j:

E[pj(X)∇γj ,αj
Y (π̄j, m̄j)] = E

 −pj(X)De−γ̄
′Z(Y − ᾱ′Z)Z

−pj(X){D(1 + eγ̄
′Z)Z − Z}



̸= E

First order condition of γ̄l︷ ︸︸ ︷−pl(X){D(1 + eγ̄
′Z)Z − Z}

−pl(X)De−γ̄
′Z(Y − ᾱ′Z)Z


︸ ︷︷ ︸

First order condition of ᾱl

.

(2.3.9)

Showing that the inference procedure of Section 2.2 remains valid at all points x ∈ X

under misspecification requires showing negligible first-stage estimation bias for any linear

transformation of the vector (2.3.3). As outlined above, this requires using k separate pairs

of nuisance parameter estimator to obtain k separate pairs of first order conditions, one for

each term of the vector.

2.4. Main Results

In this section, we present the main consistency and distributional results for our second-stage

estimator ĝ(x) described in Section 2.2. A full set of second-stage results, including pointwise

and uniform linearization lemmas and uniform convergence rates, can be found in the Online

Appendix. The first set of results is established under the following condition, which limits

the bias passed from first-stage estimation onto the second-stage estimator. In particular,

Condition 1 implies that the bias vector Bk from (2.3.3) satisfies ∥Bk∥ = op(n
−1/2).

Condition 1 (No Effect of First-Stage Bias).

max
1≤j≤k

∣∣En[pj(X)Y (π̂j, m̂j)]− En[pj(X)Y (π̄j, m̄j)]
∣∣ = op(n

−1/2k−1/2). (2.4.1)

Via Lemma 2.3.1 we can see that is a logistic propensity score model and a linear outcome
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regression model and estimating the first-stage models using the estimating equations (2.2.8)-

(2.2.9), Condition 1 can be achieved under Assumption 2.3.1 and the sparsity bound

sk ξ
2
k,∞k1/2 ln(dz)√

n
→ 0. (2.4.2)

If the researcher were to assume different parametric forms for the first-stage model, different

first estimating equations would have to be used to obtain doubly-robust estimation and

inference. However, so long as the Condition 1 can be established at the limiting values of

the first-stage models, the results of this section hold.

Having dealt with the first-stage estimation error, the main complication remaining is that

under misspecification the aIPW signals Y (π̂j, m̂j) for j = 1, . . . , k do not all converge to the

same limiting values. However, so long as at least one of the first-stage models is correctly

specified, all of the limiting aIPW signals have the same conditional mean, g0(x). In the

standard setting, consistency of nonparametric estimator relies on certain conditions on the

error terms. In our setting, we require that these assumptions hold uniformly over k the error

terms. We note though that there is a non-trivial dependence structure between that limiting

aIPW signals. This strong dependence gives plausibility to our uniform conditions. For

example, if the logistic propensity score model is correctly specified and the difference between

the limiting outcome regression models is bounded, |max1≤j≤k m̄j(Z)−min1≤j≤kmj(Z)| ≤ C

almost surely, our conditions reduce exactly to the conditions of Belloni et al. (2015). In

general, however, the uniform conditions suggest that a degree of undersmoothing is optimal

when implementing our estimation procedure; the optimal choice of k may be smaller than in

standard nonparametric regression.

2.4.1. Pointwise Inference

Pointwise inference relies on the following assumption in tandem with Condition 1.

Assumption 2.4.1 (Second-Stage Pointwise Assumption). Let ϵ̄k := max1≤j≤k |ϵj|. Assume
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that

(i) Uniformly over all n, the eigenvalues of Q = E[pk(x)pk(x)′] are bounded from above and

away from zero.

(ii) The conditional variance of the error terms is uniformly bounded in the following

sense. There exists constants σ2 and σ̄2 such that for any j = 1, 2 . . . we have that

σ2 ≤ Var(ϵj | X) ≤ σ̄2 < ∞;

(iii) For each n and k there are finite constants ck and ℓk such that for each f ∈ G

∥rk∥L,2 = (E[rk(x)2])1/2 ≤ ck and ∥rk∥L,∞ = sup
x∈X

|rk(x)| ≤ ℓkck.

(iv) supx∈X E[ϵ̄2k 1{ϵ̄k + ℓkck > δ
√
n/ξk} | X = x] → 0 as n → ∞ and supx∈X E[ℓ2kc2k1{ϵ̄k +

ℓkck > δ
√
n/ξk} | X = x] → 0 as n → ∞ for any δ > 0.

As mentioned, these are exactly the conditions required by Belloni et al. (2015), with the

modification that the bounds on conditional variance and other moment conditions on the

error term hold uniformly over j = 1, . . . , k. The assumptions on the series terms being used

in the approximation can be shown to be satisfied by a number of commonly used functional

bases, such as polynomial bases or splines, under adequate normalizations and smoothness of

the underlying regression function. Readers should refer to Newey (1997), Chen (2007), or

Belloni et al. (2015) for a more in depth discussion of these assumptions.1

Under these assumptions, the variance of our second-stage estimator is governed by one of

the following variance matrices:

Ω̃ := Q−1E[{pk(x) ◦ (ϵk + rk)}{pk(x) ◦ (ϵk + rk)}′]Q−1

Ω0 := Q−1E[{pk(x) ◦ ϵk}{pk(x) ◦ ϵk}′]Q−1

(2.4.3)

1In practice, we recommend the use of B-splines in order to to satisfy the first requirement that the basis
functions are weakly positive and to reduce instability of the convex optimization programs described in
(2.2.8)-(2.2.9).
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where ◦ represents the Hadamard (element-wise) product and, abusing notation, for a vector

a ∈ Rk and scalar c ∈ R we let a+ c = (ai + c)ki=1. Later on, we establish the validity of the

plug-in analog Ω̂ (2.2.13), as an estimator of these matrices.

Theorem 2.4.1 (Pointwise Normality). Suppose that Condition 1 and Assumption 2.4.1

hold. In addition suppose that ξ2k log k/n → 0. Then so long as either the logistic propensity

score model or linear outcome regression model is correctly specified, for any α ∈ Sk−1:

√
n
α′(β̂k − βk)

∥α′Ω1/2∥
→d N(0, 1) (2.4.4)

where generally Ω = Ω̃ but if ℓkck → 0 then we can set Ω = Ω0. Moreover, for any x ∈ X

and s(x) := Ω1/2pk(x),
√
n
pk(x)′(β̂k − βk)

∥s(x)∥
→d N(0, 1) (2.4.5)

and if the approximation error is negligible relative to the estimation error, namely
√
nrk(x) =

o(∥s(x)∥), then
√
n
ĝ(x)− g(x)

∥s(x)∥
→d N(0, 1) (2.4.6)

Theorem 2.4.1 shows that the estimator proposed in Section 2.2 has a limiting gaussian

distribution even under misspecification of either first-stage model. This allows for doubly-

robust pointwise inference after establishing a consistent variance estimator.

2.4.2. Uniform Convergence

Next, we turn to strengthening the pointwise results to hold uniformly over all points x ∈ X .

This requires stronger conditions. We make the following assumptions on the tail behavior of

the error terms which strengthens Assumption 2.4.1.

Assumption 2.4.2 (Uniform Limit Theory). Let ϵ̄k = sup1≤j≤k |ϵj|, α(x) := pk(x)/∥pk(x)∥,
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and let

ξLk := sup
x,x′∈X
x ̸=x′

∥α(x)− α(x′)∥
∥x− x′∥

.

Further for any integer s let σ̄sk = supx∈X E[|ϵ̄k|s|X = x]. For some m > 2 assume

(i) The regression errors satisfy supx∈X E[max1≤i≤n |ϵ̄k,i|m | X = x] ≲P n1/m

(ii) The basis functions are such that (a) ξ
2m/(m−2)
k log k/n ≲ 1, (b) (σ̄2

k ∨ σ̄mk ) log ξ
L
k ≲ log k,

and (c) log σ̄mk ξk ≲ log k.

As before, Assumption 2.4.2 is very similar to its analogue in Belloni et al. (2015), with

the modification that the conditions are required to hold for ϵ̄k as opposed to ϵk. Under

this assumption, we derive doubly-robust uniform rates of convergence uniform inference

procedures for the conditional counterfactual outcome g0(x).

Theorem 2.4.2 (Strong Approximation by a Gaussian Process). Assume that Condition 1

holds and that Assumptions 2.4.1-2.4.2 hold with m ≥ 3. In addition assume that (i)

R̄1n = op(a
−1
n ) and (ii) a6nk

4ξ2k(σ̄
3
k + ℓ3kc

2
k)

2 log2 n/n → 0 where

R̄1n :=

√
ξ2k log k

n
(n1/m

√
log k +

√
kℓkck) and R̄2n :=

√
log k · ℓkck

Then so long as either the propensity score model or outcome regression model is correctly

specified, for some Nk ∼ N(0, Ik):

√
n
α(x)′(β̂ − β)

∥α(x)′Ω1/2∥
=d

α(x)′Ω1/2

∥α(x)′Ω1/2∥
Nk + op(a

−1
n ) in ℓ∞(X ) (2.4.7)

so that for s(x) := Ω1/2pk(x)

√
n
pk(x)′(β̂ − β)

∥s(x)∥
=d

s(x)

∥s(x)∥
Nk + op(a

−1
n ) in ℓ∞(X ) (2.4.8)
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and if supx∈X
√
n|rk(x)|/∥s(x)∥ = o(a−1

n ), then

√
n
ĝ(x)− g(x)

∥s(x)∥
=d

s(x)′

∥s(x)∥
Nk + op(a

−1
n ) in ℓ∞(X ) (2.4.9)

where in general we take Ω = Ω̃ but if R̄2n = op(a
−1
n ) then we can set Ω = Ω0 where Ω̃ and

Ω0 are as in (2.4.3).

Theorem 2.4.2 establishes conditions under which we obtain a doubly-robust strong ap-

proximation of the empirical process x 7→
√
n(ĝ(x) − g0(x)) by a Gaussian process. After

establishing consistent estimation of the matrix Ω, this strong approximation result allows

us to show validity of the uniform confidence bands described in Section 2.2. As noted by

Belloni et al. (2015), this is distinctly different from a Donsker type weak convergence result

for the estimator ĝ(x) as viewed as a random element of ℓ∞(X). In particular, the covariance

kernel is left completely unspecified and in general need not be well behaved.

2.4.3. Matrix Estimation and Uniform Inference

We establish that the estimator Ω̂ proposed in (2.2.13) is a consistent estimator of the true

limiting variance Ω, where Ω = Ω̃ in general but if R̄2n = op(a
−1
n ) then Ω = Ω0. To do so, we

rely on the second-stage assumptions Assumptions 2.4.1 and 2.4.2 as well as the following

condition limiting the first-stage estimation error passed on to the variance estimator Ω̂.

Condition 2 (Variance Estimation). Let m > 2 be as in Assumption 2.4.2. Then,

ξk,∞ max
1≤j≤k

En[pj(X)2(Y (π̂j, m̂j)− Y (π̄j, m̄j))
2] = op(k

−2n−1/m) (2.4.10)

Via Lemma 2.3.1 we can establish Condition 2 under Assumption 2.3.1 as well as the additional
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sparsity bound2

ξ5k,∞s2kk
2 ln(dz)

n(m−1)/m
. (2.4.11)

Theorem 2.4.3 (Matrix Estimation). Suppose that Conditions 1 and 2 and Assump-

tions 2.4.1-2.4.2 hold. In addition, assume that R̄1n + R̄2n ≲ (log k)1/2. Then, so long

as either the propensity score model or outcome regression model is correctly specified then

for Ω̂ = Q̂−1Σ̂Q̂−1:

∥Ω̂− Ω∥ ≲P (vn ∨ ℓkck)

√
ξ2k log k

n
= o(1)

Theorem 2.4.3 establishes that pointwise inference based on the test statistic described in

Section 2.2, obtained by replacing Ω in Theorem 2.4.1 with the consistent estimator Ω̂, is

doubly-robust. Hypothesis tests based on the test statistic as well as pointwise confidence

intervals for g0(x) remain valid even if one of the first-stage parameters is misspecified.

We now establish the validity of uniform inference based on the gaussian bootstrap critical

values c⋆u(1− α) defined in Section 2.2.

Theorem 2.4.4 (Validity of Uniform Confidence Bands). Suppose Conditions 1 and 2 are

satisfied and Assumptions 2.4.1–2.4.2 hold with m ≥ 4. In addition suppose (i) R1n +R2n ≲

log1/2 n, (ii) ξk log
2 n/n1/2−1/m = o(1), (iii) supx∈X |rk(x)|/∥pk(x)∥ = o(log−1/2 n), and (iv)

k4ξ2k(1+ l3kr
3
k)

2 log5 n/n = o(1). Then, so long as either the propensity score model or outcome

regression model is satisfied

Pr

(
sup
x∈X

| ĝ(x)− g(x)

σ̂(x)
| ≤ c⋆(1− α)

)
= 1− α + o(1).

2The sparsity bound (2.4.11) required for consistent variance estimation can be significantly sharpened if
the researcher is willing to use a cross fitting procedure, using one sample to estimate the nuisance parameters
and another to evaluate the aIPW signal. This is because one could more directly follow Semenova and
Chernozhukov (2021) and control alternate quantities with bounds that converge more quickly to zero.
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As a result, uniform confidence intervals formed in (2.2.14) satisfy

Pr(g(x) ∈ [i(x), ī(x)], ∀x ∈ X ) = 1− α + o(1).

In conjunction with Lemma 2.3.1, Theorem 2.4.1 and Theorem 2.4.3, Theorem 2.4.4 shows

the validity of the uniform inference procedure described in Section 2.2.

2.5. Estimation of the Conditional Average Treatment Effect

Up to now, we have mainly focused on doubly-robust estimation and model-assisted inference

for the function

g0(x) = E[Y1 | X = x].

We conclude by noting that we can use a symmetric procedure to obtain model-assisted

inference for the additional conditional counterfactual outcome

g̃0(x) = E[Y0 | X = x].

To do so, we use the alternate aIPW signal

Y0(π0,m0) =
(1−D)Y

1− π0(Z)
+

(
1−D

1− π0(Z)
− 1

)
m0(Z)

where as before the true value for π⋆0(z) = Pr(D = 1 | Z = z) but now m⋆
0(z) = E[Y |

D = 0, Z = z]. To estimate these nuisance models we again assume a logistic form for the

propensity score model π0(z) = π(z; γ0) and a linear form for the outcome regression model

m0(z) = m(z, α0) as in (2.2.7) and use a separate estimation procedure for each basis term

in our series approximation of g̃0(x). The estimating equations we use to estimate each γ0
j
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and α0
j differ from those in (2.2.8)-(2.2.9) however, and are instead given

γ̂0
j := argmin

γ
En[pj(X){(1−D)eγ

′Z −Dγ′Z}] + λγ,j∥γ∥1

α̂0
j := argmin

α
En[pj(Z)(1−D)eγ̂

0′
j Z(Y − α′Z)2]/2 + λα,j∥α∥1

which under the natural analog of Assumption 2.3.1 converge uniformly to population

minimizers:

γ̄0
j := argmin

γ
E[pj(X){(1−D)eγ

′Z −Dγ′Z}]

ᾱ0
j := argmin

α
E[pj(Z)(1−D)eγ̄

0′
j Z(Y − α′Z)2]

Letting π̄0,j(z) = π(z, γ̄0
j ), and m̄0,j(z) = m(z, ᾱ0

j) we can repeat the decomposition of

Section 2.3, expressing Ỹ (π̄0,j, m̄0,j) as functions of the parameters γ̄0
j and ᾱ0

j and show that

the first order conditions for γ̄0
j and ᾱ0

j directly control the bias passed on to the second stage

nonparametric estimator for g̃0(x). Convergence rates and validity of inference then follow

from symmetric analysis of the results in Sections 2.3 and 2.4. Combining estimation and

inference of the two conditional counterfactual outcomes then gives a doubly-robust estimator

and inference procedure for the CATE. To perform inference on the CATE we can use the

variance matrix

Ω̄ = Ω0 + Ω1 − 2Ω2

where Ω0 is as in (2.4.3) but Ω1 and Ω2 are given

Ω1 = Q−1E[{pk(x) ◦ ϵk0}{pk(x) ◦ ϵk0}′]Q−1

Ω2 = Q−1E[{pk(x) ◦ ϵk}{pk(x) ◦ ϵk0}′]Q−1

(2.5.1)

where ϵk0,j = Y0(π̄0,j, m̄0,j)− g̃0(x) and ϵk0 = (ϵk0,1, . . . , ϵ
k
0,k)

′. These matrices can be consistently

estimated using their natural empirical analogs as in (2.2.13).
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2.6. Empirical Application

We apply the model assisted estimator to estimate the effect of maternal smoking on infant

birthweight conditional on the age of the mother. We use the Cattaneo (2010) dataset which

can be found online on the Stata website.1 The dataset describes each infant’s birthweight in

grams, Y , whether or not the mother smoked during pregnancy, D = 1 indicating smoking,

and a number of covariates containing information on the mother’s health and socioeconomic

background, Z = (X,Z1), where X represents the conditioning variable, maternal age. The

dataset includes a base of 21 control variables. We additionally construct quadratic powers

and interactions of continuous control variables to generate an additional 29 control variables

so that in total dz = 50. A full summary of the data used as well as additional details/analysis

from our empirical analysis can be found in Section 2.11.

We compare the model assisted estimator of the CATE against one where standard MLE and

OLS loss functions are used to estimate the first stage propensity score and outcome regression

models. We also qualitatively compare our results to Zimmert and Lechner (2019), who use

a kernel based approach to estimate the CATE in this setting. While this sort of comparison

is not perfect since we do not know the true DGP, this setting is advantageous for analysis

since we strongly expect that (i) the effect of smoking on birthweight will be negative and

(ii) this effect should grow stronger in magnitude as the age of the mother increases. These

hypotheses have been corroborated by other work that examines the conditional average

treatment effect in this setting (Zimmert and Lechner, 2019; Abrevaya, 2006; Lee et al., 2017).

2.6.1. Empirical Results

Figure 2.6.1 displays our main results from implementing both the model assisted and

standard MLE/OLS estimation procedures. After removing the top 3% and bottom 3%

of smoker and non-smoker birthweights by maternal age, we select the penalty parameters

1The dataset can be downloaded here.

145

MCATEhttp://www.stata-press.com/data/r13/cattaneo2.dta


for the first stage models via the bootstrap procedure described in Section 2.4. The pilot

penalty parameters are uniformly taken to be equal to zero, so that the residuals used in

the bootstrap procedure are generated from non-regularized estimations. We take c0 = 2 in

(2.2.18) and select the first stage penalty parameters using the 90th, 85th, and 80th quantiles

of the bootstrap distribution. For the second stage basis functions we implement second

degree b-splines with 3 knots via the splines2 package in R (Wang and Yan, 2021).

Consistent with prior work, both estimators of the CATE suggest that the effect of smoking

on birthweight becomes more negative with age. Both estimation procedures also generally

produces negative estimates for the CATE, but it should be noted that for the lowest levels of

penalization the model assisted CATE estimate suggests a slightly positive effect of smoking

for particularly young mothers, though this difference is not significantly different from zero.

The shapes of the estimated functions remain relatively stable under various sizes of the

penalty parameter, though the model assisted procedure is more sensitive to the level of

regularization introduced.2 Overall, the magnitude of the CATE estimates produced by

the model assisted estimator seem to be more reasonable those produced by the standard

estimator.

For the most part, the effects found here are similar to those found in Zimmert and Lechner

(2019), though the effects estimated using standard first stage loss functions have somewhat

larger magnitudes and in general both series estimation procedures seem to give less reasonable

results on the boundaries. An advantage of using a series second stage however, in contrast

to the kernel second stage of Zimmert and Lechner (2019), is the existence of the uniform

confidence bands displayed. Reassuringly, the estimates of Zimmert and Lechner (2019) seem

to be within the 95% uniform confidence bands generated by the model assisted estimator.

As a robustness check, we also try estimating the treatment effect via second degree splines

with five knots and first degree splines with seven knots. These results are displayed in

2Numerically solving the minimization problems in (2.2.8)-(2.2.9) also typically requires more iterations
to converge than solving the standard MLE/OLS minimization problems.
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Figure 2.6.1: CATE of maternal smoking estimated using model assisted estimating equations
(left) and standard MLE/OLS estimating equations (right). Top row uses the 90th quantile
of the bootstrap distribution to select the penalty parameters, second row uses 85th quantile,
and final row uses the 80th quantile. Second stage is computed using b-splines of the second
degree with 3 knots. 95% pointwise confidence intervals are displayed in blue short dashes
and 95% uniform confidence bands are displayed in long red dashes.
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Figures 2.6.2 and 2.6.3, respectively. Again, we find that the effect of smoking on child

birthweight is almost uniformly negative regardless of estimation procedure used or choice of

penalty parameter. The shape of the estimated CATE function remains fairly stable under

both alternative specifications. Again, the confidence bands from the model assisted procedure

remain larger than the confidence bands from the standard procedure. However, the in the

first degree spline specification the uniform confidence bands for the standard procedure

suggest a significantly positive CATE for some values of maternal age; an implausible result.

Finally, Table 2.6.1 reports the smoothed average treatment effect estimates taken from

averaging the model assisted CATE estimates from Figure 2.6.1 across observations. Again,

these estimates are in line with prior work

Table 2.6.1: Smoothed Model Assisted ATE Estimates

Bootstrap Penalty Qt. 90th 85th 80th

Implied ATE -163.257 -222.431 -207.827
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Figure 2.6.2: CATE of maternal smoking estimated using model assisted estimating equations
(left) and standard MLE/OLS estimating equations (right). Top row uses the 95th quantile
of the bootstrap distribution to select the penalty parameters, second row uses 90th quantile,
and final row uses the 85th quantile. Second stage is computed using b-splines of the second
degree with 5 knots. 95% pointwise confidence intervals are displayed in blue short dashes
and 95% uniform confidence bands are displayed in long red dashes.
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Figure 2.6.3: CATE of maternal smoking estimated using model assisted estimating equations
(left) and standard MLE/OLS estimating equations (right). Top row uses the 95th quantile
of the bootstrap distribution to select the penalty parameters, second row uses 90th quantile,
and final row uses the 85th quantile. Second stage is computed using b-splines of the first
degree with 5 knots. 95% pointwise confidence intervals are displayed in blue short dashes
and 95% uniform confidence bands are displayed in long red dashes.
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2.7. Simulation Study

We investigate the finite-sample performance of the doubly-robust estimator and inference

procedure via simulation study. We find that our proposed estimation procedure retains good

coverage properties even under misspecification.

2.7.1. Simulation Design

Observations are generated i.i.d. according to the following distributions The error term is

generated following ϵ ∼ N(0, 1). The controls are set Zi = (Z1i, Xi) ∈ Rdz where dz = 100,

X ∼ U(1, 2), and the independent regressors Z1 are jointly centered Gaussian with a

covariance matrix of the Toeplitz form

Cov(Z1,j, Z1,k) = E[Z1,jZ1,k] = 2−|j−k|, 3 ≤ j, k ≤ dz.

To capture misspecification, we let Z† be a transformation of the regressors in Z1 where

Z†
j = Zj +max(0, 1 + Zj)

2, ∀ j = 3, . . . , dz. Let sparsity control the number of regressors

in Z = (Z1, X) entering the DGP.

(S1) Correct specification: Generate D given Z from a Bernoulli distribution with Pr(D =

1|Z) = {1 + exp(p1 −X − 0.5X2 − γ′Z1)}−1 and Y = D(1 +X + 0.5X2 + γ′Z1) + ϵ.

(S2) Propensity score model correctly specified, but outcome regression model misspecified :

Generate D given Z as in (S1), but Y = D(1 +X + 0.5X2 + γ′Z†
1) + ϵ.

(S3) Propensity score model misspecified, but outcome regression model correctly specified :

Generate Y according to (S1), but generate D given Z from a Bernoulli distribution

with Pr(D = 1|Z) = {1 + exp(p2 −X − 0.5X2 + γ′Z†
1)}−1.

where the constants p1 and p2 differ in various simulation setups but are always set so

that the average probability of treatment is about one half. To consider various degrees of
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high-dimensionality, we implement N ∈ {500, 1000} with dz = 100. For (S1), sparsity= 6;

for (S2), sparsity= 4; and, for (S3), sparsity= 5. Results are reported for S = 1, 000

repeated simulations.

2.7.2. Estimators and Implementation

To select the first stage penalty parameters, we implement the multiplier bootstrap procedure

described in Section 2.2.3. The constants cγ,j and cα,j in the pilot penalty parameters (2.2.15)

are selected via cross validation from a set of size 5. To select the final bootstrap penalty

parameter we set c0 = 1.1 and select the 95th quantile of B = 10000 bootstrap replications. In

our second-stage estimation, we use a b-spline basis of size k = 3. B-splines are implemented

from the R package splines2 (Wang and Yan, 2021), which uses the specification detailed in

Perperoglou et al. (2019). In the tables below, we refer to our method as MA-DML (model

assisted double machine learning).

We compare our proposed estimator and inference procedure to that of Semenova and

Chernozhukov (2021), which projects a single aIPW signal onto a growing series of basis

terms. In implementing this DML method, we use the standard ℓ1-penalized maximum

likelihood (MLE) and ordinary least squares (OLS) loss functions to estimate the first stage

propensity score and outcome regression models, respectively.1

Estimation error is studied for the target parameter g0(x) = E[Y |D = 1, X = x] over a grid of

100 points spaced across x ∈ [1, 2], i.e. the support of X. We study average coverage across

simulations of each method’s pointwise (at x = 1.5) and uniform confidence intervals. To

compare the estimation error for the target parameter g(x) across the two different estimators

ĝs(x) for each simulation s = 1, . . . , S, we utilize integrated bias, variance, and mean-squared

1Vira Semenova provides several example R scripts implementing DML: https://sites.google.com/
view/semenovavira/research.
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error where ḡ(x) = S−1
∑S

s=1 ĝs(x),

IBias2 =

∫ 1

0

(ḡ(x)− g0(x))
2dx,

IVar = S−1

S∑
s=1

∫ 1

0

(ĝs(x)− ḡ(x))2dx,

IMSE = S−1

S∑
s=1

∫ 1

0

(ĝs(x)− g0(x))
2dx.

2.7.3. Simulation Results

Table 2.7.1 presents the simulation results for all three specifications (S1)-(S3) for n = 500

and n = 1000. Integrated squared bias, variance, and mean squared error are presented

in columns (1)-(3), respectively. Pointwise and uniform coverage results are presented in

columns (4)-(7).

For pointwise and uniform coverage under correct specification regime (S1), MA-DML has

some slight improvements. Under misspecification DGPs (S2) and (S3), the pointwise coverage

of MA-DML is closer to the targets except in the N = 1000 and (S2) case where it slightly

underperforms. However, MA-DML has a notable improvement over DML in the (S3) case

when N = 1000. Similarly, MA-DML outperforms DML in three of the four misspecified

regimes, i.e. all but (S3) when N = 500 where MA-DML has over-coverage. Under (S2) when

N = 1000, both methods are markedly deterioated uniform coverage, although MA-DML is

noticably closer to target.

In regards to estimation error, in four of the six settings, MA-DML has a lower MSE than

DML where regardless of sample size MA-DML underperforms in (S3). Notably, it does

appear MA-DML has substantially smaller IBias2 across the DGPs.

Finally, we were surprised to find for both estimators that coverage properties, in general,
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Table 2.7.1: Simulation study.

DGP Estimator IBias2 IVar IMSE Cov90 Cov95 UCov90 UCov95

(1) (2) (3) (4) (5) (6) (7)

K=3, n=500, dz = 100

(S1)
DML 0.04 0.31 0.35 0.92 0.96 1.00 1.00
MA-DML ∼0.0 0.34 0.34 0.93 0.97 1.00 1.00

(S2)
DML 0.16 2.17 2.33 0.92 0.97 0.83 0.86
MA-DML 0.03 2.12 2.15 0.90 0.94 0.88 0.91

(S3)
DML 0.03 0.55 0.59 0.87 0.93 0.95 0.97
MA-DML 0.01 0.79 0.80 0.91 0.95 0.99 0.99

K=3, n=1000, dz = 100

(S1)
DML 0.12 0.20 0.32 0.83 0.90 0.96 0.96
MA-DML 0.01 0.22 0.23 0.83 0.90 0.99 0.99

(S2)
DML 0.40 2.1 2.5 0.84 0.91 0.33 0.39
MA-DML 0.19 2.07 2.26 0.83 0.89 0.50 0.55

(S3)
DML 0.11 0.34 0.46 0.74 0.82 0.80 0.84
MA-DML 0.01 0.53 0.54 0.84 0.89 0.89 0.91

Note: DGP refers to the three various data generating processes introduced
above. IBias2, IVar, and IMSE refer to integrated squared bias, variance, and
mean squared error, respectively. Cov90, Cov95, UCov90, and UCov95 refer to
the coverage proportion of the 90% and 95% pointwise and uniform confidence
intervals across simulations. K refers to the number of series terms, N to the
sample size, and dz to the dimensionality of the random variable Z1.
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improve under the higher-dimensional regime of N = 500 with dz = 100 compared to

N = 1, 000 and dz = 100. In particular, with a higher ratio of covariates to observations, the

uniform coverage properties under regime (S2) were substantially better. The estimation

error results were in line with our priors as the higher-dimensional regime sees in general

higher estimation errors for both methods.

For coverage under correct specification, we did anticipate the underperformance of MA-DML

given it is designed to handle misspecification with the cost of other estimators outperforming

under correct specification. Additionally, we attribute the poor uniform coverage in DGP

(S2) for both estimators under N = 1, 000 to a lack of a rich enough cross-validation given the

performance was improved under a more difficult regime when the number of observations

drops to N = 500. The integrated bias of MA-DML is lower across the various DGPs

compared to DML. Following the discussion in Section 2.3 this is expected since the first stage

estimating equations for the model assisted procedure are specifically designed to minimize

the bias passed on to the second stage estimator. However, the model assisted procedure has

higher values of integrated variance compared to the standard procedure, which could be

attributable to the use of k distinct first-stage estimations.

Our findings should not be interpreted as a critique of the Semenova and Chernozhukov

(2021) benchmark method, whose work we rely on and were inspired by.

2.8. Conclusion

Estimation of conditional average treatment effects with high dimensional controls typically

relies on first estimating two nuisance parameters: a propensity score model and an outcome

regression model. In a high-dimensional setting, consistency of the nuisance parameter

estimators typically relies on correctly specifying their functional forms. While the resulting

second-stage estimator for the conditional average treatment effect typically remains consistent

even if one of the nuisance parameters is inconsistent, the confidence intervals may no longer
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be valid.

In this paper, we consider estimation and valid inference on the conditional average treatment

effect in the presence of high dimensional controls and nuisance parameter misspecification.

We present a nonparametric estimator for the CATE that remains consistent at the non-

parametric rate, under slightly modified conditions, even under misspecification of either the

logistic propensity score model or linear outcome regression model. The resulting Wald-type

confidence intervals based on this estimator also provide valid asymptotic coverage under

nuisance parameter misspecification.

2.9. Appendix: Proofs for Results in Main Text

Here we provide proofs of the main results in Sections 2.3-2.4. The proofs for Section 2.4 rely

on an assortment of supporting lemmas proved in Section 2.9.3.

2.9.1. Proofs for Main First Stage Results

Proof of Lemma 2.3.1

The proof of Lemma 2.3.1 relies on a series of non-asymptotic bounds that are established

in Online Appendix Lemmas 2.9.5 and 2.9.6 that hold on
⋂6
m=1Ωk,m and depend on the

quantity

λ̄k = Mξk,∞

√
log(dz/ϵ)

n

where M is a fixed constant. In addition let Σ̃1
α,j := En[pj(X)De−γ̄

′
jZ |Y − ᾱ′

jZ|ZZ ′] and

Σ1
α,j := EΣ̃1

α,j and define the event

Ωk,7 := {∥Σ̃1
α,j − Σ1

α,j∥∞ ≤ λ̄k, ∀j ≤ k} (2.9.1)

In Online Section 2.9.3 we show that Pr(
⋂7
m=1) ≥ 1− o(1). Under these events, Lemma 2.9.1,

below provides the bound needed for first statement of Lemma 2.3.1 while Lemma 2.9.2
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provides the bound needed for the second statement.

Lemma 2.9.1 (Nonasymptotic Bounds for Weighted Means). Suppose that Assumption 2.3.1

holds, ξ0 > (c0 + 1)/(c0 − 1), and 2C0ν
−2
0 skλ̄k ≤ η < 1. In addition, assume there is a

constant c > 0 such that λα,j/λγ,j ≥ c for all j ≤ k. Then, under the event
⋂7
m=1 Ωk,m, there

is a constant M2 that does not depend on k such that

max
1≤j≤k

|En[pj(X)Y (π̂j, m̂j)]− En[pj(X)Y (π̄j, m̄j)]| ≤ M2skλ̄
2
k (2.9.2)

Proof. We show that the bound of (2.9.2) holds for any j = 1, . . . , k in a couple steps. To

save notation, define

µj(π,m) := En
[
pj(X)Y (π,m)

]
= En

[
pj(X)

{
DY

π(Z)
+

(
D

π(Z)
− 1

)
m(Z)

}]

Step 1: Decompose Difference and Use Logistic FOCs. Consider the following decomposition

µj(π̂j, m̂j)− µj(π̄j, m̄j) = E
[
pj(X){m̂j(Z)− m̄j(Z)}

(
1− D

π̄j(X)

)]
+ En

[
pj(X)D{Y − m̄j(Z)}

(
1

π̂j(Z)
− 1

π̄j(Z)

)]
+ En

[
pj(X){m̂j(Z)− m̄j(Z)}

(
D

π̄j(Z)
− D

π̂j(Z)

)]
:= δ1,j + δ2,j + δ3,j

Notice that δ1,j + δ3,j = (α̂j − ᾱj)
′En[pj(X)(1−D/π̂j(Z))Z]. By the first order conditions

for γ̂j we have that

|En[pj(X){Zl−DZl/π̂j(Z)}]| ≤ λγ,j ∀l = 1, . . . , dz =⇒ ∥En[pj(X){Zl−DZl/π̂j(Z)}]∥∞ ≤ λγ,j.
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Applying Hölder’s inequality to δ1,j + δ3,j then gives us that on the event Ωk,2

|δ1,j + δ3,j| ≤ ∥α̂j − ᾱj∥1λγ,j ≤ ∥α̂j − ᾱj∥λ̄k.

By Lemma 2.9.6 on the event
⋂6
m=1 Ωk,m and under the conditions of Lemma 2.9.1, ∥α̂j−ᾱj∥ ≤

M1skλ̄k where M1 is a constant that does not depend on k. So

|δ1,j + δ3,j| ≤ M1skλ̄
2
k (M.1)

Step 2: Use Outcome Regression Score Domination to Bound δ2,j. Now deal with the term

δ2,j. By first order Taylor expansion, for some u ∈ (0, 1)

δ2,j = −(γ̂j − γ̄j)
′En[pj(X)D{Y − m̄j(Z)}e−γ̄

′
jZZ]

+ (γ̂j − γ̄j)
′En[pj(X)D{Y − m̄j(Z)}e−uγ̂

′
jZ−(1−u)γ̄′jZZZ ′](γ̂j − γ̄j)/2

:= δ21,j + δ22,j

In the event Ωk,1 ∩ Ωk,2 ∩ Ωk,3 ∩ Ωk,4 we have by score domination of the linear outcome

regression model and Lemma 2.9.5 that δ21 ≤ M0skλ̄
2
k.

