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Behavioral/Cognitive

Panic Anxiety in Humans with Bilateral Amygdala Lesions:
Pharmacological Induction via Cardiorespiratory
Interoceptive Pathways

Sahib S. Khalsa,"->** Justin S. Feinstein,>>* Wei Li,* Jamie D. Feusner,’ Ralph Adolphs,® and Rene Hurlemann®
"Laureate Institute for Brain Research, Tulsa, Oklahoma 74136, 20xley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma 74104, 3UCLA
Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, Los Angeles, California 90095, “UCLA Neuroscience Program, Los
Angeles, California 90095, >California Institute of Technology, Pasadena, California 91125, and *Department of Psychiatry, University of Bonn, Bonn,
Germany

We previously demonstrated that carbon dioxide inhalation could induce panic anxiety in a group of rare lesion patients with focal
bilateral amygdala damage. To further elucidate the amygdala-independent mechanisms leading to aversive emotional experiences, we
retested two of these patients (B.G. and A.M.) to examine whether triggering palpitations and dyspnea via stimulation of non-
chemosensory interoceptive channels would be sufficient to elicit panic anxiety. Participants rated their affective and sensory experi-
ences following bolus infusions of either isoproterenol, a rapidly acting peripheral 3-adrenergic agonist akin to adrenaline, or saline.
Infusions were administered during two separate conditions: a panic induction and an assessment of cardiorespiratory interoception.
Isoproterenol infusions induced anxiety in both patients, and full-blown panic in one (patient B.G.). Although both patients demon-
strated signs of diminished awareness for cardiac sensation, patient A.M., who did not panic, reported a complete lack of awareness for
dyspnea, suggestive of impaired respiratory interoception. These findings indicate that the amygdala may play a role in dynamically
detecting changes in cardiorespiratory sensation. The induction of panic anxiety provides further evidence that the amygdala is not
required for the conscious experience of fear induced via interoceptive sensory channels.
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(s )

We found that monozygotic twins with focal bilateral amygdala lesions report panic anxiety in response to intravenous infusions
of isoproterenol, a 3-adrenergic agonist similar to adrenaline. Heightened anxiety was evident in both twins, with one twin
experiencing a panic attack. The twin who did not panic displayed signs of impaired cardiorespiratory interoception, including a
complete absence of dyspnea sensation. These findings highlight that the amygdala is not strictly required for the experience of
panic anxiety, and suggest that neural systems beyond the amygdala are also involved. Determining these additional systems
could provide key neural modulation targets for future anxiolytic treatments. j
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Introduction
The role of the amygdala in threat detection and the expression of
anxiety and fear responses is well defined in nonhuman species
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amygdala activation in response to ex-
teroceptive threat, with a pronounced hy-
peractivity observed in patients with
anxiety (Btichel et al., 1999; Etkin and
Wager, 2007; Davis et al., 2010; Mobbs et
al., 2010). Converging evidence in hu-
mans with amygdala damage found that
these patients often exhibit exteroceptive
deficits in fear processing along with a re-
duced propensity to experience fear and
post-traumatic stress (Hamann et al.,
1996; Adolphs et al., 2005; Koenigs et al.,
2008; Feinstein et al., 2011). It is unclear to
what extent similar fear deficits extend to
the interoceptive domain in humans.

Two reports of fear and panic in hu-
mans with bilateral amygdala damage
suggest the amygdala may not be required
for aversive visceral emotional experi-
ences. Wiest et al. (2006) described an in-
dividual with bilateral amygdala damage
due to Urbach—Wiethe Disease (UWD)
who spontaneously developed recurrent panic attacks character-
ized by palpitations, dyspnea, and fear of dying, suggesting that
anxiety circuitry beyond the amygdala generated the patient’s
psychopathology. In an experimental study, Feinstein et al.
(2013) demonstrated that inhalation of an air mixture containing
35% carbon dioxide (CO,) elicited panic attacks in patients with
amygdala damage due to UWD, accompanied by reports of pal-
pitations, dyspnea, dizziness, trembling, derealization, fear of dy-
ing, and escape behaviors including gasping, distressed facial
expressions, and withdrawal responses.

