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Abstract

Purpose

This study investigated the differential gene expression of BMPs in chick retinal pigment epi-

thelium (RPE) during recovery from short term exposure to optical defocus and form-depri-

vation (FD) treatments.

Methods

14-day old White-Leghorn chicks wore either monocular +10 or -10 D lenses, or diffusers for

2 or 48 h, after which eyes were allowed unobstructed vision for up to 96 h. Over this recov-

ery period, refractive errors and choroidal thickness (ChT) were tracked using retinoscopy

and high-frequency A-scan ultrasonography. Real-time PCR was used to examine the

expression of BMP2, 4, and 7 genes in RPE samples collected 0, 15 min, 2, 24, 48, and 96 h

after the termination of treatments. Expression levels in treated eyes and their contralateral

control eyes were compared.

Results

After the termination of the lens and diffuser treatments, eyes gradually recovered from

induced shifts in refractive error. With all three treatments, ChT changes reached statistical

significance after 48 h of treatment, be it thinning with the -10 D lens and diffuser treatments

(-0.06 ± 0.03mm, p < 0.05; -0.11 ± 0.04 mm, p < 0.05, resp.), or thickening with the +10 D

lens (0.31 ± 0.04 mm, p < 0.001). BMP2 gene expression was rapidly upregulated in eyes

wearing the +10 D lens, being statistical significance after 2 h, as well as 48 h of treatment.

With the 2 h treatment, the latter gene expression pattern persisted for 15 min into the recov-

ery period, before decreasing to the same level as that of contralateral control eyes, with a

short-lived rebound, i.e., upregulation, 24 h into the recovery period. With the longer, 48 h

treatment, BMP2 gene expression decreased more gradually, from 739 ± 121% at the end
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of the treatment period, to 72 ± 14% after 48 h of recovery. Two and 48 h of both -10 D and

FD treatments resulted in BMP2 gene expression downregulation, with the time taken for

gene expression levels to fully recover varying with the duration of initial treatments. In both

cases, BMP2 gene expression downregulation persisted for 15 min into the recovery period,

but reversed to upregulation by 2 h. Similar gene expression patterns were also observed

for BMP4, although the changes were smaller.

Conclusions

The observed changes in BMP gene expression in chick RPE imply dynamic, albeit complex

regulation, with the duration of exposure and recovery being critical variables for all three

types of visual manipulations. This study provides further evidence for a role of the RPE as

an important signal relay linking the retina to the choroid and sclera in eye growth regulation.

Introduction

Myopia (near-sightedness) is the most common type of refractive error and is also one of the

world’s leading causes of visual impairment and blindness [1]. In recent years, myopia has

become recognized as a significant public health issue worldwide, with the prevalence of myo-

pia already at epidemic levels in some Asian countries and continuing to rise worldwide [2–4].

When uncorrected, myopia results in blurred distant vision, a by-product of the relative

increase in axial length compared to the eye’s optical (refracting) power [5]. While such mis-

matching errors can be corrected with optical aides, including spectacles and contact lenses, or

refractive surgery, to restore clear vision, on the other hand, myopia is associated with

increased risks of visual impairments tied to a variety of pathologies, including glaucoma,

myopic maculopathy, retinal detachment, and cataracts [6]. While clinical treatment strategies

to prevent and/or slow the progression of myopia are under investigation, with some multifo-

cal contact lens options already in use [7], improved understanding of the underlying disease

process is key to improving treatment efficacy, potentially via the development of novel thera-

pies, including gene-based ones.

The important influences of visual experience, including optical defocus, on eye growth

regulation has been demonstrated through both animal model studies, and studies in humans

[8–15]. In the case of optical defocus, the rate of eye growth is adjusted in compensation, in a

process known as emmetropization. For example, a negative defocusing lens, which imposes

hyperopic defocus when placed over a normal, nearly emmetropic eye, accelerates eye elonga-

tion and the choroid thins, which together appropriately adjust the retina’s location to match

the altered plane of focus [8, 16]. The opposite is true for a positive lens, which imposes myopic

defocus and triggers thickening of the choroid and slowed eye elongation [16, 17]. Degrading

retinal image contrast, for example by covering an eye with a diffuser, also induces myopia;

such form-deprivation (FD) conditions accelerate eye elongation and thin the choroid, as do

negative lenses, although here the imposed conditions are open loop [16]. When the inducing

treatment is terminated, i.e., either lenses or diffusers are removed, these eyes initially exhibit

refractive errors that reflect their altered choroidal thickness and eye lengths, hyperopia in the

case of eyes that are shorter than normal with thickened choroids, and myopia, in the case of

eyes that are longer than normal with thinned choroids. These induced refractive errors reacti-

vate emmetropization, at least in young animals, allowing recovery from the same, although
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whether these “recovery responses” are mediated by same or different signaling pathways as

activated by imposed optical defocus on emmetropic eyes remains under debate [18–20].