The term δ22,j is second order. On the event Ωk,0∩Ωk,1 where ∥γ̂j− γ̄j∥1 ≤ M0skλ̄k ≤ M0η/C0

it can be bounded with

δ22,j ≤ eC0∥γ̂j−γ̄j∥1En[pj(X)De−γ̄
′
jZ |Y − m̄j(Z)|{γ̂′

jZ − γ̄′
jZ}2]

≤ eM0ηEn[pj(X)De−γ̄
′
jZ |Y − m̄j(Z)|{γ̂′

jZ − γ̄′
jZ}2].

This in turn is bounded in a few steps. First note on the event Ωk,7

(En − E)[pj(X)De−γ̄
′
jZ |Y − m̄j(Z)|{γ̂′

jZ − γ̄′
jZ}2] ≤ λ̄k∥γ̂j − λ̄j∥21.
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By Assumption 2.3.1 we have that G2
0E[D|Y − m̄j(Z)| | Z] ≤ G2

1/G0 +G0 so that,

E[pj(X)De−γ̄
′
jZ |Y − m̄j(Z)|{γ̂′

jZ − γ̄′
jZ}2] ≤ (G2

1/G0 +G0)E[pj(X)De−γ̄
′
jZ{γ̂′

jZ − γ̄′
jZ}2].

On the event Ωk,6 we have that

(En − E)[pj(X)De−γ̄
′
jZ{γ̂′

jZ − γ̄′
jZ}2] ≤ λ̄k∥γ̂j − γ̄j∥1.

Putting these all together gives

En[pj(X)De−γ̄
′
jZ |Y − m̄j(Z)|{γ̂′

jZ − γ̄′
jZ}2]

≤ λ̄k∥γ̂j − γ̄j∥21 + (G2
1/G0 +G0)λ̄k∥γ̂j − γ̄j∥21

+ (G2
1/G0 +G0)En[pj(X)De−γ̄

′Z{γ̂′
jZ − γ̄′

jZ}]

(M.2)

To bound (M.2) note again that in the event Ωk,1 ∩Ωk,2, ∥γ̂j − γ̄j∥1 ≤ M0skλ̄k and that using

by (O.4) in Online Appendix Lemma 2.9.6:

En[pj(X)De−γ̄
′
jZ{γ̂′

jZ − γ̄′
jZ}2] ≤ e−M0ηM0skλ̄

2
k.

Plugging these into (M.2) gives

δ22,j ≤ eM0ηM2
0 s

2
kλ̄

3
k + eM0η(G2

1/G0 +G0)M
2
0 s

2
kλ̄

3
k + (G2

1/G0 +G0)M0skλ̄
2
k (M.3)

so that in total δ2,j = δ21,j + δ22,j is bouned

δ2,j ≤ M0sk(G
2
1/G0 +G0 + 1)λ̄2

k + eM0ηM2
0 s

2
k(G

2
1/G0 +G0 + 1)λ̄3

k (M.4)
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Step 3: Combine Terms. Putting this together yields

|δ1,j + δ2,j + δ3,j| ≤ {M1 +M0(G
2
1/G0 +G0 + 1)}skλ̄2

k

+ eM0η(G2
1/G0 +G0)M

2
0 s

2
kλ̄

3
k

(M.5)

Use the fact that skλ̄k ≤ η < 1 to simplify the last term of this expression

|δ1,j + δ2,j + δ3,j| ≤ {M1 +M0(G
2
1/G0 +G0 + 1)}skλ̄2

k

+ eM0η(G2
1/G0 +G0)M

2
0 skλ̄k

(M.6)

This gives the result (2.9.2) after takingM2 = M1+M0(G
/
1G0+G0+1)+eM0η(G2

1/G0+G0)M
2
0 .

Lemma 2.9.2 (Nonasymptotic Bounds for Variance Estimation). Suppose that Assump-

tion 2.3.1 hold, ξ0 > (c0 + 1)/(c0 − 1), and 2C0ν
−2
0 skλ̄k ≤ η < 1. In addition, assume there

is a constant c > 0 such that λα,j/λγ,j ≥ c for all j ≤ k. Then, under the event
⋂7
m=1Ωk,m,

there is a constant M3 that does not depend on k such that

max
1≤j≤k

En[p2j(X)(Y (π̂j, m̂j)− Y (π̄j, m̄j))
2] ≤ M3ξ

2
k,∞s2kλ̄

2
k (2.9.3)

Proof. We show the bound holds for each j = 1, . . . , k. We start by decomposing

pj(X)(Y (π̂j, m̂j)− Y (π̄j, m̄j)) = pj(X){m̂j(Z)− m̄j(Z)}
(
1− D

π̄j(X)

)
+ pj(X)D{Y − m̄j(Z)}

(
1

π̂j(Z)
− 1

π̄j(Z)

)
+ pj(X){m̂j(Z)− m̄j(Z)}

(
D

π̄j(Z)
− D

π̂j(Z)

)
:= δ̃1,j + δ̃2,j + δ̃3,j
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We will use the fact that (a+ b+ c)2 ≤ 4a2 + 4b2 + 4c2 to bound

En[p2j(X)(Y (π̂j, m̂j)− Y (π̄j, m̄j))
2] ≤ 4En[δ̃21,j] + 4En[δ̃22,j] + 4En[δ̃23,j]. (V.1)

To bound En[δ̃2,j] use the mean value equation (O.2) in Online Appendix Lemma 2.9.6 and

the lower bound on ḡj(z) from Assumption 2.3.1

En[δ̃22,j] = En[p2j(X)D{Y − m̄j(Z)}2{π̂−1
j (Z)− π̄−1

j (Z)}2]

≤ ξk,∞e−B0

(
1 + eC0∥γ̂j−γ̄j∥1

)2
En[pj(X)De−γ̄

′
jZ{Y − m̄j(Z)}2{ĝj(Z)− ḡj(Z)}2]

Applying (O.8) in Online Appendix Lemma 2.9.6, Online Appendix Lemma 2.9.5, and

skλ̄k ≤ η < 1 there is a constant M̃1 that does not depend on k such that in the event⋂7
m=1 Ωk,m this is bounded

≤ M̃1ξk,∞skλ̄
2
k (V.2)

To bound En[δ̃3,j] write π̂−1
j (Z)− π̄−1

j (Z) = e−γ̄
′
jZ{e−γ̂′jZ+γ̄′jZ − 1} and use the lower bound

on ḡj(z) from Assumption 2.3.1:

En[δ̃23,j] = En[p2j(X)D{m̂j(Z)− m̄j(Z)}2{π̂−1
j (Z)− π̄−1

j (Z)}2]

≤ ξk,∞e−B0

(
1 + eC0∥γ̂j−γ̄j∥1

)2
En[pj(X)e−γ̄

′
jZ{m̂j(Z)− m̄j(Z)}2]

Applying Online Appendix Lemma 2.9.6, there is a constant M̃2 that does not depend on k

such that on the event
⋂6
m=1Ωk,m this is bounded

≤ M̃2ξk,∞skλ̄
2
k (V.3)
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Finally, to bound En[δ̃21,j] again use the lower bound on ḡj(z) and decompose

En[δ̃21,j] = En[p2j(X){m̂(z)− m̄(z)}2{1−D/π̄j(Z)}2]

≤ ξ2k,∞(1 + e−B0)2En[{m̂j(Z)− m̄j(Z)}2]

≤ ξ2k,∞(1 + e−B0)2C2
0∥α̂j − ᾱj∥21

Again on the event
⋂6
m=1 Ωk,m apply Online Appendix Lemma 2.9.6 this is bounded, for some

constant M̃3 that does not depend on k by

≤ M̃3ξ
2
k,∞s2kλ̄

2
k (V.4)

The result (2.9.3) follows by collecting (V.1)-(V.4).

2.9.2. Proofs of Main Second Stage Results

The proofs for Section 2.4 closely follow those of Belloni et al. (2015) with some modifications

to deal with the various error terms. They also rely on some additional second stage results

proved in Online Section 2.10 .

Proof of Theorem 2.4.1

Equation (2.4.5) follows from applying (2.4.4) with α = p(x)/∥p(x)∥ and (2.4.6) follows from

(2.4.5). So it suffices to prove (2.4.4).

For any α ∈ Sk−1, 1 ≲ ∥α′Ω1/2∥ because of the conditional variance of ϵ̄2j is bounded from

below and from above and under the positive semidefinite ranking

Ω ≥ Ω0 ≥ σ2Q−1.

Moreover, by condition (ii) of the theorem and Lemma 2.10.2, R1n(α) = op(1). So we can
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write

√
nα′(β̂ − β) =

√
nα′

∥α′Ω1/2∥
Gn[p

k(x) ◦ (ϵk + rk)] + op(1)

=
n∑
i=1

α′
√
n∥α′Ω1/2∥

{pk(x) ◦ (ϵk + rk)}.

Goal will be to verify Lindberg’s condition for the CLT. Throughout the rest of the proof, it

will be helpful to make the following notations. First, for any vector a = (a1, . . . , ak)
′ ∈ Sk−1,

let |a| = (|a1|, . . . , |ak|)′ and note that |a| ∈ Sk−1 as well:

α̃′
n =

α′
√
n∥α′

nΩ
1/2∥

, ωn := |α̃|′pk(x), and ϵ̄k := sup
1≤j≤k

|ϵj|

Now, by the definition of Ω we have that

Var

 n∑
i=1

α′
√
n∥α′Ω1/2∥

{pk(x) ◦ (ϵk + rk)}

 = 1.

Second for each δ > 0

n∑
i=1

E
[
(α̃′

n{pk(x) ◦ (ϵk + rk)})21
{
|α̃′
n{pk(x) ◦ (ϵk + rk)}| > δ

}]
≤

n∑
i=1

E
[
ω2
nE
[
ϵ̄2k 1{|ωn||ϵ̄k + ℓkck| > δ} | X = x

]]
(2.9.4)

What we are using here is the following. Suppose α is a nonrandom vector in Rk, a is

a (positive) random vector in Rk and b is a random vector in Rk. Then,

{α′(a ◦ b)} =
k∑
j=1

αjajbj ≤ ∥b∥∞
k∑
j=1

|αj|aj = (|α|′a)∥b∥∞. (2.9.5)
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To bound the right hand side of (2.9.4) use the fact that 1 ≲ ∥α′Ω1/2∥ because 1 ≲ σ2 and

Ω ≥ Ω0 ≥ σ2Q−1

in the positive semidefinite sense. Using these two we have

nE|ωn|2 ≤ E[(|α|′pk(x))2]/(α′Ωα) ≲ 1.

By the bounded eigenvalue condition and using the trace operator:

E[(|α|pk(x))2] = trace(E[|α|′pk(x)′pk(x)|α|]) = |α|′Q||α| ≲ ∥α∥ = 1

Further note, |ωni| ≲ ξk√
n
. Using (a+ b)2 ≤ 2a2+2b2, the right hand side of (2.9.4) is bounded

by

2nE[|ωn|2ϵ̄2k 1{|ϵ̄k|+ ℓkck > δ/|ωn|}] + 2nE[|ωn|2ℓ2kc2k1{|ϵ̄k|+ ℓkck > δ/|ωn|}]

and both terms converge to zero. Indeed, to bound the first term note that, for some c > 0:

2nE[|ωn|2ϵ̄2k 1{|ϵ̄k|+ ℓkck > δ/|ωn|}] ≲ nE[|ωn|2] sup
x∈X

E[ϵ̄2k1{ϵ̄2k + ℓkck > cδ
√
n/ξk} | X = x]

= o(1)

where here we use the first part of Assumption 2.4.1(iv). To show the second term con-

verges to zero, follow the same steps as for the first term, but apply the second part of

Assumption 2.4.1(iv).

Proof of Theorem 2.4.2

We apply Yurinskii’s coupling lemma (Pollard, 2001)
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Yurinskii’s Coupling Lemma

Let ξ1, . . . , ξn be independent random k-vectors with E[ξi] = 0 and β :=
∑n

i=1 E[∥ξi∥3]

finite. Let S := ξ1 + · · ·+ ξn. For each δ > 0 there exists a random vector T with a

N(0, var(S)) distribution such that

P(|S − T | > 3δ) ≤ C0B

(
1 +

| log(1/B)|
k

)
where B := βkδ−3 (YC)

for some universal constant C0.

In order to apply the coupling, we want to consider a first order approximation to the

estimator

1√
n

n∑
i=1

ξi, ζi = Ω−1/2pk(x) ◦ (ϵk + rk).

When R̄2n = op(a
−1
n ) a similar argument can be used with ζi = Ω−1/2pk(x) ◦ (ϵk+ rk) replaced

with Ω−1/2pk(x) ◦ ϵk. As before, the eigenvalues of Ω are bounded away from zero, therefore

E∥ζi∥3 ≲ E[∥pk(x) ◦ (ϵk(x) + rk)∥3]

≲ E[∥pk(x)∥3(|ϵ̄k|3 + |rk|3)]

≲ E[∥pk(x)∥3](σ̄3
k + ℓ3kc

3
k)

≲ E[∥pk(x)∥3]ξk(σ̄3
k + ℓ3kc

3
k)

≲ kξk(σ̄
3
k + ℓ3kc

3
k)

Therefore, by Yurinskii’s coupling lemma (YC), for each δ > 0,

Pr

∥
n∑
i=1

ζi/
√
n−Nk∥ > 3δa−1

n

 ≲ nk2ξk(σ̄
3
m + ℓ3kc

3
k)

(δa−1
n

√
n)3

(
1 +

log(k3ξk(σ̄
3
k + ℓ3kc

3
k))

k

)

≲
a3nk

2ξk(σ̄
3
k + ℓ3kc

3
k)

δ3n1/2

(
1 +

log n

k

)
→ 0.
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because a6nk
2ξk(σ̄

3
m + ℓ3kc

3
k) log

2 n/n → 0. Using the first two results from Lemma 2.10.3,

(2.10.6)-(2.10.7), we obtain that

∥
√
nα(x)′(β̂k−βk)−α(x)′Ω1/2Nk∥ ≤ ∥1/

√
n

n∑
i=1

α(x)′Ω1/2ζi−α(x)′Ω1/2Nk∥+R̄1n = op(a
−1
n ).

uniformly over x ∈ X . Since ∥α(x)′Ω1/2∥ is bounded from below uniformly over x ∈ X

we obtain the first statetment of Theorem 2.10.2 from which the second statement directly

follows.

Finally, under the assumption that supx∈X n1/2|r(x)|/∥s(x)∥ = op(a
−1
n ),

√
np(x)′(β̂k − βk)

∥s(x)∥
−

√
n(ĝ(x)− g0(x))

∥s(x)∥
= op(a

−1
n )

so that the third statement, (2.4.9) holds.
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Proof of Theorem 2.4.3

Preliminaries for Proof of Theorem 2.4.3

Lemma (Symmetrization). Let Z1, . . . , Zn be independent stochastic processes with

mean zero and let ϵ1, . . . , ϵn be independent Rademacher random variables generated

independetly of the data. Then

E∗Φ

(
1

2

∥∥ n∑
i=1

ϵiZi
∥∥
F

)
≤ E∗Φ

(∥∥ n∑
i=1

Zi
∥∥
F

)
≤ E∗Φ

(
2
∥∥ϵi(Zi − µi)

∥∥
F

)
, (SI)

for every nondecreasing, convex Φ : R → R and arbitrary functions µi : F → R.

For p ≥ 1 consider the Shatten norm Sp on symmetrix k × k matrices Q defined by

∥Q∥Sp = (
∑k

j=1 |λj(Q)|p)1/p where λ1(Q), . . . , λk(Q) are the eigenvalues of Q. The case

p = ∞ recovers the operator norm and p = 2 recovers the Frobenius norm.

Lemma (Khinchin’s Inequality for Matrices). For symmetric k × k matrices Qi,

i = 1, . . . , n, 2 ≤ p ≤ ∞, and an i.i.d sequence of Rademacher random variables

ϵ1, . . . , ϵn we have

∥∥∥∥ (En[Q2
i ]
)1/2 ∥∥∥∥

Sp

≤
(
Eϵ∥Gn[ϵiQi]∥pSp

)1/p
≤ C

√
p
∥∥∥(En[Q2

i ]
)1/2∥∥∥

Sp

(KI-1)

where C is an absolute constant. So, for k ≥ 2,

Eϵ[∥Gn[ϵiQi]∥] ≤ C
√
log k∥(En[Q2

i ])
1/2∥ (KI-2)

for some (possibly different) absolute constant C.

We will establish consistent estimation of

Σ = E[{pk(x) ◦ (ϵk + rk)}{pk(x) ◦ (ϵk + rk)}′]
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using

Σ̂ = En[{pk(x) ◦ ϵ̂k}{pk(x) ◦ ϵ̂k}′]

Consistency of Ω̂ will then follow from the consistency of Q̂ established by Lemma 2.10.1. To

save notation, define the vectors

Ŷ :=


Y (π̂1, m̂1)

...

Y (π̂k, m̂k)

 and Ŷ :=


Y (π̂1, m̂1)

...

Y (π̂k, m̂k)

 (2.9.6)

Also define ϵ̇k := (ϵ̇k1, . . . , ϵ̇
k
k) so that ϵ̇kj := Y (π̄j, m̄j)− ĝ(x). Ideally, we would like to use ϵ̇k

to estimate Σ̂, but we don’t observe ϵ̇k. Define ∆ := ϵ̂k − ϵ̇k = Ŷ k − Ȳ k ∈ Rk.

Using this, we can decompose

Σ̂ = En[{pk(x) ◦ (∆ + ϵ̇k)}{pk(x) ◦ (∆ + ϵ̇k)}]

= En[{pk(x) ◦∆}{pk(x) ◦∆}′]︸ ︷︷ ︸
Σ1

+En[{pk(x) ◦ ϵ̇k}{pk(x) ◦∆}′]︸ ︷︷ ︸
Σ2

+ En[{pk(x) ◦∆}{pk(x) ◦ ϵ̇k}′]︸ ︷︷ ︸
Σ3

+En[{pk(x) ◦ ϵ̇k}{pk(x) ◦ ϵ̇k}]︸ ︷︷ ︸
Σ4

(2.9.7)

We first show that ∥Σ4 − Σ∥ →p 0. This is nonstandard because of the Hadamard product.

Lemma 2.9.3 (Psuedo-Variance Estimator Consistency). Suppose Assumption 2.4.1 and

Assumption 2.4.2 hold. Further, define vn = E[max1≤i≤n |ϵ̄k|2]1/2. In addition, assume that

R̄1n + R̄2n ≲ (log k)1/2. Then,

∥Q̂−Q∥ ≲P

√
ξ2k log k

n
= o(1)

and ∥Σ4 − Σ∥ ≲P (vn ∨ 1 + ℓkck)

√
ξ2k log k

n
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Proof. The first result is established by Lemma 2.10.1 (Matrix LLN). Rest of proof will follow

proof of Theorem 4.6 in Belloni et al. (2015). Like in (2.9.7) we can define ∆̇ ≡ ϵ̇k − ϵk =

g0(x)− ĝ(x)1 and decompose

Σ4 = En[pk(x)pk(x)′∆̇2]︸ ︷︷ ︸
Σ41

+En[{pk(x) ◦ (ϵk + rk)}{pk(x) · ∆̇}′]︸ ︷︷ ︸
Σ42

+ En[{pk(x) · ∆̇}{pk(x) ◦ (ϵk + rk)}′]︸ ︷︷ ︸
Σ43

+En[{pk(x) ◦ (ϵk + rk)}{pk(x) ◦ (ϵk + rk)}]︸ ︷︷ ︸
Σ44

The terms Σ41,Σ42 and Σ43 are simple to show are negligible.

∥Σ41 + Σ42 + Σ43∥

≤ ∥En[{pk(x)′(β̂k − βk)}pk(x)pk(x)′]∥+ ∥En[{pk(x) ◦ (ϵk + rk)}pk(x)′{pk(x)′(β̂k − βk)}]∥

+ ∥En[pk(x){pk(x)′(β̂k − βk)}{pk(x) ◦ (ϵk + rk)}′]∥

≤ max
1≤i≤n

|pk(x)(β̂k − βk)|2∥En[pk(x)pk(x)′]∥

+ 2 max
1≤i≤n

|ϵ̄k,i|+ |rk,i| max
1≤i≤n

|pk(x)′(β̂ − β)|∥En[pk(x)pk(x)′]∥

By Theorem 2.10.2 |max1≤i≤n |pk(x)′(β̂k − βk)| ≲P ξ2k(
√
log k + R̄1n + R̄2n)

2/n, by Assump-

tion 2.4.1 the approximation error is bounded max1≤i≤n |rk,i| ≤ ℓkck, by Assumption 2.4.2

and Markov’s inequality the errors are bounded max1≤i≤n |ϵ̄k,i| ≲p v2n. Finally, by the first

part of Lemma 2.9.3 ∥Q̂∥ ≲P ∥Q∥ ≲ 1. Putting this all together with R̄1n + R̄2n ≲ (log k)1/2

and ξ2k log k/n → 0 gives

∥Σ41 + Σ42 + Σ43∥ ≲P (vn ∨ 1 + ℓkck)

√
ξ2k log k

n
.

Next, we want to control Σ44 − Σ. To do this, let η1, . . . , ηn be independent Rademacher

random variables generated independently from the data. Then for η = (η1, . . . , ηn)

1It is useful to recall that ϵ̇k = Ȳ k − ĝ(x) and ϵk = Ȳ k − g0(x)
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E[∥En[{pk(x) ◦ (ϵ
k

+ rk)}{p
k
(x) ◦ (ϵ

k
+ rk)}

′
] − Σ∥]

≲ E[Eη [En∥η{pk(x) ◦ (ϵ
k

+ rk)}{p
k
(x) ◦ (ϵ

k
+ rk)}

′∥]]

≲

√
log k

n
E[(∥En[∥pk(x)∥2(ϵ̄k + rk)

2{pk(x) ◦ (ϵ
k

+ rk)}{p
k
(x) ◦ (ϵ

k
+ rk)}

′
]∥)1/2]

≲

√
ξ2
k
log k

n
E[ max

1≤i≤n
|ϵ̄k,i + rk|(∥En[{pk(x) ◦ (ϵ

k
+ rk)}{p

k
(x) ◦ (ϵ

k
+ rk)}

′
]∥)1/2]

≤

√
ξ2
k
log k

n
(E[ max

1≤i≤n
|ϵ̄k,i + rk|

2
])

1/2 × (E[∥En[{pk(x) ◦ (ϵ
k

+ rk)}{p
k
(x) ◦ (ϵ

k
+ rk)}

′
]∥])1/2

where the first inequality holds from Symmetrization (SI), the second from Khinchin’s

inequality (KI-1), the third by max1≤i≤n ∥pk(x)∥ ≤ ξk and the fourth by Cauchy-Schwarz

inequality.

Since for any positive numbers a, b and R, a ≤ R(a + b)1/2 implies a ≤ R2 + R
√
b, the

expression above and the triangle inequality yields

E[∥En[{pk(x) ◦ (ϵk + rk)}{pk(x) ◦ (ϵk + rk)}′]− Σ∥]

≲
ξ2k log k

n
(v2n + ℓ2kc

2
k) +

(
ξ2k log k

n
{v2n + ℓ2kc

2
k}

)1/2

∥Σ∥1/2

and so, because ∥Σ∥ ≲ 1 and (v2n + ℓ2kc
2
k)ξ

2
k log k/n → 0 we have

E[∥En[{pk(x) ◦ (ϵk + rk)}{pk(x) ◦ (ϵk + rk)}′]− Σ∥] ≲ (vn ∨ 1 + ℓkck)

√
ξ2k log k

n
.

The second result of Lemma 2.9.3 follows from Markov’s inequality.

Now, we need to take care of the terms

Σ1 = En[{pk(x) ◦∆}{pk(x) ◦∆}′]

Σ2 = En[{pk(x) ◦ ϵ̇k}{pk(x) ◦∆}′]

Σ3 = En[{pk(x) ◦∆}{pk(x) ◦ ϵ̇k}′]
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where ∆ = Ŷ k− Ȳ k and ϵ̇k = Ȳ k− ĝ(x) = ĝ(x)−gk(x)+ ϵk. To do so we will use Condition 2.

Lemma 2.9.4 (Negligible Variance Bias). Suppose that Condition 2, Assumption 2.4.1 and

Assumption 2.4.2 hold. Then

∥Σ1 + Σ2 + Σ3∥ = op(1).

Proof. From Condition 2, the term Σ1 being negligible immediately follows from Cauchy-

Schwarz. Notice that

∥Σ1∥ ≤ k sup
1≤l≤k
1≤j≤k

|En[pl(X)(Y (π̂l, m̂l)− Y (π̄j , m̄j))pl(X)(Y (π̂l, m̂l)− Y (π̄l, m̄l))]|

≤ k sup
1≤l≤k

(En[pj(X)2(Y (π̂j , m̂j)− Y (π̄j , m̄j))
2])1/2 sup

1≤j≤k
(En[pj(X)2(Y (π̂j , m̂j)− Y (π̄j , m̄j))

2])1/2

= op(1).

To see that Σ2 is negligible notice that

∥Σ2∥ ≤ k sup
1≤l≤k
1≤j≤k

En[pl(X)(ϵl + pk(x)′(β̂k − βk))pj(X)(Y (π̂j, m̂j)− Y (π̄j, m̄j))]

≤ k sup
1≤l≤k

En[pl(X)2(ϵl + pk(x)′(β̂ − β))2]1/2En[pj(X)2(Y (π̂j, m̂j)− Y (π̄j, m̄j))
2]1/2

≤ ξk,∞(max
1≤i≤n

|ϵ̄k|+ max
1≤i≤n

pk(x)′(β̂ − β))En[pj(X)2(Y (π̂j, m̂j)− Y (π̄j, m̄j))
2]1/2

Applying Assumption 2.4.2 and Theorem 2.10.2 gives

≲P kξk,∞n1/mE[pj(X)2Y (π̂j, m̂j)− Y (π̄j, m̄j))
2]1/2 = op(1)

where the final line is via Condition 2. Showing negligibility of Σ3 follows the same steps.
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Proof of Theorem 2.4.4

Follows from the exact same steps as Theorem 3.5 in Semenova and Chernozhukov (2021) after

establishing strong approximation by a gaussian process as in Theorem 2.4.2 and consistent

variance estimation as in Theorem 2.4.3.

2.9.3. Supporting Lemmas for First Stage

Here we provide supporting lemmas and their proofs. We start off with non-asymptotic

bounds for first stage parameters and means.

Nonasymptotic Bounds for the First Stage

The nonasymptotic bounds for the first stage will depend on certain events. In Section 2.9.3

we will show that under Assumption 2.3.1 these events happen with probability approaching

one. To control sparsity, define Sγ,j := {j : ᾱj ̸= 0}, Sα,j := {j : ᾱj ̸= 0}. Recall

sk := max1≤j≤k{|Sγ,j| ∨ |Sα,j|}. Define the scores

Sγ,j := En[Uγ,jZ]

Sα,j := En[Uα,jZ]
(2.9.8)

With these in mind, we will consider nonasymptotic bounds under the events:

Ωk,1 := {λγ,j ≥ c0 · ∥Sγ,j∥∞, ∀j ≤ k}

Ωk,2 := {λγ,j ≤ λ̄k,∀j ≤ k}
(2.9.9)

Following Chetverikov and Sørensen (2021), the first event is referred to as “score domination”

while the second event is referred to as “penalty majorization”.

Bounds will be established on the ℓ1 convergence rate of the estimated coefficient vector as
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well as on the symmetrized Bregman divergences, D‡
γ,j(γ̂j, γ̄j) and D‡

α,j(α̂j, ᾱj ; γj), defined by

D‡
γ,j(γ̂j, γ̄j) := En

[
pj(X)D{e−γ̂′jZ − e−γ̄

′
jZ}{γ̄′

jZ − γ̂′
jZ}

]
,

D‡
α,j(α̂j, ᾱj; γ̂) := En

[
pj(X)De−γ̂

′
jZ(ᾱ′

jZ − α̂′
jZ)

2
]
.

(2.9.10)

Lemma 2.9.5 (Nonasymptotic Bounds for Logistic Model). Suppose that Assumption 2.3.1

holds with ξ0 > (c0 +1)/(c0− 1) and 2C0ν
−2
0 skλ̄k ≤ η < 1. Then, under the events Ωk,1 ∩Ωk,2

defined in (2.9.9), there exists a finite constant M0 that does not depend on k such that

max
1≤j≤k

D‡(ḡ, ĝ) ≤ M0skλ̄
2
k and max

1≤j≤k
∥γ̂j − γ̄j∥1 ≤ M0skλ̄k (2.9.11)

Proof. We show that the bound of (2.9.11) holds for each j = 1, . . . , k. For any γ ∈ Rd

define ℓ̃j(γ) := En[pj(X){De−γ
′Z + (1−D)γ′Z}]. By optimality of γ̂j we must have, for any

u ∈ (0, 1]:

ℓ̃j
(
γ̂j
)
+ λγ,j∥γ̂j∥1 ≤ ℓ̃

(
(1− u)γ̂j + uγ̄j

)
+ λγ,j∥(1− u)γ̂j + uγ̄j∥1.

Using convexity of the ℓ1 norm ∥ · ∥1, this gives after rearrangment

ℓ̃j
(
γ̂j
)
− ℓ̃
(
(1− u)γ̂j + uγ̄j

)
+ λγ,ju∥γ̂j∥1 ≤ λγ,ju∥γ̄j∥1.

Divide both sides by u and let u →+ 0

En[pj(X)D{e−γ̂′Z + (1−D)}{γ̂′
jZ − γ̄′

jZ}] + λγ,j∥γ̂j∥1 ≤ λγ,j∥γ̄j∥1.

By direct calculation, we have that D‡
γ,j(γ̂j, γ̄j) from (2.9.10) can be expressed

D‡
γ,j(γ̂j, γ̄j) = En[pj(X)D{e−γ̂′Z+(1−D)}{γ̂′

jZ−γ̄′
jZ}]−En[pj(X)D{e−γ̄′Z+(1−D)}{γ̂′

jZ−γ̄′
jZ}].
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Combining the last two displays yields

D‡
γ,j(γ̂j, γ̄j) + En[pj(X)D{e−γ̄′Z + (1−D)}{γ̂′

jZ − γ̄′
jZ}] + λγ,j∥γ̂j∥1 ≤ λγ,j∥γ̄j∥1 (L.1)

In the event Ωk,1 we have that

|En[pj(X)D{e−γ̄′Z + (1−D){γ̂′Z − γ̄′Z}}] ≤ c−1
0 λγ,j∥γ̂j − γ̄j∥1 (L.2)

Combining (L.1) and (L.2) yields

D‡
γ,j(γ̂j, γ̄j) + λγ,j∥γ̂j∥1 ≤ λγ,j∥γ̄j∥+ c−1

0 λγ,j∥γ̂j − γ̄j∥1.

Expanding ∥γj∥1 =
∑

l∈Sγ,j
|γl|+

∑
l ̸∈Sγ,j

|γl| for γ = γ̂j, γ̄j and applying the triangle inequali-

ties |γ̂j,l| ≥ |γ̄j,l| − |γ̂j,l − γ̄j,l| for l ∈ Sγ,j and the equality γ̂j,l = γ̂j,l − γ̄j,l gives

D‡
γ,j(γ̂j, γ̄j) + λγ,j

{ ∑
l∈Sγ,j

|γ̄j,l| −
∑
l∈Sγ,j

|γ̂j,l − γ̄j,l|+
∑
j ̸∈Sγ,j

|γ̂j,l − γ̄j,l|
}

≤ λγ,j

{ ∑
l∈Sγ,j

|γ̄j,l|+ c−1
0

∑
l∈Sγ,j

|γ̂j,l − γ̄j,l|+ c−1
0

∑
j ̸∈Sγ,j

|γ̂j,l − γ̄j,l|
}

Rearrange to get

D‡
γ,j(γ̂j, γ̄j) + (1− c−1

0 )λγ,j
∑
l ̸∈Sβ

|γ̂j,l − γ̄j,l| ≤ (1 + c0)
−1λγ,j

∑
l∈Sγ,j

|γ̂j,l − γ̄j,l|.

Adding (1− c−1
0 )λγ,j

∑
l∈Sγ,j

|γ̂j,l − γ̄j,l| gives

D‡
γ,j(γ̂j, γ̄j) + (1− c−1

0 )∥γ̂j − γ̄j∥1 ≤ 2λγ,j
∑
l∈Sγ,j

|γ̂j,l − γ̄j,l| (L.3)
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By Lemma 4 in Appendix V.3 of Tan (2017) we have that for δj := γ̂j − γ̄j

D‡
γ,j(γ̂j, γ̄j) ≥

1− e−C0∥δj∥1
C0∥δ̂j∥

(
δ′jΣ̃γ,jδj

)
(L.4)

By (L.3) and ξ0 > (c0 +1)/(c0 − 1) we have that
∑

l ̸∈Sγ,j
|δj,l| ≤ ξ0

∑
l∈Sγ,j

|δj,l|. Applying the

empirical compatability condition from Assumption 2.3.1 to (L.3) then yields

D‡
γ,j(γ̂j, γ̄j) + (1− c−1

0 )λγ,j∥δj∥1 ≤ 2λγ,jν
−1
0 |Sγ,j|1/2(δ′jΣ̃γ,jδj)

1/2 (L.5)

Combining (L.4) and (L.5) to get an upper bound on (δ′jΣ̃δj)
1/2 gives

ν0∥δj∥2 ≤ (δ′jΣ̃γ,jδj)
1/2 ≤ 2λγ,jν

−1
0 |Sγ,j|1/2

C0∥δj∥1
1− e−C0∥δj∥1

.

Plugging the second bound into (L.5) gives

D‡
γ,j(γ̂j, γ̄j) + (1− c−1

0 )λγ,j∥δj∥1 ≤ 2λ
∑
l∈Sγ,j

|δj,l| ≤ 4λ2
γ,jν

−2
0 |Sγ,j|

C0∥δj∥1
1− e−C0∥δj∥1

.

The second inequality and
∑

l ̸∈Sγ,j
|δj,l| ≤ ξ0

∑
l∈Sγ,j

|δj,l| imply 1−e−C0∥δj∥1 ≤ 2C0λγ,jν
−2
0 |Sγ,j| ≤

η so,

1− e−C0∥δj∥1

C0∥δj∥1
=

∫ 1

0

e−C0∥δj∥1u du ≥ e−C0∥δj∥1 ≥ 1− η.