Because CO, has multiple actions on the peripheral nervous
system and CNS—mechanoreceptive stimulation of the airways,
activation of chemoreceptors in the aortic and carotid bodies,
and central chemosensory effects via brainstem chemoreceptors,
circumventricular and subfornical organ stimulation, and acid
sensing ion channel agonism (Nattie, 1999; Ziemann et al., 2009;
Colasanti et al., 2012)—it is unclear which pathways may have
contributed to the observed panic responses in the prior reports.
Here we aimed to determine whether induction of a subset of
panic symptoms, principally palpitations and dyspnea, via a non-
chemosensory peripheral pathway would be sufficient to elicit
panic anxiety in the same pair of UWD patients tested previously
(B.G. and A.M.).

To induce palpitations and dyspnea we selected isoproterenol,
a rapid peripherally acting B-adrenergic agonist. There is a his-
torical precedent for studying cardiorespiratory sensations in
relation to emotion. This is most clearly articulated in the James—
Lang theory of emotion, according to which the induction of
interoceptive sensations is critical to feeling emotion (James,
1884; Lang, 1885). Likewise, classic experimental findings by
Schachter and Singer (1962) demonstrated that modulation of
the periphery via subcutaneous administration of adrenaline
could induce emotional changes (but see Maranon, 1924; Cantril
and Hunt, 1932). Here we asked whether visceral signals emitted
from the body periphery can be translated into an emotional
experience of fear and panic anxiety, even in individuals lacking
an amygdala, a brain structure theorized to be instrumental in
this translation.

Although the central amygdala has a well established viscero-
motor role for triggering adrenergic bodily changes in response
to salient exteroceptive stimuli (Davis and Whalen, 2001), there

Figure 1.

Patient AM
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Patient BG

High-resolution structural MRI scans acquired during the same time period as the isoproterenol experiment revealed
identical focal bilateral lesions of the amygdala in patients B.G. and A.M. (as highlighted by the red, dashed circles). For a more
detailed neuroanatomical characterization of these lesions, see Becker et al. (2012).

is also a convergence of viscerosensory inputs to the basolateral
amygdala (Cechetto, 1987). Thus, it is unclear to what extent the
amygdala may play a role in the perception of visceral sensations
(i.e., interoception).

Based on our previous research using CO, (Feinstein et al.,
2013), we predicted that isoproterenol-induced interoceptive
sensations might be sufficient to elicit anxiety and panic in hu-
mans with bilateral amygdala damage. Based on our previous
research using isoproterenol (Khalsa et al., 2009a), we predicted
that individuals with focal bilateral amygdala damage might also
demonstrate impaired cardiorespiratory interoception.

Materials and Methods

Participants received bolus intravenous infusions of either isoproterenol
(a B adrenergic agonist similar to epinephrine) or saline, and rated their
affective and sensory experiences during two experimental conditions.
The first consisted of a panic induction protocol using isoproterenol
infusion. The second entailed assessment of cardiorespiratory interocep-
tion during isoproterenol infusion.

We chose isoproterenol for several reasons. First, its peripheral mech-
anism of action (Murphy and Johanson, 1985; Borges et al., 1999) pro-
vides a potent probe of afferent interoceptive processing (Khalsa et al.,
2009b). Second, this approach likely bypasses chemosensory pathways
stimulated by CO, inhalation (Maddock and Carter, 1991) and lactate
infusion (Liebowitz et al., 1984; Maddock et al., 2013). Third, isoproter-
enol has demonstrated efficacy as a panicogen (Pohl et al., 1988).

Participants were not informed of whether they were receiving saline
or isoproterenol at the time of individual infusions (i.e., infusion identity
was masked), though they were informed during the consent process that
they would receive both at some point during the experiment. The study
was approved by the Institutional Review Board of the University of
California Los Angeles. All participants provided written informed con-
sent and received compensation for their participation.

