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ABSTRACT OF THE DISSERTATION
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In this thesis we study efficient algorithms for solving very large linear algebra problems. We first

consider the Kaczmarz method for solving linear systems, and develop a variant that is robust to a

small number of large corruptions, while still requiring only a small working memory. We provide

both theoretical guarantees for certain data distributions as well as empirical results showing that

our approach works well in practice. We then turn our attention to problems of quickly learning

spectral information about a matrix. The first such problem is PSD-testing where we give optimal

query complexity bounds (with respect to types of types of queries) for distinguishing between a

matrix being positive semi-definite versus having a large negative eigenvalue. Building on part of

this work, we then develop optimal sketches for learning the entire spectrum of a matrix to within

additive error. Finally we return our attention to solving linear systems and give new algorithms

that achieve optimal communication complexity for solving least-squares regression problems.
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CHAPTER 1

Introduction

As data continues to grow larger, it becomes increasing important to have fast algorithms capable

of processing that data. In this thesis we focus on extremely efficient algorithms for solving various

linear algebra problems. Depending on the context, “efficient” can refer to different metrics. For

example when presented with a huge dataset one might not have the ability to load it all from

disk into RAM. Or one might be receiving huge amounts of data over a stream but not possess the

resources to store it all. In such cases it is useful to have algorithms that are space-efficient.

In other circumstances the data might all be available, but the dataset may be so large that

carrying out an exact computation on it takes too long. In this situation we are interested in time-

efficient algorithms. For very large datasets, the fastest exact algorithms may not be fast enough.

It is therefore natural to relax the problem slightly and search for algorithms that approximate the

desired behavior in exchange for much faster runtimes.

Finally, one might have a large amount of data that is spread over many servers or processors.

In this situation, sending the data between nodes may be a bottleneck and so we are interested in

finding algorithms that are efficient with respect to communication.

We will often be concerned with algorithms that are provably optimal with respect to these

metrics. As such, much of work emphasizes lower bounds. Such results are useful to algorithm

developers as they tell us whether one should invest energy in developing better algorithms for a

problem, or instead finding new ways of relaxing the problem.
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In Chapter 2 we consider a variant of the Kaczmarz algorithm for solving linear systems that

are too large to load into memory. We propose a novel variant that can handle a small fraction of

corruptions. This chapter is based off of work in [Had+22].

In Chapter 3 we consider the problem of testing if a matrix is positive-semi-definite with a

small number of measurements to the matrix. We also show that our algorithms are optimal in

terms of the number of measurements that are made to the matrix. This chapter is based off of

work in [NSW22].

In Chapter 4 we consider the more general problem of approximating the entire spectrum of

a matrix. Here we show how to recover spectral information after compressing a matrix. In a

streaming setting, this yields an algorithm with low storage requirements. When the matrix is given

explicitly, our algorithm allows for approximating the spectrum with nearly linear time complexity.

This chapter is based off of work in [SW23].

In Chapter 5 we study solving regression problems where the rows of the system are spread

across many different servers. In this setting, we are interested in minimizing the amount of com-

munication that occurs between the servers.

2



CHAPTER 2

Quantile Based Iterative Methods for Solving Corrupted

Systems of Linear Equations

In many situations one is interested in solving large scale systems of equations. If the system is

too large however, this can pose problems for algorithms that need the entire system to operate.

In such situations it is natural to consider “row-action methods” which can make progress from

only viewing a single row of the system at a time. The classic example of such an algorithm is

the Randomized Kaczmarz method, which at each step chooses a random row of the system and

projects onto the solution space for that row. For well-conditioned, consistent systems, the Kacz-

marz method has been shown to enjoy linear convergence at a rate determined by the conditioning

of the system.

Unfortunately in real-world data, overdetermined systems are rarely consistent. For example in

imaging applications, a small amount of movement by the sample, or simply small inconsistencies

in the detectors, result in noisy measurements. Previous work has studied analogues of Kaczmarz

that are robust to such small perturbations.

However, what if a small fraction measurements are not just noisy, but completely wrong?

For example in imaging applications, one might worry that the occasional measurement captures

a speck of dust floating by the detector. We refer to such incorrect measurements as corrupt to

distinguish from simply having noise. Existing versions of Kaczmarz are not robust to corrupt

3



measurements, since projecting onto a single corrupt row of the system could erase all the progress

made until that point.

In this work, we propose two novel row-action methods which are robust to corruptions. The

first of these is QuantileRK which uses a version of “quantile thresholding” to avoid making pro-

jections with the potential to erase too much progress. The second is QuantileSGD which runs

stochastic gradient descent with respect to the ℓ1 loss for the system, and uses the quantile thresh-

olding idea as inspiration to select a good step size.

2.1 Contributions

This chapter presents joint work with Deanna Needell, Jamie Haddock, and Liza Rebrova [Had+22].

Deanna Needell proposed the problem of adapting Kaczmarz-type methods to handle corrupt mea-

surements. I proposed the main algorithms and gave an initial analysis. Jamie Haddock and Liza

Rebrova both worked on refining the analysis. Jammie Haddock and I both carried out experi-

ments. All authors contributed to writing and formatting the manuscript.

2.2 Introduction

One of the most ubiquitous problems arising across the sciences is that of solving large-scale

systems of linear equations. These problems arise in many areas of data science including ma-

chine learning, as subroutines of several optimization methods [BV04], medical imaging [GBH70;

HM93], sensor networks [SHS01], statistical analysis, and many more. A practical challenge in

all of these settings is that there is almost always corruption present in any such large scale data,

either due to data collection, transmission, adversarial components, or modern storage systems

that can introduce corruptions into otherwise consistent systems of equations. For example, sen-

sors can malfunction, or survey responses can be inconsistent. If the measurements are taken in a

distributed setting by a collection of agents, some of these agents may coordinate in a distributed

4



attack to corrupt the model. We seek methods that are robust to such corruption but scalable to big

data.

In this work, we develop scalable methods for solving corrupted systems of linear equations.

Here, we consider the problem of solving large scale systems of equations Ax = b̃ where a subset

of equations have been contaminated with arbitrarily large corruptions in the measurement vector,

thereby constructing an inconsistent system of equations defined by measurement matrix A and

observed measurement vector b = b̃ + bC (b̃ being unobserved but corresponding to the desired

system of equations and bC being an arbitrary corruption vector of the same dimension). Our

work is motivated by the setting where the uncorrupted system of equations Ax = b̃ is highly

overdetermined and the number of measurements is very large. In such settings, the full matrix

may be too large to load into RAM. Therefore we seek methods that operate using only a small

number of rows of A at a time.

We focus on variants of the popular iterative methods, stochastic gradient descent (SGD) or

randomized Kacmarz (RK), that have gained popularity recently due to their small memory foot-

print and good theoretical guarantees [SV09; Bot10; NSW16]. We propose variants of both RK

and SGD based upon use of quantile statistics. We focus on proving theoretical convergence

guarantees for these variants, but additionally discuss their implementation, and present numerical

experiments evidencing their promise.

The SGD method is a widely-used first-order iterative method for convex optimization [RM51].

The classical method seeks to minimize a separable objective function f(x) =
∑m

i=1 fi(x) by

accessing (stochastically) selected components of the objective and using a gradient step for this

component. That is, SGD constructs iterates xk given by

xk+1 = xk − γk∇fi(xk) (2.1)

where γk is the learning rate (or step-size) and i is the selected component for the kth iteration.

When the objective function f(x) represents error in the solution of a system of equations, SGD

5



generally updates in the direction of the sampled row, i.e., xk+1 − xk = αkai for some αk which

depends upon the iterate xk. Our variants apply SGD to the least absolute deviations (LAD) error

and least squares (LS) error,

f(x) = ∥Ax− b∥1 =
m∑
i=1

|⟨ai,x⟩ − bi| and f(x) =
1

2
∥Ax− b∥2 = 1

2

m∑
i=1

(⟨ai,x⟩ − bi)
2 ,

respectively. For these objectives, the SGD updates (2.1) take the form

xk+1 = xk − γksign(⟨ai,xk⟩ − bi)ai and xk+1 = xk − γk(⟨ai,xk⟩ − bi)ai,

respectively, where sign(·) denotes the function that returns 1 if its argument is positive and −1

otherwise. The RK updates are a specific instance of the SGD updates for the LS error where

γk = 1/∥ai∥2 [NSW16]; that is

xk+1 = xk +
bi − ⟨ai,xk⟩
∥ai∥2

ai. (2.2)

In [SV09], the authors showed that when applied to a consistent system of equations with a unique

solution x∗ and with a specific sampling distribution, RK converges at least linearly in expectation.

Indeed, denoting ek := xk − x∗ as the difference between the k-th iterate of the method and the

exact solution of the system, the method guarantees

E∥ek∥2 ≤
(
1− σ2

min(A)

∥A∥2F

)k
∥e0∥2, (2.3)

where ∥ · ∥F denotes the Frobenius norm and σmin(A) the smallest (nonzero) singular value of A.

Standard SGD results (e.g., [SZ13]) provide similar convergence rates for SGD on these objectives

when the stepsizes are chosen according to an appropriately decreasing schedule. See Section 2.2.3

below for more details and a discussion of related work.

Here, we consider variants of the SGD and RK methods that converge to the solution of the

6



uncorrupted system even in the presence of large corruptions in the measurement vector b. We

prove convergence rates in the same form as (2.3). It is worth noting that both our experimental

and theoretical results illustrate that the size of the corruptions do not negatively impact the con-

vergence of the proposed methods. Our methods will make use of SGD and RK steps but will use

a quantile of the residual entries in order to determine the step-size.

2.2.1 Organization

The rest of our paper is organized as follows. In the remainder of the introduction, we present our

main contributions in Section 2.2.2, discuss related works in Section 2.2.3, and briefly describe our

notations and give required definitions in Section 2.2.4. We then provide the detailed pseudocode

of our proposed methods, QuantileRK(q) and QuantileSGD(q), in Section 2.3. We state and prove

our theoretical results in Section 2.4. Within this section, we highlight some new results for random

matrices as useful tools in Subsection 2.4.1 and then include the proofs of our main convergence

results in Subsections 2.4.2 and 2.4.3. In Section 2.5, we discuss several implementation consid-

erations that affect the efficiency and convergence of our proposed methods. In Section 2.6, we

empirically demonstrate the promise of our methods with experiments on synthetic and real data.

Finally, we conclude and offer some future directions in Section 2.7.

2.2.2 Contributions

In this section, we provide summaries of foundational results we prove in high-dimensional prob-

ability, then state our main convergence results for the proposed methods. Our main convergence

results rely on the following assumptions about the linear system Ax = b. Let A ∈ Rm×n be

a random matrix with m ≥ n. We direct the reader to [Ver18] for the random matrix theory

definitions involved; we also provide summaries in Section 2.2.4.

Assumption 1. All the rows ai of the matrix A have unit norm and are independent. Addition-

ally, for all i ∈ [m],
√
nai is mean zero isotropic and has uniformly bounded subgaussian norm

7



∥
√
nai∥ψ2

≤ K.

Assumption 2. Each entry aij of A has probability density function ϕij which satisfies ϕij(t) ≤

D
√
n for all t ∈ R. (The quantity D is a constant which we will use throughout when referring to

this assumption.)

The prototypical example of a matrix satisfying both assumptions is a normalized Gaussian

matrix, i.e., a matrix whose rows are sampled uniformly over Sn−1. In this case, the entries are

effectively standard normal, scaled by 1√
n
, so one can take D ≈ 1√

2π
and K ≈ 2

Assumptions 1 and 2 extract the properties of Gaussian matrices that are required for our theory.

As such, our work applies to more general distributions, whenever there is enough independence

between the entries of the matrix and their distributions are regular enough.

By Assumptions 1 and 2, the matrices we consider will be full rank almost surely so the uncor-

rupted system Ax = b̃ will always have a unique solution x∗.

High-dimensional probability results

Our main convergence guarantees build upon several useful results related to the non-asymptotic

properties of random matrices that appear to be new and that may be of independent interest.

In particular, Proposition 2.7 shows that for a class of random matrices, all large enough subma-

trices uniformly have smallest singular values that are at least on the order of
√

m/n. For matrices

which satify Assumptions 1 and 2, this generalizes standard bounds on the smallest singular value,

but does not follow directly from these bounds.

Proposition 2.12 is more specialized, but may also be of independent interest. For a random

matrix A, we show that the average magnitude of the entries of Ax is well concentrated uniformly

in x. In fact, A does not need to be very tall for this result to hold; a constant aspect ratio suffices.
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Main results

We first introduce two new methods for iteratively solving linear systems with corruptions and

give the formal statements of our main results. The first method we introduce is QuantileRK,

which builds upon the RK method. Recall that the iteration of RK given by (2.2) implies that

the method proceeds by sampling rows of the matrix A and projecting onto the corresponding

hyperplane given by the linear constraint. When some of the entries in b are corrupted by a large

amount, RK periodically projects onto the associated corrupted hyperplanes and therefore does not

converge. Our solution is to avoid making projections that result in ∥xk+1 − xk∥ being abnormally

large. Specifically, for each iterate xk we consider the set of distances from xk to a set of t sampled

hyperplane constraints.1 We assign a threshold value to be the q-quantile of these distances, where

q is a parameter of the method. If the distance from xk to the sampled hyperplane is greater than

this threshold then the method avoids projecting during that iteration. Otherwise it projects in the

same manner as RK.

Theorem 2.1 states that the QuantileRK method converges for random matrices satisfying As-

sumptions 1 and 2 above, as long as the fraction of corrupted entries is a sufficiently small constant

(which does not depend on the dimensions of the matrix). Here and throughout, c, C, c1, C1, . . .

denote absolute constants that may denote different values from one use to the next. Variable sub-

scripts on constants will indicate quantities that a given constant may depend on. For example, C1

only depends on q.

Theorem 2.1. Let the system be defined by random matrix A ∈ Rm×n satisfying Assumptions 1

and 2, with the constant parameters D and K.2 Then with probability 1−c exp(−cqm), the iterates

produced by the QuantileRK(q) Method 1 with q ∈ (0, 1), where in each iteration the quantile is

computed using the full corrupted residual (instead of subsampling, we use t = m), and initialized

1In order to allow more efficient implementations, we empirically show that considering a small subset of hyper-
planes is sufficient. One could extend the theory to this setting as well, with a slightly more complicated analysis.

2In other words we do not track the dependencies on D and K.
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with arbitrary point x0 ∈ Rn satisfy

E
(
∥ek∥2

)
≤
(
1− Cq

n

)k
∥e0∥2

as long as the fraction of corrupted entries β = |supp(bC)|/m < min(c1q
2, 1− q) and m ≥ Cn.

(Recall that ek denotes the error vector xk − x∗.)

The second method we introduce is QuantileSGD, which is a variant of SGD in which the step-

size used in each iteration is chosen to avoid abnormally large steps. Specifically, for each iterate

xk, we consider the set of distances from xk to the set of t sampled hyperplane constraints specified

by our linear system.1 We choose the step-size as the q-quantile of these distances, where q is a

parameter of the method. This prevents projections that are on the order of distances associated to

corrupted equations.

Under nearly the same assumptions for the system and slightly more restrictive assumptions

on the quantile parameter, we also guarantee an RK-type convergence rate for QuantileSGD(q).

Our second main result is Theorem 2.2, which shows that QuantileSGD converges, again when the

fraction of corruptions is sufficiently small.

Theorem 2.2. Let the system be defined by random matrix A ∈ Rm×n satisfying Assumptions 1

and 2 with the constant parameters D and K.2 Then with probability at least 1−c exp(−cqm), the

iterates produced by the QuantileSGD(q − β) Method 2 with q ∈ (0, 1/2), where in each iteration

the quantile is computed using the full corrupted residual (instead of subsampling, we use t = m),

and initialized with arbitrary point x0 ∈ Rn satisfy

E
(
∥ek∥2

)
≤
(
1− Cq

n

)k
∥e0∥2

as long as the fraction of corrupted entries β = |supp(bC)|/m is a sufficiently small constant and

m ≥ Cn log n. (Recall that ek denotes the error vector xk − x∗.)

In order to prove this result, we first introduce a method that we call OptSGD, which adaptively
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chooses an optimal step size at each iteration. This method cannot be run in practice as it requires

knowledge of x∗. However, we are able to show that QuantileSGD approximates OptSGD and

therefore performs similarly well. OptSGD may also serve as a useful benchmark when consider-

ing other SGD-type solvers for linear systems.

In each of these results, we make extensive use of theorems in high dimensional probability

and do not attempt to track constants. In particular we allow our constants to depend on parameters

of the underlying distributions on the rows. We remedy this with our empirical results, which show

that QuantileRK and QuantileSGD work well for practical sets of parameters.

Finally, we consider a simpler setting that we call the streaming setting, which may be viewed

as the limiting case when the number of rows of A tends to infinity. In this situation we do not rely

on the non-asymptotic properties of random matrices and are able to give an analysis with better

constants for the case when the matrix has Gaussian rows. In particular, Theorem 2.21 shows that

our methods can handle a 0.35 fraction of corruptions, even when the values of the corruptions

are chosen by an adversary. In practice, we see that the proposed methods (including the non-

streaming setting) are able to accommodate much more complex cases when up to one half of the

equations are corrupted.

Remark 2.3. We get the same standard convergence rate for both methods; however, for Quan-

tileSGD(q) we have a slightly stronger requirement on the aspect ratio of the matrix A, and an

additional restriction for the quantile q < 1/2 (whereas QuantileRK is proved for any quantile

q ∈ (0, 1)) In practice, QuantileSGD indeed diverges for the value of a quantile too close to one

(see Figure 2.1 (b)); however, one could safely use a much wider range of quantiles. We note that

for a normalized Gaussian model (when the rows of A are sampled from the uniform distribution

on the unit sphere) one can use the QuantileSGD(q) method for all q ≤ 0.75 (see Remark 2.20).
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2.2.3 Related Works

There are many extensions and analyses of the SGD and RK methods; we review some of the

results most relevant to our contributions. The first two sections deal with consistent or noisy

systems, while the last section deals with methods for the problem of corrupted systems. We dis-

tinguish between corruption, in which there are few but relatively large errors in the measurement

vector, and noise, in which there are many but relatively small errors in the measurement vector;

the latter is more commonly considered within the SGD and RK literature.

Randomized Kaczmarz variants. The Kaczmarz method was proposed in the late 30s by

Stefan Kaczmarz [Kac37]. The iterative method for solving consistent systems of equations was

rediscovered and popularized for computed tomography as algebraic reconstruction technique

(ART) [GBH70; HM93]. While it has enjoyed research focus since that time [CEG83; Nat86;

SS87; Fei+92; HN90; FS95], the elegant analysis of the randomized Kaczmarz method of [SV09]

has spurred a surge of research into variants of the Kaczmarz method. In [SV09], the authors

proved the first exponential convergence rate in expectation (2.3) in the case of full-rank and con-

sistent systems of equations. This result was generalized to the case when A is not full-rank in

[ZF13]. Block methods which make use of several rows in each iteration have also become popular

[EHL81; Elf80; Pop99; Pop01; NT14; RN20].

One relevant and well-studied variant of the Kaczmarz method is that in which the row selection

is performed greedily rather than randomly. This greedy variant goes by the name Motzkin’s relax-

ation method for linear inequalities (MM) in the linear programming literature [MS54; Agm54],

where convergence analyses coinciding with (2.3) have been shown [Agm54]. MM has been redis-

covered in the Kaczmarz literature under the name “most violated constraint control” or “maximal-

residual control” [Cen81; Nut+16; PP15]. Several greedy extensions and hybrid randomized and

greedy methods have been proposed and analyzed [BW18a; BW18b; DHN17; MIN19; LR19;

MI+20; HM19]. Like our methods, these greedy approaches require that sufficiently large entries

of the residual be identified; however, these methods differ from ours in how these residual entries
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are used.

Another relevant direction in the Kaczmarz literature are convergence analyses for systems in

which the measurement matrices A have entries sampled according to a given probability dis-

tribution [CP12; HN19; HM19; RN20]. Our main results will make mild assumptions on the

distribution of the entries of the measurement matrix.

The convergence of many of the previously mentioned methods has been analyzed in the case

that there is a small amount of noise in the system. Generally, these analyses provide a convergence

horizon around the solution that depends upon the size of the entries of the noise. In [Nee10], the

author proves that RK converges on inconsistent linear systems to a horizon which depends upon

the size of the largest entry of the noise; a similar result is shown in [HN19] for MM. In [ZF13;

DSS20], the authors develop methods that converge to the least-squares solution of a noisy system.

Meanwhile, in this work, our focus will be developing methods for systems in which there is

corruption rather than noise. We will exploit the fact that the overdetermined system of equations

has few corruptions in order to solve the uncorrupted system of equations.

Stochastic gradient descent variants. There has been an abundance of work developing and

analyzing variants of SGD (e.g., step-size schedules, variants for specific and non-smooth objec-

tives, etc.). This is not meant to be a thorough survey of the literature in this area; we direct the

reader to [BCN18] and the references therein for a survey of recent advances, and outline here

those most relevant to our approach.

In [RM51], the authors provide a convergence analysis for SGD in the case that the objective

is smooth and strongly convex and the step-size schedule diminishes at the appropriate rate. Such

convergence results hold for fixed step-size schedules, but include a constant error term akin to the

convergence horizon of RK for inconsistent systems [NSW16]. Similar convergence rates can be

proved in the case of non-smooth and non-strongly convex objectives [SZ13]; this result assumes

an appropriately decreasing step-size schedule, and prove bounds on the objective value optimality

gap. Our results, unlike these, will use an iterate dependent step-size and will provide bounds on

the distance between iterates and the solution of the uncorrupted system.
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Recently, batch variants that use several samples in each iteration have become popular and

enjoy similar rates [Dek+12]. In [KL20], the authors propose and analyze a greedy variant of SGD

known as ordered SGD that selects batches of the gradient according to the value of the associated

objective components.

An important branch of advances in the analysis of SGD deal with robustness to corruption and

outliers in the objective defining data and sampled gradients, see e.g., [Chi+19; Li+20]. Similar to

our work, the aforementioned papers use quantile statistics, namely, a median-truncated SGD. Our

methods differ from these in how we use the quantile statistic to achieve robustness to corruption

and in our specification to linear systems.

Here, we focus on the SGD variants developed for the LAD error; this problem is often known

as LAD regression. It has been previously noted that the ℓ1 objective is more robust to outliers than

the ℓ2 objective [WGZ06]; for this reason, there have been many algorithmic approaches to LAD

regression. These approaches have been motivated by maximum likelihood approaches [LA04],

rescaling techniques for low-dimensional problems [BS80], iterative re-weighted least-squares

[Sch73], descent approaches [Wes81], dimensionality reduction [KS18], or linear programming

approaches [BR73]; see [GSN88] and references therein.

Corrupted linear systems approaches. The corrupted linear system problem has been studied

within the error-correction literature and has been formulated in the compressed sensing frame-

work. Many recovery results build upon and resemble those within the compressed sensing lit-

erature [CT05]. In particular, the optimization problem min ∥Ax − b∥0 is a special case of the

NP-hard MAX-FS problem [AK95]. However, if the measurement matrix A and the support of the

corruption vector bC satisfy appropriate properties, then the minimizer of the ℓ0 problem and the ℓ1

problem coincide and the problem can be solved using e.g., linear programming methods [CT05;

Can+05; WM10]. Such methods however are quite slow and have large memory requirements if

the system is extremely large. In addition, we do not place such assumptions on our systems here.

Previous work has developed and analyzed iterative methods for corrupted systems of equa-

tions. As mentioned previously, much of the focus on this problem has been in the error correction
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and compressed sensing literature [FR13; EK12]. However, there has been work that has fo-

cused on iterative row-action methods; previous work in this direction includes [HN18a; JCC15;

ABH05].

Our work was inspired by [HN18b; HN18a], in which the authors propose and analyze random-

ized Kaczmarz variants that detect and remove corrupted equations in the system. These methods

differ from ours in that they exploit the ability of the standard RK method to detect and avoid

few corruptions. Meanwhile, our work develops variants of RK and SGD that use quantiles of the

residual to converge even in the presence of corruptions. In [Had+20], we present several methods

related to those here; our results will significantly improve and generalize those in [Had+20].

2.2.4 Notation and Definitions

We consider a system with measurement matrix A ∈ Rm×n and corrupted measurement vector

b ∈ Rm and m ≫ n. We denote the ith row of A by ai. If A is an m × n matrix and S ⊂ [m],

then let AS denote the matrix obtained by restricting to the rows S.

The corrupted measurement vector b is the sum of the ideal (uncorrupted) measurement vector

b̃ and the corruptions bC . The number of corruptions is a fraction β ∈ (0, 1) of the total number

of measurements, |supp(bC)| = βm. Here supp(x) denotes the set of indices of nonzero entries

of x. The ideal measurement vector b̃ defines a consistent system of equations with ideal solution

x∗. We denote the k-th error as ek := xk − x∗, where xk denotes the k-th iterate of a method.

The notation ∥v∥ denotes the Euclidean norm of a vector v. We denote the sphere in Rn

as Sn−1, so Sn−1 = {x ∈ Rn : ∥x∥ = 1}. For a matrix A, we denote its operator (L2 → L2)

norm by ∥A∥ = supx∈Sn−1 ∥Ax∥ and its Frobenious (or Hilbert-Schmidt) norm by ∥A∥F =√
trace(A⊤A). Throughout, we denote by σmin(A) and σmax(A) the smallest and largest singular

values of the matrix A (that is, eigenvalues of the matrix
√
A⊤A). Moreover, we always assume

that the matrix A has full column rank, so that σmin(A) > 0 and the convergence rate is non-

trivial. We also denote the (scaled) condition number of the matrix as κ(A) = ∥A∥F /σmin(A) =
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∥A∥F ∥A−1∥, where ∥A−1∥ is defined to be 1/σmin(A).

Additionally, our work relies on several concepts that arise in high dimensional probability. We

list all relevant definitions here, proper review of the concepts and their properties can be found in

e.g., [Ver18]. If X is a real-valued random variable, then the sub-Gaussian norm of X is defined

to be ∥X∥Ψ2
= inf {t > 0 : E exp(X2/t2) ≤ 2} . If v is a random vector in Rn, then the the sub-

Gaussian norm of v is defined to be ∥v∥Ψ2
= supx∈Sn−1 ∥⟨v,x⟩∥Ψ2

. A random variable is said to

be sub-Gaussian if it has finite sub-Gaussian norm. If v is a random vector in Rn then v is said to

be isotropic if E(vv⊤) = In where In is the identity on Rn.

Our convergence analyses will take expectation with regards to the random sample taken in

each iteration. We denote expectation taken with regards to all iterative samples as E. We denote

by Ek the expectation with respect to the random sample selected in the kth iteration, conditioned

on the results of the k − 1 previous iterations of the method.

We use the following notations for the statistics of the corrupted and uncorrupted residual. We

let Qq(x) denote the empirical q-quantile of the corrupted residual,

Qq(x) := q- quantile{|⟨ai,x⟩ − bi| : i ∈ [m]}. (2.4)

For our purposes, the q-quantile of a multi-set S is defined to be the ⌊q|S|⌋th smallest entry of

S.

We let Q̃q(x) denote the empirical q-quantile of the uncorrupted residual,

Q̃q(x) := q- quantile {|⟨x− x∗, ai⟩| : i ∈ [m]} . (2.5)

We additionally define notation for the quantile statistics of sampled portions of the corrupted and

uncorrupted residuals,

Qq(x, S) := q- quantile{|⟨ai,x⟩ − bi| : i ∈ S} (2.6)
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and

Q̃q(x, S) := q- quantile {|⟨x− x∗, ai⟩| : i ∈ S} (2.7)

where S ⊂ [m] is the set of sampled indices. Note that only Qq is available to us at run time since

it makes use of the corrupted measurement vector b; Q̃q is not available due to the use of unknown

x∗. We employ Q̃q in our theoretical results as it allows us to naturally relate Qq and random matrix

parameters. Finally, we let M(x) denote the average magnitude of the entries of Ax,

M(x) :=
1

m

m∑
i=1

|⟨x, ai⟩| . (2.8)

This quantity will be useful later when we wish to bound the quantiles computed by QuantileRK

and QuantileSGD.

We will also make use of a Chernoff bound several times. As there are many variants, we give

a statement for completeness.

Chernoff Bound. Let X1, . . . Xn be i.i.d random variables with expectation p taking values in

{0, 1}. Let X = X1 + . . .+Xn, and let µ be the expected value of the sum. Then

Pr (X ≥ ((1 + δ)µ)) ≤ exp
(
−δ2µ/3

)
.

2.3 Proposed Methods

In this section, we give formal descriptions of the proposed QuantileRK(q) and QuantileSGD(q)

methods. Our methods use the q-quantile entry of the residual |Ax− b| as a proxy to avoid large

steps in the direction of corrupted equations. Namely, in both methods, in each iteration we sample

not only an index for the RK update (which we will call the RK-index), but also t additional indices.

We then access the entries of the residual associated to these indices and compute their empirical

q-quantile, Qq(x, {il : l ∈ [t]}).

Then, the QuantileRK(q) method below takes the step (associated to the RK-index and gov-
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erned by standard RK projection (2.2)) only if the entry of the residual associated to this index is

less than or equal to Qq(xj−1, {il : l ∈ [t]}); we say that a row ai of A is acceptable on a given

iteration if this is true. We assume that the rows of our system are normalized. If this is not the

case, one could normalize the rows as they are sampled.

Algorithm 1 QuantileRK(q)
1: procedure QUANTILERK(A,b, q, t, N)
2: x0 = 0
3: for j = 1, . . . , N do
4: sample i1, . . . it ∼ Uniform(1, . . . ,m)
5: sample k ∼ Uniform(1, . . . ,m)
6: if |⟨ak,xj−1⟩ − bk| ≤ Qq(xj−1, {il : l ∈ [t]}) then
7: xj = xj−1 − (⟨xj−1, ak⟩ − bk) ak
8: else
9: xj = xj−1

10: end if
11: end for

return xN
12: end procedure

The QuantileSGD(q) method, Method 2 uses the same quantile of the sampled residual Qq(xj−1, {il :

l ∈ [t]}) to define the step size. The method steps along the direction defined by the RK up-

date (2.2) based on the RK-index with step size γ equal to Qq(xj−1, {il : l ∈ [t]}).

Algorithm 2 QuantileSGD(q)
1: procedure QUANTILESGD(A,b, q, t, N)
2: x0 = 0
3: for j = 1, . . . , N do
4: sample i1, . . . it ∼ Uniform(1, . . . ,m)
5: sample k ∼ Uniform(1, . . . ,m)
6: γ = Qq(xj−1, {il : l ∈ [t]})
7: xj = xj−1 − γ · sign (⟨xj−1, ak⟩ − bk) ak
8: end for

return xN
9: end procedure

Note that this pseudocode uses only the maximum number of iterations N as stopping criterion,

but one could also run these methods for a specific amount of time, or implement any other stopping
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criterion.

Finally, we note that the behavior of both the QuantileRK and QuantileSGD depend heavily

upon the input parameters. We clarify required constraints on these parameters in the theoretical

results in Section 2.4. Additionally, we discuss the effect of these parameter choices on computa-

tion and other implementation considerations in Section 2.5.

2.4 Theoretical Results

Here we state and prove our theoretical results. We begin with foundational results in high-

dimensional probability in Subsection 2.4.1 and then prove our main convergence results, Theo-

rems 2.1 and 2.2, in Subsections 2.4.2 and 2.4.3. In our proof of convergence of QuantileSGD(q),

Theorem 2.2, we propose an ideal method, OptSGD, and demonstrate that it is well approximated

by QuantileSGD(q). We additionally prove convergence of QuantileSGD(q) in the simpler stream-

ing setting in Subsection 2.4.3.

2.4.1 Theoretical Foundations

In this subsection, we prove several fundamental results which we apply in our convergence anal-

yses for QuantileRK and QuantileSGD in Sections 2.4.2 and 2.4.3.

Auxiliary results – properties of random matrices

For the largest singular values of a random matrix with independent isotropic rows, we will be

using the following standard bound (the proof can be found in e.g., [Ver18, Theorem 4.6.1]).

Theorem 2.4. Let A ∈ Rm×n be a matrix whose rows are independent, mean zero, sub-Gaussian

and isotropic with sub-Gaussian norm bounded by K. Then the largest singular value (operator

norm) of A is bounded by
√
m+ CK2(

√
n+ t)
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with probability at least 1− 2 exp(−t2).

The smallest singular value of random matrices is sometimes called the “hard edge” as it is typ-

ically harder to quantify. This is the case in our application as well; we will prove Proposition 2.7

giving a uniform lower bound on the singular values of the submatrices of A.

The first ingredient that we need for this (and it will be used in other places later in the text as

well) is an ϵ-net for the unit sphere. We say that N is an ϵ-net of a set S ⊆ Rn if N is a subset of

S and each point in S is within a Euclidean distance ϵ of some point inN . The ϵ-covering number

of S is the cardinality of the smallest ϵ-net for S. We will use the fact that the ϵ-covering number

of Sn−1 is bounded by (3/ϵ)n [Ver18, Corollary 4.2.13].

We will also use the following direct corollary of Hoeffding’s inequality (see, e.g., [Ver18,

Theorem 2.6.2]) that subgaussian random variables concentrate as well as Gaussians under taking

means.

Lemma 2.5. Let X1, . . . , Xm be i.i.d. subgaussian random variables with subgaussian norm K.

Then the subgaussian norm of the mean satisfies

∥∥∥∥∥ 1

m

m∑
i=1

Xi

∥∥∥∥∥
Ψ2

≤ C
K√
m
.

Next, the following anti-concentration lemma for random vectors with bounded density is a

direct corollary of [RV15, Theorem 1.2].

Lemma 2.6. Let x be a random vector in Rn such that the density function of each coordinate xi

is bounded by D
√
n, where D > 0 is an absolute constant. Then for any fixed u ∈ Sn−1 we have

Pr

(
|⟨x,u⟩| ≤

√
t√
n

)
≤ 2
√
2D
√
t.

We will use this anti-concentration result to prove a uniform lower bound for the smallest

singular value over all αm × n submatrices of a tall random matrix of the size m × n. It is
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well known that for a single fixed (row-)submatrix AT of that size, σmin(AT ) ≳
√
m/
√
n (see

e.g., [Ver18, Theorem 4.6.1]). However, naively taking a union bound over all
(
m
αm

)
αm-tall row

submatrices results in a trivial probability bound. In Proposition 2.7, we provide a more delicate

row-wise analysis by employing Chernoff’s bound to provide a good uniform lower bound with

probability exponentially close to one.

Proposition 2.7. Let α ∈ (0, 1] and let random matrix A ∈ Rm×n satisfy Assumptions 1 and 2.

Then there exist absolute constants C1, c2 > 0 so that if the matrix A is tall enough, namely,

m

n
> C1

1

α
log

DK

α
, (2.9)

then the following uniform lower bound holds for the smallest singular values of all its row sub-

matrices that have at least αm rows.

