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1 Introduction

In this paper we analyze the following situation. A principal contracts with an agent

to complete a project. The project requires the successful completion of two stages or

breakthroughs in order to realize its benefits. The arrival rate of breakthroughs depends

on the agent’s hidden action. In particular, the agent can secretly divert funds for private

benefit, thereby reducing the rate of a breakthrough. The second breakthrough (i.e., the

date at which the project is completed) is publicly observed, but the first breakthrough is

privately observed by the agent and cannot be verified by the principal. Both players are risk

neutral and the agent is protected by limited liability. We are interested in how the principal

should optimally design the incentive scheme and to what extent it relies on communication

from the agent to the principal about whether progress has been made.

Our investigation of this setting is motivated by three key ingredients often encountered

in complex real-world projects involving research or implementation of novel technical designs.

First, such projects are typically organized under an agency relationship because they require

both a high level of technical expertise as well as substantial capital. Thus, there is generally

some degree of separation between the expert individuals responsible for execution of a

venture and the financial entity that provides its backing. Moreover, the preferences of

the entrepreneur, contractor, or researcher (the “agent”) regarding the timing, intensity

and direction of investment are unlikely to be perfectly aligned with the preferences of the

financier, end user, or institution (the “principal”). For example, Tirole (2006) suggests

several reasons why the relationship between researchers and their funding sources “is fraught

with moral hazard.”

Second, complex projects often require completion of multiple sequential stages before

their benefits can be realized. For example, developing a new drug requires identifying specific

chemical compounds or molecules in vitro (i.e., in test tubes) and then demonstrating their

efficacy in pre-clinical (i.e., animal) trials. After this phase is successfully completed, clinical

(i.e., human) trials begin, progressing through small scale and then large-scale. Each of

these stages must be successfully completed before a drug can be submitted to the FDA for

approval, and only after approval can the drug be brought to market, generating revenue for

its developer and health benefits for society. In a similar vein, large-scale software engineering

projects are often purported to follow the celebrated “waterfall model” of development

involving six sequential phases: conception, initiation, analysis, design, construction, testing,

and implementation (Royce, 1970). Indeed, in 1985 the United States Department of

Defense codified six similar phases in their standards for working with software development

contractors (DOD-STD-2167A). Other examples of multistage projects are ubiquitous. For
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example, most large-scale procurement projects (e.g., construction, defense) involve numerous

sequential stages. In venture capital, entrepreneurs generally progress through numerous

stages (e.g., patenting, prototype development, and manufacturing) before realizing profits.

Basic research, almost by definition, requires numerous successive advancements before its

societal benefits are realized.

Third, when and whether the agent makes progress on the project – that is, when and

whether it transitions from one phase to the next – is often difficult, even impossible, for

the principal to ascertain directly. This could obtain either because the principal lacks

the technical proficiency to evaluate progress or because it is not possible to substantiate

progress at a reasonable cost. In either case, project sponsors are often forced to rely on

unverifiable progress reports made by the very individuals responsible for moving the project

forward. Detecting fraudulent claims of progress in complex environments is, not surprisingly,

notoriously difficult. Take, for example, the respective cases of extensive data falsification by

Diederik Stapel, formerly a professor of social psychology at Tilburg University, and Anil

Potti, formerly a cancer researcher at Duke University. The misconduct of both academics

went undetected by their universities and funding agencies for a number of years. Similarly,

in a 2006 survey of software practitioners, 86% of respondents reported having encountered

false reports (Glass et al., 2008). The most common occurrences were in estimation and

status reporting. “Respondents said that when lying happens, developers at the bottom level

of the management hierarchy are most aware of the lying; they often know it’s happening

even when their management doesn’t.”

These three common ingredients: agency, multiple stages, and intangible progress, give

rise to the question at the heart of this paper. Specifically, if the principal cannot observe

evolution of the project herself, can she nevertheless use unverifiable reports from the agent

to monitor his progress and provide incentives for project advancement? Given the prevalence

of misreporting, one might easily imagine that the answer to this question is ‘no.’ In fact, we

find that self-reported progress is an essential component of an optimally designed incentive

scheme for promoting project development. To ensure the veracity of progress reports, the

principal must, however, use them judiciously.

To build intuition and a baseline of comparison for our main results, we start by analyzing

a single-stage project in which only one breakthrough is needed to complete the project. In

this case, the optimal incentive scheme can be implemented with a simple contract, which

involves a single deadline T ∗ and a reward that depends only on the date at which the

breakthrough arrives. If the agent realizes the breakthrough at τ ≤ T ∗, he collects the reward

of R(τ). If a breakthrough is not realized by the deadline, the principal terminates the project.

While the first-best policy never involves project termination, the use of a deadline plays a
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crucial role in the provision of incentives in our (second-best) setting. In choosing the optimal

deadline the principal faces a trade off; a longer deadline yields a higher probability of project

completion but also requires giving the agent more rents in order to prevent shirking.

Having established this single-stage benchmark, we analyze the situation of interest by

adding a second stage to the project. Thus, there is a preliminary (e.g., research) stage, which

must be successfully completed before moving on to the ultimate (e.g., development) stage.

A breakthrough in the preliminary stage does not generate any direct benefits, is privately

observed by the agent, and is unverifiable. On the other hand, project completion (i.e., when

the second breakthrough has been made) is verifiable. In this setting, simple contracts are

no longer optimal. If the principal uses a simple contract (with deadline T ∗) then as the

deadline approaches, an agent who has not yet made a breakthrough will “run out of steam”

at some point T1 < T ∗ and begin shirking. Thus, a simple contract can be improved upon. If

the principal could observe the project stage directly, then she would simply fire the agent for

lack of progress at T1, thereby averting the cost of shirking ex post and enhancing incentives

ex ante. When progress is intangible, however, the principal cannot threaten to fire the agent

for lack of reported progress at T1 without inducing him to make false reports.

Instead, the optimal contract involves a first-stage deadline that is not deterministic;

funding is guaranteed up to some soft deadline. If the agent has not reported progress by

the soft deadline, then a probationary phase ensues in which the principal randomizes over

whether or not to terminate the project.1 The soft deadline provides incentives for the

agent not to shirk or falsely report progress in the first stage while not further reducing the

probability of success in the second stage conditional on making a breakthrough. Moreover,

an agent who has made progress strictly prefers to report truthfully at the soft deadline rather

than risk being terminated while under probation. In short, the lottery over termination

dates serves as a mechanism to induce both effort and truthful reporting while simultaneously

maximizing the probability of project success.

Self-reported progress from the agent to the principal regarding the status of the project,

therefore, plays an essential role in the optimal incentive scheme. Interestingly, the required

communication is non-stationary over the duration of the project. Early in the life of the

project, communication is unnecessary. If the project is completed before the soft deadline,

then the agent’s compensation depends solely on the date of completion. If the project is

not completed by the soft deadline, communication is required. More specifically, at the soft

deadline the principal asks the agent to report whether he has made a breakthrough. If he

answers “yes” then the principal gives him a relatively short hard deadline to complete the

1The principal need not randomize over terminating the project at every instant. Rather, she may
randomly and secretly draw a fixed date at which she will end probation and fire the agent for lack of progress.
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project—if the project is not completed by the hard deadline then it is terminated. If the

agent answers “no” then the probationary phase begins. During the probationary phase,

the agent is asked to report any progress immediately, at which point he is given the same

amount of time to complete the project as if he had reported “yes” at the soft deadline.

After characterizing the optimal contract and the set of equilibrium payoffs, we explore

three extensions of the model with implications for optimal project design. First, we ask

whether there is scope for making communication costly. We show that the principal can

indeed benefit by imposing a small cost on the agent of reporting progress. Therefore, formal

channels of communication that require time and effort (e.g., paperwork) can be useful even

if the same information could be communicated at no cost. Second, we consider a project

with asymmetric stages and show that ceteris paribus the principal’s payoff is higher when

the first stage is moderately more difficult than the second stage. However, the principal

does strictly worse by making the first stage too difficult relative to the second. Finally we

consider a setting in which progress is unobservable to both players in order to see whether

the principal can benefit from suppressing the agent’s access to information about the status

of the project. We find that information suppression is suboptimal; the principal does better

under the optimal contract with progress reports from the agent than in a setting where

neither party observes the time of the first breakthrough. An alternative interpretation of

this result is that it is better to divide up a project into two phases even if the agent privately

observes when the first is completed.

We believe our findings are not only of theoretical interest, but also have practical relevance.

For example, making continued funding contingent on periodic progress reports appears to be

a common arrangement. The following text that appears on the website of the Amyotrophic

Lateral Sclerosis (ALS) Association is broadly representative.

The ALS Association financial officer makes grant award payments to the Principal

Investigator institution for disbursement for the project. Payments are made on

a specified quarterly schedule and in the case of multi-year grants, after the first

year, are contingent upon the receipt by ALS Association of satisfactory annual

progress reports and documentation of research funds expended.

Regarding the use of probation, funding entities do not explicitly specify random deadlines

(at least not to our knowledge). However, grant policies are often quite vague about the

consequences for delays in reporting progress. For instance, the National Institute of Health’s

(NIH) web site states “If your [progress] report is extremely late, you risk losing funding

for the period of time between the end of the current budget period and when we finish
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processing your report.”2 Similarly, the National Science Foundations (NSF) Grant Policy

Manual states, “NSF reserves the right, ... to withhold future payments after a specified date

if the recipient fails to comply with the conditions of an NSF grant, including the reporting

requirements.”3 While these policies do not specify random termination as such, it certainly

seems more appropriate to view the indefinite penalties for late reporting as involving soft

deadlines rather than hard ones.

The soft deadline and ensuing probationary phase of our optimal incentive scheme also

resembles how “project slippage,” (i.e., missing a deadline) is handled in project management

(e.g., Ewusi-Mensah and Przasnyski, 1991). In practice, “slippage time” (i.e., the amount

of time the project is in a state of slippage) generally extends the deadline for completing

the entire project. That is, contractors and employees are not generally required to recover

slippage time in one phase of a project by shortening subsequent phases. Of course, the

greater the slippage time, the more likely it is that the sponsor will cancel it. Our results

suggest that some degree of slippage should, however, be tolerated on complex projects where

sponsors are unable to assess progress directly.

The remainder of the paper proceeds as follows. In the next section, we discuss related

literature. In Section 3, we present a single-stage version of the model as a benchmark. We

introduce the second stage and present some preliminary findings in Section 4. We fully

characterize the optimal contract and set of equilibrium payoffs in Section 5. Section 6

explores the role of costly reporting, projects with asymmetric stages, and the possibility of

restricting the agent’s access to information. Concluding remarks appear in Section 7. Most

proofs and several technical lemmas are located in the Appendix. Several proofs have been

relegated to an online appendix.

2 Related Literature

There is a large and growing literature studying the optimal provision of incentives in dynamic

environments.4 Our benchmark single-stage model is similar to Shavell and Weiss (1979) and

Hopenhayn and Nicolini (1997),5 who looks at providing incentives to search for employment

while simultaneously providing unemployment insurance. It is also similar to Mason and

Välimäki (2015) who consider a dynamic moral hazard setting in which the principal must

2http://www.niaid.nih.gov/researchfunding/qa/pages/pp.aspx#late: emphasis added.
3http://www.nsf.gov/pubs/manuals/gpm05_131/gpm4.jsp: emphasis added.
4A non-exhaustive list includes Green (1987), Spear and Srivastava (1987), Phelan and Townsend (1991),

Quadrini (2004), Clementi and Hopenhayn (2006), DeMarzo and Sannikov (2006), DeMarzo and Fishman
(2007) and Sannikov (2008).

5See also Lewis (2012) who considers a delegated search model in which the optimal contract includes a
deadline and a bonus for early completion.
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provide incentives to the agent to complete a project.6 A novel aspect of our model is that we

explicitly consider environments with multiple sequential stages in which the agent privately

observes progress. Thus, we “sandwich” a hidden-information problem between two stages of

a hidden-action problem.

Our multistage environment is related to Biais et al. (2010), who analyze a model in

which large (observable) losses may arrive via a Poisson process, and an agent must exert

unobservable effort in order to minimize the likelihood of their arrival. They allow for

investment and characterize firm dynamics as well as asymptotic properties. Our model

differs in that it (i) features only a finite number of arrivals, (ii) the arrival of a breakthrough is

“good news”, and (iii) we consider the case in which arrivals are unobservable to the principal.

Several other recent papers that involve observable Poisson arrivals include Hoffmann and

Pfeil (2010), Piskorski and Tchistyi (2011), DeMarzo et al. (2014). Given the multistage

setting, a key difference in this paper is that the agent’s continuation utility is not a sufficient

state variable. Toxvaerd (2006) considers a setting in which a finite number of (observable)

arrivals are needed in order to complete a project. In his setting, the agent is risk averse

and the optimal contract trades off optimal risk-sharing for incentive provision, but does not

involve deadlines or inefficient termination. Optimal dynamic mechanisms are explored in

other settings by Board (2007), Eso and Szentes (2007), Bergemann and Valimaki (2010) and

Pavan et al. (2014) among others.