Experiment 1: panic induction. We recruited two 39-year-old monozy-
gotic twin females with bilateral amygdala lesions due to UWD (patients
B.G. and A.M.). Both patients did not meet criteria for any psychiatric
disorder and were not taking any psychotropic medications at the time of
evaluation, and both were otherwise physically and neurologically
healthy. The neuroanatomical characteristics of their lesions as well as
their case histories and neuropsychological profiles have been well char-
acterized in a prior report (Becker et al., 2012). To further delineate the
extent of their amygdala damage, high-resolution T1-weighted structural
MRI scans of both twins were acquired on a 3T GE MR750 Scanner (Fig.
1). Fifteen neurologically and psychiatrically healthy female participants
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Figure2. Panicanxiety during bolus isoproterenol infusion. Participants received a 4 g bolus of isoproterenol administered in

asingle-blinded manner and retrospectively rated symptoms on a panic attack checklist. They were dichotomized as panickers or
non-panickers according to whether they met standard criteria for a panic attack. Under these criteria, 4 of 15 comparison subjects
panicked (26.7%). One twin with bilateral amygdala lesions panicked (B.G.), whereas the other did not (A.M.). Both twins en-
dorsed increased anxiety, as well as palpitations and shaking during the isoproterenol infusion. One twin (B.G.) reported prominent
respiratory symptoms of dyspnea and choking sensations, whereas the other reported none whatsoever (A.M.). In contrast, all of
the healthy comparisons reported increased dyspnea (i.e., rated a = 1 of 10) at this dose. Symptoms are grouped into different colors
according to category: cardiorespiratory (red), somatic (gray), cognitive (green), and emotional (blue). Error bars indicate SEM.

(mean age = SD = 22.3 = 4.5 years) were drawn from another unpub-
lished study with the same protocol, and their data are included simply to
illustrate the efficacy of bolus isoproterenol infusions in inducing panic
anxiety in a neurologically intact sample. All participants received bolus
intravenous infusions in the same fixed order, single blinded, as follows:
0.1 pug — saline — 4 ug. This infusion order was selected so that the first
several infusions could: (1) rule out the possibility of adverse (i.e., aller-
gic) reactions to the isoproterenol itself, and (2) acclimatize participants
to the experimental setup so that any noticeable experience of anxiety
was related specifically to the experience of isoproterenol rather than
anticipatory anxiety to the infusion environment in general. The 4 ug
bolus dose was selected to maximize the likelihood of inducing panic
anxiety on the basis of: (1) safety, (2) tolerability, and (3) similar heart
rate response to studies using continuous isoproterenol infusion (Nesse
etal., 1984). Two minutes after receiving each infusion participants com-
pleted a panic symptom rating scale containing all 13 DSM-5 symptoms
of a panic attack (Craske et al., 2010). To operationalize the experience of
panic anxiety we included several variants in terminology (Adolphs,
2013; LeDoux, 2013). In addition to measuring levels of self-reported
panic, we recorded levels of fear and anxiety by having participants col-
lectively rate the terms “scared, fearful or afraid” and “anxious, tense or
nervous.” To avoid implicitly priming participants toward these variants,
we also assessed levels of changes in other emotions, both positive and
negative, that we did not expect to be altered by isoproterenol (e.g.,
“angry, irritated or mad,” “disgusted, grossed out or repulsed,” and
“happy, excited or euphoric”). Each emotion and panic symptom rating
could range from 0 (“not at all” or “none”) to 10 (“extremely” or “most
intense ever”), respectively. To define whether panic attacks had oc-
curred during each infusion, intensity rating increases of 50% or more
(i.e., =5 point increase on the 010 scale) in four or more panic symp-
toms were required compared with pre-infusion ratings (similar to Balon
et al., 1988; Pohl et al., 1988).