Pr

 inf
T⊆[m]:
|T |≥αm

σmin(AT ) ≥
α3/2

24D

√
m

n

 ≥ 1− 3 exp(−c2αm)

Proof. Let ϵ ∈ (0, 1] be a constant (chosen below in (2.11)). Recall that there is an ϵ-netN of Sn−1

with cardinality |N | ≤
(
3
ϵ

)n. That is, for any y ∈ Sn−1 there exists x ∈ N such that ∥y−x∥2 ≤ ϵ.

Taking the infimum over all unit norm vectors x, we get that for any T ⊆ [n], we have

σmin(AT ) = inf
y∈Sn−1

∥ATy∥ ≥
(
inf
x∈N
∥AT x∥

)
− ϵ ∥AT∥. (2.10)

We will bound the two terms in the right hand side of (2.10) separately. First, for any subset

T ⊂ [n], we can bound ∥AT∥op ≤ ∥A∥op, and so by Theorem 2.4

Pr

(
∥AT∥ ≤ (1 + CK2)

√
m

n

)
≥ 1− 2 exp(−cm)
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for some absolute constants C, c > 0. Let us choose

ϵ =
α3/2

24D(1 + CK2)
. (2.11)

To bound the first term in the right-hand side of (2.10), first consider a fixed x in N . For i ∈ [m],

let Exi be the event

Exi :=

{
|⟨ai,x⟩|2 <

α2

64D2
· 1
n

}
.

By Lemma 2.6, Pr(Exi ) ≤ α/4 for each fixed x ∈ Sn−1 and i ∈ [m]. A Chernoff bound then gives

Pr ( events Exi occur for at least αm/2 indices i ∈ [m] ) ≤ exp(−αm/12).

Now, for any fixed x, provided that Exi occurs for at most αm/2 indices i ∈ [m], for all T with

|T | ≥ αm we have

∥AT x∥ ≥

√(α
2
m
)
·
(

α2

64D2
· 1
n

)
=

α3/2

12D

√
m

n
.

Finally, taking a union bound over x ∈ N , we have

Pr

(
inf
x∈N
∥AT x∥ ≤ Cα

√
m

n

)
≤ exp

(
n log

3

ϵ
− αm

12

)
≤ exp

(
−αm

24

)
,

where the last inequality holds due to the submatrix size assumption (2.9) and our choice of ϵ in

(2.11).

Returning to the estimate (2.10), we can now conclude that with probability

1− 2 exp(−cm)− exp(−αm/24) ≥ 1− 3 exp(−c2αm),
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for all T with |T | ≥ αm,

σmin(AT ) ≥
α3/2

12D

√
m

n
− ϵ · (1 + CK2)

√
m

n
≥ α3/2

24D

√
m

n

due to our choice of ϵ in (2.11). This concludes the proof of Proposition 2.7.

Remark 2.8. Note that the bounded density assumption is crucial for Proposition 2.7. For in-

stance, the rows of a normalized Bernoulli matrix violate the hypotheses of Lemma 2.6, and Propo-

sition 2.7 does not apply. Unfortunately this cannot be overcome. Indeed, consider taking x to be

the vector (1,−1, 0, . . . , 0). Then ⟨ai,x⟩ = 0 with probability 1/2. So if α < 1/2 in Proposition 2.7

then x will lie in the kernel of some αm × n submatrix of A with high probability, violating the

uniform lower bound on the smallest singular value of the submatrices.

Auxiliary results – structure of the residual

Recall that ai denotes a (normalized) row of the matrix A. We recall the notations for the statistics

of the corrupted and uncorrupted residuals; we denote the q-quantile of the corrupted residual as

Qq(x), and the q-quantile of the uncorrupted residual as Q̃q(x). We additionally recall that the

empirical mean of the entries of Ax is denoted M(x).

The key observation is that for all uncorrupted indices i we have

⟨xk − x∗, ai⟩ = ⟨xk, ai⟩ − ⟨x∗, ai⟩ = ⟨xk, ai⟩ − bi.

Each of xk, ai, and bi is available at runtime (unlike the exact solution x∗), so this quantity may

be computed directly. Then, due to the robustness to noise of the order statistics, we can use

the quantiles of the corrupted residual, Qq(xk), to estimate quantiles of the uncorrupted residual,

Q̃q(xk).

In particular, the following straightforward implication of the definition of quantiles is used in

the proof of QuantileSGD convergence. We omit the proof.
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Lemma 2.9. With at most a β fraction of samples corrupted by an adversary, we have

Q̃q−β(xk) ≤ Qq(xk) ≤ Q̃q+β(xk).

We will estimate empirical uncorrupted quantiles Q̃q(x) instead of Qq(x) first. The rest of this

section consists of two parts: upper bounds for Q̃q(x), and lower bounds for Q̃q(x). As in the

previous subsection, the main challenge is to get uniform high-probability estimates over the unit

sphere.

Concentration of M(x) and upper bound for empirical quantiles

The next lemma shows that any fairly large collection of rows is reasonably incoherent. We will

need this result in order to handle situations in which the locations of corruptions are chosen

adversarially.

Lemma 2.10. Let random matrix A ∈ Rm×n satisfy Assumption 1. With probability at least

1− 2 exp(−cm) we have that for all unit vectors x ∈ Rn and every T ⊆ [m],

∑
i∈T

|⟨x, ai⟩| ≤ CK

√
m|T |
n

.

Proof. Consider a vector s = (si) ∈ {−1, 0, 1}m defined by

si =


sign(⟨x, ai⟩), if i ∈ T

0, otherwise,

for i ∈ [m]. Note that ∥s∥ ≤
√
|T |.

The left hand side of the desired inequality can be written as

∑
i∈T

|⟨x, ai⟩| =
m∑
i=1

⟨x, siai⟩ =

〈
x,
∑
i∈[m]

siai

〉
≤

∥∥∥∥∥∥
∑
i∈[m]

siai

∥∥∥∥∥∥ =
∥∥A⊤s

∥∥ .
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Now the last norm can be estimated using the bound from Theorem 2.4 (since the
√
n-rescaled

rows of A are isotropic and bounded) to get

∥∥A⊤s
∥∥ ≤ ∥∥A⊤∥∥ ∥s∥ = ∥A∥ ∥s∥ ≤ CK

√
m|T |
n

.

This concludes the proof of Lemma 2.10.

The next corollary allows us to upper bound the quantiles computed by QuantileRK. We assume

that αm “bad” indices from the next lemma are those that will be excluded by the quantile statistic.

Corollary 2.11. Let α ∈ (0, 1], let random matrix A ∈ Rm×n satisfy Assumption 1, and suppose

that Ax = b is corrupted by at most βm corruptions. Let x∗ ∈ Rn be the solution of the uncor-

rupted system. Assuming that m ≥ n, there exists a constant CK > 0 so that with probability at

least 1− 2 exp(−cm), for every x ∈ Rn the bound

|⟨ai,x⟩ − bi| ≤
CK
α
√
n
∥x− x∗∥ (2.12)

holds for all but at most (α + β)m indices i.

Proof. Note that by Lemma 2.10, with probability 1 − 2 exp(−cm), for all unit vectors x, the set

I := {i : |⟨x, ai⟩| ≥ CK/α
√
n} has cardinality at most αm. Indeed, this follows as we can lower

bound the sum estimate in Lemma 2.10 as

|I|CK
α
√
n
≤
∑
i∈T

|⟨x, ai⟩| ≤ CK
m√
n
.

For a unit vector u = (x− x∗)/∥x− x∗∥, this implies that

|⟨ai,x⟩ − bi| = |⟨ai,x− x∗⟩| ≤ CK
α
√
n
∥x− x∗∥ .

holds for all but αm uncorrupted indices i ∈ [m]. Thus, (2.12) holds for all but (α + β)m indices
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in total.

Note that Lemma 2.10 establishes the high-probability upper estimate for the quantity M(x)

of the order n−1/2 under the same Assumption 1 for the model. A complementary lower bound of

the same order, used in the analysis of QuantileSGD, requires more sophisticated concentration of

measure techniques employed in the proposition below.

Proposition 2.12. Let α ∈ (0, 1] and let random matrix A ∈ Rm×n with m ≥ CKn satisfy

Assumption 1. Then, with probability at least 1− 2 exp(−cm), for every x ∈ Sn−1, we have

M(u) :=
1

m

m∑
i=1

|⟨ai,u⟩| ≥
cK√
n
.

Proof. First, we show that the expectation of M(u) is lower bounded by cn−1/2 with some positive

constant c. To do that, note that EM(u) = E |Xn|, where Xn := ⟨a1,u⟩, and u is uniform

over Sn−1. The expectation is taken over u, and is independent of the ai’s by symmetry of u.

Then, by The Projective Central Limit Theorem (see for instance Remark 3.4.8 in [Ver18]),
√
nXn

converges in distribution to a standard normal as n → ∞. Moreover the random variables
√
nXn

are uniformly integrable and so E(|
√
nXn|) → µ where µ ≈ 0.78 is the mean of a standard half-

normal random variable.3 In particular E(|
√
nXn|) is bounded below by a constant uniformly in

n.

Then, with probability one M(u) is bounded below by its expectation cn−1/2 for some u ∈

Sn−1.

Now, we will use a chaining argument to show that the averages M(u) are concentrated uni-

formly over the sphere. For u,v ∈ Sn−1, we have

|M(u)−M(v)| ≤ 1

m

m∑
i=1

|⟨ai,u− v⟩| .

The terms in this sum are independent sub-Gaussian random variables with sub-Gaussian norm no
3i.e., the absolute value of a standard normal random variable
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larger than K ∥u− v∥ /
√
n. Therefore by Lemma 2.5,

∥M(u)−M(v)∥ψ2
≤ C ·K ∥u− v∥√

m
√
n

.

By the tail bound version of Dudley’s inequality ([Ver18, Theorem 8.1.6]) and the bound (3/ϵ)n

for the ϵ-covering number of the unit sphere, we then have with probability at least 1−2 exp(−t2m)

sup
u,v∈Sn−1

|M(u)−M(v)| ≤ C1K√
m
√
n

(√
n+ diam

(
Sn−1

)
t
√
m
)
= K

(
C1√
m

+
2C1t√

n

)
. (2.13)

Thus, for all u ∈ Sn−1,

M(u) ≥ c√
n
−K

(
c1√
m

+
c2t√
n

)

with probability at least 1 − 2 exp(−t2m). Provided that m ≥ CKn and t is small enough, this

bound reduces to the claim of Proposition 2.12.

As a result of Lemma 2.10 and Proposition 2.12, we obtain the lower and upper uniform high-

probability bounds on M(u) of the form c1n
−1/2 ≤M(x) ≤ C2n

−1/2 for some constants c1, C2 >

0. This is enough for our analysis of QuantileRK and QuantileSGD methods. However, in the next

remark we discuss that these constants can be sharpened essentially for free.

Remark 2.13. Note that the argument of Proposition 2.12 leads to more refined upper bound on

M(u). Namely, note that

(EM(u))2 = (E |⟨u, a1⟩|)2 ≤ E |⟨u, a1⟩|2 = n−1.

So, for some u, M(u) is at most its expectation and hence M(u) ≤ n−1/2 for some u ∈ Sn−1.

Then, from (2.13), for t ≥ 0 and with probability 1 − 2 exp(−t2m), for every u ∈ Sn−1 we have
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the bound

M(u) ≤ 1√
n
+K

(
c1√
m

+
c2t√
n

)
≤ 1 + ϵ√

n
(2.14)

for any small ϵ > 0 if the matrix A is tall enough and parameter t is small enough.

If in addition, one assumes that n is sufficiently large (greater than come constant Cϵ) so that

E(|
√
nM(u)|) is near the mean of half-normal random variable µ, then one can have

M(x) ≥ µ− ϵ√
n

with probability at least 1 − 2 exp(−cK,ϵm) provided that m ≥ CK,ϵn. The latter bound allows

us to extend the guarantees for the QuantileSGD algorithm for a wider range of quantiles, under

additional restrictions on the model (we will not carry out this analysis in detail, however see

Remark 2.20).

Lower bound for empirical quantiles

We also use the following lower-bound variant of the above result when analyzing QuantileSGD.

Lemma 2.14. Let A ∈ Rm×n be a random matrix satisfying Assumption 2 and let x∗ and b be

such that Ax∗ = b (that is, the linear system is consistent). If m ≥ C
q
n log

(
cnD
q

)
then

Pr

{
Qq(x) ≥

cq

D
√
n
∥x− x∗∥ for all x ∈ Rn

}
≥ 1− exp(−cm).

Proof. We assume without loss of generality that x∗ = 0 and b = 0. The general result follows in

the same way as in Corollary 2.11 above. By scaling, it suffices to prove the result for x ∈ Sn−1.

First consider a fixed x in Sn−1. By Lemma 2.6, we can choose cq = cq/D so that,

Pr

(
|⟨x, ai⟩| ≤

2cq√
n

)
≤ q

2
(2.15)

for all i. By a Chernoff bound, Qq(x) ≥ 2cq/
√
n with probability at least 1− exp(−qm/6).
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Let N be a cq/
√
n-net of Sn−1 which we can take to have size

|N | =
(

3

cq/
√
n

)n
= exp(n log(3

√
n/cq)).

By a union bound, there are constants so that if

m ≥ C

q
n log

(
cnD

q

)
,

then the quantile bound (2.15) holds for all x in N with probability at least 1− exp(−cm).

In order to upgrade our bound on N to all of Sn−1, it remains to show that Qq(x) is stable

under small perturbations of x.

Suppose that x and y in Rn are arbitrary. Then for all i, we have the bound

|⟨x, ai⟩| − |⟨y, ai⟩| ≤ |⟨x, ai⟩ − ⟨y, ai⟩| = |⟨x− y, ai⟩| ≤ ∥x− y∥ .

Therefore

|⟨x, ai⟩| − ∥x− y∥ ≤ |⟨y, ai⟩| ≤ |⟨x, ai⟩|+ ∥x− y∥ .

By taking the q-quantiles over i and using monotonicity of quantiles, it follows that

|Qq(x)−Qq(y)| ≤ ∥x− y∥ (2.16)

for all x,y.

Each point in Sn−1 is within cqn
−1/2 of some point in N . Lemma 2.14 follows by combining

(2.16) with our bound on Qq(x) over N .

Remark 2.15. We require the aspect ratio of A to be at least order log(n). It is plausible that

Lemma 2.14 can be improved to hold for constant aspect ratios as was the case of the upper bound

in Corollary 2.11. We will not attempt to do so, and as a result we require QuantileSGD to have a
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slightly stronger condition on the aspect ratio of A than QuantileRK.

2.4.2 Analysis of the QuantileRK method

In this section we provide a proof that the QuantileRK method converges.

Roadmap. The proof will proceed as follows. We condition on the sampling of a row that

will be accepted by the QuantileRK iteration; recall a row is acceptable in a given iteration if the

entry of the residual associated to this row is less than or equal to Qq(xj−1, {il : l ∈ [t]}). We then

show that the uncorrupted rows help substantially, while the corrupted rows do not overly affect

the convergence. Conditioned on the current row being uncorrupted, we argue that an iteration of

the QuantileRK method brings us closer in expectation to x∗. To accomplish this, we show that the

restriction of A to the acceptable uncorrupted rows is well-conditioned via Lemma 2.10. In that

case, the current iteration of QuantileRK is equivalent to an iteration of the standard RK method

on the restricted matrix. This allows us to apply a known per-iteration guarantee for RK.

To argue that corrupted rows do not significantly harm convergence, we consider a subset

J ⊂ [m], of row indices with |J |/m ≥ c, and with J containing all corrupted indices as a subset.

By making J sufficiently large, we ensure that the subset of the rows of A indexed by J inherits in-

coherence properties from the full matrix (uniformly over all such subsets, due to Proposition 2.7).

Incoherence will ensure that the average projection of x onto a corrupted hyperplane moves the

point in a direction nearly orthogonal to x − x∗. The length of such a step is bounded by Cn−1/2

by Corollary 2.11, so a “bad” step is unlikely to move x much further from x∗. In particular, a

constant number of “good” steps will suffice to “cancel out” a bad step. If the fraction of bad rows

is sufficiently small, then the QuantileRK method will enjoy linear convergence to x∗.

Proof of Theorem 2.1. We will start by introducing some useful notation. Recall that each instance

of an absolute constant may refer to a different constant value; however, we track the dependence

of q on β explicitly.

Let EAccept(k) denote the event that we sample an acceptable row at the k-th step of the method;
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that is, if the if-statement in line 6 of the QuantileRK Method 1 evaluates to true for that row. Recall

that an i-th row of A is acceptable at iteration k if |⟨xk, ai⟩ − bi| ≤ Qq(xk), where Qq is defined

as in (2.4). Clearly, Pr(EAccept(k)) = ⌊qm⌋/m for any integer k ≥ 1.

Further, we will consider three subsets of indices denoted as J , I1 and I2. Let J denote a

collection of indices of size4 2βm which contains all corrupted indices and at least βm acceptable

indices. We assume that β < q so there exists that many acceptable indices (as there are exactly

⌊qm⌋ acceptable indices total). Then, all acceptable indices are split into two types: those inside

the set J (we denote them I1, by construction, |I1| ≥ βm) and those outside of J (we denote them

I2). Finally, let EkL denote the event that k-th iteration of the QuantileRK method samples an index

from an index subset L ⊂ [n].

We first observe that

Ek(∥ek+1∥2) = (⌊qm⌋/m)Ek(∥ek+1∥2 |EAccept(k + 1)) + (1− ⌊qm⌋/m) ∥ek∥2 , (2.17)

since QuantileRK(q) does not update xk if a sampled row index was not acceptable.

Conditioned on choosing an acceptable row, we either pick an index from I1 or from I2, and

the conditional probability pJ to choose an index in I1 satisfies pJ ≤ 2βm/qm = 2β/q (the upper

bound refers to the case when I1 = J).

Now, given Ek+1
I2

, the iterate xk+1 is obtained by applying an iteration of the Standard RK

method for the matrix AI2 . Note that I2 has size at least (q−2β)m−1, since at least ⌊qm⌋ indices

are acceptable, and at most 2βm of these are contained in I1. Next we apply Proposition 2.7 with

α = q − 2β − 1
m

> 0. As long as β is at most a constant factor of q (e.g., β ≤ q/4), then we have

α ≥ cq. The proposition then gives ∥A−1
I2
∥2 ≤ Cβ,D

√
n/m with probability 1 − 3 exp(−cqm)

provided that
m

n
≥ Cq,D := C

1

α
log

(
DK

α

)
.

4We assume without loss of generality that βm is an integer. If this is not the case, consider β′ such that β′m =
⌈βm⌉ instead of β throughout the proof.
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Since all the rows of A are normalized to have unit norm, we also know that ∥A∥F =
√
m.

Therefore, with high probability, we may bound the condition number of AI2 as

κ(AI2) ≤ ∥A∥F∥A−1
I2
∥2 ≤

√
mCq,D

√
n/m = Cq,D

√
n. (2.18)

Note that Proposition 2.7 gives a uniform lower bound for the condition number for all index

subsets of size at least αm. So in each iteration of the method, AI2 will have a good condition

number upper bounded by (2.18) with probability at least 1− 3 exp(−cqm). In particular, AI2 has

full rank since ∥A−1
I2
∥ is finite. Then, by the analysis of the Standard RK method [SV09] given in

(2.3), we have

Ek(∥ek+1∥2 |Ek+1
I2

) ≤
(
1− c1

n

)
∥ek∥2 .

Now, we consider two cases. In the corruptionless case when β = 0, we have that the set I1 is

empty and pJ = 0 by definition. So,

Ek(∥ek+1∥2) ≤ q
(
1− c1

n

)
∥ek∥2 + (1− q) ∥ek∥2 ≤

(
1− qc1

n

)
∥ek∥2 . (2.19)

In the other case, when β > 0, we need to consider the second possibility, if the next index was

coming from I1.

Conditioned on taking an acceptable row, we can choose hi with |hi| ≤ Qq(xk), so that

Ek(∥ek+1∥2 |Ek+1
I1

) = Ek(∥ek − hiai∥2 |Ek+1
I1

)

= ∥ek∥2 + h2
i − 2Ek

(
hi ⟨ek, ai⟩ |Ek+1

I1

)
≤ ∥ek∥2 +Qq(xk)

2 + 2Qq(xk)Ek(|⟨ek, ai⟩| |i ∼ Unif(I1)).

We would like to bound these last two terms. By Corollary 2.11, for α ≤ 1− q − β,

Pr

(
Qq(xk) ≤

CK ∥ek∥
α
√
n

)
≥ 1− 2 exp(−m).
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As long as q + β is bounded away from one, as in the case if the constants in the statement of the

theorem are chosen appropriately small, this yields a bound of the form

Pr

(
Qq(xk) ≤

CK ∥ek∥√
n

)
≥ 1− 2 exp(−m).

Also, we apply Lemma 2.10 to the set I1 (recall that |I1| ≥ βm) to get that with probability

1− 2 exp(−cm),

Ek (|⟨ek, ai⟩| |i ∼ Unif(J)) =
1

|I1|
∑
i∈I1

|⟨ek, ai⟩| ≤ C ∥ek∥
√

m

n|I1|
≤ C ∥ek∥√

βn
.

Thus,

Ek(∥ek+1∥2 |Ek+1
I1

) ≤
(
1 +

√
βc2 + c3√

βn

)
∥ek∥2 . (2.20)

So, in this case the norm of the error could increase, but not too much (as we will see below).

So, by the total expectation theorem, we have

Ek(∥ek+1∥2 |EAccept(k + 1)) = pJEk(∥ek+1∥2 |Ek+1
I1

) + (1− pJ)Ek(∥ek+1∥2 |Ek+1
I2

)

≤
[
pJ

(
1 +

√
βc2 + c3√

βn

)
+ (1− pJ)(1−

c1
n
)

]
∥ek∥2

=

[
1− c1

n
+ pJ

(
(c1 + c2)

√
β + c3√

βn

)]
∥ek∥2

≤
[
1− c1

n
+

2β

q
· c1 + c2 + c3√

βn

]
∥ek∥2

≤
[
1− 0.5c1

n

]
∥ek∥2 ,

where the last step holds if β a sufficiently small constant (we need
√
β ≤ cq =: Cq). Finally, from

(2.17) we obtain the per-iteration guarantee

Ek(∥ek+1∥2) ≤ (⌊qm)⌋/m
(
1− 0.5c1

n

)
∥ek∥2 + (1− ⌊qm⌋/m) ∥ek∥2 ≤

(
1− cq

n

)
∥ek∥2 .

(2.21)
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Theorem 2.1 now follows from (2.19) or (2.21) by induction.

Remark 2.16 (Condition on β). We need the fraction of corruptions β to be sufficiently small.

Specifically, our proof of Theorem 2.1 requires
√
β < cq, where c is some small positive con-

stant. Intuitively, this is required since the quantile bound (admissibility) is the only way to bound

potential loss if the step is made using one of the corrupted equations (as we do not impose any

restrictions on the size of corruptions). Moreover, the expected loss of progress, given the projec-

tion on the admissible corrupted equation, must be so small that it is compensated by the expected

exponential convergence rate, given that one of the equations from the uncorrupted part was se-

lected.

Remark 2.17. Although the bounded density assumption is crucial for Proposition 2.7 to hold

(see Remark 2.8), one should not expect the failure of Proposition 2.7 to result in the QuantileRK

method not converging. In the Bernoulli case, the per-iteration guarantee given likely no longer

holds, however one expects it to fail for only a very small set of vectors xk. Provided that the

QuantileRK method does not attract iterates to this set of bad vectors, one should still expect

convergence from a randomly chosen x0. We leave such an analysis to future work. (However we

empirically demonstrate convergence in Figure 2.4 (a).)

2.4.3 Analysis of QuantileSGD method

In this section, we provide a proof that the QuantileSGD method converges. To do so, we first

introduce an optimal SGD method in Section 2.4.3 and then prove that QuantileSGD approximates

this optimal method in Section 2.4.3. We then give an improved analysis in the streaming setting

in Section 2.4.3.

OptSGD

As a first step towards the analysis of the quantile-based SGD method, we introduce the OptSGD

method taking the steps of the optimal size towards the solution.

34



Note that SGD iterates can be written in the form

xk+1 = xk − ηksi(xk)ai, where si(xk) := sign(⟨ai,xk⟩ − bi); (2.22)

that is, the vector si(xk)ai is directed from the hyperplane defined by the ith equation towards the

half space that xk lies on. We assume that SGD samples rows uniformly, so i ∼ Unif([m]). The

constant ηk > 0 defines the length of the step (recall that ∥ai∥2 = 1)). OptSGD chooses the step

size η∗k so that the expected distance to the solution E ∥ek+1∥22 = E ∥xk+1 − x∗∥22 is minimized.

Namely, we have

E
(
∥ek+1∥22

)
= E

(
∥ek − si(xk)ηkai∥22

)
= E

(
∥ek∥22 − 2si(xk) ⟨ek, ai⟩ ηk + si(xk)

2 ∥ai∥22 η
2
k

)
= ∥ek∥22 − 2E (si(xk) ⟨ek, ai⟩) ηk + η2k

= (ηk − E(si(xk) ⟨ek, ai⟩))2 − (E(si(xk) ⟨ek, ai⟩))2 + ∥ek∥22 , (2.23)

which is minimized by setting

η∗(xk) = E (si(xk) ⟨ek, ai⟩) =
1

m

m∑
i=1

si(xk) ⟨ek, ai⟩ . (2.24)

Quantile SGD

In the previous section, we derived a theoretically optimal step size for l1 stochastic gradient de-

scent. The formula for the step size (2.24) relied on ek which is unknown during runtime. Actually,

since ⟨ek, ai⟩ = ⟨xk, ai⟩ − ⟨x∗, ai⟩ = ⟨xk, ai⟩ − bi for any uncorrupted equation, it is the presence

of corruptions that makes η∗(xk) unavailable at runtime. Here we show that order statistics can be

applied to give an approximation to the optimal step size.

First, let us show that η∗k(xk) is well-approximated by M(xk − x∗). We notice that the sums
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defining η∗k(xk) and M(xk − x∗) respectively differ only in the terms corresponding to the indices

of the corrupted equations. So, given that the fraction of corruptions is small enough, we can

efficiently bound this difference.

Proposition 2.18. Fix any δ ∈ (0, 1). Let the system be defined by random matrix A ∈ Rm×n

satisfying Assumptions 1 and 2 with m ≥ CKn, and β = |supp(bC)|/m a small enough posi-

tive constant. Let η∗(x) be optimal step size for SGD method defined as in (2.24). Then, with

probability at least 1− c exp(−cKm) we have for any x ∈ Rn that

(1− δ)η∗(x) ≤M(x− x∗) ≤ (1 + δ)η∗(x). (2.25)

Proof. Let S denote the set of indices corresponding to negative terms in the sum (2.24). Note

that for all uncorrupted equations i, we have si(xk) = sign(⟨ek, ai⟩), so the i-th term in η∗(xk) is

non-negative, and |S| ≤ βm. We then have

|η∗(x)−M(x− x∗)| ≤ 2

m

∑
i∈S

|⟨x− x∗, ai⟩| .

Rescaling to normalize x− x∗ and applying Lemma 2.10 allows us to further bound

|η∗(x)−M(x− x∗)| ≤ 2|S|
m

CK
1√

|S|/m
√
n
∥x− x∗∥ ≤ 2CK

√
β√
n
∥x− x∗∥

uniformly for all x with probability at least 1− 2 exp(−cm).

Moreover, by Propostion 2.12,

M(x− x∗) ≥ c√
n
∥x− x∗∥

for all x with probability at least 1 − 2 exp(−cKm). Thus by taking β to be a sufficiently small

constant (so that the difference between η∗(x) and M(x − x∗) is negligible compared to the size

of M(x− x∗)), we conclude the proof of Proposition 2.18.
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Although the empirical mean M(x − x∗), as well as η∗k is not available at runtime, the above

proposition allows us to show that in order to obtain a near optimal convergence guarantee, it

suffices to approximate η∗k to within a constant factor.

Proposition 2.19. Let the system be defined by random matrix A ∈ Rm×n satisfying Assumptions

1 and 2 with m ≥ Ckn. Suppose we run an SGD method (2.22) with the stepsize ηk, satisfying

0 < c1 ≤ ηk/η
∗(xk) ≤ c2 < 2 at each iteration k = 1, 2, 3, . . ., where η∗(xk) is an optimal

step size given by (2.24). Then, for any β = |supp(bC)|/m ∈ (0, 1), there exists a constant

c = c(c1, c2) > 0 such that

E(∥ek+1∥22) ≤

(
1− c

(
η∗(xk)

∥ek∥2

)2
)
∥ek∥22 . (2.26)

Moreover, if the fraction of corrupted equations β is small enough, then with probability at

least 1 − c exp(−cKm), A is sampled such that the rate of convergence is linear, namely, there

exists a constant C = C(c1, c2) > 0 such that

E(∥ek+1∥22) ≤
(
1− C

n

)
∥ek∥2 . (2.27)

Proof. Throughout the proof, we adopt a shorthand notation η∗k = η∗(xk).

Indeed, by the condition on ηk we have that

|ηk − η∗k| ≤ η∗kmax{c2 − 1, c1 − 1}

and c = 1− (max{c2−1, c1−1})2 > 0. So, by equation (2.23) and the definition of η∗k (in (2.24)),

we have that

E
(
∥ek+1∥22

)
= (ηk − η∗k)

2 − (η∗k)
2 + ∥ek∥22 ≤ ∥ek∥22 − c(η∗k)

2,

and so

E(∥ek+1∥22) ≤

(
1− c

(
η∗k
∥ek∥2

)2
)
∥ek∥22 .
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To show that the convergence rate is linear, note that by applying Proposition 2.18 with δ =

1/3, and Proposition 2.12, we have the bound

η∗(xk) ≥
3

4
M(xk − x∗) ≳

1√
n
∥xk − x∗∥ .

This concludes the proof of Proposition 2.19.

Roadmap. We are now set to give a proof of Theorem 2.2. The general plan is as follows:

we know that quantiles of the residual Qq(xk) are well-approximated by the empirical uncorrupted

quantiles Q̃q(xk) (Lemma 2.9), then we show that empirical uncorrupted quantiles concentrate

near the empirical mean M(x − x∗), which is in turn close enough to the optimal step size η∗(x)

(Proposition 2.18). Finally, we invoke Proposition 2.19 to conclude the linear convergence rate of

the QuantileSGD(q) method.

Proof of Theorem 2.2. We upper bound the q-quantile of the corrupted residual,

Qq−β(xk) ≤ Q̃q(xk) ≤
1

1− q
M(xk − x∗) ≤ 1 + δ

1− q
η∗(xk) < 2η∗(xk), (2.28)

where the first inequality follows from Lemma 2.9, the second from Markov’s inequality, the third

from Proposition 2.18 with probability at least 1 − 2 exp(−cm), and the fourth by choosing δ ∈

(0, 1− 2q).

For the lower bound, we have that Qq−β(xk) ≥ Q̃q−2β(xk) by Lemma 2.9. Then,

Q̃q−2β(x) ≥
c1√
n
∥x− x∗∥

for all x with probability at least 1− exp(−cm) by Lemma 2.14. Now,

M(x) ≤ c2√
n
∥x− x∗∥ ,
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so we may upper bound η∗(x),

η∗(x) ≤ M(x)

1− δ
≤ c2

(1− δ)
√
n
∥x− x∗∥ ≤ c2

(1− δ)c1
Q̃q−2β(xk) ≤

1

c
Qq−β(xk)

for some positive constant c.

Combining these upper and lower bounds on Qq−β(x) we find that there exists c > 0 so that

for all x ∈ Rn,

0 < c <
Qq−β(x)

η∗(x)
<

1 + δ

(1− q)η∗(x)
< 2.

We have shown that the hypothesis of Proposition 2.19 holds. Theorem 2.2 follows by induction.

Remark 2.20. In some cases, for example, when ai are independent vectors sampled uniformly

from Sn−1 we can show that a bigger range of quantiles for an SGD step guarantees exponential

convergence of the QuantileSGD method. In particular, using Gaussian concentration instead of

Markov’s inequality in (2.28), the statement of Theorem 2.2 holds for QuantileSGD(q − β) for all

q ∈ (0, 0.75). Note that this justifies the optimal values for the quantile q obtained experimentally

(see Figure 2.1 b).

Streaming Setting

In the matrix setting we only prove convergence for a sufficiently small fraction of corruptions β.

While one could in principle unwind the constants from the random matrix theorems that we have

applied, it would be unlikely to result in new insights. Instead we note that the key complication

in the matrix setting was handling “asymmetries” in the matrix A. While the rows were sampled

over Sn−1 in a close-to-uniform way, there was no guarantee that the rows of A (representing only

a sample from this distribution) were uniformly spread over the sphere.

Here we present a more optimized analysis in the streaming setting, which may be viewed

as a model for extremely tall matrices where each row is likely to be sampled only once in the
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course of the method. In particular, it allows us to justify the QuantileSGD method when up to a

0.35 fraction of all equations are corrupted (note that in both Theorem 2.1 and Theorem 2.2 we

formally asked for the fraction of corruptions β to be “small enough”).

Instead of a matrix let us consider some distribution D over Rn and β ∈ [0, 1]. On each of

many iterations, we receive a pair (ak, bk) (in a non-streaming setting this pair was a row of the

matrix and a corresponding entry of the vector b respectively). The vector ak is always sampled

from D. With probability 1− β, b was selected so that b = ⟨a,x∗⟩ , and with probability β, b was

chosen arbitrarily, and possibly adversarially. Our goal is to approximate x∗.

For simplicity, we allow ourselves an arbitrary number of samples to estimate the quantiles of

the residual Qq(xk), where ak from Definition (2.4) are random gaussian vectors and respective bi

are given by the samples.

Theorem 2.21. In the streaming setting with arbitrary corruptions and Gaussian samples (namely

ak) are standard n-variate Gaussian random vectors), QuantileSGD(q) converges to x∗ with β =

0.35 as long as the quantile q is chosen sufficiently small.

Remark 2.22. The model of the left hand side of the system is different from our earlier convention,

in particular, ak’s do not have exactly unit norm. However this distinction is unimportant since (i)

our methods are invariant under rescaling the aks and (ii) the one-dimensional projections of the

uniform distribution over
√
nSn−1 converge in distribution to a Gaussian as n→∞.

Proof. Recall that for QuantileSGD, we chose our step size ηk = Qq(xk). In the streaming setting

with Gaussian samples, the value of Qq(x) only depends on ∥x− x∗∥ . This follows directly from

the definition of Q̃q along with rotation-invariance of Gaussian vectors. Furthermore, Qq respects

dilations about x∗ in the sense that

Qq(x
∗ + λ(x− x∗)) = λQq(x)

for λ ∈ R. Again this is a simple check from the definition of Q̃. The same properties hold for the
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optimal SGD step size η∗ as per (2.24) for the same reasons.

