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ABSTRACT OF THE THESIS 

A Shadow Histogram Algorithm to Determine Clear Sky Indices for Sky Imager 
Short Term Advective Solar forecasting 

by 

Nishank Mihir Sheth 

Master of Science in Engineering Science (Mechanical Engineering) 

University of California, San Diego, 2016 

Professor Jan Kleissl, Chair 

 

Sky imagers are used for short-term forecasting of solar irradiance, which 

can be used to counter ramp events caused by larger clouds or extensive changes 

in cloud cover. Sky imager forecast algorithms usually detect cloud classes in the 

image. However, the assignment of cloud optical depth or surface Global 

Horizontal Irradiance (GHI) to cloud classes remains a challenge. One method to 

connect GHI to cloud classes involves the use of a histogram of recently measured 

clear sky indices to assign a clear sky index/GHI to each cloud class. While this 

method improves upon choosing static GHI values for each cloud class, this paper 

presents a modification which improves the histogram method. Considering data 
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from a significantly shorter time period than the existing method emphasizes more 

recent cloud conditions. Individual histograms for each cloud class self-consistent 

with modeled cloud coverage from the sky imager are used to analyze the data 

instead of a single histogram. The new algorithm gave a 39% reduction in root 

mean square error against the existing algorithm when tested over a month. 

Keywords: solar, forecast, GHI, algorithm, whole sky imager 
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1. INTRODUCTION 

 

Sky imagers take images of the sky at regular short intervals which are 

processed to determine cloud cover, optical depth (whether the cloud is thin or 

thick), and mean cloud field velocity. Ground based imagers have been employed 

for forecasting cloud cover for forecast horizons of 30 seconds, 1 minute, and 5 

minutes with mean matching error less than 8.7%, 13% and 30% respectively [1]. 

The positions of the cloud are then forecasted by the sky imager using a cloud 

advection algorithm up to various forecast horizons. An error metrics then analyzes 

the performance of the sky imager for every time step. 

Sky imagers use a binary or trinary cloud decision algorithms to provide 

short term forecasts of solar irradiance. Cloud decision algorithms detect clouds in 

the sky by assigning each image pixel a cloud class based on the ratio of the red 

channel of the RGB image to its blue channel, also called red-blue ratio or RBR 

[2]. A binary cloud decision algorithm can detect either cloud or clear sky and could 

reduce accuracy and make a GHI forecast more discrete.  

Sky imager groups have used different approaches to estimate solar 

irradiance. [3] uses five cloud classes and each pixel of the image is assigned a 

weight calculated using topo-centric elevation and azimuth angle. Assuming a 

fixed brightness coefficient for each cloud class, and using linear regression, GHI 

and Direct Normal Insolation (DNI) are estimated. [4] uses a binary cloud decision 

algorithm followed by the formation of a histogram with measured ground data to 
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estimate GHI, similar to that of the sky imager used at UCSD. The formation of a 

single histogram with measured ground data from a particular time period to 

estimate GHI has shown moderately good results irrespective of a binary or trinary 

cloud decision algorithm (trinary has shown better results owing to the increase in 

cloud classes, reducing the discreteness in the GHI estimation). Yet, common 

drawbacks are faced. The UCSD sky imager (USI) uses a trinary cloud decision 

which detects thick cloud, thin cloud, or clear sky. An existing GHI algorithm uses 

readings from the past 90 minutes acquired from 6 Li-200 pyranometers (Fig. 1) 

which provide 1 second GHI data and are present at UCSD to create a histogram 

which analyzes measured power data converted to a clear sky index ‘kt.’ kt is the 

ratio of global horizontal irradiance and  a reference clear sky irradiance [5].  