Although the etiology of human myopia is not yet well understood, animal studies have

provided convincing evidence for local (ocular) growth regulatory mechanisms. For example,

myopia may be induced using one of the above experimental manipulations, even in eyes that

are disconnected from the brain by severing the optic nerve [16, 21]. These observations have

been interpreted as evidence for a retina-to-sclera signaling cascade, in which detected changes

in optical defocus and/or spatial contrast generates retinal signals that activate downstream

signaling cascades targeting the outer layers of the eye wall, i.e., the choroid and sclera [8].

Being located between the retina and the choroid, the retinal pigment epithelium (RPE) is

known to have important roles in the transportation of ions and fluids between the retina and

choroid, as is critical for maintaining the functional integrity of the former tissue [22]. How-

ever, its strategic location, between the retina and the choroid, opens up the possibility that the

RPE may also serve as a relay for retinal growth-regulatory signals directed at the choroid and

sclera, with the net effects being either acceleration or slowing of the rate of elongation of the

vitreous chamber through structural and/or dimensional changes in these tissues [23, 24].

Bone Morphogenetic Proteins (BMPs) were first discovered through their involvement in

bone formation and osteogenesis, but have since been shown to have a broad range of impor-

tant biological functions [25–27]. In the context of ocular growth regulation, our studies utiliz-

ing young chicks as a model, have documented significant, bidirectional changes in RPE gene

expression for three BMPs, i.e., BMP2, 4, and 7, in response to imposed short-term, optical

defocus of opposite sign [28–31]. Specifically, myopic defocus, which slows ocular elongation,

led to rapid upregulation of BMP gene expression in RPE. Conversely, hyperopic defocus,

which accelerates ocular elongation, led to rapid downregulation of BMP gene expression in

RPE, as did FD. Thus overall, downregulation of BMP expression in RPE appears to be associ-

ated with accelerated ocular elongation, while upregulation of BMP expression is associated

with slowed ocular elongation.

As noted above, when treatments used to experimentally induced refractive errors are ter-

minated, the eyes of young animals are able to at least partly recover from induced changes. In

the study reported here, which also made use of the chick as a model, we examined how differ-

ential BMP gene expression patterns change after optical defocus and FD treatments are termi-

nated, thereby triggering recovery, and their temporal relationship with ocular biometric

changes.

Materials and methods

Animals and visual treatments

White-Leghorn chicks were hatched from eggs supplied by University of California, Davis

(Davis, CA), and raised in an animal facility at the University of California, Berkeley (Berkeley,

CA), under 12 h/12 h light/dark cycle, with free access to food and water. Experiments were

conducted according to the ARVO Statement for the Use of Animals in Ophthalmic and

Vision Research, and approved by the Animal Care and Use Committee (ACUC) at University

of California, Berkeley, CA.

At 14 days of age, chicks were fitted with either a +10 or -10 D spectacle lens or an opaque

white diffuser over one eye, all Velcro-mounted, with contralateral fellow eyes left untreated as

a control. Treatments were terminated after either 2 or 48 h, and eyes then monitored with

timed in vivo ocular measurements for up to 96 h, ending at the time of RPE sample collection.

Schedules for treatments, ocular measurements and sample collection are summarized in

Fig 1. Groups ranged from 8 to 17 in size; specific numbers are as listed in the result sections.
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Refractive error and ocular biometric (choroidal thickness) measurements

Refractive errors and ocular dimensions were measured using retinoscopy and high-frequency

A-scan ultrasonography respectively, both under gaseous anaesthesia (1.5% isoflurane in oxy-

gen) [19]. Measurements were undertaken at the beginning of the recovery period (i.e., after

either 2 or 48 h of treatment), and again at 2, 48 and 96 h into the recovery periods (Fig 1),

with all measurements made in the afternoon to minimize the influence of diurnal rhythms.

RPE isolation and RNA extraction

RPE samples were collected from both eyes of treated birds (treated and contralateral fellow

eyes), at either the end of a 2 or 48 h treatment period, or 15 min, 2, 24, 48, 96 h into the recov-

ery period (Fig 1). All samples were collected in the afternoon between 12–3 pm. In brief and

as described in detail previously [28–31], chicks were sacrificed and their eyes immediately

enucleated, after which the anterior segments of eyes were cut away at the equator to isolate

the posterior segments. Next, the retina was removed to expose the RPE, which was then col-

lected by gentle pipetting with cold PBS and subsequently lysed with RLT lysis buffer (RNeasy

Mini kits, Qiagen, Valencia, CA), homogenized, and stored at -80˚ C for later use. Total RNA

from RPE samples was purified using RNeasy Mini Kits (Qiagen), followed by on-column

DNase digestion (Qiagen), according to the manufacturer’s protocol.

BMP gene expression level measurement

After purification, RPE RNA was reverse transcribed to cDNA (SuperScript III First-Strand

Synthesis System for RT-PCR, Invitrogen, Carlsbad, CA). The design of BMP2, 4, 7 primers

and their validation have been described in previous studies [28, 29]. Gene expression levels

were measured for BMP2, 4, and 7 by real-time PCR using iTaq Universal SYBR Green Super-

mix (Bio-Rad) and a StepOnePlus Real-Time PCR System (Life Technologies, Grand Island,

NY). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the reference gene.