These properties imply that Qq(x)/η
∗(x) is constant over Rn \{x∗}. We are going to show that

for small q this quantity lies strictly between 0 and 2. In other words

0 < c < Qq(xk)/η
∗(xk) < C < 2 (2.29)

for all iterates xk. (Of course this bound holds for all x ∈ Rn, but we emphasize that we apply

this bound to the iterates.) This will allow us to apply Proposition 2.19 (in the form of (2.26)) to

conclude that QuantileSGD(q) converges for q small enough.

The lower bound of (2.29) clearly holds for q positive, since Qq(xk)/η
∗(xk) is nonzero as long

as xk ̸= x∗ (and of course η∗(xk) <∞).

Also recall that for all uncorrupted equations we have η∗(xk) = E| ⟨xk − x∗, ak⟩ |. So, we can

lower bound

η∗(xk) ≥ (1− β)E(|⟨ek, ak⟩|) + βE(− |⟨ek, ak⟩|)

= (1− 2β)E(|⟨ek, ak⟩|)

= (1− 2β)

√
2

π
∥ek∥ ,

where the last constant is the expectation of a standard half-normal random variable.

By Lemma 2.9, we also have

Qq(xk) ≤ Q̃q+β(xk) = ∥ek∥Φq+β,

where Φq denotes the q-quantile of the standard half-normal distribution, |N (0, 1)|. The upper

bound in equation (2.29) is equivalent to the inequality

∥ek∥Φq+β < C(1− 2β)

√
2

π
∥ek∥ , (2.30)
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where C is allowed to be any constant smaller than 2 (e.g 1.99). This inequality is true for small

positive q as long as

Q̃β(|N (0, 1)|) <
√

8

π
(1− 2β).

One can verify numerically that the inequality holds for β = 0.35, and indeed for slightly larger

values. This concludes the proof of Theorem 2.21.

Remark 2.23. One can find explicit pairs q, β that work by solving the inequality (2.30) numer-

ically. For instance quantiles 0.1, 0.3, and 0.5 can handle corruption rates of roughly 0.32, 0.25,

and 0.18 respectively.

Remark 2.24. An adversary generating corruptions at runtime can make the bounds in the proof

of 2.21 as tight as desired. Thus one cannot expect convergence in general if β is much larger than

0.35.

Remark 2.25. While the above analysis gives results that are on the same order of magnitude as

experiments show, this setting is far more adversarial than what one would encounter in practice.

Our experiments demonstrate that one can tolerate higher levels of corruptions than what our

theory predicts in this setting. Extending the analysis to the setting of our experiments would

require fixing a particular model for the corruptions. By considering adversarial corruptions

generated at run-time, we handle any such model.

2.5 Implementation Considerations

In this section, we discuss several important considerations regarding the implementation of Quan-

tileRK and QuantileSGD. In particular, we touch on the streaming setting in which the rows of the

measurement matrix are sampled from a distribution and provided in an online manner. We addi-

tionally discuss various considerations for constructing the sample of the residual, and the choice

of quantile to apply in each method.

42



2.5.1 Streaming setting

First, we note that the streaming setting described in Section 2.4.3 provides a good model for many

of our experiments. For example, in several of the experiments below, we sample 2000 rows (2000

iterations) from a 50000 row Gaussian matrix. We expect most rows to be sampled only once,

which places us within the context of the streaming setting. For this reason, we expect that our

methods can in practice handle a larger fraction of corruptions than is reflected in Theorems 2.1

and 2.2.

2.5.2 Sample size

Next, we mention several approaches for decreasing the computational burden of computing the

residual in each iteration of QuantileRK and QuantileSGD. Note that both QuantileRK and Quan-

tileSGD as written in Methods 1 and 2 use a sample of the residual of size t. This is much more

efficient than constructing the entire residual in each iteration, with the cost scaling with tn instead

of mn when constructing the entire residual.

The optimal sample size depends upon the quantile chosen, the fraction of corruptions, and the

number of iterations employed. Given the fraction of corruptions, one should choose the sample

size and quantile so that the number of corruptions in the sample is at most (1 − q)t with high

probability (this could be calculated with a Chernoff bound). In particular, more aggressive meth-

ods with higher choice of quantile demand larger sample size to ensure that corruptions may be

avoided with the quantile calculation.

2.5.3 Quantile selection

For QuantileRK, a larger quantile corresponds to a more aggressive method which is more likely to

make the sampled projection. The quantile can be chosen quite close to one if very few corruptions

are expected. Meanwhile, for QuantileSGD, the OptSGD theory demonstrates that the optimal

43



quantile to select is the mean of the uncorrupted residual. In the case of Gaussian rows with no

corruptions, the mean happens to coincide with the 0.58 quantile. So for QuantileSGD the quantile

should be chosen near 0.5 if few corruptions are expected.

2.5.4 Sliding window

Now, as mentioned previously, constructing the sample of the residual requires O(tn) computa-

tion. We can decrease this per-iteration cost by reusing residual entries between iterations. This

suggests using a ‘sliding window’ approach where the sample from which we compute the quantile

consists of residual entries collected over multiple iterations. We implement this approach in the

experiments below, using on the order of several hundred of the most recently computed residu-

als. One might expect that this causes significant loss in performance due to the varying scale of

the residuals in each iteration, but empirically we see nearly identical performance for moderately

sized windows (on the order of 100-500 iterations).

The sliding window approach raises the question of what to do in the initial iterations before the

iteration number has reached the window size. One could populate the entire window in the first

iteration by sampling as many residual entries as the window size, and then just replacing residual

entries as new ones are sampled in the next iterations. Alternatively, one could simply use a partial

window until the iteration number reaches the window size. However, this could significantly slow

convergence if there are corruptions that are large relative to the initial error ∥x0 − x∗∥ that get

sampled in these initial iterations.

2.6 Experimental Results

Each experiment is run using using Python version 3.6.9 on a single 24-core machine.
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2.6.1 Comparing various quantiles

Our theoretical analysis does not provide specific guidance for choice of quantiles (besides rough

relationships between q and β), so we investigate the problem of choosing quantiles empirically.

Figure 2.1 shows the behaviors of QuantileRK and QuantileSGD for various corruption rates β and

choices of quantile q. For each β, we plot the log relative error after 2000 iterations as a function of

q (this is the quantity log(∥x2000 − x∗∥ / ∥x0 − x∗∥). In order to de-noise the plots, each plotted

point is the median over 10 trials. On each trial we generate a new 50000 × 100 Gaussian system

with a β fraction of corrupted entries. Each corrupted entry of b is modified by adding a uniformly

random value in [−5, 5].

Figure 2.2 presents the same plot, however this time the corruptions are chosen to form a con-

sistent subsystem. We seem similar behavior to when the corruptions are independent. However

for corruption rates near 0.5 it becomes impossible to distinguish the corrupted subsystem from

the uncorrupted subsystem, and so convergence is poor for all quantiles.

In the case of QuantileRK, we see that the optimal quantile tends to be just shy of 1 − β.

This aligns with the intuition that QuantileRK should be as aggressive as possible while avoiding

projections onto badly corrupted hyperplanes. It is clear that QuantileRK cannot choose a quantile

larger than β, otherwise we are likely to sample in the β fraction of corrupted rows, resulting in

a threshold which is too large. In practice it is often best to choose a quantile which is somewhat

smaller that what the graph suggests. As the quantile approaches 1−β the risk of performing a bad

projection becomes large enough that we observe bad projections within a few thousand iterations.

We see that QuantileSGD is much more robust to the choice of quantile. For instance when

β = 0.1, the optimal quantile appears to be near 0.5. However we see near-optimal convergence

behavior as long as β is between 0.3 and 0.7.
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(a) QuantileRK (b) QuantileSGD

Figure 2.1: log(∥x2000 − x∗∥ / ∥x0 − x∗∥) for (a) QuantileRK and (b) QuantileSGD run on
50000× 100 Gaussian system, with various corruption rates β and quantile choices.

(a) QuantileRK (b) QuantileSGD

Figure 2.2: log(∥x2000 − x∗∥ / ∥x0 − x∗∥) for (a) QuantileRK and (b) QuantileSGD run on
50000×100 system with consistent corruptions, for various corruption rates β and quantile choices.

(a) Gaussian model (b) Coherent model

Figure 2.3: Relative error as a function of iteration count plotted for a 50000 × 100 Gaussian and
coherent model with a 0.2 corruption rate. The coherent system was generated by sampling entries
uniformly in [0, 1) and then normalizing the rows of the resulting matrix.
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(a) Bernoulli model (b) Coherent subsystem model

Figure 2.4: Relative error as a function of iteration count plotted for a 50000× 100 Bernoulli and
adversarial model with a 0.2 corruption rate. Each entry of the Bernoulli matrix is generated to be
−1 or 1 before normalizing rows. For the coherent subsystem model, a random subset of rows from
the corresponding Gaussian system were selected and corrupted to yield a 0.2m sized consistent
subsystem.

2.6.2 Convergence plots for the streaming model

In Figure 2.3 and Figure 2.4 we show the convergence behavior of our methods on a 50000× 100

system with a β = 0.2 fraction of corruptions. In Figure 2.3 and Figure 2.4 (a) entries are corrupted

by adding a uniformly random value in [−5, 5].

The label “RK” signifies the standard Randomized Kaczmarz method without thresholding.

The methods marked QuantileRK-SW and QuantileSGD-SW are the “sliding window” versions

of QuantileRK and QuantileSGD. The methods marked QuantileRK and QuantileSGD are the

sampled variants. We set our window size and sample size to 400 for these experiments. Finally,

we include OptSGD only in Figure 2.3 (a).

In Figure 2.3 (a) we show a normalized Gaussian system (i.e., a system with rows sampled

uniformly over Sn−1). We observe that all four of our quantile methods exhibit similar convergence

behavior. Notably, these methods perform comparably to OptSGD, which chooses an optimal

step size at each iteration. (Of course OptSGD cannot be run in practical settings, as it requires

knowledge of x∗.)

In Figure 2.3 (b) we consider a poorly-conditioned system with “coherent rows”. This matrix
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(a) Effect of aspect ratio (b) Effect of corruption size

Figure 2.5: (a) Log relative error for QuantileSGD and QuantileRK after 1000 iterations on a
100a × 100 Gaussian system with a 0.2 corruption rate, where a = m/n is the aspect ratio of the
matrix. (b) Log relative error for QuantileSGD and QuantileRK after 2000 iterations, as a function
of corruption size. We use a 50000 × 100 Gaussian system and corrupt our system by adding a
uniform value in [−10x, 10x].

is created by generating each entry i.i.d. uniformly in [0, 1], and then normalizing the rows of the

resulting matrix. We call the system coherent because pairs of rows typically have large inner

product with one another. Such a matrix does not have isotropic rows, and is therefore not covered

by our theoretical analysis. Nonetheless, we do observe convergence, albeit at a slower rate than

for the Gaussian model.

In Figure 2.4 (a) we show a Bernoulli system. Here each entry of our matrix is sampled

uniformly in {−1, 1} and the rows are normalized. This matrix violates the “bounded density”

assumption of our theoretical analysis. However we still see convergence behavior which is com-

parable to the Gaussian case.

Figure 2.4 (b) shows a Gaussian system which is corrupted as badly as possible, in the sense

that the values of the corrupted entries are chosen to form a consistent subsystem. In this model,

we choose a random collection of indices to corrupt, and then choose values such that the corrupted

subsystem is consistent. In effect, we attempt to trick the solver by creating a phantom solution in

addition to x∗. Our theory does address this case, and here we see convergence is comparable to

when the corrupted values are independently chosen.
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2.6.3 Influence of the aspect ratio

Each of our experiments so far dealt with extremely tall 50000×100 matrices. Since we ran at most

10000 iterations we were unlikely to sample a given row many times. Thus our experiments have

effectively been run in the streaming setting. A strength of our theory was providing convergence

guarantees even for matrices which are not too tall. In Figure 2.5 (a) we show the convergence

behavior of QuantileSGD and QuantileRK as a function of the aspect ratio. In this plot we consider

random Gaussian matrices with a β = 0.2 fraction of corruptions which are 100a × 100, where a

is the aspect ratio. Each data point is the median error taken over 100 separate trials.

2.6.4 Effect of corruption size

In Figure 2.5 (b) we illustrate the behaviors of QuantileSGD and QuantileRK as the corruption

sizes are varied. For each value on the x-axis, x, we corrupt the vector b by adding values sampled

uniformly from [−10x, 10x] to a β = 0.2 fraction of entries. As we see, both of our methods still

converge well even when the corruption sizes are very large. Their behavior for very small errors

is perhaps surprising.

In particular, QuantileRK seems to perform better when the corruptions are very large.5 The

reason for this is that when the corruptions are very small relative to ∥xk − x∗∥ , the system be-

haves as though it is consistent. For a consistent system QuantileRK behaves too conservatively

by rejecting 30 percent of the rows. When the size of corruptions becomes comparable to or larger

than ∥x0 − x∗∥ , this behavior disappears.

QuantileSGD on the other hand behaves better for consistent systems as rows are never re-

jected. The more consistent the system, the more likely a given step is to move the iterate closer to

x∗. We see this behavior for QuantileRK and QuantileSGD in Figure 2.1 as well.

5This type of behavior was noted in [HN18b], although for different reasons.
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(a) Tomography system (b) Wisconsin Breast Cancer dataset

Figure 2.6: (a) Relative error for each method run on a 1200×400 system designed for tomography.
Corruptions were added to 100 uniformly random entries of b. (b) Relative error for each method
run on a 699 × 10 matrix obtained from the Wisconsin Breast Cancer dataset. Corruptions were
added to 100 uniformly random entries of b.

2.6.5 Real world data

Finally, in Figure 2.6 we illustrate our methods on two real world data sets. In Figure 2.6 (a),

we experiment on a tomography problem generated using the Matlab Regularization Toolbox by

P.C. Hansen (http://www.imm.dtu.dk/˜pcha/Regutools/) [Han07]. We present a 2D

tomography problem Ax = b for an m × n matrix with m = fN2 and n = N2. Here A

corresponds to the absorption along a random line through an N × N grid. In this experiment,

we set N = 20 and the oversampling factor f = 3, which yields a matrix A ∈ R1200×400. As

the resulting system was consistent, we randomly sampled 100 indices uniformly from among the

rows of A and corrupted the right-hand side vector b in these entries by adding a uniformly random

value in [−5, 5].

In Figure 2.6 (b) we use a corrupted system generated from the Wisconsin (Diagnostic) Breast

Cancer data set, which includes data points whose features are computed from a digitized image of

a fine needle aspirate (FNA) of a breast mass and describe characteristics of the cell nuclei present

in the image [Lic13]. This collection of data points forms our matrix A ∈ R699×10, we construct

b to form a consistent system, and then corrupt a random selection of 100 entries of the right-hand

side by adding a uniformly random value in [−5, 5].
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The label “RK” signifies the standard Randomized Kaczmarz method without thresholding.

The methods marked QuantileRK-SW and QuantileSGD-SW are the “sliding window” versions

of QuantileRK and QuantileSGD. The methods marked QuantileRK and QuantileSGD are the

sampled variants. We set our window size and sample size to 100 for these experiments. Again, all

four of our proposed methods converge; however, the difference in empirical convergence rate is

clearly discernible on this data. It is notable that in Figure 2.6 (b) the sliding window variants of the

method converge more quickly. Since the sliding window quantile estimate lags into the past where

residual entries had larger magnitude, it will typically yield a larger quantile than resampling on

each iteration. The effect is to allow for more aggressive projections and step sizes in Quantile-RK

and Quantile-SGD.

2.7 Conclusion

In this work, we propose two new methods, QuantileRK and QuantileSGD, for solving large-

scale systems of equations which are inconsistent due to sparse, arbitrarily large corruptions in the

measurement vector. Such corrupted systems of equations arise in practice in many applications,

but are especially abundant and challenging in areas such as distributed computing, internet of

things, and other network problems facing potentially adversarial corruption.

The QuantileRK and QuantileSGD methods make use of a quantile statistic of a sample of the

residual in each iteration. We prove that each method enjoys exponential convergence with mild

assumptions on the distribution of the entries of the measurement matrix A, the quantile parameter

of the method q, and the fraction of corruptions β.

Our experiments support these theoretical results, as well as illustrate that the methods converge

in many scenarios not captured by our theoretically required assumptions. In particular, these

methods are able to handle fractions of corruption larger than those predicted theoretically, and

converge for systems defined by structured and real measurement matrices which are far from

the random matrices for which our theoretical results hold. We note that both theoretically and
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experimentally we see that the magnitude of the corruptions do not negatively impact convergence.

While our experiments show that QuantileRK and QuantileSGD yield good results on many

types of corrupted systems, our theory is currently limited to near-Gaussian random matrix model.

One could hope to extend the theory in several directions.

A concurrent work addressed the situation of noise in addition to large corruptions [JN21]. It

would also be nice to show a convergence result in the Bernoulli random model. The main obstacle

is that we can no longer hope for a per-iteration guarantee that holds over all potential iterates. One

would need to show that the set of points at which the per-iteration guarantee fails is small, and

that the dynamics of our algorithms are unlikely to be biased towards these “bad” points.

Second, one could also hope to give a non-random characterization of matrices for which our

algorithms have good convergence properties. To handle adversarial corruptions it is probably

necessary to assume some type of incoherence. Otherwise the corruptions could be structured to

align in a particular direction which points away from x∗. Alternatively, is it possible to detect

coherent row subsets of A in order to preempt the effect of structured corruptions?

As xk approaches x∗ the larger corruptions should become easier to identify. Can one design

an algorithm which removes such rows, thereby speeding up convergence? This is similar in spirit

to the iterative removal approach discussed in [HN18a]. Alternatively, might it be useful to reduce

the value of the quantile q throughout the course of the algorithm in order to more aggressively

reject corrupted rows when xk is near x∗?

Finally, one might also consider a non-random model for A, but where the corrupted entries of

b are non-random. In this setting it seems reasonable that the theory should continue to hold for

structured A. One could also attempt to generalize our results to systems of inequalities, and to

partially-greedy row sampling schemes.

52



CHAPTER 3

Testing Positive Semidefiniteness with Linear Measurments

Given a symmetric matrix it is natural to ask whether it is positive semi-definite (PSD). For in-

stance, one might have access to the Hessian of a function and then ask whether a particular critical

point x0 corresponds to a local minimum.

For extremely large matrices this may require a large amount of calculation, particularly if we

wish to distinguish between PSD matrices and matrices with a very small negative eigenvalue.

Following the property testing framework, we relax this problem slightly and aim to distinguish

between matrices that are PSD and matrices with a large negative eigenvalue. Moreover we allow

for randomized algorithms and only require that we distinguish between these two cases with a

small constant probability of failure.

To quantify the difficulty of this problem we consider query complexity. That is, we allow

ourselves extract information about the matrix by making some kind of linear measurement. For

example we consider matrix-vector products as one such query model, as well queries to the bilin-

ear form associated to the matrix.

We will aim to give tight bounds for the PSD-testing problem in these linear query models both

for adaptive and non-adaptive queries. Our upper bounds rely on a novel sketch for detecting an

extreme eigenvalue, as well as a new analysis of Oja’s method for approximate the largest negative

eigenvalue. To prove matching lower bounds we use a variety of techniques including reductions

from communication complexity lower bounds.
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In the following chapter we will build on some of the techniques from this chapter to address

the more general spectral approximation problem.

3.1 Contributions

This section contains work presented in [NSW22] which is joint with Deanna Needell and David

Woodruff. I proposed analyzing the PSD-testing problem in the matrix-vector and vector-matrix-

vector query models, proposed the main algorithms, and proved the main upper bound results.

David Woodruff contributed much of the insight for the lower bound results, proposed the spectral

approximation algorithm given here, and was the first to observe a separation between one-sided

and two-sided testers. All authors contributed to writing and editing the manuscript, and partici-

pated in many helpful discussions about this work.

3.2 Introduction

A real-valued matrix A ∈ Rn×n is said to be Positive Semi-Definite (PSD) if it defines a non-

negative quadratic form, namely, if xTAx ≥ 0 for all x. If A is symmetric, the setting on which

we focus, this is equivalent to the eigenvalues of A being non-negative. Multiple works [KS03;

Han+17; BCJ20] have studied the problem of testing whether a real matrix is PSD, or is far from

being PSD, and this testing problem has numerous applications, including to faster algorithms

for linear systems and linear algebra problems, detecting the existence of community structure,

ascertaining local convexity, and differential equations; we refer the reader to [BCJ20] and the

references therein.

We study two fundamental query models. In the matrix-vector model, one is given implicit

access to a matrix A and may query A by choosing a vector v and receiving the vector Av. In the

vector-matrix-vector model one chooses a pair of vectors (v, w) and queries the bilinear form asso-

ciated to A. In other words the value of the query is vTAw. In both models, multiple, adaptively-
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chosen queries can be made, and the goal is to minimize the number of queries to solve a certain

task. These models are standard computational models in the numerical linear algebra community,

see, e.g., [Han+17] where PSD testing was studied in the matrix-vector query model. These mod-

els were recently formalized in the theoretical computer science community in [Sun+19; RWZ20],

though similar models have been studied in numerous fields, such as the number of measurements

in compressed sensing, or the sketching dimension of a streaming algorithm. The matrix-vector

query and vector-matrix-vector query models are particularly relevant when the input matrix A is

not given explicitly.

A natural situation occurs when A is presented implicitly as a the Hessian of a function

f : Rd → Rd at a point x0, where f could be the loss function of a neural network for ex-

ample. One might want to quickly distinguish between a proposed optimum of f truly being a

minimum, or being a saddle point with a direction of steep downward curvature. Our query model

is quite natural in this context. A Hessian-vector product is efficient to compute using automatic

differentiation techniques. A vector-matrix-vector product corresponds to a single second deriva-

tive computation, D2f(v, w). This can be approximated using 4 function queries by the finite

difference approximation D2f(v, w) ≈ f(x0+hv+hw)−f(x0+hv)−f(x0+hw)+f(x0)
h2

, where h is small.

While there are numerically stable methods for computing the spectrum of a symmetric matrix,

and thus determining if it is PSD, these methods can be prohibitively slow for very large matrices,

and require a large number of matrix-vector or vector-matrix-vector products. Our goal is to obtain

significantly more efficient algorithms in these models, and we approach this problem from a

property testing perspective. In particular, we focus on the following version of the PSD-testing

problem. In what follows, ∥A∥p = (
∑n

i=1 σ
p
i )

1/p is the Schatten-p norm of A, where the σi are the

singular values of A.

Definition 3.1. For p ∈ [1,∞], an (ϵ, ℓp)-tester is an algorithm that makes either matrix-vector

or vector-matrix-vector queries to a real symmetric matrix A, and outputs True with at least 2/3

probability if A is PSD, and outputs False with 2/3 probability if A is ϵ ∥A∥p-far in spectral dis-
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tance from the PSD cone, or equivalently, if the minimum eigenvalue λmin(A) ≤ −ϵ ∥A∥p. If the

tester is guaranteed to output True on all PSD inputs (even if the input is generated by an adver-

sary with access to the random coins of the tester), then the tester has one-sided error. Otherwise

it has two-sided error. When ϵ is clear from the context we will often drop the ϵ and simply refer to

an ℓp-tester.

Our work fits more broadly into the growing body of work on property testing for linear algebra

problems, see, for example [Bal+19b; BCJ20; BMR21]. However, a key difference is that we focus

on matrix-vector and vector-matrix-vector query models, which might be more appropriate than

the model in the above works which charges a cost of 1 for reading a single entry. Indeed, such

models need to make the assumption that the entries of the input are bounded by a constant or

slow-growing function of n, as otherwise strong impossibility results hold. This can severely limit

the applicability of such algorithms to real-life matrices that do not have bounded entries; indeed,

even a graph Laplacian matrix with a single degree that is large would not fit into the above models.

In contrast, we use the matrix-vector and vector-matrix-vector models, which are ideally suited for

modern machines such as graphics processing units and when the input matrix cannot fit into RAM,

and are standard models in scientific computing, see, e.g., [BFG96].

While we focus on vector-matrix-vector queries, our results shed light on several other natural

settings. Many of our results are in fact tight for general linear measurements which vectorize

the input matrix and apply adaptively chosen linear forms to it. For long enough streams the best

known single or multi-pass algorithms for any problem in the turnstile streaming model form a

sketch using general linear measurements, and with some additional restrictions, it can be shown

that the optimal multi-pass streaming algorithm just adaptively chooses general linear measure-

ments [Ai+16]. Therefore, it is quite plausible that many of our vector-matrix-vector algorithms

give tight single pass streaming bounds, given that vector-matrix-vector queries are a special case

of general linear measurements, and that many our lower bounds are tight even for general linear

measurements.
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Moreover our vector-matrix-vector algorithms lead to efficient communication protocols for

deciding whether a distributed sum of matrices is PSD, provided that exact vector-matrix-vector

products may be communicated. While we expect our methods to be stable under small per-

turbations (i.e. when the vector-matrix-vector products are slightly inexact), we leave the full

communication complexity analysis to future work.

We note that our PSD-testing problem is closely related to that of approximating the largest

eigenvalue of a PSD matrix. Indeed by appropriately negating and shifting the input matrix, it is

essentially equivalent to estimate the largest eigenvalue of a PSD matrix A up to additive error

ϵ (
∑

i |λmax(A)− λi(A)|p)1/p . However this problem is much less natural as real-world matrices

often have many small eigenvalues, but only a few large eigenvalues.

3.2.1 Our Contributions

We study PSD-testing in the matrix-vector and vector-matrix-vector models. In particular, given a

real symmetric matrix A, and p ∈ [1,∞], we are interested in deciding between (i) A is PSD and

(ii) A has an eigenvalue less than −ϵ ∥A∥p , where ∥A∥p is the Schatten p-norm of A.

Tight Bounds for One-sided Testers. We make particular note of the distinction between one-

sided and two-sided testers. In some settings one is interested in a tester that produces one-sided

error. When such a tester outputs False, it must be able to produce a proof that A is not PSD. The

simplest such proof is a witness vector v such that vTAv < 0, and indeed we observe that in the

matrix-vector model, any one-sided tester can produce such a v when it outputs False. This may be

a desirable feature if one wishes to apply these techniques to saddle point detection for example:

given a point that is not a local minimum, it would be useful to produce a descent direction so

that optimization may continue. In the vector-matrix-vector model the situation is somewhat more

complicated in general, but all of our one-sided testers produce a witness vector whenever they

output False.

We provide optimal bounds for one-sided testers for both matrix-vector and vector-matrix-
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Vector-matrix-vector queries

Adaptive, one-sided ℓp Θ̃(1
ϵ
d1−1/p) Corollary 3.3, Theorem 3.15

Non-adaptive, one-sided ℓp Θ̃( 1
ϵ2
d2−2/p) Corollary 3.42, Theorem 3.13

Adaptive, two-sided ℓ2 Θ̃( 1
ϵ2
)∗ Proposition 3.29, Corol-

lary 3.33

Non-adaptive, two-sided ℓ2 Θ̃( 1
ϵ4
)∗ Theorem 3.28, Theorem 3.31

Adaptive, two-sided ℓp, 2 ≤ p <
∞

Θ̃( 1
ϵ2
d1−2/p)∗ Corollary 3.30, Corol-

lary 3.33

Matrix-vector queries

Adaptive one-sided ℓp Õ((1/ϵ)p/(2p+1) log d),
Ω((1/ϵ)p/(2p+1))

Theorem 3.17, Theorem 3.20

Adaptive one-sided ℓ1 Θ̃((1/ϵ)1/3) Theorem 3.17, Theorem 3.20

Non-adaptive one-sided ℓp Θ(1
ϵ
d1−1/p) Proposition 3.43, Corol-

lary 3.46

Table 3.1: Our upper and lower bounds for the matrix-vector and vector-matrix-vector query mod-
els. ∗ indicates that the lower bound holds for general linear measurements.
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vector models. The bounds below are stated for constant probability algorithms. Here Õ(f) =

f · poly(log f).

1. In the matrix-vector query model, we show that up to a factor of log d, Θ̃(1/ϵp/(2p+1)) queries

are necessary and sufficient for an ℓp-tester for any p ≥ 1. In the p = 1 case, we note that

the log d factor may be removed.

2. In the vector-matrix-vector query model, we show that Θ̃(d1−1/p/ϵ) queries are necessary

and sufficient for an ℓp-tester for any p ≥ 1. Note that when p = 1 we obtain a very efficient

Õ(1/ϵ)-query algorithm. In particular, our tester for p = 1 has query complexity independent

of the matrix dimensions, and we show a sharp phase transition for p > 1, showing in some

sense that p = 1 is the largest value of p possible for one-sided queries.

The matrix-vector query complexity is very different than the vector-matrix-vector query com-

plexity, as the query complexity is poly(1/ϵ) for any p ≥ 1, which captures the fact that each

matrix-vector query response reveals more information than that of a vector-matrix-vector query,

though a priori it was not clear that such responses in the matrix-vector model could not be com-

pressed using vector-matrix-vector queries.

An Optimal Bilinear Sketch for Two-Sided Testing. Our main technical contribution for two-

sided testers is a bilinear sketch for PSD-testing with respect to the Frobenius norm, i.e. p = 2.

We consider a Gaussian sketch GTAG, where G has small dimension Õ( 1
ϵ2
). By looking at the

smallest eigenvalue of the sketch, we are able to distinguish between A being PSD and being ϵ-far

from PSD. Notably this tester may reject even when λmin(G
TAG) > 0, which results in a two-sided

error guarantee. This sketch allows us to obtain tight two-sided bounds in the vector-matrix-vector

model for p ≥ 2, both for adaptive and non-adaptive queries.

Separation Between One-Sided and Two-Sided Testers. Surprisingly, we show a separation

between one-sided and two-sided testers in the vector-matrix-vector model. For the important case
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of the Frobenius norm, i.e., p = 2, we utilize our bilinear sketch to construct a Õ(1/ϵ2) query two-

sided tester, whereas by our results above, any adaptive one-sided tester requires at least Ω(
√
d/ϵ)

queries.

We also show that for any p > 2, any possibly adaptive two-sided tester requires dΩ(1) queries

for constant ϵ, and thus in some sense, p = 2 is the largest value of p possible for two-sided queries.

On the Importance of Adaptivity. We also study the role of adaptivity in both matrix-vector and

vector-matrix-vector models. In both the one-sided and two-sided vector-matrix-vector models we

show a quadratic separation between adaptive and non-adaptive testers, which is the largest gap

possible for any vector-matrix-vector problem [Sun+19].

In the matrix-vector model, each query reveals more information about A than in the vector-

matrix-vector model, allowing for even better choices for future queries. Thus we have an even

larger gap between adaptive and non-adaptive testers in this setting.

Spectrum Estimation. While the two-sided tester discussed above yields optimal bounds for

PSD testing, it does not immediately give a way to estimate the negative eigenvalue when it exists.

Via a different approach, we show how to give such an approximation with ϵ ∥A∥F additive error.

In fact, we show how to approximate all of the top k eigenvalues of A using O(k2poly1
ϵ
) non-

adaptive vector-matrix-vector queries, which may be of independent interest.

We note that this gives an O(k2poly1
ϵ
) space streaming algorithm for estimating the top k

eigenvalues of A to within additive Frobenius error. Prior work yields a similar guarantee for the

singular values [AN13], but cannot recover the signs of eigenvalues.

3.2.2 Our Techniques

Matrix-Vector Queries. For the case of adaptive matrix-vector queries, we show that Krylov

iteration starting with a single random vector yields an optimal ℓp-tester for all p. Interestingly,

our analysis is able to beat the usual Krylov matrix-vector query bound for approximating the top
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eigenvalue, as we modify the usual polynomial analyzed for eigenvalue estimation to implicitly

implement a deflation step of all eigenvalues above a certain threshold. We do not need to explicitly

know the values of the large eigenvalues in order to deflate them; rather, it suffices that there exists

a low degree polynomial in the Krylov space that implements this deflation.

Further, we show that our technique is tight for all p ≥ 1 by showing that any smaller number

of matrix-vector products would violate a recent lower bound of [Bra+20] for approximating the

smallest eigenvalue of a Wishart matrix. This lower bound applies even to two-sided testers.

Vector-Matrix-Vector Queries. We start by describing our result for p = 1. We give one of the

first examples of an algorithm in the vector-matrix-vector query model that leverages adaptivity in

an interesting way. Most known algorithms in this model work non-adaptively, either by applying

a bilinear sketch to the matrix, or by making many independent queries in the case of Hutchin-

son’s trace estimator [Hut89]. Indeed, the algorithm of [AN13] works by computing GTAG for

a Gaussian matrix G with 1/ϵ columns, and arguing that all eigenvalues that are at least ϵ∥A∥1

can be estimated from the sketch. The issue with this approach is that it uses Ω(1/ϵ2) queries

and this bound is tight for non-adaptive testers! One could improve this by running our earlier

matrix-vector algorithm on top of this sketch, without ever explicitly forming the 1/ϵ× 1/ϵ matrix

GTAG; however, this would only give an O(1/ϵ4/3) query algorithm.

To achieve our optimal Õ(1/ϵ) complexity, our algorithm instead performs a novel twist to

Oja’s algorithm [Oja82], the latter being a stochastic gradient descent (SGD) algorithm applied to

optimizing the quadratic form f(x) = xTAx over the sphere. In typical applications, the random-

ness of SGD arises via randomly sampling from a set of training data. In our setting, we instead

artificially introduce randomness at each step, by computing the projection of the gradient onto a

randomly chosen direction. This idea is implemented via the iteration

x(k+1) = xk − η(gTAxk)g where g ∼ N (0, I) (3.1)
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for a well-chosen step size η. If f ever becomes negative before reaching the maximum number

of iterations, then the algorithm outputs False, otherwise it outputs True. For p = 1, we show

that this scheme results in an optimal tester (up to logarithmic factors). Our proof uses a second

moment analysis to analyze a random walk, that is similar in style to [Jai+16], though our analysis

is quite different. Whereas [Jai+16] considers an arbitrary i.i.d. stream of unbiased estimators

to A (with bounded variance), our estimators are simply ggTA, which do not seem to have been

considered before. We leverage this special structure to obtain a better variance bound on the iter-

ates throughout the first Õ(1/ϵ) iterations, where each iteration can be implemented with a single

vector-matrix-vector query. Our algorithm and analysis gives a new method for the fundamental

problem of approximating eigenvalues.

Our result for general p > 1 follows by relating the Schatten-p norm to the Schatten-1 norm

and invoking the algorithm above with a different setting of ϵ. We show our method is optimal by

proving an Ω(d2−2/p/ϵ2) lower bound for non-adaptive one-sided testers, and then using a theorem

in [RWZ20] which shows that adaptive one-sided testers can give at most a quadratic improvement.