Experiment 2: interoception assessment. This experiment tested patients
B.G. and A.M., along with 16 sex-matched neurologically and psychiat-
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rically healthy female participants (mean age *
SD = 38.2 = 12.2 years). Each participant re-
ceived a total of 14 bolus intravenous infusions,
double-blinded, in random order: seven iso-
proterenol infusions (0.1, 0.25, 0.5, 0.75, 1, 2,
and 4 pg) and seven saline infusions. Partici-

A BG pants were instructed to rotate a dial to rate

their moment-to-moment experience of the
overall intensity of heartbeat and breathing
sensations during each 2 min period following
infusion administration. Dial ratings could
range from 0 (“none or normal”) to 10 (“most
intense ever”). Participants were told to turn
the dial >0 only if they noticed an increase in
sensation due to the infusion; any dial turn
above zero was considered a detection of
isoproterenol-induced cardiorespiratory sen-
sation. After each infusion period, participants
retrospectively rated their experience of heart-
beat and breathing sensations. This approach is
identical to our previous studies of cardiorespi-
ratory interoception in healthy individuals
(Khalsa et al., 2009b), brain injured individuals
(Khalsa et al., 2009a), and individuals with an-
orexia nervosa (Khalsa et al., 2015).

Apparatus and screening. Physiological
data including heart rate, respiratory rate
and skin conductance were continuously
recorded during all infusions with a
MP150 acquisition unit (Biopac Systems).
All participants were screened for cardiac or
respiratory disease, and all demonstrated
normal physical exams and normal 12 lead
electrocardiograms.

Skin conductance response. Skin conductance
response (SCR) amplitudes were calculated by
subtracting the minimum SCR value from the maximum value occurring
during a defined 90 s postinfusion response window. To control for
nonspecific SCRs induced by the infusion environment, SCR amplitude
change was calculated by subtracting SCR amplitude for the saline infu-
sion from the 4 pg infusion. This yielded a measure of SCR change
specifically due to the isoproterenol infusion. SCRs were measured from
electrodes placed on the thenar and hypothenar eminence. As we have
previously had difficulty obtaining SCR measures from this hand region
in patient B.G. (Feinstein et al., 2013), we instead measured SCRs in this
patient via electrode placement on the plantar surface of the foot (an-
other region with concentrated eccrine sweat glands). This approach has
been successfully demonstrated in other patient populations prone to
developing skin changes in the hand and foot regions (Gulbandilar et al.,
2008).

Interoception measures. We assessed numerous facets of interoception
(Khalsa et al., 2015). We determined interoceptive detection thresholds
by dichotomizing dial ratings using custom MATLAB scripts. Organ-
specific interoceptive symptom magnitudes were determined via retro-
spective baseline adjusted ratings of palpitation and dyspnea intensity.
Cardiorespiratory interoceptive accuracy for each dose was indexed by zero-
order cross-correlations between mean-centered dial ratings and mean-
centered instantaneous heart rate changes occurring during each 2 min
infusion interval. The zero-order cross-correlation compares the degree of
similarity between two different waveforms as they have occurred naturally
in time, thus providing an ecological and temporally valid measure of the
relationship between these subjective and objective datasets.

Statistical analysis. To compare the scores of the amygdala patients
with those from the comparison groups, we applied parametric anal-
yses using f-tests. Two-tailed tests were used to assess the effect of
isoproterenol-induced heart rate changes, and one-tailed tests were used
to assess for IA deficits. We selected the corrected ¢ tests developed by
John Crawford (Crawford and Garthwaite, 2002; Crawford et al., 2003)
over the traditional Z-score method as they allow evaluation of a given
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Figure3.  SCR changes during isoproterenol infusion. Both patients (B.G. and A.M.) demon-

strated increased SCR amplitude changes during the 4 g bolus relative to saline. Error bars
indicate 95% confidence intervals.

individual’s score with modestly sized comparison samples, provide both
point and 95% confidence intervals, and are more conservative therefore
lowering the rate of type I errors. Single-case comparisons of cross-
correlation coefficients were implemented using IIMA.exe software de-
signed specifically for this purpose (Crawford et al., 2003). Single case
comparisons of continuous scores were implemented using Singlims_
ES.exe (Crawford and Garthwaite, 2002).