In our model, the agent has access to private information that is persistent. Dynamic

contracting with persistent private information has been studied in discrete type settings by

Fernandes and Phelan (2000), Battaglini (2005), Tchistyi (2013), and with a continuum of

types using a first order approach by Williams (2011) and Edmans et al. (2012). Our approach

is most similar to Zhang (2009) and Guo and Hörner (2015). From a theoretical perspective,

our work differs from this literature along several dimensions. One key difference in our

environment is the presence of public (contractible) information (i.e., the ultimate success of

the project), which can be used to screen the agent’s underlying private information. Another

difference is that the transition probabilities across states are endogenously determined in

our setting by the agent’s action.

In a working paper, Hu (2014) considers a discrete-time setting that is otherwise similar

to ours. However, he restricts attention to deterministic deadlines and does not allow for

communication between the principal and the agent, which leads him to conclude that the

6Though the problems are similar in spirit, the optimal contract in our one-stage benchmark looks quite
different from Mason and Välimäki (2015). In our model, it is optimal to use termination deadlines to provide
incentives to the agent, whereas in their setting, the use of termination is strictly suboptimal. This difference
arises due to the nature of the moral hazard problem we consider (e.g., private benefit from shirking) rather
than their costly effort model. See Remark 1 for further discussion.
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optimal contract involves a single deadline in which an agent who has not made progress

shirks as the deadline approaches. Our results show these restrictions are not without

loss of generality and lead to substantively different findings. In particular, we show that

without these restrictions, the optimal mechanism requires communication, involves random

termination, and does not involve shirking.

There is a rich existing literature exploring settings where parties learn about the value of

a project over time.7 In these environments, lack of success typically indicates that the project

is bad, and it is socially efficient to discontinue investment at some point. A common finding

within this literature is that agency considerations may cause the principal to terminate the

project earlier than socially optimal. By contrast, we focus on a setting in which the project

is commonly known to be good from the outset (i.e., there is no learning and the project is

always funded until completion under the first-best contract) in order to isolate the extent

to which progress can be used to provide stronger incentives. Bonatti and Hörner (2011)

study experimentation in teams for a project that requires a single breakthrough, which

introduces a free-riding problem. They show that the equilibria of the game involve inefficient

delays in effort provision and that deadlines, which terminate the project prior to the socially

efficient time, are useful in mitigating delays despite forfeiting value when the deadline is

reached. The free-riding problem also arises in Moroni (2015), who studies experimentation

with multiple agents for a project that requires several observable breakthroughs.

Holmstrom and Milgrom (1991) and Laux (2001) look at settings with simultaneous tasks

whereas in our setting the project involves stages that must be completed sequentially. Lerner

and Malmendier (2010) investigate the role of property rights and contractibility in the design

of research agreements within a multi-task setting and empirically document more prevalent

use of termination options in settings where effort is not contractible. Varas (2015) studies a

dynamic multi-tasking model in which an agent can complete the project faster by reducing

its quality. Under certain conditions, he finds that a random termination policy is optimal.

However, the underlying mechanism is somewhat different from ours. In his model, stochastic

termination is used to prevent multi-tasking and arises as part of the optimal contract only

when the agent is sufficiently more impatient than the principal. Moreover the use of a hard

deadline is suboptimal in his model unlike in our multistage setting where the principal uses

a combination of both soft and hard deadlines.

7See e.g., Levitt and Snyder (1997) , Bergemann and Hege (1998, 2005), Inderst and Mueller (2010),
Manso (2011), Hörner and Samuelson (2014), Halac et al. (2015).
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3 A single-stage benchmark

A principal (she) contracts with an agent (he) to undertake a project. Time is continuous

and the project can be operated over a potentially infinite horizon. The project requires the

successful completion of a stage, also referred to as a breakthrough, in order for its benefits

to be realized. Operating the project requires resources, which we model as a flow cost of c

per unit time that the project is in operation. The principal has unlimited resources to fund

the project. The agent has no funds and is protected by limited liability, but has the skills

necessary to run the project. Both parties are risk-neutral and do not discount the future.8

The principal can terminate the project (i.e., discontinue paying the flow cost) at any point

in time. Project termination is irreversible; if the principal terminates the project prior to

the breakthrough, the project delivers no benefit and the game ends.

While the project is in operation, the agent chooses an action at ∈ {0, 1}, where at = 1

indicates that the agent appropriately invests or “works,” and at = 0 indicates that the agent

diverts funds or “shirks” for private benefit. The arrival rate of a breakthrough is then given

by λat. Thus, if the agent works over an interval of length dt, then the probability of a

breakthrough in the interval is λdt. If the agent shirks, then the arrival rate of a breakthrough

is zero but he receives a private flow benefit of φdt, where φ > 0 measures the severity of the

agency problem. The agent receives no intrinsic benefit from project success; he benefits solely

from the compensation delivered by the principal and any private benefits from shirking.

Remark 1. For many relevant applications, the most natural interpretation of the moral

hazard problem is that the agent can secretly divert the principal’s investment for private

benefit. For example, an entrepreneur can use venture capital funding for private consumption,

or a scientist may fund a pet project not authorized under his current grant. Nevertheless, we

will adopt the standard “shirk”/“work” terminology (e.g., Tirole, 2006).9

The success of the project is publicly observed and contractible. Upon the arrival of

a breakthrough the principal realizes a payoff Π > 0, makes any outstanding contractual

payments to the agent and the game ends. Let τ denote the random variable representing

the date of project success. Throughout our analysis, we employ the following assumptions.

8It is fairly straightforward to incorporate a common discount rate into the model. However, with
discounting, closed-form solutions are no longer available in the multistage setting and therefore our proof
method for some results does not generalize directly. In these situations, numerical examples support our
findings.

9In the analog of our model where the agent incurs a cost of effort rather than a benefit from diversion
(i.e., arrival rate of breakthroughs is zero without effort), the limited liability constraint has no bite and
the first-best outcome is attainable. In a costly-effort model with discounting and a strictly positive arrival
rate even when the agent shirks, it is possible to obtain results similar to those presented here under certain
parametric restrictions.
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Assumption 1. The expected value of the project (absent agency costs) is strictly positive

λΠ− c > 0.

Assumption 2. Shirking is non-trivial and inefficient

0 < φ ≤ c.

Remark 2. Assumption 1 and 2 imply that under the first-best policy, the agent never shirks

and the project is never terminated prior to success.

At t = 0, the principal offers the agent a contract. We assume that the principal can fully

commit to all terms. If the agent rejects the offer, then both parties receive their outside

options normalized to zero.

As is typical of most principal-agent models, making a payment to the agent upon “failure”

(i.e., termination prior to project success) is suboptimal. Moreover, because both parties

have linear utility and are equally patient, it is without loss of generality to backload all

monetary payments to the agent (see e.g., Ray, 2002). A contract can thus be denoted by

a triple, Γ ≡ {a,R, T}, where at is the recommended action to the agent at time t, Rt is a

monetary payment made to the agent for success at t, and T is the date at which the project

is terminated absent a prior breakthrough.10 An action process, a, induces a probability

distribution Pa over τ . Let Ea denote the corresponding expectation operator. Assuming

for the moment that the agent always adheres to the recommended action, the principal’s

(ex-ante) expected utility under any contract is given by

P0(Γ) = Ea
[
(Π−Rτ ) · 1{τ≤T} −

∫ T∧τ

0

c dt

]
, (1)

and the agent’s expected utility is given by

U0(Γ) = Ea
[
Rτ · 1{τ≤T} +

∫ T∧τ

0

(φ(1− at)) dt
]
. (2)

The contract Γ is said to be incentive compatible if a maximizes the agent’s expected

utility (2) given (R, T ). The principal’s problem is to find an incentive compatible contract

that maximizes (1) subject to delivering an expected utility to the agent of at least his outside

option.

10In the multistage setting, the solution to the principal’s problem requires randomization over termination
dates. However, randomization is unnecessary for a single-stage project so we delay introducing this possibility
and additional notation until it is needed.
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Given any contract Γ, let Ut(Γ) ∈ R+, denote the agent’s continuation value after any

non-terminal history when he acts optimally, i.e.,

Ut(Γ) ≡ sup
a

Ea
[
Rτ · 1{τ≤T} +

∫ T∧τ

t

φ(1− as) ds|t ≤ τ

]
. (3)

Assuming that Ut ∈ C1 for t ∈ [0, T ] (which will be verified later), the Hamilton-Jacobi-

Bellman (HJB) equation for the agent’s problem is given by11

0 = U ′t + sup
at

{φ(1− at) + λat(Rt − Ut)} . (4)

If the agent works over an interval dt, then he makes a breakthrough with probability λdt

and gets the reward Rt. However, by doing so, he forgoes the private benefit of shirking

φdt as well as the continuation utility, Ut, he would get if the breakthrough did not arrive.

Thus, in order to give the agent incentives to work the principal must reward the agent

with additional utility of at least φ/λ upon arrival of success. The incentive compatibility

condition can therefore be summarized by the following lemma.

Lemma 3.1. Given any contract Γ, the optimal action for the agent at time t is

at = 1 ⇐⇒ Rt ≥ Ut(Γ) +
φ

λ
. (5)

Following Spear and Srivastava (1987), the principal’s problem can be formulated re-

cursively, where the state variable is the promised utility to the agent, denoted by u ∈ R+.

Let V (u) denote the principal’s value function, which maximizes her expected utility, P0(Γ),

subject to incentive compatibility (5) and the additional “promise keeping” condition

U0(Γ) = u. (6)

Notice that Ut(Γ) is strictly positive for any t < T , therefore if u = 0, then the only

possible solution is for the project to be terminated immediately and hence V (0) = 0. For

11Expression (4) can be derived as the limit of the discrete-time Bellman equation

Ut = sup
at

{φ(1− at)dt+ at (λdtRt + (1− λdt)Ut+dt)} .

by using the first-order Taylor approximation Ut+dt ≈ Ut + U ′tdt. Other HJB equations can be derived
analogously

10



u > 0, the HJB equation for the principal’s problem is

0 = max
R,a

{
λa(Π−R− V (u))− c+ V ′(u)

du

dt

}
s.t.

du

dt
= −max

a
{φ(1− a) + λa(R− u)}.

Clearly, the solution to the principal’s problem must involve V ′(u) ≥ −1 since the principal

has the option to make direct payments to the agent. Hence, it is without loss to focus on

contracts such that a = 1.12 The first-order condition then requires that any solution to the

principal’s HJB involves R = u + φ
λ

(i.e., the incentive compatibility condition binds), in

which case (4) indicates that the agent’s continuation value decreases at a constant rate φ

prior to termination or success and the principal’s HJB reduces to the ordinary differential

equation

λV (u) = λ

(
Π− u− φ

λ

)
− c− φV ′(u).

Using the boundary condition at u = 0 to pin down the constant, we arrive at the following

candidate for the principal’s value function

V̄ (u) ≡
(

1− e−
λu
φ

)
︸ ︷︷ ︸

P(τ≤uφ)

(
Π− c

λ

)
− u. (7)

The expression in (7) highlights the direct link between the promised utility (or rents) of the

agent and the probability that the project ultimately succeeds.13

Proposition 3.2. For a one-stage project, the principal’s value function is given by V̄ (u).

Given any level of the agent’s continuation utility u ∈ R+, this payoff can be attained under

the contract with a deadline

T ∗(u) =
u

φ
, (8)

and a reward payment for success that is decreasing over time according to

R∗(τ) = φ
(

1
λ

+ T ∗(u)− τ
)
, ∀τ ∈ [0, T ∗(u)]. (9)

The intuition behind this result is straightforward. The agent is given a deadline corre-

sponding to the date at which his continuation utility will hit zero absent a breakthrough.

12If a = 0, the HJB is satisfied if and only if V ′(u) = −c/φ ≤ −1 in which case a direct payment is a more
efficient form of compensation than letting the agent shirk.

13Notice that V̄ (u) is strictly concave, which confirms that randomization over the termination deadline is
suboptimal and V̄ ′(u) ≥ −1, which confirms incentive compatibility binds.
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If he innovates prior to that date, then he receives a payment compensating him for the

instantaneous incentive to shirk φ/λ plus the oppurtunity cost of shirking for the remaining

time on the clock, φ(T ∗(u)− τ). Thus, the sooner the agent makes a breakthrough, the larger

is his share of the concomitant benefit.

In light of Proposition 3.2, the only thing left to pin down is the initial utility level for

the agent, which is equivalent to the optimal termination date of the contract. Naturally, the

division of surplus will depend on the relative bargaining power and outside options of each

player. To fix ideas, throughout the paper we endow the principal with all of the bargaining

power and set the agent’s outside option to zero. We refer to the optimal contract, as the

contract that maximizes the principal’s payoff over all u ∈ R+. Therefore, let

u∗ ≡ arg max
u∈R+

V̄ (u).

We call a project feasible if the optimal contract does not involve immediate termination.

Corollary 3.3. A single-stage project is feasible if and only if

λΠ− c > φ. (C.1)

If (C.1) holds, then the optimal contract has a deadline T ∗ ≡ 1
λ

ln
(
λΠ−c
φ

)
.