All real-time PCR measurements were performed in triplicates. mRNA expression levels of

Fig 1. Diagram summarizing timing of lens/diffuser treatments (black bar), and recovery (gray bar) periods, as

well as of in vivo ocular measurement and RPE sample collection.

https://doi.org/10.1371/journal.pone.0311505.g001
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target genes are represented as percentage (%) of treated versus fellow (control) eyes, with data

for each treatment condition representing group averages.

Statistical analysis

The data are presented as means and standard errors of the mean (SEM). One-way ANOVAs

combined with post-hoc analysis (with Bonferroni correction) were used, with repeated mea-

sures ANOVAs used to examine temporal changes in interocular differences in refractive

error and ocular biometric dimensions. Paired Student’s t-tests were used to compare gene

expression levels in treated and fellow eyes, for each treatment condition.

Results

Refractive Error (RE) and Choroid Thickness (ChT) changes

In relation to induced refractive errors, temporal profiles varied with both the type and dura-

tion of the inducing treatment, as well as recovery durations (Fig 2A, Table 1 and S1 File).

Thus the +10 D lens induced significant hyperopic shifts in treated eyes relative to their fel-

lows, after just 2 h of lens wear (+2.28 ± 0.31 D, n = 8, p< 0.001), albeit smaller than the

change recorded after 48 h of wear (+7.05 ± 0.43 D, n = 10, p< 0.001). For both the 2 and 48 h

treatment groups, these interocular differences decreased with time over the recovery period,

with interocular differences being insignificant by 48 h into the recovery period. In contrast,

Fig 2. Effects of monocular +10 & -10 D lenses and diffuser (FD) treatments on refractive errors (RE, A, C, E) and

choroidal thickness (ChT, B, D, F). Changes after 2 h or 48 h of treatment and up to 96 h of recovery (Rec), i.e., post

treatment shown as interocular differences (treated-control eyes, mean ± SEM) are shown in A & B. Effects of these

visual manipulations and recovery from the same on treated and contralateral fellow eyes are shown for 2h treatment,

in C&D, and for 48 h treatment, in E &F. * p< 0.05, *** p< 0.001.

https://doi.org/10.1371/journal.pone.0311505.g002
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the -10 D lens and diffuser treatments induced myopic shifts in treated eyes relative to their fel-

lows, with interocular differences for the 2 and 48 h treatment durations being similar in mag-

nitude for each of the two treatments (p< 0.001 for all cases). For both 2 h treatment groups

(i.e., -10 D lens & diffuser), interocular differences in refractive error decreased rapidly after

termination of the treatments, with interocular differences being insignficant just 2 h into the

recovery period. While recovery was slower for both 48 h treatment groups, interocular differ-

ences were no longer significant by 48 h into the recovery period.

In relation to choroidal thickness (ChT), the temporal profiles of induced changes also var-

ied with both the type and duration of the inducing treatment, as well as the recovery duration

(Fig 2B). As expected, the +10 D lens induced significant thickening, achieving statistical sig-

nificance after 48 h of treatment (0.31 ± 0.04 mm, p< 0.001). The choroids of these eyes also

remained significantly thicker than their fellows 2 h into the recovery period (0.28 ± 0.04 mm,

p< 0.001), although were no longer different from the choroids of their fellows after 48 h of

recovery. Also as expected, choroidal thinning was observed with both -10 D lens and diffuser

treatments, although interocular differences reached statistical significance only with the lon-

ger, 48 h treatment (-10 D lens: -0.06 ± 0.03 mm, p< 0.05; diffuser: -0.11 ± 0.04 mm,

p< 0.05). Over the recovery period after the latter treatments, the choroids of treated eyes rap-

idly thickened towards normal values, i.e., of fellow eyes and thus interocular differences rap-

idly decreased, to become statisitically insignificant over the 96 h recovery period after

termination of the -10 D lens treatment. On the other hand, the recovery pattern for FD treat-

ment group included a transient overshoot, with the choroids recording near normal values at

the 2 h time point, before becoming transiently thicker than those of their fellows at the 48 h

time point (0.13 ± 0.04 mm, p< 0.05).

The contribution of ChT changes to the recovery from REs induced by the +10 D lens, -10 D

lens, and FD treatments are shown graphically in Fig 3. The +10 D lens group showed the larg-

est changes over 48 h, with the changes over the first 2 h being relatively small compared to

both the changes over the later 46 h for this group and the early changes for -10 D, and FD treat-

ment groups. Both of the latter groups also showed overshoot, larger in the case of latter group.

Nonetheless all groups had largely normalized, in terms of both REs and ChT after 48 h.

Table 1. Changes in interocular differences in refractive errors (RE) and choroidal thickness (ChT) induced by 2 or 48 h monocular treatment with either +10 D or

-10 D lenses, or form depriving diffusers, and after recovery periods of up to 96 h.

