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ABSTRACT 

We report the first observation of the 7T-polarized one-

magnon excitonic luminescence sideband in MnF
2

. The theory 

of Loudon is. used to fit the experimental spectrum quantita-

tively. An effective temperature of the crystal is deduced 

from the simultaneously observed antiStokes sideband emission. 
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6 6 
One-magnon sideband of theexcitonic transition in the Alg ( S) 

4Tlg (4G) manifold in MnF2 has been well studied in the literature.
l

:-3 In 

absorption, while the discrepancy between theory and experiment in the a-

and a-polarization spectra is small, it is quite large in the 1f-polariza-

tion. The discrepancy presumably results from ignoring the exciton-magnon 

interaction4 in the theoretical calculation. In emission, since the exci-

ton and magnon are not simultaneously present, the exciton-magnon interac-

tion does not come into play. Then the theoretical calculation agrees 

very well with the experi~ental a-and a-polarization spectra. 2 However, 

so far as we know, observation of the 1f-polarized one-magnon luminescence 

3 sideband, although predicted by theory, has never been reported probably 

because of its much weaker intensity. Recently, in studying mUlti-magnon 

luminescence sidebands5 in MnF
2

, we have been able to observe clearly the 

1f-polarized one-magnon sideband which is much weaker than those with a-

arid a-polarizations. The spectrum can indeed be described almost perfectly 

by the theory without the exciton-magnoninteraction. At higher tempera-

tures, antiStokes luminescence of the sideband has also been observed. 

The temperature deduced from the Stokes-antiS tokes ratio agrees with that 

obtained from the El -- E2 exciton luminescence ratio. 

The experiment was done using either a CW dye laser or a flash-pumped 

dye laser as the excitation source. The MnF2 sample properly oriented was 

cooled by either/gas or superfluid helium. Luminescence from the sample 
J 

was analyzed by a double monochromator and detected by either a photon-

counting system or a gated boxcar integrator. 

Typical polarized luminescence spectra obtained with the pulsed laser 

are shown in Fig. 1. Impurity luminescence in this case was suppressed by 
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5,6 
the gated detection scheme. The observed exciton lines El and E2 in the 

4T -+ 6A transitions and the a,a-polarized one-magnon sidebands associ-
19 19 

ated with El agree well with those reported in the literature. The corre-

sponding ~-polarized one-magnon sideband is appreciably weaker and broad-

er. At relatively higher temperatures, the antiStokes sideband emission 

is also clearly visible, and is relatively more intense for the ~-polari-

zation. In order to determine the sideband lineshape more accurately, we 

+ have also recorded the luminescence spectrum with the CW Ar laser and 

photon-counting system. The result for the ~-polarization is shown in 

Fig. 2, where in (a) the spectrum was obtained with the sample immersed 

in superfluid helium, and in (b) the spectrum was obtained with the sample 

in cold helium gas at l3°K. A strong impurity luminescence line is clearly 

present on the low-energy side of the sideband in Fig. 2(a), while the 

same line is apparently thermally quenched in Fig. 2(b). 

The dispersions of the El and E2 excitons and the magnons in MnF2 are 

shown in Fig. 3(a). To explain the observed sidebands, we use the theory 

3 
of Loudon. In his formalism, two-ion exchange interaction is responsible 

for the magnon creation or annihilation and the exciton-magnon interaction 

is neglected. If only the interaction between next-nearest neighbors on 

the opposite sublattice is taken into account, then the one-magnon side-

nn nn band absorption A (w) and emission E (w) in the a or a polarization are 

. given, in the zero-temperature approximation, by 

1
2j u 

2 2 k a 2 k a 2 kc k 
+ D sin (~)Sin (-I-)]sin (~) v~ o[hw -

(1) 
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and those in the TI-polarization by 

2 ~ [ 2(k a) 2(k a) 
F t sin + cos + 

I 
2) u 

. 2 kxa 2 k a 2 kzc k . 
+ cos b-~) sin (+)] cos (2) v~ 0 [bw -

(2) 

where C, D; and F are coupling constants of the same order of magnitude, 

a and c are lattice const~nts, EO is the El exciton energy, Em(k) is the 

-+ 
magnon energy at k, and ~ and vk are defined in Ref. 3 and reproduced 

here in Fig. 3(b). Similarly, one finds that the interaction between 

nearest neighbors on the same sublattice contributes to the sideband ab-

sorption and emission in the a or a polarization as 

(3) 

but contributes nothing to the sideband absorption and emission in the TI-

polarization, where G is again a coupling constant of the same order of 

magnitude as C, D, and F. 