We note that one could instead use a recent streaming lower bound of [INW22] to prove this lower

bound, though such a lower bound would depend on the bit complexity.

Two-Sided Testers. The key technical ingredient behind all of our two-sided testers is a bilinear

sketch for PSD-testing. Specifically, we show that a sketch of the form GTAG with G ∈ Rd×k

is sufficient for obtaining a two-sided tester for p = 2. In contrast to the p = 1 case, we do not

simply output False when λmin := λmin(G
TAG) < 0 as such an algorithm would automatically be

one-sided. Instead we require a criterion to detect when λmin is suspiciously small. For this we

require two results.

The first is a concentration inequality for λmin(G
TAG) when A is PSD. We show that λmin ≥

Tr(A)− Õ(
√
k) ∥A∥F with very good probability. This result is equivalent to bounding the small-

est singular value of A1/2G, which is a Gaussian matrix whose rows have different variances.

Although many similar bounds for constant variances exist in the literature [Lit+05; Ver18], we
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were not able to find a bound for general covariances. In particular, most existing bounds do not

seem to give the concentration around Tr(A) that we require.

When A has a negative eigenvalue of −ϵ, we show that λmin ≤ Tr(A)− ϵO(k). By combining

these two results, we are able to take k = Õ(1/ϵ2), yielding a tight bound for non-adaptive testers

in the vector-matrix-vector model. In fact this bound is even tight for general linear sketches, as

we show by applying the results in [LW16].

We also utilize this bilinear sketch to give tight bounds for adaptive vector-matrix-vector queries,

and indeed for general linear measurements. By first (implicitly) applying the sketch, and then

shifting by an appropriate multiple of the identity we are able to reduce to the (ϵ2, ℓ1)-testing prob-

lem, which as described above may solved using Õ(1/ϵ2) queries.

Spectrum Estimation. A natural approach for approximating the eigenvalues of an n×n matrix

A is to first compute a sketch GTAG or a sketch GTAH for Gaussian matrices G and H with

a small number of columns. Both of these sketches appear in [AN13]. As noted above, GTAG

is a useful non-adaptive sketch for spectrum approximation, but the error in approximating each

eigenvalue is proportional to the Schatten-1 norm of A. One could instead try to make the error

depend on the Frobenius norm ∥A∥2 of A by instead computing GTAH for independent Gaussian

matrices G and H , but now GTAH is no longer symmetric and it is not clear how to extract the

signs of the eigenvalues of A from GTAH . Indeed, [AN13] are only able to show that the singular

values of GTAH are approximately the same as those of A, up to additive ϵ∥A∥2 error. We thus

need a new way to preserve sign information of eigenvalues.

To do this, we show how to use results for providing the best PSD low rank approximation

to an input matrix A, where A need not be PSD and need not even be symmetric. In particular,

in [CW17b] it was argued that if G is a Gaussian matrix with O(k/ϵ) columns, then if one sets

up the optimization problem minrank k PSD Y ∥AGY GTAT − A∥2F , then the cost will be at most

(1+ ϵ)∥Ak,+−A∥2F , where Ak,+ is the best rank-k PSD approximation to A. By further sketching

on the left and right with so-called affine embeddings S and T , which have poly(k/ϵ) rows and
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columns respectively, one can reduce this problem to minrank k PSD Y ∥SAGY GTATT − SAT∥2F ,

and now SAG, GTATT and SAT are all poly(k/ϵ)×poly(k/ϵ) matrices so can be computed with

a poly(k/ϵ) number of vector-matrix-vector products. At this point the optimal Y can be found

with no additional queries and its cost can be evaluated. By subtracting this cost from ∥A∥2F , we

approximate ∥A+,i∥2F , and ∥A−,i∥2F for all i ∈ [k], which in turn allows us to produce (signed)

estimates for the eigenvalues of A.

When A is PSD, we note that Theorem 1.2 in [AN13] is able to reproduce our spectral approx-

imation guarantee using sketching dimension O(k
2

ϵ8
), compared to our sketch of dimension O( k

2

ϵ12
).

However as mentioned above, our guarantee is stronger in that it allows for the signs of the eigen-

values to be recovered, i.e. our guarantee holds even when A is not PSD. Additionally, we are able

to achieve O(k
2

ϵ8
) using just a single round of adaptivity.

Lower Bounds for One-sided Testers. To prove lower bounds for one-sided non-adaptive testers,

we first show that a one-sided tester must be able to produce a witness whenever it outputs False. In

the matrix-vector model, the witness is a vector v with vTAv < 0, and in the vector-matrix-vector

model, the witness is a PSD matrix M with ⟨M,A⟩ < 0. In both cases we show that even for

simplest non-PSD spectrum (−λ, 1, . . . , 1), that it takes many queries to produce a witness when

λ is small. In the matrix-vector model, our approach is simply to show that the −λ eigenvector

is typically far from span of all queried vectors, when the number of queries is small. This will

imply that A is non-negative on the queried subspace, which precludes the tester from producing a

witness. In the vector-matrix-vector model our approach is similar, however now the queries take

the form of inner products against rank one matrices xixTi . We therefore need to work within the

space of symmetric matrices, and this requires a more delicate argument.

3.2.3 Additional Related Work

Numerous other works have considered matrix-vector queries and vector-matrix queries, see, e.g.,

[Mey+21; Bra+20; Sun+19; SER18; MM15; WWZ14]. We outline a few core areas here.
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Oja’s Algorithm. Several works have considered Oja’s algorithm in the context of streaming

PCA, [Sha16; Jai+16; AL17]. [Jai+16] gives a tight convergence rate for iteratively approximating

the top eigenvector of a PSD matrix, given an eigengap, and [AL17] extends this to a gap free

result for k-PCA.

PSD Testing. As mentioned above, PSD-testing has been investigated in the bounded entry

model, where one assumes that the entries of A are bounded by 1 [BCJ20], and one is allowed

to query the entries of A. This is a restriction of the vector-matrix-vector model that we consider

where only coordinate vectors may be queried. However since we consider a more general query

model, we are able to give a better adaptive tester – for us Õ(1/ϵ) vector-matrix-vector queries

suffice, beating the Ω(1/ϵ2) lower bound given in [BCJ20] for entry queries.

Another work on PSD-testing is that of [Han+17], who construct a PSD-tester in the matrix-

vector model. They first show how to approximate a general trace function
∑

f(λi) for sufficiently

smooth f , by using a Chebyshev polynomial construction to approximate f in the sup-norm over

an interval. This allows them to construct an ℓ∞-tester by taking f to be a smooth approximation

of a shifted Heaviside function. Unfortunately this approach is limited to ℓ∞-testers, and does

not achieve the optimal bound; they require Ω((log d)/ϵ) matrix-vector queries compared to the

Õ((log d)/
√
ϵ) queries achieved by Krylov iteration.

Spectrum Estimation. The closely-related problem of spectrum estimation has been considered

several times, in the context of sketching the largest k elements of the spectrum [AN13] discussed

above, and approximating the entire spectrum from entry queries in the bounded entry model

[Bha+21].

3.2.4 Notation

A symmetric matrix A is positive semi-definite (PSD) if all eigenvalues are non-negative. We use

∆d
+ to represent the PSD-cone, which is the subset of d× d symmetric matrices that are PSD.
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For a matrix A we use ∥A∥p to denote the Schatten p-norm, which is the ℓp norm of the vector

of singular values of A. The Frobenius norm will play a special role in several places, so we

sometimes use the notation ∥A∥F to emphasize this. Additionally, ∥A∥ without the subscript

indicates operator norm (which is equivalent to ∥A∥∞).

We always use d to indicate the dimension of the matrix being tested, and use ϵ < 1 to indicate

the parameter in Definition 3.1.

When applied to vectors, ⟨·, ·⟩ indicates the standard inner product on Rn. When applied to

matrices, it indicates the Frobenius inner product ⟨X, Y ⟩ := Tr(XTY ).

Sd−1 indicates the set of all unit vectors in Rd.

We use the notation X† to indicate the Moore-Penrose pseudoinverse of X .

For a symmetric matrix A ∈ Rd×d with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd, we let Ak denote

the matrix A with all but the top k eigenvalues zeroed out. Formally, if U is an orthogonal matrix

diagonalizing A, then Ak = UT diag(λ1, . . . , λk, 0, . . . , 0)U. We also let A−k = A− Ak.

Throughout, we use c to indicate an absolute constant. The value of c may change between

instances.

3.3 Vector-matrix-vector queries

3.3.1 An optimal one-sided tester.

To construct our vector-matrix-vector tester, we analyze the iteration

x(k+1) = x(k) − η
(
(g(k))TAx(k)

)
g(k) =

(
I − ηg(k)(g(k))TA

)
x(k), (3.2)

where g(k) ∼ N (0, Id) and x(0) ∼ N (0, Id).

Our algorithm is essentially to run this scheme for a fixed number of iterations with with well-

chosen step size η. If the value of (x(k))TAx(k) ever becomes negative, then we output False,
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otherwise we output True. Using this approach we prove the following.

Theorem 3.2. There exists a one-sided adaptive ℓ1-tester, that makes O(1
ϵ
log3 1

ϵ
) vector-matrix-

vector queries to A.

As an immediate corollary we obtain a bound for ℓp-testers.

Corollary 3.3. There is a one-sided adaptive ℓp-tester that makes O(1
ϵ
d1−1/p log3(1

ϵ
d1−1/p)) vector-

matrix-vector queries.

Proof. This follows from the previous result along with the bound ∥A∥p ≥ d1/p−1 ∥A∥1 .

We now turn to the proof of Theorem 3.2. Since our iterative scheme is rotation-invariant, we

assume without loss of generality that A = diag(λ1, . . . , λd). For now, we assume that ∥A∥1 ≤ 1,

and that the smallest eigenvalue of A is λ1 = −ϵ. We consider running the algorithm for N

iterations. We will show that our iteration finds an x with xTAx < 0 in N = Õ(1/ϵ) iterations.

We will use c to denote absolute constants that we don’t track, and that may vary between uses.

Our key technical lemma is to show that the first coordinate (which is associated to the −ϵ

eigenvalue) grows fairly quickly with good probability.

Lemma 3.4. Suppose η and N satisfy the following list of assumptions: (1) η ≤ 1
4
, (2) η2ϵN ≤ 1

8
,

(3) (1 + η2ϵ2)N ≤ 5
4
, (4) (1 + ηϵ)N ≥ 10

ϵ2
. Then x

(N)
1 ≥ 1

ϵ2
with probability at least 0.2.

Proof. Following [Jai+16] we define the matrix Bk =
∏k

i=1

(
I − ηg(i)(g(i))TA

)
, where the g(i)

are independent N (0, I) gaussians. Note that x(k) = Bkx
(0). We will show that BT

k e1 has large

norm with good probability (in fact we will show that
〈
BT
k e1, e1

〉
is large). This will then imply

that
〈
Bkx

(0), e1
〉

is large with high probability, where x(0) ∼ N (0, I).

Step 1: Deriving a recurrence for the second moments.

Let y(k) = BT
k e1 and let u(k)

i be the second moment of the coordinate y
(k)
i . Note that u(0)

i = δ1i

(where δ is the Dirac delta). To simplify the notation, we drop the superscript on the g. We compute

y
(k+1)
i =

(
(I − ηggTA)y(k)

)
i
= y

(k)
i − η(Ag)i(g1y

(k)
1 + . . .+ gdy

(k)
d ) = y

(k)
i − ηλigi(g1y

(k)
1 + . . .+

gdy
(k)
d ).
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Next we observe that (after grouping terms) the coefficients of the y
(k)
i terms are pairwise

uncorrelated. Using this, along with the fact that the gi’s are independent of the y
(k)
i ’s gives

u
(k+1)
i = E(1− ηλig

2
i )

2u
(k)
i + η2λ2

i

∑
j ̸=i

u
(k)
j = (1− 2ηλi + 3η2λ2

i )u
(k)
i + η2λ2

i

∑
j ̸=i

u
(k)
j

= (1− 2ηλi + 2η2λ2
i )u

(k)
i + η2λ2

i

d∑
j=1

u
(k)
j .

Let S(k) = u
(k)
1 + . . .+ u

(k)
d , and γi = 1− 2ηλi + 2η2λ2

i . Then we can write the recurrence as

u
(k+1)
i = γiu

(k)
i + η2λ2

iS
(k). Iterating this recurrence gives

u
(k)
i = δ1iγ

k
i + η2λ2

i

(
γk−1
i S(0) + γk−2

i S(1) + . . .+ S(k−1)
)
. (3.3)

Step 2: Bounding S(k).

Summing the above equation over i allows us to write a recurrence for the S(k)’s: S(k) =

γk1 + αk−1S
(0) + αk−2S

(1) + . . .+ α0S
(k−1), where we define αj :=

∑d
i=1 η

2λ2
i γ

j
i .

We split αj into two parts, α+
j and α−

j corresponding to terms in the sum where λi is positive

or negative respectively. We now use the recurrence to bound S(k). First by Holder’s inequality,

S(k) ≤ γk1 +max(S(0), . . . , S(k−1))(α+
0 + . . .+ α+

k−1) + (α−
k−1S

(0) + α−
k−2S

(1) + . . .+ α−
0 S

(k−1)).

We calculate

k−1∑
j=0

α+
j =

k−1∑
j=0

∑
i:λi>0

η2λ2
i γ

j
i =

∑
i:λi>0

η2λ2
i

k−1∑
j=0

γji =
∑
i:λi>0

η2λ2
i

1− γki
1− γi

=
∑
i:λi>0

η2λ2
i

1− γki
2ηλi − 2η2λ2

i

=
∑
i:λi>0

ηλi
1− γki
2− 2ηλi

≤
∑
i:λi>0

ηλi ≤ η,

where we used that ηλi ≤ 1/2, (which is a consequence of Assumption 1), that γi < 1 (which
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holds since λi > 0) and that
∑

i:λi>0 λi ≤ 1. Since we assume that −ϵ is the smallest eigenvalue,

α−
j ≤ η2γj1

∑
i:λi<0

λ2
i ≤ η2γj1ϵ

∑
i:λi<0

|λi| ≤ η2γj1ϵ.

Let S̃(k) = max(S(0), . . . S(k)). Then combining our bounds gives

S̃(k) ≤ max
(
S̃(k−1), γk1 + ηS̃(k−1) + η2ϵ(γk−1

1 S̃(0) + γk−2
1 S̃(1) + . . .+ S̃(k−1))

)
.

The next step is to use this recurrence to bound S̃(k). For this, define c(k) such that S̃(k) = c(k)γk1 .

Plugging in to the above and dividing through by γk1 , we get that c(k) satisfies

c(k) ≤ max

(
c(k−1)

γ1
, 1 +

η

γ1
c(k−1) +

η2ϵ

γ1
(c(0) + . . .+ c(k−1))

)
≤ max

(
c(k−1), 1 + ηc(k−1) + η2ϵ(c(0) + . . .+ c(k−1))

)
,

where we used the fact that γ1 ≥ 1. Now set c̃(k) = max(c(0), . . . c(k)). By assumptions 1 and 2,

η + η2ϵk ≤ 1/2. This gives

c̃(k) ≤ max
(
c̃(k−1), 1 + ηc̃(k−1) + η2ϵkc̃(k−1)

)
≤ max

(
c̃(k−1), 1 +

1

2
c̃(k−1)

)
.

Note that c(0) = S(0) = 1, so a straightforward induction using the above recurrence shows that

c̃(k) ≤ 2 for all k. It follows that S(k) ≤ 2γk1 .

Step 3: Bounding the second moment. Plugging the bound above in to (3.3) gives

u
(k)
1 ≤ γk1 + 2kη2ϵ2γk−1

1 ≤
(
1 + 2kη2ϵ2

)
γk1 .

Step 4: Applying Chebyshev. We focus on the first coordinate, y(k)1 . Note that I − ηAggT has

expectation I − ηA, so a straightforward induction shows that Ey(k)1 = (1 + ηϵ)k.
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Using the bound for the second moment of the first coordinate, we get u
(k)
1(

Ey(k)1

)2 ≤ (1+2kη2ϵ2)γk1
(1+ηϵ)2k

=

(1 + 2kη2ϵ2)
(

1+2ηϵ+2η2ϵ2

1+2ηϵ+η2ϵ2

)k
= (1 + 2kη2ϵ2)

(
1 + η2ϵ2

1+2ηϵ+η2ϵ2

)k
≤ (1 + 2kη2ϵ2)(1 + η2ϵ2)k.

By Assumptions 2 and 4, Nη2ϵ2 ≤ 1/8 and (1 + η2ϵ2)N ≤ 5/4, so we get that u(k)
1 ≤

25/16
(
Eu(k)

1

)2
.

Thus by Chebyshev’s inequality, P
(∣∣∣y(k)1 − E(y(k)1 )

∣∣∣ ≥ 0.9E(y(k)1 )
)
≤ 25

36
. So with probability

at least 0.3, y(N)
1 ≥ 1

10
E(y(N)

1 ) = 1
10
(1 + ηϵ)N .

Under assumption 4, (1+ ηϵ)N ≥ 10
ϵ2
, which means that y(N)

1 ≥ 1
ϵ2

with at least 0.3 probability.

Step 5: Concluding the argument. We showed that
〈
BT
Ne1, e1

〉
≥ 1

ϵ2
with probability at

least 0.3. In particular this implies that
∥∥BT

Ne1
∥∥ ≥ 1

ϵ2
. Now since x(0) is distributed as N (0, I),〈

BNx
(0), e1

〉
=
〈
x(0), BT

Ne1
〉
∼ N (0,

∥∥BT
Ne1
∥∥2), which is at least

∥∥BT
Ne1
∥∥ in magnitude with 0.67

probability. It follows that x(N)
1 ≥ 1

ϵ2
with probability at least 0.2.

Let f(x) = xTAx. We next understand how the value of f(x(k)) is updated on each iteration.

Proposition 3.5. For g ∼ N (0, 1), we have f(x(k))− f(x(k+1)) = η(gTAx(k))2(2− ηgTAg).

Proof. Plugging in the update rule and expanding gives

f(x(k+1)) = (x(k))TAx(k) − 2η(gTAx(k))2 + η2(gTAx(k))2gTAg

= (x(k))TAx(k) − η(gTAx(k))2(2− ηgTAg),

from which the proposition follows.

A consequence of this update is that the sequence f(x(k)) is almost guaranteed to be decreasing

as long as η is chosen small enough.

Proposition 3.6. Assume that Tr(A) ≤ 1 and that η < c. After N iterations, f(x(N)) ≤ f(x(0))

with probability at least 99/100 provided that η ≤ c
logN+1

.
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Proof. We show something stronger; namely that for the first N iterations, the sequence f(x(k)) is

decreasing. By Proposition 3.5, f(x(k+1)) ≤ f(x(k)) as long as gTAg ≤ 2
η
. The probability that

this does not occur is Pr
(∑

λig
2
i ≥ 2

η

)
≤ Pr

(∑
λi(g

2
i − 1) ≥ 2

η
− 1
)

.

The g2i − 1 terms are independent subexponential random variables. So by Bernstein’s in-

equality (see [Ver18] Theorem 2.8.2 for the version used here), this probability is bounded by

2 exp(−c/η) as long as η is a sufficiently small constant. Taking a union bound gives that f(x(N)) ≤

f(x(0)) with probability at least 1− 2N exp(−c/η), which is at least 99/100 under the conditions

given.

Theorem 3.7. Suppose that ∥A∥1 ≤ 1, ϵ < 1/2, and that A has −ϵ as an eigenvalue. If we

take η such that cϵ2 ≤ η ≤ min
(

1
32 log(10/ϵ2)

, c
log 1

ϵ

)
, then for some N = Θ

(
1
ϵη
log 1

ϵ

)
we have

f(x(N)) < 0 with at least 1/10 probability.

Proof. Given an η as in the statement of the theorem, choose N =
⌈

2
ηϵ
log 10

ϵ2

⌉
, which satisfies

the assumptions of Lemma 3.4. Then x
(N)
1 ≥ 1

ϵ2
with probability at least 0.2. By proposition 3.6,

f(x(N)) ≤ f(x(0)) ≤ 2 with at least 0.99 probability, using the fact that η ≤ c
log 1

ϵ

for an appropri-

ately chosen absolute constant c, such that the hypothesis of Proposition 3.6 holds.

If f(x(N)) < 0, then the algorithm has already terminated. Otherwise conditioned on the events

in the above paragraph, we have with at least 0.8 probability that 2− η(g(N))TAg(N) ≥ 1
2

and

(g(N))TAx(N) ∼ N
(
0, ∥Ax(N)∥2

)
≥ 1

3

∥∥Ax(N)
∥∥ ≥ 1

3
λ1x

(N)
1 ≥ 1

3ϵ2
λ1 ≥

1

3ϵ
.

Then by Proposition 3.5 it follows that f(x(N+1)) ≤ f(x(N))− η
20ϵ2
≤ 2− η

20ϵ2
< 0.

We also observe that we can reduce the dimension of the problem by using a result of Andoni

and Nguyen. This allows us to avoid a log d dependence.

Proposition 3.8. Suppose that A satisfies λmin(A) < −α ∥A∥1 , and let G ∈ Rd×m have inde-

pendent N (0, 1
d
) entries. Then we can choose m = O(1/α) such that λmin(G

TAG) < −α/2 and∥∥GTAG
∥∥
1
≤ 2 ∥A∥1 .
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Proof. For the first claim, we simply apply Theorem 1.1 in [AN13] and (in their notation) set

ϵ = O(1) and k = O(1/α).

To show that the Schatten 1-norm does not grow too much under the sketch, we first write

A = A+ + A− where the nonzero eigenvalues of A+ are exactly the positive eigenvalues of A.

Then using the usual analysis of Hutchinson’s trace estimator (see [Mey+21] for example), we

have

∥∥GTAG
∥∥
1
≤
∥∥GTA+G

∥∥
1
+
∥∥GTA−G

∥∥
1
= Tr(GTA+G) + Tr(GTA−G)

= (1±O(1/
√
m)) Tr(A+) + (1±O(1/

√
m)) Tr(A−)

≤ (1±O(1/
√
m) ∥A∥1 .

We are now ready to give the proof of Theorem 3.2.

Proof. The above result applies after scaling the η given in Theorem 3.7 by 1/ ∥A∥1. So it suffices

to choose η to be bounded above by

1

∥A∥1
min

(
1

32 log(10/ϵ2)
,

c

log 1
ϵ

)
,

and within a constant factor of this value.

To choose an η, pick a standard normal g, and compute Ag using 1/ϵ vector-matrix-vector

queries. Then with constant probability, λmax(A) ≤ ∥Ag∥ ≤ 2dλmax. Given this, we have

d ∥Ag∥ ≥ ∥A∥1 ≥
∥Ag∥
2d

, (3.4)

which allows us to approximate ∥A∥1 to within a factor of d2 with constant probability. Given

this, one may simply try the above algorithm with an η at each of O(log(d2)) = O(log d) different

scales, with the cost of an extra log d factor.
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Finally, we may improve the log d factor to a log(1/ϵ) factor by using Proposition 3.8 to sketch

A, and then applying the above analysis to GTAG. Note that the sketch may be used implicitly;

once G is chosen, a vector-matrix-vector query to GTAG can be simulated with a single vector-

matrix-vector query to A.

3.3.2 Lower bounds

We will show a bound for two-sided testers which will imply that the bound for ℓ1-testers given

in Theorem 3.2 is tight up to log factors. If we require the tester to have one-sided error, then

we additionally show that the bound in Corollary 3.3 is tight for all p. Note that this distinction

between one-sided and two-sided testers is necessary given Theorem 3.29.

In order to obtain these lower bounds for adaptive testers, we first show corresponding lower

bounds for non-adaptive testers. A minor modification to Lemma 3.1 in [Sun+19] shows that an

adaptive tester can have at most quadratic improvement over a non-adaptive tester. This will allow

us to obtain our adaptive lower bounds as a consequence of the non-adaptive bounds.

Non-adaptive lower bounds

We first observe that a one-sided tester must always be able to produce a witness matrix X , that at

least certifies that A is not positive definite.

Proposition 3.9. If a one-sided tester makes a series of symmetric linear measurements ⟨Mi, A⟩

of A, and outputs False on a given instance, then there must exist nonzero X ∈ span(M1, . . . ,Mk)

such that X is PSD and ⟨X,A⟩ ≤ 0.

Proof. We work within the space of symmetric matrices. Let W = span(M1, . . . ,Mk), and let

ϕ(X) = ⟨A,X⟩ be the linear functional associated with A. Now suppose that ϕ is strictly positive

for all nonzero X ∈ W ∩∆d
+. We will construct ϕ̃ that agrees with ϕ on W and is non-negative on

∆d
+.
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Let W ′ = ker(ϕ)∩W , and note that W ′ ∩∆d
+ = {0}. Now by convexity of ∆d

+, there exists a

hyperplane H and associated half-space H+ such that (i)H contains W ′ (ii) H ∩∆d
+ = {0}, (iii)

H+ ⊇ ∆d
+ and (iv) ϕ is non-negative on H+ ∩W . Moreover, since W ′ intersects ∆d

+ trivially, H

can be chosen such that H ∩W = W ′. Now let Π be a projection onto W that maps H to W ′, and

choose ϕ̃ = ϕ ◦ ΠW .

The linear functional ϕ̃ is represented by the inner product against some symmetric matrix B.

By construction of ϕ̃, we have ⟨B,Mi⟩ = ⟨A,Mi⟩ for all i, and also ⟨B,X⟩ ≥ 0 for all PSD X . So

in particular
〈
B, xxT

〉
= xTBx ≥ 0 for all x, which implies that B is PSD. Given the existence of

the PSD matrix B consistent with all measurements, the one-sided tester must not reject.

We are now able to give an explicit non-PSD spectrum which is hard for any one-sided tester.

Specifically, we show that it is hard for any vector-matrix-vector query algorithm to produce a

witness X in the sense of the proposition above.

Theorem 3.10. Let λ > 0 and suppose for all matrices A with spectrum (−λ, 1, . . . , 1) that a

non-adaptive one-sided tester T outputs False with 2/3 probability. Then T must make at least

1
9

(
d

1+λ

)2 vector-matrix-vector queries.

Proof. By the polarization identity,

xTAy =
1

2

(
(x+ y)TA(x+ y)− yTAy − xTAx

)
,

we may assume that all queries are of the form xTi Axi, at the cost requiring at most a factor of

three increase in the number of queries.

We set A = I − (1+λ)vvT where v is uniform over Sd−1, and let W = span(x1x
T
1 , . . . xkx

T
k ).

By Proposition 3.9, the tester may only reject if there is an X in W ∩ ∆d
+ with ∥X∥F = 1 such
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that ⟨X,A⟩ ≤ 0. For such an X we have

〈
vvT , X

〉
≥ Tr(X)

1 + λ
≥ 1

1 + λ
. (3.5)

But since vvT and X both have unit norm and X ∈ W , this condition implies that
∥∥ΠW (vvT )

∥∥
F
≥

1
1+λ

.

Now we turn to understanding E(
∥∥ΠW (vvT )

∥∥2
F
). Indeed we have the following:

Lemma 3.11. Let v be drawn uniformly from Sd−1, and let W be a k-dimensional subspace of the

d× d symmetric matrices. Let α4 = E(v41) and α22 = E(v21v
2
2). Then

E(
∥∥ΠW (vvT )

∥∥2
F
) = (α4 − α22)k + α22 ∥ΠW (I)∥2F ,

where I is the identity matrix.

Proof. Let M1, . . .Mk be an orthonormal basis for W . By the Pythagorean theorem,

E(
∥∥ΠW (vvT )

∥∥2
F
) =

k∑
i=1

E(
∥∥ΠMi

(vvT )
∥∥2
F
). (3.6)

For fixed M we have

E(
∥∥ΠM(vvT )

∥∥2
F
) = E(

〈
vvT ,M

〉2
) = E(Tr(vvTM)2) = E((vTMv)2). (3.7)

Since M is symmetric, we can diagonalize M to D = diag(a1, . . . , ad) in some orthonormal
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basis. Since M has unit norm, a21 + . . .+ a2d = 1. Then we have

E((vTMv)2) = E((vTDv)2)

= E((a1x2
1 + . . .+ adx

2
d)

2)

= α4(a
2
1 + . . .+ a2d) + 2α22

∑
i<j

aiaj

= α4 + 2α22

∑
i<j

aiaj.

Next observe that

Tr(M)2 = (a1 + . . .+ ad)
2 = a21 + . . .+ a2d + 2

∑
i<j

aiaj = 1 + 2
∑
i<j

aiaj,

so that

E((vTMv)2) = α4 + α22(Tr(M)2 − 1).

Combining with (3.6) gives

E(
∥∥ΠW (vvT )

∥∥2
F
) =

k∑
i=1

(
α4 + α22(Tr(Mi)

2 − 1)
)

= (α4 − α22)k + α22

k∑
i=1

Tr(Mi)
2.

Finally, observe that
∑k

i=1 Tr(Mi)
2 =

∑k
i=1 ⟨I,Mi⟩2 = ∥ΠW (I)∥2F , by the Pythagorean theo-

rem, which finishes the proof.

Remark 3.12. While approximations would suffice, this result gives a quick way to compute α4

and α22. Set W to be the entire space of n × n symmetric matrices, and k = d(d + 1)/2. The

previous result gives

1 =
d(d+ 1)

2
(α4 − α22) + dα22.

76



On the other hand, by expanding 1 = (v21 + . . .+ v2d)
2, we have

1 = dα4 + d(d− 1)α22.

Solving the system yields α4 =
3

d(d+2)
and α22 =

1
d(d+2)

.

To finish the proof of the theorem, we recall that W is spanned by the matrices x1x
T
1 , . . . , xkx

T
k ,

each of which has rank one. Therefore each matrix in W , and in particular ΠW (I), has rank at most

k.

We recall for a general matrix A, that argminrk(U)≤k ∥A− U∥F is gotten by truncating all but

the largest k singular values of A. Applying this to the identity matrix, when k ≤ d, we see that

∥ΠW (I)∥2F = ∥I∥2F − ∥ΠW⊥(I)∥F ≤ d− (d− k) = k,

since ∥ΠW⊥(I)∥2F ≥ minrk(U)≤k ∥I − U∥2F = d−k. Since ∥I∥2F = d, we always have ∥ΠW (I)∥2F ≤

k.

Combining this fact with Lemma 3.11 gives

E(
∥∥ΠW (vvT )

∥∥2
F
) ≤ (α4 − α22)k + α22k = kα4 =

3k

d(d+ 2)
≤ 3k

d2
,

and by Markov’s inequality,

P
(∥∥ΠW (vvT )

∥∥2
F
>

9k

d2

)
≤ 1

3
.

So with probability 2/3,
∥∥ΠW (vvT )

∥∥2
F
≤ 9k

d2
. But for A to be correct, we saw that we must have∥∥ΠW (vvT )

∥∥
F
≥ 1

1+λ
with probability 2/3. It follows that

(
1

1 + λ

)2

≤ 9k

d2
,
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which implies that

k ≥ 1

9

(
d

1 + λ

)2

.

In particular, this result implies that for non-adaptive one-sided testers, a poly(1/ϵ) ℓp-tester

can only exist for p = 1.

Theorem 3.13. A one-sided non-adaptive ℓp-tester must make at least Ω( 1
ϵ2
d2−2/p) vector-matrix-

vector queries.

Proof. This follows as a corollary of Theorem 3.10; simply apply that result to the spectrum (ϵ(d−

1)1/p, 1 . . . , 1) where there are d− 1 1’s.

Adaptive lower bounds

As remarked earlier, our adaptive lower bounds follow as a corollary of our non-adaptive bounds,

and a slightly modified version of Lemma 3.1 in [Sun+19], which we give here.

Lemma 3.14. Let A = XΣXT be a random symmetric d×d real-valued matrix, with Σ diagonal,

and where X is orthonormal and sampled from the rotationally invariant distribution. Any s

adaptive vector-matrix-vector queries to A may be simulated by O(s2) non-adaptive vector-matrix-

vector queries.

Proof. (Sketch) First note that the adaptive protocol may be simulated by 3s adaptive quadratic

form queries, of the form xTAx by the polarization identity

xTAy =
1

2

(
(x+ y)TA(x+ y)− xTAx− yTAy

)
. (3.8)

These queries in turn may be simulated by 9s2 non-adaptive queries by following exactly the

same proof as Lemma 3.1 in [Sun+19] (but now with ui = vi in their proof).

As a direct consequence of this fact and our Theorem 3.13 we obtain the following.
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Theorem 3.15. An adaptive one-sided ℓp-tester must make at least Ω(1
ϵ
d1−1/p) vector-matrix-

vector queries.

3.4 Adaptive matrix-vector queries

We analyze random Krylov iteration. Namely we begin with a random g ∼ N (0, Id) and construct

the sequence of iterates g, Ag,A2g, . . . Akg using k adaptive matrix-vector queries. The span of

these vectors is denoted Kk(g) and referred to as the kth Krylov subspace.

Krylov iteration suggests a very simple algorithm. First compute g, Ag, . . . , Ak+1g. If Kk(g)

contains a vector v such that vTAv < 0 then output False, otherwise output True. (Note that one

can compute Av and hence vTAv for all such v, given the k + 1 matrix-vector queries.) We show

that this simple algorithm is in fact optimal.

As a point of implementation, we note that the above condition on Kk(g) can be checked algo-

rthmically. One first uses Gram-Schmidt to compute the projection Π ontoKk(g). The existence of

a v ∈ Kk(g) with vTAb < 0 is equivalent to the condition λmin(ΠAΠ) < 0. When A is ϵ-far from

PSD, the proof below will show that in fact λmin(ΠAΠ) < −Ω(ϵ) ∥A∥p, so it suffices to estimate

λmin(ΠAΠ) to within O(ϵ) ∥A∥p accuracy.

Proposition 3.16. For r > 0, α > 0 and δ > 0 there exists a polynomial p of degree O(
√
r√
α
log 1

δ
),

such that p(−α) = 1 and |p(x)| ≤ δ for all x ∈ [0, r].

Proof. Recall that the degree d Chebyshev polynomial Td is bounded by 1 in absolute value on

[−1, 1] and satisfies

Td(1 + γ ≥ 2d
√
γ−1).

(See [MM15] for example.) The proposition follows by shifting and scaling Td.

Theorem 3.17. Suppose that A has an eigenvalue λmin with λmin ≤ −ϵ ∥A∥p . When p = 1,

the Krylov subspace Kk(g) contains a vector v with vTAv < 0 for k = O
((

1
ϵ

) 1
3 log 1

ϵ

)
. When

p ∈ (1,∞], the same conclusion holds for k = O
((

1
ϵ

) p
2p+1 log 1

ϵ
log d

)
.