+10 D - 10 D Diffuser

RE (D) ChT (mm) RE (D) ChT (mm) RE (D) ChT (mm)

2 h Treatment duration

0 +2.28 ± 0.31*** 0.03 ± 0.04 -1.13 ± 0.08*** -0.01 ± 0.02 -1.11 ± 0.14*** -0.03 ± 0.02

2 h +1.28 ± 0.24*** -0.005 ± 0.02 -0.34 ± 0.17 -0.0001 ± 0.03 -0.21 ± 0.13 -0.004 ± 0.02

48 h +0.06 ± 0.11 -0.005 ± 0.02 -0.13 ± 0.11 -0.003 ± 0.03 +0.07 ± 0.07 -0.003 ± 0.02

96 h -0.03 ± 0.10 -0.03 ± 0.01 -0.03 ± 0.11 -0.03 ± 0.03 -0.07 ± 0.11 -0.03 ± 0.03

48 h Treatment Recovery

0 +7.05 ± 0.43*** 0.31 ± 0.04*** -3.29 ± 0.21*** -0.06 ± 0.03* -3.41 ± 0.13*** -0.11 ± 0.04*
2 h +5.78 ± 0.45*** 0.28 ± 0.04*** -2.43 ± 0.24*** 0.0003 ± 0.01 -2.75 ± 0.09*** -0.03 ± 0.03

48 h +1.03 ± 0.38 -0.001 ± 0.02 -0.11 ± 0.07 0.02 ± 0.03 -0.06 ± 0.08 0.13 ± 0.04*
96 h +0.03 ± 0.09 0.02 ± 0.01 -0.04 ± 0.12 -0.005 ± 0.03 -0.09 ± 0.07 0.01 ± 0.03

Data expressed as changes from baseline interocular differences (mean ± SEM).

* p< 0.05

*** p< 0.001.

https://doi.org/10.1371/journal.pone.0311505.t001
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Differential BMP gene expression during recovery from +10 D lens

treatment

With the +10 D lens treatment, the differential gene expression patterns for BMP2 over the

recovery period (0–96 h), showed both similarities and differences between the 2 and 48 h

treatment groups (Fig 4 and Table 2 and S1 File).

As reported previously, 2 h of +10 D lens wear induced dramatic upregulation of BMP2

gene expression, i.e., 635 ± 185% (n = 10, p< 0.01, Fig 4A), and this elevation in BMP2 gene

expression was sustained transiently after lens removal, to be still significant 15 min into the

recovery period, i.e., 664 ± 226% (n = 8, p< 0.01), but lost by 2 h, with the exception of a late,

Fig 3. The relationships between change in RE vs. ChT for recovery from +10 D (A, D), -10 D (B, E), and FD (C, F) treatments,

either 2 h (A, B, C) or 48 h (D, E, F), followed by up to 96 h of recovery.

https://doi.org/10.1371/journal.pone.0311505.g003

Fig 4. Differential gene expression for BMP2 (A), BMP4 (B), and BMP7 (C) in chick RPE over a recovery period of up to 96 h after 2 or 48 h monocular +10 D lens wear.

* p< 0.05, ** p< 0.01, *** p< 0.001, † p = 0.07.

https://doi.org/10.1371/journal.pone.0311505.g004
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apparent rebound upregulation in expression 24 h into the recovery period, i.e., 174 ± 39%

(n = 17, p< 0.05).

With the +10 D lens, 48 h of treatment resulted in more enduring BMP2 gene expression

upregulation over the recovering period than the shorter 2 h treatment (Fig 4A). Specifically,

at the end of the 48 h treatment period, significant upregulation was detected, i.e., 739 ± 121%

(n = 10, p< 0.001), and the same pattern was still in evidence, both 15 min and 2 h into the

recovery period, i.e., 377 ± 40%, (n = 8, p< 0.001), and 207 ± 33% (n = 12, p = 0.07) respec-

tively. In contrast, at two of the three later recovery timepoints, i.e., 24 and 48 h, upregulation

was replaced by downregulation in treated compared to fellow eyes, i.e., 75 ± 15% (n = 9) and

72 ± 14% (n = 8) respectively (p = 0.07 for both cases), consistent with “overshooting”. No sig-

nificant differential BMP2 gene expression was observed at the last, 96 h timepoint.

Both BMP4 and BMP7 showed similar differential gene expression patterns to that just

described for BMP2, albeit smaller in magnitude (Fig 4B and 4C, and Table 2). For example,

for the 2 h +10 D lens treatment, BMP4 gene expression remained elevated in treated eyes 15

min into the recovery period (311 ± 68%, p< 0.01), but was no longer significantly elevated 2

h into the recovery period. As with BMP2 gene expression, the longer 48 h treatment duration

induced more enduring upregulation of BMP4 gene expression over the recovering period,

i.e., 258 ± 31% (p< 0.001) and 179 ± 23% (p< 0.05), at 15 min and 2 h respectively. In the

case of BMP7 gene expression and the 2 h treatment group, significant elevation was limited to

15 min into the recovery period (177 ± 34%, p< 0.05), while in the case of the 48 h treatment

group, BMP7 gene expression remained elevated up to 2 h into the recovery period

(192 ± 30%, p< 0.05).