Combining the last two displays gives

D‡
γ,j(γ̂j, γ̄j) + (1− c−1

0 )λγ,j∥γ̂j − γ̄j∥1 ≤ 4λ2
γ,jν

−2
0 (1− η)|Sγ,j| (L.6)

Applying Ωk,2 to bound λγ,j ≤ λ̄k and noting that |Sγ,j| ≤ sk by definition gives (2.9.11) with

M0 =
4ν−1

0 (1−η)
1−c−1

0

.
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For each j, consider the matrices,

Σ̃α,j := En[pj(X)De−γ̄
′
jZ(Y − ᾱ′

jZ)
2ZZ ′]

Σ̃γ,j := En[pj(X)De−γ̄
′
jZZZ ′]

(2.9.12)

In addition define Σα,j := EΣ̃α,j and Σγ,j := EΣ̃γ,j. For the outcome regression model, we

will consider nonasymptotic bounds under the following additional events:

Ωk,3 := {λα,j ≥ c0∥Sα,j∥∞,∀j ≤ k}

Ωk,4 := {λα,j ≤ λ̄k,∀j ≤ k}

Ωk,5 := {∥Σ̃α,j − Σα,j∥∞ ≤ λ̄k, ∀j ≤ k}

Ωk,6 := {∥Σ̃γ,j − Σγ,j∥∞ ≤ λ̄k,∀j ≤ k}

(2.9.13)

Lemma 2.9.6 (Nonasymptotic Bounds for Linear Model). Suppose that Assumption 2.3.1

holds, ξ0 > (c0 + 1)/(c0 − 1), and 2C0ν
−2
0 skλ̄k ≤ η < 1. In addition, assume there is a

constant c > 0 such that λα,j/λγ,j ≥ c for all j ≤ k. Then, under the event
⋂6
m=1 Ωk,m there

is a constant M1 that does not depend on k such that

max
1≤j≤k

D‡
α,j(α̂j, ᾱj; γ̄j) ≤ M1skλ̄

2
k and max

1≤j≤k
∥α̂j − ᾱj∥1 ≤ M1skλ̄k (2.9.14)

Proof. We show that the bound of (2.9.14) holds for each j = 1, . . . , k. We proceed in a few

steps.

Step 1: Optimization Step. Let ℓ̃j(α; γ̂j) := En[pj(X)De−γ̂
′
jZ{Y − α′Z}2]/2. Optimality of

α̂j implies that for any u ∈ (0, 1]:

ℓ̃j
(
α̂j; γ̂j

)
− ℓ̃j

(
(1− u)α̂j + uᾱj; γ̂j

)
+ λα,j∥α̂j∥1 ≤ λα,j∥(1− u)α̂j + uᾱj∥1.
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Convexity of the ℓ1 norm ∥ · ∥1 gives

ℓ̃j
(
α̂j; γ̂j

)
− ℓ̃j

(
(1− u)α̂j + uᾱj; γ̂j

)
+ λα,ju∥α̂j∥1 ≤ λα,ju∥ᾱj∥1.

Dividing both sides by u and letting u → 0+ gives:

−En[pj(X)De−γ̂
′
jZ{Y − α̂′

jZ}{α̂′
jZ − ᾱ′

jZ}] + λα,j∥α̂j∥1 ≤ λα,j∥ᾱj∥1.

Rearranging using the form of D‡
α,j in (2.9.10) yields:

D‡
α,j(α̂j, ᾱj; γ̂j) + λα,j∥α̂j∥1 ≤ (α̂j − ᾱ′

j)En[pj(X)De−γ̂
′Z{Y − ᾱ′

jZ}Z] + λα,j∥ᾱj∥1 (O.1)

Step 2: Quasi-Score Domination and relating γ̄j to γ̂j. For this step, we will use the fact that

we are in the event Ωk,1 ∩ Ωk,2 ∩ Ωk,3 ∩ Ωk,5 ∩ Ωk,6. Using the expression for D‡
γ,j(γ̂j, γ̄j) from

(2.9.10) we find that for some u ∈ (0, 1):

D‡
γ,j(γ̂j, γ̄j) = −En[pj(X)D{e−γ̂′jZ − e−γ̄

′
jZ}{γ̂′

jZ − γ̄′
jZ}]

= En[pj(X)De−u(γ̂j−γ̄j)
′Ze−γ̄

′
jZ{γ̂′

jZ − γ̄′
jZ}2]

where the second step uses the mean value theorem:

e−γ̂
′
jZ − e−γ̄

′
jZ = e−uγ̂

′
jZ−(1−u)γ̄′jZ(γ̂j − γ̄j)

′Z (O.2)

In the event Ωk,1 ∩ Ωk,2 using the bound in Online Appendix Lemma 2.9.5 and the fact that

C0ν
−2
0 skλ̄k ≤ η < 1 gives us that

C0∥γ̂j − γ̄j∥1 ≤ C0M0skλ̄k ≤ M0η. (O.3)

In the event Ωk,1 ∩ Ωk,2 the bound in (L.6) also gives us that D‡
γ,j(γ̂j, γ̄j) ≤ M0skλ

2
γ,j.
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Combining the above displays then yields

M0skλ
2
γ,j ≥ D‡

γ,j(γ̂j, γ̄j) ≥ eM0ηEn[pj(X)De−γ̄
′
jZ{γ̂′

jZ − γ̄′
jZ}2]. (O.4)

Again applying the bound on C0∥γ̂j − γ̄j∥1 (O.3) gives

D‡
α,j(α̂j, ᾱj; γ̂j) = En[pj(X)De−γ̂

′
jZ(α̂′

jZ − ᾱ′
jZ)

2]

= En[pj(X)De−(γ̂j−γ̄j)′Ze−γ̄
′
jZ(α̂′

jZ − ᾱ′
jZ)

2]

≥ e−M0ηD‡
α,j(α̂j, ᾱj; γ̄j)

(O.5)

Decomposing the empirical expectation on the RHS of (O.1) gives

(α̂j − ᾱj)
′En[pj(X)De−γ̂

′
jZ{Y − ᾱ′

jZ}Z] = (α̂j − ᾱj)
′En[pj(X)De−γ̄

′
jZ{Y − ᾱ′

jZ}Z]︸ ︷︷ ︸
δ1,j

+ En[pj(X)D{e−γ̂
′
jZ − e−γ̄

′
jZ}{Y − ᾱ′

jZ}{α̂′
jZ − ᾱ′

jZ}]︸ ︷︷ ︸
δ2,j

By Hölder’s inequality, in the event Ωk,3, δ1,j is bounded

δ1,j ≤ c−1
0 ∥α̂j − ᾱj∥1λα,j (O.6)

By the mean value equation (O.2) and the Cauchy-Schwarz inequality, δ2,j can be bounded

from above by

δ2,j ≤ eC0∥γ̂j−γ̄j∥1 × E1/2
n [pj(X)De−γ̄

′
jZ{α̂′Z − ᾱ′Z}2]

× E1/2
n [pj(X)De−γ̄

′
jZ{Y − ᾱ′

jZ}2{γ̂′
jZ − γ̄′

jZ}2]
(O.7)

Using (O.3) the first term in (O.7) can be bounded by eM0η. The second term is exactly the

square root of D‡
α,j(α̂j, ᾱj; γ̄j). The third term is bounded in a few steps. First, in the event
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Ωk,5 we have that

(En − E)[pj(X)De−γ̄
′
jZ{Y − ᾱ′

jZ}2{γ̂′
jZ − γ̄′

jZ}] ≤ λ̄k∥γ̂j − γ̄j∥21.

By Assumption 2.3.1 and Lemma 2.10.7 we have that E[D{Y − ᾱ′
jZ}2] ≤ G2

0 +G2
1 so that:

E[pj(X)De−γ̄
′
jZ{Y − ᾱ′

jZ}2{γ̂′
jZ − γ̄′

jZ}2] ≤ (G2
0 +G2

1)E[pj(X)De−γ̄
′
jZ{γ̂′

jZ − γ̄′
jZ}2].

In the event Ωk,6 we have that

(En − E)[pj(X)De−γ̄
′
jZ{γ̂′

jZ − γ̄′
jZ}2] ≤ λ̄k∥γ̂j − γ̄j∥1.

and we can bound En[pj(X)De−γ̄
′
jZ{γ̂′

jZ − γ̄′
jZ}2] using (O.4). Putting this together gives

En[pj(X)De−γ̄
′
jZ{Y − ᾱ′

jZ}2{γ̂′
jZ − γ̄′

jZ}2] ≤ λ̄k∥γ̂j − γ̄j∥21

+(G2
0 +G2

1)λ̄k∥γ̂j − γ̄j∥21

+ (G2
0 +G2

1)e
−M0ηM0skλ

2
γ,j

(O.8)

Applying convexity of
√
· and the bounds on ∥γ̂j − γ̄j∥21 in the event Ωk,1 ∩ Ωk,2 from (L.6)

gives

δ2,j ≤ {eM0η(1 + (G2
0 +G2

1)
1/2)(M0λ̄kλγ,jsk)

1/2 + (G2
0 +G1)

2(M0skλ
2
γ,j)

1/2}D‡
α,j(α̂j, ᾱj; γ̄j)

1/2

≤ C̃{(λ̄kλγ,jsk)1/2 + (skλγ,j)
1/2}D‡

α,j(α̂j, ᾱj; γ̄j)
1/2

(O.9)

where C̃ = max{eM0ηM
1/2
0 (1 +G0 +G1), (G

2
0 +G2

1)M
1/2
0 }. Combining (O.6) and (O.9) gives
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a bound on the empirical expectation on the RHS of (O.1).

(α̂j − ᾱj)
′En[pj(X)De−γ̂

′
jZ{Y − ᾱ′

jZ}Z] ≤ c−1
0 ∥α̂j − ᾱj∥1λα,j︸ ︷︷ ︸

Bound on δ1,j from (O.6)

+ C̃{(λ̄kλγ,jsk)1/2 + (skλ
2
γ,j)

1/2}D‡
α,j(α̂j, ᾱj; γ̄j)

1/2︸ ︷︷ ︸
Bound on δ2,j from (O.9)

(O.10)

For convenience, we will sometimes continue to refer to the bound on δ2,j from (O.9) as

simply δ2,j.

Step 3: Express Minimization Constraint in Terms of γ̄j and Simplify. We use the results

from Step 2 to rewrite the minimization bound (O.1) from Step 1. Using (O.5) and (O.10)

together with the minimization bound (O.1) yields

e−M0ηD‡
α,j(α̂j, ᾱj; γ̄j) + λα,j∥α̂j∥1 ≤ c−1

0 λα,j∥α̂j − ᾱj∥1 + λα,j∥ᾱj∥1 + δ2,j (O.11)

Apply the triangle inequality |α̂j,l| ≥ |ᾱj,l| − |α̂j,l − ᾱj,l| for l ∈ Sα,j and |α̂j,l| = |α̂j,l − ᾱj,l|

for l ̸∈ Sα,j to the above to obtain

e−M0ηD‡
α,j(α̂j, ᾱj; γ̄j) + (1− c−1

0 )∥α̂j − ᾱj∥1 ≤ 2λα,j
∑
l∈Sα,j

|α̂j,l − ᾱj,l|+ δ2,j.

Let δj = α̂j − ᾱj . We use the form D‡
α,j(α̂j, ᾱj) = En[pj(X)De−γ̄

′
jZ{α̂′

jZ − ᾱ′
jZ}2] = δ′jΣ̃γ,jδj

to expand out

e−M0η(δ′jΣ̃γ,jδj) + (1− c−1
0 )λα,j∥δ∥1 ≤ 2λα,j

∑
l∈Sα,j

|δj,l|

+ C̃{(skλ̄kλγ,j)1/2 + (skλγ,j)
1/2}(δ′jΣ̃γ,jδj)

1/2

(O.12)

Step 4: Apply Empirical Compatability Condition. Let δ3,j := C̃{(skλ̄kλγ,j)1/2 + (skλγ,j)
1/2}
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and D⋆
α,j := e−M0η(δ′jΣ̃γ,jδj) + (1− c−1

0 )λα,j∥δj∥1. In the even Ωk,1 ∩ Ωk,2 ∩ Ωk,3 ∩ Ωk,5 ∩ Ωk,6

that (O.12) holds, there are two possibilities. For ξ2 = 1 − 2c0/{(ξ1 + 1)(c0 − 1)} ∈ (0, 1]

either

ξ2D
⋆
α,j ≤ δ3,j(δ

′
jΣ̃γ,jδj)

1/2 (O.13)

or (1− ξ2)D
⋆
α,j ≤ 2λα,j

∑
l∈Sα,j

|δj,l|, that is

D⋆
αj

≤ (ξ1 + 1)(c0 − 1)c−1
0 λα,j

∑
l∈Sα,j

|δj,l| (O.14)

We deal with these two cases separately. First, if (O.14) holds, then
∑

l ̸∈Sα,j
|δj,l| ≤

ξ1
∑

l∈Sj,l
|δj,l|. We can apply the empirical compatability of Assumption 2.3.1 to (O.14)

to obtain.

e−M0η(δ′jΣ̃γ,jδj) + (1− c−1
0 )λα,j∥δj,l∥ ≤ ν1(ξ1 + 1)(ξ1 − 1)λα,j(sjδjΣ̃γ,jδj)

1/2.

Inverting for (δjΣ̃γ,jδj)
1/2 and plugging in gives

e−M0ηD‡
α,j(α̂, ᾱj; γ̄j) + (1− c−1

0 )λα,j∥α̂j − ᾱj∥1 ≤ M̃skλ
2
α,j (O.15)

where M̃ = eM0η(ξ1 + 1)(c0 − 1)c−1
0 . Next, assume that (O.13) holds. In this case, we can

directly invert for (δjΣ̃γ,jδj)
1/2 to get that

e−M0ηD‡
α,j(α̂j, ᾱj; γ̄j) + (1− c−1

0 )λα,j∥α̂j − ᾱj∥1 ≤ ξ−1
2 C̃{(skλ̄kλγ,j)1/2 + (skλ

2
γ,j)

1/2}2 (O.16)

Combining (O.15) and (O.16) gives

e−M0ηD‡
α,j(α̂j, ᾱj; γ̄j) + (1− c−1

0 )λα,j∥α̂j − ᾱj∥1 ≤ M̃skλ
2
α,j

+ ξ−1
2 C̃{(skλ̄kλγ,j)1/2 + (skλ

2
γ,j)

1/2}2

(O.17)
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Step 5: Apply Penalty Majorization and Bounded Penalty Ratio. Use the fact that λγ,j/λα,j ≤

c−1 to express (O.17) as

D‡
α,j(α̂j, ᾱj; γ̄j) ≤ eM0ηM̃skλ

2
α,j + eM0ηξ−1

2 C̃{(skλ̄kλγ,j)1/2 + (skλ
2
γ,j)

1/2}2

∥α̂j − ᾱj∥1 ≤ (1− c−1
0 )−1M̃skλα,j + (1− c−1

0 )−1c−1C̃{(skλ̄k)1/2 + (skλγ,j)
1/2}2

In the event Ωk,2 ∩ Ωk,3 we have that λγ,j ∨ λα,j ≤ λ̄k, so that the above simplifies to

D‡
α,j(α̂j, ᾱj; γ̄j) ≤ M1skλ̄

2
k

∥α̂j − ᾱj∥1 ≤ M1skλ̄k

(O.18)

for M1 = max{eM0η, c−1(1−c−1
0 )−1}(M̃+2eM0ηξ−1

2 C̃). This completes the result (2.9.14).

Nonasymptotic Bounds for Residual Estimation

We now provide nonasymptotic bounds on the empirical mean square error between the

estimated residuals Ûγ,j and Ûα,j and the true residuals

Uγ,j := −pj(X){De−γ̄
′
jZ + (1−D)}

Uα,j := pj(X)De−γ̄
′
jZ(Y − ᾱpilot′

j Z),

(2.9.15)

These bounds will be shown under the events in (2.9.9), (2.9.13), and (2.9.1) using the results

in Lemmas 2.9.5 and 2.9.6.

Lemma 2.9.7 (Nonasymptotic Logistic Residual Bound). Suppose that Assumption 2.3.1

and the conditions of Lemma 2.9.5 hold. Then, in the event Ωk,1 ∩ Ωk,2 described on (2.9.9)

there is a constant Mγ,r that does not depend on k such that:

max
1≤j≤k

En[(Ûγ,j − Uγ,j)
2] ≤ Mγ,rξk,∞skλ̄

2
k. (2.9.16)

Proof. Consider each j separately. By applying the mean value theorem (O.2) and Lemma 2.9.5,
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we can write

(Ûγ,j − Uγ,j)
2 = pj(X)2D{e−γ̂′jZ − e−γ̄

′
jZ}{e−γ̂′jZ − e−γ̄

′
jZ}

≤ ξk,∞pj(X)D{e−γ̂′jZ − e−γ̄
′
jZ}e−γ̄′jZ−u(γ̂j−γ̄j)′Z{γ̄′

jZ − γ̂′
jZ}

≤ ξk,∞e−B0+M0ηD{e−γ̂′jZ − e−γ̄
′
jZ}{γ̄′

jZ − γ̂′
jZ}

So that

En[(Ûγ,j − Uγ,j)
2] ≤ e−B0+M0ηξk,∞ En[pj(X)D{e−γ̂′jZ}{γ̂′

jZ − γ̄′
jZ}]︸ ︷︷ ︸

=D‡
γ,j(γ̂j ,γ̄j)

≤ e−B0+M0ηξk,∞skλ̄
2
k

Lemma 2.9.8 (Nonasymptotic Linear Residual Bound). Suppose that Assumption 2.3.1 and

the conditions of Lemma 2.9.6 hold. Then, in the event
⋂6
m=1 Ωk,m, there is a constant Mα,r

that does not depend on k such that

max
1≤j≤k

En[(Ûα,j − Uα,j)
2] ≤ Mα,rξ

2
k,∞s2kλ̄

2
k (2.9.17)

Proof. Recall that Ûα,j = pj(X)De−γ̂
′
jZ(Y − α̂′

jZ) and Uα,j = pj(X)De−γ̄
′
jZ(Y − ᾱ′

jZ). As an

intermediary, define U̇γ,j = pj(X)De−γ̂
′
jZ(Y − ᾱ′

jZ). We will show a bound on the empirical

mean square error between Ûα,j and U̇α,j as well as on the empirical mean square error

between U̇α,j and Uα,j. The bound in (2.9.17) will then follow from (a+ b)2 ≤ 2a2 + 2b2.

First consider (Ûα,j − U̇α,j)
2:

En[(Ûα,j − Ūα,j)
2] = Enp2j(X)De−2γ̂′jZ(α̂′

jZ − ᾱ′
jZ)

2]

= En[p2j(X)De−2(γ̄′jZ−(γ̂j−γ̄j)′Z)(α̂′
jZ − ᾱ′

jZ)
2]
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≤ ξk∞e−B0e2M0η En[pj(X)De−γ̄
′
jZ(α̂′

jZ − ᾱ′
jZ)]︸ ︷︷ ︸

=D‡
α,j(α̂j ,ᾱj ;γ̄j)

≤ e2M0η−B0M1ξk,∞skλ̄
2
k

Where the last empirical expectation is bounded by Lemma 2.9.6. Next, consider (U̇α,j−Uα,j)
2:

En[(U̇α,j − Uα,j)
2] = En[p2j(X)D{e−γ̂′Z − e−γ̄

′Z}2{Y − ᾱ′
jZ}2]

= En[p2j(X)D{e−γ̄′Z−u(γ̂−γ̄)′Z(γ̄′
jZ − γ̂′

jZ)}2(Y − ᾱ′
jZ)

2]

≤ 2eM0η−B0C2
0ξk,∞(M1skλ̄k)

2En[pj(X)De−γ̄
′
jZ(Y − ᾱ′

jZ)
2]

To proceed we assume that Z contains a constant. That is Z = (1, Z2, . . . , Zdz). However, this

is not necessary it just simplifies the proof a bit. We bound the final empirical expectation in

the event Ωk,5. In this event we can bound

En[pj(X)De−γ̄
′
jZ(Y − ᾱ′

jZ)
2]

= (En − E)[pj(X)De−γ̄
′
jZ(Y − ᾱ′

jZ)
2] + E[pj(X)De−γ̄

′
jZ(Y − m̄j(X))2]

≤ λ̄k + ξk,∞e−B0(D0 +D1)
2.

Combining the above, and using the fact that skλ̄k ≤ η < 1 completes the reult.

Probability Bounds for the First Stage

In this section we establish that each of the events in (2.9.9), (2.9.13), and (2.9.1) occurs

under Assumption 2.3.1 with probability approaching one.

Lemma 2.9.9 (Logistic Score Domination and Penalty Majorization). Suppose Assump-

tion 2.3.1 holds and that the penalty parameter λγ,j is chosen as described in Section 2.2.
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Then, for n sufficiently large, the event Ωk,1 holds with probability 1− ϵ− ργ,n where

ργ,n = Cmax

{
4kn+ 4k

n2
,

(
M̃ξk,∞sk,γ c̄

2
n ln

5(dzn)

n

)1/2

,

(
M̃ξ4k,∞ ln7(dzkn)

n

)1/6

,
1

ln2(dzkn)

}
.

(2.9.18)

where C, M̃ are absolute constants that do not depend on k. In particular so long as ϵ → 0 as

n → ∞, this shows that Pr(Ωk,1) = 1− o(1) under the rate conditions of Assumption 2.3.1.

Moreover, with probability at least 1− 5k
n
− 4k

n2 there is a constant M2 that does not depend on

k such that Ωk,2 holds with

λ̄k = max{M2,M4,M5,M6,M7}ξk,∞

√
ln(dzn)

n
(2.9.19)

where M4,M5,M6 and M7 are all constants that also do not depend on k described in

Lemma 2.9.10 and Lemmas 2.9.11-2.9.13. In particular, so long as k/n → 0, Pr(Ωk,2) =

1− o(1).

Proof. Collecting the logistic nonasymptotic residual bound from Lemma 2.9.7 and the

probability bounds from Lemmas 2.9.11–2.9.14 we find that, (eventually) with probability at

least 1− 4k
n
− 4k

n2 :

max
1≤j≤k
1≤l≤dz

En[(Ûγ,jZl − Uγ,jZl)
2] ≤ Mγ,rC

2
0

ξk,∞sk,γ c̄
2
n ln

3(dzn)

n
. (P.1)

where Mγ,r is a constant that does not depend on k. Define the vectors

Wk := (Uγ,1Z
′, . . . , Uγ,kZ

′)′ ∈ Rkdz

:= (W ′
k,1, . . . ,W

′
k,k)

′

Ŵk := (Ûγ,1Z
′, . . . , Ûγ,kZ

′)′ ∈ Rkdz

:= (Ŵ ′
k,1, . . . , Ŵ

′
k,k)

′.
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Notice by optimality of γ̄1, . . . , γ̄k that Wk is a mean zero vector. Under our assumptions

the covariance matrix Σk = 1
n

∑n
i=1 E[WkW

′
k] exists and is finite. Define the sequences of

constants

δ2γ,n := Mγ,rC
2
0ξk,∞sk,γ c̄

2
n ln

5(dzn)/n

βγ,n :=
4k

n
+

4k

n2

Then, by (P.1) we have that with probability at least 1− βγ,n

Pr
(
∥En[(Ŵk −Wk)

2]∥∞ > δ2n/ ln
2(dzn)

)
≤ βn. (P.2)

Let e1, . . . , en be i.i.d normal random variables generated independently of the data. Define

the scaled random variables and the multiplier bootstrap process

Ŝeγ,n := n−1/2

n∑
i=1

eiŴk,i

:= (Ŝe
′

γ,1, . . . , Ŝ
e′

γ,k)
′

and let Pre denote the probability measure with respect to the e′is conditional on the observed

data. Assumption 2.3.1 implies that the conditions of (2.9.22) hold for Z = Wk with b

replaced by cu and Bn replaced by Bk = (ξk,∞C0CU)
3 ∨ 1. Further, via (P.2) the residual

estimation requirement of with δn and βn replaced by δγ,n and βγ,n.

Let q̂γ,j(α) be the α quantile of ∥Ŝe′γ,j∥ conditional on the data Zi and the estimates Ẑi.

Theorem 2.9.4 then shows that there is a finite constant depending only on cu such that

max
1≤j≤k

sup
α∈(0,1)

∣∣Pr(∥Sγ,j∥ ≥ q̂γ,j(α))− α
∣∣ ≤ Cmax

{
βγ,n, δγ,n,

(
B4
k ln

7(kdzn)

n

)1/6

,
1

ln2(kdzn)

}
.

This gives the first claim of Lemma 2.9.9 by construction of λγ,j. The second claim follows

Lemma 2.9.16. For this second claim we will consider the marginal convergence of each Uγ,jZ
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as opposed to their joint convergence (the convergence of Wk). First, notice that condiitonal

on the data, the random vector En[eÛγ,jZ] is centered gaussian in Rdz . Lemma 2.9.16 then

shows that

q̂γ,j(ϵ) ≤ (2 +
√
2)

√
ln(dz/ϵ)

n
max
1≤l≤dz

En[Û2
γ,jZ

2
l ].

Furthermore, with probability at least 1− βγ,n − 1
n
we have that, for all j = 1, . . . , k:

max
1≤l≤dz

En[Û2
γ,jZ

2
l ] ≤ C2

0En[Û2
γ,j]

≤ 2C2
0(En[U2

γ,j] + En[(Û2
γ,j − Uγ,j)

2]) ≤ 4C2
0ξ

2
k,∞C2

U + δ2γ,n/ ln
2(dzn))

Under the rate conditions of Assumption 2.3.1, δ2γ,n/ ln
2(dzn) will eventually be smaller than

1 and so the claim in (2.9.19) holds with M2 = 8C2
0C

2
U ∨ 1 .

Lemma 2.9.10 (Linear Score Domination and Penalty Majorization). Suppose Assump-

tion 2.3.1 holds and that the penalty parameters λγ,j and λα,j are chosen as described in

Section 2.2. Then, for n sufficiently large, the event Ωk,3 holds with probability 1− ϵ− ρα,n

where:

ρα,n = Cmax

{
4kn+ 4k

n2
,

(
M̃ξ2k,∞s2k,αc̄

2
n ln

5(dzn)

n

)1/2

,

(
M̃ξ4k,∞ ln7(dzkn)

n

)1/6

,
1

ln2(dzkn)

}
.

(2.9.20)

where C, M̃ are absolute constants that do not depend on k. In particular so long as ϵ → 0

as n → ∞, this shows that Pr(Ωk,3) = 1− o(1) under Assumption 2.3.1.

Moreover, with probability at least 1− 5k
n
− 4k

n2 there is a constant M4 that does not depend on

k such that Ωk,4 holds with

λ̄k = max{M2,M4,M5,M6,M7}ξk,∞

√
ln(dzn)

n
(2.9.21)

where M2,M5,M6 and M7 are all constants that also do not depend on k described in
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Lemma 2.9.9 and Lemmas 2.9.11-2.9.13. In particular, so long as k/n → 0, Pr(Ωk,4) =

1− o(1).

Proof. Apply the same steps as the proof of Lemma 2.9.9 with

δ2α,n = Mα,rC
2
0ξ

2
k,∞s2kc̄

2
n ln

5(dzn)/n

βα,n =
4

n
+

4

n2

Lemma 2.9.11 (Probabilistic Bound on Ωk,5). Let Σ̃α,j and Σα,j = EΣ̃α,j be as in (2.9.12).

Under Assumption 2.3.1 if

λ̄k ≥ 4ξk,∞(G2
0 +G0G1)C

2
0

[
G2

0 log(dz/ϵ)/n+G0G1

√
log(dz/ϵ)/n

]

Then Pr(Ωk,5) ≥ 1− 2kϵ2. In particular, there is a constant M5 that does not depend on k,

such that if λ̄k ≥ ξk,∞M5

√
log(dz/ϵ)/n and kϵ2 → 0 as n → ∞ then under the conditions of

Assumption 2.3.1, Pr(Ωk,5) = 1− o(1).

Proof. We show that this happens with probability 1 − 2ϵ2 for each j = 1, . . . , k. For any

l, h = 1, . . . , dz, the variable

pj(X)e−γ̄
′ZD{Y − m̄j(Z)}2ZlZh

is the product of pk(X)e−γ̄
′
jZZlZh, which is bounded in absolute value by ξk,∞C2

0e
−B0 , and

D{Y − m̄j(Z)}, which is uniformly sub-gaussian conditional on Z. By Lemma 2.10.8 we

have:

E
[
|(Σ̃α,j)lh − (Σ̃α,j)lh|k

]
≤ k!

2
(2ξk,∞C−2

0 e−B0G2
0)
k−2(2ξk,∞C2

0e
−B0G0G1)

2, k = 2, 3, . . . .
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Apply the above and Lemma 2.10.6 with t = log(d2z/ϵ
2)/n to obtain

Pr
(
|(Σ̃α,j)lh − (Σ̃α,j)lh| > 2e−B0ξk,∞C2

0G
2
0t+ 2e−B0ξk,∞C2

0G0G1

√
2t
)
≤ 2ϵ2/d2z.

A union bound completes the argument.

Lemma 2.9.12 (Probabilistic Bound on Ωk,6). Let Σ̃γ,j and Σγ,j = EΣ̃γ,j be as in (2.9.12).

Under Assumption 2.3.1 if

λ̄k ≥ ξk,∞
√
2(e−B0 + 1)C0

√
log(dz/ϵ)/n,

then Pr(Ωk,6) ≤ 1− 2kϵ2. In particular, there is a constant M6 that does not depend on k,

such that if λ̄k ≥ ξk,∞M6

√
log(dz/ϵ)/n and kϵ2 → 0 as n → ∞ then under the conditions of

Assumption 2.3.1, Pr(Ωk,6) = 1− o(1).

Proof. Consider each j separately. For any l, h = 1, . . . , dz, note |(Σ̃γ,j)lh| = |pj(X)De−γ̄
′
jZZlZh| ≤

ξk,∞C2
0e

−B0 so that (Σ̃γ,j)lh − (Σγ,j)lh is mean zero and bounded in abosulte values by

2ξk,∞C2
0e

−B0 . Applying Lemma 2.10.4 with λ̄k ≥ 4ξk,∞C2
0e

−B0
√

log(dz/ϵ)/n yields:

Pr
(
|(Σ̃γ,j)lh − (Σγ,j)lh| ≥ λ̄k

)
≤ 2ϵ2/d2z.

A union bound completes the argument.

Lemma 2.9.13 (Probabilitstic Bound on Ωk,7). Let Σ̃
1
α,j and Σ1

α,j = EΣ̃1
α,j be as in (2.9.1).

Under Assumption 2.3.1 if

λ̄k ≥ ξk∞4(G2
0 +G2

1)
1/2e−B0C2

0

√
log(dz/ϵ)/n,

then Pr(Ωk,7) ≥ 1 − 2kϵ2. In particular, there is a constant M7 that does not depend on k

such that if λ̄k ≥ ξk,∞M7

√
log(dz/ϵ)/n and kϵ2 → 0 as n → ∞ then, under the conditions of
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Assumption 2.3.1, Pr(Ωk,7) ≥ 1− o(1).

Proof. We deal with each j term separately. The variables pj(X)e−γ̄
′
jZ |Y − m̄j(Z)|ZlZh

are uniformly sub-gaussian conditional on Z because |pj(X)e−γ̄
′
jZZlZh| ≤ ξk,∞e−B0C2

0 and

D|Y − m̄j(Z)| is uniformly sub-gaussian. Applying Lemma 2.10.5 for

λ̄k ≥ e−B0ξk,∞C2
0

√
8(G2

0 +G1)2
√
log(dz/ϵ)/n

yields

Pr
(
|(Σ̃γ,j)lh − (Σγ,j)lh| ≥ λ̄k

)
≤ 2ϵ2/d2z.

A union bound completes the argument.

Probability Bounds for Residual Estimation

For showing consistent residual estimation, we employ the following two lemmas.

Lemma 2.9.14 (Deterministic Logistic Score Domination). Under Assumption 2.3.1 let

λ̄k ≥ ξk,∞
√
2(e−B0 + 1)C0

√
ln(dz/ϵ)/n.

Then if for all j = 1, . . . , k we let λγ,j ≡ λ̄k, Pr(Ωk,1 ∩ Ωk,2) ≥ 1 − 2kϵ. In particular,

there is a constant Mp
8 that does not depend on k such that if λ̄k ≥ Mp

8 ξk,∞
√

ln(dzn)/n

Pr(Ωk,1 ∩ Ωk,2) ≥ 1− 2k/np.

Proof. Let us recall that

∥Sj∥∞ = max
1≤l≤dz

|En[pj(X){−De−γ̄
′
jZ + (1−D)}Zj]|.

Notice for each 1 ≤ l ≤ dz, Sj,l = pj(X){−De−γ̄
′
jZ + (1−D)}Zl is bounded in absolute value

by C0ξk,∞(e−B0+1) and is mean zero by optimality of γ̄j . For λ̄k ≥ 2(e−B0+1)C0

√
ln(dz/ϵ)/n
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apply Lemma 2.10.4 to see the result.

Lemma 2.9.15 (Deterministic Linear Score Domination). Under Assumption 2.3.1 let

λ̄k ≥ ξk,∞(e−B0C0)
√
8(G2

0 +G2
1)
√
ln(dz/ϵ)/n.

Then if for all j = 1, . . . , k we let λγ,j ≡ λ̄k, Pr(Ωk,3 ∩ Ωk,4) ≥ 1 − 2kϵ. In particular,

there is a constant Mp
9 that does not depend on k such that if λ̄k ≥ Mp

9 ξk,∞
√
ln(dzn)/n,

Pr(Ωk,3 ∩ Ωk,4) ≥ 1− 2k/np.

Proof. Notice Sj,l = pj(X)De−γ̄
′
jZ{Y − m̄j(Z)}Zl for l = 1, . . . , p. By optimality of ᾱj , Sj,l is

mean zero. Under Assumption 2.3.1, |Sj,l| ≤ e−B0C0|D{Y − m̄j(Z)}| so by Assumption 2.3.1

the variables Sj,l are uniformly sub-gaussian conditional on Z in the following sense:

max
l=1,...,p

G̃2
0E[exp(S2

j,l/G̃
2
0)− 1] ≤ G̃2

1

for G̃0 = ξk,∞C0G0e
−B0 and G̃1 = ξk,∞C0G1e

−B0 . Apply Lemma 2.10.5 for λ̄k defined above

in the statement of Lemma 2.9.15 and union bound to obtain the result.

2.9.4. Supporting High Dimensional Probability Results

High Dimensional Central Limit and Bootstrap Theorems

Lemma 2.9.16 (Gaussian Quantile Bound). Let Y = (Y1, . . . , Yp) be centered Gaussian in

Rp with σ2 ≤ max1≤j≤p E[Y 2
j ] and ρ ≥ 2. Let qY (1− ϵ) denote the (1− ϵ)-quantile of ∥Y ∥∞

for ϵ ∈ (0, 1). Then qY (1− ϵ) ≤ (2 +
√
2)σ
√

ln(p/ϵ).

Proof. See Chetverikov and Sørensen (2021), Lemma D.2.

Now let Z1, . . . , Zn be independent, mean zero random variables in Rp, and denote their
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scaled average and variance by

Sn :=
1√
n

n∑
i=1

Zi and Σ :=
1

n

n∑
i=1

E[ZiZ ′
i].

For Rp values random variables U and V , define the distributional measure of distance

ρ(U, V ) := sup
A∈Ap

∣∣Pr(U ∈ A)− Pr(V ∈ A)
∣∣

where Ap denotes the collection of all hyperrectangles in Rp. For any symmetric positive

matrix M ∈ Rp×p, write NM := N(0,M).