. -+ 
The sunnnations over k in the above equations are weighted heavily 

towards the Brillouin zone edges by the large magnon density of states. 

However, near the zone edges, v~ tends to zero while ~ remains finite as 

shown in Fig. 3(b). It is then ~asy to see that 

A (w) ~ Ann (w) + An (w) ~ Ann (w)· 
a,a . a,a a,a a,a' 

(5) 
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E (00) ~ Enn (00) +En(oo) ~ En (00)· 
ala a,a a,a a,a' 

(6) 

(7) 

and E (00) ~A (00), A (00), E (00). 
n n a,a a,a 

2 
Dietz ~t al. has used Eq. (3) to fit quantitatively the observed 

one-magnon luminescence sideband in the a,a-polarization. Similarly, we 

can use Eq. (2) to fit the luminescence sideband in the n-polarization. 

Figure 2(a) shows that· the agreement between theory and experiment is in-

deed excellent. In the inset of Fig. 2, we also show the comparison be-

tween theory and experiment on the n-polarized one-magnon absorption side-
.i 

band. Th~ discrepancy is obvious. Agreement in the luminescence case and 

disagreement in the absorption case clearly indicates that the exciton-

magnon interaction is non-negligible in the absorption process. This in-

teraction should appreciably broaden the sideband absorption and shift it 

to lower energy.4 We notice that because of the difference in u~ and v~ 

associated with the sine and cosine terms in Eq. (2), the theoretical 

lineshapes of the n-polarized absorption and emission sidebands are very 

different. Also, the integrated strength ratio of absorption to emission 

is about 23. 

We realize from Eq. (2) that in the n-polarization the antiStokes 

sideband. emission is simply the inverse process of the sideband absorption 

only if the thermal population of magnons is properly taken into account. 

Therefore, we can excpet to obtain the antiS tokes sideband spectrum by 

simply multiplying the experimental absorption sideband, normalized to yield 
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the correct sideband absorption-to-Stokes-emission ratio of 23, by a Bose­

Einstein distribution function at a proper temperature. This is shown in 

Fig. 2(b). The theoretical antiS tokes sp~ctrum corresponding to a tem­

perature of 13.3°K fits very well with the observed spectrum. This tem­

perature is in good agreement with the one deduced from the luminescence 

intensity ratio of the El and E2 exciton lines. In the a- and a-polariza­

tions, deduction of the effective temperature from the antiStokes sideband 

emission is not possible because 6f lack of a normalization constant re­

lating the strengths of the absorption and Stokes emission sidebands. 

In summary, we have shown that the theory of Loudon gives·an excel­

lent description of the observed ~-polarized one-magnon luminescence side­

band in MnF2 . The effective temperature of the crystal can be deduced 

from the simultaneously observed ~-polarized antiS tokes luminescence side­

band. 

This work was supported by the Division of Basic Energy Sciences, 

U.S. Department of Energy. 
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Figure.2 

Figure 3 

8 LBL-7335 

Figure Captions 

Polarized intrinsic luminescence spectra of MnF2 obtained 

by the pulsed excitation-detection scheme. The laser excita-

tion had a wavelength of 5200 A, a pulsewidth of 0.4 ~sec, 

2 
a peak power of - 30 MW/cm for the n-polarization and - 20 . . 

2 
MW/cm for the a- and a-polarizations, and a repetition rate 

of 6 pps. The boxcar used for detection had a gate width of 

l·~sec. The sample was immersed in super fluid helium but 

laser heating was still apparent. The effective sample tem-

perature was l2°K for the a-,and a-polarizations and l3.8°K 

for the n-polarization. 

n-polarized CW luminescence spectra of MnF2 obtained with a 

-+ 
92 mW, 5145 A, Ar - laser light: (a) with the sample immersed 

in super fluid He, and (b) with the sample at l3°K. The spec-

trum in (b) is amplified by 10 relative to that in (a). Solid 

lines are theoretical curves with the background, taken into 

account. The inset shows the comparison between theoretical 

and experimental absorption sideband spectra. 

(a) Schematic dispersion curves of excitons and magnons in 

HnF2 • 

(b) u~ and v~ as functions of k in the Brillouin zone. '. 
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