79



Proof. Without loss of generality, assume that ∥A∥p ≤ 1. Fix a value T to be determined later,

effectively corresponding to the number of top eigenvalues that we deflate. By Proposition 3.16

we can construct a polynomial q, such that q(λmin) = 1 and |q(x)| ≤
√

ϵ/10

d1−1/p for x ∈ [0, T−1/p]

with

deg(q) ≤ C
T−1/(2p)

√
ϵ

log

(√
d1−1/p

ϵ/10

)
, (3.9)

where C is an absolute constant.

Now set

p(x) = q(x)
∏

i:λi>T−1/p

λi − x

λi − λmin

. (3.10)

Since we assume ∥A∥p ≤ 1, there at most T terms in the product, so

deg(p) ≤ T + C
T−1/(2p)

√
ϵ

log

(√
d1−1/p

ϵ/10

)
. (3.11)

By setting T = ϵ−p/(2p+1), we get

deg(p) =


O
((

1
ϵ

) p
2p+1 log 1

ϵ

)
if p = 1

O
((

1
ϵ

) p
2p+1 log 1

ϵ
log d

)
if p > 1

(3.12)

As long as k is at least deg(p), then v = p(A)g lies in Kk(g), and

vTAv = gTp(A)2Ag. (3.13)

By construction, p(λmin) = 1. Also for all x in [0, T−1/p], |p(x)| ≤ |q(x)| ≤
√
ϵ/10d(1/p)−1.

Therefore the matrix p(A)2A has at least one eigenvalue less than −ϵ, and the positive eigen-

values sum to at most ∑
i:λi>0

ϵ

10
d1/p−1λi ≤

ϵ

10
, (3.14)

by using Holder’s inequality along with the fact that ∥A∥p ≤ 1. So with at least 2/3 probability,
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gTp(A)2Ag < 0 as desired.

Remark 3.18. For 1 < p <∞, the log d dependence can be removed by simply applying the p = 1

tester to A⌈p⌉, as a matrix-vector query to A⌈p⌉ may be simulated via ⌈p⌉ matrix-vector queries to

A. However this comes at the cost of a
(
1
ϵ

)⌈p⌉/3 dependence, and is therefore only an improvement

when d is extremely large.

Remark 3.19. While we observe that deflation of the top eigenvalues can be carried out implicitly

within the Krylov space, this can also be done explicitly using block Krylov iteration, along with

the guarantee given in Theorem 1 of [MM15].

We showed above that we could improve upon the usual analysis of Krylov iteration in our

context. We next establish a matching lower bound that shows our analysis is tight up to log

factors. This is a corollary of the proof of Theorem 3.1 presented in [Bra+20].

Theorem 3.20. A two-sided, adaptive ℓp-tester in the matrix-vector model must in general make

at least Ω( 1
ϵp/(2p+1) ) queries.

Proof. We make use of the proof of Theorem 3.1 given in [Bra+20]. We consider an algorithm A

that receives a matrix W sampled from the Wishart distribution makes at most (1 − β)d queries,

and outputs either True or False, depending on whether λmin(W ) is greater or less than t (where

t = 1/(2d2) is defined as in [Bra+20]). We say that A fails on a given instance if either (i) A

outputs True and t − 1
4d2
≥ λmin(W ) or (ii) A outputs False and λmin(W ) ≥ t + 1

4d2
. Exactly

the same proof given in [Bra+20] shows that A must fail with probability at least cwish
√
β where

cwish > 0 is an absolute constant, as long as d is chosen sufficiently large depending on β. Taking

β = 1/4 say, means that any such algorithm fails with probability at least cwish/2 as long as d is a

large enough constant.

Now consider an ℓp-tester T with d = 1/(4ϵp/(2p+1)), applied to the random matrix W − tI.

While our definition allows T to fail with 1/3 probability we can reduce this failure probability
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to cwish/2 by running a constant number of independent instances and taking a majority vote. So

from here on we assume that T fails on a given instance with probability at most cwish/2.

First recall that W ∼ XXT where each entry of X is i.i.d. N (0, 1/d). Then with high proba-

bility, the operator norm of X is bounded, say, by
√
2, and the eigenvalues of W are bounded by

2.

Therefore with high probability, ∥W∥p ≤ 2d1/p, and so ∥W − tI∥p ≤ 3d1/p. It follows that

1/(4d2) = 4ϵ(4d)1/p ≥ ϵ ∥W − tI∥p . This means that T can solve the problem above, and by

correctness of the tester, fails with at most cwish/2 probability. For ϵ sufficiently small, the above

analysis implies that T must make at least Ω(d) = Ω(1/ϵp/(2p+1)) queries.

3.5 An optimal bilinear sketch

In this section we analyze a bilinear sketch for PSD-testing which will also yield an optimal

ℓ2-tester in the vector-matrix-vector model.

Our sketch is very simple. We choose G ∈ Rd×k to have independent N (0, 1) entries and take

our sketch to be GTAG. In parallel we construct estimates α and β for the trace and Frobenius

norm of A respectively, such that β is accurate to within a multiplicative error of 2, and α is

accurate to with ∥A∥F additive error. (Note that this may be done at the cost of increasing the

sketching dimension by O(1).)

If GTAG is not PSD then we automatically reject. Otherwise, we then consider the quantity

γ :=
α− λmin(G

TAG)

β
√
k log k

(3.15)

If γ is at most cpsd for some absolute constant cpsd, then the tester outputs False, otherwise it outputs

True.

We first show that a large negative eigenvalue of A results causes the smallest sketched eigen-
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value to be at most Tr(A) − Ω(ϵk). On the other hand, when A is PSD, we will show that

λmin(G
TAG) is substantially larger.

3.5.1 Upper bound on λmin(G
TAG)

We start with the following result on trace estimators which we will need below.

Proposition 3.21. Let M be a symmetric matrix with eigenvalues λ1, . . . , λd, and let u be a random

unit vector with respect to the spherical measure. Then

Var(uTMu) =
2

d+ 2

(
λ2
1 + . . .+ λ2

d

d
− (λ1 + . . .+ λd)

2

d2

)
:=

2

d+ 2
Var(λ1, . . . , λd).

Proof. By the spectral theorem, it suffices to prove the result when M is diagonal. Then

VaruTMu = E(λ1u
2
1 + . . .+ λdu

2
d)

2 −
(
E(λ1u

2
1 + . . .+ λdu

2
d)
)2

.

By Remark 3.12, we have E(u2
i ) = 1, E(u4

i ) = 3
d(d+2)

and E(u2
iu

2
j) = 1

d(d+2)
for i ̸= j. The

result follows by expanding using linearity of expectation, and then applying these facts.

The next two results will give an upper bound on the smallest eigenvalue of the Gaussian

sketch. For the proof of Lemma 3.23 we will start with random orthogonal projections, from

which the Gaussian result will quickly follow. We include a technical hypothesis that essentially

enforces non-negativity of Tr(A). We write the hypothesis in the form below simply to streamline

the argument.

Lemma 3.22. Suppose that ∥A∥F = 1 and that v is an eigenvector of A with associated eigenvalue

−ϵ. Let Π ∈ Rd×d be a projection onto a random k dimensional subspace S of Rd, sampled from

the rotationally invariant measure. Also suppose that xTAx ≥ 0 with probability 0.999 when x is
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a random unit vector. Then

1

∥Πv∥2
(Πv)TA(Πv) ≤ 1

d
(−0.5ϵk + Tr(A) +O(1))

with probability at least 0.99− exp(−ck).

Proof. Let u = Πv
∥Πv∥ . The subspace S was chosen randomly, so with probability at least 1 −

exp(−ck),

⟨u, v⟩2 = ∥Πv∥2 ≥ 0.5
k

d
.

Let u′ be the projection of u onto the hyperplane v⊥ orthogonal to v. Observe by symmetry that

u′/ ∥u′∥ is distributed uniformly over the sphere in v⊥.

Let A′ = A− ϵvvT be the matrix A with the −ϵ eigenvalue zeroed out. Then

uTAu ≤ −0.5k
d
ϵ+ (u′)TA′u′ ≤ −0.5k

d
ϵ+ (u′/ ∥u′∥)TA′(u′/ ∥u′∥),

as long as (u′)TA′u′ ≥ 0, which holds with probability at least 0.999 as a consequence of the simi-

lar hypothesis. The latter term is a trace estimator for 1
d
A′ with variance bounded by 2

d2
∥A′∥2F ≤

2
d2

(for example by Proposition 3.21). So with 0.999 probability

(u′/ ∥u′∥)TA′(u′/ ∥u′∥) ≤ 1

d
(Tr(A′) +O(1)) =

1

d
(Tr(A) + ϵ+O(1)) ≤ 1

d
(Tr(A) +O(1)),

and the result follows.

In the following lemma, we introduce the technical assumption that k < cd. However this

will be unimportant later, as any sketch with k ≥ cd might as well have sketching dimension d, at

which point the testing problem is trivial.

Lemma 3.23. Suppose that A ∈ Rd×d has an eigenvalue of −ϵ, ∥A∥F = 1, and G ∈ Rd×k with

k < d has iid N (0, 1) entries. Also suppose that xTAx ≥ 0 with probability at least 0.999 for a
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random unit vector x, and that k < cd for some absolute constant c. Then with probability at least

0.99− 3 exp(−ck),

λmin(G
TAG) ≤ −0.4ϵk +O(1) + Tr(A) + c

√
k√
d
|Tr(A)| .

Proof. Let ΠG = GG† denote projection onto the image of G.

Let v be an eigenvector of A with associated eigenvalue smaller or equal to −ϵ, and set u =

G†v/
∥∥G†v

∥∥. We then have

λmin(G
TAG) ≤ uT (GTAG)u =

1

∥G†v∥2
(ΠGv)

TA(ΠGv).

We also have

∥ΠGv∥ =
∥∥GG†v

∥∥ ≤ ∥G∥op

∥∥G†v
∥∥ .

By Theorem 4.6.1 in [Ver18], ∥G∥op ≤
√
d + c

√
k with probability at least 1 − 2 exp(−k). Con-

ditional on this occurring, ∥∥G†v
∥∥ ≥ ∥ΠGv∥√

d+ c
√
k
,

from which it follows that

λmin(G
TAG) ≤ (d+ c

√
d
√
k)

1

∥ΠGv∥2
(ΠGv)

TA(ΠGv),

as long as the quantity on the right-hand side is non-negative. If this quantity is negative, then we

similarly have

λmin(G
TAG) ≤ (d− c

√
d
√
k)

1

∥ΠGv∥2
(ΠGv)

TA(ΠGv),

using the analogous bound on the smallest singular value of G.

Since G is Gaussian, the image of G is distributed with the respect to the rotationally invariant

measure on k-dimensional subspaces. Therefore Lemma 3.22 applies, and the result follows after
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collecting terms, and using the assumption that k ≤ cd in the negative case.

3.5.2 Lower bound on λmin(G
TAG)

We follow a standard protocol for bounding the extreme eigenvalues of a random matrix. We first

show that uT (GTAG)u is reasonably large for a fixed vector u with high probability. Then by

taking a union bound over an ϵ-net we upgrade this to a uniform bound over the sphere.

We require two additional tricks. Our lower bound on uT (GTAG)u arises from Berstein’s

inequality, which is hampered by the existence of large eigenvalues of A. Therefore in order to get

a guarantee that holds with high enough probability, we first prune the large eigenvalues of A.

Second, the mesh size of our ϵ-net needs to be inversely proportional to the Lipschitz constant

of x 7→ xT (GTAG)x as x ranges over the sphere. A priori, the Lipschitz constant might be as bad

as ∥A∥op which is typically larger than
√
d. This would ultimately give rise to an additional log(d)

factor in the final sketching dimension. However we show that the the Lipschitz constant is in fact

bounded by O(k) with good probability, avoiding the need for any d dependence in the sketching

dimension.

Proposition 3.24. Let Q be a symmetric matrix, and let x and y be unit vectors. Then

∣∣xTQx− yTQy
∣∣ ≤ 2(λmax(Q)− λmin(Q)) ∥x− y∥

Proof. We first reduce to the 2-dimensional case. Let W be a 2-dimensional subspace passing

through x and y. The largest and smallest eigenvalues of the restriction to W of the quadratic

form associated to Q are bounded from above and below by λmax(Q) and λmin(Q) respectively. It

therefore suffices to prove the result when Q has dimension 2.

Since the result we wish to show is invariant under shifting Q by multiples of the identity, it

suffices to consider the case when λ2 = 0. After these reductions, we have

xTQx− yTQy = λ1(x
2
1 − y21) = λ1(x1 + y1)(x1 − y1).
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Since x and y are unit vectors, |x1 + y1| ≤ 2 and |x1 − y1| ≤ ∥x− y∥ and the result follows.

Lemma 3.25. Let S = GTAG where G ∈ Rk×d has iid N (0, 1) entries and ∥A∥F = 1. Then

λmax(S)− λmin(S) ≤ t

with probability at least 1− 4k(k+2)
t2

.

Proof. Consider the random quantity α = uTGTAGu, where u is a random unit vector in Rk,

independent from G. Note that Gu is distributed as a standard Gaussian, so α is a trace estimator

for A with variance 2 [AT11].

On the other hand, one can also study the variance of α conditional on G by using Proposi-

tion 3.21. Let E be the event that λmax(S) − λmin(S) ≥ t. If E occurs too often, then Var(α)

would be too large. Specifically, in the notation of Proposition 3.21 when E occurs, we necessarily

have Var(λ1(S), . . . , λk(S)) ≥ 1
k
(t/2)2, so Var(α|E) ≥ t2

2k(k+2)
. Thus we have

2 = Var(α) ≥ Pr(E)Var(α|E) ≥ Pr(E)
t2

2k(k + 2)
, (3.16)

and so Pr(E) ≤ 4k(k + 2)/t2 as desired.

Lemma 3.26. Suppose that A is PSD with ∥A∥F = 1, and that v consists of iid N (0, 1) entries.

Then for t ≥ 2
√
k we have

Pr(vTAv ≤ Tr(A)− t) ≤ exp(−c
√
k(t−

√
k)).

Proof. We have

Pr(vTAv ≤ Tr(A)− t) ≤ Pr(vTA−kv ≤ Tr(A)− t) (3.17)

= Pr(vTA−kv ≤ Tr(A−k)− (t− Tr(Ak)) (3.18)
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Note that vTA−kv has expectation Tr(A−k), so by Bernstein’s inequality (or Hanson-Wright)

[Ver18],

Pr(vTAv ≤ Tr(A)− t) ≤ exp

(
−cmin

(
(t− Tr(Ak))

2

∥A−k∥2F
,
t− Tr(Ak)

λmax(A−k)

))
,

for t ≥ Tr(Ak).

Now note that ∥A−k∥F ≤ ∥A∥F ≤ 1, and that λmax(A−k) ≤ 1√
k
, since ∥A∥F = 1. Addition-

ally, Tr(Ak) ≤
√
k ∥Ak∥F ≤

√
k. These bounds imply that

(t− Tr(Ak))
2

∥A−k∥2F
≥ (t−

√
k)2

and
t− Tr(Ak)

λmax(A−k)
≥
√
k(t−

√
k)

for t ≥ Tr(Ak). When t > 2
√
k, the latter expression is smaller, and the conclusion follows.

Theorem 3.27. Suppose that A is PSD with ∥A∥F = 1, and that G ∈ Rd×k has iidN (0, 1) entries

and that k ≥ 5. Then with at least 0.99 probability,

λmin(G
TAG) ≥ Tr(A)− c

√
k log(k)

for some absolute constant c.

Proof. For any fixed unit vector u ∈ Rk, Gu is distributed as a standard Gaussian, and so Lemma 3.26

applies. Therefore for a choice of constant,

uT (GTAG)u ≥ Tr(A)− c
√
k log(k) (3.19)

with probability at least 1− exp(−10k log k).
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Let N be a net for the sphere in Rk with mesh size 1/k, which can be taken to have at most

(3k)k elements [Ver18]. By taking a union bound, equation 3.19 holds over N with probability at

least

1− (3k)k exp(−10k log k) ≥ 1− exp(−k)

for k ≥ 2.

By choosing t = 100k in Lemma 3.25, and applying Proposition 3.24, we get that

∣∣xT (GTAG)x− yT (GTAG)y
∣∣ ≤ 100k ∥x− y∥

with probability at least 0.999. Since N has mesh size 1/k, we have that

uT (GTAG)u ≥ Tr(A)− c
√
k +O(1)

for all unit vectors u in Rk with probability at least 0.999− exp(−k).

As a consequence of Theorem 3.27 and Lemma 3.23 we obtain our main result.

Theorem 3.28. There is a bilinear sketch GTAG with sketching dimension k = O( 1
ϵ2
log2 1

ϵ
) that

yields a two-sided ℓ2-tester that is correct with at least 0.9 probability.

Proof. If λmin(A) < 0 then we automatically reject. Otherwise we first use O(1) columns of the

sketching matrices to estimate α of Tr(A) to within an additive error of ∥A∥F with 0.01 failure

probability. We then use another O(1) columns of the sketching matrices to construct an approx-

imation β of ∥A∥F with 1
2
∥A∥F ≤ β ≤ 2 ∥A∥F with 0.01 failure probability (see for example

[MSW19]).

Now consider the quantity

γ =
α− λmin(G

TAG)

β
√
k log k

.
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If A is PSD, then by Theorem 3.27,

λmin(G
TAG) ≥ Tr(A)− c

√
k log k ∥A∥F ,

which implies that

γ ≤ cpsd,

for some absolute constant cpsd.

On the other hand, if A has a negative eigenvalue less than or equal to−ϵ, then by Theorem 3.23

λmin(G
TAG) ≤ −0.4ϵk ∥A∥F +

(
1 + c

√
k√
d

)
Tr(A) +O(1) ∥A∥F ,

which implies that

γ ≥ cfar(ϵ
√
k − c)/ log k,

for some absolute constant cfar.

Finally by taking k = Θ( 1
ϵ2
log2 1

ϵ
), we have cpsd < cfar(ϵ

√
k− c)/ log k, which implies that the

tester is correct if it outputs True precisely when γ ≤ cpsd.

Note that this result immediately gives a non-adaptive vector-matrix-vector tester which makes

Õ(1/ϵ4) queries.

3.5.3 Application to adaptive vector-matrix-vector queries

By combining our bilinear sketch with Theorem 3.2 we achieve tight bounds for adaptive queries.

Theorem 3.29. There is a two-sided adaptive ℓ2-tester in the vector-matrix-vector model, which

makes Õ(1/ϵ2) queries.

Proof. To handle the technical condition in Lemma 3.23, we first compute xTAx for a constant
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number of independent Gaussian vectors x. If xTAx is ever negative, then we automatically reject.

We showed in the proof of Theorem 3.28 that with 0.9 probability, γ ≤ cpsd if A is PSD, and

γ ≥ cfar(ϵ
√
k − c)/ log k := Cfar(k) if A is ϵ-far from PSD. By choosing some k = O( 1

ϵ2
log2 1

ϵ
)

we can arrange for Cfar(k)− cpsd ≥ 1, and also for Cfar(k) = Θ(1).

Next we compute estimates α and β of Tr(A) and ∥A∥F as above, and (implicitly) form the

matrix

Γ =
GTAG− αIk

β
√
k log k

+ Cfar(k)Ik − Ik.

If A is PSD, then with very good probability,

λmin(Γ) = −γ + Cfar(k)−
1

ϵ
≥ −cpsd + Cfar(k)− 1 ≥ 0.

Similarly, if A is ϵ-far from PSD, then

λmin(Γ) = −γ + Cfar(k)−
1

ϵ
≤ −Cfar(k) + Cfar(k)− 1 = −1.

Thus it suffices to distinguish Γ being PSD from Γ having a negative eigenvalue less than or

equal to −1.

For this we will utilize our adaptive ℓ1-tester, so we must bound ∥Γ∥1 . Note that GTAG is a

trace estimator for kA with variance O(k) ∥A∥F [AN13]. Therefore Tr(GTAG) = k(Tr(A) ±

O(1) ∥A∥F ). Define M = 1
β
(GTAG − αIk), so that Tr(M) = O(k). The negative eigenvalues

of M sum to at most kλmin(M) in magnitude, and so the bound on Tr(M) implies that ∥M∥1 ≤

2kλmin(M) + O(k). Write Γ = 1√
k log k

M + Cfar(k)I − I , so that ∥Γ∥1 ≤
1√

k log k
∥M∥1 + O(k).

Note that λmin(M) ≤
√
k log kλmin(Γ) + O(

√
k log k). Therefore ∥Γ∥1 ≤ 2kλmin(Γ) + O(k).

From this we have

1

λmin(Γ)
∥Γ∥1 ≤ 2k

(
λmin(Γ) +O(1)

λmin(Γ)

)
+

O(k)

λmin(Γ)
≤ O(k)
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as long as |λmin(Γ)| ≥ Ω(1), which it is by assumption.

Therefore Theorem 3.2 gives an adaptive vector-matrix-vector tester for Γ which requires only

Õ(k) = Õ( 1
ϵ2
) queries.

As a consequence we also obtain a two-sided p-tester for all p ≥ 2.

Corollary 3.30. For p ≥ 2, there is a two-sided adaptive ℓp-tester in the vector-matrix-vector

model, which make Õ(1/ϵ2)d1−1/p queries.

Proof. Apply Theorem 3.29 along with the bound ∥A∥p ≥ d
1
p
− 1

2 ∥A∥F .

3.5.4 Lower bounds for two-sided testers

Our lower bounds for two-sided testers come from the spiked Gaussian model introduced in

[LW16]. As before, our adaptive lower bounds will come as a consequence of the correspond-

ing non-adaptive bounds.

Theorem 3.31. A two-sided ℓp-tester that makes non-adaptive vector-matrix-vector queries re-

quires at least

• Ω( 1
ϵ2p

) queries for 1 ≤ p ≤ 2

• Ω( 1
ϵ4
d2−4/p) queries for 2 < p <∞ as long as d can be taken to be Ω(1/ϵp).

• Ω(d2) queries for p =∞.

Proof. First, take G to be a d × d matrix with N (0, 1) entries, where d = 1/ϵ. Also let G̃ =

G + suvT where u and v have N (0, 1) entries, and s is to be chosen later. We will show that a

PSD-tester can be used to distinguish G and G̃, while this is hard for any algorithm that uses only

a linear sketch.
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Recall that G has spectral norm at most c
√
d with probability at least 1 − 2e−d, where c is an

absolute constant. (We will use c throughout to indicate absolute constants that we do not track –

it may have different values between uses, even within the same equation.) Set

Gsym =

 0 G

GT 0,

 (3.20)

and define G̃sym similarly. Note that the eigenvalues of Gsym are precisely {±σi} where the σi are

singular values of G. Therefore Gsym + c
√
dI is PSD with high probability.

On the other hand,
∥∥uvT∥∥ ≥ cd with high probability so

∥∥∥G̃∥∥∥ ≥ s
∥∥uvT∥∥ − ∥G∥ ≥ csd− c

√
d, (3.21)

which implies that G̃sym + c
√
dI has a negative eigenvalue with magnitude at least csd − c

√
d −

c
√
d = csd− c

√
d.

We also have that
∥∥∥G̃sym

∥∥∥
p
≤ c
√
dd1/p, since the operator norm of G is bounded by c

√
d with

high probability. Hence if

c
sd−

√
d√

dd1/p
= c

s
√
d− 1

d1/p
≥ ϵ, (3.22)

then a two-sided PSD-tester can distinguish between G and G̃ with constant probability of failure.

On the other hand, Theorem 4 in [LW16] implies that any sketch that distinguishes these dis-

tributions with constant probability, must have sketching dimension at least c/s4.

It remains to choose values of s and d for which the inequality in equation (3.22) holds. When

1 ≤ p ≤ 2, we take d = Θ(ϵ−p) and s = O(ϵp/2) giving a lower bound of Ω(1/ϵ2p). When

2 < p < ∞, we take d = Ω(1/ϵp) and s = O(ϵd1/p−1/2) giving a lower bound of Ω( 1
ϵ4
d2−4/p).

Finally, when p =∞ we take s = O(1/
√
d) giving a lower bound of Ω(d2).

Remark 3.32. The argument above applies equally well to arbitrary linear sketches, of which a
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series of non-adaptive vector-matrix-vector queries is a special case.

Corollary 3.33. A two-sided adaptive ℓp-tester in the vector-matrix-vector model requires at least

• Ω( 1
ϵp
) queries for 1 ≤ p ≤ 2

• Ω( 1
ϵ2
d1−2/p) queries for 2 < p <∞ as long as d can be taken to be Ω(1/ϵp).

• Ω(d) queries for p =∞.

Proof. Apply Theorem 3.31 along with Lemma 3.14.

For adaptive measurements, we supply a second proof via communication complexity which

has the advantage of applying to general linear measurements, albeit at the cost of an additional bit

complexity term.

Proposition 3.34. Let p ∈ [1,∞), ϵ < 1
2

and d ≥ (p/ϵ)p. An adaptive two-sided ℓp-tester taking

general linear measurements ⟨Mi, A⟩ of A, where each Mi has integer entries in (−2b−1, 2b−1],

must make at least c
b+d log 1

ϵ

1
ϵ2
d1−2/p queries.

Proof. We reduce from the multiplayer set disjointness problem [KPW21]. Let the k players

have sets S1, . . . , Sk ⊆ [d] which either are (i) all pairwise disjoint or (ii) all share precisely one

common element. Distinguishing between (i) and (ii) with 2/3 probability in the blackboard model

of communication requires Ω(d/k) bits. We will choose k =
⌈
max(4ϵd1/p, 4p)

⌉
= ⌈4ϵd1/p⌉.

For each i let χi be the characteristic vector of Si and let Ai = diag(χi). Consider the matrix

A := Id −
∑d

i=1Ai.

In situation (i), A is PSD. In situation (ii), ∥A∥pp ≤ kp + d and λmin(A) = −(k − 1). We have

|λmin(A)|p = (k − 1)p = kp
(
1− 1

k

)p
≥ kp

(
1− p

k

)
≥ 3

4
kp

and

ϵp ∥A∥pp ≤ ϵp(kp + d) = ϵpkp + ϵpd ≤ 1

2
kp + ϵpd ≤ 3

4
kp.
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Given query access to A, an ℓp-tester can therefore distinguish between (i) and (ii) with 2/3

probability. Note that a single linear measurement ⟨M,A⟩ may be simulated in the blackboard

model using O(k(log b+log d)) bits; each player simply computes and communicates ⟨M,Ai⟩, and

the players add the resulting measurements. The players therefore need at least Ω( 1
k(log b+log d)

· d
k
)

bits of communication to solve the PSD-testing problem.

3.6 Spectrum Estimation

We make use of the following result, which is Lemma 11 of [CW17b] specialized to our setting.

Lemma 3.35. For a symmetric matrix A ∈ Rd×d, there is a distribution over an oblivious sketching

matrix R ∈ Rd×m with m = O(k
ϵ
) so that with at least 0.9 proability,

min
Y ∗∈ rank k,PSD

∥∥(AR)Y ∗(AR)T − A
∥∥2
F
≤ (1 + ϵ) ∥Ak,+ − A∥2F , (3.23)

where Ak,+ is the optimal rank-one PSD approximation to A in Frobenius norm.

Remark 3.36. In our setting one can simply take R to be Gaussian since the guarantee above must

hold when A is drawn from a rotationally invariant distribution. In many situations, structured or

sparse matrices are useful, but we do not need this here.

We also recall the notion of an affine embedding [CW17a].

Definition 3.37. S is an affine embedding for matrices A and B if for all matrices X of the

appropriate dimensions, we have

∥S(AX −B)∥2F = (1± ϵ) ∥AX −B∥2F . (3.24)

We also recall that when A is promised to have rank at most r, there is a distribution over S
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with O(ϵ−2r) rows such that (3.24) holds with constant probability for any choice of A and B

[CW17a].

Lemma 3.38. There is an algorithm which makes O(k
2

ϵ6
log 1

δ
) vector-matrix-vector queries to A

and with at least 1− δ probability outputs an approximation of ∥A∥k,+, accurate to within ϵ ∥A∥2F

additive error.

Proof. We run two subroutines in parallel.

Subroutine 1. Approximate ∥Ak,+ − A∥2F up to O(ϵ) multiplicative error.

Our algorithm first draws affine embedding matrices S1 and S2 for r = k/ϵ, and with ϵ distor-

tion, each with O( k
ϵ3
) rows. We also draw a matrix R as in Lemma 3.35 with m = O(k

ϵ
) columns.

We then compute S1AR and S2AR, each requiring k2

ϵ4
vector-matrix-vector queries, and com-

pute S1AS
T
2 requiring k2

ϵ6
queries.

Let Yk be arbitrary with the appropriate dimensions (later we will optimize Yk over rank k PSD

matrices). By using the affine embedding property along with the fact that R has rank at most k
ϵ
,

we have

∥∥(S1AR)Yk(S2AR)T + S1AS
T
2

∥∥2
F
= (1± ϵ)

∥∥ARYk(S2AR)T + AST2
∥∥2
F

= (1± ϵ)
∥∥S2ARYkR

TA+ S2A
∥∥2
F

= (1± 3ϵ)
∥∥ARYkR

TA+ A
∥∥2
F
.

As a consequence of this, and the property held by R, we have

min
rk(Yk)≤k,Yk PSD

∥∥(S1AR)Yk(S2AR)T + S1AS
T
2

∥∥2
F
= (1± 3ϵ)min

Yk

∥∥ARYkR
TA+ A

∥∥2
F

(3.25)

= (1± 7ϵ) ∥Ak,+ − A∥2F . (3.26)

Thus by computing the quantity in the left-hand-side above, our algorithm computes an O(ϵ) mul-
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tiplicative approximation using O(k2/ϵ6) vector-matrix-vector queries.

Subroutine 2. Approximate ∥A∥2F up to O(ϵ) multiplicative error.

We simply apply Theorem 2.2. of [MSW19], set q = 2, and note that the entries of the sketch

correspond to vector-matrix-vector products. By their bound we require O(ϵ−2 log(1/ϵ)) vector-

matrix-vector queries.

Since ∥Ak,+∥2F = ∥A∥2F − ∥Ak,+ − A∥2F , we obtain an additive O(ϵ) ∥A∥2F approximation to

∥Ak,+∥2F by running the two subroutines above and subtracting their results.

Finally, by repeating the above procedure O(log 1
δ
) times in parallel and taking the median of

the trails, we obtain a failure probability of at most δ.

The matrices S1AR and S2AR in Subroutine 1 each have rank k/ϵ whereas the dimensions

of S1AS
T
2 are k/ϵ3. The matrix S1AS

T
2 therefore contains a large amount of data that will not

play a role when optimizing over Yk. If S1AR and S2AR were known ahead of time, then we

could choose to compute only the portion of S1AS
T
2 that is relevant to the optimization step, and

simply estimate the Frobenius error incurred by the rest. This allows us to construct a slightly more

efficient two-pass protocol.

Proposition 3.39. By using a single round adaptivity, the guarantee of Lemma 3.38 may be

achieved using O(k
2

ϵ4
log 1

δ
) vector-matrix-vector queries.

Proof. As described above, we modify Subroutine 1. Write Mi for SiAR and Q for S1AS
T
2 .

Instead of computing M1, M2, and Q at once, we instead compute M1 and M2 first using k2/ϵ4

vector-matrix-vector queries.

We wish to estimate minYk
∥∥M1YkM

T
2 −Q

∥∥2
F

, where the minimum is over PSD matrices Yk

of rank at most k. Let Πi denote orthogonal projection onto the image of Mi, and set Π⊥
i = I−Πi.
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Then for fixed Y , we use the Pythagorean theorem to write

∥M1YM2 −Q∥2F = ∥Π1M1YM2Π2 −Q∥2F (3.27)

=
∥∥Π1(M1YMT

2 −Q)Π2 +Π⊥
1 QΠ2 +Π1QΠ⊥

2 +Π⊥
1 QΠ⊥

2

∥∥2
F

(3.28)

=
∥∥Π1(M1YMT

2 −Q)Π2

∥∥2
F
+
∥∥Π⊥

1 QΠ2

∥∥2
F
+
∥∥Π1QΠ⊥

2

∥∥2
F
+
∥∥Π⊥

1 QΠ⊥
2

∥∥2
F

(3.29)

=
∥∥M1YMT

2 − Π1QΠ2

∥∥2
F
+
∥∥Π⊥

1 QΠ2

∥∥2
F
+
∥∥Π1QΠ⊥

2

∥∥2
F
+
∥∥Π⊥

1 QΠ⊥
2

∥∥2
F
.

(3.30)

Note that each of the last three terms can be estimated to within O(ϵ) multiplicative error using

Subroutine 2, since a vector-matrix-vector query to one of these matrices may be simulated with

a single query to A. Also since each Mi has rank O(k/ϵ), the Πi’s are projections onto O(k/ϵ)

dimensional subspaces. Since the Πi’s are known to the algorithm, we may compute Π1QΠ2 ex-

plicitly using k2/ϵ2 vector-matrix-vector queries, as it suffices to query Π1QΠ2 over the Cartesian

product of bases for the images of Π1 and Π2. By optimizing the first term over Y , we thus obtain

an O(ϵ) multiplicative approximation to minYk
∥∥M1YkM

T
2 −Q

∥∥2
F

as desired. This gives a version

of Subroutine 1 that makes O(k2/ϵ4) queries.

We note that we immediately obtain a poly(1/ϵ) query ℓ2-tester by applying Lemma 3.38 to

approximate A1,−. However this yields a worse ϵ dependence than Theorem 3.28. Perhaps more

interestingly, these techniques also give a way to approximate the top k (in magnitude) eigenvalues

of A while preserving their signs. We note a minor caveat. If λk and λk+1 are very close in

magnitude, but have opposite signs, then we cannot guarantee that we approximate λk. Therefore in

the statement below, we only promise to approximate eigenvalues with magnitude at least |λk|+2ϵ.

Theorem 3.40. Let λ1, λ2, . . . be the (signed) eigenvalues of A sorted in decreasing order of mag-

nitude.

There is an algorithm that makes O( k
2

ϵ12
log k) non-adaptive vector-matrix-vector queries to A,
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and with probability at least 0.9, outputs λ̃1, . . . , λ̃k such that

(i) There exists a permutation σ on [k] so that for all i with |λi| ≥ |λk|+2ϵ, |λ̃σ(i)−λi| ≤ ϵ ∥A∥F

(ii) For all i, there exists j with |λj| ≥ |λk| − ϵ and |λ̃i − λj| ≤ ϵ ∥A∥F

With one additional round of adaptivity the number of measurements can be reduced to O(k
2

ϵ8
log k).

Proof. We set δ = 1
20k

in Lemma 3.38 and use it to approximate ∥A1,+∥2F , . . . , ∥Ak,+∥2F , along

with ∥A1,−∥2F , . . . , ∥Ak,−∥2F , each to within (ϵ2/2) ∥A∥2F additive error. Note that we may use the

same sketching matrices for each of these 2k tasks, and then take a union bound to obtain a failure

probability of at most 0.1. Thus we require only O( k
2

ϵ12
log k) queries in total. With an additional

round of adaptivity, Proposition 3.39 reduces this bound to O(k
2

ϵ8
log k).