Theorem 2.9.1 (High-Dimensional CLT). If, for some finite constants b > 0 and Bn ≥ 1,

1

n

n∑
i=1

E[Z2
ij] ≥ b,

1

n

n∑
i=1

E[|Zij|2+k] ≤ Bk
n and E

[
max
1≤j≤p

Z4
ij

]
≤ B4

n. (2.9.22)

for all i ∈ {1, . . . , n}, j ∈ {1, . . . , p} and k ∈ {1, 2}, then there exists a finite constant Cb,

depending only on b, such that:

ρ(Sn, NΣ) ≤ Cb

(
B4
n ln

7(pn)

n

)1/6

.

Proof. See Chernozhukov et al. (2017), Proposition 2.1.

Let Ẑi be an estimator of Zi and let e1, . . . , en be i.i.d N(0, 1) and independent of both

the Zi’s and Ẑi’s. Define Ŝen := 1√
n

∑n
i=1 eiẐi and let Pre denote the conditional probability

measure computed with respect to the e′is for fixed Zi’s and Ẑi’s. Also abbreviate

ρ̃(Ŝen, NΣ) := sup
A∈Ap

∣∣∣∣Pre (Ŝen ∈ A
)
− Pr (NΣ ∈ A)

∣∣∣∣ .
Theorem 2.9.2 (Multiplier Bootstrap for Many Approximate Means). Let (2.9.22) hold

192



for some finite constants b > 0 and Bn ≥ 1, and let {βn}N and {δn}N be sequences in R++

converging to zero such that

Pr

max
1≤j≤p

1

n

n∑
i=1

(Ẑij − Zij)
2 >

δ2n
ln2(pn)

 ≤ βn (2.9.23)

Then, there exists a finite constant Cb depending only on b such that with probability at least

1− βn − 1/ ln2(pn),

ρ̃(Ŝen, NΣ) ≤ Cbmax

δn,

(
Bn ln

6(pn)

n

)1/6
 .

Proof. See Belloni et al. (2018), Theorem 2.2 or Chetverikov and Sørensen (2021) Theorem

D.2.

We now consider a partition of Z and Ẑ into k subvectors.

Z := (Z ′
1, . . . , Z

′
k)

′ ∈ Rd1,...,dk and Ẑ := (Ẑ ′
1, . . . , Z

′
k)

′ ∈ Rd1,...,dk

where
∑k

j=1 dj = p. Given such a partition, for any symmetric, positive definite M ∈ Rp×p let

NM,j denote the marginal distribution of the subvector of NM corresponding the the indices

of partition j. In other words, NM1 would denote the marginal distribution of the first d1

elements of an Rp vector with distribution NM , N2 would denote the marginal distribution of

the next d2 elements and so on. For each j = 1, . . . , k define qNM,j : R → R̄ as the (extended)

quantile function of ∥NM,j∥∞,

qNM,j(ϵ) := inf
{
t ∈ R : Pr(∥NM,j∥∞ ≤ t) ≥ ϵ

}
.

Define qNM,j(ϵ) = +∞ if ϵ ≥ 1 and −∞ if ϵ ≤ 0 so that qNM,j is always montone (strictly)

increasing.
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Lemma 2.9.17. Let M ∈ Rp×p be symmetric positive definite, let U be a random variable in

Rp. Partition U into k subvectors, U = (U ′
1, . . . , U

′
k)

′ ∈ Rd1,...,dk where d1 + · · ·+ dk = p. For

each j = 1, .., k let qj denote the quantile function of ∥Uj∥∞. Then for any j = 1, . . . , k,

qNM,j(ϵ− 2ρ(U,NM)) ≤ qj(ϵ) ≤ qNM,j(ϵ+ ρ(U,NM)) for all ϵ ∈ (0, 1).

Proof. Proof is a slight modification of that of Lemma D.3 in Chetverikov and Sørensen (2021).

Main idea is to add and substract a ∥NM∥∞ term and use the fact that the approximation is

achieved over all hyperrectangles. We show the bound holds for each j = 1, . . . , k. Without

loss of generality, consider U1. Let NM,1 denote the maginal distribution of the first d1

elements of a Rp vector with distribution NM .

Pr(∥U1∥∞ ≤ t) = Pr(∥NM,1∥∞ ≤ t) + Pr(∥U1∥∞ ≤ t)− Pr(∥NM,1∥∞ ≤ t)

= Pr(∥NM,1∥∞ ≤ t) +
(
Pr(U ∈ [−t, t]p × Rp−d1)− Pr(NM ∈ [−t, t]p × Rp−d1)

)
≤ Pr(∥NM,1∥∞ ≤ t) + ρ(U,NM)

for any t ∈ R. A similar construction will give that

Pr(∥U1∥∞ ≤ t) ≥ Pr(∥NM,1∥∞ ≤ t)− ρ(U,NM).

Substituting t = qNM,1(ϵ− 2ρ(U,NM )) into the upper bound on Pr(∥U1∥∞ ≤ t) gives the lower

bound statement, while t = qNM,1(ϵ+ ρ(U,NM )) and using the lower bound on Pr(∥U1∥∞ ≤ t)

gives the upper bound statement.

As with Z partition Sn and Ŝen into

Sn = (S ′
n,1, . . . , S

′
n,k)

′ ∈ Rd1,...,dk and Ŝen = (Ŝe
′

n,1, . . . , Ŝ
e′

n,k)
′ ∈ Rd1,...,dk .
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For each j = 1, . . . , k define qn,j(ϵ) as the ϵ-quantile of ∥Sn,j∥∞

qn,j(ϵ) := inf{t ∈ R : Pr(∥Sn,j∥∞ ≤ t) ≥ ϵ} for ϵ ∈ (0, 1).

Let q̂n,j(ϵ) be the ϵ-quantile of ∥Ŝen,j∥∞, computed conditionally on Xi and X̂i’s,

q̂n,j(ϵ) := inf{t ∈ R : Pre(∥Ŝen,j∥∞ ≤ t) ≥ ϵ} for ϵ ∈ (0, 1).

Theorem 2.9.3 (Quantile Comparasion). If (2.9.22) holds for some finite constants b > 0

and Bn ≥ 1, and

ρn := 2Cb

(
B4
n ln

7(pn)

n

)1/6

denotes the upper bound in Theorem 2.9.1 multiplied by two, then for all j = 1, . . . , k

qNΣ,j(1− ϵ− ρn) ≤ qn,j(1− ϵ) ≤ qNΣ,j(1− ϵ+ ρn) for all ϵ ∈ (0, 1).

If, in addition, (2.9.23) holds for some sequences {δn}N and {βn}N converging to zero, and

ρ′n ≤ 2C ′
bmax

δ,

(
B4
n ln

6(pn)

n

)1/6


denotes the upper bound in Theorem 2.9.2 multiplied by two, then with probability at least

1− βn − 1/ ln2(pn) we have for all j = 1, . . . , k,

qNΣ,j(1− ϵ− ρ′n) ≤ q̂n,j(1− ϵ) ≤ qNΣ,j(1− ϵ+ ρ′n) for all ϵ ∈ (0, 1).

Proof. From Lemma 2.9.17 with U = Sn we obtain

qNΣ,j(1− ϵ− 2ρ(Sn, NΣ)) ≤ qn,j(1− ϵ) ≤ qNΣ,j(1− ϵ+ ρ(Sn, NΣ)).
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The first chain of inequalities then follows from 2ρ(Sn, NΣ) ≤ ρn by Theorem 2.9.1.

For the second claim, apply Lemma 2.9.17 with U = Ŝen and condition on the Zi’s and Ẑi’s

obtain

qNΣ,j(1− ϵ− 2ρ̃(Ŝen, NΣ)) ≤ q̂n(1− ϵ) ≤ qNΣ,j(1− ϵ+ ρ̃(Ŝen, NΣ)).

The second chain of inequalities then follows on the event 2ρ̃(Ŝen, NΣ) ≤ ρ′n, which by

Theorem 2.9.2 happens with probability at least 1− βn − 1/ ln2(pn).

Theorem 2.9.4 (Multiplier Bootstrap Consistency). Let (2.9.22) and (2.9.23) hold for some

constants b > 0 and Bn ≥ 1 and some sequences {δn}N and {βn}N in R++ converging to zero.

Then, there exists a finite constant Cb, depending only on b, such that

max
1≤j≤k

sup
ϵ∈(0,1)

∣∣Pr(∥Sn,j∥∞ ≥ q̂n,j(1− α))− α
∣∣ ≤ Cbmax

βn, δn,

(
B4
n ln

7(pn)

n

)1/6

,
1

ln2(pn)

 .

Proof. By Theorem 2.9.1 and Theorem 2.9.3,

Pr(∥Sn,j∥∞ ≤ q̂n,j(1− ϵ)) ≤ Pr(∥Sn,j∥∞ ≤ qNΣ,j(1− ϵ+ ρ′n)) + βn +
1

ln2(pn)

≤ Pr(∥NΣ,j∥∞ ≤ qNΣ,j(1− ϵ+ ρ′n)) + ρn + βn +
1

ln2(pn)

≤ 1− ϵ+ ρ′n + ρn + βn +
1

ln2(pn)

Where the second inequality is making use of the same rectangle argument as before. A

parallel argument shows that

Pr(∥Sn,j∥∞ ≤ q̂n,j(1− ϵ)) ≥ 1− ϵ−

(
ρ′n + ρn + βn +

1

ln2(pn)

)
.

Combining these two inequalities gives the result.
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2.10. Appendix: Additional Second Stage Results

Theorem 2.10.1 (Integrated Rate of Convergence). Assume that Condition 1 and Assump-

tion 2.4.1 hold. In addition suppose that ξ2k log k/n → 0 and ck → 0. Then if either the

propensity score our outcome regression model are correctly specified:

∥ĝk − g0∥L,2 = (E[(ĝ(x)− g0(x))
2])1/2 ≲p

√
k/n+ ck (2.10.1)

Proof. We begin with a matrix law of large numbers from Rudelson (1999), which is used to

show Q̂ →p Q.

Lemma 2.10.1 (Rudelson’s LLN for Matrices). Let Q1, . . . , Qn be a sequence of independent,

symmetric, non-negative k × k matrix valued random variables with k ≥ 2 such that Q =

E[EnQi] and ∥Qi∥ ≤ M a.s. Then for Q̂ = En[Qi],

∆ := E∥Q̂−Q∥ ≲ M log k

n
+

√
M∥Q∥ log k

n
.

In particular if Qi = pip
′
i with ∥pi∥ ≤ ξk almost surely, then

∆ := E∥Q̂−Q∥ ≲ ξ2k log k

n
+

√
ξ2k∥Q∥ log k

n
.

Now, to prove Theorem 2.10.1 we have that:

∥ĝk − g0∥L,2 ≤ ∥pk(x)′β̂k − pk(x)′βk∥L,2 + ∥pk(x)′βk − g∥L,2

≤ ∥pk(x)′β̂k − pk(x)′βk∥L,2 + ck

where under the normalization Q = Ik we have that

∥p′β̂ − p′β∥L,2 = ∥β̂ − β∥
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Further,

∥β̂k − βk∥ = ∥Q̂−1E[pk(x) ◦ (Ŷ − Ȳ )]∥+ ∥Q̂−1En[pk(x) ◦ (ϵk + rk)]∥

≤ ∥Q̂−1E[pk(x) ◦ (Ŷ − Ȳ )]∥+ ∥Q̂−1En[pk(x) ◦ ϵk]∥+ ∥Q̂−1En[pk(x)rk]∥

By the matrix LLN (Lemma 2.10.1) we have that since ξ2k log k/n → 0, ∥Q̂−Q∥ →p 0. This

means that with probability approaching one all eigenvalues of Q̂ are boundedaway from

zero, in particular they are larger than 1/2. So w.p.a 1

≲ ∥E[pk(x) ◦ (Ŷ − Ȳ )]∥+ ∥En[pk(x) ◦ ϵk]∥+ ∥En[pk(x)rk]∥

Under Condition 1 the first term is op(
√

k/n). By equation (A.48) in Belloni et al. (2015)

the third term is bounded in probability by ck. For the second term apply the third condition

in Assumption 2.4.1 to see

E∥En[pk(x) ◦ ϵk]∥2 = E
k∑
j=1

ϵ2jpj(x)
2/n ≤ σ̄2En[pk(x)pk(x)′/n] ≲ E[pk(x)pk(x)′/n] = k/n.

This gives ∥En[pk(x) ◦ ϵk]∥ ≲p
√
k/n and thus shows (2.10.1).

Lemma 2.10.2 (Pointwise Linearization). Suppose that Condition 1 and Assumption 2.4.1,

hold. In addition assume that ξ2k log k/n → 0. Then for any α ∈ Sk−1,

√
nα′(β̂k − βk) = α′Gn[p

k(x) ◦ (ϵk + rk)] +R1n(α) (2.10.2)

where the term R1n(α), summarizing the impact of unknown design, obeys

R1n(α) ≲p

√
ξ2k log k

n
(1 +

√
kℓkck) (2.10.3)
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Moreover,
√
nα′(β̂k − βk) = α′Gn[p

k(x) ◦ ϵk] +R1n(α) +R2n(α) (2.10.4)

where the term R2n, summarizing the impact of approximation error on the sampling error of

the estimator, obeys

R2n(α) ≲p ℓkck (2.10.5)

Proof. Decompose as before,

√
nα′(β̂k − βk) =

√
nα′Q̂−1En[pk(x) ◦ (Ŷ − Ȳ )]

+ α′Gn[p
k(x) ◦ (ϵk + rk)]

+ α′[Q̂−1 − I]Gn[p
k(x) ◦ (ϵk + rk)].

The first term is op(1) under Condition 1, we can just include this term in R1n(α). Now

bound R1n(α) and R2n(α).

Step 1. Conditional X = [x1, . . . , xn], the term

α′[Q̂−1 − I]Gn[p
k(x) ◦ ϵk].

has mean zero and variance bounded by σ̄2α′[Q̂−1−I]Q̂−1[Q̂−1−I]α. Next, by Lemma 2.10.1,

with probability approaching one, all eigenvalues of Q̂−1 are bounded from above and away

zero. So,

σ̄2α′[Q̂−1 − Ik]Q̂
−1[Q̂−1 − Ik]α ≲ σ̄2∥Q̂∥∥Q̂−1∥2∥Q̂−1 − Ik∥2 ≲p

ξ2k log k

n
.

so by Chebyshev’s inequality,

α′[Q̂−1 − I]Gn[p
k(x) ◦ ϵk] ≲p

√
ξ2k log k

n
.
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Step 2. From the proof of Lemma 4.1 in Belloni et al. (2015), we get that

α′(Q̂−1 − Ik)Gn[p
k(x)rk] ≲p

√
ξ2k log k

n
ℓkck

√
k

This completes the bound on R1n(α) and gives (2.10.2)-(2.10.3). Next, also from the proof of

Lemma 4.1 from Belloni et al. (2015),

R2n(α) = α′Gn[p
k(x)rk] ≲p ℓkck,

which gives (2.10.4)-(2.10.5).

The following lemma shows that, after adding Assumption 2.4.2 the linearization of our

coefficient estimator β̂k established in Lemma 2.10.2 holds uniformly over all points x ∈ X .

That is to say the error from linearization is bounded in probability uniformly over all x ∈ X .

It will form an important building block in uniform consistency and strong approximation

results presented in Theorems 2.10.2 and 2.4.2.

Lemma 2.10.3 (Uniform Linearization). Suppose that Condition 1 and Assumption 2.4.1-

2.4.2 hold. Then if either the propensity score model our outcome regression model is correctly

specified:
√
nα(x)′(β̂k − βk) = α(x)′Gn[p

k(x) ◦ (ϵk + rk)] +R1n(α(x)) (2.10.6)

where R1n(α(x)) describes the design error and satisfies

R1n(α(x)) ≲p

√
ξ2k log k

n
(n1/m

√
log k +

√
kℓkck) := R̄1n (2.10.7)

uniformly over x ∈ X . Moreover,

√
nα(x)′(β̂k − βk) = α(x)′Gn[p

k(x) ◦ ϵk] +R1n(α(x)) +R2n(α(x)) (2.10.8)
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where R2n(α(x)) describes the sampling error and satisfies, uniformly over x ∈ X :

R2n(α(x)) ≲P
√
log k · ℓkck := R̄2n (2.10.9)

Proof. As in the proof of Lemma 2.10.2, we decompose

√
nα(x)′(β̂k − βk) =

√
nα(x)′Q̂−1En[pk(x) ◦ (Ŷ − Ȳ )]

+ α(x)′Gn[p
k(x) ◦ (ϵk + rk)]

+ α(x)′[Q̂−1 − I]Gn[p
k(x) ◦ (ϵk + rk)].

(2.10.10)

Using Condition 1, the matrix LLN (Lemma 2.10.1), and bounded eigenvalues of the design

matix, we have that:

sup
x∈X

√
nα(x)′Q̂−1En[pk(x) ◦ (Ŷ − Ȳ )] = op(1).

Since this is op(1), we can simply include this term in R1n(α(x)). Now derive bounds on

R1n(α(x)) and R2n(α(x)).

Step 1: Conditional on the data let

T :=
{
t = (t1, . . . , tn) ∈ Rn : ti = α(x)′(Q̂−1 − I)pk(x) ◦ ϵk, x ∈ X

}
.

Define the norm ∥ · ∥n,2 on Rn by ∥t∥2n,2 = n−1
∑n

i=1 t
2
i . For an ε > 0 an ε-net of the normed

space (T, ∥·∥n,2) is a subset Tε of T such that for every t ∈ T there is a point tε ∈ Tε such that

∥t− tε∥n,2 < ε. The covering number N(T, ∥ · ∥n,2, ε) of T is the infimum of the cardinality

of ε-nets of T .

Let η1, . . . , ηn be independent Rademacher random variables that are independent of the

data. Let η = (η1, . . . , ηn). Let Eη[·] denote the expectation with respect to the distribution

201



of η. By Dudley’s inequality (Dudley, 1967),

Eη

[
sup
x∈X

∣∣∣α(x)′[Q̂−1 − I]Gn[ηip
k(x) ◦ ϵk]

∣∣∣] ≲ ∫ θ

0

√
logN(T, ∥ · ∥n,2, ε) dε.

where

θ := 2 sup
t∈T

∥t∥n,2

= 2 sup
x∈X

(
En[(α(x)′(Q̂−1 − I)pk(x) ◦ ϵk)2]

)1/2
≤ 2 max

1≤i≤n
|ϵ̄k,i|∥Q̂−1 − I∥∥Q̂∥1/2,

by (2.9.5). Now, for any x ∈ X ,

(
En[(α(x)′(Q̂−1 − I)pk(x) ◦ ϵk − α(x̃)′(Q̂−1 − I)pk(x) ◦ ϵk)2]

)1/2

≤ max
1≤i≤n

|ϵ̄k,i|∥α(x)− α(x̃)∥∥Q̂−1 − I∥∥Q̂∥1/2

≤ ξLk max
1≤i≤n

|ϵ̄k,i|∥Q̂−1 − I∥∥Q̂∥1/2∥x− x̃∥

So, for some C > 0,

N(T, ∥ · ∥n,2, ε) ≤

(
CξLk max1≤i≤n |ϵ̄k,i|∥Q̂−1 − I∥∥Q̂∥1/2

ε

)dx

.

This gives us that

∫ θ

0

√
log(N(T, ∥ · ∥2,n, ε)) dε ≤ max

1≤i≤n
|ϵ̄k,i|∥Q̂−1 − I∥∥Q̂∥1/2

∫ 2

0

√
dx log(CξLk /ε) dε.

By Assumption 2.4.2 we have that E[max1≤i≤n |ϵ̄k,i| | X] ≲P n1/m where X = (x1, . . . , xn).

In addition ξ
2m/(m−2)
k log k/n ≲ 1 for m > 2 gives that ξ2k/ log k/n → 0. So, ∥Q̂−1 − I∥ ≲P
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(ξ2k log k/n)
1/2 and ∥Q̂−1∥ ≲P 1. Combining this all with log ξLk ≲ log k implies

E

[
sup
x∈X

∣∣α(x)′[Q̂−1 − I]Gn[p
k(x) ◦ ϵk]

∣∣ | X] ≤ 2E

[
Eη sup

x∈X

∣∣α(x)′[Q̂−1 − I]Gn[ηip
k(x) ◦ ϵk]

∣∣ | X]

≲P n1/m

√
ξ2k log

2 k

n

where the first line is due to symmetrization inequality. This gives us

sup
x∈X

∣∣α(x)′[Q̂−1 − I]Gn[p
k(x) ◦ ϵk]

∣∣ ≲p n1/m

√
ξ2k log

2 k

n
(2.10.11)

Step 2: Now simply report the results on approximation error from Belloni et al. (2015) .

Since the approximation error is the same for all signals Y (π̄k, m̄k), there is no Hadamard

product to deal with.

sup
x∈X

∣∣α(x)′[Q̂−1 − I]Gn[p
k(x)rk]

∣∣ ≲P √ξ2k log k

n
ℓkck

√
k (2.10.12)

sup
x∈X

∣∣α(x)′Gn[p
k(x)rk]

∣∣ ≲P ℓkck
√
log k (2.10.13)

Looking at (2.10.10) and combining (2.10.11)-(2.10.12) gives the bound on R1n(α(x)) while

(2.10.13) gives the bound on R2n(α(x)).

Theorem 2.10.2 gives conditions under which our estimator converges in probability to the true

conditional counterfactual outcome g0(x). In particular, this convergence happens uniformly

at the rates defined in (2.10.15)-(2.10.16). If these two terms go to zero, the entire estimator

will converge uniformly to the true conditional expectation of interest.

Theorem 2.10.2 (Uniform Rate of Convergence). Suppose that Condition 1 and Assump-

tions 2.4.1-2.4.2 hold. Then so long as either the propensity score model or outcome regression
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model is correctly specified:

sup
x∈X

∣∣α(x)′Gn[p
k(x) ◦ ϵk]

∣∣ ≲P √log k (2.10.14)

Moreover, for

R̄1n :=

√
ξ2k log k

n
(n1/m

√
log k +

√
kℓkck)

R̄2n :=
√

log k · ℓkck

we have that

sup
x∈X

∣∣pk(x)′(β̂k − βk)
∣∣ ≲P ξk√

n

(√
log k + R̄1n + R̄2n

)
(2.10.15)

and

sup
x∈X

∣∣ĝ(x)− g0(x)
∣∣ ≲P ξk√

n

(√
log k + R̄1n + R̄2n

)
+ ℓkck (2.10.16)

Proof. The goal will be to apply the following two theorems from Giné and Koltchinskii
(2006) and der Vaart and Wellner (1996).
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Preliminaries for Proof of Theorem 2.10.2

Theorem (Gine and Koltchinskii, 2006). Let ξ1, . . . , ξn be i.i.d random variables
taking values in a measurable space (S,S ) with a common distribution P defined
on the underlying n-fold product space. Let F be a measurable class of functions
mapping S → R with a measurable envelope F . Let σ2 be a constant such that
supf∈F Var(f) ≤ σ2 ≤ ∥F∥2L2(P ). Suppose there exist constats A > e2 and V ≥ 2 such

that supQN(F , L2(Q), ε∥F∥L2(Q)) ≤ (A/ε)V for all 0 < ε ≤ 1. Then

E
[∥∥∥∥ n∑

i=1

{f(ξi)− E[f(ξ1)]}
∥∥∥∥
F

]
≤ C

[√
nσ2V log

A∥F∥L2(P )

σ
+ V ∥F∥∞ log

A∥F∥L2(P )

σ

]
.

(GK)

where C is a universal constant.

Theorem (VdV&W 2.14.1). Let F be a P -measurable class of measurable functions
with a measurable envelope function F . Then for any p ≥ 1,∥∥∥Gn∥∗F

∥∥
P,p
≲ ∥J(θn,F)∥F∥n∥P,p ≲ J(1,F)∥F∥P,2∨p (VW)

where θn =
∥∥∥f∥n∥∥∗F /∥F∥n, where ∥ · ∥n is the L2(Pn) seminorm and the inequalities

are valid up to constants depending only on the p in the statement. The term J(·, ·) is
given

J(δ,F) = sup
Q

∫ δ

0

√
1 + logN(F , ∥ · ∥L2(Q), ε∥F∥L2(Q)) dε.

We would like to apply these theorems to bound supx∈X |α(x)′Gn[p
k(x) ◦ ϵk]| and thus show

(2.10.14). The other two statements of Theorem 2.10.2 follow from this. To this end, let’s

consider the class of functions

G := {(ϵk, x) 7→ α(v)′(pk(x) ◦ ϵk), v ∈ X}.

Let’s note that |α(v)′pk(x)| ≤ ξk, Var(α(v)
′pk(x)) = 1, and for any v, ṽ ∈ X

|α(v)′(pk(x) ◦ ϵk)− α(ṽ)′(pk(x) ◦ ϵk)| ≤ |ϵ̄k|ξLk ξk∥v − ṽ∥,

where ϵ̄k = ∥ϵk∥∞. Then, taking G(ϵk, x) ≤ ϵ̄kξk we have that

sup
Q

N(G, L2(Q), ε∥G∥L2(Q)) ≤

(
CξLk
ε

)d

. (2.10.17)

Now, for a τ ≥ 0 specified later define ϵ−k = ϵk1{|ϵ̄k| ≤ τ} − E[ϵk1{|ϵ̄k| ≤ τ} | X] and
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ϵ+k = ϵk1{|ϵ̄k| > τ} − E[ϵk1{|ϵ̄k| > τ} | X]. Since E[ϵk | X] = 0 we have that ϵk = ϵ−k + ϵ+k .

Using this decompose:

1√
n

n∑
i=1

α(v)′(pk(x) ◦ ϵk) =
n∑
i=1

α(v)′(pk(x) ◦ ϵ−k )/
√
n+

n∑
i=1

α(v)′(pk(x) ◦ ϵ+k )/
√
n.

We deal with each of these terms individually, in two steps.

Step 1: For the first term, we set up for an application of (GK). Equation (2.10.17) gives us

the constants A = CξLk and V = dx ∨ 2. To get σ2 note that for any v ∈ X ,

Var(α(v)′(pk(x) ◦ ϵ−k )/
√
n) ≤ E[(α(v)′(pk(x) ◦ ϵ−k )/

√
n)2]

≤ 1

n
E[(α(v)′pk(x))2] sup

x∈X
E[∥ϵ−k ∥

2
∞ | X = x]

≤ σ̄2
k ∧ τ 2

n

Finally note that we can take the envelope G = ∥ϵ−k ∥∞ξk/
√
n where ∥G∥L2(P ) ≤ σ̄k∧τ√

n
and

∥G∥∞ ≤ τξk/
√
n.

We can now apply (GK) to get that

E[sup
x∈X

|α(x)′Gn[p
k(x) ◦ ϵ−k ]|] ≲

√
σ̄2
k ∧ τ 2 log(ξLk ) +

τξk log(ξ
L
k )√

n
.

Step 2: For the second term, we set up for an application of (VW) with the envelope

function G = ∥ϵ+k ∥∞ξk/
√
n and note that

E[∥ϵ+k ∥
2
∞] ≤ E[ϵ̄2k1{|ϵ̄k| > τ}] ≤ τ−m+2E[|ϵ̄k|m]

We can now use (VW) to bound

E

∥∥∥∥∥supx∈X
|α(x)′Gn[p

k(x) ◦ ϵ+k ]|

∥∥∥∥∥ ≲√E[|ϵ̄k|m]τ−m/2+1ξk

∫ 1

0

√
log(ξLk /ε) dε

≲
√

σmk τ
−m/2+1ξk

√
log(ξLk ).

Step 3: Let τ = ξ
2/(m−2)
k and apply Markov’s inequality. The bounds from step one and two
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become

sup
x∈X

|α(x)′Gn[p
k(x) ◦ ϵ−k ]| ≲P

√
σ̄2
k log(ξ

L
k ) +

ξ
2m/(m−2)
k log(ξLk )√

n

sup
x∈X

|α(x)′Gn[p
k(x) ◦ ϵ+k ]| ≲P

√
σ̄mk log(ξLk )

Applying Assumption 2.4.2 along with the inequality

ξ
m/(m−2)
k log k√

n
=
√
log k

√
ξ
2m/(m−2)
k log k

n
≲ log k

completes the proof.

Theorem 2.10.3 (Validity of Gaussian Bootstrap). Suppose that the assumptions of Theo-

rem 2.4.2 hold with an = log n and the assumptions of Theorem 2.4.3 hold with an = O(n−b)

for some b > 0. In addition, suppose that there exists a sequence ξ′n obeying 1 ≲ ξ′n ≲ ∥pk(x)∥

uniformly for all x ∈ X such that ∥pk(x)−pk(x′)∥/ξ′n ≤ Ln∥x−x′∥, where logLn ≲ log n. Let

N b
k be a bootstrap draw from N(0, Ik) and P ⋆ be the distribution conditional on the observed

data {Yi, Di, Zi}ni=1. Then the following approximation holds uniformly in ℓ∞(X ):

pk(x)′Ω̂1/2

Ω̂1/2pk(x)
N b
k =

d pk(x)′Ω1/2

∥Ω1/2pk(x)∥
+ oP ⋆(log−1N) (2.10.18)

Proof. See Theorem 3.4 in Semenova and Chernozhukov (2021).

2.10.1. Concentration and Tail Bounds

We make use of the following concentration and tail bounds. Lemmas 2.10.4–2.10.8 can

be found in Bühlmann and van de Geer (2011). The proof of Lemma 2.10.9 is trivial but

provided here.

Lemma 2.10.4. Let (Y1, . . . , Yn) be independent random variables such that E[Yi] = 0 for
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i = 1, . . . , n and maxi=1,...,m |Yi| ≤ c0 for some constant c0. Then, for any t > 0,

Pr

(∣∣∣∣ 1n
n∑
i=1

Yi

∣∣∣∣ > t

)
≤ 2 exp

(
−nt2

2c20

)
.

Lemma 2.10.5. Let (Y1, . . . , Yn) be independent random variables such that E[Yi] = 0 for

i = 1, . . . , and (Y1, . . . , Yn) are uniformly sub-gaussian: max1≤i≤n c
2
1E[exp(Y 2

i /c
2
1)− 1] ≤ c22

for some constants (c1, c2). Then for any t > 0,

Pr

(∣∣∣∣ 1n
n∑
i=1

Yi

∣∣∣∣ > t

)
≤ 2 exp

(
− nt2

8(c21 + c22)

)
.

Lemma 2.10.6. Let (Y1, . . . , Yn) be independent variables such that E[Yi] = 0 for i = 1, . . . , n

and

1

n

n∑
i=1

E[|Yi|k] ≤
k!

2
ck−2
3 c24, k = 2, 3, . . . ,

for some constants (c3, c4). Then, for any t > 0,

Pr

(∣∣∣∣ 1n
n∑
i=1

Yi

∣∣∣∣ > c3t+ c4
√
2t

)
≤ 2 exp(−nt).

Lemma 2.10.7. Suppose that Y is sub-gaussian: c21E[exp(Y 2/c21)−1] ≤ c22 for some constants

(c1, c2). Then

E[|Y |k] ≤ Γ

(
k

2
+ 1

)
(c21 + c22)c

k−2
1 , k = 2, 3, . . . .

Lemma 2.10.8. Suppose that X is bounded, |X| ≤ c0, and Y is sub-gaussian, c22E[exp(Y 2/c21)−

1] ≤ c22 for some constants (c1, c2). Then Z = XY 2 satisfies

E
[
|Z − E[Z]|k

]
≤ k!

2
ck−2
3 c24, k = 2, 3, . . . ,

for c3 = 2c0c
2
1 and c4 = 2c0c1c2.
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Lemma 2.10.9. Suppose that Y is sub-gaussian in the following sense, there exist positive

constants c0, c1 > 0 such that c20E[exp(Y 2/c20)− 1] ≤ c21. Then

E[|Y |] ≤ c21/c0 + c0.

Proof. Use the fact that ex
2
> |x| and the characterization of sub-gaussian.

2.11. Appendix: Additional Details on Empirical Application

As mentioned in the setup, to avoid outlier contamination we drop the top 3% and bottom

3% of birthweights by maternal age. We also drop ages for which there are fewer than 10

smoker or non smoker observations. The result is a dataset with 4107 (of an initial 4602)

observations on the outcome variable, birthweight. In addition to the 21 control variables

(Z) available in the dataset, we further generate an additional 29 interaction/higher order

variables that we believe may be useful in controlling for confounding as well as a constant.

Table 2.11.1 provides a summary of the initial 21 control variables.1

In addition to these 21 control variables, we include the folowing interactions: mbsmoke ×

alcohol, medu × fedu, mage × fage, msmoke2, msmoke × alcohol, mage2, mage × mmarried,

mage × medu, mage × fedu, monthslb2, msmoke ×monthslb2, monthslb2 × msmoke 2,

msmoke2 × prenatal2, msmoke2 × mage2, mage2 × monthslb2, mage2 × fage, fage2 × mage2,

fage2 × mage, mage2 × mrace, fage2 × frace, msmoke2 × alcohol, mage2 × alcohol, fage2

× alcohol, monthslb2 × alcohol, mage2 × mhisp, fage2 × fhisp, medu × mage2. We also

include indicators for the month of birth.

In conducting analysis, we found it quite helpful to the stability of the final model assisted

estimator to do some light trimming of the estimated propensity score and outcome regression

models. In particular we trim the estimated propensity score(s) to be between 0.01 and

1This table is generated using the wonderful stargazer package in R (Hlavac, 2022).
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Table 2.11.1: Summary of Data used in Emprical Exercise

Statistic N Mean St. Dev. Min Max

bweight 4,107 3,384.354 447.616 1,544 4,668
mmarried 4,107 0.708 0.455 0 1
mhisp 4,107 0.034 0.181 0 1
fhisp 4,107 0.038 0.192 0 1
foreign 4,107 0.054 0.226 0 1
alcohol 4,107 0.031 0.174 0 1
deadkids 4,107 0.252 0.434 0 1
mage 4,107 26.125 5.025 16 36
medu 4,107 12.703 2.470 0 17
fage 4,107 27.000 9.022 0 60
fedu 4,107 12.324 3.624 0 17
nprenatal 4,107 10.822 3.613 0 40
monthslb 4,107 21.938 30.255 0 207
order 4,107 1.858 1.056 0 12
msmoke 4,107 0.390 0.890 0 3
mbsmoke 4,107 0.183 0.386 0 1
mrace 4,107 0.847 0.360 0 1
frace 4,107 0.822 0.382 0 1
prenatal 4,107 1.204 0.507 0 3
birthmonth 4,107 6.556 3.352 1 12
lbweight 4,107 0.025 0.155 0 1
fbaby 4,107 0.443 0.497 0 1
prenatal1 4,107 0.803 0.398 0 1

0.99 and trim the estimated mean regression models so that they take a value no more than

roughly 12.5% higher or lower than the maximum or minimum value of Y observed in the

data.

Because the control variables are all of different magnitudes, it is common to do some

normalization before estimating the ℓ1-regularized propensity score and outcome regression

models so that all variables are “punished” equally by the penalty. We normalize our data

by scaling each variable to take on values between zero and one.

