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Abstract

The Impact of Electron–Hole Correlations on the Dynamics of Excitons and Biexcitons in
Semiconductor Nanomaterials

by

John Patrick Philbin

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Eran Rabani, Chair

The creation of novel technologies based on semiconductor nanomaterials relies on new in-
sights into the chemistry and physics of these confined systems. These insights will help
propel chemically synthesized semiconductor nanomaterials from a class of materials that
have been promised to revolutionize industries ranging from solar energy and carbon capture
to medicine and quantum computing to a commercially viable class of materials. A major
roadblock impeding nanomaterial-based applications is the lack of a detailed understanding
of the many–body interactions in nanomaterials, in particular the quasiparticle–quasiparticle
(e.g. quasielectron–hole, exciton–exciton) interactions are not well understood.

In this work, we enhance our understanding of quasiparticle–quasiparticle interactions in
confined semiconductor nanomaterials through the development of theories and computa-
tional methods capable of calculating observables in nanomaterials with hundreds to tens of
thousands of atoms. Furthermore, we apply these methods, often in close collaboration with
experimentalist, to nanomaterials ranging from quasi–0D single material quantum dots to
quasi–2D heterostructure nanoplatelets in order to test the accuracy of the formalisms and
improve our understanding of semiconductor nanomaterials.

In the introduction, a brief overview of semiconductor nanomaterials is given with a focus
on the impact that the size and shape have on the properties of the nanomaterial. The
important timescales and decay channels of excitons (i.e. bound quasielectron–hole pairs)
and biexcitons are reviewed in the introduction. In Chapter 2, we develop a new formal-
ism for calculating Auger recombination lifetimes, which is typically the dominant decay
channel of biexcitons in semiconductor nanomaterials. And we show that the inclusion of
quasielectron−hole correlations in the new, interacting formalism results in it being the first
quantitatively accurate formalism for calculating Auger recombination lifetimes for quantum
dots in both the strong and weak confinement regimes. Furthermore, we highlight how the
interacting formalism is the first theoretical method to postdict the experimentally known



2

“universal volume scaling law” for quantum dots in Chapter 2. In Chapter 3, we develop
a low–scaling approach based on the stochastic resolution of identity. We then elucidate
the shell thickness and band alignment dependencies of the biexciton Auger recombination
lifetime for quasi–type–II CdSe/CdS and type–I CdSe/ZnS core/shell quantum dots. We
find that the biexciton Auger recombination lifetime increases with the total nanocrystal
volume for quasi–type–II CdSe/CdS core/shell quantum dots and is independent of the shell
thickness for type–I CdSe/ZnS core/shell quantum dots. The impact that growing shells
with shorter lattice constants (CdS and ZnS) has on the emission energies of CdSe cores is
also discussed. In Chapter 4, we report on the size dependence of Auger recombination in
CdSe nanorods and that noninteracting formalisms are incapable of accurately predicting
Auger recombination lifetimes in nanorods. On the other hand, we show that our inter-
acting formalism is accurate in nanorods. We then utilize kinetic modeling to uncover a
competition between the kinetics of Auger recombination and charge separation in a hybrid
semiconductor–metal nanoparticle. Next, we discuss how the alloying of Zn into the CdS
shell can improve the optoelectronic properties of seeded nanorods. In Chapter 5, we ap-
ply the stochastic implementation of the interacting formalism to quasi–2D nanoplatelets.
We find that the Auger recombination lifetimes depend nearly linearly on the lateral area
and thickness of the nanoplatelet. We also connect these scalings to those of the area and
thickness dependencies of single exciton radiative recombination lifetimes, exciton coherence
areas, and exciton Bohr radii in these quasi–2D materials.
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Chapter 1

Introduction

1.1 Semiconductor nanomaterials
Semiconductors are ubiquitous in applications that involve either light emission or light
harvesting, including lasers, photodetectors, photovoltaic cells and light–emitting diodes.
Almost immediately following the discovery of semiconductor nanocrystals (NCs),10–12 the
potential of NCs to be a key material for the next generation of semiconductors was recog-
nized due to their optical and electronic properties being readily tunable by controlling the
size, shape and composition of the NC.13–15 A simple way to understand how the optical and
electronic properties of nanomaterials can be controlled by changing the size is by recalling
the results of a particle in a box. Specifically, the energy eigenstates of a particle in 1D box
of length L are

En =
n2π2~2

2mL2
(1.1)

where n is a positive index and m is the mass of the particle. Therefore, by changing the
length of the box (i.e. the size of the nanomaterial) one can continuously tune the energy
eigenstates. In other words, by changing the particle size one can tune the degree of quantum
confinement, and, as will be discussed in detail in future chapters, the size of the particle
also determines more exotic properties of the nanomaterial.3,14,16

In terms of the variety of semiconductor nanostructures, the simplest colloidal nanoma-
terials are those of quasi–0D quantum dots (QDs), quasi–1D nanorods (NRs), and quasi–2D
nanoplatelets (NPLs) made of a single material. The range of shapes, sizes, and compositions
of nanomaterials that have been synthesized is now very large, with complex heterostructures
of mixed dimensionality now commonly being synthesized (Figure 1.1).17–23 In this work,
a major focus will be on understanding the size and shape dependent properties of photo-
excited QDs, NRs, and NPLs (Figure 1.1). An interesting aspect of confined nanomaterials
that will not be discussed much in this work but is worth noting is that of the nanomaterial
surface.24,25 The size and shape dependent surface to volume ratios and surface curvatures
are known to have important consequences in both the optical and electronic properties of
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Figure 1.1: Pictorial representation of a colloidal quasi–0D quantum dot (bottom right),
quasi–1D nanorod (middle right), quasi–2D nanoplatelet (top left), and core/shell quantum
dot dimer (bottom left).

nanomaterials.26–30 In particular, surface traps (primarily hole traps for II–VI semiconductor
nanomaterials) can be very detrimental to the efficiency of nanomaterials (e.g. hole traps
reduce quantum yields).26–28,31,32

In terms of applications, chemically synthesized semiconductor nanomaterials have been
promised to revolutionize industries ranging from solar energy and carbon capture to medicine
and quantum computing.15 However, outside of QLED TVs and a few biological applica-
tions, a disconnect exists between the potential and practical utility of nanomaterials. This
disconnect exists due, in part, to a lack of a detailed understanding of the relationship
between the underlying atomic and quantum mechanical structure and the measured effi-
ciency and lifespan of nanomaterial–based solar cells, lasers, photodetectors, carbon capture,
bio-sensors, light–emitting diodes and quantum computers. This detailed understanding of
nanomaterials requires a deep and broad knowledge of physical chemistry, engineering and
quantum optics due to the length scales (single atom to greater than 100, 000 atoms) and
timescales (femtosecond to many years) relevant to nanodevices. In the following chapters,
the focus will be on II–VI semiconductors (with a primary focus on CdSe), but many of the
conclusions are generally applicable and can be applied to other nanosystems (e.g. III–V
semiconductors and the Pb–halide perovskites). Furthermore, the focus of this work is on the
decay of neutral excitations (i.e. excitons) that are central to nanomaterial–based applica-
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Figure 1.2: A scheme showing a direct band gap bulk material with parabolic bands. The
conduction band (electron states) is shown in red and the valence band (hole states) is shown
in blue. The band gap (Eg) is also labeled.

tions that require light–nanomaterial interactions (e.g. light–emitting diodes, photocatalyst,
and lasers).