The optimal deadline balances the probability that the project ultimately succeeds,

(1 − e−λT ∗
), against the rents extracted by the agent, u∗ = φT ∗. The feasibility condition

ensures that T ∗ > 0. Intuitively, the principal must give the agent φ per unit time in

continuation value in order to prevent shirking. The condition therefore ensures that the

principal’s expected flow benefit, λΠ, outweighs her total flow cost of operating the project

and inducing effort (c+ φ). Notice that this inequality is stronger than would be needed in a

first-best situation where the principal ran the project herself, namely λΠ− c > 0, in which

case, as noted in Remark 2, the first-best policy is to invest indefinitely until the innovation

arrives. Also notice that the optimal deadline increases as the agency problem becomes

less severe, with limφ→0 T
∗ =∞. That is, the (second-best) outcome and principal payoffs

converge to first-best as the agency conflict goes to zero. Hence, the deadline exists only to

mitigate agency costs.

4 Two-stage projects

Having derived the optimal contract for a single-stage project in the previous section, we

now introduce a second stage. Henceforth, the agent must make two breakthroughs in order

for the principal to realize the project benefits. To simplify exposition, we assume that the
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parameters (φ, c, λ) are the same for both stages.14 Analogous to Assumption 1, We assume

that the expected value of the two-stage project is strictly positive; i.e., Π− 2c/λ > 0. Note

that this assumption does not imply that the (two-stage) project is feasible. Indeed part

of our interest is in characterizing the conditions under which the principal can profitably

undertake a multistage project.

We let τ1 and τ2 denote the (random) times at which the first and second breakthrough

occur. We distinguish between the first stage of the project, t ∈ [0, τ1), and the second stage,

t ∈ [τ1, τ2). As before, the date at which the project ultimately succeeds, now denoted τ2, is

publicly observed and can be directly contracted upon.15 For the majority of our analysis,

we assume that intermediate progress (i.e., τ1) is privately observed by the agent and cannot

be verified by the principal.16 For this reason, we will refer to intermediate progress as being

intangible.

Intangible progress can only be contracted upon indirectly via unverifiable “progress

reports” from the agent. A priori, it is not clear that doing so has value to the principal.

Recall that any information communicated is irrelevant for the socially optimal investment

policy, hence reports are only beneficial to the principal if they reduce agency rents on net. Of

course, in order to induce truthful reporting the agent must be given appropriate incentives.

So, the question becomes whether the savings in rents associated with inducing more efficient

investment (i.e., preventing shirking) justify the payment of the rents necessary to induce

truthful reports.

4.1 Simple contracts

In a single-stage project, the principal can implement the optimal contract with a single

(deterministic) deadline, T , and reward scheme that depends only on the project completion

date. We refer to such contracts as simple contracts. Notice that simple contracts effectively

preclude contracting on communication with the agent in any meaningful way. This leads to

the undesirable feature that the agent will begin shirking as the deadline approaches if he

has not made progress.

Proposition 4.1. For any two-stage project and any simple contract with a bounded reward

scheme, there exists a ∆ > 0 such that if the agent has not made the first breakthrough by

T −∆, he will shirk for all t > T −∆.

14We analyze projects with asymmetric stages in Section 6.
15This assumption is stronger than necessary. Our results continue to hold if τ2 is privately observed by

the agent but can be verified by the principal. This can be seen from the fact that the agent has no incentive
to “hide” project success under the optimal contract when success is observable.

16In Section 6, we consider the case in which intermediate progress is unobserved by both the agent and
principal.
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Proof. The probability of completing the project by T given that the first breakthrough has

not been made by T −∆ is

Pr(τ2 ≤ T |τ1 > T −∆) = 1− eλ∆ (1 + λ∆) ,

and as ∆→ 0, the above expression, and hence the benefit to the agent of working, converges

to zero at a rate proportional to ∆2, whereas the benefit of shirking during the time remaining

is proportional to ∆, implying that for t close enough to T , the agent will prefer to shirk

unless the reward for success is arbitrarily large.

In essence, an agent who has not yet made progress “runs out of steam” as the deadline

approaches. A corollary of Proposition 4.1 is that simple contracts are not the most efficient

way to provide incentives in the multistage setting. If τ1 was publicly observable and

contractible, the principal could improve upon a simple contract by incorporating a first-stage

deadline whereby the project is terminated if the agent has not made a breakthrough by

T −∆.17 However, because progress is intangible, the principal cannot employ a first-stage

deadline and expect the agent to report truthfully. Doing so would induce the agent to make

false claims of progress (just prior to T −∆) and then shirk.

Nevertheless, a simple contract can be improved upon by enriching the contract space

to allow for communication. To see this, suppose that upon reaching T −∆, the principal

asks the agent “have you made a breakthrough yet?” If the agent reports “no”, then the

project is terminated but the principal gives him a severance payment of φ∆, which is exactly

what the agent could obtain by diverting cash flows until T . If the agent answers “yes”

then the principal continues funding the project until T with the same reward scheme. This

arrangement induces truth-telling for an agent who has not made a breakthrough (since he is

just indifferent). It also induces truthful reporting for an agent who has made a breakthrough

provided that following a breakthrough working is incentive compatible under the original

contract. Moreover, this modification does not change the probability of project success

(since the agent without a breakthrough would have shirked anyway) and saves the principal

(c− φ)∆ ≥ 0 conditional on a“no” report. Thus, communication with the agent can weakly

improve the principal’s expected payoff.

In fact, as we will see, the optimal contract has a similar structure to the one just described

save for one major difference. Instead of deterministic termination and a severance payment

following a negative report at T −∆, the principal begins a probationary phase in which she

effectively “freezes” time (and the agent’s promised utility), but starts randomly terminating

17In Green and Taylor (2015), we show that optimal contract resembles this multi-deadline arrangement if
progress is observable and contractible.
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the project at a constant flow rate. By doing this, the principal still induces truthful reporting,

but also induces an agent who has not made a breakthrough to continue working, thereby

increasing the probability that the project ultimately succeeds relative to a contract with

certain termination and a severance payment.

5 The optimal contract

In this section, we enrich the contract space to allow for communication and characterize the

optimal contract and the set of equilibrium payoffs.

A contract is again denoted by Γ = {a, Y, T}, where a is the recommended action, T is

the termination rule, and dYt denotes the payment to the agent at time t.18 Each of the

elements of the contract can depend on the history, which includes any reports made by the

agent, whether the project has succeeded, and a public randomization device. Clearly, the

principal cannot condition payments or the termination rule directly on τ1, rather, she can

only condition on information communicated by the agent and τ2. Given an arbitrary contract,

the agent’s continuation value can depend on any information communicated and the actual

stage of the project.19 However, by the revelation principle, in searching for the optimal

mechanism it is without loss to focus on direct mechanisms that induce truthful reporting

(see Myerson (1986) or Pavan et al. (2014) for further discussion). We can therefore restrict

attention to direct mechanisms that induce the agent to report truthfully and immediately.

We use τ̂1 to denote the time at which the agent reports the first breakthrough in order to

distinguish it from the time at which the first breakthrough is made.

As in other settings with persistent private information (e.g., Fernandes and Phelan (2000),

Zhang (2009) and Guo and Hörner (2015)), it is convenient to formulate the principal’s

problem as a dynamic program using the vector of promised utilities as the state variable.

Thus, we will make use of three state variables: the project stage s ∈ {1, 2} (as reported

by the agent) and the pair of promised continuation values to each type, (u1, u2) ∈ R2
+.

Henceforth, we refer to the agent who has made a breakthrough as the “high” type and agent

who has not yet made a breakthrough as the “low” type. For states in which s = 2, u1 can

be interpreted as the maximal payoff that a low type could obtain by falsely reporting a

breakthrough. For states in which s = 1, u2 can be interpreted either as the maximal payoff

that a high type could obtain by not reporting progress or as the promised reward to the

low type for making a breakthrough in that state. Importantly, these two payoffs must be

18Unlike the one-stage project, we cannot immediately rule out payments being made at dates other than
that of project success. Though such payments are not part of the optimal contract, allowing for them
facilitates the proof of several intermediate results (e.g., Lemma 5.3).

19Note that the actual time at which the breakthrough was made is irrelevant for the agent’s continuation
value. Only whether a breakthrough was made and if and when it was reported matters.
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Figure 1: The set of implementable utilities corresponds to the shaded area including the 45-degree
line but excluding the vertical axis.

identical given the agent is behaving optimally.

5.1 Implementable utility levels

It will be useful to characterize the set of utility pairs that are implementable. A utility pair

~u = (u1, u2) ∈ R2
+ is implementable if there exists a mapping from the agent’s type, s, to a

contract Γs such that (i) each agent prefers to report his type truthfully, (ii) the recommended

action is incentive compatible, and (iii) the contract delivers expected payoff of us to an

agent who truthfully reports s ∈ {1, 2}. We denote the set of implementable utility levels by

U ⊂ R2
+. Of course, not all utility pairs are implementable. For example, the high type can

always “mimic” the low type, and thus u1 > u2 is not implementable. The following lemma

says that this is essentially the only restriction on the set of implementable utility pairs.

Lemma 5.1. For a two-stage project, the set of implementable utility pairs is given by

U = {(u1, u2) ∈ R2
++ : u2 ≥ u1} ∪ (0, 0).

The proof is by construction and can be found in the online appendix. Let LH ≡
U ∩ {u2 = u1 + φ/λ} denote the line along which the incentive compatibility condition

for the low-type agent holds with equality and define the two complimentary subregions

UL ≡ U ∩ {u2 < u1 + φ/λ} and UH ≡ U ∩ {u2 ≥ u1 + φ/λ}. Notice that the low-type agent

will strictly prefer to shirk for all ~u ∈ UL and will (weakly) prefer not to shirk for all ~u ∈ UH .

Finally, let LL ≡ U ∩{u1 = u2} denote the lower boundary of U . These regions are illustrated

in Figure 1.

5.2 Second stage problem

We can solve for the optimal contract using backward induction on the project stage. That is,

given an arbitrary implementable utility pair, (u1, u2) ∈ U , we first solve for the principal’s
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value function and optimal policy in the second stage and then use these payoffs to find the

optimal first stage policy. We let F2 : U → R denote the principal’s second- stage value

function, which maximizes her payoff subject to incentive compatibility (i.e., (11)), delivering

the required promised utility u2 to a high type (i.e., (12)) and delivering no more than u1 to

the low type (i.e., (13)).

Formally, F2 solves

F2(u1, u2) = sup
Γ

Ea
[
Π · 1{τ2≤T} −

∫ T∧τ2

0

{cdt+ dYt}
∣∣s = 2

]
(10)

s.t. a ∈ arg max
ã

Eã
[∫ T∧τ2

0

{φ(1− ãt)dt+ dYt} |s = 2

]
(11)

u2 = Ea
[∫ T∧τ2

0

{φ(1− at)dt+ dYt}
∣∣s = 2

]
(12)

u1 ≥ max
ã

Eã
[∫ T∧τ2

0

{φ(1− ãt)dt+ dYt}
∣∣s = 1

]
. (13)

Proposition 5.2. For any ~u ∈ U , the principal’s value function in the second stage is given

by

F2(u1, u2) =
(
1− e−λu1/φ

) (
Π− c

λ

)
− u2. (14)

Moreover, conditional on reaching the second stage with promised utilities (u1, u2), the optimal

continuation contract can be implemented with a simple contract with deadline u1/φ.

The expression for the principal’s value function is intuitive in light of the single-stage

benchmark (see equation (7)). The larger is u1, the longer is the deadline the principal can

give the agent without violating (13), and therefore the higher is the probability of making

the last breakthrough. However, in contrast to the single-stage benchmark, the intangible

nature of progress leads to a decoupling of the link between the promised utility to the agent

who has truthfully reported a breakthrough (i.e., u2) and the maximum amount of time the

principal can give the agent to complete the project (i.e., u1/φ).

5.3 First-stage problem

We can now turn to the principal’s problem in the first stage. Prior to a reported breakthrough,

the principal chooses a termination rule, reward scheme and recommended action, as well as

how much utility to deliver to each type of agent upon reporting a breakthrough, denoted

by W1,W2. To induce truth telling, two additional constraints are required. We incorporate

random termination (a necessary feature of the optimal contract) by letting the principal

choose a distribution over termination dates denoted by S, which combined with a induces a
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distribution over (τ1, τ2, T ).20 Denote the corresponding expectation operator by E(a,S). The

principal’s problem in the first stage can be written as follows.

sup
Γ

E(a,S)

[
F2(W1(τ1),W2(τ1))1{τ1≤T} −

∫ T∧τ1

0

{cdt+ dYt}
∣∣∣s = 1

]
(OBJ1)

subject to

a ∈ arg max
ã

E(ã,S)

[
W2(τ1)1{τ1≤T} +

∫ T∧τ1

0

{φ(1− at)dt+ dYt}
∣∣∣s = 1

]
(15)

and for all t < T , the truth-telling constraints are given by

W1(t) ≤ U1(t) ≡ E(a,S)
t

[
W2(τ1)1{τ1≤T} +

∫ T∧τ1

t

{φ(1− at)dt+ dYt}
∣∣∣s = 1

]
(16)

W2(t) ≥ max
ã,τ̃1≥t

E(ã,S)
t

[
W2(τ̃1)1{τ̃1≤T} +

∫ T∧τ̃1

t

{φ(1− ãt)dt+ dYt}
∣∣∣s = 2

]
. (17)

The first truth-telling constraint ensures that the low-type agent does not want to falsely

report a breakthrough and the second ensures that the high-type agent cannot benefit from

“hiding” a breakthrough from the principal. To solve the principal’s first-stage problem, we

first show that it is without loss to focus on contracts in which the agent does not shirk along

the equilibrium path (Lemma 5.3). We then formulate a recursive version of the problem that

relaxes (17) and hence only requires keeping track of the low-type agent’s continuation value.