Results

Experiment 1: panic induction

Mean heart rate responses to isoproterenol did not statistically
differ between samples at the 4 ug dose, for either twin (B.G.:
tae = 1.61, p = 0.13; AM.: 1,6 = —0.83, p = 0.42).

Figure 2 illustrates the symptoms endorsed by patients B.G.
and A.M. at the 4 ug dose, with respect to the healthy participants
(separated by those who panicked vs those who did not). Consis-
tent with predictions, at the 4 ug dose both patients reported
increases in subjective fear and anxiety. Furthermore, at the 4 pug
dose patient B.G. panicked, reporting prominent sensations of
palpitations, dyspnea, choking, and shaking, and endorsed anxi-
ety and feeling panicked. However, patient A.M. did not panic.
She endorsed increased palpitations and shaking, and endorsed
increased anxiety and feeling scared, but at a lower intensity than
B.G. Additionally, in contrast with B.G.’s prominent report of
dyspnea and choking sensations (10 of 10 and 8 of 10, respec-
tively), A.M. denied experiencing any dyspnea or choking sensa-
tions whatsoever (0 of 10 for both). By comparison, 4 of 15
healthy participants panicked at the 4 ug dose (26.7%), and all
participants endorsed increased dyspnea during this dose. No
panic attacks occurred during any other infusion, in either sam-
ple. During the saline infusion and low-dose infusion (0.1 ug),
neither twin endorsed any physiological sensations or elevations
in subjective fear, anxiety or panic. Across all infusions, neither
twin endorsed any elevations in the other emotions assessed in-
cluding happiness, anger, and disgust. Both twins demonstrated
SCR amplitude changes that were within the 95% confidence
interval range of the healthy participants (Fig. 3).

Experiment 2: interoception assessment
There was no difference in mean heart rate response between
either twin and the comparison sample at the 2 ug dose (B.G.:
tas) = 0.76,p = 0.46; A.M.: ;5 = 0.88, p = 0.39), or at the 4 ug
dose (B.G.: (15, = 1.57, p = 0.14; AM.: 1,5 = 1.30, p = 0.21;
(Fig. 4A).

Neither amygdala lesion patient detected any cardiorespira-
tory interoceptive sensations below the 2 ug dose, whereas the
majority of the healthy comparison sample detected sensations

Khalsa, Feinstein et al. e Interoceptive Panic despite Amygdala Lesion

starting at the 0.5 ug dose (Fig. 4B—D). When they did detect
cardiorespiratory sensations, both patients reported these to be at
a lower intensity than healthy comparisons (Fig. 4 B,C). For ex-
ample, B.G. reported reduced palpitations and dyspnea relative
to healthy comparisons, though these differences were not statis-
tically significant [palpitations: 2 ug (¢,5, = —0.80, p = 0.22),
4 ug (g = —1.18, p = 0.14); dyspnea: 2 ug (t,5 = —0.56,p =
0.29), 4 ug (ts = —0.97, p = 0.18)]. In contrast, A.M. endorsed
only palpitations, and at a significantly lower intensity than
healthy comparisons at the highest dose [2 ug (t,5 = —0.80,p =
0.22), 4 ug (tg = —1.90, p = 0.047)]. Furthermore, she com-
pletely denied experiencing dyspnea sensations at any dose (i.e.,
rated as 0 of 10), including at the two highest doses. A.M.’s dys-
pnea rating was marginally significant at the highest dose (2 ug
(tns) = —1.34, p = 0.10), 4 ug (s = —1.85, p = 0.051)). In
contrast, all of the healthy comparisons reported increased dys-
pnea (i.e., rated as =1 of 10) at the highest two doses. Inspection
of the time course of the isoproterenol-induced heart rate change
and interoceptive dial ratings revealed delays in initiating ratings
in both B.G. and A.M., though these were most prominent for
AM. (Fig. 4E). Furthermore, only A.M. exhibited prolonged de-
lays in return to baseline. B.G.’s zero-order cross-correlations
did not differ significantly from healthy comparisons [2 ug (5
= —0.29, p = 0.39) or 4 pg dose (5, = 0.86, p = 0.22); Fig. 3F],
whereas A.M. demonstrated a significantly lower zero-order
cross-correlation at the highest dose [2 ug (f5) = —1.24,p =
0.12), 4 pg (t5) = —3.9, p = 0.006)]. Figure 5 displays the com-
plete set of time series responses for all participants.