1.2 Excitons in nanomaterials
Excitons are bound states of a quasielectron (a negatively charged quasiparticle hitherto
referred to simply as an electron) and a hole (a positively charged quasiparticle). Excitons
in inorganic semiconductors, such as the III–VI and II–VI semiconductors, typically have
binding energies on the order to 10 meV in bulk 3D materials and are referred to as Wannier
(or Wannier—Mott) excitons.33 Wannier excitons have exciton Bohr radii (aB,exc) that spread
throughout multiple unit cells, this is on contrast to Frenkel excitons for which the electron
and hole are localized to the same unit cell (i.e. very small aB,exc). Because this work focuses
primarily on confined II–VI semiconductors, the aim of this section will be to introduce
Wannier excitons.

In bulk 3D materials, Wannier excitons are often discussed in terms of a hydrogen–
like spectral series. This model of excitons is justified from a band structure perspective
and is widely used to understand excitons in bulk materials.34 From a band structure
perspective, if one analyzes the dispersion relation (energy versus the wavevector, k) of the
low–energy free–carrier (i.e. electron and hole) states it is often reasonable to perform a
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Figure 1.3: Schematic that shows uncorrelated (left) and correlated (right) electron–hole
pairs.

parabolic band approximation to describe these low energy excitations within an effective
mass approximation (Figure 1.2).34 Within this approximation, the electron (conduction
band) and hole (valence band) are modeled as negatively and positively charged particles
with effective masses, m∗e and m∗h, respectively. Thus, near the band–edge in the parabolic
band approximation,

Eck − Evk = Eg +
~2k2

2mc

− ~2k2

2mv

= Eg +
~2k2

2µ
, (1.2)

where µ is the reduced mass of the electron (m∗e = mc) and hole (m∗h = −mv) and Eg

is the band gap of the semiconductor.35 Eq. (1.2) can effectively model the low–energy
noninteracting (i.e. free–carrier) electron–hole states. The simplest way to take into account
the interaction between the electron and hole is to add a Coulomb attraction term to Eq.
(1.2). Doing this results in effective mass equation for Wannier excitons:(

p2

2µ
− e2

ε re-h

)
ψexc (re-h) = Ebψexc (re-h) . (1.3)

In Eq. (1.3), Eb = Eexc−Eg is the exciton binding energy, ψexc (re-h) is its wavefunction with
re-h = re−rh being the relative coordinate between the electron and hole, Eexc is the exciton
energy, and ε is the dielectric constant.35 The similarity of equation of Eq. (1.2) and that of
the hydrogen atom is immediately obvious. Although Eq. (1.2) does miss a few important
aspects of excitons,36,37 the take home message of Eq. (1.2) is that there is an attractive
Coulomb interaction between electrons and holes in semiconductors that causes correlations
between the particles (Figure 1.3). A focus of the following chapters will be to show how
these correlations drastically impact the dynamics of both excitonic and multiexcitonic states
in systems of reduced dimensionality.38

In confined systems (Figure 1.1), the interaction between electrons and holes is signif-
icantly larger than in bulk 3D materials. The enhanced interaction strength in confined
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Figure 1.4: Schematic showing the density of states (horizontal lines) of a colloidal nano-
material in which a high energy electron (red) and hole (blue) relax (i.e. cool) to form
a band–edge exciton (i.e. correlated electron–hole pair as shown by the dashed oval) via
phonon emission. This process typically occurs on a picosecond timescale.

systems arises from a multitude of reasons. In QDs, in which there is confinement in all
three dimensions, the electron and hole are forced next to one another by the confinement.
In NRs and NPLs, the reduced dimensionality results in a reduction in dielectric screening
compared to 3D bulk materials which increases the Coulomb attraction between electrons
and holes.39,40 Furthermore, the Coulomb interaction is stronger in systems with less than
three dimensions simply due to the geometry and the Jacobian (this is one reason that solv-
ing the hydrogen atom in three dimensions is easier than solving the hydrogen atom in lower
dimensions). The strong interaction between electrons and holes in confined systems makes
understanding their impact on measurable properties (e.g. emission energy) very relevant to
understanding the efficiency and rationally designing nanodevices.41

Generally speaking, excitons are central to many nanomaterial–based applications be-
cause the absorption (emission) of a photon by a nanomaterial results in the generation
(loss) of an exciton. Technically speaking, the absorption of a photon with an energy much
greater than the optical gap of the nanomaterial can be reasonably well modeled by the
creation of an unbound (i.e. uncorrelated) electron–hole pair (left hand side of Figure 1.4).
In nanomaterials, these high energy states relax (i.e. cool) to the band–edge of the material
with a timescale of approximately 1 ps. During the cooling process, the electron and hole
interact with one another and become correlated due to the strong electron–hole interactions
in reduced dimensionality systems, as discussed above (right hand side of Figure 1.4).
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In summary, the electron–hole interaction is the most common quasiparticle–quasiparticle
interaction in NCs. Its consequences range from exciton (a bound electron–hole pair) for-
mation due to the Coulomb attraction between the positively charged hole and negatively
charged electron39 to more exotic physics. For example, the Coulomb interaction between
the electron and hole has also been found to be responsible for the bypassing of the Marcus
inverted regime in charge transfer systems due to Auger–assisted charge transfer.42 In these
systems, a photon is absorbed by a NC which creates an electron and hole on the NC. Then,
the electron (hole) transfers to an electron (hole) accepting ligand and, in order to conserve
energy, the hole (electron) transitions into a higher energy state within the NC.42 This segues
into our introduction of biexcitonic states in nanomaterials, where Auger physics is of central
importance.41

1.3 Biexcitons in nanomaterials
A biexciton is a quasiparticle composed of two electrons and two holes (or, equivalently,
two excitons). To begin to understand the importance of biexcitons and how the lack of
understanding of quasiparticle–quasiparticle (exciton–exciton in this case) interactions is a
roadblock to nanomaterial–based technologies, we will focus this discussion on nanomaterial–
based lasers. Lasers are an important example of how this roadblock has impeded energy
efficient NC–based technologies. A major issue with traditional lasers is that one cannot
tune the wavelength (i.e. energy of the photons) of light emitted without using difficult and
energy inefficient conversion processes. In NC–based lasers, the conversion process is simple
and much more efficient: one just has to excite NCs which then naturally emits the desired
wavelength (size and composition of the nanomaterial can be readily tuned to emit desired
wavelengths, as discussed above).8,43–46 In fact, this property of NCs to be able to absorb
one color of light and efficiently emit a different color light is central to the energy efficiency
and color purity of current QLED TVs. Although this conversion process works well for
QLED TVs, it does not work well in NC–based lasers because in lasing the material must
be able to sustain population inversion – an arduous task for NCs. Population inversion
in semiconductor NCs can be readily achieved by absorbing two photons to generate two
excitons, but sustaining population inversion is the difficult part in NCs. A major part the
work presented here is the development of the first theoretical and computational method
capable of predicting quantitatively accurate timescales for which population inversion can
be achieved in nanomaterials.