Differential BMP gene expression during recovery from -10 D lens

treatment

With the -10 D lens worn for 2 or 48 h, BMP2 and BMP4 showed similar differential gene

expression patterns, both at the end of the two treatment periods and over the respective

recovery periods. Here also, BMP7 showed the smallest differential gene expression changes of

the three BMPs (Fig 5 and Table 3 and S1 File).

When the gene expression profiles for the -10 D lens groups are compared to those of the

+10 D lens groups, a number of differences are apparent, including the direction of initial gene

expression changes for the two -10 D lens groups (2 & 48 h), which is opposite to that

described for the +10 D lens groups. For BMP2 gene expression, downregulation in treated

Table 2. BMP gene expression in chick RPE after 2 or 48 h monocular +10 D lens treatment, and a post-treatment recovery period of up to 96 h.

2 h Treatment Recovery 48 h Treatment Recovery

BMP2 (%) BMP4 (%) BMP7 (%) BMP2 (%) BMP4 (%) BMP7 (%)

0 635 ± 185** 287 ± 57*** 176 ± 59* 739 ± 121*** 358 ± 59*** 140 ± 13*
15 min 664 ± 226** 311 ± 68** 177 ± 34* 377 ± 40*** 258 ± 31*** 141 ± 14*
2 h 101 ± 14 116 ± 30 166 ± 79 207 ± 33† 179 ± 23* 192 ± 30*
24 h 174 ± 39* 159 ± 33 146 ± 32 75 ± 15† 92 ± 10 112 ± 22

48 h 133 ± 29 132 ± 27 132 ± 23 72 ± 14† 86 ± 15 102 ± 12

96 h 138 ± 60 103 ± 31 106 ± 22 259 ± 108 157 ± 45 140 ± 41

Data reported as mean ratios (%) of expression in treated versus control eyes ± SEMs.

* p< 0.05

** p< 0.01

*** p< 0.001, † p = 0.07.

https://doi.org/10.1371/journal.pone.0311505.t002
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compared to contralateral fellow eyes was observed with the -10 D lens treatment, after both 2

and 48 h of lens wear (31 ± 8%, n = 10, p< 0.001; 23 ± 5%, n = 10, p< 0.001 respectively. Fig

5A). This pattern of downregulation also persisted for up to 15 min after removal of the -10 D

lens, for both the 2 h treatment group i.e. 37 ± 5% (n = 10, p< 0.01) and the 48 h treatment

group, i.e., 33 ± 6% (n = 9, p< 0.01). When allowed longer recovery, the direction of gene

expression changes reversed, with downregulation being replaced by upregulation by 2 h into

the recovery period, and persisting over a variable period, being more enduring with the lon-

ger initial treatment duration (Fig 5 and Table 3). Specifically, by 2 h into the recovery period,

gene expression was upregulated to 345 ± 109% (n = 8, p< 0.01) for the 2 h group, and to

728 ± 234% (n = 12, p< 0.01) for the 48 h group. However, gene expression upregulation was

short-lived for the 2 h treatment group, with treated and fellow eyes recording similar gene

expression levels 24 h into the recovery period (148 ± 42%, n = 10, p> 0.05). In contrast, for

the 48 h treatment group, significant gene expression upregulation was still apparent 24 and

48 h into the recovery period, i.e., 312 ± 83% (n = 10, p< 0.05) and 215 ± 69% (n = 13,

p< 0.01), respectively, although gene expression had normalized by 96 h into the recovery

period, when treated and fellow eyes recorded similar gene expression levels.

The differential gene expression patterns for BMP4 were very similar to those just described

for BMP2, for both 2 and 48 h lens treatment groups (Fig 5B and Table 3). Thus BMP4 gene

expression downregulation was observed after both 2 and 48 h of -10 D lens treatment, i.e.,

45 ± 10% (p< 0.05), and 49 ± 11% (p< 0.001), with downregulation persisting up to 15 min

after lens removal for both 2 and 48 h groups, i.e., 73 ± 8% (p< 0.05) and 54 ± 7% (p< 0.01)

respectively. Later into the recovery period, as observed with BMP2 gene expression, downre-

gulation in treated eyes was replaced by upregulation. Specifically, by 2 h into the recovery

period, gene expression had increased to 153 ± 17% (p< 0.05) and 280 ± 94% (p< 0.05), for

the 2 and 48 h treatment groups, respectively. For BMP4 and the 2 h treatment group, differen-

tial gene expression was not significantly altered beyond this recovery timepoint, e.g.,

138 ± 27% (p> 0.05), for the 24 h time point, while in contrast, for the 48 h treatment group,

BMP4 gene expression upregulation persisted out to 48 h into the recovery period, i.e.,

172 ± 34% (p = 0.05) at 24 h, and 175 ± 45% (p< 0.05) at 48 h, but was no longer detectible at

the 96 h timepoint.

In the case of BMP7, both 2 and 48 h treatment groups showed significant gene expression

downregulation, albeit smaller in magnitude than recorded for BMP2 and BMP4 (2 h:

71 ± 11%, p< 0.05; 48 h: 74 ± 10%, p< 0.01). Accordingly, gene expression upregulation over

the recovery period reached statistical significance only for the 48 h treatment group and 24 h

of recovery (118 ± 7%, p< 0.05).