The solution to the relaxed program is characterized in Proposition 5.4. Finally, we show

that there exists a contract that satisfies the neglected constraint under which the principal

obtains the same value as in the solution to the relaxed program (Proposition 5.5).

Lemma 5.3. For any Γ satisfying (15)-(17) that involves the agent shirking over some

interval of time, there exists a Γ̂ that also satisfies (15)-(17) such that the agent does not

shirk and P0(Γ̂) ≥ P0(Γ).

The intuition for this result is similar to how a simple contract can be improved upon

as described in Section 4.1. That is, it is cheaper to compensate the agent directly with a

payment than by letting him shirk.

To formulate the problem recursively, we incorporate the principal’s ability to randomly

terminate the project by letting σ denote the hazard rate of termination. The HJB for the

20Naturally, we require S to be a right-continuous process and St to be measurable with respect to the
principal’s information set, including whether a breakthrough has been reported at (or prior to) time t.
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relaxed problem is as follows,

0 = max

{
sup

w1,w2,σ

{
λF2(w1, w2)− (λ+ σ)F1(u1)− c+ F ′1(u1)

du1

dt

}
,

u1F
′
1(u1)− F1(u1)

}
,

(HJB)

subject to

u1 ≥ w1 (NFP)

λ(w2 − u1) ≥ φ (IC)

du1

dt
= −λ(w2 − u1) + σu1 (PK)

F1(0) = 0. (BC)

The no-false-progress constraint (NFP) requires that the “reward” to a low-type agent

for falsely reporting a breakthrough (w1) is no more than what she gets for being truthful

(u1). Because F2 is increasing in w1 (Proposition 5.2), this constraint binds; the principal

would like to increase w1 above u1 following a reported breakthrough in order to give the

agent more time to make the second breakthrough, but doing so would induce a false report.

From Proposition 5.2, we also know that F2 is decreasing in w2. Increasing w2 simply means

giving more rents to a high-type agent who reports a breakthrough without increasing the

probability of project success. Clearly, there is no reason for the principal to do this except

to incentivize the low-type agent. Hence, (IC) also binds.

Having established these two intuitive features, we state the solution to the relaxed

problem and then explain several of its additional characteristics.

Proposition 5.4. The solution to (HJB) is given by

F1(u1) =



(
Π− 2c

λ

)[
1−

(
u1 − us + 2φ

λ

us + 2φ
λ

)
e−

λ
φ

(u1−us)

]
− u1 if u1 ≥ us, (18)

(
Π− 2c

λ

)[
u1

us + 2φ
λ

]
− u1 if u1 ∈ [0, us). (19)

where us is implicitly defined by(
λus
φ

+ 2

)
e−λus/φ ≡ λΠ− 2c

λΠ− c
. (20)

For all u1 ≥ us, the optimal policy involves w2 = u1 + φ/λ, w1 = u1, σ = φ
us
1{u1=us}. For
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u1 < us, the optimal policy involves giving the low-type agent continuation value of us with

probability u1/us, and terminating the project with probability 1− u1/us.

To interpret the principal’s value function, recall from Lemma 5.3 that the agent never

shirks under an optimal contract. The only source of inefficiency, therefore, is the potential for

project termination. The social value of the contract, F1(u1) + u1, thus equals the first-best

value of the project, Π− 2c/λ, times the probability the project is successfully completed,

which is the expression in square brackets of (18) and (19).

To see why the solution involves random termination, suppose instead that the optimal

contract is deterministic and let F̂1 denote the candidate value function. Then, (HJB)

becomes

λF̂1(u1) = λF2(u1, u1 + φ
λ
)− c− φF̂ ′1(u1), (21)

which has a solution of the form

F̂1(u1) = Π− 2c

λ
− u1 − u1e

−λu1
φ

(
λΠ− c
φ

)
+H1e

−λu1
φ , (22)

where H1 is an arbitrary constant. Imposing the terminal boundary condition, F̂1(0) = 0, we

get that H1 = 2c
λ
− Π. Evaluating the second derivative at u1 = 0 gives

F̂ ′′1 (0) =
λ2Π

φ2
> 0.

The convexity in F̂1 is illustrated by the dotted line in Figure 2. Clearly, the principal could

improve her payoff (above F̂1) by randomizing when the agents continuation value is near

zero, violating our supposition.

For additional intuition, three observations are useful. First, the no-false-progress con-

straint prohibits the principal from granting the agent more (expected) time following a

reported breakthrough. Second, a breakthrough in the first-stage has no value to the principal

without its counterpart in the second stage. Third, when u1 is sufficiently small, there is a

very low probability that the agent will make both breakthroughs in the maximal remaining

time that the principal can give the agent (i.e., u1
φ

). Therefore, rather than continue to “let

the clock run” (i.e., let u1 smoothly decrease), the principal prefers to use random termination,

which allows her to “pause the clock” and preserve time to make the second breakthrough

conditional on making the first one before termination occurs.

To see how us is determined, observe that the net effect of increasing the rate of termination
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Figure 2: This figure illustrates the solution to (HJB), which coincides with the principal’s value
function under the optimal contract.

impacts the second term in (HJB), i.e.,

u1F
′
1(u1)︸ ︷︷ ︸

Benefit of preserving u1

− F1(u1)︸ ︷︷ ︸
Opportunity cost of termination

The first part of this expression is the benefit to the principal of “pushing” u1 (and hence

w1) upward, which preserves additional time conditional on reaching the second stage. The

second part is just the opportunity cost of terminating the project. Since the principal’s

problem is linear in σ, the optimal point at which she begins using a flow rate of termination

(i.e., us) must be such that the net effect is exactly zero. That is,

usF
′
1(us)− F1(us) = 0, (23)

which can be interpreted as a local optimality condition. Note that for u1 > us, F1 satisfies

(21) and therefore has the form in (22). Thus, the boundary condition in (23) implies a

constant H1 for each candidate us. It turns out that maximizing H1 (and therefore F1) over

all possible us is equivalent to requiring that F1 be twice differentiable at us, i.e.,

F ′′1 (u1) = 0. (24)

which is often referred to as the super-contact condition (Dumas, 1991). The value function

stated in (18) of Proposition 5.4 is the solution to the free-boundary problem implied by

(22)-(24).
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Figure 3: This figure illustrates the optimal dynamics of continuation values under the implementation
stated in Proposition 5.5. Prior to the soft deadline (i.e., κ∗), continuation values drift down along LH .
Upon reaching κ∗, the evolution of continuation values depends on whether a breakthrough has been
reported. If it has not, they stop drifting and either jump to the origin (if terminated) or remain at κ∗.
If a breakthrough is reported at the soft deadline, then the continuation values drift down along the
dotted line toward the origin.

5.4 Optimal dynamics

The optimal dynamics are illustrated in Figure 3. At t = 0, the agent’s continuation utility

starts at uI ≡ arg maxu F1(u), the asterisk in the upper right corner of the figure. Prior to

reporting a breakthrough, the continuation utilities drift down along LH toward κ∗. If a

breakthrough is reported prior to reaching κ∗ then the optimal dynamics are not uniquely

pinned down. That is, continuation values can continue evolving downward along LH or they

can travel to the interior of UL. Eventually, however, the state must travel toward the origin

and if ~u reaches the origin prior to the second stage breakthrough, the project is terminated.

If a breakthrough is not reported prior to reaching κ∗, then the principal initiates the

probationary phase in which she randomizes over terminating the project (the state jumps

to the origin) and maintaining promised utilities at κ∗. Hence, κ∗, serves as a partially

absorbing state until the probationary phase ends with either project termination or a

reported breakthrough, at which point, the state variable again evolves toward the origin.

Conditional on reaching κ∗ and not being terminated, the promised utility to the agent once

he (truthfully) reports a breakthrough is independent of when it is reported.

5.5 Implementation

To implement the optimal contract, communication between the principal and agent is critical.

However, this communication is not required until the state reaches κ∗. That is, early on in

the life of the project the principal need not be in communication with the agent regarding

the status of the project. Instead, at t = 0, the principal simply gives the agent a future date
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(i.e., the soft deadline Ts), at which a progress report is required. If the ultimate success of

the project is realized prior to Ts then there is no need for the agent to make any report at

all.21 The principal simply compensates him based on τ2. On the other hand, once the state

reaches κ∗ (i.e., at all t ≥ Ts), the agent must report a breakthrough as soon as it arrives in

order to avoid suboptimal termination.

We refer to the implementation described above as the Minimally Optimal Communication

Contract (MOCC). It is the mechanism that minimizes the expected number of reports that

the agent will be forced to make over the life of the project subject to delivering the maximal

payoff to the principal (notice that if τ2 < Ts, then the agent does not make a report).

Because of this property, the MOCC is uniquely optimal when the agent must incur (or the

principal can impose) a small cost in order to report progress (see Section 6.1). Formally, it

can be implemented as follows.

Proposition 5.5. A two-stage project is feasible if and only if

λΠ− 2c > 2φ+ λφT ∗. (C.2)

If (C.2) holds, the optimal contract can be implemented by use of a soft deadline Ts, a long

clock Ts + us/φ, a termination rate σ = φ/us, and a reward function

Rs(τ̂1, τ2) =


φ
(

2
λ

+ 1
σ

+ Ts − τ2

)
, if τ2 ≤ Ts

φ
(
1 + σ

λ

) (
1
λ

+ 1
σ

+ max{Ts, τ̂1} − τ2

)
if 0 < τ2 −max{Ts, τ̂1} ≤ 1

σ

0 otherwise.

such that:

• If the project is not completed prior to the soft deadline Ts, the principal asks the agent

for a progress report at t = Ts.

– If the agent reports that he has made the first breakthrough (τ̂1 ≤ Ts), then he is

given the remaining time on the long clock, us/φ, to complete the project.

– If the agent reports that he has not yet made the first breakthrough, then the

principal stops the long clock and initiates a probationary phase in which the

project is terminated at constant rate σ.

21While we have employed the revelation principle and solved for the optimal mechanism assuming that the
agent reports progress immediately, the optimal contract does not require conditioning on the time at which
the first breakthrough occurs if it is less than Ts. Therefore, the principal can achieve the same ex-ante payoff
with no communication prior to Ts. Under this implementation, the principal’s expected payoff prior to the
soft deadline and project completion will depend on her belief about the project stage and will therefore be a
weighted combination of F1 and F2.
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– If the agent reports a breakthrough during the probationary phase, then he is given

the remaining time on the long clock, us/φ, to complete the project.

• The agent gets the reward Rs(τ̂1, τ2) only if the project succeeds prior to being terminated.

Even though the principal cannot substantiate the agent’s progress reports, such reports

are an essential aspect of the optimal mechanism because they are used to govern the

continuation contract: a report of “no” resulting in probation and one of “yes” resulting in

a relatively short time to complete the project.22 Indeed, permitting the agent to “remain

silent” regarding his progress would make the principal worse off as was demonstrated in

Proposition 4.1.

Several other aspects of Proposition 5.5 also warrant discussion. First, instead of using a

hard deadline and a severance payment to induce truthful reporting by the low-type agent

(as discussed in Section 4.1), the principal finds it optimal to screen types with a soft deadline

and no severance payment. In this way, the principal is able to induce the low-type agent to

continue working, which increases the probability of project success relative to the severance

contract. Second, to understand why the truth-telling constraints are satisfied, note that at

every instant of the probationary phase the low-type agent is indifferent between honestly

reporting his lack of progress (and facing continued probation while he works) and falsely

reporting progress (and optimally shirking over the time left on the long clock). The high-type

agent, however, strictly prefers reporting his true status at this point – that is, he strictly

prefers having a short period of time to complete the project to facing probation. Intuitively,

the low-type weakly prefers a lottery over a long deadline and termination to a short deadline

because he is unlikely to finish the project with a short deadline. The high-type agent strictly

prefers the short deadline since he has already made one breakthrough, he expects it will

take him less time to complete the project and does not want to risk termination.

Finally, even under the MOCC, the reward schedule is not uniquely pinned down for

τ2 > Ts. Any reward function (including those which are non-monotone in τ2) satisfying

promise keeping and incentive compatibility for the high-type agent will suffice. The reward

function given in Proposition 5.5 is the unique one meeting these criteria that induces

piecewise linear promised utility for the high-type agent.

6 Project Design

In this section we investigate three variations of the model that have implications for certain

aspects of project design. First, we consider costly reporting and ask whether there is scope

22Lemma A.1 in the appendix shows that us/φ ≤ T ∗.
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for imposing a cost on the agent in order to submit a progress report. Next, we explore the

case of asymmetric stages and ask whether it can be beneficial for the principal to design

one of the stages to be more difficult than the other. Finally, we consider the case in which

progress is unobservable to both players in order to see whether the principal can benefit

from suppressing the agent’s access to information about the status of the project. Proofs of

the formal results in this section are relegated to the online appendix.

6.1 Costly Reporting

Suppose there are two channels through which the agent may report progress: an informal

one (e.g. verbal) and a formal one (e.g., written). Both types of reports can be contracted

upon and both are falsifiable. The only operational difference between the two channels is

that the formal channel requires incurring a cost ρ > 0 (e.g., the time and effort of filling out

documentation), whereas the informal channel remains costless for the agent to use (as it

was in Section 5).23 We will assume that using the formal channel is equally costly for the

agent whether he submits a true or false report though our results hold a fortiori if the cost

is higher for a false report.