Specifically, each chapter discusses the decay of biexcitonic states via Auger recombi-
nation along with the theoretical and computational methods required to predict and un-
derstand the lifetime of biexciton Auger recombination for nanomaterials of varying sizes,
shapes, compositions, and dimensionality. Auger recombination is the primary mechanism by
which multiexcitonic states decay in NCs. As the word Auger signifies, it is a Coulomb medi-
ated scattering process. In detail, Auger recombination is a process in which an electron–hole
pair recombines and transfers its energy to an additional quasiparticle (Figure 2.1). This fast
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decay channel for biexcitons has a sub–nanosecond timescale and prohibits the population
inversion required to make a NC–based laser, as discussed above. Details of how to calculate
biexcitonic states and their decay via Auger recombination will be discussed in detail in the
following chapters for semiconductor quantum dots (Chapter 2), core/shell quantum dots
(Chapter 3), nanorods (Chapter 4), and nanoplatelets (Chapter 5) along with the intricacies
that arise in each of these systems due to the dimensionality of the nanosystems.

1.4 Dissertation Objectives
The primary objective of this thesis is to enhance our understanding of electron–hole corre-
lations in semiconductor nanostructures along with the impact that these correlations have
on the decay of excitonic and multiexcitonic states through the development and application
of new theoretical and computational methods to semiconductor nanostructures of experi-
mental relevance. Secondary objectives of this thesis are to develop computationally efficient
algorithms to permit calculations of large nanostructures, validate these methods through
close collaboration with experimental groups, and elucidate design rules and principles for
nanomaterial–based applications.

A quick example of how these objectives are often intertwined with one another is a study
we performed on the attachment of CdSe QDs in close collaboration with the Alivisatos
group at UC Berkeley.31 The atomic attachment of QDs is required to form strongly coupled
QD dimers22 and superlattices.47 However, the Alivisatos group identified the formation of
many defects along the interface, some of which were found to be difficult to remove, using
in situ high–resolution transmission electron microscopy.31 To understand the electronic
consequences of these defects, we performed atomistic electronic calculations on CdSe QD
dimers with the identified defects at the interface. Figure 1.5 shows that both prismatic
stacking faults and edge dislocations result in hole traps at the interface. While the electron
remains delocalized throughout the dimer when electron–hole interactions are ignored in
both defects (panels C and G of Figure 1.5), the attractive Coulomb interaction between
the electron and hole results in the electron localizing around the edge dislocation (Figure
1.5H).31 This finding has important implications on the transport properties of attached
CdSe QDs. Specifically, hole transport should be drastically reduced in QD superlattices
with either prismatic stacking faults or edge dislocations whereas electron transport will be
less impacted by these defects unless holes are localized to edge dislocations as that would
result in electron localization as well. This short example of how electron–hole interactions
result in the trapping of the electron around the edge dislocation highlights how the inclusion
electron–hole correlations can qualitatively impact the conclusions of a calculation.

The major focus of this thesis is that of how electron–hole correlations impact the decay
of biexcitonic states, and the interconnectedness of the aforementioned objectives will be
evident throughout the detailed discussions of the nonradiative decay of biexcitonic states
via Auger recombination. As will be shown in Chapter 2, the development of a new com-
putational method for calculating the decay of biexcitonic states via Auger recombination
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Figure 1.5: Atomistic electronic structure calculations of attached CdSe quantum dots with
(A–D) a {112̄0} prismatic stacking fault and (E–H) a {112̄0} edge dislocation interfacial
defect. (A, E) The interface of the attached quantum dots are shown. (B, F) Single–particle
energy level diagrams (in eV) are shown with the Fermi energy (EF) shown with a dashed
line. Defect–related shallow and deep trap states are represented with orange and red lines,
respectively. (C, G, D, H) Electron (red) and hole (blue) probability densities for (C, G)
noninteracting (i.e. free–carrier) electron and hole states and (D, H) excitonic (i.e. correlated
electron–hole) states.

(which is often the dominant decay channel of biexcitonic states in semiconductor nano-
materials) that includes electron–hole correlations will be presented and thoroughly tested
against experimental measurements. Because the method presented in Chapter 2 becomes
too computationally demanding to be applicable to large nanomaterials, an efficient algo-
rithm with reduced computational cost relative to the algorithm utilized in Chapter 2 is
given in Chapter 3. We also take advantage of this efficient algorithm to learn how the
timescale of Auger recombination depends on the size and band alignment of core/shell
QDs in Chapter 3. In Chapter 4 we show that the electron–hole correlations that lead
to exciton formation (Figure 1.3) are critical to understanding biexciton Auger recombina-
tion in quasi–1D NRs. These findings have many practical implications to the efficiency of
nanomaterial–based applications. For example, we show how a semiconductor NR–metal
hybrid nanoparticle synthesized to perform multi–electron photocatalysis can be designed to
maximize the photocatalytic efficiency in multiexciton regimes in which Auger recombina-
tion typically dominates the dynamics. In Chapter 5, the results of two collaborative studies
with the Schaller and Talapin groups that investigate fundamental properties of excitons and
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biexcitons in quasi–2D NPLs are presented and discussed.
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Chapter 2

Quantum Dots

2.1 Auger recombination in quantum dots
The fast nonradiative decay of multiexcitonic states is a central process to many nanocrystal
(NC)–based applications.3,41 This nonradiative decay occurs primarily via Auger recom-
bination (AR) in which one electron–hole pair recombines by transferring its energy to an
additional charge carrier (Figure (2.1)). In some cases, such as light harvesting devices, AR
can limit performance by rapidly quenching the photoluminescence3,48–51 and, as discussed in
Chapter 1, destroying the population inversion required for NC–based lasers,52 while in other
cases, such as photodetectors,53 single photon sources54 and even for photocatalysis,55 it can
improve performance by providing a source of hot electrons. Therefore, developing a unified
framework to describe AR is important from both fundamental and applied perspectives.