 

Figure 1. Map of UCSD footprint showing the locations of pyranometers and the location of USI at 
UCSD. The labels marked in yellow represent pyranometres that came online after November 2013 
and thus did not contribute to the data represented in this thesis.
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Three peaks are detected in this histogram from acceptable bounds 

assigned to each cloud class. These represent the modal transmissivities of clear 

sky, thin clouds, and thick clouds respectively. If a peak cannot be detected, default 

values are used. This provides a quantitative estimate of solar energy, a step 

forward from the initial forecasts of just cloud decision, but does not adapt well to 

constantly changing cloud conditions due to its large lookback period of 90 

minutes. The method also forces us to select a kt value for a particular cloud class 

from a particular bound assigned to that cloud class within the histogram. This is 

not always the case; for instance, a thin cloud kt might have a similar value to a 

thick cloud kt on another day. Cloud enhancements occur near thin clouds but 

have a kt value of more than 1, which is another example supporting this argument 

[6]. The existing algorithm in that case assigns default values which reduces 

accuracy. An algorithm was developed where the lookback period was reduced 

and differed for every forecast based on the quantity of data acquired in that step. 

It did not constrain the value of the kt index with a particular range. This significantly 

aided it to adapt better to sudden cloud formation or dissipation and give a result 

that depends on more recent occurrences in the sky. This thesis is aimed at 

describing and evaluating the ‘Shadow Histogram’ algorithm intended at reducing 

error in GHI forecasts.  

Chapter 1 in part, is currently being prepared for submission for publication 

of the material. Sheth, Nishank; Murray, Keenan; Kurtz, Ben; Kleissl, Jan. The 

thesis author was the primary investigator and author for this material.
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2. THEORY 

 

Solar power forecasting is a knowledge of the Sun’s path, the condition of 

the atmosphere and the sky, the scattering processes, and the characteristics of 

the power plant which uses solar energy to generate electric power. Forecasting 

is significant to the efficient use, management of the electric grid and for solar 

energy trading. 

174,000 terawatts (TW) of incoming solar radiation, also called insolation is 

received at the Earth’s surface [7]. 30% reflects back to space while the rest is 

absorbed by clouds, oceans and land masses. Most of the world’s population live 

in regions where insolation levels reach 3.5-7.0 kWh/m2 per day. In 2002, the 

3,850,000 exajoules (EJ) received in a year was more energy per day than the 

world used in the entire year [8]. Solar power, or the process of converting solar 

energy to electricity, has been either directly carried out using photovoltaics (PV), 

or indirectly using concentrated solar power (CSP). 

Photovoltaic (PV) electricity generation is making major inroads in electricity 

grids worldwide. Growth rates in installed capacities ranging 34% to 82% for OEC 

countries over the past decade and installed capacities reaching 63.6 GW in the 

same countries by end of 2011 [9]. 30% of overall power production during clear 

days in the summer in some European countries comes from PV production.  

Variability and uncertainty are major challenges to high penetration rates of 

PV systems. Output from PV systems varies at every timescale, from seconds to 
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even years. Short term changes in the conditions of the sky are difficult to predict 

and hence, regulating and maintaining power are both challenging and costly. 

Sudden and widespread changes in irradiance, termed as “ramp events,” which 

are caused by large clouds or widespread changes in cloud cover [10], are of 

particular interest for research in short term solar irradiance forecasting. Ramp 

events require ancillary services to ramp up or down to meet the change in 

electrical supply and maintain power quality. Reduction in the uncertainty of solar 

generation through accurate solar forecasting reduces solar integration costs. 

Solar radiation forecasting has been tackled by two main approaches: 

physics based numerical weather prediction (NWP), and forecasting that is more 

directly based on real-time measurements from satellites or ground-based 

instruments, although the boundaries between these approaches are constantly 

becoming more fluid, and machine learning techniques often synthesize the 

various approaches [11] [12] [13] [14]. [15] and [16] found that NWP forecasts 

generally perform better than satellite forecasts at forecast horizons longer than a 

few hours. The limited resolution and uncertainty in initial conditions makes NWP 

models presently unable to predict the exact position of clouds and their effect on 

solar radiation over a specific location. Therefore, better short-term measurement-

based forecasts at high spatial and temporal resolutions need to be developed.  