Fig 5. Differential gene expression of BMP2 (A), BMP4 (B), and BMP7 (C) in chick RPE over a recovery period of up to 96 h, after 2 or 48 h monocular -10 D lens

treatment. * p< 0.05, ** p< 0.01, *** p< 0.001, ‡ p = 0.05.

https://doi.org/10.1371/journal.pone.0311505.g005
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Differential BMP gene expression during recovery from form-deprivation

treatment

The differential gene expression patterns for BMP2 and BMP4 recorded with the diffuser

(form-deprivation, FD) treatment are similar to those just described for the -10 D lens treat-

ment, for both 2 and 48 h treatment durations and across the recovery period (Fig 6 and

Table 4 and S1 File). On the other hand, subtle treatment-related differences in the BMP7 gene

expression profiles are apparent, with significant differential BMP7 gene expression changes

limited to the 48 h FD treatment group and just one recovery timepoint.

For BMP2, both 2 and 48 h of FD treatment resulted in gene expression downregulation in

treated compared to fellow eyes, i.e., to 27 ± 6% (n = 10, p< 0.01) and 12 ± 3% (n = 10,

p< 0.001) respectively (Fig 6A). Here also, as with the -10 D lens treatment, this downregula-

tion pattern was still evident 15 min after the removal of diffusers, for both 2 and 48 h treat-

ment groups, i.e., 47 ± 25% (n = 9, p< 0.01) and 30 ± 7%, (n = 11, p< 0.001) respectively.

Thereafter, the direction of BMP2 gene expression changed, with significant upregulation

recorded after 2 h of recovery, for both 2 and 48 h treatment groups, i.e., 315 ± 80% (n = 10,

p< 0.001) and 542 ± 176% (n = 9, p< 0.01), respectively. Beyond 2 h of recovery, persistent,

significant upregulation was only recorded for the 48 h treatment group, i.e., 296 ± 102%

(n = 12, p = 0.06) and 139 ± 15% (n = 12, p = 0.09), after 24 and 48 h of recovery respectively,

with gene expression normalizing in treated eyes by 96 h into the recovery period, i.e.,

Table 3. BMP gene expression in chick RPE after 2 or 48 h monocular -10 D lens treatment, and a post-treatment recovery period of up to 96 h.

2 h Treatment Recovery 48 h Treatment Recovery

BMP2 (%) BMP4 (%) BMP7 (%) BMP2 (%) BMP4 (%) BMP7 (%)

0 31 ± 8*** 45 ± 10* 71 ± 11* 23 ± 5*** 49 ± 11*** 74 ± 10**
15 min 37 ± 5** 73 ± 8* 108 ± 14 33 ± 6** 54 ± 7** 85 ± 10

2 h 345 ± 109** 153 ± 17* 170 ± 45 728 ± 234** 280 ± 94* 166 ± 52

24 h 148 ± 42 138 ± 27 120 ± 19 312 ± 83* 172 ± 34‡ 118 ± 7*
48 h 84 ± 17 90 ± 14 94 ± 8 215 ± 69** 175 ± 45* 178 ± 63

96 h 101 ± 16 96 ± 13 102 ± 13 383 ± 276 243 ± 144 206 ± 98

Data reported as mean ratios (%) of expression in treated versus control eyes ± SEMs.

* p< 0.05

** p< 0.01

*** p< 0.001
‡ p = 0.05.

https://doi.org/10.1371/journal.pone.0311505.t003

Fig 6. Differential gene expression of BMP2 (A), BMP4 (B), and BMP7 (C) in chick RPE over a recovery period of up to 96 h after 2 or 48 h monocular form-deprivation

treatment. * p< 0.05, ** p< 0.01, *** p< 0.001, ¶ p = 0.06, § p = 0.09.

https://doi.org/10.1371/journal.pone.0311505.g006
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124 ± 46% (n = 10, p> 0.05). For the shorter, 2 h treatment group, this pattern of upregulation

had disappeared by 24 h into the recovery period, i.e., 148 ± 38% (n = 12, p> 0.05).

In the case of BMP4, as with BMP2, both 2 h and 48 of FD treatment induced downregula-

tion, i.e. 68 ± 13% (p< 0.05) and 31 ± 6% (p< 0.001) respectively (Fig 6B). Likewise, the direc-

tion of BMP4 gene expression rapidly reversed after removal of the diffusers. After the 2 h

treatment, upregulation was recorded 15 min and 2 h into the recovery period, to 147 ± 92%

(p< 0.05) and 214 ± 28% (p< 0.01) respectively, while no significant differential gene expres-

sion was detected by 24 h into the recovery period (113 ± 24%, p> 0.05). After the longer, 48 h

FD treatment, downregulation persisted for 15 min into the recovery period, i.e., 80 ± 16%

(p< 0.05), being replaced by 2 h with significant upregulation, which persisted out to 48 h

into the recovery period, i.e. 301 ± 134% (p< 0.05), 186 ± 40% (p< 0.05), and 131 ± 12%

(p< 0.05) at 2, 24, and 48 h, respectively. No significant differential gene expression of BMP4

was observed at the last, 96 h recovery timepoint.