In recent years, much effort has been put into – and much success obtained in – the de-
velopment of synthetic techniques and principles that result in NCs with rationally designed
AR lifetimes.41 The simplest and most well–known approach to increase the AR lifetime is
to synthesize giant NCs. This approach works well because the AR lifetime, τAR, in single–
material quantum dots (QDs) obeys the “universal volume scaling law” (i.e., τAR,QD ∝ V in
QDs).3,16,56,57 However, current theories predict a steeper scaling with the QD volume,58–60
signifying only a partial understanding of the AR process even in spherical, quasi–0D quan-
tum dots (QDs). In addition to controlling the AR lifetime by changing the system size,
many reports have found that an intelligent design of core/shell NCs with sharp or gradual
interfaces allows for the AR lifetimes in NCs to be tuned.60–66 In Chapter 3, we will discuss
the scaling of AR lifetimes in core/shell QDs in more detail.

The situation is somewhat more confusing for non–spherical NCs.4,5, 7–9,67–70 The AR
lifetime in quasi–1D nanorods (NRs) was reported to scale linearly with the length (L) of
the NRs (i.e., τAR,NR ∝ L), but this observation has not been derived from first princi-
ples. Recently, it was argued that the AR decay in PbSe NRs has a crossover from cubic
to bimolecular scattering as the length of the NR is increased,69 calling into question the
monotonic length dependence. Further complications arise from the difficulty to measure
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precisely the AR lifetimes5 and also to independently control the dimensions of NRs by cur-
rent synthetic techniques. In fact, it was shown that NRs of equal volume (but differing
diameters and lengths) can have AR lifetimes that differ by more than a factor of 2,68 but
whether this indicates a deviation from the volume scaling observed in QDs remains an open
question. In Chapter 4, we will address the scaling of AR lifetime in NRs in more detail.

Quasi–2D nanoplatelets (NPLs) appear to provide an example of the breakdown of the
volume scaling of AR lifetimes. First off, contradictory results have been reported for the
scaling of AR lifetimes with the lateral area (A). She et al. showed that the AR lifetimes
are independent of A,8 while recently it was argued to scale linearly with A, attributed to
collisions of excitons limited by their spatial diffusion.9 The scaling of the AR lifetime as a
function of the number of monolayers (MLs) was reported to obey a seventh power depen-
dence, τAR,NPL ∝ (ML)7 , in CdSe NPLs.9 This was rationalized by a simple noninteracting
effective mass model.9 In Chapter 5, we will address the scaling of the AR lifetime in NPLs
in more detail.

In order to simplify and better understand the size and dimensionality dependence of AR
lifetimes in NCs, a unified theoretical framework for calculating AR lifetimes in quasi–0D,
quasi–1D and quasi–2D nanostructures must be developed. Such a development has been
hampered by various factors, including limitations resulting from the enormous number
of excitonic and biexcitonic states in NCs as well as the difficulties in including electron–
hole correlation effects. Indeed, previous theoretical works have relied on a non–atomistic
model58,71 or a noninteracting electron–hole picture, thought to be suitable for strongly
confined systems.58–61,72,73 However, this approach fails to handle the continuous transition
from strong to weak confinement regimes as well as nanostructures that have both strong
and weak confinement along different dimensions (e.g., weakly confined along the NR axis
and strongly confined in the others).

In this chapter, we develop a unified approach for calculating AR lifetimes that is appli-
cable to all degrees of confinement. The approach is based on Fermi’s golden rule to couple
excitonic with biexcitonic states. Electron–hole correlations are explicitly included in the
initial biexcitonic states by solving the Bethe–Salpeter equation (BSE) to obtain correlated
electron–hole states which are then used to form the initial biexcitonic states. This proce-
dure captures most of the electron–hole correlation as the exciton binding energy is typically
an order of magnitude larger than the biexciton binding energy.74 Through a study of CdSe
QDs of varying dimensions, we show that our approach predicts AR lifetimes in quantitative
agreement with experiments whereas the noninteracting formalism often overestimates the
AR lifetimes by 1 − 2 orders of magnitude. The shorter AR lifetimes are a consequence of
electron–hole pair localization which increases the Coulomb coupling and thereby the AR rate
in the interacting formalism. By comparing the interacting and noninteracting formalisms
(Figure 2.1), we also make evident the importance of including electron–hole correlations for
the first theoretical postdiction of the observed volume scaling of the AR lifetime in QDs.
Interestingly, the transition to the regime where excitonic effects must be included for an
accurate AR lifetime calculation occurs at a surprisingly small diameter in CdSe QDs, below
the exciton Bohr radius of CdSe. Additionally, we explain the AR lifetime scaling behavior
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in terms of the scaling of the Coulomb matrix elements and the density of final states in
QDs. The method presented in this chapter is generally applicable to quasi–0D, quasi–1D,
quasi–2D and NC heterostructures, as will be demonstrated in the following chapters.

AR involves the coupling of an initial biexcitonic state (|B〉) of energy EB to a final
excitonic state (|S〉) of energy ES via the Coulomb interaction (V ). We utilize Fermi’s
golden rule to calculate the AR lifetime (τAR) where we average over thermally distributed
initial biexcitonic states and sum over all final decay channels into single excitonic states:

τ−1AR =
∑
B

e−βEB

ZB

[
2π

~
∑
S

|〈B |V |S〉|2 δ (EB − ES)

]
. (2.1)

In the above, the delta function δ (EB − ES) enforces energy conservation between the initial
and final states and ZB is the partition function for biexcitonic states. Note that throughout
this work when we compare to experimental values, we use a room temperature β for this
Boltzmann weighted average, but we do not include temperature fluctuations in our NC
configurations.75

A brute force application of Eq. (2.1) for nanostructures is prohibitive for several rea-
sons. First, there is currently no tractable electronic structure method for a fully–correlated
biexcitonic state and for excitonic states at high energies. Second, the number of initial and
final states that satisfy energy conservation increases rapidly with the system size. For these
reasons, computational and theoretical studies of AR in confined nanostructures have relied
on a noninteracting formalism to describe |S〉 and |B〉:58–61,71–73

|S〉(0) = a†aai |0〉 ⊗ |χS〉 (2.2)
|B〉(0) = a†baja

†
cak |0〉 ⊗ |χB〉 , (2.3)

where the superscript “(0)” signifies a noninteracting picture is used. In the above, a†a
and ai are electron creation and annihilation operators in quasiparticle state “a” and “i”,
respectively. The indexes a, b, c... refer to the quasiparticle electron (unoccupied) states and
i, j, k... refer to quasiparticle hole (occupied) states, with corresponding quasiparticle energies
εa and εi. In Eq. (2.3), |0〉 is the ground state and |χS〉 and |χB〉 are the spin parts of the
wavefunctions for excitons and biexcitons, respectively. Within the noninteracting formalism,
the excitonic and biexcitonic energies are given by E(0)