Deterministic measurement-based forecasting is typically based on satellite 

[17] or ground-based sky images. Sky imager approaches had only been applied 

recently for 15 min DNI [18], 10 min GHI, and AC power forecasting for 48 MW of 

photovoltaics [19] using the Total Sky Imager (TSI, Yankee Environmental 



6 

 

Systems). A proposed requirement by the Puerto Rico Electric Power Authority on 

utility-scale photovoltaic (PV) power plants in Puerto Rico limiting both up and 

down ramp events to 10% of capacity per minute [20] drove the first significant 

market need for 1–15 min solar power forecasts. 
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3. METHODOLOGY 

 

The USI and many other sky imagers have used a histogram method to 

forecast GHI as described earlier. Yet, predicting GHI accurately has remained a 

challenge even after successfully forecasting cloud decision. The USI uses one 

such histogram method to estimate GHI, but faces challenges that decrease 

efficiency. Hence, a new algorithm was developed to modify the histogram method 

to produce better results and adapt well against conditions that earlier created 

higher errors. 

3.1. Cloud decision 
 

The UCSD short-term forecast algorithm uses a trinary cloud classification: thick 

cloud, thin cloud, and clear sky, as can be seen in Fig 2., which shows the steps 

associated to the functioning of the sky imager [5]. The UCSD area had 6 

pyranometers in use in 2012. The cloud decision algorithm detects whether a 

pixel on the image is clear sky, thin cloud, or thick cloud based on the RBR. Due 

to this detection, the type of cloud class over each of the 6 sensors is known at 

every timestep. 
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The histogram created for a time t0 for any cloud class cc, hist(cc) is a set 

of measured kt for that cloud class ktcc from all sensors over a lookback period l. 

A kts,t measured by any of the 6 UCSD pyranometers s at any time t is assigned 

Figure 2. Example of USI forecast output for November 14, 2012, 10:23:00 PST. Top left: raw 
HDR image, cropped to remove static objects near horizon. Top center: red–blue-ratio image. 
Top right: cloud decision image (blue: clear sky, light gray: thin cloud, dark gray: thick cloud). 
Bottom left: shadow map over the UCSD domain, showing predicted cloud shadows from images 
taken 10 min ago. Ground stations are marked by solid black squares. The cloud field mean 
velocity vector is indicated by the solid black arrow extending from the center, with magnitude 
indicating predicted distance traveled in 30 s. Bottom right: USI GHI forecast issued at current 
time for a 15 min horizon (dashed red), USI GHI forecast time series for constant 10 min forecast 
horizon (solid black), and corresponding measured GHI (solid green). All measurements and USI 
forecasts are averaged across all 6 ground stations. The first vertical dashed line indicates 
forecast issue time, while the second vertical dashed line shows the 10 min forecast horizon 
(solid black line must equal red dashed line at that point). 
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to a cloud class cc (clear sky 𝑐𝑙, thin cloud 𝑡𝑛, or thick cloud 𝑡𝑘) based on the cloud 

detection of the USI (UCSD sky imager) over the sensor as 

ℎ𝑖𝑠𝑡(𝑐𝑐) = {𝑘𝑡𝑠,𝑡| 𝑐𝑐 (𝑈𝑆𝐼, 𝑠) = 𝑐𝑐}, 𝑡0 − 𝑙 ≤ 𝑡 ≤ 𝑡0, 𝑐𝑐 = {𝑐𝑙, 𝑡𝑛, 𝑡𝑘}         (1) 

The algorithm generates one histogram for each cloud class using these 

values of kt for a lookback period. In order to form histograms with this data, a 

lookback period is used. A lookback period is the time in minutes that the algorithm 

goes back to include data for the histograms. The length of the lookback period is 

extended back in time starting with 5 minutes to fill each cloud class histogram with 

at least 10 measurements. Increasing this value of minimum measurements 

increased the length of the lookback period with only minute effects on the results 

when tested over the month. Therefore, an optimum number was chosen to 

represent a cloud class with enough data while limiting the length of the lookback 

period. If the lookback time exceeds 20 minutes, default kt values are chosen. The 

mode of each histogram, ktcc is used as the kt of the respective cloud class. 

Allowable kt values are between 0 and 1.4.  