Discussion
We found that both monozygotic twin sisters with focal bilateral
amygdala damage reported increased anxiety during a panic in-
duction challenge with bolus infusions of isoproterenol. One of
the sisters (B.G.) panicked, whereas the other (A.M.) did not.
This provides support for our hypothesis that isoproterenol-
induced sensations are sufficient to elicit anxiety and panic in
humans with bilateral amygdala damage. It also constitutes a
partial replication of the finding previously reported by Feinstein
et al. (2013), where both sisters reported increased anxiety, and
both panicked during inhalation of a single bolus of 35% CO,.
Several factors might explain the observation that both sisters
did not panic with isoproterenol. On the one hand, the isopro-
terenol protocol itself may not have been a potent enough chal-
lenge. This is supported by the absence of prominent escape
behaviors and by the fact that B.G.’s subjective level of panic on
the visual analog scale in this study was approximately one-half of
that reported previously during the CO, challenge (Feinstein et
al., 2013). Comparative studies have found that CO, inhalation
and lactate infusion typically induce higher rates of panic attacks
than isoproterenol, in both healthy and anxiety disorder samples
(Balon et al., 1988). The differential panicogenicity among these
agents could also be explained by their differing mechanisms of
action (i.e., the chemosensory stimulation specifically associated
with CO, and lactate might be an important contributor to their
higher levels of panic). Thus, the lack of chemosensory pathway
stimulation by isoproterenol might partly explain A.M.’s denial
of dyspnea, particularly as she had previously endorsed strong
dyspnea during CO, inhalation. Even so, the fact that non-
chemosensory stimulation with isoproterenol did elicit panic
in B.G., and increased anxiety in both twins, provides impor-
tant evidence that panic anxiety can be induced via signals
emitted from the periphery of the body despite bilateral
amygdala damage.
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Figure4. (Cardiorespiratory interoception in humans with bilateral amygdala lesions and healthy comparisons. A, Heart rate response to isoproterenol. Both patients displayed higher heart rate

responses than comparisons, but these differences were not statistically significant. B, Palpitation intensity. Both patients reported lower palpitation intensities. These differences were significant
for patient A.M. at the highest dose (4 g, *p = 0.047). C, Dyspnea intensity. Both patients reported lower dyspnea intensities. These differences were marginally significant for patient A.M. at the
highest dose (4x.g, *p = 0.051). Notably, patient A.M. did not report any dyspnea across all doses, whereas all of the healthy comparisons reported increased dyspnea (i.e., rated as =1 of 10) at
the highest two doses. D, Cardiorespiratory detection thresholds. Both patients detected changes only at the highest two doses (2 and 4 ). E, Time course of heart rate (red) and dial ratings (blue)
at the two highest doses (2 and 4 p.q). Participants rated the overall intensity of heartbeat and respiratory sensations on a moment-to-moment basis using a dial. Patient A.M. demonstrated
abnormal detection latencies and prolonged dial turns. F, Cardiorespiratory accuracy, measured via zero-order cross-correlation between heart rate changes and dial ratings. Patient A.M.
demonstrated significantly poorer cardiorespiratory accuracy at the highest dose (4 r.g, **p = 0.006). Error bars indicate SEM.