The presence of the informal channel allows us to again invoke the revelation principle

and focus only on direct mechanisms in which the agent truthfully reports progress as soon as

it arrives. If the principal elects to use only the informal channel, then the setting is identical

to the one studied in Section 5. The question is whether it is ever advantageous for her to

require the agent to use the costly channel for reporting progress.

Proposition 6.1. If the project is feasible using only the informal channel and if ρ is

sufficiently small, then:

(i) There exists us(ρ) defined implicitly by(
λus(ρ)

φ
+ 2

)
e−λus(ρ)/φ ≡ λΠ− 2c

(λΠ− c)e−λρ/φ + λρ

such that for u1 ≥ us(ρ) the principal’s value function in the first stage is

F1(u1; ρ) =

(
Π− 2c

λ

)[
1−

(
u1 − us(ρ) + 2φ

λ

us(ρ) + 2φ
λ

)
e−

λ
φ

(u1−us(ρ))

]
− u1 (25)

(ii) There exists a Ts(ρ) > 0 such that it is optimal for the principal to require the agent to

report progress through the formal channel if the project has not succeeded by Ts(ρ).

23To respect limited liability, ρ should be interpreted as a direct loss of utility rather than a monetary cost.
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Thus, the optimal contract requires the high type to document his informal claim of

progress with a formal report if he does not complete the project by Ts(ρ), which serves as

the soft deadline. Additionally, any claims of progress during the probationary phase must

be made through the formal channel.

To understand this result, first observe that the principal’s value function converges to

the case of intangible progress investigated in Section 5 as ρ goes to zero; i.e.,

lim
ρ→0

us(ρ) = us =⇒ lim
ρ→0

F1(u1; ρ) = F1(u1).

For ρ > 0, however, the principal’s payoff is impacted in two ways, one positive and one

negative. On the up side, requiring formal reports at the soft deadline relaxes the no-false-

progress constraint and allows the principal to add extra time of ρ/φ to the clock. On the

down side, with probability e−λ(u1−us(ρ))/φ the high-type agent will have to make a costly

formal report, and promise keeping necessitates that the principal compensate him for this

event. In the proof of the proposition, we show that for relatively small values of ρ, the

positive effect dominates the negative effect. In other words, the principal is better off from

an ex-ante perspective if she requires the agent to use the costly channel if the project is not

completed before the soft deadline is reached. On the other hand, if ρ is sufficiently large,

then the second effect dominates and it is optimal for the principal to use only the informal

channel.

Essentially, imposing a small cost of reporting progress on the agent after the soft deadline

helps the principal to more effectively screen types. Note that this holds even though we

have assumed that the reporting cost is the same whether or not the agent submits an

honest report. The intuition is that reporting costs relax the no-false-progress constraint

for the low type with probability one, while the cost of additional compensation to the

high type is incurred with probability less than one (i.e., an agent who has made the first

breakthrough will avoid paying the reporting cost if he completes the project prior to the soft

deadline). Reporting costs, therefore, have greater impact on an agent who has not yet made

progress, and it is this differential impact that allows the principal to benefit from making

communication costly. To illustrate this point further, it is worth noting that the principal is

strictly worse off under a direct mechanism that uses only the formal channel than under a

direct mechanism using only the informal one.

Finally, recall that the optimal contract can be implemented via the MOCC (see Section 5),

where no communication takes place prior to the soft deadline. With costly reporting,

communication prior to the soft deadline is also not required. That is, the optimal contract

can be implemented with a termination policy and wage scheme that do not depend on reports
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made using the informal channel.24 Therefore, provided that ρ is not too large, the informal

channel is unnecessary; the MOCC using only the formal channel can be used to implement

the optimum. Further, if the informal channel is unavailable (i.e., any communication requires

the agent to incur a cost ρ), then the MOCC is uniquely optimal since it minimizes the

probability of incurring the cost.

6.2 Asymmetric Stages

In many (probably most) relevant applications, each stage of the project is different. For

example, one stage may be expected to take more time (have a smaller λ), require more

working capital (higher c), and/or yield greater private benefits to the agent from shirking

(higher φ). In this subsection, we extend our analysis to a setting with stages that are not

identical.

In general, a stage k ∈ {1, 2} can be described by the pair (φk/λk, ck/λk). To fix ideas,

we set φ1 = φ2 = φ and c1 = c2 = c and parameterize the asymmetry of stages by α ∈ [−1, 1],

where
1

λ1

=
1 + α

λ
and

1

λ2

=
1− α
λ

for some fixed λ. This parametrization maintains a fixed (first-best) project value as we vary

α (i.e., Π− 2c/λ) therefore allowing us to isolate the effect of the asymmetry. Also, note that

the probability distribution of τ2 is symmetric in α. For α = 0, the two stages are identical.

For α > 0, the first stage is expected to take more time and require a larger fraction of the

total resources than the second stage. We therefore refer to the first stage as being harder if

α > 0, and easier if α < 0.

In the online appendix, we extend the formal analysis from Section 5 to this setting.

With asymmetric stages, the principal’s value function and the optimal policy has the same

structure as when the stages are symmetric. In particular, in the first stage there exists

some level of agent continuation value above which the constraints bind and below which the

principal uses random termination.

Proposition 6.2. Provided the project is feasible, the following statements hold.

(i) There exists an α ∈ (0, 1) such that the principal’s value function is strictly increasing

in α for all α ∈ (−α, α).

(ii) There exists an ᾱ ∈ (α, 1) such that the principal’s ex-ante payoff under the optimal

contract is strictly decreasing in α for α ∈ (ᾱ, 1) and strictly increasing for α ∈ (−ᾱ,−1).

24See footnote 21 for further discussion.
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(iii) As α→ ±1, the principal’s value function converges (uniformly) to that of a one-stage

project where the arrival rate is λ/2.

The first result shows that the principal is better off (worse off) if the first stage is

moderately more difficult (easier) than the second. This is due to the fact that under the

optimal contract with symmetric stages, the agent has more time (in expectation) to complete

the first stage than he does to complete the second stage. If the first stage is harder, the

principal can use this structure to her advantage. However, (ii) says that making the first

stage too difficult is not advantageous for the principal as it reduces her ability to allocate

the remaining (expected) time until termination in the most efficient manner. Note that (i)

and (ii) imply that there is some interior level of difficulty, α∗ 6= 0, which maximizes the

principal’s ex-ante payoff.25 Intuitively, as α→ ±1, the project effectively has only one stage

and the principal’s payoff converges accordingly. Part (iii) confirms this intuition.

These results have several novel implications for the optimal design of projects. For

example, it is better to design projects in a way that places more difficult are completed first.

Yet, one should be careful not to make the earlier stages too difficult as doing so inhibits the

ability to efficiently manage agency rents and allocate resources across stages. In other words,

it is always better to split a single-stage project into a project with two asymmetric stages.

6.3 Unobservable Progress

Because the agent privately observes the state of the project, the principal must give the

agent information rents in order to induce truthful reporting. However, the principal also

uses this information to more efficiently provide incentives. In considering how to design

projects, it is then natural to ask whether these benefits outweigh the costs. That is, if the

principal cannot observe progress, is it better to also restrict the agent’s ability to do so?

Our results show that the answer to the question posed above is “no.” That is, the

principal benefits more from effectively using this information than the rents she gives up to

acquire it. One implication is that, in designing projects and their incentives schemes, the

principal should focus on how best to illicit and effectively use the agent’s private information

(as was done in Section 5) rather than trying to suppress his access to it.

By way of terminology, we refer to progress as being unobservable if τ1 is not observed by

either party and hence cannot be contracted upon either directly or indirectly.

Proposition 6.3. When progress is unobservable to both the principal and the agent, the

25Furthermore, our numerical examples suggest that the principal is always better off by putting the harder
stage first, which suggests that α∗ ∈ (0, 1).
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principal’s ex-ante payoff under the optimal contract is given by

max
u

(
Π− 2c

λ

)(
1− e−λu/φ

)
−
(

Π− c

λ

) λu
φ
e−λu/φ − u,

which can be implemented using a simple contract.

When progress is privately observed by the agent, the principal can do strictly better than

a simple contract by using a more sophisticated termination policy in which the project is

terminated at a constant rate if the agent has not reported progress by the soft deadline. This

allows the principal to give a low-type agent more time to complete the project conditional

on having a breakthrough prior to being terminated. Why is it that the principal cannot

benefit from a similar strategy with unobservable progress? The reason, of course, is that the

principal has no way of knowing whether the project is still in the first stage or has progressed

to the second. Any policy which uses random termination must do so indiscriminately, which

means terminating projects that have already progressed to the next stage. This highlights

the cost of unobservable progress relative to progress privately observed by the agent.

The benefit of unobservable progress is that the agent also does not know whether progress

has been made, and it is therefore easier to induce effort.26 For example, it is no longer the case

that the agent necessarily begins shirking as the deadline approaches (i.e., Proposition 4.1 no

longer holds), which is why a simple contract remains optimal. Having derived the principal’s

maximal payoff in both scenarios, we can easily compare them.

Corollary 6.4. For any two-stage project that is feasible, under the respective optimal

contracts, the principal is strictly better off when progress is privately observed by the agent

than when it is unobservable to both the principal and the agent.

Thus the costs of suppressing the agent’s access to information are greater than the

benefits; i.e., it is better for the principal to ask a privately-informed agent for progress

reports than to contract with an agent who is unable to observe the evolution of the project.

7 Concluding Remarks

In this paper we study the optimal provision of incentives for two-stage projects in which the

agent privately observes intermediate progress. We characterize the optimal contract and

explore the implications for optimal project design.

The optimal contract exhibits features commonly observed in the execution of real-world

multistage projects. Specifically, progress reports by the individuals responsible for moving the

26This benefit is similar to the optimal contract in Fuchs (2007), in that by providing the agent with less
information, there are fewer incentive compatibility constraints to satisfy.
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venture forward are often required, although the consequences for delayed (reported) progress

are often vague or imprecise. The optimal contract with the minimal amount of communication

involves the use of a soft deadline, prior to which the agent is not required to communicate

with the principal and after which breakthroughs must be reported immediately in order

to avoid suboptimal termination. This feature closely resembles the project management

concept of “slippage,” wherein later stages of the project are delayed until either progress is

reported or the project is canceled.

Regarding the design of projects, we demonstrate three results. First, the principal

achieves a higher payoff by imposing a small cost to the agent for reporting a breakthrough

after some point. Second, the principal benefits from making the first stage somewhat more

difficult than the second. Third, the principal does better if the agent privately observes

progress and makes reports than if he does not observe progress himself.

There are numerous avenues for future work in this area. For instance, progress need

not be completely unobservable and unverifiable but might be imperfectly observed by the

principal, perhaps as the result of a costly audit. Also, we have focused on a setting with two

discrete stages. Natural extensions would be to consider a setting with more stages (or model

progress as a continuous process) and allow for the possibility of setbacks along the path to

project completion. Additionally, in order to isolate progress as an instrument for providing

incentives, we have suppressed uncertainty about the underlying value of the project. It

would be edifying to study the role of progress in an environment where parties learn about

the value of the project. Finally, our analysis is couched in a setting with full commitment

by the principal. Relaxing this assumption may well shed important light on other aspects of

the subject.
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A Appendix

Proof of Lemma 3.1. The HJB equation for the agent’s problem can be derived in the usual way.

Ut = sup
at

(λatRt + φ(1− at))dt+ (1− λatdt)Ut+dt

Using a Taylor expansion Ut+dt = Ut + U ′tdt+ o(dt), canceling Ut on both sides, dividing by dt and
taking the limit as dt→ 0, we obtain (4). The lemma follows because (i) the HJB is a necessary
condition for a to solve (3) and (ii) it is satisfied if and only if (5) holds.

Proof of Proposition 3.2. Fix an arbitrary u ∈ R+, we first show that V (u) ≤ V̄ (u). Since
maxa U0(Γ) ≥ φT , incentive compatibility and promise keeping requires that T ≤ u/φ. Because
λΠ > c ≥ φ, given any finite deadline T satisfying T ≤ u/φ, total surplus is maximized by T = u/φ
and at = 1 for all t ∈ [0, u/φ]. That is,

V (u) + u ≤ max
a,T≤u/φ

Ea
[
Π · 1{τ≤T} −

∫ T∧τ

0
cdt

]
=
(

1− e−λ
u
φ

)(
Π− c

λ

)
.

Hence,

V (u) ≤
(

1− e−λ
u
φ

)(
Π− c

λ

)
− u = V̄ (u). (A.1)

Next, let Γ(u) denote the contract with deadline Tu = u/φ, reward schemeRu(t) = φ
(

1
λ + u/φ− t

)
and at = 1 for all t ∈ [0, T (u)]. Notice that P0(Γ(u)) = V̄ (u), U0(Γ(u)) = u, and Γ(u) is incentive
compatible. Hence V (u) ≥ V̄ (u), which combined with (A.1) implies V (u) = V̄ (u).