3.2. Forming histograms 

 

Quite often, due to extremely overcast or clear sky conditions, data for 

particular cloud classes may not be obtained in the past 5 minutes. This leaves the 

algorithm with no values to forecast if there are occurrences such as sudden cloud 

formation or dissipation. In order to counter this, the length of the lookback period 

depends on recent cloud cover, as the algorithm will search further back in time to 

fill each cloud class histogram with atleast 10 measurements. If the lookback time 
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exceeds the maximum allowable limit set forth, default values that have been 

obtained from 8 months of observational data are taken. Default values of kt were 

taken as 0.42 for thick clouds, 0.70 for thin clouds, and 1.05 for clear sky. This 

usually occurs due to an overcast or clear sky condition for extended periods of 

time followed by sudden cloud dissipation or formation, respectively.  

This ensures that the algorithm always has values for all cloud classes to 

adapt to suddenly changing cloud conditions, and also significantly reduces 

lookback period compared to the existing algorithm.  

The algorithm generates one histogram for each cloud class using these 

values of kt for a lookback period. 

3.3. Forecasting kt 

  

The mode of each histogram is used as the kt of the respective cloud class. 

This method permits a cloud class to have a kt index anywhere below 1.4 which is 

considered the maximum allowable kt; which is an advantage over the existing 

method.  

As seen in Fig. 3, The existing method is forced to select a kt for each cloud 

class from a predefined range on a single histogram. This may not always be the 

case. For instance, cloud enhancement occurs near thin cloud but kt associated 

with it is more than 1 (Pecenak, et al. 2016). Sometimes, cloud classes do not have 

those values of kt that the existing algorithm is restricted to assign to them due to 

the bounds in the histogram. 
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Figure 3. Histogram of measured kt using the existing method for November 14, 2012 10:00:00 
PST through 12:00:00 PST, illustrating three distinct peaks representative of thick clouds, thin 
clouds and clear sky. 

 

The three values of kt for the respective cloud classes are assigned to each 

pixel of the forecasted cloud decision within the footprint depending on whether 

they are predicted to be covered by clear sky, thin cloud, or thick cloud. The kt 

values (ktforecast) for each pixel are then multiplied by Kasten clear sky model GHI 

(GHIclear sky) to produce a GHI forecast (GHIforecast).  

𝐺𝐻𝐼𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 =  𝑘𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑥 𝐺𝐻𝐼𝑐𝑙𝑒𝑎𝑟 𝑠𝑘𝑦                                (2) 
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Plant power output, can be estimated by calculating a weighted-area 

average kt over the entire footprint. The algorithm was evaluated for the month of 

November 2012 barring 12th November and compared with the existing method. 

Data for 12th November was not available due to the USI system outage.  

Chapter 3 in part, is currently being prepared for submission for publication 

of the material. Sheth, Nishank; Murray, Keenan; Kurtz, Ben; Kleissl, Jan. The 

thesis author was the primary investigator and author for this material. 
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4. RESULTS AND DISCUSSIONS 

  

 

 

As shown in Fig. 4, three histograms are formed using data from the 

lookback period and their peaks represent the kt values used for GHI forecasts for 

forecast horizons of 5-15 minutes. The peaks from the histograms are compared 

with kt measurements from sensors (asigned to cloud classes and averaged) for 

5, 10, and 15 minute forecast horizons of each cloud class in Table 1.  

Table 1. kt obtained from peaks of the three histograms shown in Fig. 4 are compared to 
measured sensor readings at times corresponding to forecast horizons of 5, 10, and 15 minutes 
to analyze the performance of the histograms. There were no readings for thin clouds at fh=10 
and fh=15 minutes.  

Cloud class Forecasted kt 
from histogram  

Measured kt for forecast horizons (fh) of 5, 10 and 15 min  

fh = 5 min fh = 10 min fh = 15 min 

Clear sky 1.00 1.00 1.10 1.10 
Thin cloud 0.99 0.92 - - 

Thick cloud 0.70 0.62 0.58 0.44 

Figure 4. Histogram of kt measurements from six pyranometers within the sky imager footprint 
during the lookback period of 5 minutes. The peaks of each histogram represents 𝑘𝑡𝑐𝑐, to be 
forecasted for forecast horizons of 5-15 minutes (see title YYYY-MM-DD HH:MM:SS UTC) on 
14th November, 2012 
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At any given time, these values are used as the kt for their respective cloud 

class to estimate GHI for all forecast horizons. For instance, in the figure, at 

22:13:30 UTC, the kt to be forecasted for thick cloud for all forecast horizons (5-15 

minutes) is 0.7. Table 1. implies that the algorithm performed extremely well for a 

clear sky and thin cloud. For thick cloud, a 5-minute forecast performed better than 

10 and 15 minute forecasts. The measured kt readings were obtained from 

sensors and these values are not available during a real-time functioning of the 

USI and were obtained from data available at the end of the day.  