S = εa−εi and E(0)
B = εb−εj +εc−εk,

respectively. The AR lifetime takes an explicit form (see the Supporting Information of
Ref. 76 for a detailed derivation and discussion of the spin states studied herein) given by:(

τ
(0)
AR

)−1
=

2π

~Z(0)
B

∑
bckj

e−β(εb−εj+εc−εk)
∑
a

|Vback|2 δ (εb + εc − εk − εa)

+
2π

~Z(0)
B

∑
bckj

e−β(εb−εj+εc−εk)
∑
i

|Vijck|2 δ (εc − εj − εk + εi) . (2.4)

The first term on the right hand side (rhs) of Eq. (2.4) describes the decay of a negative
trion of energy εb + εc − εk into an electron of energy εa while one of the holes remains a
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Figure 2.1: Pictorial representations are shown for the electron channel of an Auger recom-
bination (AR) event in the noninteracting (left) and interacting (right) formalisms. The
black horizontal lines represent the discrete quasiparticle states of the semiconductor nanos-
tructures. The gray box in the interacting formalism represents the fact that the excitons
(correlated electron–hole pairs) are a linear combination of the quasiparticle states within
the box that were included in the BSE. Eg is the fundamental gap and Eopt is the optical
gap. |B〉(0) is the initial state in the noninteracting formalism (note that one of the holes is
a spectator and the AR process describes a negative trion, t−, decaying to an excited quasi-
electron state). |B〉 is the initial state in the interacting formalism composed of two excitons
and all 4 particles are involved in the AR process. The final states in both formalisms are
given by |S〉(0). The dashed line represents the Coulomb interaction.

spectator (we refer to this as the “electron channel” and it is shown pictorially on the left side
of Figure 2.1), and the second term on the rhs of Eq. (2.4) describes the decay of a positive
trion of energy εc − εj − εk into a hole of energy εi while one of the electrons remains a
spectator (we refer to this as the “hole channel”). The explicit form of the Coulomb coupling
is then given by:

Vrsut =

∫∫
φr (r)φs (r)φu (r′)φt (r′)

|r− r′|
d3r d3r′, (2.5)

where φs (r) are the quasiparticle states for electrons (s ∈ a) or holes (s ∈ i) and there is no
screening – consistent with Ref. 72 and Ref. 77.

As discussed in the introduction, the noninteracting approach is suitable for nanostruc-
tures in the very strong confinement regime, where the kinetic energy is large compared
to electron–hole interactions. This approach fails, as shown below, for system sizes in the
moderate to weak confinement regimes. The inclusion of electron–hole correlations is mainly
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of significance in the description of the initial biexcitonic states while for the final excitonic
states, the noninteracting framework seems suitable even for weakly confined structures,
since the final state describes a highly excited electron–hole pair, above their ionization en-
ergy. Therefore, we use a noninteracting description for |S〉 given by Eq. (2.2), but include
electron–hole correlations in the description of the initial biexcitonic state. Motivated by the
work of Refaely–Abramson et al.,77 we express the biexcitonic state as two spatially nonin-
teracting but spin–correlated excitons. This is justified since electron–hole correlations are
most significant within excitons as reflected by the larger exciton binding energy compared
to that of biexcitons.74 In our interacting approach the biexcitonic states take the form:

|B〉 =
∑
b,j

∑
c,k

cBb,jc
B
c,ka

†
baja

†
cak |0〉 ⊗ |χB〉 , (2.6)

where the coefficients cBb,j are determined by solving the Bethe–Salpeter equation (BSE),36
as detailed in Ref. 78. The excitonic energy is given by the noninteracting expression, while
the biexcitonic energy is now a sum of the exciton energies, each obtained from the BSE.
Within the interacting framework, the AR lifetime is given as a sum of electron–dominated
(shown pictorially on the right side of Figure 2.1) and hole–dominated contributions:

τ−1AR = 2π
~ZB

∑
B

e−βEB

∑
a,i

∣∣∣∣∣∑
b,c,k

cBb,ic
B
c,kVback

∣∣∣∣∣
2

δ (EB − εa + εi)

+ 2π
~ZB

∑
B

e−βEB

∑
a,i

∣∣∣∣∣∑
j,c,k

cBa,jc
B
c,kVijck

∣∣∣∣∣
2

δ (EB − εa + εi) , (2.7)

where there are coherent sums of the Coulomb matrix elements multiplied with the coeffi-
cients that were obtained by diagonalizing the Bethe–Salpeter Hamiltonian matrix. Due to
the presence of electron–hole interactions, all particles are involved in the AR process in the
interacting formalism. For further details regarding the theory and the derivations of the
above equations, please consult the Chapter 6 and Ref. 76.

For the implementation of the above frameworks, we chose the semi–empirical pseudopo-
tential method to model the quasiparticle states.79–82 And because we only need quasiparti-
cle states in specific energy ranges (near the band–edge for the initial biexcitonic states and
those that satisfy energy conservation for the final excitonic states), we utilize the filter–
diagonalization technique83,84 to obtain only the required electron and hole eigenstates.84
Electron–hole correlations were included in the interacting formalism by solving the BSE
within the static screening approximation, where the dielectric constant was taken from the
work of Wang and Zunger.80

For QDs, we calculated the AR lifetimes for seventeen wurtzite CdSe QDs with diameters
ranging from DQD = 2RQD = 1.2 nm (Cd20Se19) to DQD = 2RQD = 5.3 nm (Cd1358Se1360).
For completeness, we also calculated the fundamental and optical gaps for the CdSe QDs,
shown in Figure 2.2. The difference in the fundamental gap and optical gap is the exciton
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Figure 2.2: Energy gaps (in eV) for the seventeen CdSe QDs. The fundamental gap is shown
in blue solid squares and the optical gap is shown in red solid circles. The inset shows the
exciton binding energy (the energy difference between the fundamental and optical gaps)
which ranges from ∼ 500 meV for the smallest QDs to ∼ 150 meV for the largest QDs
studied here. For comparison, we also show the measured exciton binding energy (green
stars, Ref. 1) and calculations based on a semi–empirical pseudopotential model using a
perturbative scheme (maroon circles, Ref. 2).

binding energy and is in good agreement with previous studies.1,2 This suggests that (a) our
model is accurate enough to reproduce single– (fundamental gap) and two–particle (optical
gap) properties with the simplification of a uniform dielectric screening and (b) that our com-
putational machinery shows mild scaling with the system size, allowing a direct comparison
with experiments for realistic NC sizes.