210



2.12. Appendix: Consistency between First Stage and Second

Stage Assumptions

In this section, we examine the consistency between the first stage and second stage assump-

tions on the basis terms pk(x). In particular, we are interested in finding a positive basis that

also satisfies the bounded eigenvalue condition on the design matrix in Assumption 2.4.1.

We also discuss how to construct the model assisted estimator with weights in (2.2.8)-(2.2.9)

that are not directly the second stage basis terms in case the researcher is worried about

their choice of basis terms satisfying the first stage and second stage stage assumptions

simultaneously.

Suppose that X = [0, 1]. First, note that the first stage non-negativity and second stage

design assumptions can be trivially satisfied by using a locally constant basis; that is by

taking

pj(x) = 1[ℓj−1,ℓj)(x) (2.12.1)

for some 0 = ℓ0 < ℓ1 < · · · < ℓt = 1. While this basis may have poor approximation

qualities, the general principle can be extended to any basis whose elements have disjoint

(or limitedly overlapping) supports. Higher order piecewise polynomial approximations can

often be implemented using B-splines which are orthonormalized regression splines. See

De Boor (2001) for an in-depth discussion or Newey (1997) for an application of B-splines to

nonparametric series regression.

These higher order splines can be defined recursively. For a given (weakly increasing) knot

sequence ℓ := (ℓj)
t
j=1 we define the “first-order” B-splines denoted B1,1(x), . . . , Bt,1(x) using

(2.12.1), that is Bj,1(x) = pj(x). On top of these functions, we can define higher order

B-splines via the recursive relation (De Boor (2001), p.90)

Bj,d+1 := ωj,d(x)Bj,d(x) + [1− ωj+1,d(x)]Bj+1,d(x). (2.12.2)
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where

ωj,d(x) :=


x−ℓj

ℓj+d−ℓj
if ℓj+d ̸= ℓj

0 otherwise

.

IfX is continuously distributed on an open set containing the knots (ℓj), De Boor (2001) shows

that the B-spline basis is almost surely positive. Moreover, B-splines is locally supported in

the sense each Bj,d is positive on (ℓj, ℓj+d), zero off this support and for each d:

t∑
j=1

Bj,d = 1 on [0, 1].

where the summation is taken pointwise (see De Boor (2001), p.36). From the final property

we can see the B-spline basis using k = td basis terms, pk(x) = (Bj,l(x)) j=1,..,t
l=1,...,d

are totally

bounded so that.

B-splines used directly in this manner, however, do not lead to a design matrix Q =

E[pk(x)pk(x)′] with eigenvalues which are bounded away from zero. To achieve this, the basis

fucntions must be divided by their ℓ2 norm. In practice, this leads to b-spline terms who

are grown at rate ξk,∞ ≲
√
k. The pilot penalty constants can be chosen from a set whose

bounds are on the order of
√
k and the sparsity bounds of Assumption 2.3.1 reduce to

sk k
3/2 ln5(dzn)

n
→ 0 and

k2 ln7(dzkn)

n
→ 0

while the bounds in (2.4.2) and (2.4.11) reduce respectively to

sk k
3/2 ln(dz)√

n
→ 0 and

s2k k
7/2 ln(dz)

n(m−1)/m
→ 0.

2.12.1. Alternate Weighting

So long as the second stage basis pk(x) contains a constant term, it is possible to weight the

estimating equations (2.2.8)-(2.2.9) by some pk(x) = pk(x) + ck with minimal modification to

212



the model assisted estimator. The constants ck ∈ R can be allowed to grow with k so long

as we replace ξk,∞ with the maximum of ξ̃k,∞ := supx∈X ∥p̃k(x)∥∞ and ξk,∞ in the sparsity

bounds of Section 2.4. Without loss of generality we will assume that the first basis term is a

constant so that p1(x) ≡ 1

After estimating the models (π̂1, m̂1), . . . , (π̂k, m̂k) using (p̃1(x), . . . , p̃k(x)) in (2.2.8)-(2.2.9)

we would construct the second stage estimate β̂k

β̃k = Q̂−1En



p̃1(x)Y (π̂1, m̂1)− ckY (π̂1, m̂1)

p̃2(x)Y (π̂2, m̂2)− ckY (π̂1, m̂1)

...

p̃k(x)Y (π̂k, m̂k)− ckY (π̂1, m̂1)


.

Via the same analysis of Sections 2.3 and 2.4 we will still be able to show that the bias passed

on from first stage estimation to the second stage parameter β̃k remains negligible even under

misspecification of either first stage model. This is because Lemma 2.3.1 will establish that

max
1≤j≤k

|En[p̃j(x)Y (π̂j, m̂j)]− En[p̃j(x)Y (π̄j, m̄j)]| = op(n
−1/2k−1/2) and

max
1≤j≤k

ξ̃k,∞ max
1≤j≤k

En[p̃j(x)2(Y (π̂j, m̂j)− Y (π̄j, m̄j))
2] = op(k

−2n−1/m)

.

Using the first statement, we can immediately establish via the triangle inequality that

max
1≤j≤k

|En[p̃j(x)Y (π̂j, m̂j)− ckY (π̂1, m̂1)]− En[p̃j(x)Y (π̄j, m̄j)− ckY (π̄1, m̄1)]| = op(n
−1/2k−1/2)

which is the exact analog of Condition 1 needed to establish consistency at the nonparameteric

rate of the modified model assisted estimator. Similarly, using the second statement and

(a+ b)2 ≤ 2a2 + 2b2 we can immediately establish that

max
1≤j≤k

En[(p̃j(x)Y (π̂j, m̂j)− cY (π̂1, m̂1)− p̃j(x)Y (π̄j, m̄j) + cY (π̄j, m̄j))
2] = op(k

−2n−1/m)
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which is the exact analog of Condition 2 needed to establish a consistent variance estimator

when β̃k is used instead of the β̂k from (2.2.12).

This logic can be extended slightly if the researcher would like to weight the estimating

equations (2.2.8)-(2.2.9) by some p̃k(x) = Gkpk(x) for an invertible and bounded sequence of

linear operators Gk : Rk → Rk. In this case, one would again use p̃k(x) in place of pk(x) in

(2.2.8)-(2.2.9) and construct the second stage coeffecients via

β̃k := Q̂−1Gk,−1En


p̃1(x)Y (π̂1, m̂1)

...

p̃k(x)Y (π̂k, m̂k)


After constructing the second stage estimator using β̃k, inference procedures would proceed

normally as described in Section 2.2.

2.13. Appendix: Alternative CV-Type Method for Penalty

Parameter Selection

In this section we consider a procedure for penalty parameter selection where we use the pilot

penalty parameters described in (2.2.15) directly, after choosing constants cγ,j and cα,j from

a (finite) set via cross validation. For each j we will assume that

cγ,j, cα,j ∈ Λn ⊆ [cn, c̄n] (2.13.1)

where |Λn| can be fairly large (on the order of n2/k).
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2.13.1. Theory Overview

Let M5,M6,M7,M
2
8 ,M

2
9 be constants that do not depend on k as in Lemmas 2.9.11–2.9.15.

Whenever

cn

√
ln3(dzn)

n
≥ ξk,∞ max

{
M5,M6,M7,M

2
8 ,M

2
9

}√ ln(dzn)

n
. (2.13.2)

we will have that, under Assumption 2.3.1(i)-(iv) the event
⋂7
k=1 Ωk,7 occurs with probability

at least 1− 10k/n2 for the 2k pilot penalty parameters chosen with any values cγ,j, cα,j ∈ Λn

and

λ̄k := c̄n

√
ln3(dzn)

n
.

In this event, apply Lemmas 2.9.5 and 2.9.6 to obtain the following finte sample bounds for

the parameter estimates

max
1≤j≤k

D‡
γ,j(γ̂j, γ̄j) ≤ M0

skc̄
2
n ln

3(dzn)

n
and max

1≤j≤k
∥γ̂j − γ̄j∥1 ≤ M0skc̄n

√
ln3(dzn)

n

max
1≤j≤k

D‡
α,j(α̂j, ᾱj; γ̄j) ≤ M1

skc̄
2
n ln

3(dzn)

n
and max

1≤j≤l
∥α̂j − ᾱj∥1 ≤ M1skc̄n

√
ln3(dzn)

n

and Lemma 2.9.1 to obtain the following finite sample bound for the weighted means:

max
1≤j≤k

|En[pj(X)(Y (π̂j, m̂j)− Y (π̄j, m̄j))]| ≤ M2
c̄2nsk ln

3(dzn)

n
(2.13.3)

max
1≤j≤k

|En[p2j(X)(Y (π̂j, m̂j)− Y (π̄j, m̄j))
2] ≤ M3

ξ2k,∞c̄2ns
2
k ln

3(dzn)

n
(2.13.4)

Combining (2.13.2) and (2.13.3) we can see that Condition 1 can be obtained under Assump-

tion 2.3.1(i)-(iv) and the following modified sparsity bounds

k|Λn|
n2

→ 0,
c−1
n ξk,∞
ln(dzn)

→ 0 and
c̄2nskk

1/2 ln3(dzn)√
n

→ 0. (2.13.5)

215



Simlarly combining (2.13.2) and (2.13.4), Condition 2 can additionally be obtained by

strengthening the rates in (2.13.5) to include

ξ2k,∞c̄2nskk
2 ln3(dzn)

n(m−1)/m
→ 0 (2.13.6)

for m > 2 as in Assumption 2.4.2. These rates are comparable and in certain cases may be

more palatable than those presented in the main text, Assumption 2.3.1(vi). They come

at the cost of slower rates of convergence for the weighted means as seen by comparing

eqs. (2.13.3)–(2.13.4) to eqs. (2.3.1) and (2.3.2).

2.13.2. Practical Implementation

In practice, the constants M5,M6,M7,M
2
8 ,M

2
9 from Lemmas 2.9.11–2.9.15 are roughly on

the order of ∥Z∥∞. We therefore reccomend setting

cn =
1

2 log1/2(dzn)
max
1≤i≤n

∥pk(Xi)∥∞ max
1≤i≤n

∥Zi∥∞

c̄n =
3 log1/2(dzn)

2
max
1≤i≤n

∥pk(Xi)∥∞ max
1≤i≤n

∥Zi∥∞

and letting Λn be a set of points evenly spaced between cn and c̄n. The cross validation

procedure then can be implemented in the following steps.

1. Split the sample into K1 folds.

2. Consider a single pair of values for cα, cγ and designate a fold to hold out.

3. Estimate nuisance model parameters using λpilot

γ,j and λpilot

α,j on the remaining folds.

4. Evaluate the resulting models on held out fold using non-penalized loss functions.

5. Repeat K times and record average loss over all folds.

6. Choose values of cγ,j and cα,j with the lowest average loss.
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In practice we find this procedure works well with small K1, around K = 5 and with |Λn| on

the order of about 10-20.
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Chapter 3

Ordered, Unordered, and Minimal Monotonicity

3.1. Introduction

Economists have long used instrumental variables (IV) to identify the causal effect of an

endogenous treatment choice on outcomes of interest. An IV is characterized by two core

properties: it is an exogenous variable, and it affects the outcome only through its impact on

the treatment choice. These properties, however, are insufficient to identify treatment effects.

Early IV literature secures identification by invoking strong function form assumptions (Theil,

1953), which impose homogeneous treatment effects (Heckman and Robb, 1985).

In an influential paper, Imbens and Angrist (1994) investigate weaker assumptions that

secure the nonparametric identification of a causal effect in a binary choice model with

heterogenous agents. They introduce the monotonicity condition, which states that a change

in the instrument must induce all agents to shift their choices towards the same treatment

status. The monotonicity condition has several desirable properties: it is simple, intuitive, and

renders the identification of the Local Average Treatment Effect (LATE) via the Two-Stage

Least Squares (2SLS) estimand. The condition gives rise to notions such as the marginal

treatment effect and response functions Heckman and Vytlacil (1999, 2005). Finally, the

monotonicity condition of Imbens and Angrist (1994) is frequently regarded as the minimal
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criteria necessary to ascribe causal interpretation to the 2SLS regression.1

Contrary to what one might expect, identification in IV models with multiple treatment

choices is not a straightforward extension of the binary choice case. Multiple choices allow

for a variety of distinct monotonicity conditions that collapse into the same condition when

the treatment is limited to only two choices. Notably, Angrist and Imbens (1995) directly

apply the monotonicity of Imbens and Angrist (1994) to the case of multiple treatments.

Vytlacil (2006) shows that the condition is equivalent to assuming an ordered choice model.

In contrast, the unordered monotonicity of Heckman and Pinto (2018) applies to settings

with unordered treatment choices; it neither implies nor is implied by the monotonicity of

Angrist and Imbens (1995). Despite their specific motivations, both conditions are equivalent

to the Imbens and Angrist (1994) monotonicity in the case of binary choices and both allow

for a causal interpretation for 2SLS estimands.

The properties of the ordered monotonicity of Angrist and Imbens (1995) and the unordered

monotonicity of Heckman and Pinto (2018) raise several questions: Do these conditions

share some of the choice restrictions they imply? Is there a weaker monotonicity condition

underlying both conditions? If this weaker condition exists, is it equivalent to Imbens

and Angrist (1994) in the binary choice model? Are there some criteria that enable us to

characterize the similarities and differences among monotonicity conditions of IV models with

multiple choices? What is the economic rationale that justifies the differences among these

monotonicity conditions?

While the two ordered and unordered monotonicity criteria discussed above share similarities,

little is known about the relationship between them. The IV literature seldom considers

a meta-analysis across monotonicity conditions in settings with multiple treatments. This

paper fills this gap by considering two independent but linked inquiries.

The first inquiry is on the relationship between ordered and unordered monotonicity. The

1Huber and Mellace (2012) is an example of a paper that considers identification of the LATE via 2SLS
under alternate conditions.

219



shared key properties that suggest a deeper connection between the two criteria. We update

the equivalence results of Vytlacil (2006) and Heckman and Pinto (2018) to provide symmetric

characterizations of ordered and unordered monotonicity. These characterizations enable us

to note some useful common properties of ordered and unordered monotonicity and set the

stage for joint analysis of the two conditions.

The second inquiry considers whether these two monotonicity conditions can be subsumed

by a broader criterion that would still enable useful causal analysis. By leveraging their

symmetric characterizations, we show that both conditions share a common property which we

term the minimal monotonicity condition. This minimal monotonicity condition is precisely

what is required for the two stage least squares between any two instrument values to

identify an interpretable causal parameter. Moreover, in general in no weaker condition would

allow for such causal interpretability of two stage least squares estimands.2 We provide a

characterization for minimal monotonicity that allows the researcher to easily verify whether

the condition holds.

In addition, we show that minimal monotonicity can be justified by a notion of choice

rationality significantly weaker than those displayed by agents in ordered and unordered

choice models. Settings where ordered and unordered monotonicity hold can thus be seen as

particular instances of a broad class of choice models described by the minimal monotonicity

condition. By analyzing the properties of minimal monotonicity, we thus hope to facilitate

development of monotonicity conditions that may be suitable in a range of economic settings

that are not neatly described by ordered or unordered choice models. We provide some

natural economic examples where ordered and unordered monotonicity fail, but where minimal

monotonicity may still allow researchers to conduct meaningful causal analysis.

This paper contributes to the theoretical literature on ordered and unordered choice models.

It adds to the literature that extends the understanding and usage of monotonicity conditions

2Indeed, in cases where treatment is binary, we show that minimal monotonicity reduces exactly to the
monotonicity of Imbens and Angrist (1994).
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(Kamat, 2021; Mogstad et al., 2018; Mogstad and Torgovitsky, 2018; Hull, 2018). Our

analyses are informative to a growing literature on empirical economics that examines non-

standard monotonicity conditions to aid the identification and evaluation of treatment effects

(Pinto, 2021; Kline and Walters, 2016; Mountjoy, 2021; Feller et al., 2016; Brinch et al., 2017;

Kirkeboen et al., 2016). We additionally contribute to the literature tying monotonicity

criterion to particular structural models (Vytlacil, 2002, 2006; Heckman and Pinto, 2018) by

showing the minimal monotonicity is implied by a basic model of rationality.

This paper proceeds as follows. Section 3.2 reviews the prior literature on monotonicity

conditions. Section 3.3 describes the IV model and introduces our notation. Section 3.4

discusses the content of ordered and unordered monotonicity conditions and revisits the

equivalence results for ordered and unordered choice models. It explores the symmetry of

equivalence results between these two models to motivate a novel monotonicity condition.

Section 3.5 discusses the properties of the Minimal Monotonicity Condition. Section 3.6

discusses the economic content of the minimal monotonicity condition. Section 3.7 discuss

some applications of monotonicity criteria that are economically justified. Section 3.8

concludes.

3.2. Literature Review

Historically, the traditional approach to evaluating IV models has been to use structural

equations to describe the agent’s choice (Goldberger, 1972; Heckman, 1976, 1979). Imbens

and Angrist (1994) departed from the traditional IV literature based on structural equations.

Using the language of potential outcomes (Rubin, 1974b, 1978a), they introduce the notion

of monotonicity, which formalizes an intuitive assumption stating that an IV change induces

all agents toward choosing the same treatment choice.1

1See also Angrist et al. (1996).
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Angrist and Imbens (1995) extend this monotonicity condition to the case of multiple choices.

They show that their monotonicity provides a causal interpretation of the conventional

Two-Stage Square Least Squares (2SLS) estimand in models with endogenous choices and

heterogeneous treatment responses. Their work spiked a substantial literature on both

empirical and theoretical aspects of monotonicity conditions (Angrist et al., 2000; Barua

and Lang, 2016; Dahl et al., 2017; Huber and Mellace, 2012, 2015; Imbens and Rubin, 1997;

Klein, 2010; Small and Tan, 2007; Aliprantis, 2012; de Chaisemartin, 2017).2

Vytlacil (2002, 2006) bridge the gap between IV models that rely on monotonicity conditions

and the previous literature that invokes structural equations. Vytlacil (2002) shows that the

monotonicity condition of Imbens and Angrist (1994) is equivalent to the random threshold

crossing model of Heckman and Vytlacil (1999, 2005, 2007a). Vytlacil (2006) shows the

monotonicity criterion of Angrist and Imbens (1995) is equivalent to an ordered choice model

with random thresholds. This model is examined by Cameron and Heckman (1998) and

further studied by Carneiro et al. (2003), Cunha et al. (2007).

Unordered choice models have been studied mostly by literature on structural equations. A

common approach is to assume that the equations that govern the treatment are generated by

additively separable threshold-crossing models. Examples of this literature are Heckman and

Vytlacil (2007b), Heckman et al. (2006, 2008). A substantial contribution to this literature is

due to Lee and Salanié (2018), who studied the identification of causal effects for choice models

defined by an arbitrary set of threshold-crossing rules. Heckman and Pinto (2018) connect the

structural and monotonicity approaches. They present an economically motivated condition

termed unordered monotonicity which applies to treatment values that do not have a natural

order. Building upon Vytlacil (2002), they further show that unordered monotonicity can be

equivalently expressed as a multivariate choice model with latent crossing thresholds.

Little is known about the shared features of ordered and unordered choice models. The

2Huber et al. (2017) consider weaker assumptions at the principal strata level, which are also employed by
Frölich (2007).
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rationale that generates an ordered choice model is considerably different from the moti-

vation that justifies unordered choices. Not surprisingly, each model often carries distinct

mathematical formalizations. A rare example of a comparative discussion between ordered

and unordered choice models is Heckman et al. (2006). Their ordered choice model employs

a partition of the real line by non-stochastic thresholds. The treatment choice indicates the

interval that the latent stochastic index lies in this partition. In contrast, their unordered

choice model employs a set of latent indexes that are additive in the observed and unobserved

characteristics of the agent.

As mentioned, we perform a comparative analysis between ordered and unordered monotonic-

ities. To do so, we revisit the monotonicity condition of Angrist and Imbens (1995) using

new tools of analysis developed in Heckman and Pinto (2018).

3.3. Setup

Our IV model consists of three observed variables: a categorical instrument Z that takes

NZ values in Z = {z1, ..., zNZ
}; a multiple treatment choice T that takes NT values in

T = {t1, ..., tNT
}; and a real-valued outcome Y ∈ R.1 These variables belong to the probability

space (I,F , P ) where i ∈ I denotes an individual. Most of the IV literature describes model

assumptions via the potential outcome framework (Rubin, 1978b; Holland, 1986), where

Yi(t, z) denotes the potential outcome for individual i when Zi, Ti take values z, t and Ti(z)

denotes the potential choice for i when the instrument Zi is set to the value z. The assumptions

that characterize the core properties of the instrument are:

Exogeneity Condition: Zi ⊥⊥ (Ti(z), Yi(t)) for all (z, t, i) ∈ Z × T × I (3.3.1)

Exclusion Restriction: Yi(t, z) = Yi(t, z
′) for all z, z′ ∈ Z, and (t, i) ∈ T × I (3.3.2)

IV Relevance: T ⧸⊥⊥ Z (Not statistically independent) (3.3.3)

1We suppress pre-treatment variables X from the model for the sake of notational simplicity. The analysis
can be understood as conditioned on these variables.
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The exogeneity assumption means that the instrument Z is as good as randomly assigned.

The exclusion restriction implies that Z dos not directly cause Y and the IV relevance states

that T and Z correlate. The IV model can be equivalently described by structural equations.

The structural approach enable us to represent the individual’s unobserved characteristics

that generate selection bias by an unobserved random vector V . The IV model is described

by the following equations:

Choice Equation : T = fT (Z,V ), (3.3.4)

Outcome Equation : Y = fY (T,V , ϵ), (3.3.5)

Independence Condition: Z,V , ϵ are statistically independent (3.3.6)

The choice equation (3.3.4) means that T is cased by the instrument Z and unobserved

characteristics V , while the outcome equation (3.3.5) states that Y is caused by choice T,

unobserved characteristics V and an unobserved error term ϵ that is exogenous.2 Functions

fT (·) and fY (·) are not observed and can take arbitrary functional forms. The counterfactual

(or potential) choice when the instrument were fixed to a value z ∈ Z is given by T (z) ≡

fT (z,V ) and the counterfactual outcome generated by fixing T to a value t, that is Y (t) ≡

fY (t,V , ϵ).3 The independence condition (3.3.6) states that Z is statistically independent of

the individual’s unobserved characteristics V and the error term ϵ. The condition implies

the exogeneity condition (3.3.1) of the potential outcome framework.4 It also implies the

2Error term ϵ is used so that Y conditioned on V and Z is not deterministic.
3See Heckman and Pinto (2014) and Pinto and Heckman (2021) for a discussion on causal models and the

fixing operator.
4Indeed, the counterfactuals Y (t), T (z) are a function of V and ϵ, which, according to (3.3.6), are

statistically independent of Z. The exclusion restriction (3.3.2) arises because Z is not an argument in the
outcome equation (3.3.6). IV relevance (3.3.3) corresponds to the assumption that Z causes T in the choice
equation (3.3.4).
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following matching (or unconfoundness) condition:5

Matching Condition: Y (t) ⊥⊥ T |V for all t ∈ T . (3.3.7)

Condition (3.3.7) states that Y (t) becomes statistically independent of T when conditioning

for V . If V were observable, we would be able to evaluate the counterfactual outcome Y (t)

by conditioning the outcome Y on T = t and V .

The primary lesson of the matching condition (3.3.7) is that the identification of causal effects

hinges on controlling for the unobserved characteristics V . Identification strategies of IV

methods can be understood as econometric procedures that seek to exploit the exogenous

variation of Z to control for V . Controlling for unobserved characteristics is a daunting task

since V is unobserved and can have an arbitrary dimension. The response vector S in (3.3.8)

facilitates this task:

S = [T (z1), ..., T (zNZ
)]⊺, supp(S) ≡ {s1, . . . , sNS

} (3.3.8)

The response vector S is defined as the unobserved random vector of dimension NZ × 1 that

stacks the counterfactual choices T (z) across the IV-values z in Z. Elements of the support of

the response vector, s ∈ supp(S), are called response-types. Each element T (z) in S may take

any of the NT values in T . Thus, the number of possible response-types totals NNZ
T . The LATE

model of Imbens and Angrist (1994) investigates the case of a binary instrument Z = {z0, z1}

and a binary treatment T = {t0, t1}. The response vector S = [T (z0), T (z1)]
⊺, admits four

possible response-types: never-takers snt = [t0, t0]
⊺, compliers sc = [t0, t1]

⊺, always-takers

sat = [t1, t1]
⊺, and defiers sd = [t1, t0]

⊺. Note that the choice T is fully determined by the

instrument Z for any given response-type s. For instance, compliers sc choose T = t1 for

Z = z1 and T = t0 for Z = z0. We can express the treatment choice as a function of S and Z

5The independence condition (3.3.6) implies that ϵ ⊥⊥ Z|V . Thereby fY (t,V , ϵ) ⊥⊥ fT (Z,V )|V ⇒ Y (t) ⊥⊥
T |V .
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as T =
[
1[Z = z1], ...,1[Z = zNZ

]
]
· S, where 1[·] denotes then indicator function.

The response vector S simplifies the identification problem by playing the role of a balancing

score for V . This means that S is a function of V since each counterfactual T (z) is a function

of V , and that S preserves the matching property (3.3.7). Indeed, Y (t) ⊥⊥ T |S holds because,

given S, T depends only on Z which is independent of Y (t). This matching property enables

us to connect observed expectations from data with the unobserved counterfactuals we seek

to evaluate via the following equation:6

E(Y |T = t, Z = z)P (T = t|Z = z)︸ ︷︷ ︸
Observed

=
∑

s∈supp(S)

1[T = t|S = s, Z = z]︸ ︷︷ ︸
Known

·E(Y (t)|S = s)P (S = s)︸ ︷︷ ︸
Unobserved

.

(3.3.9)

The left-hand side of equation (3.3.9) comprises of the observed quantities, namely, the

conditional expectation E(Y |T = t, Z = z) and propensity score P (T = t|Z = z).7 The

first term of the right-hand side of the equation is nonrandom since T is a deterministic

function of the instrument Z and the response type S. The second term on the right-hand

side is unobserved. It comprises expected value of counterfactual outcomes conditioned on

response-types E(Y (t)|S = s) and response-type probabilities P (S = s).

Equation (3.3.9) characterizes the identification problem of IV models as the solution of a

system of linear equations. We seek to identify the unobserved quantities on the right-hand

side of equation (3.3.9) (outcome counterfactuals and response-type probabilities) using the

observed quantities on the left-hand side of equation (3.3.9) (outcome expectations and

propensity scores). The general solution to this problem requires some matrix notation.

The response matrix R is central to our analysis. It organizes the response-types in supp(S)

6See Heckman and Pinto (2018) for a proof.
7Equation (3.3.9) holds for any real-valued function g : R → R and for (z, t) ∈ Z × T , that is:

E(g(Y )|T = t, Z = z)P (T = t|Z = z) =
∑

s∈supp(S)

1[T = t|S = s, Z = z] · E(g(Y (t))|S = s)P (S = s).

Setting g(Y ) = 1[Y = y]; y ∈ R generates an equation for the probabilities of counterfactual outcomes.
Setting g(Y ) = 1 generates an equation that relates propensity scores and response-types probabilities.
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into a NZ ×NS array where each column displays a response-type and each row corresponds

to an instrument value:

R ≡ [s1, . . . , sNS
] ∈ T NZ×NS . (3.3.10)

We use Bt = 1[R = t] for the NZ ×NS binary matrix that takes value one if the respective

entry in R is t and zero otherwise. The value in the z-th row and s-th column of Bt is given

by Bt[z, s] = 1[T = t|S = s, Z = z]. The response matrix in the LATE model is given by:

R =

snt sc sat sd[ ]
t0 t0 t1 t1 z0
t0 t1 t1 t0 z1

∴ Bt0 =

snt sc sat sd[ ]
1 1 0 0
1 0 0 1

,Bt1 =

snt sc sat sd[ ]
0 0 1 1
0 1 1 0

. (3.3.11)

In this notation, we can rewrite equation (3.3.9) as:

QZ(t)⊙ PZ(t) = Bt ·
(
QS(t)⊙ PS

)
for all t ∈ T , (3.3.12)

where QZ(t) = [E(Y |T = t, Z = z1), ..., E(Y |T = t, Z = zNZ
)], PZ(t) = [P (T = t|Z =

z1), ..., P (T = t|Z = zNZ
)] are the observed vectors of outcome expectations and propensity

scores. QS(t) = [E(Y (t)|S = s1), ..., E(Y (t)|S = sNS
)], PS = [P (S = s1), ..., P (S = sNS

)]

are the unobserved vectors of counterfactual outcomes and response-type probabilities. The

symbol ⊙ denotes element-wise (Hadamard) multiplication.

Equation (3.3.12) serves two purposes in our analysis. Firstly, it establishes that the iden-

tification of causal parameters stems from the rank properties of the binary matrices Bt.

If Bt were a square full-rank matrix, we would be able to identify counterfactual outcomes

by inverting Bt, that is, QS(t) = (B−1
t QZ(t) ⊙ PZ(t)) ÷ (B−1

t PZ(t)), where ÷ denotes

element-wise division. More broadly, Heckman and Pinto (2018) show that, for any given
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subset of response-types S ⊂ supp(S),

E(Y (t)|S ∈ S) is identified if and only if b(S)′(I −B+
t Bt)b(S) = 0, (3.3.13)

where I is the identity matrix, B+
t is the Moore-Penrose pseudo-invesrse of Bt and b(S) =

[1[s1 ∈ S], ...,1[sNS
∈ S]]′ is a binary vector that indicates which response-type belongs to

S.8

Equation (3.3.12) also helps characterize how monotonicity conditions secure the identification

of causal parameters. The equation entails a fundamental identification problem. The number

of known parameters in its left-hand side totals NZ ·NT . The number of unknown parameters

in the right-hand side is proportional to the number response-types in S, which totals NNZ
T .

An identification problem arises since the number of known parameters grows linearly in NZ

while the number of unknowns grows exponentially in NZ . Monotonicity conditions solve

this problem by assuming choice restrictions that systematically eliminate potential response-

types in S. They effectively equate the growth rate of known and unknown parameters. For

instance, the monotonicity condition of Imbens and Angrist (1994) reduces the number of

response-types of the binary choice model from 2NZ to NZ + 1.

3.4. Ordered and Unordered Monotonicity

Monotonicity conditions are choice restrictions that eliminate response-types systematically.

As discussed previously, Angrist and Imbens (1995) and Heckman and Pinto (2018) provide

monotonicity criterions for ordered and unordered choice models, respectively. We will refer

to these conditions as ordered monotonicity (3.4.1) and unordered monotonicity (3.4.2) for

the sake of clarity:

Ordered Monotonicity (OM): For any z, z′ ∈ Z either,

8If E(Y (t)|S ∈ S) is identified, then it can be evaluated by the expression E(Y (t)|S ∈ S) =
b(S)′B+

t (QZ(t)⊙PZ(t))
b(S)′B+

t PZ(t)
.

228



Ti(z) ≥ Ti(z
′) for all i ∈ I

or Ti(z) ≤ Ti(z
′) for all i ∈ I.

(3.4.1)

Unordered Monotonicity (UM): For any z, z′ ∈ Z and any t ∈ T either,

1[Ti(z) = t] ≥ 1[Ti(z
′) = t] for all i ∈ I

or 1[Ti(z) = t] ≤ 1[Ti(z) = t] for all i ∈ I
(3.4.2)

OM (3.4.1) captures the notion that a change in instrumental values produces incentives

that either move all agents towards weakly“higher” treament values or move all agents

towards weakly “lower” treatment values. The condition can be understood as stating that

an instrumental change that induces one agent to increase their treatment choice cannot

cause another agent to decrease their treatment choice. The condition requires an ordinal

treatment, such as years of schooling.

UM (3.4.2) states that for each treatment, each instrumental change must either move all

agents weakly towards that treatment or weakly away from the treatment. This differs from

OM (3.4.1) as it compares the indicator function of the treatment instead of the treatment

value itself. Because of this, UM (3.4.2) does not require ordered treatments, making it

relevant for settings where the treatment has no natural ordering such as analysis of college

major choice or neighborhood effects.1

Importantly, both OM (3.4.1) and UM (3.4.2) enable the researcher to identify a mixture

of Local Average Treatment Effects (LATEs) with identifiable weights and both conditions

ascribe causal interpretations to the estimands of Two-Stage Least Squares (2SLS) regressions.

1Additionally, Heckman and Pinto (2018) show that UM occurs naturally in economic settings where
choice incentives weakly increase among all treatment choices as the instrument varies.Buchinsky and Pinto
(2021) use revealed preference analysis to show how choice incentives induced by the instrumental variable
generate a range of monotonicity conditions.
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3.4.1. Expressing Monotonicities as Sequences of Counterfactual Choices

Because the definition of OM (3.4.1) compares treatment values, it requires that T be an

ordered set. We propose a slightly more inclusive definition of ordered monotonicity that

does not require an ordered treatment. The central property of ordered monotonicity is a

mapping between a sequence of IV values and some sequence of treatment values in which

higher rankings of Z correspond to higher rankings of Z. The following formula expresses

this criterion:

OM Sequence: There exist a sequencing of Z, (z1, . . . , zNZ
), and a strict ordering on T

such that:2

(Ti(z1), . . . , Ti(zNZ
)) is an increasing sequence in T for any i ∈ I. (3.4.3)

The OM sequential criteria (3.4.3) generates the OM condition (3.4.1) whenever the ordering

T is assumed, however it does not require a specific ordering on T a priori. In Section 3.7

we will demonstrate the usefulness of this more inclusive definition with a plausible research

design that generates OM-Sequence (3.4.3) on a treatment space that has no natural ordering.

We can also characterize the UM condition in (3.4.2) in terms of a sequence of counterfactual

choices:

UM Sequence: For each t ∈ T there exists a sequencing of Z, (z
(t)
1 , . . . , z

(t)
NZ

) such that:

(1[Ti(z
(t)
1 ) = t], . . . ,1[Ti(z

(t)
NZ

) = t]) is weakly increasing for any i ∈ I. (3.4.4)

UM Sequence (3.4.4) differs from OM Sequence (3.4.3) in two significant ways. First, the

sequence of IV values in the unordered case can differs across treatment values while the

IV sequence of ordered case remains the same for all t ∈ T . Second, UM Sequence (3.4.4)

2A strict ordering is one such that for any t, t′ ∈ T with t ̸= t′ exactly one of (t′ ≥ t) or (t ≥ t′) is true.
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utilizes treatment indicators, while the OM Sequence (3.4.3) employs the treatment values

themselves.

It is easy to see that the OM and UM sequence characterizations in (3.4.3) and (3.4.4) are

equivalent for a binary treatment. However, this equivalence between ordered and unordered

monotonicity breaks down for choice models with three or more treatment choices. In general,

ordered monotonicity does not imply unordered monotonicity nor vice versa. To partially

demonstrate why this is the case, consider an ordering on the treatments where t1 ≤ t2 ≤ t3

and the following two pairs of treatment response patterns:

sa sb t1 t2 z

t2 t3 z′

sc sd t1 t3 z

t2 t2 z′

(3.4.5)

The treatment response patterns displayed by agents sa and sb are natural under ordered

monotonicity, they could can be rationalized by a research design where z′ provides uniformly

greater treatment incentives than z. However, they cannot both exist in a response matrix

that satisfies unordered monotonicity. By examining UM Sequence (3.4.4) we can see that

there would be no possible sequencing of the instruments that would allow the sequence of t2

indicators to be weakly increasing for all agents.