It is interesting to note how small the difference in kt of clear sky (1.00) and 

thin cloud (0.99) is when obtained from the histogram, and also the fact that the 

estimated kt for thick clouds (0.7) has been overestimated by the algorithm. More 

can be understood from Fig. 5. which shows the various steps of the USI at 

22:11:30 UTC on 14th November, 2012; 2 minutes before the time that is 

represented in the histogram in Fig. 4. Cirrus clouds (thin wispy clouds) and 

cirrocumulus clouds (thin clumpy clouds) are present in the image. These clouds 

can sometimes cause incorrect cloud decisions depending on their position and 

the position of the sun. Due to the effect of the sun, it is unclear whether the lower 

region of the circular image is a thin cloud or thick cloud. If it is a thin cloud, it would 

have a higher kt which would be assigned to a thick cloud kt due to cloud decision 

(which has detected thick cloud) and hence overestimate the thick cloud kt. 

Similarly, the reason for the algorithm having overestimated the thin cloud kt by 

0.7 could be due to the cloud decision algorithm incorrectly assigning thin cloud to 

clear sky pixels towards the center of the image. Although incorrect cloud decision 
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can reduce accuracy of the forecast kt from the histogram, the cloud decision 

algorithm has caused major discrepancies only during rare incidents such as the 

presence of certain clouds such as cirrus and cirrocumulus and the position of the 

sun or rain drops on the sky imager during rainfall. 

Fig. 6 shows a summary plot for 14th November, 2012. The plot represents 

a comparison of forecasted values of kt for each cloud class at every timestep 

throughout the entire day and the kt measured for each cloud class (using cloud 

detection) by pyranometers; for a 5-minute forecast. 

 

Figure 5. Steps involved in USI forecast algorithm, showing presence of Cirrus and Cirrocumulus 
clouds over the UCSD footprint at 22:11:30 UTC on 14th November, 2012. 
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The cluster of data points in the affinity of the 𝑋 = 𝑌 line indicate the 

successful performance of the algorithm. The overlapping of the range of kt of the 

three cloudclasses with each other indicates the advantage of this method over 

the existing method as stated earlier as it allows us to choose a kt for a cloud class 

without restricting it to any range. The kt values in the existing method would not 

overlap because the method restricts the value of kt to particular bounds which 

has been predefined while forming a histogram, and do not overlap with those of 

other cloud classes.  

Figure 6. Plot showing data points representing kt measured by pyranometres on Y axis and kt 
forecasted by histograms on X axis for their respective cloud classes for the month of November, 
2012. 
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A way of quantifying the performance of the new algorithm was to draw an 

error metrics comparing the RMSE (root mean square error) and the MBE (mean 

bias error) for the new algorithm with that of the existing algorithm. In the following 

equations, N denotes the total set of forecasts generated on a given day. 𝑘𝑡𝑓 

denotes kt forecasted by the histogram algorithm and 𝑘𝑡𝑜𝑏𝑠 denotes kt observed 

by sensors for the time that we are forecasting. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑘𝑡𝑛

𝑓
− 𝑘𝑡𝑛

𝑜𝑏𝑠)2𝑁
𝑛=1                                         (3) 

𝑀𝐵𝐸 =
1

𝑁
∑ (𝑘𝑡𝑛

𝑓
− 𝑘𝑡𝑛

𝑜𝑏𝑠)𝑁
𝑛=1                                            (4) 

Comparing the new to the existing method, Fig. 7(a) shows that the average 

RMSE was reduced from 0.23 to 0.14, and Fig. 7(b) shows that the mean of the 

absolute of MBE reduced from 0.11 to 0.05. Both methods performed excellently 

with nearly 0 RMSE on days that had an average cloud fraction of less than 1%, 

such as days 4-6, 11, and 13. As there were miniscule or no changes in cloud 

cover, the length of the lookback period or assignment of kt to cloud classes were 

not factors in determining kt. 8th November produced maximum error for both 

methods due to rain drops on the USI in the morning (which affects cloud decision). 