Proof of Proposition 5.2. We first show that the expression on the right side of (14) is an upper
bound. For ~u ∈ UL ∪ LH , we then show there exists a simple contract that achieves this bound. For
~u ∈ UH \ LH , we construct a sequence of contracts under which the principal’s value converges to
the right-hand side of (14). To derive the bound, note that

max
ã

Eã
[∫ T∧τ2

0
(φ(1− ãt)dt+ dYt)

∣∣s = 1

]
≥ Eã=0

[∫ T∧τ2

0
(φ(1− ãt)dt+ dYt)

∣∣s = 1

]
≥ Eã=0

[∫ T∧τ2

0
φdt
∣∣s = 1

]
= φE[T ].

Therefore, to satisfy (13), the termination policy must be such that E[T ] ≤ u1/φ. The promise
keeping constraint requires

u2 − Ea
[∫ T∧τ2

0
φ(1− at)dt

∣∣s = 1

]
= Ea

[∫ T∧τ2

0
dYt
∣∣s = 1

]
,

and substituting into (10), we get that

F2(u1, u2) ≤ sup
a,T

Ea
[
Π · 1{τ2≤T} −

∫ T∧τ2

0
(c− φ(1− at))dt

∣∣s = 1

]
− u2, s.t. E[T ] ≤ u1/φ.

The right-hand side is increasing in at, hence

F2(u1, u2) ≤ sup
T

(
Π− c

λ

)
E
[
1− e−λT

]
− u2, s.t. E[T ] ≤ u1/φ.
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By Jensen’s inequality we have that E
[
1− e−λT

]
≤ 1− e−λE[T ], which is strictly increasing in E[T ],

and therefore the constraint binds. Inserting E[T ] = u1/φ completes the proof of the bound.
For ~u ∈ UL ∪ LH , the bound can be achieved by a simple contract with a deadline of T = u1/φ

and R(t) = φ
(

1
λ + T − t

)
+ q where q = u2−u1

1−e−λu1/φ . For ~u ∈ UH \ LH , consider the sequence of
simple contracts indexed by S and defined as follows:

RS(t) =

{
U2(t) + S(U2(t)− U1(t)), t ∈ [0,∆S ]

U2(t) + φ
λ , t ∈ (∆S , TS ]

∆S =
1

λ(S − 1)
ln

(
u2 − u1

φ
λ

)

TS =
U1(∆S)

φ
,

where U2(t) and U1(t) are given by (A.8) and (A.9) respectively. By construction, we have that

u2 =

∫ TS

0
λe−λtRS(t)dt

u1 =

∫ ∆S

0
λ2te−λtRS(t)dt+ e−λ∆S (1 + λ∆S)φ(TS −∆S)

RS(t) ≥ U2(t) +
φ

λ
.

Therefore, it is incentive compatible for the high-type agent to work for all t ∈ [0, TS ] and his
expected payoff from doing so is exactly u2. Furthermore, given that U2(t) = U1(t) + φ

λ for all
t ≥ ∆S , the maximal payoff to the low type is exactly u1. Finally, the expected payoff to the
principal under this contract is given by PS =

(
1− e−λTS

) (
Π− c

λ

)
− u2 and limS→∞ TS = u1/φ

implies that limS→∞ PS = F2(u1, u2).

Proof of Lemma 5.3. First, note that Proposition 5.2 implies it is optimal to induce effort conditional
on reaching the second stage. Therefore, it suffices to prove the same result holds in the first stage.
To obtain a contradiction, let (t1, t2) denote an arbitrary interval of time over which the agent
shirks in the first stage under Γ, where 0 ≤ t1 < t2 ≤ T . To conserve notation, we assume that
Γ involves a deterministic termination rule (the arguments in the proof can easily be extended).
Define ∆ = t2 − t1. Let Γ̂ be such that prior to a reported breakthrough:

(i) T̂ = T −∆,

(ii) For all t < t1, (ât, Ŷt, Ŵ1(t), Ŵ2(t)) is identical to (at, Yt,W1(t),W2(t)),

(iii) For t ∈ (t1, T̂ ), let (ât, Ŷt, Ŵ1(t), Ŵ2(t)) = (at+∆, Yt+∆,W1(t+ ∆),W2(t+ ∆)),

(iv) At time t1, the principal makes an unconditional payment to the agent in the amount of

dŶt1 = φ∆ + Ea=0
[∫ t2
t1
dYt|s = 1

]
.

It is straightforward to check that if Γ satisfies (15)-(17) for all t < T then Γ̂ satisfies (15)-(17)
for all t < T̂ . Prior to t1, both the agent’s action and the principal’s payoff conditional on a
breakthrough is the same under both contracts. If a breakthrough does not happen prior to t1, then
Pt1(Γ̂) = Pt1(Γ) + (c− φ)∆ ≥ Pt1(Γ). Hence, P0(Γ̂) ≥ P0(Γ).
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Proof of Proposition 5.4. First, we construct the value function under the stated policy. Using the
boundary conditions (23) and (24), we pin down us and show that the value function under the
stated policy indeed has the form given by (18)-(19). We then verify that, given the us implied
by the boundary conditions, the value function in (19)-(18) solves (HJB). That maxu F1(u) is
an upper bound on the solution to (OBJ1) is immediate (since it relaxes (17)). In the Proof of
Proposition (5.5), we show there exists a contract satisfying this additional constraint that achieves
the bound.

For u > us, F1 evolves according to (21) and therefore has a solution of the form (22). For
u < us, the principal’s value under the stated policy is given by

F1(u1) =
u1

us
F1(us) (A.2)

There are two unknowns to pin down: (us, H1). Solving (23) for H1 gives

H1 =
λus

(
−cλ

(
Πφ
(
e
λus
cφ − 2

)
+ us

)
+ Πλ2us + 2c2φ

(
e
λus
cφ − 1

))
cφ(cφ+ λus)2

.

Plugging this expression into (24), (or, equivalently, maximizing H1 over all possible us), we get
that us is defined implicitly by (20) and hence

H1 =

(
λus
φ
− 2

)(
Π− c

λ

)
. (A.3)

Substituting (A.3) into (22), we get (18). Then (19) follows from (A.2), which verifies that the
value function under the stated policy for us given by (20) indeed has the stated form.

Finally, we verify that F1 solves (HJB) subject to the four constraints. Given us as defined
implicity by (20), one can easily check that F1(0) = 0 and thus (BC) is satisfied. Using arguments
already given in the text, subject to (IC), (PK), and (NFP), we have that

sup
w1,w2,σ

{
λF2(w1, w2)− (λ+ σ)F1(u1)− c+ F ′1(u1)

du1

dt

}
= λ(F2(u1, u1 + φ/λ)− F1(u1))− c− φF ′1(u1)︸ ︷︷ ︸

Ls(u1)

+ sup
σ

{
σ
(
u1F

′
1(u1)− F1(u1)

)}
,

and by construction, Ls(u1) = 0 for u1 ≥ us and u1F
′
1(u1) − F1(u1) = 0 for u1 ≤ us. Hence, it

is sufficient to show that (i) Ls(u1) ≤ 0 for u1 < us, and (ii) u1F
′
1(u1) − F1(u1) ≤ 0 for u1 > us.

For (i), notice from (18) that Ls is concave and hence L′s is decreasing for all u1 ∈ [0, us). That
L′s(us) = 0 implies Ls is increasing below us, and that Ls(us) = 0 then gives the result. For (ii),
notice from (18) that F ′′1 (u1) < 0 and hence u1F

′
1(u1)− F1(u1) is decreasing for all u1 > us. The

result then follows since usF
′
1(us) = F1(us).

The following lemma will be used in the proof of Proposition 5.5.

Lemma A.1. Define uI ≡ arg maxu≥0 F1(u).

1. If (C.2) holds strictly, then us < φT ∗ < uI and F1(uI) > 0.

2. If (C.2) holds with equality, then us = φT ∗ = uI and F1(uI) = 0.

3. If (C.2) is violated, then F1(uI) < 0.
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Proof. A non-trivial solution to the contract-design problem exists under intangible progress if and
only if uI > us satisfies the first-order condition(

λΠ− c
φ

)(
λ(uI − us)

φ
+ 1

)
e−λuI/φ − 1 = 0, (A.4)

or

us = uI +
φ

λ

(
1− eλ(uI/φ−T ∗)

)
.

The right hand side is maximized when uI = φT ∗, in which case us = φT ∗. Therefore uI > us iff
φT ∗ > us. To determine when φT ∗ > us, consider the function

J(u) ≡ Π− 2c

λ
−
(

Π− c

λ

)(λu
φ

+ 2

)
e−λu/φ.

Observe that J(0) = −Π, limu→∞ J(u) = Π− 2c/λ, and J ′(u) > 0 for all u <∞. Moreover, from
(20), J(us) = 0. Therefore, φT ∗ > us ⇐⇒ J(φT ∗) > 0. The latter is equivalent to (C.2).

Proof of Proposition 5.5. Let Γs denote the contract stated in the proposition with

Ts ≡ max

{
uI − us

φ
, 0

}
.

We first show that Γs induces the prescribed behavior by the agent (i.e., truth telling and no
shirking). Start from any t ≥ τ1 (i.e., after a breakthrough has been made), and let U2(τ1, t) denote
the high-type agent’s equilibrium continuation value at time t from following the prescribed behavior
in Γs.

• If τ1 ≥ Ts, then

U2(τ1, t) =

∫ τ1+1/σ

t
λe−λ(τ2−t)Rs(τ1, τ2)dτ2 = φ

(
1 +

σ

λ

)( 1

σ
+ τ1 − t

)
. (A.5)

To verify it is optimal for the agent to work (conditional on reporting truthfully) until making
the second breakthrough or until running out of time, notice that

λ(Rs(τ1, t)− U2(τ1, t)) = φ
(

1 +
σ

λ

)
> φ.

Hence, working is strictly optimal. To verify that it is optimal for the agent to report progress
immediately (i.e., that(17) holds), note that for any t ≥ Ts,

W2(t) = U2(t, t) = φ

(
1

λ
+

1

σ

)
.

Due to the stationarity of the continuation contract, if the agent prefers to delay reporting
progress at t = τ1, then he prefers to delay reporting progress indefinitely (i.e., to never report
progress). If he delays a report then it is strictly optimal to shirk (since the reward is zero if
τ2 ∈ (Ts, τ̂1)) and his expected payoff is∫ ∞

t
σe−σ(s−t)φ(s− t)ds =

φ

σ
< U2(t, t).
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Hence, the agent strictly prefers to report progress as soon as it arrives for all τ1 ≥ Ts.

• If τ1 < Ts, then

U2(τ1, t) =

∫ Ts

t
λe−λ(τ2−t)Rs(τ1, τ2)dτ2 +

∫ Ts+1/σ

Ts

λe−λ(τ2−t)Rs(τ1, τ2)dτ2 = φ

(
1

λ
+

1

σ
+ Ts − t

)
.

Hence, λ(Rs(τ1, t)−U2(τ1, t)) = φ and at = 1 is weakly optimal, regardless of whether progress
is reported (since Rs is independent of τ̂1 for τ2 ≤ Ts). Further, the same argument as in the
bullet above shows that the agent prefers to report progress at t = Ts and work from that
point forward.

Now consider any t ≤ τ1 (i.e., prior to a breakthrough being made). Let U1(t) denote the
low-type agent’s equilibrium continuation value at time t under Γs.

• If t ≥ Ts, then W2(t) = φ
(

1
λ + 1

σ

)
and thus

U1(t) =

∫ ∞
t

λe−(λ+σ)(τ1−t)W2(τ1)dτ1 =
φ

σ
. (A.6)

Since λ(W2(t)− U1(t)) = φ, working is (weakly) optimal for the agent. Next, we verify that
the agent does not want to falsely report progress at any t ≥ Ts. Due to the stationarity of the
continuation contract, if the agent prefers to falsely report progress at t > Ts, then he prefers
to do so at t = Ts. Thus, suppose he falsely reports progress at the soft deadline. Let Ũ(t) be
his expected payoff at t ≥ Ts from acting optimally henceforth. Consider the following chain

Ts < t ⇐⇒ φ
(σ
λ

)( 1

σ
+ Ts − t

)
<
φ

λ

⇐⇒ φ
(

1 +
σ

λ

)( 1

σ
+ Ts − t

)
− φ

(
1

σ
+ Ts − t

)
<
φ

λ

⇐⇒ U2(τ1, t)− φ
(

1

σ
+ Ts − t

)
<
φ

λ
,

where the last line follows from (A.5). Next note that

φ

(
1

σ
+ Ts − t

)
≤ Ũ(t),

because the left side is the payoff to the agent from falsely reporting progress at Ts, having
no breakthrough, and shirking from date t to Ts + 1

σ and the right side is his expected payoff
from falsely reporting progress at Ts, having no breakthrough, and acting optimally from date
t to Ts + 1

σ . Thus we have

U2(t)− Ũ(t) <
φ

λ
,

which says that it is suboptimal for the agent to work at any t > Ts after falsely reporting
progress at Ts. Thus, if the agent falsely reports progress at Ts, then it is optimal for
him to shirk until time runs out; i.e., Ũ(t) = φ

(
1
σ + Ts − t

)
. Finally, recall that φ/σ is the

agent’s expected payoff from honestly reporting no progress at Ts and then working while
on probation. Thus, at Ts the agent is indifferent between honestly reporting no progress
and then (optimally) working while on probation and falsely reporting progress and then
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(optimally) shirking until time runs out. Therefore, honestly reporting no progress at Ts is
weakly optimal.