Figure 2.3 displays the AR lifetimes obtained by using both the noninteracting (Eq. (2.4))
and interacting (Eq. (2.7)) formalisms along with experimental3–5 measurements of the AR
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Figure 2.3: AR lifetimes, τAR, for CdSe QDs as a function of the volume of the QD. Good
agreement is observed between the interacting formalism (green circles) and experimental
(blue squares: solid,3 vertical lines4 and horizontal lines5) AR lifetimes for all sizes. On
the other hand, the noninteracting formalism (red triangles) deviates from the experimental
values for QD volumes > 10 nm3. Power law fits, τAR = a× V b, are also shown for each of
the three sets of AR lifetimes.

lifetimes. It is clear that neglecting electron–hole correlations in the initial biexcitonic state
is only reasonable in the very strong confinement limit, where RQD � aB (where aB = 5.6 nm
is the exciton Bohr radius of CdSe).85 The noninteracting–based AR lifetimes increase too
rapidly as the volume of the QD increases compared to both the interacting formalism and
experimentally measured AR lifetimes.

Quantitatively, the computed scaling of the AR lifetime by the noninteracting formalism
is τ (0)AR,QD ∝ V 1.69, which is in contrast to the known volume scaling of the AR lifetime in
single material QDs.3 On the other hand, the volume scaling is accurately captured by the
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interacting formalism (τAR,QD ∝ V 0.99), and the overall agreement with the experiments is
remarkable. Recall that the previous theoretical studies using a noninteracting formalism
for the AR lifetime either studied QDs small enough that the noninteracting formalism
was able to relatively accurately predict the volume scaling of the AR lifetime72 or the
theories predicted a stronger dependence on the volume (∝ V 5/3 to V 2).58,59 We find that
the inclusion of electron–hole interactions has a larger influence on the hole channel than
the electron channel. Specifically, the scalings are τ (0)AR,e ∝ V 1.70 and τ

(0)
AR,h ∝ V 1.91 in the

noninteracting formalism and τAR,e ∝ V 1.24 and τAR,h ∝ V 0.80 in the interacting formalism
(Figure 2.5 and Figure 2.6, respectively). It is important to note that the scalings reported
for the electron and hole channels in the interacting formalism are not exactly those for a
trion (charged exciton) due to coefficients in Eq. (2.7); however, these scalings are in rather
good agreement with previous studies on the scaling of AR for negatively charged trions.59,86

To understand the origin of the volume scaling of the AR lifetimes for QDs, we start
with Fermi’s golden rule and, for simplicity, focus on the rate of decay to hot electrons via
the electron channel (similar arguments also hold for the hole channel) at zero temperature
(b = c ≡ ` = LUMO and j ≡ h = HOMO) in the noninteracting approach:(

τ
(0)
AR,e

)−1
=

2π

~
∑
a

|V`a`h|2 δ (ε` + ε` − εh − εa) , (2.8)

where ε` + ε` − εh = 2Eg equals two times the fundamental gap, Eg. The scaling of the
AR lifetime depends on the scaling of the final density of state and the Coulomb coupling.
The former scales linearly with the volume of the NC.87,88 Determining the scaling of the
latter is more involved. Naively, one would predict it to scale with R−1QD due to the Coulomb
potential. However, because the final hot electron state is highly oscillatory, reflecting the
high kinetic energy of the hot electron, and the initial biexcitonic state is slowly varying, the
leading term that scales as R−1QD vanishes. The next term, which can be obtained by invoking
the stationary phase approximation, scales as R−3QD.

58 Altogether, these arguments predict
an Auger lifetime that is proportional to the volume: τ−1AR,e ∝

∣∣R−3QD

∣∣2R3
QD ∝ R−3QD. Similar

arguments hold for the scaling of the Auger lifetime in the interacting formalism.
We find, as predicted, that the density of hot electrons and holes scales linearly with

the volume of the NCs (top panel, Figure 2.4) in both formalisms. However, the scaling of
the average Coulomb coupling squared shows significant deviations from the expected V −2
stationary phase result in the noninteracting formalism (∝ V −2.74), while in the interact-
ing formalism it scales as expected, ∝ V −1.99. These different scalings can be rationalized
by a more localized electron–hole wavefunction in the interacting case, due to the screened
Coulomb electron–hole attraction term in the BSE, leading to more overlap with the wave-
function of the hot electron.

Surprisingly, the noninteracting formalism shows pronounced deviations from the inter-
acting formalism for CdSe QDs with diameters as small as ∼ 2.5 nm, much smaller than the
exciton Bohr radius (aB = 5.6 nm for CdSe).85 This was a rather surprising result as all QDs
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Figure 2.4: The top half shows the density of states at the energy of the hot electron and
holes satisfying energy conservation for CdSe QDs as a function of the volume of the QD.
The hot electrons (holes) have energies approximately Eg above (below) the HOMO (LUMO)
in the noninteracting case and in the interacting formalism the hot electrons (holes) have
energies approximately Eopt above (below) the HOMO (LUMO). The bottom half shows the
average of the Coulomb couplings, 〈W 2〉, squared to the final states. The noninteracting
formalism results are shown as red triangles and the interacting formalism results are shown
as green circles. Power law fits, f (V ) = a× V b, are also shown for all sets.

studied here have RQD < aB, where electron–hole interactions are rather small compared to
the confinement kinetic energy (see inset in Figure 2.2).

Figure 2.5 shows the Auger recombination lifetime scaling for the electron channel in both
the interacting (red circles) and noninteracting (red triangles) formalisms. And Figure 2.6
shows the Auger recombination lifetime scaling for the hole channel in both the interacting
(blue circles) and noninteracting (blue triangles) formalisms. It is seen that the inclusion of
electron–hole correlations are important for both channels – having a larger impact on the
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Figure 2.5: AR lifetimes for the electron channel only, τAR,e, for CdSe QDs as a function of
the volume of the QD. The calculated lifetimes are shown for both the interacting (solid red
circles) and noninteracting (stripped red triangles) formalisms are shown. Power law fits,
τAR,e = a× V b are also shown for both formalisms.



20

10
0

10
1

10
2

QD Volume (nm
3
)

10
0

10
1

10
2

10
3

10
4

τ
A

R
,h

 (
p

s)

1.2 2.7 5.8

QD Diameter (nm)

Interacting

τ
AR,h

 ~ V
0.80

Noninteracting

τ
AR,h

 ~ V
1.91

Figure 2.6: AR lifetimes for the hole channel only, τAR,h, for CdSe QDs as a function of the
volume of the QD. The calculated lifetimes are shown for both the interacting (solid blue
circles) and noninteracting (stripped blue triangles) formalisms are shown. Power law fits,
τAR,h = a× V b are also shown for both formalisms.

hole channel. Additionally, the noninteracting based scaling of the hole channel (τAR,e,QD ∝
V 1.91) is steeper than that of the electron channel (τAR,e,QD ∝ V 1.70) which is consistent with
the findings from Ref. 66.