Our observations of intact interoceptive fear and SCRs do not
simply indicate a lack of lesion efficacy. We have demonstrated
previously that these patients exhibit impaired exteroceptive fear
processing in the domains of visual threat prioritization (Bach et
al., 2015), impaired fear processing (Becker et al., 2012), and
impoverished emotional arousal ratings (Scheele et al., 2012).
Prior studies have also demonstrated that amygdala damage does
not impair SCRs (Tranel and Damasio, 1989; Meadows and Ka-
plan, 1994), and that other brain regions such as the ventrome-
dial prefrontal cortex, anterior cingulate and right inferior
parietal cortices are implicated in deficient SCRs (Tranel and
Damasio, 1994); all regions that appear completely intact in our
UWD patient sample.

We also observed evidence of impaired cardiorespiratory
interoception in A.M., the twin who did not panic. During iso-
proterenol infusions, A.M. exhibited significantly lower intero-
ceptive accuracy as indexed via cross-correlation between heart
rate changes and dial ratings. Her deficits were not simply re-
stricted to the respiratory domain as she rated both palpitations
and dyspnea sensations as less intense than healthy comparisons.
Although deficits in interoceptive attention might explain A.M.’s
prolonged delays in onset and offset of dial ratings, this does not
fully explain her consistent and complete denial of dyspnea and
choking sensations. Although we cannot completely explain this
outcome, A.M.’s lack of respiratory ratings seems to suggest that
her respiratory interoceptive processing pathway was impaired.
Whether this would relate to a specific deficit in detecting
isoproterenol-induced bronchodilation as opposed to a more
general deficit in detecting changes in respiratory drive (i.e., dur-
ing any homeostatic deviations) is uncertain. Testing with in-
spiratory breathing loads would help to differentiate these
possibilities (Davenport et al., 2007). It also seems possible that
A.M.’s ability to detect cardiac mechanosensory changes might
be impaired on the basis of her lowered palpitation ratings. Some
indirect support for this notion comes from a recent demonstra-

tion that exteroceptively presented fear cues (fearful faces) pre-
sented during cardiac systole are experienced more intensely
and associated with exaggerated amygdala activation (Garfinkel
etal., 2014). Overall, the observation of diminished sensations in
both of the patients (significant in one patient) supports our
hypothesis that amygdala damage can impair cardiorespiratory
interoception.

The fact that only one monozygotic twin sister panicked
might be interpreted to suggest that the predisposition to
panic in this twin pair was not strictly genetically determined.
However, such a notion should be considered speculative: al-
though some studies provide strong support for heritability of
subjective anxiety post-CO, inhalation as a trait marker of
panic (Bellodi et al., 1998; Coryell et al., 2001; Battaglia et al.,
2007; Savage et al., 2015), this relationship is not absolute
(Pine et al., 2005; Terleph et al., 2006). Furthermore, the
amygdala contributes less heritability influence to anxiety ex-
pression than adjacent limbic structures such as the hip-
pocampus (Oler et al., 2010).

The current report clearly suggests that additional neural
circuits beyond the amygdala must be involved in the observed
fear and anxiety responses. The adjacent bed nucleus of the
stria terminalis, which is not damaged in either twin, is one
prominent candidate area as it has been implicated in sus-
tained anxiety responses in humans (Alvarez et al., 2011) and
animals (Duvarci et al., 2009), particularly in response to CO,
inhalation (Taugher et al., 2014). Because threat detection is
adaptively tied to survival, primitive brainstem circuits (such
as the retrotrapezoid nucleus, nucleus tractus solitarius, para-
brachial nucleus), and hypothalamus are also likely contribu-
tors, particularly as they have key roles in sensing the internal
state of the organism and have been theoretically implicated in
panic anxiety (Coplan and Lydiard, 1998; Johnson et al., 2011;
Guyenet and Abbott, 2013; Ruffault et al., 2015). Neuroimag-
ing data has emerged supporting a role for the brainstem,
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Figure5.
basis using a dial. Both patients detected changes only at the highest two doses (2 and 4 jg).