• Next, consider t < Ts. Noting that

W2(t) =

{
φ
(

1
λ + 1

σ + Ts − t
)
, if t < Ts

φ
(

1
λ + 1

σ

)
, if t ≥ Ts.

and

U1(t) =

∫ Ts

t
λe−λ(τ1−t)W2(τ1)dτ1 +

∫ ∞
Ts

λe−(λ+σ)(τ1−t)W2(τ1)dτ1 = φ

(
1

σ
+ Ts − t

)
, (A.7)

we get that λ(W2(t)− U1(t)) = φ for all t < Ts, which shows that working is weakly optimal.
Finally note that working until Ts is also optimal for the agent if he plans to falsely report
progress at Ts, that is Ũ(t) = U1(t) for t ≤ Ts.

Thus we have shown that Γs induces truth-telling and no shirking. Next we verify that the principal’s
expected payoff under Γs corresponds to F2(Ũ(t), U2(t)) in the second stage and F1(U1(t)) in the
first stage.

Second Stage: Suppose the agent has made the first breakthrough. By the above analysis, he
immediately and truthfully reports τ1 and continues to work until he makes the second breakthrough
or runs out of time.

For any t ∈ [max{Ts, τ1},max{Ts, τ1}+ 1/σ] the principal’s expected payoff is thus

∫ max{Ts,τ1}+1/σ

t
λe−λ(τ2−t)

(
Π− c

λ
−Rs(τ1, τ2)

)
dτ2

=
(

Π− c

λ

)(
1− e−λ(1/σ+max{Ts,τ1}−t)

)
− φ

(
1 +

σ

λ

)( 1

σ
+ max{Ts, τ1} − t

)
= F2(Ũ(t), U2(t)).

Similarly for t ∈ [τ1, Ts], the principal’s expected payoff is

∫ Ts

t
λe−λ(τ2−t)

(
Π− c

λ
−Rs(τ1, τ2)

)
dτ2 +

∫ Ts+1/σ

Ts

λe−λ(τ2−t)
(

Π− c

λ
−Rs(τ1, τ2)

)
dτ2

=
(

Π− c

λ

)(
1− e−λ(1/σ+Ts−t)

)
− φ

(
1

λ
+

1

σ
+ Ts − t

)
= F2(Ũ(t), U2(t)).

First Stage: Now suppose the agent has not yet made the first breakthrough. For t ≥ Ts, Γs calls
for random termination at rate σ, so the principal’s expected payoff is∫ ∞
t

λe−(λ+σ)(τ1−t)
((

Π− c

λ

)(
1− e−λ/σ

)
− c

λ
− φ

(
1

λ
+

1

σ

))
dτ1

=

(
λ

λ+ σ

)(
Π− 2c

λ
−
(

Π− c

λ

)
e−λ/σ

)
− φ

σ

= F1(U1(Ts)),

where the last equality follows from us = φ
σ and substituting from (20). For t < Ts the principal’s
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expected payoff is∫ Ts

t
λe−λ(τ1−t)

((
Π− c

λ

)(
1− e−(1/σ+Ts−τ1)

)
− φ

(
1

λ
+

1

σ
+ Ts − τ1

)
− c

λ

)
dτ1 + F1(U1(Ts))e

−λ(Ts−t)

=

(
Π− 2c

λ

)(
1− e−λ(Ts−t)

)
+ λ

(
1

σ
+ Ts − t

)(
Π− c

λ

)
e−λ(1/σ+Ts−t) − φ

(
1

σ
+ Ts − t

)
= F1(U1(t)),

where the last equality follows from U1(t) = φ
(

1
σ + Ts − t

)
, us = φ

σ , and using (20) to substitute.
Further, U1(0) = φ(Ts + 1/σ) = uI , so that F1(U1(0)) = F1(uI), which we have already argued is an
upper bound on the solution to the principal’s problem (see Proof of Proposition 5.4).

Thus, we can conclude that Γs is an optimal contract. Finally, that (C.2) is necessary and
sufficient for a feasible contract to exist follows immediately from Lemma A.1.
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B Supplemental Appendix (for online publication only)

B.1 Omitted Proofs

Proof of Lemma 5.1. Any implementable ~u such that u1 = 0 must involve immediate termination
with probability one, otherwise the low-type agent can shirk and obtain a strictly positive expected
payoff. Hence, if u1 = 0 then it must also be that u2 = 0. Also, clearly the high type can achieve a
weakly higher payoff then the low type given any Γ. Hence, any implementable pair must satisfy
u2 ≥ u1. Therefore, U ⊆ {(u1, u2) ∈ R2

++ : u2 ≥ u1}∪ (0, 0). The rest of the proof is by construction.
Any ~u ∈ UL can be implemented by providing the agent a choice between two contracts. The first

contract terminates the project immediately with a severance payment, P = u1. The second contract
has a deadline T = u1/φ and a reward function R(t) = φ

(
1
λ + T − t

)
+ q where q = u2−u1

1−e−λu1/φ .
Clearly, the first contract delivers u1 to both types. Under the second contract, the low type will
strictly prefer to shirk (yielding a payoff of u1) and the high type will strictly prefer to work (yielding
an expected payoff of u2 ≥ u1). Hence, each type weakly prefers to report truthfully and any ~u ∈ UL
is implementable.

To prove that any ~u ∈ UH can be implemented, we use a contract that is independent of the
agent’s report for a period of length ∆ at which point the continuation utilities are (û1, û2) ∈ UL
and the contract in the above paragraph is implemented for t > ∆. To do so, define S = u2

u1
> 1

(since (u1, u2) ∈ UH). Let (û1, û2) be the point in LH that intersects the ray with slope S that goes
through the origin and (u1, u2):

Sû1 = û1 +
φ

λ
⇐⇒ û1 =

φ

λ

(
u1

u2 − u1

)
, and û2 =

φ

λ

(
u2

u2 − u1

)
.

Let U2(t), U1(t) be the functions jointly satisfying

dU2

dt
= λS(U1(t)− U2(t)), U2(0) = u2

dU1

dt
= λ(U1(t)− U2(t)), U1(0) = u1,

which have unique solutions given by

U2(t) =
1

S − 1

(
S
(
u1 + (u2 − u1)e−λt(S−1)

)
− u2

)
(A.8)

U1(t) =
1

S − 1

(
Su1 − u2 + (u2 − u1)e−λt(S−1)

)
. (A.9)

Note that U2(t)− U1(t) = (u2 − u1)e−λt(S−1), so define ∆ such that U2(∆)− U1(∆) = φ
λ . That is

∆ =
1

λ(S − 1)
ln

(
u2 − u1

φ/λ

)
.

Finally, let R̂(t) = U2(t) + S(U2(t)− U1(t)) for all t < ∆. Note that for t < ∆, neither type shirks
since R̂(t) ≥ U2(t) + φ

λ and U2(t) ≥ U1(t) + φ
λ . By construction, the contract that (i) pays R̂(t)

for ultimate success prior to ∆ and (ii) implements the contract from the first paragraph at t = ∆
(at which point (U1(∆), U2(∆)) = (û1, û2) ∈ UL) delivers the desired expected utilities and induces
truth telling, which completes the proof.

Proof of Proposition 6.1. The proof takes several steps. In Steps 1 through 3 we assume that the
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principal must use the formal channel, but that she does so optimally. In Step 4 we prove that for ρ
sufficiently small it is, in fact, optimal for the principal to use the formal channel.
Step 1. First observe that the only possible reason for requiring a costly report is to relax the no-
false-progress constraint so as to add more time to the clock following the first reported breakthrough.
This implies that the formal communication channel should only be used to report progress (not lack
of progress). Next, observe that it cannot be optimal for the principal to require the costly formal
report at date t and take no action until date t′ > t, because this is dominated by waiting until t′

to require the report. (The project might be completed between t and t′.) Thus, it is optimal to
putoff requiring a formal report as long as possible. Let y be the highest value of the low type’s
continuation utility at which the principal requires a formal report, and let F2(u1, u2; ρ) denote the
principal’s value function in the second stage. This value function is given by

F2(u1, u2; ρ) =
(

Π− c

λ

)(
1− e−λ(u1+ρ)/φ

)
− u2 − 1{u1≤y}ρe

−λ(u1−y)/φ. (A.10)

This is established using the same method of proof as for Proposition 5.2 with two straightforward
alterations. First, to satisfy (13), the termination policy must be such that E[T ] ≤ (u1 + ρ)/φ.
Second, for u1 ≤ y, there is a chance that the high type will have to pay the reporting cost. Therefore,
the promise keeping constraint necessitates

u2 + ρe−λ(u1−y)/φ = Ea=1

[∫ T∧τ2

0
dYt
∣∣s = 1

]
,

Because F2(u1, u2; ρ) is concave in u1 and linear in u2, σ = 0 is optimal.
Step 2. We solve for the first-stage value function assuming σ = 0 and check for concavity. The
HJB is

λF1(u1; ρ) = max
y≥0

λF2(u1, u1 + φ/λ; ρ)− c− φdF1

du1
.

Because the principal prefers to delay formal reports as long as possible, y = 0 is optimal. Therefore
we have

λ

φ
F1(u1; ρ) + F ′1(u1; ρ) =

λ

φ

[
Π− 2c

λ
− φ

λ
− u1 −

(
ρ+

(
Π− c

λ

)
e−λρ/φ

)
e−λu1/φ

]
.

This has a solution of the form

F c1 (u1; ρ) = Π− 2c

λ
− u1 −

(
ρ+

(
Π− c

λ

)
e−λρ/φ

) λu1

φ
e−λu1/φ +Ke−λu1/φ. (A.11)

Using the boundary condition F1(0; ρ) = 0 gives

F c1 (u1; ρ) =

(
Π− 2c

λ

)(
1− e−λu1/φ

)
− u1 −

(
ρ+

(
Π− c

λ

)
e−λρ/φ

) λu1

φ
e−λu1/φ.

For small ρ, this is convex for u1 sufficiently close to zero, necessitating random termination at some
point us(ρ).
Step 3. Using the same analysis as in the proof of Proposition 5.4 yields (25), where y = us(ρ) is
implicitly defined by

Π− 2c

λ
−
(
ρ+

(
Π− c

λ

)−λρ/φ)(
2 +

λus(ρ)

φ

)
e−λus(ρ)/φ ≡ 0.
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Step 4. Define uI(ρ) ≡ arg maxu≥0 F1(u; ρ). We wish to show that for ρ sufficiently small,

F1(uI(ρ); ρ) > F1(uI). Because limρ→0 uI(ρ) = uI , the claim will follow if we show ∂F1(uI ;0)
∂ρ > 0.

Applying the Envelope Theorem

∂F1(uI ; 0)

∂ρ
= u′s(0)

λ

φ

(
Π− c

λ

)
e−λuI/φ +

λ

φ

(
Π− c

λ
− φ

λ

)(
2 +

λ(uI − us)
φ

)
e−λuI/φ.

Moreover

u′s(0) = −

(
Π− c

λ −
φ
λ

)(
2 + λus

φ

)
(
Π− c

λ

) (
1 + λus

φ

) .

Therefore
∂F1(uI ; 0)

∂ρ
=

[
λ

φ
e−λuI/φ

(
Π− c

λ
− φ

λ

)][
2 +

λ(uI/us)

φ
−

2 + λus
φ

1 + λus
φ

]
.

The first term in brackets is evidentally strictly positive. Moreover, it follows from uI > us > 0 and
straightforward algebra that the second term in brackets is also strictly positive.

Proof of Proposition 6.2. First, we extend the analysis from Section 5.3 to characterize Fα1 for an
arbitrary α. Using the same arguments as in Proposition 5.2, we have that

Fα2 (u1, u2) =

(
1− e−

λu1
(1−α)φ

)(
Π− c(1− α)

λ

)
− u2

Replacing F2 with Fα2 in (HJB) and the appropriately modified (binding) constraints, we find that
Fα1 has the form

F̂α1 (u1) =

(
Π− 2c

λ
− u1

)
+

(
1− α

2α

)(
Π− (1− α)c

λ

)
e
− λu1

(1−α)φ + Cα1 e
− λu1

(1+α)φ . (A.12)

If the terminal boundary condition is imposed (F̂α1 (0) = 0) then Cα1 = −(1+α)(λΠ−c(1+α))
2αλ and

F̂α′′1 (0) = λ2Π
(1−α2)φ

> 0. Hence, there exists some us(α) such that random termination is optimal

for u ∈ (0, us(α)]. Let cα(u) denote the constant in the principal’s value function that satisfies the
smooth-pasting condition (i.e., (23)) at an arbitrary u > 0. That is,

cα(u) ≡
(α+1)e

2αλu
(α2−1)φ

(
c

(
φ

(
α2−2α+4αe

λu
φ−αφ+1

)
+u(λ−αλ)

)
−λΠ

(
−αφ+2αφe

λu
φ−αφ+λu+φ

))
2αλ(αφ+λu+φ) . (A.13)

Twice differentiability at us(α) (i.e., (24)) is equivalent to us(α) = maxu c
α(u), which requires the

first-order condition
eλus(α)/φ(1−α)

λus(α) + 2φ
=

λΠ− c(1− α)

φ(1− α)(λΠ− 2c)
. (A.14)

The right-hand side of the above expression is strictly greater than 1/2φ for all α ∈ (−1, 1). The
left-hand side is equal to 1/2φ at us(α) = 0, strictly increasing in us(α) and unbounded. This
guarantees the existence of a unique us(α) satisfying (A.14), which completes the characterization
of Fα1 . To summarize,

• For u ≥ us(α), Fα1 is of the form given in (A.12) with Cα1 = cα(us(α)), where uαs is the unique
solution to (A.14).
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• For u ∈ [0, us(α)), Fα1 (u) = u
us(α)F

α
1 (us(α)).