In conclusion, the interacting approach developed here for calculating AR lifetimes in
NCs provides a framework that is able to predict quantitatively accurate AR lifetimes in
QDs. Our interacting formalism is the first to postdict the experimentally observed linear
volume dependence of the AR lifetime in QDs. This result was rationalized by noting that
the matrix elements in AR lifetime calculations involve a product of the initial electron and
hole states; thus, taking into account electron–hole correlations will have a large impact in
regimes where the confinement energy is comparable or smaller than the exciton binding
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energy. Electron–hole correlations result in a localization of the pair, thereby, increasing
the Coulomb coupling between the initial and final states. Furthermore, the interacting
formalism outlined in this chapter constitutes a large step in bringing theoretical studies up to
speed with ability of experimentalists to measure AR lifetimes and, in general, multiexciton
dynamics. Our approach allows for direct comparisons and joint investigations between
theorists and experimentalists as it permits accurate theoretical calculations of AR lifetimes
for experimentally relevant nanostructures of any dimensionality and composition. It should
be noted that our framework assumes that the excitons scatter coherently; thus, systems
in which exciton diffusion is the rate limiting step are currently outside the scope of our
approach. In the following chapters, we apply this interacting formalism to study AR in
core/shell QDs (Chapter 3), NRs (Chapter 4), and NPLs (Chapter 5).
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Chapter 3

Core/Shell Quantum Dots

3.1 Auger recombination in type-I and quasi-type-II
core/shell quantum dots

The viability of many semiconductor nanomaterial–based applications relies upon the ability
to control multiexcitonic states.3,41 For example, in typical nanomaterial–based lasers, gener-
ating population inversion requires two excitons in the nanosystem and, thus, the properties
of the biexcitonic state determine, amongst other factors, the efficiency of the device.8,46,89,90
In fact, this is arguably the case for other applications such as light–emitting diodes89,91 and
photocatalysts.55 Therefore, understanding the properties of the biexcitonic state and its
decay channels in core/shell QDs is central to improving and further developing many light–
induced applications.

One of the major decay channels of the biexcitonic state is Auger recombination (similar
to exciton–exciton annihilation), which is a nonradiative process where an electron and hole
recombine and transfer their energy to a nearby electron or hole in a Coulomb mediated
process (Figure 3.1). Auger recombination is typically is the dominant decay channel of
biexcitons in semiconductor nanocrystals as it usually occurs on a sub–nanosecond timescale.

An aspect of biexciton Auger recombination that has drawn much attention over the years
is that of how the rate of biexciton Auger recombination decay depends on the size of the
nanocrystal.3,9, 16,59,68,76,92,93 For single material colloidal quantum dots (QDs), the linear
dependence of the biexciton lifetime with the QD volume has become known as the “universal
volume scaling law.”16 Although the size of a single material colloidal QD is a knob that can
be tuned to change the biexciton lifetime and, thus, the efficiency of nanodevices that rely on
biexcitonic states, changing the size also drastically impacts single exciton properties. On the
other hand, heterostructure nanomaterials have many experimentally tunable parameters,
including relative size and band alignments between the individual component materials,
that can be chosen to optimize the performance of nanodevices. For example, independently
tuning the shell thickness and band alignment has resulted in heterostructure nanocrys-
tals with near–unity quantum yields along with promising light–emitting diode and lasing
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Figure 3.1: (A) Schematic of an Auger recombination event. The initial biexcitonic state
is shown as two spatially uncorrelated excitonic states and the final states are shown as
unbound electron–hole pairs. The hole (electron) channel on the left (right) shows the hole
(electron) receiving a majority of the energy from the recombining exciton. (b) Schematic
of the quasi–type–II nature of CdSe/CdS core/shell quantum dots and the type–I nature
of CdSe/ZnS core/shell quantum dots. Projected electron (red) and hole (blue) probability
densities are shown on top of the band alignment scheme to highlight the differences in
electron localization between the two systems.

properties.23,56,89,91,94–96 Interestingly, there have been multiple reports that the “universal
volume scaling law” does not apply to core/shell QDs.6,60,63,91,97–99 Although, significant
theoretical progress has been made,65,100 particularly on the impact of the sharpness of the
core/shell interface on biexciton lifetimes,61 a quantitatively accurate atomistic electronic
structure method has not yet been developed for heterostructure nanomaterials due to the
inherently large nature of heterostructure nanosystems and the steep scaling with system
size of computing Auger recombination lifetimes.

With this difficulty in mind, we report an efficient, stochastic method for calculating
biexciton Auger recombination (AR) lifetimes within Fermi’s golden rule suitable for large
heterostructure nanosystems and apply it to elucidate the shell thickness dependence of
AR in quasi–type–II CdSe/CdS and type–I CdSe/ZnS core/shell QDs (Figure 3.1). The
stochastic approach, which also accounts for electron–hole correlations, reduces the scaling
with the system size (N) of calculating AR lifetimes from O (N5) to O (N2) and predicts
quantitatively accurate AR lifetimes in comparison to experiments. Additionally, the AR
formalism predicts that adding a shell with a quasi–type–II band alignment (CdSe/CdS
QDs) results in an increase in the AR lifetime, in agreement with previous experimental
and theoretical results,6,60,64,99,100 whereas the addition of a shell with a strictly type–I band
alignment (CdSe/ZnS QDs) has little impact on the AR lifetime. Lastly, we explain the shell
thickness dependencies of the AR lifetimes in terms of the size dependencies of the root–
mean–square exciton radius, Coulomb coupling, and density of final states in quasi–type–II
CdSe/CdS and type–I CdSe/ZnS core/shell QDs.