diencephalon, and insula in the sensing of CO, (Brannan et al.,
2001; Pattinson et al., 2009; Goossens et al., 2014), although it
is difficult to differentiate the CO,-induced vasodilation from
the blood oxygenation signal. It seems unlikely that chemo-
sensory regions, such as the organum vasculosum of the lam-
ina terminalis or subfornical organs, played a role in the panic
anxiety observed in B.G., because isoproterenol does not in-
duce acidotic changes in the bloodstream. Converging animal
and human literature suggest that these and other areas of the
brain play key roles in the central sensing of pH changes in the
blood and have relevance for panic anxiety (Shekhar and
Keim, 1997; Esquivel et al., 2010; Magnotta et al., 2014). Fur-
ther characterization of the respiratory pathways involved in
interoceptive processing and identification of the neural cir-
cuits associated with compensatory processing of interocep-
tive sensations in patients with amygdala damage is warranted.
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Time course of heart rate (red) and interoceptive dial ratings (blue) for all doses. Participants rated the overall intensity of heartbeat and respiratory sensations on a moment-to-moment

Atabroader level, the current findings add to the debate posed by
embodied theories of emotion, which tightly link the sensing of in-
ternal bodily signals with emotional experience. We demonstrated
that visceral signals emitted from the periphery of the body can
translate into emotional experience, even when the brain region that
is theorized to be instrumental in this translation is compromised.
Furthermore, anxiety was experienced even in the absence of an
important internal sensory constituent (dyspnea) and without stim-
ulation of chemoreceptors suggesting that other sensory pathways
(e.g., cardiac) and non-sensory mechanisms (e.g., cognitive ap-
praisal) must also play a role in generating emotion. Further studies
to carefully delineate the identity and neural basis of these alternative
pathways and mechanisms are needed to help to resolve this debate.

There are several limitations of this study to consider: (1)
we only tested two patients with bilateral amygdala damage.
Despite this small sample size, it should be emphasized that
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UWD is extremely rare with only ~300 reported cases, world-
wide, since its initial discovery a century ago. (2) The
amygdala lesions in these patients are largely centered on the
basolateral portion of the amygdala (an area that is considered
a multimodal sensory integration site that also receives vis-
cerosensory input), with likely structural sparing in parts of
the central nucleus of the amygdala (Becker et al., 2012). Al-
though we have not previously identified any functional activ-
ity in central regions of the amygdala in these patients (Becker
et al., 2012; Spunt et al., 2015), it remains possible that the
intact affective responses could be attributed to potentially
preserved amygdala tissue. (3) We do not know the exact onset
of the amygdala lesions in these patients. The patients could
therefore have exhibited impaired SCRs in the acute phase
following lesion onset, with subsequent normalization of re-
sponse, as observed previously in a patient following medial
temporal injury due to herpes encephalitis (Asahina et al,,
2003). We also do not have a premorbid assessment of either
anxiety sensitivity or interoception in these patients. There-
fore, we cannot preclude the possibility that these patients may
have been born with an abnormal phenotype independent of
their UWD. (4) An additional question relates to whether
these patients may have developed compensatory rewiring of
panic circuitry in response to their amygdala damage. Further
testing of these patients using functional neuroimaging might
help to address this issue. (5) Finally, we cannot exclude the
possibility that isoproterenol could have stimulated other pe-
ripheral B-adrenergic receptors as well, such as vagal or spinal
nerve afferents (Lawrence et al., 1995; Miyashita and Williams,
2006).

In summary, these findings provide further evidence that the
amygdala is not essential for the experience of fear and panic
anxiety. They also provide evidence that damage to the amygdala
can diminish cardiorespiratory interoception.
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