Let λi,+ be the ith largest positive eigenvalue of A if it exists, and 0 otherwise. Define λi,−

similarly. Note that λ2
i,+ = ∥Ai,+∥2F − ∥Ai−1,+∥2F for i ≥ 2, and that λ2

1,+ = ∥A1,+∥2F . This allows

us to compute approximations λ̃i,+ ≥ 0 such that |λ̃2
i,+ − λ2

i,+| ≤ ϵ2 ∥A∥2F , and similarly for the

λi,−’s with λ̃i,− ≤ 0. Note that this bound implies |λ̃i,+ − λi,+| ≤ ϵ ∥A∥F .

Our algorithm then simply returns the k largest magnitude elements of {λ̃1,+, . . . , λ̃k,+, λ̃1,−, . . . , λ̃k,−}.

3.7 Non-adaptive testers

3.7.1 Non-adaptive vector-matrix-vector queries

We gave a lower bound for one-sided testers earlier in Theorem 3.13. Here we observe that the

sketch of Andoni and Nguyen [AN13] provides a matching upper bound.

Proposition 3.41. There is a one-sided non-adaptive ℓ1-tester that makes O(1/ϵ2) non-adaptive

vector matrix-vector queries to A.

Proof. We simply apply Proposition 3.8 Note that the sketch is of the form GTAG, where G ∈

Rm×d with m = O(1/ϵ) in our case. Each entry of GTAG of which there are m2 can be computed

with a single vector-matrix-vector query.
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Corollary 3.42. There is a one-sided non-adaptive ℓp-tester that makes O( 1
ϵ2
d2−2/p) non-adaptive

vector matrix-vector queries to A.

Proof. Apply the previous proposition along with the bound ∥A∥p ≥ d1/p−1 ∥A∥1 .

3.7.2 Non-adaptive matrix-vector queries

As a simple corollary of the algorithm given by Corollary 3.42 we have the following.

Proposition 3.43. There exists a one-sided non-adaptive tester making O(1
ϵ
d1−1/p) matrix-vector

queries.

Proof. Simply note that a k×k bilinear sketch may be simulated with k matrix-vector queries.

We next show that this bound is tight. While we consider the case where the tester queries the

standard basis vectors, this is done essentially without loss of generality as any non-adaptive tester

may be implemented by querying on an orthonormal set.

Proposition 3.44. Suppose that a one sided matrix-vector tester queries on the standard basis

vectors e1, . . . , ek and outputs False. Let U be the top k × k submatrix of [Ae1, . . . , Aek]. Then if

U is non-singular, there must exist a “witness vector” v ∈ span(x1, . . . , xk) such that vTAv < 0.

Proof. Let Q be the matrix with columns Aei, and decompose it as

Q =

U

B


T

(3.31)

where U ∈ Rk×k and B ∈ Rd×(d−k). Suppose that there does not exist a v as in the statement of the

proposition. Note that this implies that U is PSD, and in fact positive definite by the assumption

that U was non-singular. Now consider the block matrix

Ãs =

U BT

B λI

 (3.32)
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for some choice of λ > 0. For arbitrary v and w of the appropriate dimensions, we have

(
v w

)U BT

B λI


v

w

 = vTUv + 2vTBw + λwTw (3.33)

≥ ∥v∥2 σmin(U) + λ ∥w∥2 − 2 ∥v∥ ∥w∥ σmax(B). (3.34)

Since σmin(U) ̸= 0 this expression viewed as a quadratic form in ∥v∥ and ∥w∥ is positive definite

for large enough λ. This implies that Ã is positive definite as well. Since Ãei = Aei by construc-

tion, this shows that the queries are consistent with a PSD matrix. So a one-sided tester that cannot

produce a witness vector in this case must not output False.

Theorem 3.45. Set D = diag(−λ, 1, . . . , 1), let S be a random orthogonal matrix, and take

A = STDS. In the matrix-vector model, a one-sided non-adaptive tester must make at least 1
2

d
1+λ

queries to be correct on this distribution with 2/3 probability.

Proof. Given this distribution we may assume without loss of generality that the tester queries on

e1, . . . ek, whose span we call Ek. Let u denote the −λ eigen-direction of A, which is distributed

uniformly over Sd−1. For unit vectors x, the quadratic form associated to A is negative exactly

when ⟨x, u⟩2 ≥ 1
1+λ

. Also the U as in Proposition 3.44 is non-singular with probability 1. In

this case, by Proposition 3.44 the tester can only succeed if ∥ΠEk
u∥2 ≥ 1

1+λ
. On the other hand

E ∥ΠEk
u∥2 = k/d, so by Markov, ∥ΠEk

u∥2 ≤ 2k/d with probability at least 1/2. Therefore a

tester that succeeds with 2/3 probability must have 2k/d ≥ 1/(1 + λ).

Corollary 3.46. In the matrix-vector model, a one-sided non-adaptive ℓp-tester must make at least

Ω(1
ϵ
d1−1/p) queries.

Proof. Apply Theorem 3.45 with λ = ϵd1/p.

101



3.8 Conclusion and Open Problems

We gave a series of tight bounds for PSD-testing in both the matrix-vector and vector-matrix-vector

models. We provided tight bounds as well as a separation between one and two-sided testers in the

latter model. There are a number of additional questions that may yield interesting future work.

• Our adaptive vector-matrix-vector algorithm for p = 1 uses Ω(1/ϵ) rounds of adaptivity, but

this may not always be desirable in practice, since the queries cannot be run in parallel. Are

there good algorithms that use less adaptivity? What is the optimal trade-off between query

complexity and the number of rounds of adaptivity?

• One could modify our testing model and consider testers which should output False whenever

the ℓp norm of the negative eigenvalues is at least an ϵ fraction of the ℓp norm of positive

eigenvalues. Is it possible to give tight bounds for this problem in the models that we con-

sidered?

• Is it possible to use the ideas behind our two-sided bilinear sketch to give better bounds for

spectral estimation with additive Frobenius error?
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CHAPTER 4

Optimal Eigenvalue Approximation via Sketching

In many applications, one is interested in computing spectral information about a symmetric matrix

A. For example if A is a Hessian matrix for a function f , then the spectrum gives useful information

about the local curvature. If A is an empirical covariance matrix, then the spectrum gives the

singular values associated to the data matrix. If one is interested in applying PCA for example, it

is useful to have an estimate for the singular values in order to truncate the SVD appropriately.

In the big data setting, matrices are often extremely large with dimensions in the tens of millions

or higher. Directly computing eigenvalues in such a setting is often impractical. In this chapter we

seek to estimate the spectrum of A via a technique known as sketching. We consider a particularly

simple bilinear sketch of the from GTAG for a Gaussian matrix G.

Interestingly this sketch has been considered before in the context of eigenvalue estimation

[AN13], however their algorithm for recovering the eigenvalues from the sketch is not sufficient to

obtain the ϵ ∥A∥F additive approximation guarantees that we give here. In this chapter, we present

a new recovery algorithm and introduce several new eigenvalue bounds in the analysis.

4.1 Contributions

This chapter presents joint work with David Woodruff [SW23]. I proposed the main algorithm

as well as the lower bounds, and wrote the technical sections of the manuscript. David Woodruff
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suggested a technique for upper-bounding the eigenvalues and for speeding up the sketches. Both

authors contributed to the writing.

4.2 Introduction

Estimating the eigenvalues of a real symmetric matrix has numerous applications in data analysis,

engineering, optimization, spectral graph theory, and many other areas. As modern matrices may

be very large, traditional algorithms based on the singular value decomposition (SVD), subspace

iteration, or Krylov methods, may be be too slow. Therefore, a number of recent works have

looked at the problem of creating a small summary, or sketch of the input matrix, so that from the

sketch one can approximate each of the eigenvalues well. Indeed, in the realm of sublinear algo-

rithms, this problem has been studied in the streaming model [AN13], the sampling and property

testing models [Bal+19a; BCJ20; Bha+21; BKM22], and matrix-vector and vector-matrix-vector

query models [AN13; LNW14; LNW19; NSW22]; the latter model also contains so-called bilinear

sketches.

In this work we focus on designing linear sketches for eigenvalue estimation. Namely, we are

interested in estimating the spectrum of a real symmetric matrix A ∈ Rn×n up to ϵ ∥A∥F error

via a bilinear sketch GAGT with G ∈ Rk×n is a matrix of i.i.d. N(0, 1/k) random variables,

i.e., Gaussian of mean zero and variance 1/k. The algorithm should succeed with large constant

probability in estimating the entire spectrum. This is a very natural sketch, and unsurprisingly

has been used before both in [AN13] to estimate eigenvalues with an additive error of roughly

ϵ
∑n

i=1 |λi(A)|, where λi(A) are the eigenvalues of A, as well as in [NSW22] for testing if a matrix

is positive semidefinite (PSD). We note that the additive error of ϵ∥A∥1 = ϵ
∑n

i=1 |λi(A)| can

be significantly weaker than our desired ϵ ∥A∥F error, as ∥A∥F can be as small as ∥A∥1√
d

. This

is analogous to the ℓ2 versus ℓ1 guarantee for heavy hitters in the data stream model, see, e.g.,

[Woo16].

It may come as a surprise that GAGT has any use at all for achieving additive error in terms of
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ϵ∥A∥F ! Indeed, the natural way to estimate the i-th eigenvalue of A is to output the i-th eigenvalue

of GAGT , and this is exactly what the algorithm of [AN13] does. However, by standard results

for trace estimators, see, e.g., [Mey+21] and the references therein, the trace of GAGT is about the

trace of A, which can be a
√
d factor larger than ∥A∥F , and thus the estimation error can be much

larger than ϵ∥A∥F . This is precisely why [AN13] only achieves additive ϵ∥A∥1 error with this

sketch. Moreover, the work of [NSW22] does use sketching for eigenvalue estimation, but uses

a different, and much more involved sketch based on ideas for low rank approximation of PSD

matrices [CW17b], and achieves a much worse Õ(k2/ϵ12) number of measurements to estimate

each of the top k eigenvalues, including their signs, up to additive error ϵ∥A∥F . Here we use

Õ() notation to suppress poly(log(n/ϵ)) factors. Note that for k > 1/ϵ2, one can output 0 as the

estimate to λk, and thus the sketch size of [NSW22] is Õ(1/ϵ16).

To achieve error in terms of ∥A∥F , the work of [AN13] instead considers the sketch GAHT ,

where G,H ∈ Rk×n are independent Gaussian matrices. However, the major issue with this sketch

is it inherently loses sign information of the eigenvalues. Indeed, their algorithm for reconstructing

the eigenvalues uses only the sketched matrix, while forgetting G and H (more specifically they

only use the singular values of this matrix). However the distributions of G and H are invariant

under negation, so the sketch alone cannot even distinguish A from −A. In addition to this, even

if one assumes the input A is PSD, so that the signs are all positive, their result for additive error

ϵ∥A∥F would give a suboptimal sketching dimension of k = Õ(1/ϵ3); see further discussion below.

4.2.1 Our Contributions

Optimal Sketching Upper Bound. We obtain the first optimal bounds for eigenvalue estimation

with the natural ϵ∥A∥F error via sketching. We summarize our results compared to prior work in

Table 4.1. We improve over [AN13; NSW22] in the following crucial ways.

Qualitatively, we drop the requirement that A is PSD. As mentioned, the eigenvalues of our

sketch GAGT may not be good approximations to the eigenvalues of A. In particular, we observe
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Table 4.1: Our work and prior work on estimating each eigenvalue of an arbitrary symmetric matrix
A up to additive ϵ∥A∥F error.

Sketching dimension Reference Notes

Õ(1/ϵ6) [AN13] Loses sign information
Õ(1/ϵ16) [NSW22]
Ω(1/ϵ4) [NSW22] Lower bound
O(1/ϵ4) Our Work

that the sketched eigenvalues concentrate around 1
k
Tr(A), which could be quite large, on the order

of
√
d
k
∥A∥F . By shifting the sketched eigenvalues by − 1

k
Tr(A) via an additional trace estimator

we compute, this enables us to correct for this bias, and we are able to show that the resulting

eigenvalues are good approximations to those of A. In order to perform this correction we in fact

require the sketched eigenvalues to concentrate around 1
k
Tr(A). Obtaining this concentration is

where we require Gaussianity in our argument1. We leave it as an open question to obtain similar

concentration from common sketching primitives.

Comparison with existing work. Quantitatively, the analysis of [AN13] for the related GAHT

sketch works by splitting the spectrum into a “head” containing the large eigenvalues, and a “tail”

containing the remaining eigenvalues. The authors then incur an additive loss from the operator

norm of the tail portion of the sketch, and show that the head portion of the sketch approximates the

corresponding eigenvalues to within a multiplicative error. Notably, their multiplicative constant

is uniform over the large eigenvalues. This is a stronger guarantee than we need. For example, to

approximate an eigenvalue of 1/2 to within ϵ additive error, we need a (1 ± O(ϵ)) multiplicative

guarantee. However to approximate an eigenvalue of 2ϵ to within ϵ additive error, a (1 ± O(1))

multiplicative guarantee suffices. In other words, smaller eigenvalues require less stringent mul-

tiplicative guarantees to achieve the same additive guarantee. We leverage this observation in

order to get a uniform additive guarantee for the large eigenvalues, while not relying on a uniform

multiplicative guarantee. Thus, we improve the worst-case k = O(1/ϵ3) bound of [AN13] to a

1However in the appendix we give a faster sketch for PSD matrices.
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k = O(1/ϵ2) bound for an ϵ∥A∥F error guarantee.

Indeed, one can show if the eigenvalues of A are, in non-increasing order,

cd√
1
,
cd√
2
,
cd√
3
,
cd√
4
, . . . ,

cd√
d
,

where cd = O(log−1/2 d) so that ∥A∥F = 1, then O(1/ϵ3) is the bound their Theorem 1.2 and

corresponding Lemma 3.5 would give. To see this, their Lemma 3.5, which is a strengthening of

their Theorem 1.2, states that for i = 1 . . . k,

∣∣λ2
i (GAHT )− λ2

i (A)
∣∣ ≤ αλ2

i (A) +O
(
λ2
k(A)

)
+O

(
α2

k
∥A−k∥2F

)
, (4.1)

with sketching dimension O(k/α2) on each side (and hence O(k2/α4) total measurements). Sup-

pose ∥A∥F = O(1) and that we would like to use this bound to approximate λℓ(A) > α to within

ϵ additive error. After adjusting for the squares, this is equivalent to bounding the left-hand side of

(4.1) by O(ϵλℓ) for i = ℓ. Obtaining such a bound from (4.1) requires that the first two terms on the

right-hand side are bounded by O(ϵλℓ(A)), i.e., that α ≤ O(ϵ/λℓ(A)) and λ2
k(A) ≤ O(ϵλℓ(A)).

For the spectrum above, we must therefore take k ≳ cd
√
ℓ
ϵ
, which results in a sketching dimension

of
k

α2
≈ cd
√
ℓ

ϵ
· λℓ(A)

2

ϵ2
=

c3d
ϵ3
√
ℓ

on each side.

Thus for this spectrum, [AN13] requires a sketching dimension of O(1/ϵ3) (up to log d factors)

to approximate the largest eigenvalues of A to ϵ additive error. Indeed this bound does not achieve

O(1/ϵ2) sketching dimension, unless ℓ ≳ 1/ϵ2, at which point λℓ(A) ≤ O(ϵ) and does not need to

be approximated by our algorithm.

We note that while [NSW22] could also report the signs of the approximate eigenvalues, their

Õ(1/ϵ16) sketch size makes it considerably worse for small values of ϵ.

In contrast, our sketching dimension k is optimal among all non-adaptive bilinear sketches, due
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to the proof of part 1 of Theorem 31 of [NSW22] applied with p = 2. Indeed, the proof of that

theorem gives a pair of distributions on matrices A with ∥A∥F = Θ(1) for which in one distribution

A is PSD, while in the other it has a negative eigenvalue of value −Θ(ϵ). That theorem shows

Ω(1/ϵ4) non-adaptive vector-matrix-vector queries are required to distinguish the two distributions,

which implies in our setting that necessarily k = Ω(1/ϵ2).

Concentration of Singular Values with Arbitrary Covariance Matrices. Of independent tech-

nical interest, we give the first bounds on the singular values of GB for an n × n matrix B and a

(normalized) Gaussian matrix G with k rows when k ≪ n. When taken together, our upper and

lower bounds on singular values show for any 1 ≤ ℓ and k ≥ Ω(ℓ), that

σℓ(GB)2 = σℓ(B)2 ±O

(
1√
k

)
∥B∥2F . (4.2)

Although there is a large body of work on the singular values of GB, to the best of our knowl-

edge there are no quantitative bounds of the form above known. There is work upper bounding

∥GB∥2 for a fixed matrix B [Ver11], and classical work (see, e.g., [Ver10]) which bounds all the

singular values of G when B is the identity, but we are not aware of concrete bounds that prove

concentration around ∥GB∥2F of the form in (4.2) for general matrices B that we need.

Optimal Adaptive Matrix-Vector Query Lower Bound. A natural question is whether adaptiv-

ity can further reduce our sketching dimension. We show that at least in the matrix-vector product

model, where one receives a sequence of matrix-vector products Av1, Av2, . . . , Avr for query vec-

tors v1, v2, . . . , vr that may be chosen adaptively as a function of previous matrix-vector products,

that necessarily r = Ω(1/ϵ2).

Note that our non-adaptive sketch GAGT gives an algorithm in the matrix-vector product

model by computing AGT , and so r = k = O(1/ϵ2). This shows that adaptivity does not help for

eigenvalue estimation, at least in the matrix-vector product model.

Our hard instance is distinguishing a Wishart matrix of rank r from a Wishart matrix of rank
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r + 2 (the choice of r + 2 rather than r + 1 is simply for convenience). We first argue that for

our pair of distributions, adaptivity does not help. This uses rotational invariance properties of our

Wishart distribution, even conditioned on the query responses we have seen so far. In fact, our

argument shows that without loss of generality, the optimal tester is a non-adaptive tester which

just observes the leading principle submatrix of the input matrix A. We then explicitly bound the

variation distance between the distributions of a Wishart matrix of rank r and one of rank r + 2.

We also give an alternative, but related proof based on distinguishing a random r dimensional

subspace from a random r + 2 dimensional subspace, which may be of independent interest. As

an example, we note that this lower bound immediately recovers the Ω(1/ϵ) matrix-vector lower

bound for estimating the trace of a PSD matrix to within (1 ± ϵ) multiplicative error [Mey+21;

Jia+21], as well as the Ω(1/ϵp) lower bound given in [WZZ22] for approximating the trace of A to

additive ϵ ∥A∥p error (however the bound in [WZZ22] is more refined as it captures the dependence

on failure probability).

These results substantially broaden a previous lower bound for the rank-estimation problem

[Sun+21]. Whereas the hard instance in [Sun+21] requires some non-zero eigenvalues to be ex-

tremely small, we show that the rank estimation problem remains hard even when all nonzero

eigenvalues have comparable size (or in fact, even when they are all equal).

4.2.2 Additional Work on Sampling in the Bounded Entry Model

Recent work has considered the spectral estimation problem for entry queries to bounded-entry

matrices. The work of [Bha+21] gives an Õ(1/ϵ6) query algorithm for approximating all eigen-

values of a symmetric matrix to within ϵ ∥A∥F additive error, given a row-norm sampling oracle.

However it remains open whether this bound can be improved to Õ(1/ϵ4) even for principal sub-

matrix queries.

Our result shows that O(1/ϵ4) queries is at least attainable under the much less restrictive model

of vector-matrix-vector queries. In contrast to [Bha+21], our algorithm does not simply return the
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eigenvalues of our sketch. Indeed no such algorithm can exist as it would violate the one-sided

lower bound of [NSW22].

4.3 Sketching Algorithm and Proof Outline

Algorithm 3
Require: A ∈ Rd×d real symmetric, k ∈ N.

procedure SPECTRUM APPX(A,k)
Sample G ∈ Rk×k with i.i.d. N (0, 1/k) entries.
S ← GAGT

For i = 1, . . . , k, let αi = λi(S)− 1
k
Tr(S)

For i = k + 1, . . . , d, let αi = 0
return α1, . . . , αd sorted in decreasing order

end procedure

Theorem 4.1. Let A ∈ Rd×d be symmetric (not necessarily PSD) with eigenvalues λ1 ≥ . . . ≥ λd.

For k ≥ Ω(1/ϵ2), Algorithm 3 produces a sequence (µ1, . . . , µd) such that |µi − λi| < ϵ ∥A∥F for

all i with probability at least 3/5.

4.3.1 Proof Outline

A natural idea is to split the spectrum of A into two pieces, A1 and A2, where A1 consists of

the large eigenvalues of A which are at least ϵ ∥A∥F in magnitude, and where A2 contains the

remaining spectral tail. The eigenvalues of GA2G
T will all concentrate around Tr(A) up to O(ϵ)

additive error.

We are then left with showing that the eigenvalues of GA1G
T are O(ϵ) additive approximations

to the nonzero eigenvalues of A1. In order to do this we prove upper and lower bounds on the

eigenvalues of GA1G
T . For the upper bound (or lower bound if λℓ(A1) is negative) we give a

general upper bound on the operator norm of GMGT for a PSD matrix M with ∥M∥F ≤ 1. By

applying this result to various deflations of A1 we are able to give an upper bound on all eigenvalues

of A1 simultaneously.
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For the lower bound, we first prove the analogous result in the PSD case where it is much

simpler. We then upgrade to the general result. To get a lower bound on λℓ(GDGT ) in the general

case, we construct an ℓ dimensional subspace Sℓ so that uTGDGTu is large for all unit vectors u in

Sℓ. A natural choice would be to take Sℓ to be the image of GD+,ℓG
T , where D+,ℓ refers to D with

all but the top ℓ positive eigenvalues zeroed out. We would then like to argue that the quadratic

form associated to GD−G
T is small in magnitude uniformly over Sℓ. Unfortunately it need not

be as small as we require, due to the possible presence of large negative eigenvalues in D−. We

therefore restrict our choice of Sℓ to lie in the orthogonal complement of the largest r negative

eigenvectors of GD−G
T . Since we restrict the choice of Sℓ we incur a cost, which damages our

lower bound on λℓ(GD+G
T ) slightly. However by choosing r carefully, we achieve a lower bound

on λℓ(GDGT ) of λℓ(D)−O(ϵ).

4.4 Proof of Theorem 4.1

In this section and the next, we provide upper and lower bounds on the eigenvalues of a sketched

d× d matrix. We emphasize the results below will later be applied only to the matrix A1 which is

rank O(1/ϵ2). Hence we will use the results below for d = O(1/ϵ2).

4.4.1 Upper bounds on the sketched eigenvalues

The following result is a consequence of Theorem 1 in [CNW15] along with the remark following

it.

Theorem 4.2. Let G ∈ Rm×n have i.i.d. N (0, 1/m) entries, and let A and B be arbitrary matrices

with compatible dimensions. With probability at least 1− δ,

∥∥ATGTGB − ATB
∥∥ ≤ ϵ

√
∥A∥2 + ∥A∥

2
F

k

√
∥B∥2 + ∥B∥

2
F

k
,

for m = O( 1
ϵ2
(k + log 1

δ
)).
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Lemma 4.3. Let D ∈ Rd×d have eigenvalues λ1 ≥ . . . ≥ λd ≥ 0 where ∥D∥F ≤ 1. Let G ∈ Rt×d

have N (0, 1/t) entries. The bound

∥∥GD1/2
∥∥2 ≤ λ1 +O

(
1√
m

)

holds with probability at least 1− 1
20
2−min(m,1/λ21), provided that t ≥ Ω(m+ d).

Proof. We first decompose D into two parts D = D1 +D2 where D1 contains the eigenvalues of

D larger than λ1/2 and D2 contains the eigenvalues which are at most λ1/2. Let x be an arbitrary

unit vector and partition its support according to D1 and D2 so that x = x1 + x2. This allows us to

write

xTD1/2GTGD1/2x = xT1D
1/2
1 GTGD

1/2
1 x1 + xT2D

1/2
2 GTGD

1/2
2 x2

+ 2xT1D
1/2
1 GTGD

1/2
2 x2

≤ ∥x1∥2
∥∥∥D1/2

1 GTGD
1/2
1

∥∥∥+
∥x2∥2

∥∥∥D1/2
2 GTGD

1/2
2

∥∥∥
+ 2 ∥x1∥ ∥x2∥

∥∥∥D1/2
1 GTGD

1/2
2

∥∥∥ .
We bound each of these operator norms in turn by using Theorem 4.2 above.

Note that D1 has support of size at most 4/λ2
1 since ∥D1∥2F ≤ 1, and so Tr(D1) ≤ 4

λ1
. Taking
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k = 1
λ21

, ϵ = 1√
mλ1

, and δ = 1
60
2−1/λ21 in Theorem 4.2 and applying the triangle inequality, we get

∥∥∥D1/2
1 GTGD

1/2
1

∥∥∥ ≤ λ1 + ϵ

∥∥∥D1/2
1

∥∥∥2 +
∥∥∥D1/2

1

∥∥∥2
F

k


≤ λ1 + ϵ

(
λ1 +

Tr(D1)

k

)
≤ λ1 + ϵ

(
λ1 +

4

λ1k

)
≤ λ1 +

5√
m

Similarly for the second term, we note that Tr(D2) ≤ λ1
2
n, and apply Theorem 4.2 with k = d,

ϵ = 1/4, and δ = 1
60
2−m to get

∥∥∥D1/2
2 GTGD

1/2
2

∥∥∥ ≤ λ1

2
+ ϵ

(
λ1

2
+

Tr(D2)

k

)
≤ λ1

2
+

1

4

(
λ1

2
+

Tr(D2)

d

)
≤ λ1

2
+

1

4

(
λ1

2
+

λ1

2

)
=

3

4
λ1.

For the third term we choose k =
√
d/λ1, ϵ = 1/(

√
λ1m

1/4), and δ = 1
60
2−

√
m/λ1 which gives

∥∥∥D1/2
1 GTGD

1/2
2

∥∥∥ ≤ ϵ

√
λ1 +

Tr(D1)

k

√
λ1

2
+

Tr(D2)

k

≤ ϵ

√
λ1 +

√
d

k

√
λ1

2
+

√
d

k

≤ ϵ

(
λ1 +

√
d

k

)

≤ 2

√
λ1

m1/4
.

Note that each application of Theorem 4.2 above allows G to have have Θ(m) rows provided
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that m ≥ d. Also note that each failure probability above is bounded by 1
60
2−min(m,1/λ21), since

√
m
λ1
≥ min(m, 1

λ21
).

Thus we conclude with probability at least 1− 1
20
2−min(m,1/λ21), that

xTD1/2GTGD1/2x ≤
(
λ1 +

5√
m

)
∥x1∥2 +

3

4
λ1 ∥x2∥2 + 4

√
λ1

m1/4
∥x1∥ ∥x2∥ .

We view the right-hand expression as a quadratic form applied to the unit vector (∥x1∥ , ∥x2∥). So

its value is bounded by the largest eigenvalue of the 2× 2 matrix

M =

λ1 +
5√
m

2
√
λ1

m1/4

2
√
λ1

m1/4
3
4
λ1

 .

Suppose that λ1 + β with β ≥ 0 is an eigenvalue of M. Then plugging into the characteristic

polynomial gives
4λ1√
m

=

(
β − 5√

m

)(
β +

λ1

4

)
≥ λ1

4

(
β − 5√

m

)
,

from which it follows that β ≤ O
(

1√
m

)
as desired.

Lemma 4.4. Let D ∈ Rd×d (not necessarily PSD) have ∥D∥F ≤ 1, and suppose λℓ(D) ≥ 0. Let

G ∈ Rk×d have i.i.d. N (0, 1/k) entries. Then with probability at least 1− 1
20
2−min(ℓ,ϵ−2),

λℓ(GDGT ) ≤ λℓ(D) +O (ϵ) ,

for k ≥ Ω(d+ 1
ϵ2
).

First we have the following, where D+ and D− denote the positive and negative semi-definite
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parts of D:

λℓ(GDGT ) = λℓ(GD+G
T −GD−G

T )

≤ λℓ(GD+G
T )

= λℓ(D
1/2
+ GTGD

1/2
+ ).

Let Sd−ℓ+1 be the span of a set of eigenvectors of D corresponding to λℓ(D), . . . , λd(D). Then by

Courant-Fischer2,

λℓ(GDGT ) ≤ max
v∈Sd−ℓ+1,∥v∥=1

vTD
1/2
+ GTGD

1/2
+ v

= max
v∈Sd−ℓ+1,∥v∥=1

∥∥∥GD
1/2
+ v

∥∥∥2
=
∥∥∥GD

1/2
+,−(ℓ−1)

∥∥∥2 ,
where D+,−(ℓ−1) is D+ with the top ℓ − 1 eigenvalues zeroed out. Now Lemma 4.3 applies, and

gives

λℓ(GDGT ) ≤ λℓ(D+) +O (ϵ) = λℓ(D) +O (ϵ) ,

with probability at least 1− 1
20
2−min(1/ϵ2,1/λℓ(D)2), for k ≥ Ω(d+ 1

ϵ2
). Finally, note that λℓ(D) ≤ 1√

ℓ
,

so

2−min(1/ϵ2,1/λℓ(D)2) ≤ 2−min(1/ϵ2,ℓ).

4.4.2 Lower bounds on the sketched eigenvalues

Lemma 4.5. Let M ∈ Rd×d be a PSD matrix with ∥M∥F ≤ 1. Let G ∈ Rm×d have i.i.d. N (0, 1
m
)

entries, where m ≥ Ω(d + log(1/δ)). Also let Sℓ denote an arbitrary ℓ dimensional subspace of

2For example see [Ver18] for a statement of the Courant-Fischer minimax theorem.
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Rm. Then with probability at least 1− δ, we have

max
v∈Sℓ,∥v∥=1

vTGMGTv ≤ 3
ℓ

m
∥M∥ .

Proof. Let Π ∈ Rm×ℓ has columns forming an orthonormal basis of Sℓ. Then we can write

max
v∈Sℓ,∥v∥=1

vTGMGTv =
∥∥ΠTGMGTΠ

∥∥ .
Using rotational invariance of G we note that ΠTG is distributed as

√
ℓ
m
G̃ where G̃ ∈ Rℓ×d has

i.i.d. N (0, 1
ℓ
) entries. Then

∥∥ΠTGMGTΠ
∥∥ =

ℓ

m

∥∥∥G̃MG̃T
∥∥∥ =

ℓ

m

∥∥∥M1/2G̃T G̃M1/2
∥∥∥ ,

which by taking (ϵ, k) = (1, d) in Theorem 4.2 is bounded by

ℓ

m

(
∥M∥ +

(∥∥M1/2
∥∥2 + ∥∥M1/2

∥∥2
F

d

))
=

ℓ

m

(
∥M∥ +

(
∥M∥ + Tr(M)

d

))
≤ 3

ℓ

m
∥M∥ ,

with probability at least 1− δ. Note that we used the bound Tr(M) ≤ d ∥M∥ in the final step.

Lemma 4.6. Let M ∈ Rd×d be PSD with ∥M∥F ≤ 1, and let G ∈ Rk×d have i.i.d. N (0, 1
k
)

entries.

By choosing k = Θ(d+ 1
ϵ2
) the bound

λℓ(GMGT ) ≥ λℓ(M)− ϵ

holds with probability at least 1− 1
40
2−ℓ.

116



Proof. Recall that the non-zero eigenvalues of GMGT coincide with those of M1/2GTGM1/2, so

λℓ(GMGT ) = λℓ(M
1/2GTGM1/2).

By the Courant-Fischer theorem, there exists an ℓ dimensional subspace Sℓ of Rd such that
∥∥M1/2x

∥∥2 =
xTMx ≥ λℓ(M) for all x ∈ Sℓ.

Now suppose that G is an ( ϵ
λℓ
, ℓ, 1

40
2−ℓ)-OSE3, which can be achieved by taking

k = Θ

(
λ2
ℓ

ϵ2

(
ℓ+ log

10

2−ℓ

))
.

Since ∥M∥F ≤ 1, we have λ2
ℓ ≤ 1

ℓ
, so in fact k = O(1/ϵ2) above.

Then with probability at least 1− 1
10
2−ℓ, the bound

∥∥GM1/2x
∥∥2 ≥ (1− ϵ

λℓ(M)

)∥∥M1/2x
∥∥2

≥
(
1− ϵ

λℓ(M)

)
λℓ(M)

≥ λℓ(M)− ϵ

holds for all x ∈ Sℓ. By the Courant-Fischer theorem, this implies that λℓ(M1/2GTGM1/2) ≥

λℓ(M)− ϵ as desired.

Lemma 4.7. Suppose that D ∈ Rd×d is a (not necessarily PSD) matrix with ∥D∥F ≤ 1 and that

G ∈ Rk×d has i.i.d. N (0, 1/k) entries. If λℓ(D) ≥ 0, then with probability at least 1
20
2−ℓ,

λℓ(GDGT ) ≥ λℓ(D)− ϵ,

for k ≥ Ω(d+ 1
ϵ2
).

3An (ϵ, k, δ)-OSE refers to an oblivious embedding that has 1±ϵ distortion over any given k dimensional subspace
with probability at least 1− δ.
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Throughout the course of this argument we will need the parameters k and r to satisfy various

inequalities. To streamline the proof we will list these assumptions here and later verify that they

are satisfied with appropriate choices. The assumptions we will need are as follows:

1. k ≥ c1d, where c1 ≥ 1 is an absolute constant

2. k − r ≥ c2
ϵ2

where c2 is an absolute constant

3. r
k
√
ℓ
≤ ϵ

4. ℓ
k
√
r
≤ ϵ

To produce a lower bound on λℓ(GDGT ) we will find a subspace S such that vTGDGTv is

large for all unit vectors v in S.

First we write D = D+ − (D−,−r +D−,+r) where D+ is the positive semi-definite part of D,

D− is the negative semi-definite part of D, D−,+r denotes D− with all but the top r eigenvalues

zeroed out, and D−,−r = D− − D−,+r (recall that r is the parameter from above which is to be

chosen later). We also write

GDGT = GD+G
T −GD−,+rG

T −GD−,−rG
T

= G1D+G
T
1 −G2D−,+rG

T
2 −G3D−,−rG

T
3

where each component is PSD, and where G1, G2, G3 consist of the columns of G correspond-

ing to the nonzero entries of D+ and D−,+r and D−,−r respectively. In particular note that this

decomposition shows that these three random matrices are mutually independent.

Let Wr ⊆ Rk denote the image of D−,+r so that W⊥
r = ker(D−,+r). Let ΠW⊥

r
∈ Rk×(k−r) have

columns forming an orthonormal basis for W⊥
r . By rotational invariance of G, GTΠW⊥

r
has i.i.d.