In the case of BMP7, significant differential gene expression changes were limited to the

longer 48 h FD treatment, and here only at the end of the treatment period and 15 min into

the recovery period, i.e., 56 ± 9% (p< 0.01) and 83 ± 14% (p< 0.05) respectively (Fig 6C).

Correlation between BMP2 gene expression and choroid thickness changes

during recovery

For the 2 h treatment groups, choroid thickness changes did not achieve statistical significance

for any of the three visual manupulations, +10 D, -10 D and FD, despite changes in BMP2

gene expression, which in all three cases, showed rapid normalizaton after their termination,

and in the case of the -10 D and FD treatments, overshoot (Fig 7A–7C). Of the three 48 h treat-

ment groups, the +10 D lens group stood apart, with both BMP2 gene expression levels and

choroid thickness tending to normalize over a similar time frame (Fig 7D). In contrast, for

both -10 D and FD treatments, BMP2 gene expression levels showed more dynamic changes

over the recovery period, increasing and then decreasing (Fig 7E and 7F), although only the

FD group showed significant overshoot in recovery-related choroid thickness changes, which

also lagged behind temporally, the gene expression changes (Fig 7F).

Table 4. BMP gene expression in chick RPE after 2 or 48 h monocular form-deprivation treatment and a post-treatment recovery period of up to 96 h.

2 h Treatment Recovery 48 h Treatment Recovery

BMP2 (%) BMP4 (%) BMP7 (%) BMP2 (%) BMP4 (%) BMP7 (%)

0 27 ± 6** 68 ± 13* 103 ± 12 12 ± 3*** 31 ± 6*** 56 ± 9**
15 min 47 ± 25** 147 ± 92* 158 ± 85 30 ± 7*** 80 ± 16* 83 ± 14*
2 h 315 ± 80*** 214 ± 28** 156 ± 28 542 ± 176** 301 ± 134* 205 ± 105

24 h 148 ± 38 113 ± 24 81 ± 11 296 ± 102¶ 186 ± 40* 133 ± 20

48 h 146 ± 52 98 ± 22 85 ± 16 139 ± 15§ 131 ± 12* 107 ± 9

96 h 95 ± 21 111 ± 25 110 ± 20 124 ± 46 149 ± 53 156 ± 56

Data reported as mean ratios (%) of expression in treated versus control eyes ± SEMs.

* p< 0.05

** p< 0.01

*** p< 0.001
¶ p = 0.06
§ p = 0.09.

https://doi.org/10.1371/journal.pone.0311505.t004
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Discussion

In our previous studies of chick RPE, we demonstrated robust, bidirectional regulation of

three BMP genes, BMP2, BMP4, and BMP7, with the direction of regulation changing in

accord with the sign of defocus [28, 29]. Specifically, BMP2 gene expression was upregulated

with imposed myopic defocus (imposed by positive lenses) and downregulated with hyperopic

defocus (imposed by negative lenses). With form-deprivation, which, along with imposed

hyperopic defocus, accelerates eye growth, BMP2 gene expression was also downregulated [30,

31]. In the case of all three visual manipulations, the induced changes in BMP gene expression

occurred rapidly. For example, with imposed myopic defocus, the induced upregulation of

BMP2 gene expression was detectable after as little as 15 minutes, before detectable changes in

axial length [30]. The minimum treatment duration inducing significant downregulation of

BMP2 gene expression with imposed hyperopic defocus and form-deprivation was 2 h, longer

than for imposed myopic defocus, albeit still relatively short [28–30].

The findings of the studies reported here confirm those of our previous studies, as summa-

rized above, specifically, that the expressions of both BMP2 and BMP4 genes are differential

and tightly regulated by the defocus status of the eye. This is despite the visual manipulations,

such as optical defocus, being limited to normal eyes in our earlier studies, while the current

study included eyes recovering from induced refractive errors and thus changes in one or

more of their ocular components, including the thickness of the choroid, which is immediately

adjacent to the RPE. Such differences might be expected to lead to altered or more complex

patterns of RPE BMP gene expression changes. Interpretation of gene expression changes over

the recovery periods, i.e., after the termination of the inducing treatments, is further compli-

cated by the relatively small and more labile nature of changes in eyes with induced myopia

compared to hyperopia. By way of example, with the +10 D lens worn for 48 h, hyperopia was

still detectible up to 2 h after its removal, i.e., into the recovery period. For the same 48 h treat-

ment, BMP2 gene expression was initially increased in the RPE of treated eyes, but then rapidly

declined within just 2 h of recovery, to be minimally elevated after 24 h. The early changes in

BMP2 mRNA levels in treated eyes, i.e., at 15 min and 2 h into the recovery period, presumably

reflect a combination of hyperopic defocus-induced downregulation of BMP2 gene expression

Fig 7. Relationship between BMP2 gene expression levels and ChT during recovery from +10 D (A, D), -10 D (B, E), and FD (C, F) treatments,

applied for 2 h (A-C) or 48 h (D-F). Relative BMP2 gene expression levels (treated/control eyes) are plotted (Y-axis on left), along with interocular

differences in ChT (Y-axis on right).