Two overlaying layers of clouds moving in different directions negatively affected 

forecasts owing to the challenge in correctly calculating cloud base height, which 

in turn creates inaccurate shadow maps. Days 10 and 17 also had prominent 

periods of cloud evaporation and formation and thus produced high errors which 

the new algorithm was able to reduce. 
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Days 21, 23, 25 and 26 (average cloud fractions 40-50%) had multiple 

patches of cloud formation and dissipation, and therefore show a higher error in 

the existing algorithm than days 19, 20, 22 and 24 (average cloud fraction 3-15%), 

which had lesser instances of sudden changes in cloud cover. Days 29 and 30 

(average cloud fraction 97-100%), although having overcast conditions for most of 

the day, had heavy rainfall, multiple cloud layers, and patches of extremely sudden 

cloud dissipation in the afternoon, hence increasing error. The new algorithm 

produced a lower RMSE on all 29 days due to better adaptation to rapidly altering 

cloud conditions. Yet, certain days that produced lower percentage reductions than 

the monthly average were due to presence of Cirrus and Cirrocumulus clouds; thin, 

wispy and clumpy clouds that sometimes produce incorrect cloud decision.  

Figure 7. Error metrics of forecast kt for the new histogram algorithm and the existing algorithm, for 
the month of November. (a) Root mean square error (RMSE) for a 5-minute forecast kt (b) Mean 
bias error (MBE) for a 5-minute forecast kt. 
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The MBE plot must have data as close to the 0-line to signify a good 

performance. As seen in the figure, MBE for the new algorithm is closer to 0 than 

the existing algorithm for all days. The mean MBE without considering absolute 

values of individual days changed from 0.10 to 0.01. While it is clearly evident from 

Fig. 7(b), the existing algorithm more often overestimated the kt while only 

underestimating the kt thrice in the entire month, and thus has a mean bias of 0.10. 

The new method, due to its dependency on cloud decision, displayed an 

unpredictable nature, which is evident from Fig. 7(b). With a mean bias of 0.01, the 

method overestimated kt on 14 days out of the 29 days while underestimating kt 

on rest of the days. November is predominantly San Diego’s sunniest month and 

hence the existing algorithm may have performed better than it would for the rest 

of the year. Even better results are expected during the other months of the year 

due to more dynamic cloud cover. 

Chapter 4 in part, is currently being prepared for submission for publication 

of the material. Sheth, Nishank; Murray, Keenan; Kurtz, Ben; Kleissl, Jan. The 

thesis author was the primary investigator and author for this material. 
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5. CONCLUSION 

 

An accurate algorithm to forecast GHI quantitatively is significant for sky 

imagers and has remained a major challenge but the Shadow Histograms 

algorithm is effective to forecast GHI as inferred from the error metrics. The new 

algorithm highly depends on the function of cloud detection to detect cloud classes 

accurately. If an error occurs during the step of cloud detection, the following step 

of assigning kt to a particular cloud class gets affected. For instance, if a thick cloud 

over a sensor is detected as thin cloud, the kt measured by the sensor which 

should be assigned to thick cloud would be assigned to a thin cloud. Never the 

less, the cloud detection algorithm performs very well and seldom produces an 

error in detecting cloud classes accurately.  

Hence, the new algorithm subsequently produces results with a lower error. 

Qualitatively, it produced a lower error on all 29 days of November, performing 

relatively better in terms of reducing error on days that experienced sudden 

changes in cloud cover. Quantitatively, the method gives a 39% reduction in root 

mean square error for November and can be estimated to give a higher reduction 

for other months as explained in the results. The algorithm can be applied to sky 

imagers using a binary cloud decision as well. The algorithm can, therefore, be 

added in the GHI function for the USI as well as other sky imager to calculate GHI 

over the footprint, and is a concrete step forward in estimating GHI with short term 

solar forecasting.
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