To prove (i), first note that by the envelope theorem d
dαc

α(us(α)) = ∂
∂αc

α(us(α)). Using this
fact, evaluating the derivative and taking the limit as α→ 0, we get that for u ≥ us(0) = us,

lim
α→0

(
d

dα
Fα1 (u)

)
=

e−λuφ (u(λus + φ)− λu2
s

)
φ2(λus + φ)2

×
(

Πλ
(
λ2u2

s − φ2
(
e
λus
φ − 1

)
+ λusφ

)
− c

(
λ2u2

s − 2φ2
(
e
λus
φ − 1

)
+ 2λusφ

))
.

The first-term on the right hand side is clearly positive for u ≥ us. Using (A.14), the second term

reduces to λ(λus + φ)((λΠ− c)us −Πφ), which is also clearly positive if λus/φ >
λΠ/c
λΠ/c−1 . We now

claim that if us solves (A.14) for α = 0, then this latter inequality must hold. Let x ≡ λus/φ ≥ 0,
y ≡ λΠ/c− 2 > 0, and α = 0. The claim is that

ex

x+ 2
=
y + 1

y
=⇒ x >

y + 2

y + 1
.

To see that this is true, suppose that ex

x+2 = y+1
y and x ≤ y+2

y+1 . Note that ex

x+2 is strictly increasing.
Therefore,

ex

x+ 2
≤ e

y+2
y+1

y+2
y+1 + 2

<
y + 1

y
,

which gives the contradiction. We have thus shown that at α = 0, the derivative of Fα1 (u) w.r.t. α
is strictly positive for all u ≥ us(α). That the same statement is true for u ∈ (0, us) is immediate
by the linearity of the value function below us. Since Fα1 is also continuously differentiable in both
of its arguments, it must be strictly increasing in a neighborhood around α = 0 for all u > 0, which
completes the proof of (i).

We prove (ii) and (iii) for the case of α→ 1, the proof for α→ −1 follows a similar argument.
We first show that limα→1 us(α) = 0. To do so, rewrite (A.14) as

φ(1− α)eλus(α)/φ(1−α) =
(λΠ− c(1− α))(λus(α) + 2φ)

λΠ− 2c
.

Suppose us(1) ≡ limα→1 us(α) ∈ (0,∞). Then limα→1 φ(1−α)eλus(α)/φ(1−α) =∞ > (λΠ−c(1−α))(λus(1)+2φ)
λΠ−2c ,

a contradiction. Also, clearly us(1) <∞ otherwise the principal’s value function would be arbitrarily
negative. The only remaining possibility is us(1) = 0.

From (A.12), we have that for u ≥ uαs ,

lim
α→1

(
d

dα
Fα1 (u)

)
= e
−λu

2φ lim
α→1

(
λu

4φ
cα(us(α)) +

∂

∂α
cα(us(α))

)
.

Notice from (A.13) that limα→1 (limu→0 c
α(u)) = limu→0 (limα→1 c

α(u)) = −(Π− 2c/λ). Therefore,
we can conclude that limα→1 c

α(us(α)) = −(Π− 2c/λ). Hence, to prove (ii), it is sufficient to show

that limα→1
∂
∂αc

α(us(α)) = 0, for this implies d
dαF

α
1 (u) ≈ −e−

λu
2φ (Π − 2c/λ)λu4φ < 0 for u ≥ us(α)

and α sufficiently close to 1. To see that limα→1
∂
∂αc

α(us(α)) = 0, first notice from (A.14) that

lim
α→1

e
− λus(α)
φ(1−α)

(1− α)
∈ (0,∞), (A.15)
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implying that us(α) is O((1− α) ln(1− α)) as α→ 1. Differentiating (A.13) with respect to α and
omitting the argument of us(α), we get that

∂

∂α
cα(us(α)) =

e
2αλus

(α2−1)φ

2(1− α)2α2(α+ 1)λφ(αφ+ λus + φ)2
×
[
λΠ
(

(1− α)2(α+ 1)3φ3 + 2λ3u3
sα
(
α2 + 1

)
+ λ2u2

sφ
[
3α+ 2α4e

λus
φ(1−α) + α3

(
5− 4e

λus
φ(1−α)

)
+ α2

(
2e

λus
φ(1−α) − 1

)
+ 1
]

+ 2(1− α)(α+ 1)2λusφ
2
)

− (1− α)c
[
(α− 1)2(α+ 1)4φ3 + 2α

(
α2 + 1

)
λ3u3

s − λ2u2
sφ
(
α4 − 4α+ 4α3

(
e

λus
φ(1−α) − 1

)
− 4α2e

λus
φ(1−α) − 1

)
+ 2(1− α)(α+ 1)3λusφ

2
]]
.

Using (A.15), we know that e
2αλus(α)

(α2−1)φ is O(1−α) as α→ 1. Therefore, any term inside the outermost
brackets that goes to zero faster than O(1− α) will converge to zero when scaled by the fraction
outside the brackets. By inspection, the only terms that do not clearly go to zero faster than
O(1− α) are

λ2us(α)2φ

[
2α4e

λus(α)
φ(1−α) − 4α3e

λus(α)
φ(1−α) + 2α2e

λus(α)
φ(1−α)

]
.

Thus, we get have that

lim
α→1

(
∂

∂α
cα(us(α))

)
= lim

α→1

 e
2αλus(α)

(α2−1)φ e
λus(α)
φ(1−α)

(1− α)2(α+ 1)(αφ+ λus(α) + φ)2
λus(α)2

[
α2 − 2α+ 1

]
= lim

α→1

 e
λus(α)
(1+α)φ

(α+ 1)(αφ+ λus(α) + φ)2
λus(α)2


=

λ

4φ2

(
lim
α→1

us(α)
)2

= 0,

which completes the proof of (ii). For (iii), we have

F̂α1 (u)− V̄
λ
2 (u) =

(
1− α

2α

)(
Π− (1− α)c

λ

)
e
− λu

(1−α)φ + Cα1 e
− λu

(1+α)φ −
(

Π− 2c

λ

)
e
−λu

2φ

≤
(

1− α
2α

)(
Π− (1− α)c

λ

)
+

∣∣∣∣Cα1 − (Π− 2c

λ

)∣∣∣∣+
∣∣∣Cα1 (e− λu

φ(1+α) − e−
λu
2φ

)∣∣∣
≤
(

1− α
2α

)
Π + |Cα1 − (Π− 2c/λ)|+

∣∣∣∣Cα1 (e−x∗(α)2 − e−
x∗(α)
(1+α)

)∣∣∣∣ ,
where the first inequality uses the triangle inequality and e−|x| ≤ 1 and the second uses the fact that

e−
x
2 − e−

x
(1+α) is hump-shaped in x and achieves its maximum at x∗(α) ≡ 2(1 + α) ln(1+α

2 )/(α− 1).
Clearly all three terms converge to 0 as α→ 1.
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Proof of Proposition 6.3. Consider first any simple contract with deadline T . If the agent does not
shirk,27 then the probability that the project succeeds at t ∈ [0, T ] is given by λ2te−λt and the
probability that the project does not succeed prior to T is given by e−λT (1 + λT ). Therefore, the
total surplus is given by

S(T ) ≡
∫ T

0
λ2te−λt(Π− ct)dt+ e−λT (1 + λT )(−cT ).

In order to induce the agent to work, he must be given rents in the amount of at least u = φT ,
otherwise he can do better by shirking. Making the change of variables from T to u, we have that
the principal’s ex-ante expected payoff under a simple contract with deadline T = u/φ is bounded
above by

G(u) ≡ S(u/φ)− u =
(

1− e−λu/φ(1 + λu/φ)
)

Π− 2c

λ

(
1− e−λu/φ(1 + λu/2φ)

)
− u. (A.16)

Note that G(u) is not the principal’s value function under the optimal contract, since her belief
about the project stage changes over time. We will construct the value function shortly. To prove
the proposition, it suffices to show that

(i) The principal’s ex-ante payoff for a project with unobservable progress under any contract is
bounded above by maxuG(u).

(ii) There exists an incentive-compatible simple contract under which the principal’s ex-ante
expected payoff is maxuG(u).

(iii) For all u > 0, G(u) < F1(u). Therefore, the principal does strictly better with intangible
progress than she does with unobservable progress.

For (i), let w∗ = arg maxuG(u), which is generically unique. We have already argued that the
principal’s maximal payoff under a simple contract is bounded above by G(w∗). Given that neither
player has any information about the status of the project, the only possibility is that the principal
randomizes over the termination date. It therefore suffices to show that the principal cannot benefit
from such randomization, or equivalently, that the principal’s value function (under this simple
contract with the optimally chosen deadline) is globally concave in the agent’s continuation value.

Suppose that the principal can implement a simple contract in which the incentive compatibility
condition holds with equality for all t (this is the best possible case for the principal). It is most
intuitive to construct this value function from the pair of value functions that are conditional on s
(i.e., whether a breakthrough has been made) and weight them appropriately by the probability
that the principal assigns to each. Given u, the principal’s payoff conditional on being in the first
stage (s = 1) is G(u); i.e.,

F unobs(u|s = 1) =

∫ u/φ

0
λ2te−λt(Π− ct)dt− e−λu/φ(1 + λu/φ)cu/φ− u

= (1− e−λu/φ)(Π− 2c/λ)− λu

φ
e−λu/φ(Π− c/λ)− u.

Conditional on being in the second stage, the principal’s value function is the benchmark payoff

27Arguments similar to those made for a single-stage project can be used to confirm shirking is suboptimal.
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V̄ (u):

F unobs(u|s = 2) =

∫ u/φ

0
λe−λt(Π− ct) + e−λu/φ(−cu/φ)− u = (1− e−λu/φ)(Π− c/λ)− u.

Over time, the principal’s beliefs will evolve about the state of the project. Conditional on reaching
state u < w∗ prior to project success, a period of time of length t(u;w∗) = w∗−u

φ has elapsed.
Therefore, the principal’s beliefs are given by

µ(u;w∗) = Pr(τ1 ≤ t(u;w∗)|τ2 > t(u;w∗)) =
λ
(
w∗−u
φ

)
1 + λ

(
w∗−u
φ

) .
The principal’s value function for u ≤ w∗ is therefore given by

F unobs(u;w∗) = µ(u;w∗)F unobs(u|s = 2) + (1− µ(u;w∗))F unobs(u|s = 1).

We will now verify this value function is concave for all u ≤ w∗. Using the functional forms given
above and twice differentiating F unobs(u;w∗), we get that

d2

du2
F unobs(u;w∗) =

−λe−λu/φ

φ2 (λ(w∗ − u) + φ)3

[
(λ3w∗(w∗ − u)2 + λw∗φ2)(λΠ− c)

+ λ2φ(w∗ − u)2(λΠ− 2c) + φ3
(
λΠ + 2(eλu − 1)

)]
.

All three terms inside the brackets are clearly positive, implying the value function is concave in u
for all u ≤ w∗, which completes the proof of (i).

We prove (ii) by showing that for any T , there exists a w : [0, T ] → R+ such that (1) it is
incentive compatible for the agent to work for all t ∈ [0, T ], and (2) the agent’s continuation utility
at date t is u(t) = φ(T − t). Let u2(t) be the promised continuation value conditional on being in
the second stage and u(t) be the unconditional continuation value at t. Promise keeping requires
that

λu(t) = λ
(
µ(t)w(t) + (1− µ(t))u2(t)

)
+ u′(t).

Conditional on progress, the evolution of u2 is given by

λu2(t) = λw(t) + u′2(t). (A.17)

We want to find w(t) such that u(t) = φ(T − t) for all t ∈ [0, T ]. Note that this implies that
u′(t) = −φ. Using the promise keeping condition,

φ(T − t+ 1/λ) = (1− µ(t))u2(t) + µ(t)w(t).

Substituting for w(t) from (A.17), we get that

φ

(
T − t+

1

λ

)
= (1− µ(t))u2(t) + µ(t)

(
u2(t)− u′2(t)

λ

)
= u2(t)− t

1 + λt
u′2(t).

Imposing the boundary condition u2(T ) = 0, we arrive at a unique solution for u2(t), which we can
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then substitute back into (A.17), to arrive at

w(t) = φ

(
T − t+

1

λ
+
e−λ(T−t)

λ2T
+
eλt

λ
(q(−λT )− q(−λt))

)
,

where q(z) = −
∫∞
−z e

−x/xdx. It is straightfoward to check that w(t) > 0 for all t ∈ [0, T ], which

completes the proof of (ii). For (iii), note that G(u) is identical to F̂1(u) with Hc
1 = 2c

λ − Π (see

(22)). The result then follows from the fact that F1 has the same form as F̂1, but with a constant
strictly larger than 2c

λ −Π.
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