https://doi.org/10.1371/journal.pone.0311505.g007
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and degradation of recently synthesized mRNA. BMP2 mRNA levels continued to decline in

treated eyes to approximately match the levels in contralateral control eyes by 48 h into the

recovery period. Choroidal thickening, a product of the initially imposed defocus, was still

detectible 2 h into the recovery period, although continued to decline over time, such that the

choroids of treated eyes approximately matched in thickness, those of their fellows, 48 h into

the recovery period, in parallel with the normalization of gene expression. In the case of the

-10 D lens, both 2 h and 48 h of treatment resulted in detectible BMP2 gene expression down-

regulation in treated eyes, followed by upregulation in the recovery period, persisting for up to

48 h. The latter pattern is consistent with the robust nature of the response to myopic defocus,

originating in this case from the ocular dimensional changes induced by wearing a -10 D lens.

With the longer 48 h induction period, previously treated eyes would have experienced myopic

defocus for at least 2 h into the recovery period, and under these conditions, ChT returned to

normal within 2 h before slightly overshooting, i.e., increasing. That the effect of the initial

inducing lens treatment was to downregulate BMP2 gene expression also simplifies the picture

at a molecular level, there being no surplus BMP2 mRNA to degrade in this case. Thus the

data directly reflect altered gene expression. Similar patterns of BMP2 gene expression changes

over time were observed with the FD treatment, with similar explanations likely to hold.

Changes in both refractive errors and ocular dimensions consistent with recovery after the

termination of visual manipulations known to affect the former have been well documented

across a range of animal models including chicks, tree shrews, guinea pigs, marmosets and

monkeys [8, 16, 18, 32–43]. Thus in chicks, sufficiently long exposure to positive lenses induces

hyperopia, a byproduct of choroid thickening and slowed ocular elongation. In the absence of

the inducing lenses, the retinal experience of hyperopia triggers the opposite responses, choroi-

dal thinning and acceleration of ocular elongation, and ultimately normalizing ChT and axial

length dimensions, with the net myopic shift in refractive error ultimately correcting for the

induced refractive error [16]. Similarly, when myopia-inducing treatments, either negative

lenses or form depriving diffusers, are removed, the myopic defocus experienced by the retina

leads to choroidal thickening and slowed axial elongation, linked to hyperopic shifts in refrac-

tion [16, 32, 33]. Our working hypothesis for the experiments described here was that the

altered ocular growth patterns underlying the recovery of normal ocular dimensions are medi-

ated by the same retina-sclera signalling cascades involved in responses of previously untreated

eyes to lens-imposed defocus, with changes in BMP gene expression in the RPE serving as a

biomarker of the direction of growth changes [8, 23, 44–47]. Our findings are consistent with

this hypothesis, although examples of over-shoot in gene expression changes during recovery

from the changes induced by the +10 D lenses also hint at differences. In addition to the need

in the latter case to degrade overexpressed mRNA, the observed overshoot during recovery

may point to additional non-visual, developmental influences on the growth of the eyes, as

known for other organs of young animals, such as circulating growth hormones [8]. Among

previous investigations of myopia-inducing and recovery responses involving animal models,

various patterns of changes in gene and/or protein expression in the retina, RPE, choroid,

and/or sclera have been described [48–55]. Some of these studies suggested that myopia-

inducing and inhibiting signalling pathways may share little in common [20, 56].

The results of this study have potential clinical implications, assuming similar RPE gene

expression changes mediate defocus-mediated changes in choroidal thickness and/or ocular

growth changes in humans. Our recently reported finding of decreases in RPE-BMP2 gene

expression in young guinea pigs in response to imposed hyperopic defocus offers supporting

evidence for the generalizability of this finding [57]. Thus at a clinical level, that the gene

expression changes induced by imposed myopic defocus (i.e., with positive lenses) were more

enduring than those resulting from myopia-genic conditions (e.g., with negative lenses),
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supports as a strategy to slow myopia progression, regular interruption to near work activities,

at least for short periods, assuming lags of accommodation are a contributing driver [58]. The

success of clinical myopia control strategies that seek to impose myopic defocus on at least

part of the retina, for part of the day, e.g., using multifocal soft contact and orthokeratology

lenses, is also consistent with the findings reported herein [7].

In summary, our current study provides further evidence for dynamic, defocus-driven,

bidirectional regulation in chick RPE of BMP gene expression, with changes in BMP2 and

BMP4 genes within this BMP family being the most robust. Together with findings from our

previous studies in chick involving induced myopia and hyperopia, the directional consistency

of changes in gene expression within this BMP family, choroidal thickness and rates of ocular

elongation, with upregulation tied to choroidal thickening and slowed elongation, and vice

versa, further suggests roles for these growth factors, beyond serving as biomarkers of ocular

growth trends. Together, these studies provide strong supporting evidence for a role of RPE-

derived BMPs in eye growth regulation, which warrant follow-up investigations of their poten-

tial application as myopia control therapies.
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