Similarly, the treatment response patterns displayed by agents sc and sd in (3.4.5) are not

prohibited by unordered monotonicity; they can both be rationalized by a research design

where instrument z′ explicitly incentivizes treatment t2. Despite this, they cannot both be

present in a response matrix that satisfies ordered monotonicity under the ordering on the

treatments given above. Since the switch from instrument z to instrument z′ induces agent sc

to switch to a “lower” treatment while inducing agent sd to switch to a “higher” treatment,

there can be no sequencing on the instruments satisfying OM Sequence (3.4.3).

The two conditions are also not mutually exclusive, it is possible for a response matrix to

231



satsify both ordered and unordered monotonicity, even when the treatment is multi-valued.

Moreover, the lack of nesting between ordered and unordered monotonicity does not change

if we consider all possible orderings on the treatment space. For a complete example of this

and more in depth discussion, refer to Section 3.11.

3.4.2. Characterizations of Unordered and Ordered Monotonicity

We first present an updated version of the unordered equivalence result in Heckman and

Pinto (2018). This updated version is presented symmetrically to a later equivalence result

for ordered monotonicity and will facilitate comparasion of the two conditions.

Theorem 3.4.1 (Unordered Equivalence). The following statements are equivalent:

(i). For each t ∈ T there is a sequence of instruments (z
(t)
1 , ..., z

(t)
NT

) such that UM Se-

quence (3.4.4) holds.

(ii). Given any t ∈ T and any k ∈ {1, ..., NZ − 1}, we have that

1[Ti(z
(t)
k+1) = t] ≥ 1[Ti(z

(t)
k ) = t] for all i ∈ I..

(iii). For any t ∈ T and t′, t′′ ̸= t there are no 2× 2 submatrices in R of the form:

 t t′′

t′ t

 or

t′ t

t t′′

 . (3.4.6)

(iv). For the unordered verification matrix ΨU defined below, ∥ΨU∥ = 0;

ΨU ≡
(
(1−U)⊺U

)
⊙
(
(1−U)⊺U

)⊺
. (3.4.7)

where 1 denotes a matrix of all ones, ⊙ denotes the Hadamard (element-wise) product
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and:

U ≡



B1 0 0 · · · 0

1 B2 0 · · · 0

...
. . . . . . . . .

...

1 1 1 · · · BNT


. (3.4.8)

(v). For each t ∈ T , there are real-valued functions φ(·, t) and ζ(·, t) such that the treatment

choice T can be rationalized by:

1[T = t] = 1
[
ζ(Z, t) ≥ φ(V , t)

]
,

where ζ(z
(t)
k+1, t) > ζ(z

(t)
k , t) for k = 1, ..., NZ − 1 and any t.

Proof. See Appendix A.

The first two items of Theorem 3.4.1 reflect the discussion in Section 3.4 relating UM-

Sequence (3.4.4) to the classical definition of unordered monotonicity introduced in Heckman

and Pinto (2018) and restated in (3.4.1).

Item (iii) resembles the discussion above and states that unordered monotonicity can be

verified by individually checking each 2×2 submatrix of R. We can see that the appearance of

one of the restricted submatrices in (3.4.6) prevents the existence of a sequence of instruments

that would make the sequence of treatment t indicators increasing for all agents. Unfortunately,

this requirement may be difficult to verify in practice, since the number of 2× 2 submatices is

growing exponentially with the dimensions of the response matrix. Item (iv) of the theorem

provides a practical method of verifying the condition using matrix algebra. Item (v) is

faimilar to the literature and provides an equivalence between unordered monotonicity and

separability conditions such as in Vytlacil (2002). For further discussion, Heckman and Pinto
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(2018) describe other useful aspects of each of the equivalent statements, (iii) and (v) above.

We next present an equivalence result for Ordered Monotonicity.

Theorem 3.4.2 (Ordered Equivalence). The following statements are equivalent:

(i). There is is a sequence on Z, (z1, . . . , zNZ
) and a strict ordering on T that satisfies the

requirement of OM-Sequence (3.4.3).

(ii). There is a strict ordering on T such that for any k ∈ {1, . . . , NZ − 1} and any t:

1[Ti(zk+1) ≥ t] ≥ 1[Ti(zk) ≥ t] for all i ∈ I.

(iii). There is a strict ordering on T such that for any t < t′′ and t′ > t′′′ there are no 2× 2

submatrices of R of the form either

 t t′

t′′ t′′′

 or

 t′ t

t′′′ t′′

 ; (3.4.9)

(iv). There is a strict ordering on T such that for the ordered verification matrix ΨO defined

below, ∥ΨO∥ = 0;

ΨO ≡
(
(1−O)⊺O

)
⊙
(
(1−O)⊺O

)⊺
, (3.4.10)

where 1 indicates a matrix of all ones, ⊙ represents the Hadamard (element-wise)

product, and:

O ≡
[
B∗
t1
, . . . ,B∗

tNT

]
;

(v). There is a strict ordering on T such that for some real-valued functions φ(·, t) and ζ(·, t)
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the treatment choice can be rationalized by

1[T ≥ t] = 1[ζ(Z, t) ≥ φ(V , t)],

where ζ(zk+1, t) > ζ(zk, t) for k = 1, . . . , NZ − 1 and any t.

Proof. See Appendix A

Theorem 3.4.2 extends Vytlacil (2006) in a fashion that enables us to compare ordered and

unordered monotonicity conditions. The first and second items of the ordered equivalence

result reconcile the two notions of ordered monotonicity presented above. It shows that if

OM-Sequence (3.4.3) holds, we can find an ordering on T that satisfies the typical definition

of ordered monotonicity and vice versa; if there is an ordering on T that satisfies ordered

monotonicity we can find a sequence on Z to satisfy OM-Sequence (3.4.3).3 Item (iii) of

Theorem 3.4.2 provides a similar insight to Item (iii) of Theorem 3.4.1, namely that ordered

monotonicity can be verified simply by looking at the 2 × 2 submatrices of the response

matrix R. Item (iv) provides a tractable method for verifying this property.

The final item of the theorem restates the equivalence result of Vytlacil (2006) and shows that

assuming ordered monotonicity is equivalent to taking an ordered choice behavioral model.

While this result is familar to the literature, we provide an alternative proof in Section 3.9

using properties of lonesum binary matrices; a concept we borrow from the information

theory literature (Ryser, 1957).

Symmetries between Ordered and Unordered Monotonicity

The characterizations of ordered monotonicity in Theorem 3.4.2 are symmetric to those

of unordered monotonicity in Theorem 3.4.1. We have already discussed the usefulness of

some of these specific symmetries above. For example, the symmetry between the sequential

characterizations of ordered and unordered monotonicities provides an easy way of seeing that

3In particular we can take the sequence that orders z′ after z if Ti(z
′) ≥ Ti(z) for all i ∈ I.
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ordered and unordered monotonicity are equivalent in the case of a binary treatment. Other

symmetries are new to our discussion and are worth briefly mentioning. The symmetric matrix

verification characterizations provides an easy way to verify if a response matrix satisfies

both the ordered and unordered monotonicity conditions by checking if ∥ΨU∥+ ∥ΨO∥ = 0.

Verifying this allows researchers to take advantage of both sets of identification results.

The symmetry between the restricted 2×2 submatrices in ordered and unordered monotonicity

provides insight on how a response matrix could satisfy ordered monotonicity but not

unordered monotonicity and vice versa. More importantly, however, the similarity between

the two restricted submatrices in Theorems 3.4.1 and 3.4.2 suggests a common condition

shared by both criteria. In particular, note that both restricted patterns in (3.4.6) and

(3.4.9) prevent any two agents from having exactly opposite treatment responses for the same

instrumental variable shift. We term this common restriction the Minimal Monotonicity

Condition and analyze its properties in Section 3.5.

3.5. The Minimal Monotonicity Condition

The minimal monotonicity (MM) condition (3.5.1) is a weak criteria shared by both ordered

and unordered conditions. It is determined by a symmetric restriction that is common to

Theorems 3.4.1 and 3.4.2. Indeed, it turns out that minimal monotonicity is the core common

property of ordered and unordered monotonicity that enables the 2SLS estimand to achieve

causal interpretability.

Minimal Monotonicity (MM): For any pair of instruments z, z′ ∈ Z and any pair of

treatments t, t′ ∈ T either

1[Ti(z) = t]1[Ti(z
′) = t′] ≥ 1[Ti(z) = t′]1[Ti(z

′) = t] ∀i ∈ I

or 1[Ti(z) = t]1[Ti(z
′) = t′] ≤ 1[Ti(z) = t′]1[Ti(z

′) = t] ∀ i ∈ I.
(3.5.1)
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The first row in (3.5.1) states that an instrumental change from z to z′ incentives all agents

to shift their choice away from t and towards t′. The second row in (3.5.1) describes the

opposite behavior. In summary, the MM condition states that an intrumental change that

induces an agent to switch their choice from t to t′ cannot induce another another agent to

switch their choice from t′ to t. Lemma 3.5.1 provides an equivalent characterization of the

MM condition in terms of response-types.

Lemma 3.5.1. Minimal monotonicity MM holds if and only if for all distinct instruments

z, z′ ∈ Z and all distinct treatments t, t′ ∈ T , there are no response-types s, s′ ∈ supp(S)

such that

 s[z] s′[z]

s[z′] s′[z′]
=

s s′ t t′ z

t′ t z′

(3.5.2)

Proof. See Appendix A

Lemma 3.5.1 presents the prohibited pattern of 2 × 2 submatrices of the response matrix

R induced by MM. The pattern is the common intersection between the submatrix charac-

terizations in item (iii) of Theorems 3.4.1 and 3.4.2. Lemma 3.5.2 establishes that MM is

strictly weaker than MM and OM.

Lemma 3.5.2. The following relationships are true of ordered, unordered, and minimal

monotonicity:

1. UM ⇒ MM, but MM ⇏ UM

2. OM ⇒ MM, but MM ⇏ OM

Proof. See Appendix A
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To see why minimal monotonicity is crucial for the interpretability of 2SLS, it is useful to

quickly define and discuss interpretable causal parameters.

3.5.1. Interpretable Causal Parameters

We follow an established literature that defines a meaningful causal parameter τ as a weighted

average of local average treatment effects with positive weights:1

τ =
∑

{t,t′},t̸=t′
ωt,t′E[Y (t)− Y (t′) | S ∈ St,t′ ] with ωt,t′ = 0 or ωt′,t = 0. (3.5.3)

Here St,t′ denotes a set of response types may vary according to the treatments being compared

and ωt,t′ ≥ 0 are positive weights. The defining idea is that each treatment pair is only

represented once, so we cannot have a positive weight on both E[Y (t)− Y (t′) | S ∈ St,t′ ] and

E[Y (t′)− Y (t) | S ∈ St′,t]. The absence of negative weights allows this causal parameter to

give us meaningful insight into the direction of the treatment effects.

Angrist and Imbens (1995) demonstrate that, under ordered monotonicity, the 2SLS estimand

identifies such a meaningful causal parameter using a binary instrument with multiple

treatments. Heckman and Pinto (2018) show a similar result for unordered monotonicity

using comparisons of the outcome Y for any two instruments z, z′ ∈ Z. The equivalence

result for minimal monotonicity in Theorem 3.5.1 establishes that it is indeed MM that is

the driving force behind both of these identification results.

Lemma 3.5.2 provides some intuition for why this is the case. Consider the difference in

average outcome between two values of the instrument, as in the numerator of a 2SLS

estimand. This difference always has a unique decomposition into a weighted average of

treatment effects among all the (ordered) pairs of possible treatment values.2 The restriction

1For examples of works that adopt this criteria, see Angrist and Imbens (1995), Heckman and Urzúa
(2010), Kirkeboen et al. (2016), Mogstad et al. (2021).

2See Section 3.10 for a discussion of the exact forms of this decomposition as well as the 2SLS estimands
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on the response matrix imposed by minimal monotonicity (3.5.2) means that if one pair of

treatment values, (t, t′), is represented in this weighted sum, the opposite pair, (t′, t), cannot

also be represented. So, minimal monotonicity is sufficient for this difference to satisfy the

condition for an interpretable causal parameter (3.5.3). Moreover, because this decomposition

is unique, we can show that minimal monotonicity is necessary for interpretability as well.

3.5.2. Equivalence Results

We now provide a set of equivalent characterizations of the minimal monotonicity condition

in the spirit of the results for unordered and ordered monotonicity in Theorems 3.4.1 and

3.4.2.

Theorem 3.5.1 (Minimal Monotonicity Equivalence). The following statements are equiva-

lent:

(i). For any distinct pair of instruments z, z′ ∈ Z and any pair of treatments, t, t′ ∈ T , we

have either:

1[Ti(z) = t]1[Ti(z
′) = t′] ≥ 1[Ti(z) = t′]1[Ti(z

′) = t] ∀i ∈ I

or 1[Ti(z) = t]1[Ti(z
′) = t′] ≤ 1[Ti(z) = t′]1[Ti(z

′) = t] ∀ i ∈ I.
(3.5.4)

(ii). There are no 2× 2 submatrices of R of the form in (3.5.2).

(iii). For the matrix ΨM defined below, ∥ΨM∥ = 0

ΨM ≡
∑
t̸=t′

(
B⊺tBt′

)
⊙
(
B⊺tBt′

)⊺
. (3.5.5)

where ⊙ represents the Hadamard (element-wise) multiplication.3

for ordered and unordered monotonicity mentioned above.
3We use the short-hand notation

∑
t ̸=t′ ξ(t, t

′) ≡
∑

t∈T
∑

t′∈T \{t} ξ(t, t
′).
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(iv). For any pair of instruments z, z′ the 2SLS type estimand

βz,z′ = E[Y | Z = z]− E[Y | Z = z′]

identifies an interpretable causal parameter as described in (3.5.3).

Proof. See Appendix A

Many features of this equivalence result are symmetric to the unordered and ordered equiva-

lence results of Theorems 3.4.1 and 3.4.2. Item (i) defines the complete version of the MM

condition. Items (ii) and (iii) of Theorem 3.5.1 provide ways of verify the MM condition

symmetric to counterparts for unordered and ordered monotonicity in Theorems 3.4.1 and

3.4.2. Item (ii) presents a general response matrix condition. It states that no 2×2 submatrix

of the response-matrix R presents the prohibited pattern in (3.5.2). Item (iii) provides a

tractable method of verifying the MM condition. The verification requires an order of T 2

matrix operations.

The last item of Theorem 3.5.1 is the empirically relevant feature of the MM condition.

It provides a solution to our initial inquiry on a weak mononocity criteria that ensures

interpretable causal parameters for the widely used method of 2SLS. Indeed, there can be no

weaker monotonicity criterion that guarantees such causal interpretability.

3.5.3. Relationship Between Monotonicity Criterion

The three monotonicity conditions are equivalent in the case of a binary treatment. In this

special case the definition of MM (3.5.1) reduces to:4

1[Ti(z) = t] ≥ 1[Ti(z
′) = t] for all i ∈ I

or 1[Ti(z) = t] ≤ 1[Ti(z
′) = t] for all i ∈ I,

4This is done by replacing 1[Ti(z
′) = t′] with (1− 1[Ti(z) = t′]) on the left hand side and 1[Ti(z) = t′]

with (1− 1[Ti(z) = t]) on the right hand side. Afterwards, distribute and simplify.
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which is exactly the requirement imposed by both ordered and unordered monotonicity.

However, as demonstrated by Lemma 3.5.2, when there are multiple treatments the three

monotonicity criterion are distinct.

We can gain further interpretation of the monotonicity restrictions by examining the relation

between the verification matrices ΨU ,ΨO, and ΨM of Theorems 3.4.1, 3.4.2 and 3.5.1. We

express the verification matrices in terms of a primitive component defined by:

Ψ(t, t′, t′′, t′′′) ≡
(
B⊺tBt′

)
⊙
(
B⊺t′′Bt′′′

)
. (3.5.6)

Ψ(t, t′, t′′, t′′′) is a function of four binary matrices (Bt,Bt′ ,Bt′′ ,Bt′′′) that returns a primitive

verification matrix of dimension NZ×NS whose elements are either zeros or natural numbers.5

Under this notation, the verification matrix ΨM can be expressed as:

ΨM =
∑
t̸=t′

Ψ(t, t′, t′, t). (3.5.7)

Equation (3.5.7) explains the content of the verification matrix ΨM . Theorem 3.5.1 states

that MM (3.5.1) holds if and only if ∥ΨM∥ = 0. By definition the matrix ΨM is the sum of

the primitive verification matrices Ψ(t, t′, t′, t) across all NT · (NT − 1) binary combinations of

two distinct treatment choices t, t′ ∈ T . The elements of the primitive verification matrices are

weakly positive and so ∥ΨM∥ = 0 if and only if ∥Ψ(t, t′, t′, t)∥ = 0 for all distinct treatment

values t and t′. Thus a necessary and sufficient condition for MM to hold is that each primitive

verification matrix Ψ(t, t′, t′, t) contains only zero elements for all t, t′ ∈ T such that t ≠ t′.

Indeed, ∥Ψ(t, t′, t′, t)∥ = 0 is a equivalent to the nonexistence of any 2× 2 submatrix of the

response matrix R is of the form
(
t t′

t′ t

)
.

Theorem 3.5.2 relates the UM verification matrix to the primitive verification matrices and

5The output of function Ψ remains the same if first two inputs can be switched by the last two inputs
Ψ(t, t′, t′′, t′′′) = Ψ(t′′, t′′′, t, t′). We also have that Ψ(t, t′, t′′, t′′′)⊺ = Ψ(t′, t, t′′′, t′′), namely, the transpose of
Ψ(t, t′, t′′, t′′′) is equal to the matrix Ψ(t′, t, t′′′, t′′) in which we switch t by t′ and t′′ by t′′′.
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the MM verification matrix.

Theorem 3.5.2 (Decomposing Unordered Verification). The following relation holds for any

response matrix R ∈ T NZ×NS :

∥ΨU∥ = 0 ⇔ ∥ΨM∥+ ∥ΨU\M∥ = 0, (3.5.8)

where ΨU\M ≡
∑

t̸=t′ ̸=t′′
Ψ(t, t′, t′′, t). (3.5.9)

Proof. See Appendix A

Lemma 3.5.2 explains that UM imposes extra constraints in addition to those required for MM

to hold. Theorem 3.5.2 clarifies these additional constraints. Equation (3.5.8) decomposes

the UM verification (∥ΨU∥ = 0) into two verification requirements. The first verification

criterion, ∥ΨM∥ = 0, means that MM must hold. The additional constraint, ∥ΨU\M∥ = 0,

means that the elements of the matrix Ψ(t, t′, t′′, t) must be zero for any selection of three

distinct treatment choices t, t′, t′′ ∈ T . This additional criterion rules out violations of the

prohibited pattern in item (iii) of Theorem 3.4.1 that involve three distinct treatment values.

Theorem 3.5.2 offers a combinatorial interpretation of monotonicity conditions MM and

UM. MM imposes
(
NT

2

)
constraints on the primitive verification matrix Ψ(t, t′, t′, t) across

the combination of treatment choices taken two at a time. UM imposes an additional
(
NT

3

)
constraints on Ψ(t, t′, t′′, t) across the combination of treatment choices taken three at a time.

Theorem 3.5.3 decomposes the verification criterion of ordered monotonicity (∥ΨO∥ = 0)

into the verification criterion of the MM condition, ∥ΨM∥ = 0, and two other criteria

corresponding to matrices Ψ
(1)
O\M and Ψ

(2)
O\M . The requirement that ∥ΨM∥ = 0 means that

OM implies MM, as in Lemma 3.5.2. Matrix Ψ
(1)
O\M contains a subset of the unordered

monotonicity constrains in matrix ΨU\M of Theorem 3.5.2. Matrix Ψ
(2)
O\M contains constrains

that are not in ΨU\M . This is as expected since OM does not imply nor is implied by UM.

Theorem 3.5.3 (Decomposing Ordered Verification). The following relation holds for any
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response matrix R ∈ T NZ×NS :

∥ΨO∥ = 0 ⇔ ∥ΨM∥+ ∥Ψ(1)
O\M∥+ ∥Ψ(2)

O\M∥ = 0, (3.5.10)

where

Ψ
(1)
O\M ≡

∑
t1<min(t2,t3)

Ψ(t1, t2, t3, t1),

Ψ
(2)
O\M ≡

∑
t1<t2≤t3

Ψ(t1, t3, t2, t2) +
∑

t1<t2<t3

Ψ(t1, t3, t3, t2) +
∑

t4<t2,t1<t3

Ψ(t1, t2, t3, t4).

Proof. See Appendix A

3.6. An Economic Interpretation for Monotonicity Conditions

This section explores the economic content of the monotonicity criteria. We show that

the minimal monotonicity condition (3.5.1) can be linked to a broad notion of rationality

regarding treatment choices. This contrasts to ordered and unordered monotonicity, which as

seen in Theorems 3.4.1 and 3.4.2 are equivalent to assuming particular ordered and unordered

choice models.

Our analysis is based on the method of Pinto (2021), Buchinsky and Pinto (2021) who use

revealed preference analysis to ascribe economic interpretation to response matrices.1 The

method uses the concept of an incentive matrix L that characterizes the choice incentives

(columns) generated by the IV-values (rows). Each column L[·, t] displays the relative ranking

of incentives towards choice t ∈ supp(t) across the IV-values z ∈ Z. L[z′, t] < L[z, t] means

that the IV-value z yields strictly greater incentives towards t than IV-value z′. The matrix

is ordinal, monotonic transformations characterize equivalent choice incentives.

To fix ideas, consider the binary LATE model of Sections 3.4 where T denotes college

enrollment; T = t1 for college enrollment and Ti = t0 otherwise. The instrument Z denotes a

1This analysis is also similar to the encouragment designs proposed by Zelen (1979, 1990).
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randomly assigned tuition discount such that Z = z1 if the discount is granted and Z = z0

otherwise. Incentive matrix (3.6.1) characterizes the choice incentives of the LATE model.

L[z0, t0] = L[z1, t0] = 0 means that the voucher offers no incentives for choice t0 (no college).

L[z0, t1] < L[z1, t1] indicates that the tuition discount z1 incentives college enrollment t1.

LATE Incentive Matrix L =

t0 t1[ ]
0 0
0 1

z0
z1

(3.6.1)

Pinto (2021), Buchinsky and Pinto (2021) use revealed preference analysis to translate the

incentive matrix into choice restrictions. They invoke the Weak Axiom of Revealed Preferences

(WARP) and Choice Normality to generate the following choice rule:2

Choice Rule: Ti(z) = t and L[z′, t′]−L[z, t′] ≤ L[z′, t]−L[z, t]︸ ︷︷ ︸
Switch from z to z′ provides greater

incentives for t than t′

=⇒ Ti(z
′) ̸= t′ (3.6.2)

Choice Rule (3.6.2) formalizes an intuitive behavioral restriction. If an agent i chooses t

when exposed to instrument z, and the IV-shift from z to z′ yields greater incentives towards

t than t′, then agent i does not choose t′ under z′. Otherwise stated, each instrumental value

z is associated with an incentive gap between t and t′. If an agent decides for choice t given

z, then t is revealed preferred to t′. The agent should t′ only if the incentive gap between t

and t′ increases.

Applying choice rule (3.6.2) to the LATE incentive matrix (3.6.1) generates the following

choice restriction:

Ti(z0) = t1 and L[z1, t0]−L[z0, t0]︸ ︷︷ ︸
=0

≤ L[z1, t1]−L[z0, t1]︸ ︷︷ ︸
=1

=⇒ Ti(z1) ̸= t0. (3.6.3)

2[Define both] The choice rule would have a strict inequality if we were to assume WARP only.
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Choice restriction (3.6.3) is summarized by Ti(z0) = t1 ⇒ Ti(z1) ̸= t0. It states that if an

agent chooses to attend college when not offered any incentives (Ti(z0) = t1) they must

also chooses choose to attend college when offered the tuition discount (Ti(z1) = t1). The

restriction is equivalent to the monotonicity condition of Imbens and Angrist (1994), discussed

in Section 3.3, which eliminates the defiers and enables the identification of LATE.

Buchinsky and Pinto (2021) characterize the class of incentive matrices that produce OM

and UM conditions. For instance, they demonstrate that choice incentives characterized by

lonesum matrices produce unordered choice models while increasing incentives such as those

described by a Vandermonde matrix produce ordered choice models.

Incentives and Minimal Monotonicity

It is natural to inquire about which types of incentive designs ensure the MM condition. It

turns out that the Choice Rule (3.6.2) itself ensures the MM condition. Theorem 3.6.1 asserts

that the MM condition always arises whenever we apply the revealed preference analysis

encoded by the choice rule to any choice incentives.

Theorem 3.6.1. The minimal monotonicity condition (3.5.1) holds for all choice models

generated by applying Choice Rule (3.6.2) to an arbitrary Incentive Matrix L.

Theorem 3.6.1 draws a sharp distinction in the interpretation of the monotonicity conditions.

In essence, OM and UM can be interpreted as monotonicity conditions that arise when

agents that display a rational behavior face a particular a class of choice incentives. This

paradigm does not apply to MM, since MM is not a property ascribed to any particular

pattern of incentives. Instead, MM is a supra-condition that can be justified by a weak notion

of rationality itself.

With this in mind, the MM condition can be seen not as a final goal, but rather a starting

point for generating and interpreting monotonicity criteria. To be more precise, minimal

monotonicity ensures that a range of monotonicity conditions obtained by combining a broad
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notion of choice rationality with specific choice incentives satisfy particular basic properties,

including interpretability of 2SLS-type estimands. Section 3.7 uses this insight to illustrate

the flexibility of the MM condition in empirical analysis.

3.7. Economic Examples of Monotonicity Conditions

We present several examples of response matrices generated by combining specific incentive

structures with the choice rule (3.6.2) defined in Section 3.6. The first two examples

demonstrate specific incentive designs that generate response matrices satisfying unordered

and ordered monotonicity, respectively. Afterwards, we present some natrual research

designs that generate response matrices that do not comply with either ordered or unordered

monotonicity. However, by Theorem 3.6.1, these response matrices still satisfy the minimal

monotonicity condition. We discuss how minimal monotonicity may still enable the researcher

to gain insight into causal effects under these research designs. Our minimal monotonicity

examples include the popular Extensive Margin Compliers (EMCO) of Angrist and Imbens

(1995) and a double RCT design. In all examples we consider incentive designs for a three-

valued treatment choice T = {t1, t2, t3} and four instrumental values Z = {z1, z2, z3, z4}.

3.7.1. A Case of Choice Incentives that Justify Unordered Monotonicity

In this example, let T denote the student’s decision among college majors: t1 for humanities,

t2 for social sciences, and t3 for the STEM fields of science, technology, engineering, and

math. The instrumental variable Z represents a randomly assigned vouchers that offers a

tuition discount that may apply to one, several or none of the majors. For example, consider

the social experiment that randomly assigns one of the four vouchers z1, z2, z3, z4 to college

students:

1. Voucher z1 offers no tuition discount.

2. Voucher z2 applies only to STEM (t3).

3. Voucher z3 applies to either STEM (t3) or social sciences (t2).
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4. Voucher z4 applies to all majors.

Assuming that the voucher amount is always the same, this design is characterized by incentive

matrix L in (3.7.1).1

L =

t1 t2 t3


0 0 0
0 0 1
0 1 1
1 1 1

z1
z2
z3
z4

(3.7.1)

We use this first example to describe the machinery that translates choice incentives into

monotonicity conditions and identification results. We adopt a more parsimonious approach

in the subsequent examples. We place detailed derivations in Appendix 3.12.

Choice rule (3.6.2) converts the Incentive Matrix (3.7.1) into choice restrictions that determine

the model response matrix R. The choice rule applies to any two instrument-treatment pairs;

((z, t), (z′, t′)) ∈ (Z × T )2 . To exemplify how this is done, Table 3.7.1 displays all the

restrictions generated by applying Choice Rule (3.6.2) to an agent who chooses a humanities

major (t1) when offered no tuition discount (z1). The first row of Table 3.7.1 applies the

choice rule to the two instrument-treatment pairs, (z1, t1) and (z2, t2). By applying the choice

rule, we see that an agent i who chooses a humanties major (t1) when offered no tuition

discount (z1) would not chose treatment a social sciences major (t2) when offered instrument

a tuition discount only for STEM majors (z2). The incentives for choosing either t1 or t2

remain the same when the IV switches from z1 to z2. The incentive inequality in (3.6.2) is

satisfied and the choice restriction Ti(z1) ̸= t2 holds.

The other lines of Table 3.7.1 apply this same logic to all other instrument-treatment pairs.

We can see that, in total, under the incentive structure summarized in (3.7.1) the Choice

1Elements one indicate the presence of incentive (the tuition discount) while elements zero indicate the
lack of it.
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Rule (3.6.2) places the following restrictions on an agent who chooses a humanities major

when offered no tuition discount

Ti(z1) = t1 =⇒ Ti(z2) ̸= t2 and Ti(z4) ̸∈ {t2, t3}

This analysis can be repeated for all types of agents, the sum total of all choice restrictions

generated by applying the choice rule in this research design are presented in Table 3.7.2. All

choice restrictions of Table 3.7.2 eliminate a total of 74 out of 81 possible response-types.

The seven response-types that survive this elimination procedure are presented as columns of

the following response matrix, R, in (3.7.2):

Table 3.7.1: Applying Choice Rule (3.6.2) to Ti(z1) = t1 and Incentive Matrix (3.7.1)

Counterfactual Choice Incentive Condition Choice Restriction

T (z1) = t1 L[z2, t2]−L[z1, t2] = 0 ≤ 0 = L[z2, t1]−L[z1, t1] ⇒ T (z2) ̸= t2
T (z1) = t1 L[z2, t3]−L[z1, t3] = 1 ≰ 0 = L[z2, t1]−L[z1, t1] ⇒ No Restriction

T (z1) = t1 L[z3, t2]−L[z1, t2] = 1 ≰ 0 = L[z3, t1]−L[z1, t1] ⇒ No Restriction
T (z1) = t1 L[z3, t3]−L[z1, t3] = 1 ≰ 0 = L[z3, t1]−L[z1, t1] ⇒ No Restriction

T (z1) = t1 L[z4, t2]−L[z1, t2] = 1 ≤ 1 = L[z4, t1]−L[z1, t1] ⇒ T (z4) ̸= t2
T (z1) = t1 L[z4, t3]−L[z1, t3] = 1 ≤ 1 = L[z4, t1]−L[z1, t1] ⇒ T (z4) ̸= t3

This table presents all the choice restrictions generated by applying the choice rule (3.6.2) to each of the tuples ((z1, t1), (z′, t′))
where z′in{z2, z3, z4} and t′in{t2, t3, t4} according to the choice incentives displayed in the incentive matrix (3.7.1).

R =

s1 s2 s3 s4 s5 s6 s7


t1 t1 t1 t1 t2 t2 t3
t1 t1 t3 t3 t2 t3 t3
t1 t2 t2 t3 t2 t2 t3
t1 t1 t1 t1 t2 t2 t3

z1
z2
z3
z4

(3.7.2)

Using the characterizations in Theorem 3.4.1, we can verify that unordered monotonicity

holds for the response matrix R presented in (3.7.2). Notice that there is no 2× 2 matrix

of the matrix is of the type of the form
(
t t′

t′′ t

)
where t′ ̸= t, or t′′ ̸= t. Appendix 3.12.1

corroborates the UM property using the verification matrix from item (iv) of Theorem 3.4.1.
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Table 3.7.2: Choice Restrictions generated by Incentive Matrix (3.7.1)

1 Ti(z1) = t1 ⇒ Ti(z2) ̸= t2 and Ti(z4) /∈ {t2, t3}
2 Ti(z2) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z3) ̸= t3 and Ti(z4) /∈ {t2, t3}
3 Ti(z3) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z2) /∈ {t2, t3} and Ti(z4) /∈ {t2, t3}
4 Ti(z4) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z2) ̸= t2

5 Ti(z1) = t2 ⇒ Ti(z2) ̸= t1 and Ti(z3) /∈ {t1, t3} and Ti(z4) /∈ {t1, t3}
6 Ti(z2) = t2 ⇒ Ti(z1) /∈ {t1, t3} and Ti(z3) /∈ {t1, t3} and Ti(z4) /∈ {t1, t3}
7 Ti(z3) = t2 ⇒ Ti(z1) ̸= t3 and Ti(z4) ̸= t3
8 Ti(z4) = t2 ⇒ Ti(z1) /∈ {t1, t3} and Ti(z2) ̸= t1 and Ti(z3) /∈ {t1, t3}

9 Ti(z1) = t3 ⇒ Ti(z2) /∈ {t1, t2} and Ti(z3) /∈ {t1, t2} and Ti(z4) /∈ {t1, t2}
10 Ti(z2) = t3 ⇒ Ti(z3) ̸= t1
11 Ti(z3) = t3 ⇒ Ti(z1) ̸= t2 and Ti(z2) /∈ {t1, t2} and Ti(z4) ̸= t2
12 Ti(z4) = t3 ⇒ Ti(z1) /∈ {t1, t2} and Ti(z2) /∈ {t1, t2} and Ti(z3) /∈ {t1, t2}

This table presents all the choice restrictions generated by applying the choice rule (3.6.2) to each of the tuples
((z, t), (z′, t′)) ∈ ({t1, t2, t3} × {z1, z2, z3, z4})2. according to the incentive matrix (3.7.1).

While the incentive design described in (3.7.1) is plausible and the application of the choice

rule a minimal behavioral requirement on the agents, it is helpful to remark on how this specific

incentive structure generates unordered monotonicity. Note that the incentive structure

increases in the sense that each successive instrument provides weakly more incentives for all

treatment choices. No change in the instrument from z to z′ would strictly decrease incentives

for one treatment while strictly increasing incentives for another.

This property is crucial for generating unordered monotonicity. Under WARP, if an agent

would choose treatment t under instrument value z, they must also choose treatment t under

instrument value z′ whenever the switch from z to z′ weakly increases incentives for t relative

to all other incentives. Because of the increasing nature of the incentive structure, each switch

in the instrument value either increases the incentives for a choice t relative to all other

treatments or decreases the incentives for the choice t relative to all other treatments. This,

along with the choice rule, prevents an instrumental switch from moving one agent strictly

towards choosing t while moving another agent strictly away from choice t and towards

another treatment t′.
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3.7.2. A Case of Choice Incentives that Justify Ordered Monotonicity

In this example, suppose the CEO of a company is interested in whether higher health

insurance premiums lead to moral hazard in employees’ safety behavior. Employees decide

among three health insurance policies t1, t2, t3 that have increasing premiums. The co-pay of

each policy off-sets the increasing premium such that all policies cost the same.

To study this, the CEO randomly assigns agents to one of four groups, z1, z2, z3, z4, that

incentivize (say by offering an additional week of vacation) various insurance plan options.

We consider the following scheme of choice incentives:

1. Group z1 is incentivized to choose treatment t1.

2. Group z2 is offered no incentives.

3. Group z3 is offered incentives for all choices.

4. Group z4 is incentivized to choose treatment t3.

Equation (3.7.3) presents the incentive matrix L that characterizes the design of choice

incentives.2 This incentive design is rather peculiar because it is tailored to generate the

OM criteria. Equation (3.7.3) also presents the corresponding response matrix R generated

by the method of revealed preference analysis described in Sections 3.6 and 3.7.1. Detailed

derivations are presented in Appendix 3.12.2.