N (0, 1/k) entries. Thus it follows that

ΠT
W⊥

r
GD+G

TΠW⊥
r
∼ k − r

k
G̃D+G̃

T ∼
(
1− r

k

)
G̃D+G̃

T ,
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where G̃ ∈ R(k−r)×d has i.i.d N (0, 1
k−r ) entries.

Now by Lemma 4.6, along with our second assumption above, we have

λℓ(G̃D+G̃
T ) ≥ λℓ(D+)− ϵ = λℓ(D)− ϵ,

with probability at least 1− 1
40
2−ℓ. Thus with the same probability, we then have

λℓ(Π
T
W⊥

r
GD+G

TΠW⊥
r
) ≥

(
1− r

k

)
(λℓ(D)− ϵ) ≥ λℓ(D)− 2ϵ,

where the last inequality follows from our third assumption above, along with the observation that

λℓ(D) ≤ 1√
ℓ

which comes from the assumption ∥D∥F ≤ 1.

If the above holds, then by the Courant-Fischer theorem, there exists a subspace Sℓ ⊆ W⊥
r ⊆

Rk such that

xTGD+G
Tx ≥ λℓ(D)− 2ϵ (4.3)

for all x ∈ Sℓ. Note that the construction of Sℓ was independent of GD−,−rG
T by the comment

above. Thus we may apply Lemma 4.5, along with our first assumption, to conclude that with

probability at least 1− 1
40
2−d,

max
v∈Sℓ,∥v∥=1

vTGD−,−rG
Tv ≤ 3

ℓ

k
∥D−,−r∥ ≤ 3

ℓ

k

1√
r
. (4.4)

The last inequality holds because ∥D−∥F = 1, which implies that λr(D−) ≤ 1√
r
.

Now let u ∈ Sℓ be an arbitrary unit vector. We write

uGDGTuT = uTGD+G
Tu− uTGD−,−rG

Tu− uTGD−,+rG
Tu.

The last term vanishes by design since x ∈ W⊥
r . We then bound the first term using equation 4.3
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and the second term using equation 4.4 to get

uGDGTuT ≥ (λℓ(D)− 2ϵ)− 3
ℓ

k

1√
r
≥ λℓ(D)− 5ϵ,

where the second inequality is form the fourth assumption above.

Our total failure probability in the argument above is at most 1
40
2−d+ 1

40
2−ℓ ≤ 1

20
2−ℓ as desired.

It remains to choose parameters so that our four assumptions are satisfied. For this we take

k ≥ max

(
c1d,

c2
ϵ2

+ ⌊2ℓ⌋, 2
√
ℓ

ϵ

)

r = ⌊2ℓ⌋.

Assumptions 1 and 2 clearly hold with this choice. For assumption 3, we have

ϵk
√
ℓ ≥ ϵ

2
√
ℓ

ϵ

√
ℓ = 2ℓ ≥ r,

and for assumption 4,

ϵk
√
r ≥ ϵ

2
√
ℓ

ϵ

√
2ℓ− 1 = 2

√
ℓ
√
2ℓ− 1 ≥ ℓ,

since ℓ ≥ 1. Finally, since ℓ ≤ d, this gives a bound of k = O(d+ 1
ϵ2
) as desired (note the inequality

√
d
ϵ
≤ max(d, 1/ϵ2) for bounding the last term in the max defining k).

4.4.3 Controlling the Tail

In this section we use Hanson-Wright4 to bound the effect of the tail eigenvalues of A on the sketch.

Note that our application Hanson-Wright relies on Gaussianity of G in order for the entries of GTu

to be independent.

4See [Ver18] for a precise statement of Hanson-Wright.
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Lemma 4.8. Let Y ∈ Rd×d be symmetric (not necessarily PSD) with ∥Y ∥ ≤ ϵ and ∥Y ∥F ≤ 1 .

Let G ∈ Rk×n have i.i.d. N (0, 1/k) entries. For k ≥ Ω(1/ϵ2) we have

∥∥∥∥GY GT − 1

k
Tr(Y )I

∥∥∥∥ ≤ O(ϵ),

with probability at least 29/30.

Proof. Let u ∈ Rk be an arbitrary fixed unit vector. Note that GTu is distributed as N (0, 1
k
Id) and

so

E(uTGY GTu) =
1

k
Tr(Y ).

Set Ỹ = GY GT − Tr(Y )
k

I. By Hanson-Wright,

Pr
(∣∣∣uT Ỹ u

∣∣∣ ≥ 30ϵ
)
= Pr

(∣∣∣∣uTGY GTu− 1

k
Tr(Y )

∣∣∣∣ ≥ 30ϵ

)
≤ 2 exp

(
−0.1min

(
(30ϵ)2k2

∥Y ∥2F
,
(30ϵ)k

∥Y ∥2

))

≤ 2 exp
(
−min

(
90ϵ2k2, 3k

))
.

Note that in the final bound above we used the fact that ∥Y ∥2 ≤ ϵ.

Let N be a net for the sphere in Rk with mesh size 1/3, which may be taken to have size 9k.

By 4.4.3 in [Ver18], ∥∥∥GỸ GT
∥∥∥
2
≤ 3 sup

x∈N
|xTGỸ GTx|.

By taking a union bound over the net and setting k ≥ Ω(1/ϵ2), we then have

Pr
(∥∥∥Ỹ ∥∥∥

2
≥ 93ϵ

)
≤ 2 exp

(
−min

(
90ϵ2k2, 3k

))
9k ≤ 1

30
,

for ϵ < 1.
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4.4.4 Proof of Theorem 4.1

Proof. By rescaling, it suffices to consider that case ∥A∥F = 1. We start by decomposing A into

two pieces A = A1 + A2, where A1 is A with all eigenvalues smaller than ϵ in magnitude zeroed

out.

To handle the large eigenvalues, we apply Lemma 4.4 and Lemma 4.7. Suppose that A1 has

n nonzero eigenvalues. Then we note that the nonzero eigenvalues of GA1G
T have the same

distribution as the eigenvalues of G̃Ã1G̃
T where Ã1 is a symmetric n× n matrix with eigenvalues

the same as the nonzero eigenvalues of A1 and where G̃ ∈ Rk×n has i.i.d. N (0, 1/k) entries. This

effectively means that we may treat A1 has having dimension n when applying Lemma 4.4 and

Lemma 4.7.

By taking a union bound over the positive eigenvalues of A1 and applying Lemma 4.4 we get

the upper bound λℓ(GA1G
T ) ≤ λℓ(A1) + O(ϵ) uniformly for all ℓ such that λℓ(A1) > 0, with

failure probability at most

n∑
i=1

1

20
2−min(ℓ,ϵ−2) ≤ 1

20

n∑
i=1

2−ℓ ≤ 1

20
,

where the the first inequality follows from the fact that ℓ ≤ n ≤ 1/ϵ2, which in turn holds since

∥A1∥F ≤ 1.

Similarly Lemma 4.7 gives the lower bound λℓ(GA1G
T ) ≤ λℓ(A1)− ϵ uniformly for all ℓ such

that λℓ(A1) > 0, with failure probability at most

ℓ∑
i=1

1

20
2−ℓ ≤ 1

20
.

Thus with at least 9/10 probability,
∣∣λℓ(GA1G

T )− λℓ(A1)
∣∣ ≤ O(ϵ) for all ℓ such that λℓ(A1) > 0.

By applying the above argument to −A1 we get the same guarantee for the negative eigenvalues,

i.e.
∣∣λk−ℓ(GA1G

T )− λk−ℓ(A1)
∣∣ ≤ O(ϵ) for all ℓ such that λk−ℓ(A1) < 0. By a union bound, the
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positive and negative guarantees hold together with failure probability at most 1/5.

Next we apply the tail bound of Lemma 4.8 to control the perturbations resulting from the tail.

By the triangle inequality,

∥∥∥∥GA2G
T − 1

k
Tr(GAGT )I

∥∥∥∥ ≤ ∥∥∥∥GA2G
T − 1

k
Tr(A2)I

∥∥∥∥
+

∥∥∥∥1k Tr(A2)I −
1

k
Tr(GAGT )I

∥∥∥∥
≤
∥∥∥∥GA2G

T − 1

k
Tr(A2)I

∥∥∥∥
+

1

k

∣∣Tr(A2)− Tr(GA2G
T )
∣∣

+
1

k

∣∣Tr(GA1G
T )
∣∣

The first of these terms is bounded by O(ϵ) with failure probability at most 1/30 by Lemma 4.8.

The second term is easily bounded by O(ϵ) with failure probability at most 1/30 since Tr(GA2G
T )

is a trace estimator for A2 with variance at O(∥A2∥F ) = O(1) (in fact the variance is even smaller).

For the third term, note that A1 has at most 1/ϵ2 nonzero eigenvalues, so Tr(A1) ≤ 1
ϵ
∥A∥F ≤

1
ϵ
.

Thus since Tr(GA1G
T ) is a trace estimator for A1, the third term is bounded by O(ϵ) with failure

probability at most 1/30. Thus we have the bound

∥∥∥∥GA2G
T − 1

k
Tr(GAGT )I

∥∥∥∥ ≤ O(ϵ),

123



with failure probability at most 1/10. This gives the bound

λℓ(GAGT ) = λℓ(GA1G
T +GA2G

T )

= λℓ

(
GA1G

T +
1

k
Tr(GAGT )I +GA2G

T − 1

k
Tr(GAGT )I

)
= λℓ

(
GA1G

T +
1

k
Tr(GAGT )I

)
±
∥∥∥∥GA2G

T − 1

k
Tr(GAGT )I

∥∥∥∥
2

= λℓ(GA1G
T ) +

1

k
Tr(GAGT )±O(ϵ).

Setting λ̂ℓ = λℓ(GAGT )− 1
k
Tr(GAGT ), we therefore have λ̂ℓ = λℓ(GA1G

T )±O(ϵ). Combining

with the bounds above gives λ̂ℓ = λℓ(A1) ± O(ϵ) if λℓ(A1) > 0 and λ̂k−ℓ = λk−ℓ(A1) ± O(ϵ) if

λk−ℓ(A1) > 0.

Thus there is a subset of n of the λ̂ℓ’s which provide an O(ϵ) additive approximation to the

set of eigenvalues of A which are at least ϵ. The above bound shows that the remaining λ̂ℓ’s are

bounded by O(ϵ) and the result follows.

4.5 Lower bounds for eigenvalue estimation

We will use the Wishart distribution throughout this section which is defined as follows.

Definition 4.9. The n dimensional Wishart distribution with r degrees of freedom W (n, r) is the

distribution of GGT where G ∈ Rn×r has i.i.d. standard normal entries.

In this section we show that Ω(r) matrix-vector queries are necessary to determine the rank of

a matrix with all nonzero entries Ω(1). Specifically we show that distinguishing between W (n, r)

and W (n, r + 2) requires Ω(r) queries for r ≤ O(n). In Appendix 4.6.1 we sketch a proof of a

similar lower bound for determining the rank of the orthogonal projection onto a random subspace.

For now we consider the following problem.
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Problem 4.10. Given a matrix A sampled from either D1 = W (n, r) or D2 = W (n, r + 2) each

with equal probability, decide between D1 and D2 with at least 2/3 probability, using (possibly

adaptive) matrix-vector queries to A.

We first make note of the following result, which is effectively a version of Lemma 13 from

[Bra+20], adapted to Wishart matrices W (n, r) with n and r not necessarily equal. This will allow

us to show that adaptivity is unhelpful, and hence reduce to studying the non-adaptive case.

Proposition 4.11. Let A ∼ W (n, r), and let k < r ≤ n. Then the conditional distribution

A|{Ae1 = x1, . . . , Aek = xk} can be written as

Mk + diag(0k×k,W (n− k, r − k)),

where Mk ∈ Rn×n has rank at most k and depends only on x1, . . . , xk. In particular Mk does not

depend on r.

Proof. Write A = GGT where G ∈ Rn×r has i.i.d. N (0, 1) entries. Write g1, g2, . . . for the

rows of G. We first consider the conditional distribution A|{Ae1 = x1}. In other words, we are

conditioning on the events ⟨g1, gi⟩ = x1i for all i. By rotational invariance, we may additionally

condition on g1 =
√
x11e1 without changing the resulting distribution. Then for i > 1, the condi-

tional distribution of gi can be written as x1i√
x11

e1 + hi where hi is distributed as N (0, In−1) in the

orthogonal complement of e1. It follows from this that we can write

A|{Ae1 = x1} ∼
1

x11

x1x
T
1 + diag(0,W (n− 1, r − 1)). (4.5)

So we have M1 =
1
x11

x1x
T
1 . Now we apply the above line inductively.
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For j < r, let Wj ∼ diag(0k×k,W (n− j, r − j)), and write

A|{Ae1 = x1, . . . Aej+1 = xj} ∼ (A|{Ae1 = x1, . . . Aej = xj}) |{Aej+1 = xj+1}

∼ (Mj +Wj)|{(Mj +Wj)ej+1 = xj+1}

∼ (Mj +Wj)|{Wjej+1 = xj+1 −Mjej+1}

∼ (Mj +Wj)|{Wjej+1 = vj+1}

∼Mj + (Wj|{Wjej+1 = vj+1})

where we set vj+1 = xj+1 −Mjej+1.

By applying 4.5,

{Wjej+1 = vj+1} =
1

vj+1,j+1

vj+1v
T
j+1 +Wj+1.

Hence we can take

Mj+1 = Mj +
1

vj+1,j+1

vj+1v
T
j+1,

and the induction is complete.

Proposition 4.12. Of all (possibly adaptive) algorithms for Problem 4.10 which make k ≤ r

queries, there is an optimal such algorithm (in the sense of minimizing the failure probability),

which queries on the standard basis vectors e1, . . . , ek.

Proof. Let s be either r or r + 2 corresponding to which of D1 and D2 is sampled from. By

rescaling, we assume that only unit vectors are queried.

We argue by induction. Since D1 and D2 are rotationally invariant, we may without loss of

generality take the first query to be e1.

Now suppose inductively that there is an optimal k query algorithmA whose first j queries are

always e1, . . . , ej. Suppose on a fixed run, that Ae1 = x1, . . . , Aej = xj. By Proposition 4.11, we
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may write the resulting conditional distribution as

A|{Ae1 = x1, . . . Aej = xj} = Mj + Aj,

where Mj depends deterministically on x1, . . . , xj (and not on s), and Aj ∼ diag(0j×j,W (n −

j, s− j)).

Now since Mj is know to A, we may assume that on iteration j + 1, A is given matrix-vector

query access to Aj, rather than to A. Since the first j rows and columns of Aj are filled with zeros,

we may assume thatA queries on a vector in span{ej+1, . . . , en}. Then by rotational invariance of

W (n − j, s − j), we may take A to query on ej on iteration j + 1. This completes the induction,

and the claim follows.

In light of the previous result, only non-adaptive queries are necessary. In fact we can make an

even stronger claim. Let Ek denote the matrix with columns e1, . . . , ek. The previous proposition

showed that an optimal tester only needs to observe AEk, the first k columns of A. In fact, only

ET
k AEk, the leading principal submatrix of A is relevant. We first state a simple fact that drives

the argument.

Proposition 4.13. Let X ∈ k × r1 and Y ∈ k × r2 be fixed matrices such that XXT = Y Y T .

Let v1 ∈ Rr1 and v2 ∈ Rr2 have i.i.d. standard normal entries. Then Xv1 and Y v2 have the same

distribution.

Proof. Suppose without loss of generality that r2 ≥ r1. Then since XXT = Y Y T , there is an

orthogonal matrix U ∈ Rr2×r2 such that

Y U = [X, 0k×(r1−r2)].

Now let g ∈ Rr2 have i.i.d. standard normal entries. By rotational invariance Ug ∈ Rr2 does as

well. So Y U has the same distribution as Y v2. Also [X, 0k×(r1−r2)]g is distributed as Xv1, so Xv1

and Y v2 have the same distribution as desired.
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Proposition 4.14. Suppose that A1 ∼ W (n, r) and A2 ∼ W (n, r + 2). Then for k ≤ r,

TV(A1Ek, A2Ek) = TV(ET
k A1Ek, E

T
k A2Ek).

Proof. Let G1 ∈ Rk×r and H1 ∈ R(n−k)×r have i.i.d. standard normal entries. Similarly let

G2 ∈ Rk×(r+2) and H2 ∈ R(n−k)×(r+2) have i.i.d. standard normal entries.

By the definition of the Wishart distribution, the joint distribution of the entries of A1Ek is

precisely that of (G1G
T
1 , H1G

T
1 ) and similarly for A2Ek. Hence,

TV(A1Ek, A2Ek) = TV
(
(G1G

T
1 , H1G

T
1 ), (G2G

T
2 , H2G

T
2 )
)
.

For a fixed matrix M of the appropriate dimensions, we consider the conditional distribution

HiG
T
i |{GiG

T
i = M} for i = 1, 2. The rows of this random matrix are independent (since the rows

of Hi are independent), and by Proposition 4.13 the distribution of each row is a function of M .

Hence it follows that

H1G
T
1 |{G1G

T
1 = M} = H2G

T
2 |{G2G

T
2 = M}

for all M . Therefore,

TV
(
(G1G

T
1 , H1G

T
1 ), (G2G

T
2 , H2G

T
2 )
)
= TV(G1G

T
1 , G2G

T
2 ).

Since ET
k AiEk has the same distribution as GiG

T
i , the claim follows.

Our problem is now reduced to that of determining the degrees of freedom of a Wishart from

observing the top corner (which is itself Wishart). We will give a lower bound for this problem.

Our proof uses the following version of Theorem 5.1 in [Jon82].

Theorem 4.15. Let α ∈ (0, 1) be a constant, and let n, r → ∞ simultaneously, with n/r → α.
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Then
det(W (n, r))

(r − 1)(r − 2) . . . (r − n)
→ eN (0,−2 log(1−α)),

where the convergence is in distribution.

Lemma 4.16. Let α = 0.1. There exists a constant c so that if r ≥ c, then

TV (W (⌊αr⌋, r),W (⌊αr⌋, r + 2)) ≤ 0.2.

Proof. We write n = ⌊αr⌋with the understanding that n is a function of r. Let µn,r be the measure

on Rn(n+1)/2 associated to W (n, r), and let fn,r be the corresponding density function (with respect

to the Lebesgue measure). Also let ∆+ ⊆ Rn(n+1)/2 be the PSD cone. Then we have

TV(W (n, r),W (n, r + 2)) =

∫
∆+

(fn,r(A)− fn,r+2(A))+ dλ

=

∫
∆+

(
1− fn,r+2(A)

fn,r(A)

)
+

dµn,r

We recall the following standard formula for the density of the Wishart distribution (see [And62]

for example):

fn,r(A) =
(detA)

1
2
(r−n−1)e−

1
2
Tr(A)

√
2
rn
π

1
4
n(n−1)

n∏
i=1

Γ

(
1

2
(r + 1− i)

) .

Cancelling and applying the identity Γ(x+ 1) = xΓ(x) gives
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fn,r+2(A)

fn,r(A)
=

detA

2n

n∏
i=1

Γ
(
1
2
(r + 1− i)

)
Γ
(
1 + 1

2
(r + 1− i)

)
=

detA

2n

n∏
i=1

1
1
2
(r + 1− i)

=
detA

r(r − 1) . . . (r − n+ 1)
.

This gives

TV(W (n, r),W (n, r + 2)) =∫
∆+

(
1− detA

r(r − 1) . . . (r − n+ 1)

)
+

dµn,r(A)

= EA∼W (n,r)

(
1− detA

r(r − 1) . . . (r − n+ 1)

)
+

.

Therefore it suffices to bound this expectation.

Since r−n
r
→ (1− α) as r →∞ we have from Theorem 4.15 that

detW (n, r)

r(r − 1) . . . (r − n+ 1)
→ (1− α)eN (0,−2 log(1−α)).

Therefore

TV(W (n, r),W (n, r + 2))→ Ex∼N (0,−2 log(1−α)) [1− (1− α)ex]+ ,

where swapping the limit with the expectation was justified since the random variables in the limit

were all bounded by 1. This last expectation may be computed numerically to be approximately

0.1815 and the claim follows.

Theorem 4.17. Suppose that r ≥ C1 and d ≥ C2r for absolute constants C1 and C2. Let A be an
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adaptive algorithm making k matrix-vector queries, which correctly decides between D1 and D2

with 2/3 probability. Then k ≥ r/10.

Proof. Consider a protocol which makes k matrix-vector queries. By Proposition 4.12 and Propo-

sition 4.14 it suffices to consider non-adaptive protocols which observe ET
k ΠEk. Suppose that A

is either drawn from D1 or D2 and hence distributed as W (k, r) or W (k, r+ 2). Lemma 4.16 now

implies that distinguishing these distributions requires k ≥ r/10 as desired.

Corollary 4.18. An algorithm which estimates all eigenvalues of any matrix A up to ϵ ∥A∥F error,

with 3/4 probability must make at least Ω(1/ϵ2) matrix-vector queries.

Proof. The nonzero eigenvalues of W (n, r) are precisely the squared singular values of an n × r

matrix with i.i.d. Gaussian entries. So by standard bounds (see [Ver18] for example), the nonzero

eigenvalues of W (n, r) and W (n, r + 2) are bounded between 1
2
n and 2n with high probability

as long as n ≥ Cr for an absolute constant C. Since W (n, r) has rank r, the Frobenius norm of

W (n, r) is bounded by 2n
√
r, and similarly for W (n, r+2). Thus setting α = 1

10
√
r+2

, we see that

an algorithm which estimates all eigenvalues of a matrix to α ∥A∥F additive error could distinguish

W (n, r) from W (n, r+2), and hence by Theorem 4.17 must make at least r/10 queries. The result

follows by setting r = Θ(1/ϵ2).

4.6 Appendix

4.6.1 Rank estimation lower bound from random projections

In this section, we show a lower bound on determining the rank of a random orthogonal projection

from matrix-vector queries. The key intuition is that running a power-method type algorithm is

unhelpful since projections are idempotent. This suggests that adaptivity should be unhelpful, and

indeed this is the case.

131



Throughout this section, we let D1 = D1(d, r) be an orthogonal projection Rd → Rd onto a

random r dimensional subspace (sampled from the rotationally invariant measure), and let D2 be

an orthogonal projection onto a random r + 2 dimensional subspace. Let D be the distribution

obtained by sampling from either D1 or D2 each with probability 1/2.

We first show that adaptivity is unhelpful in distinguishing D1 from D2. To prove this, we first

make a simple observation.

Observation 4.19. Suppose that P1 and P2 are any distributions over matrices, and let U be an

orthogonal matrix. Suppose that x1 is an optimal first query to distinguish P1 and P2. Then Ux1

is an optimal first query to distinguish UP1U
T and UP2U

T .

Lemma 4.20. Suppose that there is a (possibly randomized) adaptive algorithm A which makes k

matrix-vector queries to an orthogonal matrix Π ∼ D and then decides whether Π was drawn from

D1 or D2 with advantage β. Then there is a non-adaptive algorithm which queries on e1, . . . , ek

and also achieves advantage β.

Proof. By Yao’s principle, it suffices to consider deterministic protocols, so we will restrict our-

selves to deterministic protocols in what follow.

First, let us say that an adaptive protocol making queries v1, v2, . . . is normalized if for each

i, vi+1 is in the orthogonal complement of span(v1, v2, . . . , vi,Πv1, . . .Πvi), and vi ̸= 0. We will

argue that all normalized protocols making k queries achieve the same advantage.

We first observe that all choices of v1 are equivalent, which is a consequence of rotational

invariance along with the observation above.

Suppose that a normalized algorithm makes queries v1, . . . , vj and receives values y1, . . . , yj

in the first j rounds. We observe that the conditional distribution of Π under these observations is

invariant under the group of orthogonal transformations stabilizing x1, . . . , xj, y1, . . . , yj. Applying

the observation to this conditional distribution, again shows that all xj+1 are equivalent since the

stabilizer of x1, . . . , xj, y1, . . . , yj acts transitively on their orthogonal complement.
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Finally we observe that a non-adaptive algorithm which queries on e1, . . . , ek can almost surely

simulate a normalized protocol. Indeed let Pj denote projection onto span(e1, . . . , ej,Πe1, . . .Πej).

Then e1, P1e2, . . . , Pk−1ek is almost surely a normalized protocol. Moreover ΠPj−1ej may be com-

puted for each j, since the values of Πe1, . . .Πej,Π2e1,Π
2ej are all known (this uses that Π is a

projection and hence idempotent).

We are now able to turn our attention to non-adaptive algorithms. Let Ek ∈ Rd×k denote

the matrix [e1, . . . , ek]. As we saw above a general matrix-vector query algorithm might as well

observe ΠEk. As in our argument for Wishart matrices, our next observation is that only the top

k × k corner is useful.

Lemma 4.21. Suppose that Π1 ∼ D1 and Π2 ∼ D2. We have that

TV(Π1Ek,Π2Ek) = TV(ET
k Π1Ek, E

T
k Π2Ek).

Proof. Let ΠEk = [M1;M2] where M1 ∈ Rk×k and M2 ∈ R(d−k)×k. Observe that since Π is a

projection, MT
2 M2 = M1 −M1M

T
1 .

Let the orthogonal group SO(n) act on Π via conjugation. Let H be the stabilizer of M1 under

the action, i.e., the set of U such that UTΠUEk = [M1,M
′
2] for some M ′

2. We claim that the orbit

of M2 under H is {X : XTX = M1−M1M
T
1 }. To see this, simply observe that H is contained in

the stabilizer of e1, . . . , ek, which is isomorphic copy of SO(n − k) acting on span(e1, . . . , ek)
⊥.

This latter group acts transitively on {X : XTX = M1 −M1M
T
1 } under left multiplication as

desired.

This implies that the conditional distribution of M2 on observing M1 is uniform over {X :

XTX = M1 −M1M
T
1 }. Since the conditional distribution is independent of r, the result follows.

Next we leverage a known result showing that a small principal minor of a random rotation is
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indistinguishable from Gaussian. This allows to observe that ET
k ΠEk is nearly indistinguishable

from a Wishart distribution when d is large.

Lemma 4.22. Suppose that r ≥ C1 and d ≥ C2r
2 for some absolute constants C1, C2, and let

Π ∼ D1(d, r) with k ≤ r. Then

TV(ET
k ΠEk,W (k, r)) ≤ 0.1.

Proof. Note that Π can be written as (UEr)(UEr)
T where U is a random orthogonal matrix sam-

pled according to the Haar measure. Let G ∈ Rk×r be a matrix with i.i.d. N (0, 1
d
) entries. Then

we have

TV(ET
k ΠEk, G

TG) = TV(ET
k (UEr)(UEr)

TEk, G
TG)

= TV((ET
k UEr)(E

T
k UEr)

T , GTG)

≤ TV(ET
k UEr, G

T ),

where the last line follows from the data processing inequality.

Note that ET
k UEr is simply the top k × r corner of a random orthogonal matrix, and GT is a

k × r matrix with i.i.d. N (0, 1
d
) entries. The claim now follows from Theorem 1 of [Jia06].

Theorem 4.23. Suppose that r ≥ C1 and d ≥ C2r
2 for absolute constants C1 and C2. Let A be

an adaptive algorithm making k matrix-vector queries to a sample fromD which correctly decides

between D1 and D2 with 3/4 probability. Then k ≥ r/10.

Proof. Consider a protocol which makes k matrix-vector queries. By Lemma 4.20 and Lemma 4.21

it suffices to consider non-adaptive protocols which observe ET
k ΠEk. Suppose that Π1 and Π2 are

random projections drawn from D1 and D2 respectively. Then by Lemma 4.22, we have

TV(ET
k Π1Ek,W (k, r)) ≤ 0.1

134



and

TV(ET
k Π2Ek,W (k, r + 2)) ≤ 0.1.

By the triangle inequality,

TV(ET
k Π1Ek, E

T
k Π2Ek) ≤ 0.2 + TV(W (k, r),W (k, r + 2)),

which in turn is bounded by 0.4 by Lemma 4.16 for k < r/10. The result follows.

4.6.2 Faster sketching

In this section, we make several observations, which allow for our sketch to be applied more

efficiently.

Optimized runtime of dense sketches

We observe that known results for fast rectangular matrix multiplication allow for the sketch to be

applied in near linear time, provided that d is sufficiently large relative to ϵ.

[GU18] shows that multiplication of a d × dα matrix and a dα × d matrix, may be carried out

in O(d2+γ) time for any γ > 0, for α ≥ 0.32. Since this is known to require the same number

of operations as multiplying a dα × d and a d × d matrix (see [Le 12] for example), our dense

Gaussian sketch may be applied in time O(d2+γ) as long as the sketching dimension k is bounded

by O(d.32). Since we take k = O(1/γ2), our sketch may be applied in near-linear time as long as

k = 1/γ2 ≤ O(d.32) or equivalently when γ ≳ d−0.16.

Faster sketching for sparse PSD matrices

We observe that a variant of our sketch may be applied quickly to sparse matrices, at least when

the input matrix is PSD.

Suppose without loss of generality that ∥A∥F = 1. Our first step is to apply the ℓ2 heavy hitters
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sketch, SAT T of [AN13]. While they choose S and T to be Gaussian, it can be verified that their

analysis carries through as long as S and T are ϵ-distortion oblivious subspace embeddings on

k dimensional subspaces. We choose to take S and T to be the sparse embedding matrices of

[CNW15].

Since S and T are in particular O(1) distortion Johnson-Lindenstrauss maps,
∥∥SAT T

∥∥
F
≤

2 ∥A∥F with good probability. Now, by setting k = poly(1/ϵ) in theorem 1.2 of [AN13], we get

that the singular values of SAT T approximate the top 1/ϵ2 eigenvalues of A to within ϵ additive

error (the remaining eigenvalues of A are O(ϵ) and so may be estimated as 0).

Write M = SAT T . It now suffices to estimate the singular values of M to O(ϵ) additive error.

For this we first symmetrize M forming the matrix

Msym =

 0 M

MT 0

 . (4.6)

Note that the eigenvalues of Msym are precisely the singular values of M. To approximate the

eigenvalues of Msym we use our dense Gaussian sketch, yielding the optimal sketching dimension

of O(1/ϵ2). Since Msym has dimensions poly(1/ϵ), this last sketch may be carried out in poly(1/ϵ)

time.

Since S and T were chosen to be sparse embedding matrices, the full sketch runs in poly(1
ϵ
)nnz(A)

time. To summarize, our final sketching dimension is O(1/ϵ2) on each side, and we approximate

all eigenvalues to within ϵ ∥A∥F additive error.
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CHAPTER 5

Linear Regression in the Row-partition Model

In many modern applications a large amount of data is spread across numerous servers. Commu-

nicating between the servers may be expensive, and so we often seek protocols that minimize the

amount of communication required.

Here we consider linear regression in the so-called “row-partion model”. This means that there

is a d-dimensional linear system Ax = b whose rows are spread across s servers. We are primarily

interested in the overdetermined setting where the goal is to find the least squares solution x∗. In

fact, we will relax this requirement slightly and solve the approximate ℓ2 regression problem. In

other words, it suffices to find a x̃ that yields an ℓ2 error that is within a small constant factor of

the optimal such error. Several communication models are possible. We focus on the coordinator

model, where are communication channels are between a central coordinator and the s remaining

servers.

In this work, we ask “How much communication is required to solve the approximate regres-

sion problem in the coordinator model?” This was previously addressed in [VWW20] where an

upper bound of O(sd2) and a lower bound of Ω(sd + d2) was given. Surprisingly this gap has

remained open. We show that in fact O(sd + d2) communication is achievable. A similar gap

remained for ℓ1 regression, which we resolve as well.

We give two algorithms for the ℓ2 regression problem. One algorithm is based on a novel

sketch-based algorithm for approximating the so-called block leverage scores. Our other algorithm
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is based on the recursive leverage sampling procedure of [Coh+15].

5.1 Contributions

The block leverage score sampling algorithm was my contribution. The algorithm based on recur-

sive leverage sampling arose from a conversation with David Woodruff. I would particularly like

to thank Deanna Needell for helpful discussions during this work as well.

5.2 Introduction

We consider a situation where s servers each have a subset of rows for a d dimensional linear

system Ax = b. In typical situations this system is overdetermined and inconsistent, so we are in-

terested in solving for the least squares solution x∗ which minimizes ∥Ax− b∥22 . More specifically,

we are interested in finding an ϵ-approximation x̃ to the least squares solution, which satisfies

(1− ϵ) ∥Ax∗ − b∥22 ≤ ∥Ax̃− b∥22 ≤ (1 + ϵ) ∥Ax∗ − b∥22 .

This type of multiplicative guarantee is standard for sketch-based algorithms [Woo+14]. This

type of guarantee is convenient for both high and low precision settings. When the system is

consistent, we must recover x∗ exactly. Otherwise we settle for a solution which nearly minimizes

the mean squared loss, up to a small multiplicative error. In many practical situations where linear

regression is applied, this is quite reasonable. For instance if the underlying data is fairly noisy, then

it is unnecessary to get the optimal solution to extremely high accuracy (as might be the case for

an additive error guarantee). Our goal is to find an x̃ satisfying the goal above by communicating

as few bits as possible.

There are several common communication models in the literature. In the blackboard model
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Problem Total Communication
ℓ2 Regression ([VWW20]) O(sd2) (Theorem 6.1)
ℓ2 Regression (ours) Õ(sd+ d2) (Theorem 5.4 and Theorem 5.9)
ℓ1 Regression ([VWW20]) O(sd2) (Theorem 7.1)
ℓ1 Regression (ours) Õ(sd+ d2) (Theorem 5.8)

Table 5.1: Communication complexity results for linear regression, for constant ϵ

each server may broadcast a message to all of the other s servers. In the point-to-point model,

servers may send messages to only one other server at a time. This model is more restrictive, as

simulating a broadcast requires a server to send s messages. We focus on the coordinator model

of communication, where the s servers can communicate only with a single central server. This

model is essentially equivalent to the point-to-point model as any two servers can communicate by

relaying a message through the coordinator. Communication bounds between these two models

can therefore only differ by a factor of two.

This problem was initially considered in [VWW20] , where the authors gave tight bounds for

deterministic algorithms in both models, as well as for randomized algorithms in the blackboard

model. However for randomized algorithms in the coordinator model there remained a gap of

O(sd2) versus Ω(sd+ d2) which is substantial when the number of servers is large. We close this

gap and show that in fact Õ(sd+ d2) communication is achievable for constant ϵ.

5.2.1 Our results

Given a matrix A with rows partitioned among the servers, we show that the coordinator can learn

an ϵ distortion subspace embedding for the column span of A using Õ(sd+ d2) communication.