L =

t1 t2 t3


1 0 0
0 0 0
1 1 1
0 0 1

z1
z2
z3
z4

⇒ R =

s1 s2 s3 s4 s5 s6 s7 s8


t1 t1 t1 t1 t1 t2 t2 t3
t1 t1 t2 t2 t3 t2 t2 t3
t1 t1 t2 t2 t3 t2 t2 t3
t1 t3 t2 t3 t3 t2 t3 t3

z1
z2
z3
z4

(3.7.3)

Using Theorem 3.4.2 it is easy to check that OM holds for response matrix (3.7.3). The

indices of the treatment choices weakly increase as the instrument ranges along z1 →
2Elements one indicate the presence of incentive (an additional one week vacation) while elements zero

indicate the lack of it.
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z2 → z3 → z4. Ordered monotonicity is satisfied by assigning treatment values that satisfy

t1 ≤ t2 ≤ t3. By applying the identification results of Angrist and Imbens (1995), one can

verify that the 2SLS has the causal interpretation of a weighted average of LATEs of the

type E(Y (tk+1)− Y (tk)|S); k ∈ {1, 2}. Similarly via Theorem 3.4.1 it is also easy to verify

that UM does not hold for response matrix (3.7.3). The 2× 2 submatrix of rows (z1, z4) and

columns (s3, s7) displays the values
(
t1 t2
t2 t3

)
which violates item (iii) of Theorem 3.4.1; the

shift of IV-values from z1 to z4 induces some agents towards choice t2 while inducing others

away from t2.

Interestingly, the natural ranking on the treatment space is not important for generating

ordered monotonicity in this way. We could just as easily have considered a treatment space

with no natural ranking, such as the choice of neighborhood to live in. The incentive design

summarized by L in (3.7.3) would have still generated the response matrix R that satisfies

ordered monotonicity. This demonstrates the usefulness of considering the slightly broader

characterization of ordered monotonicity presented in OM Sequence (3.4.3). Had ordered

monotonicity been ruled out a priori, the researcher may not have been able to take advantage

of the Angrist and Imbens (1995) identification results.

3.7.3. Beyond Ordered or Unordered Monotonicity

The MM condition provides a theoretical foundation for a wide range choice behaviors that do

not exactly conform to the paradigm imposed by ordered or unordered choices. It offers the

necessary flexibility to examine economic settings that are not neatly described by ordered or

unordered monotonicity. We illustrate this fact in the following examples.

The Double Randomization Design

A basic inquiry in social science is to evaluate the causal effect of a treatment t1 versus its

absence. The standard IV experiment that would allow us to assess this effect is to randomly

offer a voucher that incentives a set of agents to choose a treatment choice t1. This experiment
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can be described by the binary LATE model discussed in Section 3.3.

A straightforward extension of this setup is to insert a second treatment t2 and randomize a

second voucher that incentives t2 for the same set of agents. The combination of the two

randomization runs generate four groups according to the voucher assignments. Notationally,

our experiment consists of three choices T ∈ {t0, t1, t2}, where t0 represents not choosing

either treatment t1 or t2, and four instrumental values {z1, z2, z3, z4} that classify the voucher

recipients into:

1. Group z1 comprise agents that do not receive any voucher.

2. Group z2 comprise agents that receive a voucher that incentivizes choice (t2).

3. Group z3 comprise agents that receive a voucher that incentivizes choice (t1).

4. Group z4 are those that receive two vouchers, one for t1 and another for t2.

Equation (3.7.4) presents an incentive matrix corresponding to this research design and the

corresponding response matrix generated by the revealed preference analysis described in

Section 3.7.1. See Appendix 3.12.3 for detailed derivations.

L =

t0 t1 t2


0 0 0
0 0 1
0 1 0
0 1 1

z1
z2
z3
z4

⇒ R =

s1 s2 s3 s4 s5 s6 s7 s8 s9


t0 t0 t0 t0 t0 t1 t1 t2 t2
t0 t0 t2 t2 t2 t1 t2 t2 t2
t0 t1 t0 t1 t1 t1 t1 t1 t2
t0 t1 t2 t1 t2 t1 t1 t2 t2

z1
z2
z3
z4

(3.7.4)

Response matrix (3.7.4) satisfies neither UM nor OM. UM does not hold because the 2× 2

submatrix generated by rows (z2, z3) and columns (s2, s3) displays matrix
(
t0 t2
t1 t0

)
, which

violates item (iii) of Theorem 3.4.1. For the ordering t0 ≤ t1 ≤ t2 on T , columns (s2, s3)

also preclude OM. Under this ordering, no matter how we order the IV values, we cannot

generate that the sequence of treatments is increasing for both s2 and s3. In fact, no matter

which ordering we take on T , we can always find a pair of response types whose treatment
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uptake patterns violate OM Sequence.3

However, as guaranteed by Theorem 3.6.1, the response matrix R in (3.7.4) satisfies minimal

monotonicity (MM). This can be further verified via the minimal monotonicity characterization

in Theorem 3.5.1 by checking that there is no 2× 2 submatrix in (3.7.4) of the form
(
t t′

t′ t

)
.

Appendix 3.12.3 additionally corroborates this fact by evaluating the verification matrix ΨM

from Theorem 3.5.1(iii).

Despite the fact that neither UM nor OM holds, we can still explore causal relationships

in this choice model. In particular, the response matrix still enables us to identify causal

parameters using 2SLS type estimands. For example, if the researcher was interested in the

effect of treatment t2 against alternate treatments, the 2SLS-type estimand

βz4,z3 ≡ E[Y | Z = z4]− E[Y | Z = z3].

recovers a weighted average of E[Y (t2) − Y (t1) | S ∈ S2,1] and E[Y (t2) − Y (t0) | S ∈ S2,0],

with positive weights, for some sets of response types S2,1 and S2,0 that can be found using the

decomposition in Section 3.10. If one was alternatively interested in the effect of t1 against

alternate treatments, the 2SLS-type estimand

βz3,z1 ≡ E[Y | Z = z3]− E[Y | Z = z2]

recovers a weighted average of E[Y (t1)− Y (t0) | S ∈ S1,0] and E[Y (t1)− Y (t2) | S ∈ S1,2] for

two alternate sets of response types S1,0 and S1,2.

Incentives that Justify Extensive Margin Compliers Only

We next exemplify how the choice rationale can be used to justify monotonicity criteria that

3Using the violation of unordered monotonicity with t0 we have that t0 cannot be ranked highest or
lowest in any ordering that satisfies OM; this would mean that some agents increase their treatment as the
instrument ranges from z2 to z3 while other agents decrease their treatment. We thus only have to consider
the orderings t1 ≤ t0 ≤ t2 and t2 ≤ t0 ≤ t1, which can both be eliminated by considering the alternating
patterns displayed by response types s4 and s7.
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are more restrictive than UM and OM. Consider a group of students of a technical college

that decide among three possible majors: computer science (t1), electrical engineering (t2),

or mechanical engineering (t3).

College administration perform a double randomization of two types of tuition vouchers.

The first voucher offers a tuition discount for computer science (t1) while the other for the

engineering courses (t2 or t3). Students can be divided into four groups according to the

voucher assignment:

1. Group z1 receives no voucher;

2. Group z2 receives the voucher for computer science (t1) only;

3. Group z3 receives the voucher that incentivizes electrical (t2) or mechanical (t3) engi-
neering.

4. Group z4 receives both vouchers which offers incentives to all three choices.

Equation (3.7.5) presents the incentive matrix associated with this experimental design and

its corresponding response matrix. See Appendix 3.12.4 for derivation details.

L =

t1 t2 t3


0 0 0
1 0 0
0 1 1
1 1 1

z1
z2
z3
z4

⇒ R =

s1 s2 s3 s4 s5 s6 s7


t1 t1 t1 t2 t2 t3 t3
t1 t1 t1 t1 t2 t1 t3
t1 t2 t3 t2 t2 t3 t3
t1 t1 t1 t2 t2 t3 t3

z1
z2
z3
z4

(3.7.5)

Response matrix (3.7.5) is an example where both OM and UM are satisfied. We can check

that OM holds by assigning values (1, 2, 3) to (t1, t2, t3) and reordering the IV-values from

z1, z2, z3, z4 to z2, z1, z4, z3. The resulting response matrix is presented in (3.7.6) which shows

that treatment values weakly increase as Z ranges along its values. It is easy to check that

each of the binary matrices Bt = 1[R = t]; t ∈ {1, 2, 3} that indicate the treatment choices

of response matrix (3.7.6) is triangular (i.e. lonesum). This implies that UM holds by item

(iv) of Theorem 3.4.1.
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Reordered R =

s1 s2 s3 s4 s5 s6 s7


1 1 1 1 2 1 3
1 1 1 2 2 3 3
1 1 1 2 2 3 3
1 2 3 2 2 3 3

z2
z1
z4
z3

(3.7.6)

Response matrix (3.7.5) has a special property beyond UM and OM: each of its compliers takes

only two treatment values, one of them being t1. Specifically, the matrix has four response-

types that display a variation of treatment choice, these are the compliers (s2, s3, s4, s6).

The choice values of response-types s2, s4 are t1 or t2 and the choice values of s3, s6 are t1

or t3 This special property is called Extensive Margin Compliers Only (EMCO) which is

formalized in (3.7.7).4

EMCO: There exists a treatment choice t1 ∈ T such that for any z, z′ ∈ supp(Z) we have
that

Ti(z) ̸= Ti(z
′) ⇒ Ti(z) = t1 or Ti(z

′) = t1 for all i ∈ I (3.7.7)

EMCO (3.7.7) simplifies the multiple-choice decision of compliers into a binary decision

that debates between choosing t1 or not. In our example, compliers s2, s4 debate between

choosing computer science t1 or electrical engineering t2 while compliers s3, s6 debate between

computer science t1 or mechanical engineering t3. None of the compliers debate between

electrical or mechanical engendering. Instead, they decide between choosing computer science

or not.

EMCO (3.7.7) enables us to recode the multiple choice Ti ∈ {t1, t2, t3} into a binary choice

Di = 1[Ti = t1] that indicates if the agent i chooses t1. The 2SLS regression that uses the

binary indicator as the endogenous treatment evaluates a weighted average of LATE-type

effects between choosing t1 and not across compliers.

In particular, the comparison between two IV-values identifies the causal effect for of choosing

4See Rose and Shem-Tov (2021), Angrist and Imbens (1995).
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t1 versus not choosing t1 for a sub-set of compliers. For instance, consider the IV-values z1

and z2. We can use equation (3.3.9) to obtain the following identification result:

E(Y |Z = z2)− E(Y |Z = z1)

P (T = t2|Z = z2)− P (T = t2|Z = z1)
= (3.7.8)

E(Y (t1)− Y (t2)|S = s4)P (S = s4) + E(Y (t1)− Y (t3)|S = s6)P (S = s6)

P (S = s4) + P (S = s6)
. (3.7.9)

Equations (3.7.8)–(3.7.9) show that the comparison between IV-values z1 and z2 identifies

the causal effect of choosing t1 versus not choosing t1 conditional on response-types s4, s6.

The equations are similar to the LATE identification equation of Imbens and Angrist (1994).

They imply that we can evaluate the causal effect via the 2SLS regression that uses the

sub-sample of agents assigned to z1 and z2.

Orthogonal Array Design

We additionally examine an IV choice model based on the orthogonal array experimental

design. Orthogonal arrays are a widely popular experimental design developed by C.D. Rao

(Rao, 1946a,b, 1947, 1949). Orthogonal arrays are widely used in Agricultural and Industrial

sciences to determine the optimum mix of treatments that maximize production yield. The

method is based on the random assignment of a combinatorial arrangements of treatments

for each randomization arm. We adapt this setup to an instrumental variable setting by

exogenously providing incentives for one or more treatments instead of directly assigning

agents to treatment arms. Below, we will see that this incentive structure allows for a broad

range of identification results.

Formally, a binary orthogonal array is a matrix of zeros and ones such that any two-column

submatrix displays all possible combinations of zeros and ones. In other words, the tuples

{(0, 0), (0, 1), (1, 0), (1, 1)}

are all rows in any two-column submatrix. An orthogonal array incentive design if its
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associated incentive matrix is a binary orthogonal array. The incentive matrix in (3.7.10)

displays an example of an orthogonal array incentive design and the corresponding response

matrix generated by applying Choice Rule (3.6.2).

L =

t1 t2 t3


0 1 1
0 0 0
1 1 0
1 0 1

z1
z2
z3
z4

⇒ R =

s1 s2 s3 s4 s5 s6 s7 s8 s9


t1 t2 t2 t2 t2 t3 t3 t3 t3
t1 t1 t2 t2 t2 t1 t3 t3 t3
t1 t1 t2 t2 t2 t1 t1 t2 t3
t1 t1 t1 t2 t3 t1 t3 t3 t3

z1
z2
z3
z4

(3.7.10)

This response matrix satisfies neither unordered nor ordered monotonicity. When the

instrument switches from z1 to z4, agents in response type s5 move from treatment t2 to

treatment t3 while agents in response type s6 move away from t3 and towards t1. This

represents a violation of ordered monotonicity and also prevents t3 from being ordered the

highest or lowest in any ordering on T that would satisfy ordered monotonicity.5 Similarly

we can see a switch from z3 to z4 induces agents in response type s3 to move from treatment

t2 to treatment t1 while inducing agents in response type s7 to move away from treatment t1

and towards treatment t3. This again represents a violation of unordered monotonicity and

prevents t1 from being ordered either the highest or the lowest in any ordering T that would

satisfy ordered monotonicity. Since all orderings on T = {t1, t2, t3} must have either t1 or t3

as the largest or smallest element, this means there is no ordering on T that satisfies ordered

monotonicity.

Again, however, Theorem 3.6.1 guarantees that the response matrix satisfies minimal mono-

tonicity (MM). Any simple 2SLS estimands exploiting the variation between any two instru-

ments (as in Theorem 3.5.1) identifies an interpretable causal parameter. For example, if

the researcher was interested in the effect of treatment t1 against alternative treatments,

5If t3 is ranked highest a movement away from t3 represents moving towards a lower treatment while
a towards t3 represents moving towards a higher treatment. Vice versa, if t3 is ranked lowest a movement
towards t3 represents moving towards a lower treatment while a movement away from t3 represents moving
towards a higher treatment.
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the 2SLS estimand βz1,z2 = E[Y | Z = z1] − E[Y | Z = z2] recovers a weighted average of

E[Y (t1)− Y (t2) | S = s2] and E[Y (t1)− Y (t3) | S = s6].

Interestingly, the response matrix R in (3.7.10) also satisfies the extensive margin compliers

only (EMCO) condition of (3.7.5) when considering any three instruments at a time. As in

the last example, this allows for 2SLS estimands to additionally be interpreted as recovering

the causal effect of one treatment against another.

3.8. Conclusion

Analysis of ordered and unordered IV choice models has largely been conducted in parallel,

with little overlap between the two strands of the literature. Ordered choice models are com-

monly analyzed using ordered monotonicity (OM), introduced by Angrist and Imbens (1995),

while unordered choice models are commonly analyzed using the unordered monotonicity

(UM) of Heckman and Pinto (2018).

This paper bridges the gap between analysis of ordered and unordered IV choice models.

We note symmetric features of ordered and unordered monotonicity and use them to derive

symmetric characterizations of the two. The symmetric characterizations offer deep insights

into the relationship between the two monotonicity criterion. Moreover they provide compu-

tationally tractable ways to verify the two monotonicity criterion, which may be useful to

researchers who wish to utilize both sets of identification results.

The symmetric characterizations illuminate a shared monotonicity property, which we term

the minimal monotonicity (MM) condition. We characterize this novel criterion and show it is

the minimal requirement needed to identify interpretable causal parameters using 2SLS type

estimands. Moreover, minimal monotonicity can be associated with a notion of rationality

that enables the investigation of a range of economic choice models that do not comply with

ordered or unordered monotonicity.
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3.9. Appendix: Proofs of Main Results

3.9.1. Lonesum Matrix Characterizations

Using the characterization of unordered monotonicity in UM-Sequence (3.4.4), unordered

monotonicity is equivalent to there being a permutation of the rows of Bt such that each

column of Bt is weakly increasing.1 Existence of such a reordering characterizes a class of

binary matrices known as lonesum matrices, which are a generalization of lower triangular

binary matrices. The lonesum property, and various characterizations of it, end up forming

the basis of much of our proof strategy. We discuss the property breifly below and note a

useful characterization of the property.

Lonesum Matrices

Following Ryser (1957), a binary matrix A is lonesum if each of its entries is uniquely

determined by its column and row sums. Matrix A below is an example of such a lonesum

matrix:

A =

column

column-sum

[ ]0 1 0 1 0
0 1 1 1 1
0 1 0 0 0
c1 c2 c3 c4 c5
0 3 1 2 1

row

r1
r2
r3

︸ ︷︷ ︸
Original Matrix

row-sum

2
4
1

⇒

[ ]0 0 0 0 1
0 0 0 1 1
0 1 1 1 1
c1 c3 c5 c4 c2
0 1 1 2 3

row

r3
r1
r2

︸ ︷︷ ︸
Reordered Matrix

row-sum

1
2
4

We can reorder the rows of the matrix A such that the elements of each column are weaklly

increasing. We can also reorder the columns so that the matrix A is lower triangular, which

is why the lonesum property is considered a generalization of binary lower triangular matrices.

The lonesum matrix property can also be productively characterized in the following ways:

Lemma 3.9.1 (Lonesum Matrices). A binary matrix A ∈ {0, 1}m×n is lonesum if and only

1This permutation can differ for each Bt, but there must be such a permutation for each t ∈ T .
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if:

(i). Matrix A is lower-triangular under column and row permutations.

(ii). There are no 2× 2 submatrix in A of the form either:[
1 0
0 1

]
or

[
0 1
1 0

]
. (3.9.1)

(iii). ι⊺
(
(1−A)⊺A

)
⊙
(
(1−A)⊺A

)⊺
ι = 0, where ι is a n-dimensional vector of elements

ones and 1 is a m× n matrix of element ones.

(iv). Let ri(A) and cj(A) represent the row sum of row i and the column sum of column j,

respectively. Each entry A[i, j], for 1 ≤ i ≤ m and 1 ≤ i ≤ n, can be expressed as:

A[i, j] = 1

[
ri(A) ≥

n∑
j′=1

1
[
cj′(A) ≥ cj(A)

] ]
(3.9.2)

The sum
∑n

j′=1 1
[
cj′(A) ≥ cj(A)

]
represents the number of columns of A with a weakly

larger column sum than column j

Proof. The second item comes from Ryser (1957). We next show a series of equivalences.

(iii) ⇐⇒ (ii). Notice that (iii) is equivalent to the matrix

(1−A)⊺A⊙A⊺(1−A)

being a matrix of all zeros. By direct calculation, the ijth element of (1−A)⊺A is given

m∑
k=1

A[k, i]−A[k, j]A[k, i] =
m∑
k=1

A[k, i](1−A[k, j]).

This is non-zero if and only if A[k, i] = 1 and A[k, j] = 0 for some k. Conversely, the ijth
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element of A⊺(1−A) can be expressed

m∑
k=1

A[k, j]−A[k, i]A[k, j] =
m∑
k=1

A[k, j](1−A[k, i]).

This is non-zero if and only if A[k, i] = 0 and A[k, j] = 1 for some k. The ijth element of

(1−A)⊺A⊙A⊺(1−A) is non-zero if and only if each of the terms above are nonzero, which

in turn is equivalent to their existing two rows k, k′ such that

A[k, i] A[k, j]

A[k′, i] A[k′, j]

 =

1 0

0 1


which is equivalent to one of the restricted submatrices in item (ii) up to a relabeling of k

and k′.

(iv) ⇐⇒ (ii). For the forward direction, notice that if (iv) holds, then the matrix A can

clearly be reproduced uniquely from its row and column sums, so it is lonesum and thus (ii)

holds. We then want to show that (ii) =⇒ (iv). Consider the contrapositive. First, suppose

that there is some element A[i, j] such that A[i, j] = 1 but

ri(A) <
n∑

j′=1

1[cj′(A) ≥ cj(A)]. (3.9.3)

That is, the row sum of row i is less than the number of columns j′ with column sum larger

than column j. For this to be the case, there must be some column j′ such that A[i, j′] = 0

but cj′(A) ≥ cj(A).2 Because A[i, j′] = 0 we know that j ̸= j′.

Because A[i, j] = 1 but A[i, j′] = 0, for the column sum of j′ to be weakly larger than the

column sum of j, there must be some other row i′ ̸= i such that A[i′, j] = 0 but A[i′, j′] = 1.

This generates the restricted pattern which violates (ii) (up to a relabeling of columns j and

2There must be some column j′ that contributes to the right hand side of (3.9.3) but not to the row sum
on the left hand side.
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j′). A[i, j] A[i, j′]

A[i′, j] A[i′, j′]

 =

1 0

0 1

 .

Conversely, suppose that A[i, j] = 0 but

ri(A) ≥
n∑

j′=1

1[cj′(A) ≥ cj(A)] (3.9.4)

By similar logic as the previous case, this means that there must be some column j′ such

that A[i, j′] = 1 but cj′(A) < cj(A). Since column j does not contribute to the row sum on

the right hand side of (3.9.4) but does contribute to the column sum on the right hand side,

there must be some other column that does the opposite in order for (3.9.4) to hold.

Because A[i, j′] = 1 and A[i, j] = 0 but cj′(A) < cj(A), there must be some other row

i′ ̸= i such that A[i, j′] = 1 but A[i′, j′] = 0. As before, we can show that this generates the

restricted pattern which violates (ii) (up to a relabeling of columns j and j′).

(i) ⇐⇒ (ii). That (i) =⇒ (ii) is clear, since the existence of the restricted pattern is stable

under row and column permutations and the existence of such a restricted pattern prevents

a matrix from being lower triangular. To see that (ii) =⇒ (i), suppose that A is lonesum

and let Ã be the matrix generated by ordering the rows of A is increasing row-sum and the

colums of A in decreasing column sum. Now, notice that Ã must also be lonesum, since

if the restricted pattern appears in Ã it must also appear in A; we cannot generate the

restricted pattern using row and column permutations of a lonesum matrix. If Ã is lonesum,

then (iv) must hold, that is

Ã[i, j] = 1

[
ri(Ã) ≥

n∑
j′=1

1
[
cj′(Ã) ≥ cj(Ã)

] ]
. (3.9.5)

Since the columns of Ã are ordered in increasing column sum, we must have by (3.9.5)

that Ã[i, j] ≤ Ã[i, j′] for j′ > j. Similarly, since the rows are ordered in decreasing row
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sum, (3.9.5) implies that Ã[i, j] ≤ Ã[i′, j] for i′ < i. Together, these imply that Ã is lower

triangular.

3.9.2. Proofs of Results in Section 3.4

Proof of Theorem 3.4.1

We prove Theorem 3.4.1 via a series of implications:

(i) =⇒ (ii). If there is a response type s and a treatment t for which (ii) is not true, then

the sequence (
1[s[z

(t)
1 ] = t], . . . ,1[s[z

(t)
NZ

] = t]
)

is not increasing.

(ii) =⇒ (iii). If there is a 2× 2 matrix of R of the form

s s′ t t′ z

t′′ t z′

then we have 1[s[z] = t] > 1[s[z′] = t] while 1[s′[z] = t] < 1[s′[z′] = t], a violation of (ii). A

symmetric argument holds for the other restricted submatrix of R.

(iii) =⇒ (iv). First notice that (iv) is equivalent to the matrix U being lonesum by part

three of Lemma 3.9.1. Further notice that the matrix U is lonesum if and only if each Bt is

lonesum. Because there are no restricted submatrices of R of the form in (iii) there are no

submatrices of any Bt of the form either

1 0

0 1

 or

0 1

1 0

 .
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By part (ii) of Lemma 3.9.1, this is equivalent to each Bt being lonesum.

(iv) =⇒ (v). Item (iv) is equivalent to each Bt being lonesum. We seek to use the fourth

item of Lemma 3.9.1. With this in mind, define the functions

ζ(z, t) ≡ row sum of the zth row of the matrix Bt

φ(s, t) ≡ # of columns of Bt with a larger column sum than that of its sth column.

Because S is implicitly a function of unobserved confounders V , we can also write φ(·, t) as

a function of V . By the definition of Bt = 1[R = t] and the fourth item of Lemma 3.9.1, we

can then write

1[T = t] = 1[ζ(Z, t) ≥ φ(V , t)].

By the first item of Lemma 3.9.1, there is a reordering of the rows and columns of Bt such

that Bt is lower triangular. Let z
(t)
1 denote the instrument associated with the “top” row of

this matrix, z
(t)
2 denote the second row of this matrix, and so on till z

(t)
NZ

.

Then, the function ζ satisfies ζ(z
(t)
k+1, t) ≥ ζ(z

(t)
k , t) for k = 1, ..., NZ − 1, by definition of the

sequence (z
(t)
1 , . . . , z

(t)
NZ

); weakly more response types must be taking up treatment t for each

successive value of this sequence.

(v) =⇒ (i). Since ζ(z
(t)
k+1, t) > ζ(z

(t)
k , t) for k = 1, ..., NZ − 1, if (v) holds we must have that

(1[Ti(z
(t)
1 ) = t], . . . ,1[Ti(z

(t)
NZ

) = t])

is a weakly increasing sequence in {0, 1} for all i ∈ I.

Proof of Theorem 3.4.2

We prove Theorem 3.4.2 via a series of implications:

(i) =⇒ (ii). Take any strict ordering on T . Suppose there is a violation of (ii) for some
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i ∈ I. Then for that particular i ∈ I the sequence

(Ti(z1), . . . , Ti(zNZ
))

is not increasing with respect to the ordering on T . If there is no such ordering satisfying

(ii), then (i) cannot be satisfied.

(ii) =⇒ (iii). Suppose there is a 2× 2 submatrix of R of the form:

s s′ t t′ z

t′′ t′′′ z′

for some t′′ > t and t′′′ < t′. This means that s[z′] > s[z] while s′[z] > s′[z′]. These two

statememnts cannot both be true under (ii). A symmetric argument applies for the other

2× 2 restricted submatrix.

(iii) =⇒ (iv). Notice that by part 3 of Lemma 3.9.1 that (iv) is equivalent to O being

lonesum. Suppose that O = [B∗
t1
, . . . ,B∗

tNT
] is not lonesum. That is, by the lonesum

characterization (3.9.1) there is a 2× 2 submatrix of O of the form

s s̃ 1 0 z

0 1 z′

or

s s̃ 0 1 z

1 0 z′

.

WLOG suppose there is a 2 × 2 submatrix of O of the first form. This indicates that for

some t ∈ T , the instrumental switch from z to z′ induces agents of response type s to switch

from a treatment weakly below t to a treatment strictly greater than t. That is s[z] < s[z′].

Conversely, for some treatment t′ ∈ T the instrumental switch from z to z′ induces agents of

265



response s̃ to switch from a treatment strictly greater than t′ to a treatment weakly lower

than t′. That is s̃[z] < s̃[z′].

These two statements are incompatible with each other, so we cannot have that s = s̃. Leting

t = s[z], t′ = s̃[z], t′′ = s[z′], and t′′′ = s̃[z′], this implies a 2× 2 submatrix of R of the form

s s̃ t t′ z

t′′ t′′′ z′

with t < t′′ and t′ > t′′′. This is a violation of (iii). Similarly, considering 2× 2 submatrices

of O of the second form, we can find a violation of the other pattern restricted by (iii).

(iv) =⇒ (v). Item (iv) is equivalent to O being lonesum. This in turn implies that

B∗
t = 1[R ≥ t] is lonesum for each t ∈ T . With this in mind, define the functions

ζ(z, t) ≡ row sum of the zth row of the matrix B∗
t

φ(s, t) ≡ # of columns of B∗
t with a larger column sum than that of its sth column.

By the first item of Lemma 3.9.1, there is a reordering of the rows and columns of O such

that O is lower triangular. Let z
(t)
1 denote the instrument associated with the “top” row of

this matrix, z
(t)
2 denote the second row of this matrix, and so on till z

(t)
NZ

.

Because S is implicity a function of unobserved confounders V , we can also write φ(·, t) as a

function of V . By the definition of B∗
t = 1[R ≥ t] and the fourth item of Lemma 3.9.1, we

can then write

1[T ≥ t] = 1[ζ(Z, t) ≥ φ(V , t)]

for each t. Moreover, by definition of the sequence (z1, . . . , zNZ
) we know that, for each

treatment t ∈ T , weakly more response types take up treatments larger than t as the

266



instrument cycles through the sequence (z1, . . . , zNZ
). By definition of the ζ(·, ·) function

then, ζ(zk+1, t) > ζ(zk, t) for k = 1, . . . , NZ − 1 and all t.

(v) =⇒ (i). Since ζ(zk+1, t) > ζ(zk, t) for k = 1, . . . , NZ − 1 and all t, if holds (v) we must

have that, for all t

(1[Ti(z1) ≥ t], . . . ,1[Ti(zNZ
) ≥ t])

is a weakly increasing sequence in {0, 1} for all i ∈ I. This implies that

(Ti(z1), . . . , Ti(zNZ
))

must be a weakly increasing sequence with respect to the ordering on T for all i ∈ I.

3.9.3. Proofs of Results in Section 3.5

Proof of Theorem 3.5.1

We show a system of implications.

(i) ⇐⇒ (ii). This is provided by Lemma 3.5.1.

(ii) ⇐⇒ (iv). This follows from the discussion in Section 3.10, namely the decomposition of

βz,z′ in equation (3.10.6), and the definition of an interpretable causal parameter in (3.5.3).

The decomposition of βz,z′ gives the forward direction. The definition of an interpretable

causal parameter gives the backwards direction: if there is a negative weight there must be a

pair of treatments t, t′ such that some agents that are switching from t to t′ as the instrument

ranges from z to z′ whereas that same instrumental switch moves other agents from t′ to t.

(iii) =⇒ (ii). We consider the contrapositive. Suppose there is no binary matrix B

element-wise less than or equal to
∑

t′′ ̸=t,t′ Bt′′ such that Bt +B is lonesum. This means
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that Bt is lonesum, so that by Theorem 3.4.1 there is a 2× 2 submatrix R of either the form

 t t′′′

t′′ t

 or

t′′ t

t t′′′

 ,

for some t′′, t′′′ ̸= t. If either t′′ ≠ t′ or t′′′ ̸= t′, then we can find a binary matrix that is

element wise less than
∑

t′′ ̸=t,t′ Bt′′′ to “fill in the gap” and get rid of the restricted pattern.

In particular we can take B̃ to be the matrix that is equal to one at the position of either

t′′ or t′′′ and zero everywhere else. If there is no such matrix that eliminates the restricted

pattern then both t′′ = t′ and t′′′ = t′. So we have the restricted pattern (3.5.2) in R.

(ii) ⇐⇒ (iii). The ijth element of B⊺tBt′ is given

NZ∑
z=z1

1[si[z] = t]1[sj[z] = t′],

this is nonzero if and only if we have si[z] = t and sj[z] = t′ for some instrument value z.

Similarly, the ijth element of (B⊺tBt′)
⊺ = B⊺t′Bt is given

NZ∑
z=z1

1[si[z] = t′]1[sj[z] = t].

This is non-zero if and only if we have si[z
′] = t′ and sj[z

′] = t for some insrument value z′.

Then, the ijth element of the Hadamard product (B⊺tBt′)⊙ (B⊺tBt′)
⊺ is non-zero if and only

if the ijth elements of both (B⊺tBt′) and (B⊺tBt′)
⊺ are non-zero. By the characterizations

above and because each response type is a well defined function, this is equivalent to

si[z] = t, si[z
′] = t′ but sj[z] = t′, sj[z

′] = t for some z′ ̸= z. This is equivalent to the

restricted pattern (3.5.2) existing between si and sj for instrument values z, z′ and the

specific treatment values t and t′.

All elements of (B⊺tBt′) ⊙ (B⊺tBt′)
⊺ being equal to zero is then equivalent to their being
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no restricted patterns (3.5.2) between the specific treatment values t and t′ in the response

matrix R.

Because each (B⊺tBt′)⊙ (B⊺tBt′)
⊺ has weakly positive entries, checking whether

ι⊺

 ∑
(t,t′)∈C2(T )

(B⊺tBt′)⊙ (B⊺tBt′)
⊺

 ι = 0

is equivalent to checking whether each (B⊺tBt′)⊙ (B⊺tBt′)
⊺ is equal to the zero matrix. By

the discussion above, this is equivalent to checking whether there are no matrices of the form

(3.5.2) for any t, t′ ∈ T .

Proof of Theorem 3.5.2

Let ΨU(t) =
(
(1̃ −Bt)

⊺Bt

)
⊙
(
(1 −Bt)

⊺Bt

)⊺
, where 1̃ is a NZ × NS matrix of element

ones. Using this notation, we can rewrite the UM verification in Item (iv) of Theorem 3.4.1

as the following sum:

∥ΨU∥ = ∥
(
(1−U)⊺U

)
⊙
(
(1−U )⊺U

)⊺∥
= ∥

∑
t∈T

(
(1̃−Bt)

⊺Bt

)
⊙
(
(1̃−Bt)

⊺Bt

)⊺∥
=
∑
t∈T

∥
(
(1̃−Bt)

⊺Bt

)
⊙
(
(1̃−Bt)

⊺Bt

)⊺∥
=
∑
t∈T

∥ΨU (t)∥

The first equality is from the definition of the verification in Theorem 3.4.1. The second

equality arises from the construction of matrix U . The third equality is due to the fact that

all elements of ΨU (t) are either zero or a natural number.

We can use the fact that
∑

t∈T Bt = 1̃ to express matrix ΨU (t) as:

ΨU (t) =
(
(1̃−Bt)

⊺Bt

)
⊙
(
(1̃−Bt)

⊺Bt

)⊺
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=



∑
t′∈T

Bt′

−Bt


⊺

Bt

 ⊙



∑
t′∈T

Bt′

−Bt


⊺

Bt


⊺

=


 ∑
t′∈T \{t}

Bt′

⊺Bt

 ⊙


 ∑
t′∈T \{t}

Bt′

⊺Bt


⊺

=

 ∑
t′∈T \{t}

B⊺t′Bt

 ⊙

 ∑
t′∈T \{t}

B⊺t′Bt

⊺

=

 ∑
t′∈T \{t}

B⊺t′Bt

 ⊙

 ∑
t′∈T \{t}

B⊺tBt′


=

∑
t′∈T \{t}

(
B⊺t′Bt

)
⊙
(
B⊺t′Bt

)⊺
+ 2

∑
t′,t′′∈T \{t}

(
B⊺t′Bt

)
⊙
(
B⊺tBt′′

)⊺
=

∑
t′∈T \{t}

Ψ(t′, t, t, t′) + 2
∑

t′,t′′∈T \{t}

Ψ(t′, t, t, t′′)

The derivation above use simple rules of matrix algebra and the formula for the product of

sums. We use the fact that Ψ(t′, t, t, t′′)⊺ = Ψ(t, t′, t′′, t) and express the transpose of ΨU (t)

as:

ΨU (t)
⊺ =

∑
t′∈T \{t}

Ψ(t, t′, t′, t) + 2
∑

(t′,t′′)∈C2(T \{t})

Ψ(t, t′, t′′, t) (3.9.6)

Recall that the elements of matrix Ψ(t, t′, t′′, t′′′) are either zero or natural numbers. Thus,

equation (3.9.6) implies that ∥ΨU (t)∥ = 0 (or equivalently ∥ΨU (t)
⊺∥ = 0) if and only if:

∥Ψ(t, t′, t′, t)∥ = 0 for all t′ ∈ T \ {t} (3.9.7)

and ∥Ψ(t, t′, t′′, t)∥ = 0 for all combinations of t′, t′′ ∈ T \ {t}. (3.9.8)

Now ∥ΨU∥ = 0 only and only if ∥ΨU (t)∥ = 0 for all t ∈ T , which completes the proof.
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3.9.4. Proof of Theorem 3.5.3

Lemmas

Proof of Lemma 3.5.1. Suppose there is a violation of MM (3.5.1). This is equivalent to

there being pair of response types s, s′, a pair of treatments z, z′, and a pair of treatments

t, t′ such that

1[s[z] = t]1[s′[z′] = t′] > 1[s[z] = t′]1[s′[z′] = t]

and 1[s′[z] = t]1[s[z′] = t′] < 1[s′[z] = t′]1[s[z′] = t].