We give two protocols that work for ℓ2-regression. We also build on one of these protocols to

give an algorithm for the analagous ℓ1-regression problem where one wishes to find a x̃ satsifying

(1− ϵ) ∥Ax∗ − b∥1 ≤ ∥Ax̃− b∥1 ≤ (1 + ϵ) ∥Ax∗ − b∥1 ,

where x∗ minimizes ∥Ax− b∥1 .
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Rather than directly solve the ℓ2 and ℓ1 regression problems, our algorithms work by construct-

ing ℓ1 and ℓ2 subspace embeddings. We recall that for p ∈ {1, 2}, S is an ϵ-distortion ℓp subspace

embedding for a matrix A if ∥SAx∥p = (1 ± ϵ) ∥Ax∥p for all x. It is well-known (see [Woo+14]

for example) that an algorithm which computes an ℓp subspace embedding is sufficient to solve the

ℓp regression problem.

5.3 Our Techniques

The first of our algorithms uses the recursive leverage sampling algorithm given in [Coh+15]. Im-

plementing this algorithm roughly requires that one can sample rows of A from a relative leverage

score distribution with respect to a matrix M held by the coordinator. So the probability of sam-

pling row Ai should be proportional to AiM
−1(Ai)

T . We show how this can be achieved with an

ℓ2-sampling sketch. Unfortunately this is not quite sufficient as one actually needs to truncate the

relative leverage scores that are much larger than one. For this we use a heavy-hitters sketch to

first identify and remove outlying rows. We remark that it would be natural to consider having

the coordinator send a Johnson-Lindenstrauss( (JL) sketch of the form M−1/2(Ai)
T to the servers.

Unfortunately when A is poorly conditioned, the coordinator may need to send the sketch with

very high bit precision, resulting in high communication complexity.

Our second protocol is based on the notion of block leverage scores, which may be of indepen-

dent interest. The block leverage score is simply the sum of the leverage scores of the rows in a

block.

Our key technical result is that a simple sketch suffices to estimate the block leverage scores of

A = [A(1); . . . ;A(s)]. Our approach is to sketch each block down to roughly an O(k) × d matrix

using a Rademacher (or other) sketch S(i) for each block. The block leverage scores are then

estimated to be the block leverage scores of [S(1)A(1); . . . ;S(s)A(s)]. Unfortunately this does not

necessarily yield good estimates for all block leverage scores. Indeed the block leverage scores

of the sketched matrix are all bounded by k, so we may underestimate the scores of outlying
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blocks. However, by applying a novel characterization of the block leverage scores as a block

sensitivity, we show that we obtain good (over-)estimates for all block leverage scores smaller

than Ck. Additionally we can detect the blocks for which we do not obtain a good estimate; their

leverage score estimates are guaranteed to be larger than Ck.

This yields a simple iterative procedure for computing block leverage score estimates. In the

first round, the coordinator requests a roughly 1×d sketch from each block, yielding good estimates

for all blocks with leverage score at most 1. The coordinator now only needs to focus on the blocks

with leverage score at least 1, of which there are at most O(d) (since the block leverage scores

sum to at most d). The coordinator then requests roughly a 2× d sketch from each server, yielding

good estimates for blocks with leverage score at most 2, of which there are at most d/2. This

procedure is repeated, doubling the number of rows requested in each round. In round r the server

requests a sketch of size 2rd from each of approximately d/2r servers, so the procedure requires

O(d) communication per round. After O(log d) rounds, we find good estimates for all the blocks,

and hence use Õ(sd+ d2) communication.

Given estimates for the block leverage scores, a version of the standard leverage score sampling

algorithm suffices to construct a subspace embedding for the column span of A. We simply sample

blocks proportional to the estimated block leverage scores and receive a 1 × d sketch from that

block. By taking 1
ϵ2
d log d such samples we obtain our desired subspace embedding with distortion

ϵ. We note that the entire algorithm (estimating the block leverage scores and sampling) can be

implemented simultaneously by having each server send twice as many rows during the leverage

score estimation algorithm. The extra rows can then be used later during the sampling phase.

Hence the algorithm is nearly one-way in the sense that coordinator only needs to communicate

O(s+d) bits in total, and only for the purposes of notifying the servers that are active in that round.
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5.4 Recursive Leverage Score Sampling

In this section we give procedures which allow the coordinator to construct ℓ1 and ℓ2 subspace

embeddings for a matrix A = [A(1); . . . ;A(s)] distributed among s servers, where each block has at

most n rows. In particular this allows the coordinator to solve ℓ1 and ℓ2 regression problems with

ϵ error, i.e. the coordinator recovers an x̂ with ∥Ax̂− b∥p ≤ (1 + ϵ) ∥Ax∗ − b∥p where x∗ is the

optimal solution to the regression problem and p ∈ {1, 2}.

We apply the recursive leverage score sampling algorithm of [Coh+15], which iteratively com-

putes improved spectral approximations of A. In order to implement this algorithm we need a

procedure to carry out leverage score sampling with respect to an intermediate spectral approxi-

mation. We will give a subroutine to solve the following slightly more general problem. In our

application M will be taken to be the inverse of these spectral approximations to ATA.

Problem 5.1. Let M be a PSD matrix owned by the coordinator. Let

u
(j)
i = A

(j)
i MMT

(
A

(j)
i

)T
v
(j)
i = min(u

(j)
i , 1)

T =
∑
i,j

v
(j)
i .

Sample r rows of A from approximately the probability distribution gotten by normalizing the

v
(j)
i ’s. The probability of sampling row i0 from block j0 should be

(1± c)
vj0i0∑
v
(j)
i

+
1

poly(n)
.

In our protocol, we use the following sketch which comes directly from Theorem 2.7 of

[Mah+20].

Lemma 5.2. Given an Rn×d matrix A and P ∈ Rd×d, there is linear sketch S, and a recovery
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algorithm which when given SA outputs row index i for A with probability (1± 1
2
)
∥A(i)P∥2
∥AP∥2F

+ 1
poly(n) .

The sketch SA uses O(d log3 n log 1
δ
) space, and the guarantee above holds with probability

1− δ. The poly(n) term can have any desired exponent by adjusting constants.

Lemma 5.3. There is a protocol which solves Problem 5.1 with failure probability at most δ and

Õ(1
δ
Td+ sd+ rd) communication.

Note that we will later apply this result with T, r = O(d).

Proof. Our first step is to produce an estimate of

B(j) :=
∑
i

v
(j)
i

for all j. To do this, we first estimate

B̃(j) :=
∑
i

u
(j)
i = Tr

[
A

(j)
i MMT

(
A

(j)
i

)T]
=
∥∥A(j)M

∥∥2
F
.

This can accomplished by having each server send a JL sketch S(j)A(j) to the coordinator. By

choosing these sketches to have O( log s
δ
) rows, the coordinator obtains constant factor approxima-

tions to all B̃(j) with failure probability at most O(δ).

In order to handle truncation, we would next like to find all u(j)
i with a value greater than 1.

Call the corresponding rows “outlying”. To identify the outlying rows we use the ℓ2 sampling

sketch given in Lemma 5.2. Roughly, an ℓ2 sampling sketch will find an outlying row with good

probability, so the coupon collector problem will allow us to find all of them.

More precisely, to implement ℓ2 sampling across the blocks, the coordinator first uses the

values of B̃(j) to choose a server from which to sample. That server sends an ℓ2 sampling sketch,

allowing the coordinator to perform ℓ2 sampling from the rows of A(j)M , up to a constant factor

on the sampling probabilities, as well as an additive 1/poly(n) error where poly(n) can have as

large an exponent as desired.
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We would like to identify all outlying rows and (temporarily) remove them as we go. We

sample rows via the ℓ2 sampling method described above. Each such row is sent to the coordinator

who then checks by direct computation whether it is outlying. If it is, then the server temporarily

removes that row and sends a new JL sketch to the coordinator, so that the coordinator can update

its Frobenius norm estimate for that server.

Suppose that there are k outlying rows remaining. Then the total mass of the corresponding

u
(j)
i ’s is at least k, and the total mass of the non-outlying u

(j)
i ’s is at most T (from the statement

of Problem 5.1). Hence the probability of sampling an outlying row is at least k
T+k
≥ k

2T
since

k ≤ T. The the expected number of samples needed to encounter an outlying row is therefore at

most 2T
k
. There are at most T outlying rows to start, so the expected number of samples needed to

find all outlying rows is at most

2T

T
+

2T

T − 1
+ . . .+

2T

1
= 2T

(
1

1
+

1

2
+ . . .+

1

T

)
≤ O(T log T ).

Hence after O(1
δ
T log T ) rounds of sampling we identify all outlying rows with failure probability

at most δ.

Next, the coordinator then counts total number of outlying rows for each server, and adds this

to a constant factor approximation of the Frobenius norm of the remaining rows (which may again

be obtained via a JL sketch). This gives the coordinator constant factor approximations B̂(j) to

B(j).

To sample from the v
(j)
i distribution, the coordinator chooses a server with probability propor-

tional to B̂(j). Then the coordinator decides whether to sample an outlying row, with probability

proportional to the number of outlying rows in the block. If not, then the coordinator requests an

ℓ2 sampling sketch from server for all the non-outlying rows. The coordinator uses this sketch to

sample a row index and then requests the corresponding row from the server. This is repeated r

times and requires a total of O(rd log3 n log(d/δ)) space.
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Theorem 5.4. There is a protocol using Õ(sd+ 1
ϵ2
d2) communication that allows the coordinator

to produce an ϵ distortion ℓ2 subspace embedding for the column span of A, with failure probability

at most δ. As a consequence, the coordinator can solve linear regression with the same complexity.

Proof. We simply apply the Repeated Halving algorithm given in Section 7.1 of [Coh+15].

In a given recursive call to their algorithm, let u(j)
i and v

(j)
i be defined as in Problem 5.1 for

M = ((Ã′)T Ã)−1/2.

The algorithm in [Coh+15] samples from the distribution given by (1 + 1

u
(j)
i

)−1 up to scaling.

Note that our v
(j)
i distribution is equivalent up to constants, so it suffices to run the sampling

procedure given in our Lemma 5.3.

This yields a constant factor approximation for A on the coordinator side. Then by applying

our Lemma 5.3 to sample an additional O(d/ϵ2) rows, we obtain an ϵ distortion ℓ1 embedding for

the column space of A.

5.4.1 Extension to ℓ1 regression

Our algorithm is very similar to the algorithm we gave for ℓ2 regression, except that we use the

recursive Lewis weight sampling algorithm given in Lemma 6.2 of [CP15]. In order to implement

their algorithm we need to implement a sampling algorithm which solves the following problem,

analogous to the problem for the ℓ2 case above.

Problem 5.5. Let M be a PSD matrix owned by the coordinator. Let

u
(j)
i = A

(j)
i MMT

(
A

(j)
i

)T
v
(j)
i = min(u

(j)
i , 1)

T =
∑
i,j

√
v
(j)
i .

Sample r rows of A from approximately the probability distribution gotten by normalizing the
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√
v
(j)
i ’s. The probability of sampling row i0 from block j0 should be

(1± c)

√
vj0i0∑√
v
(j)
i

+
1

poly(n)
.

To do this we need an L1,2 sampling sketch, which is given in Lemma A.4 of [Mah+20].

Lemma 5.6. Given an Rn×d matrix X and P ∈ Rd×d, there is linear sketch S, and a recovery

algorithm which when given SX outputs row index i for X with probability (1± 1
2
)
∥XiP∥2

∥XP∥2F
+ 1

poly(n) .

The sketch uses O(d polylog(n)) space, and succeeds with high probability.

Lemma 5.7. There is a protocol which solves Problem 5.5 with failure probability at most δ and

communication Õ(1
δ
Td+ sd+ rd).

Proof. The algorithm is nearly identical to the ℓ2 case from Lemma 5.3, so we describe how to

modify the procedure.

Rather than using JL sketches to track the Frobenius norm of each block, we instead use

sketches for the L1,2 norm of each block. Such a sketch is given in [And+09], which uses O(d polylog(n))

space and succeeds with high probability.

Secondly, rather than an ℓ2 sampling sketch, we use the L1,2 sketch from Lemma 5.6.

Otherwise, the same argument from Lemma 5.3 applies.

Theorem 5.8. There is a protocol using Õ(sd+ 1
ϵ2
d2) communication that allows the coordinator

to produce an ϵ distortion ℓ1 subspace embedding for the column span of A, with failure probability

at most δ. As a consequence, the coordinator can solve linear regression with the same complexity.

Proof. We use the recursive Lewis weight sampling algorithm given in Lemma 6.2 of [CP15].

Notably, by their remark after its proof, we can remove the dp/2 sampling dependence for p = 1.

For their algorithm, it then suffices that we use sampling probabilities
√
v
(j)
i and take O(d log d)

samples in each recursive call. (Note that similar to the ℓ2 case, we still have
∑√

v
(j)
i ≤ O(d).)

Hence it suffices to apply the subroutine from our Lemma 5.7.
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This yields a constant factor approximation to the Lewis quadratic form on the coordinator

side. Then by applying our Lemma 5.7 to sample an additional O(d/ϵ2) rows, we obtain an ϵ

distortion ℓ1 embedding for the column space of A.

5.5 An algorithm based on block leverage scores

In this section we give an algorithm for constructing an ℓ2 subspace embedding. In contrast to our

other algorithm, this algorithm is much simpler to implement and is almost one-way. The coordi-

nator only needs to send O(log d) bits to the servers over the course of d rounds. We summarize

the result here which will be proven in the following sections.

Theorem 5.9. There is a protocol which for constant ϵ constructs an ℓ2 subspace embedding for A

which runs in log d rounds, and uses Õ(sd+d2) communication. Moreover the servers collectively

only receive a total of Õ(s) bits from the coordinator.

Block Leverage Scores

We give the following definition of the block leverage scores. We note that this definition has

appeared before. For example [Kyn+16] gives that definition that we present here.

Definition 5.10. Let A = [A(1); . . . ;A(s)]. We define the block leverage score of block A(i) to be

Li(A) = Tr
(
A(i)(ATA)−1(A(i))T

)
. (5.1)

For use throughout, we list a few basic properties of the block leverage scores.

Proposition 5.11. Let A = [A1; . . . ;As]. The following properties hold:

1. If A(i) ∈ Rk×d, and the rows of A(i) have leverage scores ℓi1, . . . , ℓik, (as rows of A) then

Li(A) =
∑k

j=1 ℓij.

2.
∑s

i=1 L(A(i)) = rk(A).

147



3. Suppose Ã = [A(1); . . . ;A(s);A(s+1)]. For all i ∈ [s], Li(A) ≥ Li(Ã).

Proof. For property 1,

Li(A) = Tr(A(i)(ATA)−1(A(i))T ) =
∑
j

A
(j)
i (ATA)−1

(
A

(j)
i

)T
=
∑
j

ℓij.

In light of property 1, properties 2 and 3 follow from the corresponding facts for classical leverage

scores.

We also give a characterization of the block leverage score as a block sensitivity.

Proposition 5.12. Given a full column rank matrix A consisting of blocks A(1), . . . , A(s), we have

Li(A) = sup
X

∥A(i)X∥2F
∥AX∥22

,

where supX is over all matrices with compatible dimensions to A.

Proof. Let UDV T be the singular value decomposition for A, and let Uj have a subset of the rows

of U so that UjDV T = A(j). We are interested in maximizing ∥(UjDV T )X||2F = ||Uj(DV TX)||2F

subject to ∥UDV TX∥2 = 1. Since U is orthonormal, the constraint becomes ∥DV TX∥2 = 1.

DV T has full rank so the optimization problem is equivalent to maximizing ∥UjY ||2F s.t. ∥Y ∥2 ≤

1. This is optimized for Y = I and the objective is the sum of squares of row norms for Uj which

is the sum of leverage scores of the rows of A(j).

Sketching Block Leverage Scores

We use our sensitivity characterization of the block leverage scores to show that sketching a block

does not cause its leverage score to drop too much.

Lemma 5.13. Let G(1) be a sketching matrix which is an O(1) distortion OSE for k dimensional
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subspaces with probability 1− δ. With probability 1− δ we have that

L1

(
[G(1)A(1), A(2), . . . , As]

)
≥ Cmin(k,L1(A)).

Proof. By Proposition 5.12 can choose an X with ∥A(1)X∥2F/||AX||22 = L1(A). Theorem 1 from

[Coh+15] implies that

∥G(1)A(1)X∥22 ≲ ||A(1)X||22 + (1/k)||A(1)X||2F ,

and so
∥G(1)A(1)X∥22
||AX||22

≲ 1 +
1

k

∥A(1)X∥2F
∥AX∥22

= 1 +
L1(A)

k
.

Then

∥G(1)AX∥2 ≲ ||G(1)A(1)X||2 + ||AX||2 ≲
(
1 +

1

k
L1(A)

)
||AX||2.

Hence
∥G(1)A(1)X∥2F
∥G(1)AX∥22

≳
∥A(1)X∥2F
∥G(1)AX∥22

≳ min(k,L1(A)),

by Johnson-Lindenstrauss, and the previous bound. Hence X witnesses a sensitivity of at least

Cmin(k,L1(A)) for the first block of G(1)A as desired.

Next we analyze the situation where all but one block is sketched. To streamline the argument

we first lead with a couple simple claims.

Proposition 5.14. Let X ∈ Rd×d be PSD, let U ∈ Rd×m, and suppose that Tr(UTXU) ≤

Tr(UTU). Then Tr(UTX−1U) ≥ Tr(UTU).

Proof. Since X and X−1 are simultaneously diagonalizable, the Loewner order inequality X +

X−1 ≥ 2I follows from the scalar inequality x + 1/x ≥ 2 for x ≥ 0. Thus UT (X + X−1)U ≥
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2UTU and so Tr(UT (X +X−1)U) ≥ 2Tr(UTU). Therefore

Tr(UTX−1U) ≥ 2Tr(UTU)− Tr(UTXU) ≥ 2Tr(UTU)− Tr(UTU) = Tr(UTU).

Proposition 5.15. Let X be a random d × d matrix which is a.s. PSD, and let A be fixed matrix

which is PSD and non-singular.

Suppose that for every U in Rd×m it holds that

P
(
Tr(UTXU) ≤ Tr(UTAU)

)
≥ 1− δ.

Then for every V in Rd×m it also holds that

P
(
Tr(V TX−1V ) ≥ Tr(V TA−1V )

)
≥ 1− δ.

Proof. Plugging A−1V into the hypothesis gives that for all V ,

P(Tr(V TA−1XA−1V ) ≤ Tr(V TA−1V )) ≥ 1− δ,

or equivalently

P
(
Tr((A−1/2V )TA−1/2XA−1/2(A−1/2V )) ≤ Tr((A−1/2V )T (A−1/2V ))

)
≥ 1− δ.

By Proposition 5.14, this gives that for all V ,

P
(
Tr((A−1/2V )TA1/2X−1A1/2(A−1/2V )) ≥ Tr((A−1/2V )T (A−1/2V ))

)
≥ 1− δ,

which simplifies to the desired conclusion.

Lemma 5.16. Let A = [A(1); . . . ;A(s)] be non-singular and let S(1), . . . S(s) be random sketching
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matrices of appropriate dimension so that the products S(i)A(i) are defined. Assume that each S(i)

satisfies the (1, δ, 2)-JL-moment property. Let V ∈ Rd×m. Then with probability at least 1− δ,

Tr

V T

(
s∑
i=1

A(i)TS(i)TS(i)A(i)

)−1

V

 ≥ 1

2
Tr
(
V T (ATA)−1V

)
.

Proof. We apply Proposition 5.15. Let U ∈ Rd×m be an arbitrary fixed matrix. Then we have

Tr

(
UT

(
s∑
i=1

A(i)TS(i)TS(i)A(i)

)
U

)
=

s∑
i=1

∥∥S(i)A(i)U
∥∥2
F
.

The block matrix S(1) ⊕ · · · ⊕ S(s) also has the (1, δ, 2)-JL-moment property (see for example

Lemma 13 of [Ahl+20]). So with probability at least 1− δ,

s∑
i=1

∥∥S(i)A(i)U
∥∥2
F
≤ 2 ∥AU∥2F = 2Tr(UTATAU).

The claim now follows by Proposition 5.15.

Lemma 5.17. Let A = [A(1); . . . , A(s)], let S(1), . . . , S(s) be sketching matrices satisfying the

(1, δ, 2)-JL-moment property, and let Ã = [S(1)A(1); . . . ;S(s)A(s)], where Sk = I for a fixed k.

Then with probability at least 1− δ, Lk(Ã) ≥ 1
2
Lk(A).

Proof. By Lemma 5.16 we have

Lk(Ã) = Tr

A(k)

(
s∑
i=1

A(i)TS(i)TS(i)TA(i)

)−1

A(k)

 ≥ 1

2
Tr

A(k)

(
s∑
i=1

A(i)TA(i)

)−1

A(k)

 =
1

2
Lk(A).

Combining the two block sketching results gives the following.

Lemma 5.18. Let S(1), . . . , S(s), each with d columns, all be (normalized) Rademacher with
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O(k log(s/δ)) rows. Then for each i,

Li([S(1)A(1); . . . ;S(s)A(s)]) ≥ Cmin
(
k,Li([A(1); . . . ;A(s)])

)
,

with probability at least 1− δ.

Remark 5.19. The sketches in the above result were only taken to be Rademacher for convenience.

The same argument applies to sparse sketches for example.

5.5.1 Block Leverage Score estimation

The sketch from the previous section shows that we can accurately (over-)estimate a given block

leverage score by sketching down to dimension roughly k. Unfortunately the block leverage scores

can be as large as d and we are unable to take a sketch of d rows from all servers. Fortunately, not

many servers can have large block leverage score, so by iteratively pruning off the ones that don’t,

we can focus on the servers with the most information.

Theorem 5.20. Algorithm 4 runs with O(log d) rounds of communication, and returns a list L

satisfying

(i) L[i] ≥ CLi([A(1); . . . ;A(s)]) for all i

(ii)
∑s

i=1 L[i] ≤ O(d log d)

Moreover the servers collectively send at most O(cs + cd log d) vectors of length d to the coordi-

nator.

Proof. We start by bounding the number of servers which are active in a given round. In round 0,

|S0| = s. For r ≥ 1, note that for every server i in Sr, L̂r−1,i ≥ Ckr−1. On the other hand there

cannot be many such servers, since by Proposition 5.11,

∑
i∈Sr

L̂r−1,i ≤ d,
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Algorithm 4
procedure BLOCK LEVERAGE APPX(A,k)

Let L = [⊥, . . . ,⊥] of length s
Let S0 = {1, . . . , s}
for round r = 0, 1, . . . , ⌈log d⌉ do

Let kr = 2r

for i in Sr do
Server i draws Sr,i a constant distortion kr-dimensional oblivious subspace embed-

ding, and sends Sr,iA(i) to the coordinator
end for
Coordinate forms block matrix A(r) with blocks given by Sr,iA

(i) for i in Sr, and where
the blocks are indexed by Sr

For all i ∈ Sr, coordinator computes L̂r,i = Li(A(r))

Sr+1 = {i ∈ Sr : L̂r,i ≥ Ckr}
for i in Sr \ Sr+1 do

L[i] = L̂r,i
end for

end for
For all i, if L[i] =⊥, then set L[i] = d
return L

end procedure

which implies that |Sr| ≤ d
Ckr−1

.

This immediately gives a bound on the communication cost. Summing the number of vectors

transmitted in each round gives a total of

⌈log d⌉∑
i=0

ckr|Sr| ≤ c

sk0 +

⌈log d⌉∑
i=1

kr
d

Ckr−1

 = c

(
s+

2d

C
⌈log d⌉

)

vectors sent to the coordinator.

Next we show that (i) holds. By the algorithm, note that either L[i] = d or on round r we set

L[i] = L̂r,i. In the first case (i) is trivial since all block leverage scores are at most d. In the latter

case, L̂r,i ≤ Ckr. But L̂r,i ≥ Cmin
(
kr,Li(A⟨r⟩)

)
which is at least Li(A) by monotonicity. So we

have kr ≥ Li(A), which implies that

L̂r,i ≥ Cmin(kr,Li(A)) = CLi(A).
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Finally we show (ii). Since we have

∑
i∈Sr

L̂r,i =
∑
i∈Sr

Li(A⟨r⟩) ≤ d,

it follows that the entries of L which are set in round r sum to at most d. Hence the sum of the

entries of L set in the outer for-loop is at most (⌈log d⌉ + 1)d. By the argument given above for

the communication cost, there are at most d
Ckr
≤ 1

C
entries of L which are not set after the loop.

These entries are set to d, which gives

s∑
i=1

L[i] ≤ (⌈log d⌉+ 1)d+
d

C
≤ O(d log d).

5.5.2 Block Leverage Sampling

Given the overestimates computed for the block leverage scores in the previous section, a straight-

forward concentration bound allows to get a spectral approximation via block leverage sampling.

By combining with the algorithm for estimating the block leverage scores, this immediately yields

an algorithm with O(sd + 1
ϵ2
d2) communication in the coordinator model, for computing an ϵ

distortion subspace embedding for the columns of A.

Algorithm 5
procedure BLOCK LEVERAGE SAMPLING(p,N )

Coordinator set Â = 0 ∈ RN×d

for i = 1, . . . , N do
Sample server j from the distribution p
Server j generates a Rademacher random vector g ∈ Rmj and sends gTA(j) to coordina-

tor
Coordinator sets row Âi =

1√
pjN

gTA(j)

end for
return Â

end procedure

As is standard for analyses of leverage score sampling, we rely the Matrix Chernoff bound (see
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[Woo+14] for example). We state a version here which follows from [Tro12]. The version we use

is slightly less general, but more convenient for our purposes.

Theorem 5.21. Let X1, . . . , Xd ∈ Rd×d be random matrices which are independent and symmetric

PSD, with µminI ≤ EXi ≤ µmaxI, and ∥Xi∥ ≤ R a.s. Let X = 1
N

∑N
i=1Xi. Then for all δ ∈ [0, 1),

P
(
λmax(X) ≥ (1 + δ)µmax

)
≤ d exp(−δ2Nµmax

3R
).

P
(
λmax(X) ≤ (1− δ)µmin

)
≤ d exp(−δ2Nµmin

2R
).

The quantities that we apply the matrix Chernoff bound to will have operator norm given by

a Hutchinson trace estimator [Hut89]. This standard application of Matrix Chernoff is the core

argument. The additional work simply fixes a technical issue.

Hutchinson’s estimator may very occasionally be much larger than expected, which would

require R in Theorem 5.21 to be undesirably large. Fortunately Hutchinson’s estimator has expo-

nential tail decay, and so these potential large values may be safely ignored with high probability.

To make this precise, we will use the following technical fact, which is effectively a restatement of

results in [DM21].

Proposition 5.22. Let A ∈ Rd×d be symmetric PSD, and let g ∈ Rd be a Rademacher random

vector. Let µ = E(gTAg) = Tr(A). Then

P(gTAg ≥ t) ≤ c1e
−c2t/µ,

for all t ≥ c3µ. The ci’s are positive absolute constants.

Proof. We set ℓ = 1 in Claim A.3 of [DM21]. By bounding ∥A∥2 and ∥A∥F each by Tr(A) = µ,

we may take ν = c4µ and β = c5µ in A.3. By properties of subexponential random variables

given in [Wai15], it then follows that P(gTAg ≥ µ+ t) ≤ 2e−c6t/µ for t ≥ ν2/β = c7µ, which by
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adjusting constants rearranges to claim above.

Theorem 5.23. Suppose that the input to Algorithm 5 satisfies pi ≥ β Li(A)
d

for some β ∈ (0, 1],

and with N ≥ Ω
(

d
βϵ2

log
(
d
βϵ

)
log d

)
, where ϵ < 1. Then the output Â of Algorithm 5 satisfies

(1− ϵ)ATA ≤ ÂT Â ≤ (1 + ϵ)ATA.

Proof. Let Xk be distributed as 1
pj
AT
j gg

TAj where the index j is drawn from p, and g is inde-

pendently drawn as a Rademacher random vector. Then ÂT Â is distributed as 1
N

∑N
k=1 Xk, so we

show concentration for this average.

As is standard in such arguments, we show that the following equivalent statement holds with

the desired probability:

(1− ϵ)I ≤ (ATA)−1/2X(ATA)−1/2 ≤ (1 + ϵ)I.

First note that

E(Xk) =
s∑
i=1

piEg(
1

pi
(A(i))TgTgA(i)) =

s∑
i=1

(A(i))TEg(gTg)A(i) =
s∑
i=1

(A(i))TA(i) = ATA,

since E(gTg) = I. Let Yk = (ATA)−1/2Xk(A
TA)−1/2, and note that by the above, E(Yk) = I.

Next we have

∥Yk∥ =
∥∥∥∥(ATA)−1/2

(
1

pi
(A(i))TggTA(i)

)
(ATA)−1/2

∥∥∥∥ = gT
(
1

pi
A(i)(ATA)−1(A(i))T

)
g.

For fixed i, this latter expression is the classic Hutchinson’s trace estimator for the matrix

1
pi
A(i)(ATA)−1(A(i))T , which has mean

Tr

(
1

pi
A(i)(ATA)−1(A(i))T

)
=

1

pi
Li(A) ≤

d

β
.
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So by Proposition 5.22,

P(∥Yk∥ ≥ t) ≤ c1e
−c2t/µ, (5.2)

for t ≥ c3µ, where we set µ = d/β.

At this point we would like to apply Matrix Chernoff to the Yk’s. Unfortunately we cannot since

the Yk’s are not bounded a.s. Therefore we let Ỹk be the random variable got by conditioning Yk on

the event that ∥Yk∥ ≤M. We will show below that taking M = c5µ log µ
ϵ

gives
∥∥∥EYk − EỸk

∥∥∥ ≤ ϵ.

As a consequence this gives

(1− ϵ)I ≤ E(Ỹk) ≤ (1 + ϵ)I.

Given this choice of M , we apply the Matrix Chernoff bound to the Ỹk’s, which now satisfy∥∥∥Ỹk∥∥∥ ≤M . Setting Ỹ = 1
N

∑N
i=1 Ỹk, and plugging into Theorem 5.21 gives

P(
∥∥∥Ỹ − I

∥∥∥ ≥ 3ϵ) ≤ d exp

(
−cϵ2 N

M

)
,

which is bounded by 0.05 for N ≥ Ω
(

d
βϵ2

log
(
d
βϵ

)
log d

)
. (We replace ϵ with ϵ/3 to recover

the statement in the theorem.) Possibly by adjusting the constant in the definition of M , we can

arrange so that with probability at least 0.95, all of the N samples Yk are such that ∥Yk∥ ≤M (this

follows from the exponential tail bound on the Yk’s), and hence indistinguishable from the Ỹk’s. So

with probability at least 0.9 the Yk’s enjoy the same concentration bound as the Ỹk’s above, which

then implies the conclusion of the theorem.

Finally we conclude the argument by showing that EỸk is approximately EYk. To simplify

notation, let Y and Ỹ be distributed as Yk and Ỹk respectively. We write

EY = E(Ỹ )P(∥Y ∥ ≤M) + E(Y | ∥Y ∥ ≥M)P(∥Y ∥ ≥M).
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Thus we have

∥∥∥EY − EỸ
∥∥∥ ≤ (1− P(∥Y ∥ ≤M))

∥∥∥EỸ ∥∥∥ + P(∥Y ∥ > M) ∥E(Y | ∥Y ∥ ≥M)∥

= P(∥Y ∥ > M)
∥∥∥EỸ ∥∥∥ + P(∥Y ∥ > M) ∥E(Y | ∥Y ∥ ≥M)∥

≤ P(∥Y ∥ > M)E
∥∥∥Ỹ ∥∥∥ + P(∥Y ∥ > M)E(∥Y ∥ | ∥Y ∥ ≥M)

≤ P(∥Y ∥ > M)E ∥Y ∥ + P(∥Y ∥ > M)E(∥Y ∥ | ∥Y ∥ ≥M),

where in the last step we observed that E
∥∥∥Ỹ ∥∥∥ ≤ E ∥Y ∥. We bound each of the relevant terms.

We will take M ≥ c3µ. As shown above, E ∥Y ∥ ≤ µ. By 5.2, P(∥Y ∥ > M) ≤ c1e
−c2M/µ. To

handle the last term,

E(∥Y ∥ | ∥Y ∥ ≥M) =

∫ ∞

0

P (∥Y ∥ ≥ t| ∥Y ∥ ≥M) dt = M +

∫ ∞

M

P (∥Y ∥ ≥ t| ∥Y ∥ ≥M) dt.

So

P(∥Y ∥ > M)E(∥Y ∥ | ∥Y ∥ ≥M) = P(∥Y ∥ > M)M +

∫ ∞

M

P (∥Y ∥ ≥ t) dt

≤ c1e
−c2M/µM +

∫ ∞

M

c1e
−c2t/µ dt

= c1e
−c2M/µM + c4µe

−c2M/µ.

Putting the pieces together gives

∥∥∥EY − EỸ
∥∥∥ ≤ c1µe

−c2M/µ + c1Me−c2M/µ + c4µe
−c2M/µ,

which is bounded by ϵ for M ≥ c5µ log
(
µ
ϵ

)
.
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CHAPTER 6

Conclusion

In this thesis we studied efficiently solving linear algebra problems from a variety of angles.

We first studied the random Kaczmarz method and asked whether it could adapted to handle a

small fraction of corruptions. We showed that it could, and developed two algorithms that we called

QuantileRK and QuantileSGD that are more robust while maintaining the low RAM requirements

of Kaczmarz.

We then turned our attention to the problem of estimating the eigenvalues of a symmetric

matrix. We began by considering a particularly simple variant of the problem – testing if a matrix

is positive semi-definite. For the PSD-testing problem we gave tight query-complexity bounds in

terms of both matrix-vector products and bilinear form queries. We considered both adaptive and

non-adaptive methods which required separate techniques. For adaptive measurements we gave an

optimal algorithm based on stochastic gradient descent, whereas for non-adaptive measurements

we saw that sketching gives optimal bounds.

The PSD-testing sketch was only presented for approximating the smallest eigenvalue, how-

ever in the following chapter we showed that with more work it could be adapted into a sketch

for approximating all eigenvalues. This led us to develop an optimal sketch for approximating

eigenvalues of a matrix A to within additive ϵ ∥A∥F error.

Finally we returned our attention to the heart of linear algebra – solving linear systems. When

studying Kaczmarz we were interested in space-efficiency. Here we instead considered communication-

159



efficiency, and gave the first optimal regression algorithms in the coordinator model.

There are many interesting directions that this work leaves open. We list only a few here.

When studying Kaczmarz, we focused mainly on the situation where the true system is fixed.

However what happens in the streaming setting where an attacker may intentionally choose to

inject corrupt rows? Under what circumstances is it possible to guarantee convergence to the true

solution?

It would also be interesting to improve our spectral approximation algorithm. In particular

when approximating the spectrum of a sparse matrix, it should be possible to do so in time nearly

proportional to the number of nonzero entries. Is it possible to obtain such a guarantee?

Finally, are there new situations where the ideas behind our regression protocols can be em-

ployed? Linear regression and subspace embeddings are useful primitives. Can our protocol be

employed as a black-box in other situations to give improved algorithms?
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