This is in turn equivalent to s[z] = t, s[z′] = t′ and s′[z] = t′, s′[z′] = t, which is equivalent

(up to a relabeling of s and s′) to the restricted pattern (3.5.2) appearing in the response

matrix R.

Proof of Lemma 3.5.2. Follows from Theorems 3.5.2 and 3.5.3. That MM holds when

OM and UM fail can be seen via examples in Section 3.7.

3.9.5. Proof of Results in Section 3.6

Proof of Theorem 3.6.1

Consider any pair of instrument values z, z′ ∈ Z and any pair of treatments t, t′ ∈ T . Without

loss of generality, it is enough show there are no 2× 2 submatrices of the form

s s′ t t′ z

t′ t z′

.

Define ∆t ≡ L[z′, t] − L[z, t] and ∆t′ ≡ L[z′, t′] − L[z, t′]. There are two scenarios. Either

∆t ≤ ∆t′ or ∆t ≥ ∆t′ . In each case, we have the following behavioral restrictions from the
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Choice Rule (3.6.2).

If ∆t ≤ ∆t′ then Ti(z) = t′ =⇒ Ti(z
′) ̸= t

If ∆t′ ≤ ∆t then Ti(z) = t =⇒ Ti(z
′) ̸= t′

The first restriction would eliminate the response type s′ from the matrix R while the second

restriction would eliminate the response type s from the response matrix R. In either case,

we cannot have the restricted 2× 2 submatrix displayed at the top of the proof.

3.10. Appendix: 2SLS Analysis

3.10.1. Interpretation of 2SLS under Ordered and Unordered Monotonicity

Under ordered monotonicity and a binary instruments, Angrist and Imbens (1995) show that

the 2SLS estimand identifies the following:

β2SLS =
E[Y | Z = z1]− E[Y | Z = z0]

E[T | Z = z1]− E[T | Z = z0]
(3.10.1)

=

NT∑
j=1

ωtj ,tj−1
E[Y (tj)− Y (tj−1) | S ∈ Stj ,tj−1

]

where Stj ,tj−1
≡ {s ∈ S; s[z1] ≥ tj > s[z0]}, that is the sets of response types for whom a

change in instrument receipt from z0 to z1 induces a change in treatment from strictly “below”

tj to weakly “above” tj. The weights ωtj ,tj−1
are positive and given:

ωtj ,tj−1
=

Pr(S ∈ Stj ,tj−1
)∑NT

j=1 Pr(S ∈ Stj ,tj−1
)
. (3.10.2)

Unordered monotonicity also allows 2SLS type estimands to be expressed in terms of a

weighted average of LATE parameters with positive weights.1 In this setting the 2SLS

1In addition, Buchinsky and Pinto (2021) show that any variation in the instrumental variable can be
used to identify a meaningful counterfactual outcome mean. For instance, the 2SLS estimate that uses a
choice indicator for t and any IV-values z, z′ ∈ Z, such that P (T = t|Z = z) > (T = t′|Z = z), identifies the
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numerator can be decomposed

βu2SLS(z, z
′) = E[Y | Z = z]− E[Y | Z = z′]

=
∑

{t,t′},t̸=t′
ωut,t′E[Y (t)− Y (t′) | S ∈ St,t′(z, z′)]

(3.10.3)

where St,t′(z, z′) ≡ {s : s[z] = t, s[z′] = t′} is the set of response types that switch treatments

from t to t′ as the instrument varies from z to z′. Under unordered monotonicity, the same

instrument switch cannot induce some agents to switch towards choice t while inducing others

to switch away from choice t. So, we must have either St,t′(z, z′) = ∅ or St′,t(z, z′) = ∅ (or

both). The weights ωut,t′ are weakly positive and given ωut,t′ = Pr(S ∈ St,t′).

3.10.2. General Unique Decomposition

Using the identification equality in (3.3.9) we can rewrite

E[Y | Z = z] =
∑

s∈supp(S)

∑
t∈T

1[s[z] = t]E[Y (t) | S = s]Pr(S = s)

E[Y | Z = z′] =
∑

s∈supp(S)

∑
t∈T

1[s[z′] = t]E[Y (t) | S = s]Pr(S = s)

Using these, we can express the quasi-2SLS estimand as the following

βz,z′ ≡ E[Y | Z = z]− E[Y | Z = z′] (3.10.4)

=
∑

s∈supp(S)

∑
t∈T

(
1[s[z] = t]− 1[s[z′] = t]

)
E[Y (t) | S = s]Pr(S = s) (3.10.5)

=
∑

{t,t′},t ̸=t′
E[Y (t)− Y (t′) | S ∈ St,t′(z, z′)]Pr(S ∈ St,t′(z, z′)), (3.10.6)

following parameter:

βt
2SLS(z, z

′) =
E[Y 1[T = t] | Z = z]− E[Y 1[T = t] | Z = z′]

Pr(T = t | Z = z)− Pr(T = t | Z = z′)
= E(Y (t)|S ∈ St

z,z′),

where St
z,z′ = {s : s[z] = t, s[z′] ̸= t} is the set of response types that switch from treatment choice t to any

other treatment choice as the instrument varies from z to z′.
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where the last equality is due to the fact that sets St,t′(z, z′), defined below (3.10.3), form a

partition of supp(S) as t, t′ ranges in T . Equation (3.10.6) holds regardless of any monotonicity

assumption. That is, no matter what the restriction is on the support of S, we will always

be able to rewrite the 2SLS numerator as in (3.10.6).

In view of Lemma 3.5.1, a violation of MM is equivalent to there being a pair of treatments

t, t′ such that the sets St,t′(z, z′) and St′,t(z, z′) are both nonempty. This induces negative

weights in the 2SLS estimand; both E[Y (t)−Y (t′) | St,t′(z, z′)] and E[Y (t′)−Y (t) | St′,t(z, z′)]

are represented in the decomposition (3.10.6). This in turn limits our ability to use the

2SLS estimand to gain useful insight into the direction of causal effects. The partial minimal

monotonicity criterion is then crucial for interpreting βz,z′ as a type of interpretable causal

parameter defined in (3.5.3).

3.11. Appendix: Ordered vs. Unordered Example

We consider a setup with three treatments, T = {t1, t2, t3}, and three instruments, Z =

{z1, z2, z3}. Response matrices (3.11.1)–(3.11.2) below are useful to understand the difference

between ordered and unordered monotonicity conditions:

R1 =

Ordered but NOT Unordered︷ ︸︸ ︷
s1 s2 s3 s4 s5 s6t1 t2 t3 t1 t1 t2
t1 t2 t3 t2 t3 t2
t1 t2 t3 t3 t3 t3︸ ︷︷ ︸

Ordered AND Unordered

s7 t1
t1
t2

z1
z2
z3

(3.11.1)

R2 =

︷ ︸︸ ︷
s1 s2 s3 s4 s5 s6[t1 t2 t3 t1 t1 t2
t1 t2 t3 t2 t3 t2
t1 t2 t3 t3 t3 t3

s∗7 t1
t2
t1︸ ︷︷ ︸

Unordered but NOT Ordered

z1
z2
z3

(3.11.2)
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Columns s1, ..., s7 of response matrix R1 (3.11.1) denote response-types. Each column

describes the sequence of counterfactual choices, (Ti(z1), Ti(z2), Ti(z3)), for an agent in that

column’s response type. The counterfactual treatment in each of these sequences is weakly

increasing with respect to the ordering t1 ≤ t2 ≤ t3; for any agent i ∈ I, Ti(z1) ≤ Ti(z2) ≤

Ti(z3). Thus OM-Sequence (3.4.3) holds.

However, response types s6, s7 in R1 violate the sequential representation of unordered

monotonicity in (3.4.4) for choice t2. Consider two agents i, i′ ∈ I such that Si = s6 and

Si′ = s7. The sequence of t2-indicators for agent i is weakly decreasing while the sequence for

agent i′ is weakly increasing

(
1[Ti(z1) = t2],1[Ti(z2) = t2],1[Ti(z3) = t2]

)
= (1, 1, 0)(

1[Ti′(z1) = t2],1[Ti′(z2) = t2],1[Ti′(z3) = t]
)
= (0, 0, 1).

This represents a violation of UM-Sequence (3.4.4) for the sequencing of Z, (z1, z2, z3).

Moreover, because the switch from z2 to z3 induces agent i to move strictly away from

treatment choice t2 while moving agent i′ strictly towards treatment choice t2, there is no

other sequencing of Z that would satisfy the requirement of UM Sequence (3.4.4). We can

conclude that the response matrix R1 does not satisfy unordered monotonicity.

Response matrix R2 (3.11.2) replaces s7 in R1 with s∗7. The treatment indexes in s∗7 are not

weakly increasing with respect to the ordering t1 ≤ t2 ≤ t3. Thus the ordered monotonicity

that held for R1 does not hold for R2. Indeed, the reader can confirm that there is no ordering

T that satisfies OM-Sequence (3.4.3). In this case, though, the response matrix R2 satisfies

unordered monotonicity. Equations (3.11.3)–(3.11.5) are instructive in establishing this fact.
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Reordered rows of R2 for t1 =

s1 s2 s3 s4 s5 s6 s∗7 t1 t2 t3 t2 t3 t2 t2
t1 t2 t3 t3 t3 t3 t1
t1 t2 t3 t1 t1 t2 t1

z2
z3
z1

, (3.11.3)

Reordered rows of R2 for t2 =

s1 s2 s3 s4 s5 s6 s∗7 t1 t2 t3 t3 t3 t3 t1
t1 t2 t3 t1 t1 t2 t1
t1 t2 t3 t2 t3 t2 t2

z3
z1
z2

, (3.11.4)

Reordered rows of R2 for t3 =

s1 s2 s3 s4 s5 s6 s∗7 t1 t2 t3 t1 t1 t2 t1
t1 t2 t3 t2 t3 t2 t2
t1 t2 t3 t3 t3 t3 t1

z1
z2
z3

. (3.11.5)

Equation (3.11.3) reorders the rows of R2 in (3.11.2) from (z1, z2, z3) to (z2, z3, z1). At each

move along the sequence (z2, z3, z1), additional response types switch to treatment t1 and no

response types switch away from t1. This means that

1[Ti(z2) = t1] ≤ 1[Ti(z3) = t1] ≤ 1[Ti(z1) = t1]

holds for all agents i ∈ I, regardless of response type. Thus UM Sequence (3.4.4) holds for

t1. By symmetric logic, equation (3.11.4) demonstrates that UM Sequence (3.4.4) holds for

t2 using the IV sequence (z3, z1, z2) and equation (3.11.5) shows that UM Sequence holds for

t3 using sequence (z1, z2, z3). We conclude that unordered monotonicity holds.

Response matrices R1 and R2 in (3.11.1)–(3.11.2) show that ordered monotonicity does not

imply unordered monotonicity nor vice-versa. Ordered monotoncity holds for R1 but not

for R2 while unordered monotonicity holds for R2 but not for R1. The two monotonicity

conditions can intersect, both ordered and unordered monotonicity hold for the submatrix

generated by response-types s1 to s6.
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3.12. Appendix: Additional Information Regarding the

Examples of Section 3.7

3.12.1. Verifying Unordered Monotonicity

We seek to show that the response matrix 3.7.2 is a case of UM (3.4.4) using the verification

matrix of item (iv) of Theorem 3.4.1. The matrix is presented below for convenience.

R =

s1 s2 s3 s4 s5 s6 s7


t1 t1 t1 t1 t2 t2 t3
t1 t1 t3 t3 t2 t3 t3
t1 t2 t2 t3 t2 t2 t3
t1 t1 t1 t1 t2 t2 t3

z1
z2
z3
z4

Let Bt = 1[R = t]; t ∈ {t1, t2, t3} denote the binary matrices corresponding to response

matrix (3.7.2). Those are displayed below:

Bt1 =

s1 s2 s3 s4 s5 s6 s7


1 1 1 1 0 0 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0
1 1 1 1 0 0 0

z1
z2
z3
z4

Bt2 =

s1 s2 s3 s4 s5 s6 s7


0 0 0 0 1 1 0
0 0 0 0 1 0 0
0 1 1 0 1 1 0
0 0 0 0 1 1 0

z1
z2
z3
z4

Bt3 =

s1 s2 s3 s4 s5 s6 s7


0 0 0 0 0 0 1
0 0 1 1 0 1 1
0 0 0 1 0 0 1
0 0 0 0 0 0 1

z1
z2
z3
z4

Unordered monotonicity holds if and only if the binary matricesBt1 ,Bt2 ,Bt3 are lonesum. For

item (iv) of Theorem 3.4.1 to hold, it suffices to show that ∥ΨU (t)∥ = 0 for all t ∈ {t1, t2, t3}

where ΨU(t) is given by ΨU(t) ≡
(
(1−Bt)

⊺Bt

)
⊙
(
(1−Bt)

⊺Bt

)⊺
. It is useful to express

ΨU (t1) as ΨU (t) = Ψ̃U (t) ⊙ Ψ̃U (t)
⊺ where Ψ̃U (t) =

(
(1−Bt)

⊺Bt

)
.
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The matrices Ψ̃U (t1), Ψ̃U (t2), Ψ̃U (t3) are computed below:

Note that ∥ΨU (t)∥ = 0 if Ψ̃U (t) is a triangular matrix with a zero diagonal. Thus it suffices

to evaluate matrix Ψ̃U (t) for t ∈ {t1, t2, t3}.

Ψ̃U (t1) =




0 0 0 0 1 1 1
0 0 1 1 1 1 1
0 1 1 1 1 1 1
0 0 0 0 1 1 1

⊺

︸ ︷︷ ︸
(1−Bt1

)⊺




1 1 1 1 0 0 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0
1 1 1 1 0 0 0

︸ ︷︷ ︸
Bt1

=





0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 1 0 0 0 0 0
2 1 0 0 0 0 0
4 3 2 2 0 0 0
4 3 2 2 0 0 0
4 3 2 2 0 0 0

Ψ̃U (t2) =




1 1 1 1 0 0 1
1 1 1 1 0 1 1
1 0 0 1 0 0 1
1 1 1 1 0 0 1

⊺

︸ ︷︷ ︸
(1−Bt2

)⊺




0 0 0 0 1 1 0
0 0 0 0 1 0 0
0 1 1 0 1 1 0
0 0 0 0 1 1 0

︸ ︷︷ ︸
Bt2

=





0 1 1 0 4 3 0
0 0 0 0 3 2 0
0 0 0 0 3 2 0
0 1 1 0 4 3 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 1 1 0 4 3 0

Ψ̃U (t3) =




1 1 1 1 1 1 0
1 1 0 0 1 0 0
1 1 1 0 1 1 0
1 1 1 1 1 1 0

⊺

︸ ︷︷ ︸
(1−Bt3

)⊺




0 0 0 0 0 0 1
0 0 1 1 0 1 1
0 0 0 1 0 0 1
0 0 0 0 0 0 1

︸ ︷︷ ︸
Bt3

=





0 0 1 2 0 1 4
0 0 1 2 0 1 4
0 0 0 1 0 0 3
0 0 0 0 0 0 2
0 0 1 2 0 1 4
0 0 0 1 0 0 3
0 0 0 0 0 0 0

It is easy to see that in Ψ̃U(t1) ⊙ Ψ̃U(t1)
⊺ is equal to a matrix of zeros. Indeed, the

matrix Ψ̃U (t1) is triangular with a zero diagonal. Thus, when we perform the element wise

multiplication of Ψ̃U (t1) and its transpose, at least one of the elements of the multiplication

will be zero. The same occurs for matrices Ψ̃U (t2) and Ψ̃U (t3).

3.12.2. A Case of Choice Incentives for Ordered Monotonicity

The can summarize the above incentive structure the binary incentive matrix given below:
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L =

t1 t2 t3


1 0 0
0 0 0
1 1 1
0 0 1

z1
z2
z3
z4

(3.12.1)

We use this first example to describe the machinery that translates choice incentives into

monotonicity conditions and identification results. We adopt a more parsimonious approach

in the subsequent examples.

Choice rule (3.6.2) converts the Incentive Matrix (3.12.1) into choice restrictions that deter-

mine the model response matrix R. These choice restrictions are displayed in Table 3.12.1.

Choice restrictions in Table 3.12.1 are in turn used to eliminate the response-types that are

not economically justifiable.

Each counterfactual choice T (z) of the response vector S = [T (z1), T (z2), T (z3), T (z4)]
′ takes

up to three values in {t1, t2, t3}. Thus, there are 34 = 81 potential response types. The

combination of all choice restrictions of Table 3.12.1 eliminate a total of 74 out of the

81 potential response-types. Response matrix R in (3.12.2) displays the resulting seven

response-types that survive the elimination process.

R =

s1 s2 s3 s4 s5 s6 s7 s8


t1 t1 t1 t1 t1 t2 t2 t3
t1 t1 t2 t2 t3 t2 t2 t3
t1 t1 t2 t2 t3 t2 t2 t3
t1 t3 t2 t3 t3 t2 t1 t3

z1
z2
z3
z4

(3.12.2)

We use equations (3.3.12)–(3.3.13) to evaluate the causal parameters identified by response

matrix (3.7.3). The response-matrix (3.7.3) enables the identification of eight response-type

probabilities:
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Table 3.12.1: Choice Restrictions generated by Incentive Matrix (3.12.1)

1 Ti(z1) = t1 ⇒ ∅
2 Ti(z2) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z3) /∈ {t2, t3} and Ti(z4) ̸= t2
3 Ti(z3) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z2) /∈ {t2, t3} and Ti(z4) ̸= t2
4 Ti(z4) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z2) /∈ {t2, t3} and Ti(z3) /∈ {t2, t3}

5 Ti(z1) = t2 ⇒ Ti(z2) /∈ {t1, t3} and Ti(z3) /∈ {t1, t3} and Ti(z4) ̸= t1
6 Ti(z2) = t2 ⇒ Ti(z1) ̸= t3 and Ti(z3) /∈ {t1, t3} and Ti(z4) ̸= t1
7 Ti(z3) = t2 ⇒ Ti(z1) ̸= t3 and Ti(z2) /∈ {t1, t3} and Ti(z4) ̸= t1
8 Ti(z4) = t2 ⇒ Ti(z1) ̸= t3 and Ti(z2) /∈ {t1, t3} and Ti(z3) /∈ {t1, t3}

9 Ti(z1) = t3 ⇒ Ti(z2) /∈ {t1, t2} and Ti(z3) /∈ {t1, t2} and Ti(z4) /∈ {t1, t2}
10 Ti(z2) = t3 ⇒ Ti(z1) ̸= t2 and Ti(z3) /∈ {t1, t2} and Ti(z4) /∈ {t1, t2}
11 Ti(z3) = t3 ⇒ Ti(z1) ̸= t2 and Ti(z2) /∈ {t1, t2} and Ti(z4) /∈ {t1, t2}
12 Ti(z4) = t3 ⇒ ∅

This table presents all the choice restrictions generated by applying the choice rule (3.6.2) to each of the combination of choices
(t, t′) ∈ {t1, t2, t3} and instrumental values (z, z′) ∈ {z1, z2, z3, z4} of the incentive matrix (3.12.1).

Point Identified P (S = s1), P (S = s2), P (S = s5), P (S = s8).

Partially Identified P (S ∈ {s3, s4}), P (S ∈ {s3, s6}), P (S ∈ {s4, s7}), P (S ∈ {s6, s7}).

as well as the following counterfactual outcomes.

Always-takers E(Y (t1)|S = s1) - E(Y (t3)|S = s8)

Switchers E(Y (t1)|S = s2) - E(Y (t3)|S = s5)

Partially Identified E(Y (t1)|S ∈ {s3, s4, s5}) E(Y (t2)|S ∈ {s4, s7}) E(Y (t3)|S ∈ {s2, s4, s7})

E(Y (t2)|S ∈ {s6, s7})

E(Y (t2)|S ∈ {s3, s6})

E(Y (t2)|S ∈ {s3, s4})

The identification results above state that only four out of nine response-type probabilities

are point-identified. Most of the counterfactual outcomes are partially identified. Only four

counterfactual outcome means are point-identified, none of these for choice t2. In contrast,

the unordered response matrix (3.7.2) secures the point-identification of all response-type

probabilities and most of the counterfactual outcome means.
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3.12.3. MM under the Double Randomization Design

We consider the emergence of MM in a “Double Randomization” design in which two vouchers

are randomly assigned to the same sample of prospective students. The first voucher offers a

tuition discount that applies to a natural science major. The second one applies to social

science majors. We can divide the students into four groups:

1. Group z1 does not receive any voucher.

2. Group z2 receives only the social sciences voucher (t3).

3. Group z3 receives only the natural sciences voucher (t2).

4. Group z4 receives both the social sciences and natural sciences voucher.

Assuming the social sciences and natural sciences vouchers are of the same amount and that

students cannot double major (so that they can only apply one voucher at a time), the IV

design described above can be summarized by the incentive matrix in (3.12.3).

L =

t1 t2 t3


0 0 0
0 0 1
0 1 0
0 1 1

z1
z2
z3
z4

(3.12.3)

Applying the Choice Rule (3.6.2) from above generates the choice restrictions of Table 3.12.2.
These in turn generate the response matrix R in (3.12.4).

R =

s1 s2 s3 s4 s5 s6 s7 s8 s9


t1 t1 t1 t1 t1 t2 t2 t3 t3 z1
t1 t1 t3 t3 t3 t2 t3 t3 t3 z2
t1 t2 t1 t2 t2 t2 t2 t2 t3 z3
t1 t2 t3 t2 t3 t2 t2 t3 t3 z4

(3.12.4)
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Table 3.12.2: Choice Restrictions generated by Incentive Matrix (3.7.4)

1 Ti(z1) = t1 ⇒ Ti(z2) ̸= t2 and Ti(z3) ̸= t3
2 Ti(z2) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z3) ̸= t3 and Ti(z4) ̸= t3
3 Ti(z3) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z2) ̸= t2 and Ti(z4) ̸= t2
4 Ti(z4) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z2) /∈ {t2, t3} and Ti(z3) /∈ {t2, t3}

5 Ti(z1) = t2 ⇒ Ti(z2) ̸= t1 and Ti(z3) /∈ {t1, t3} and Ti(z4) /∈ {t1, t3}
6 Ti(z2) = t2 ⇒ Ti(z1) /∈ {t1, t3} and Ti(z3) /∈ {t1, t3} and Ti(z4) /∈ {t1, t3}
7 Ti(z3) = t2 ⇒ Ti(z4) ̸= t1
8 Ti(z4) = t2 ⇒ Ti(z1) ̸= t3 and Ti(z3) /∈ {t1, t3}

9 Ti(z1) = t3 ⇒ Ti(z2) /∈ {t1, t2} and Ti(z3) ̸= t1 and Ti(z4) /∈ {t1, t2}
10 Ti(z2) = t3 ⇒ Ti(z4) ̸= t1
11 Ti(z3) = t3 ⇒ Ti(z1) /∈ {t1, t2} and Ti(z2) /∈ {t1, t2} and Ti(z4) /∈ {t1, t2}
12 Ti(z4) = t3 ⇒ Ti(z1) ̸= t2 and Ti(z2) /∈ {t1, t2}

This table presents all the choice restrictions generated by applying the choice rule (3.6.2) to each of the combination of choices
(t, t′) ∈ {t1, t2, t3} and instrumental values (z, z′) ∈ {z1, z2, z3, z4} of the incentive matrix (3.7.4).

Applying equations (3.3.12)–(3.3.13) to response-matrix (3.12.4) gives that all response-type

probabilities are identified, P (S = sj); j = 1, ..., 9, as well as the following counterfactual

outcomes:

Always-takers E(Y (t0)|S = s1) E(Y (t1)|S = s6) E(Y (t2)|S = s9)

Switchers E(Y (t0)|S = s2) E(Y (t1)|S = s7) E(Y (t2)|S = s8)

E(Y (t0)|S = s3)

Partially Identified E(Y (t0)|S ∈ {s4, s5}) E(Y (t1)|S ∈ {s2, s4}) E(Y (t2)|S ∈ {s3, s5})

E(Y (t1)|S ∈ {s5, s8}) E(Y (t2)|S ∈ {s4, s7})

3.12.4. MM under the Extensive Margin Compliers Only (EMCO) Design

We revisit the incentive design described in (3.7.5), presented again in L (3.12.5) below
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L =

t0 t1 t2


0 0 0
1 0 0
0 1 1
1 1 1

z1
z2
z3
z4

(3.12.5)

Applying the Choice Rule (3.6.2) to the incentive design summarized in (3.12.5) we generate

the following choice restrictions. These choice restrictions will in turn be used to eliminate

response types, i.e restrict supp(S).

Table 3.12.3: Choice Restrictions generated by Incentive Matrix (3.12.5)

1 Ti(z1) = t1 ⇒ Ti(z2) /∈ {t2, t3} and Ti(z4) /∈ {t2, t3}
2 Ti(z2) = t1 ⇒ ∅
3 Ti(z3) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z2) /∈ {t2, t3} and Ti(z4) /∈ {t2, t3}
4 Ti(z4) = t1 ⇒ Ti(z1) /∈ {t2, t3} and Ti(z2) /∈ {t2, t3}

5 Ti(z1) = t2 ⇒ Ti(z2) ̸= t3 and Ti(z3) /∈ {t1, t3} and Ti(z4) /∈ {t1, t3}
6 Ti(z2) = t2 ⇒ Ti(z1) /∈ {t1, t3} and Ti(z3) /∈ {t1, t3} and Ti(z4) /∈ {t1, t3}
7 Ti(z3) = t2 ⇒ Ti(z1) ̸= t3 and Ti(z2) ̸= t3 and Ti(z4) ̸= t3
8 Ti(z4) = t2 ⇒ Ti(z1) /∈ {t1, t3} and Ti(z2) ̸= t3 and Ti(z3) /∈ {t1, t3}

9 Ti(z1) = t3 ⇒ Ti(z2) ̸= t2 and Ti(z3) /∈ {t1, t2} and Ti(z4) /∈ {t1, t2}
10 Ti(z2) = t3 ⇒ Ti(z1) /∈ {t1, t2} and Ti(z3) /∈ {t1, t2} and Ti(z4) /∈ {t1, t2}
11 Ti(z3) = t3 ⇒ Ti(z1) ̸= t2 and Ti(z2) ̸= t2 and Ti(z4) ̸= t2
12 Ti(z4) = t3 ⇒ Ti(z1) /∈ {t1, t2} and Ti(z2) ̸= t2 and Ti(z3) /∈ {t1, t2}

This table presents all the choice restrictions generated by applying the choice rule (3.6.2) to each of the combination of choices
(t, t′) ∈ {t1, t2, t3} and instrumental values (z, z′) ∈ {z1, z2, z3, z4} of the incentive matrix (3.12.5).

After exhausting the choice restrictions in Table 3.12.3 we are left with 7 out of a possible 81

response types. These response types are consolidated and displayed in the response matrix

R (3.12.6) below.

R =

s1 s2 s3 s4 s5 s6 s7


t1 t1 t1 t2 t2 t3 t3
t1 t1 t1 t1 t2 t1 t3
t1 t2 t3 t2 t2 t3 t3
t1 t1 t1 t2 t2 t3 t3

z1
z2
z3
z4

(3.12.6)
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We can apply the identification results of Heckman and Pinto (2018) to response-matrix (3.12.6)

in order to identify all the response-type probabilities P (S = sj); j = 1, ..., 7 as well as the

following counterfactual outcomes:

Always-takers E(Y (t1)|S = s1) E(Y (t2)|S = s5) E(Y (t3)|S = s7)

Switchers E(Y (t2)|S = s2) E(Y (t3)|S = s3)

E(Y (t2)|S = s4) E(Y (t3)|S = s6)

Partially Identified E(Y (t1)|S ∈ {s2, s3})

E(Y (t1)|S ∈ {s4, s6})

3.12.5. MM under Orthogonal Array Design

We additionally examine an IV choice model based on the popular orthogonal array experi-

mental design. Orthogonal arrays are a widely popular experimental design developed by

CD Rao (Rao, 1946a,b, 1947, 1949). Orthogonal arrays are widely used in Agricultural and

Industrial sciences to determine the optimum mix of treatments that maximize production

yield. The method is based on the random assignment of a combinatorial arrangements of

treatments for each randomization arm. We adapt this setup to an instrumental variable

setting by exogenously providing incentives for one or more treatments instead of directly

assigning agents to treatment arms. Below, we will see that this incentive structure allows

for a broad range of identification results.

Formally, a binary orthogonal array is a matrix of zeros and ones such that any two-column

submatrix displays all possible combinations of zeros and ones. In other words, the tuples

{(0, 0), (0, 1), (1, 0), (1, 1)}

are all rows in any two-column submatrix. An orthogonal array incentive design if its

associated incentive matrix is a binary orthogonal array. The incentive matrix in (3.7.10)
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displays an example of an orthogonal array incentive design. In context of the college choice

example, we can rationalize the orthogonal array incentive design (3.7.10) with the following

research design:

1. Group z1 receives a cash voucher if they choose to major in the natural sciences (t2) or

the social sciences (t3).

2. Group z2 receives no cash voucher.

3. Group z3 receives a cash voucher if they do not go to college (t1) or if they major in

the natural sciences (t2).

4. Group z3 receives a cash voucher if they do not go to college (t1) or if they major in

the social sciences (t3).

Table 3.12.4 displays the choice restrictions generated by applying the Choice Rule (3.6.2)

to the orthogonal array incentive design (3.7.10). After using these choice restrictions to

eliminate response types, we are left with nine total response types summarized in the

response matrix (3.12.7).

Table 3.12.4: Choice Restrictions generated by Incentive Matrix (3.7.10)

1 Ti(z1) = t1 ⇒ Ti(z2) /∈ {t2, t3} and Ti(z3) /∈ {t2, t3} and Ti(z4) /∈ {t2, t3}
2 Ti(z2) = t1 ⇒ Ti(z3) /∈ {t2, t3} and Ti(z4) /∈ {t2, t3}
3 Ti(z3) = t1 ⇒ Ti(z2) ̸= t2 and Ti(z4) ̸= t2
4 Ti(z4) = t1 ⇒ Ti(z2) ̸= t3 and Ti(z3) ̸= t3

5 Ti(z1) = t2 ⇒ Ti(z2) ̸= t3 and Ti(z3) ̸= t3
6 Ti(z2) = t2 ⇒ Ti(z1) /∈ {t1, t3} and Ti(z3) /∈ {t1, t3}
7 Ti(z3) = t2 ⇒ Ti(z1) ̸= t1 and Ti(z2) ̸= t1
8 Ti(z4) = t2 ⇒ Ti(z1) /∈ {t1, t3} and Ti(z2) /∈ {t1, t3} and Ti(z3) /∈ {t1, t3}

9 Ti(z1) = t3 ⇒ Ti(z2) ̸= t2 and Ti(z4) ̸= t2
10 Ti(z2) = t3 ⇒ Ti(z1) /∈ {t1, t2} and Ti(z4) /∈ {t1, t2}
11 Ti(z3) = t3 ⇒ Ti(z1) /∈ {t1, t2} and Ti(z2) /∈ {t1, t2} and Ti(z4) /∈ {t1, t2}
12 Ti(z4) = t3 ⇒ Ti(z1) ̸= t1 and Ti(z2) ̸= t1

This table presents all the choice restrictions generated by applying the choice rule (3.6.2) to each of the combination of choices
(t, t′) ∈ {t1, t2, t3} and instrumental values (z, z′) ∈ {z1, z2, z3, z4} of the incentive matrix (3.7.10).
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R =

s1 s2 s3 s4 s5 s6 s7 s8 s9


t1 t2 t2 t2 t2 t3 t3 t3 t3
t1 t1 t2 t2 t2 t1 t3 t3 t3
t1 t1 t2 t2 t2 t1 t1 t2 t3
t1 t1 t1 t2 t3 t1 t3 t3 t3

z1
z2
z3
z4

(3.12.7)

This response matrix satisfies neither unordered nor ordered monotonicity. When the

instrument switches from z1 to z4, agents in response type s3 move from treatment t2 to

treatment t3 while agents in response type s6 move away from t3 and towards t1. This

represents a violation of ordered monotonicity and also prevents t3 from being ordered the

highest or lowest in any ordering on T that would satisfy ordered monotonicity.1 Similarly

we can see a switch from z3 to z4 induces agents in response type s3 to move from treatment

t2 to treatment t1 while inducing agents in response type s7 to move away from treatment t1

and towards treatment t3. This again represents a violation of unordered monotonicity and

precents t1 from being ordered either the highest or the lowest in any ordering T that would

satisfy ordered monotonicity. Since all orderings on T = {t1, t2, t3} must have either t1 or t3

as the largest or smallest element, this means there is no ordering on T that satisfies ordered

monotonicity.

Despite this, we can once again use Theorem 3.5.1 to verify that this matrix does indeed

satisfy MM. Thus we can still use 2SLS type estimands to recover interpretable causal

parameters as defined in (3.5.3). Moreover, by applying (3.3.12)–(3.3.13) we can see that

all response types probabilities P(S = sj), j = 1, . . . , 9 are identified. Additionally, using

(3.3.12)–(3.3.13) we obtain that the following counterfactual outcomes are identified

1If t3 is ranked highest a movement away from t3 represents moving towards a lower treatment while
a towards t3 represents moving towards a higher treatment. Vice versa, if t3 is ranked lowest a movement
towards t3 represents moving towards a lower treatment while a movement away from t3 represents moving
towards a higher treatment.
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Always-takers E(Y (t1)|S = s1) E(Y (t2)|S = s4) E(Y (t3)|S = s9)

Switchers E(Y (t1)|S = s3) E(Y (t2)|S = s2) E(Y (t3)|S = s5)

E(Y (t1)|S = s7) E(Y (t2)|S = s8) E(Y (t3)|S = s6)

Partially Identified E(Y (t1)|S ∈ {s2, s6}) E(Y (t2)|S ∈ {s3, s5}) E(Y (t3)|S ∈ {s7, s8})
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