24

AR is a Coulomb mediated process for which an initial biexcitonic state (|B〉) of energy
EB decays into a final excitonic state (|S〉) of energy ES via Coulomb scattering (V ). An
AR lifetime (τAR) for a nanomaterial can be calculated using Fermi’s golden rule where
we average over thermally distributed initial biexcitonic states and sum over all final decay
channels into single excitonic states:

τ−1AR =
∑
B

e−βEB

ZB

[
2π

~
∑
S

|〈B |V |S〉|2 δ (EB − ES)

]
. (3.1)

In the above, the delta function (δ (EB − ES)) enforces energy conservation between the ini-
tial and final states and the partition function (ZB =

∑
B e
−βEB) is for the initial biexcitonic

states (we assume Boltzmann statistics for biexcitons). Utilizing the interacting framework,
previously developed by Philbin and Rabani,76 a deterministic calculation of an AR lifetime
can be performed using

τ−1AR =
2π

~ZB

∑
B

e−βEB

∑
a,i

∣∣∣∣∣∑
b,c,k

cBb,ic
B
c,kVabck

∣∣∣∣∣
2

δ (EB − εa + εi) (3.2)

+
2π

~ZB

∑
B

e−βEB

∑
a,i

∣∣∣∣∣∑
j,c,k

cBa,jc
B
c,kVijck

∣∣∣∣∣
2

δ (EB − εa + εi) ,

where the indices a, b, c... refer to the electron (unoccupied) states, i, j, k... refer to the hole
(occupied) states with corresponding energies εa and εi, r, s, u... are general indices, and Vrsut
is the Coulomb coupling given by

Vrsut =

∫∫
φr (r)φs (r)φu (r′)φt (r′)

|r− r′|
d3r d3r′. (3.3)

The coefficients (cBc,k) in Eq. (3.2) are determined by solving the Bethe–Salpeter equation.36
For more details, please consult Ref. 76. The above formalism includes spatial correlations
within the electron–hole pairs but ignores them between the two excitons77 and in the final
electron–hole pair (Figure 3.1). This approximation for the final state is valid in a majority
of nanomaterials as the energy of the final electron–hole pair is approximately twice the
optical gap, which is well above the typical exciton binding energy in all semiconductor
nanomaterials.71 In other words, the criteria for being able to approximate the final high
energy excitonic state as an uncorrelated electron–hole pair instead of a Wannier or Frenkel
exciton is that Eopt � Eb, where Eopt is the optical gap and Eb is the exciton binding energy.
It was previously shown and discussed in Chapter 2 that this interacting (i.e. exciton–based)
AR formalism (Eq. (3.2)) predicts quantitively accurate AR lifetimes for both single material
QDs and nanorods.76 On the other hand, noninteracting formalisms that ignore all electron–
hole correlations in the initial biexcitonic state predict neither accurate AR lifetimes nor
the scaling of the lifetimes with respect to QD volume except for QDs in the very strong
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confinement regime72 — highlighting the importance of electron–hole correlations and the
resulting Wannier exciton formation in semiconductor nanomaterials.76

The main drawback of the exciton–based (interacting) AR formalism for calculating AR
lifetimes (Eq. (3.2)) is the computational cost. Formally, the steepest scaling involved in
Eq. (3.2) is diagonalization of the Bethe–Salpeter Hamiltonian to obtain the coefficients
(cBc,k), which formally scales as O (N6). However, in practice this takes less than 10% of the
computational time for nanomaterials with ≤ 10, 000 atoms because only a few low–lying
energy states are required in order to calculate the AR lifetime due to the Boltzmann factors
in Eq. (3.2). The majority of the computational time is spent on calculating all of the
Coulomb matrix elements, Vabck and Vijck, that couple the initial biexcitonic states with the
final electron–hole pairs. The number of Coulomb matrix elements that must be calculated
scales as O (Ne,finalN

2
eNh +Nh,finalN

2
hNe) ∼ O (N4), where Ne(h),final is the number of high

energy final electron (hole) states and Ne(h) is the number of band–edge electron (hole)
states, and the cost of calculating each Coulomb matrix element scales with the number of
real–space grid points (Ngrid) as O (Ngrid lnNgrid) to give the overall scaling of O (N5). This
limits the application of Eq. (3.2) to relatively small systems (≤ 1, 000 atoms).

To reduce the computational effort and scaling of the rate limiting step, we employ a
plane–wave stochastic representation of the Coulomb operator:101

Vrsut ≈
〈
Rζ
rsR

ζ
ut

〉
ζ

(3.4)

where the notation 〈...〉ζ denotes an average over Ns stochastic orbitals (defined below),

Rζ
rs =

∫
φ∗r (r)φ∗s (r) θζ (r) d3r, (3.5)

and θζ (r) is a stochastic representation of the Coulomb integral given by

θζ (r) =
1

(2π)3

∫
dk
√
ũC (k) eiϕ(k) eik·r. (3.6)

In the above equations, ϕ (k) is a random phase between 0 and 2π at each k–space grid
point, ũC (k) = 4π

k2
is the Fourier transform of the Coulomb potential, and the stochastic

orbitals (θζ (r)) are indexed by ζ. By inserting Eq. (3.4) into Eq. (3.2), we obtain

τ−1AR = τ−1AR,e + τ−1AR,h (3.7)

τ−1AR,e =
2π

~ZB

∑
B

e−βEB

∑
a,i

〈∑
b

cBb,iR
ζ′

ab

∑
c,k

cBc,kR
ζ′

ck

〉∗
ζ′

〈∑
b

cBb,iR
ζ
ab

∑
c,k

cBc,kR
ζ
ck

〉
ζ

δ (EB − εa + εi)

τ−1AR,h =
2π

~ZB

∑
B

e−βEB

∑
a,i

〈∑
j

cBa,jR
ζ′

ij

∑
c,k

cBc,kR
ζ′

ck

〉∗
ζ′

〈∑
j

cBa,jR
ζ
ij

∑
c,k

cBc,kR
ζ
ck

〉
ζ

δ (EB − εa + εi) ,
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where τAR,e and τAR,h are the lifetimes for the electron and hole channels, respectively (Figure
3.1). The calculation of an AR lifetime using Eq. (3.7) scales as O (N3).

To further reduce the computational scaling and complexity, we utilize the stochastic
resolution of the identity102,103 within the subspace of the final high energy electron and hole
parts of the Hamiltonian. In simpler terms, we sample the final high energy electron and hole
states in order to reduce the scaling with number of final excitonic states. Thus, we arrive
at a general expression for calculating AR lifetimes of semiconductor nanomaterials using an
efficient, doubly stochastic formulation of the interacting (exciton–based) AR formalism

τ−1AR = τ−1AR,e + τ−1AR,h (3.8)

τ−1AR,e =
2π

~ZB

∑
B

e−βEB

〈〈∑
b

cBb,iAR
ζ′

θAb

∑
c,k

cBc,kR
ζ′

ck

〉∗
ζ′

〈∑
b

cBb,iAR
ζ
θAb

∑
c,k

cBc,kR
ζ
ck

〉
ζ

〉
A

τ−1AR,h =
2π

~ZB

∑
B

e−βEB

〈〈∑
j

cBaI ,jR
ζ′

θIj

∑
c,k

cBc,kR
ζ′

ck

〉∗
ζ′

〈∑
j

cBaI ,jR
ζ
θIj

∑
c,k

cBc,kR
ζ
ck

〉
ζ

〉
I

,

where the indices θA, iA and aI , θI in Eq. (3.8) are sampled final states from the complete
set of single excitonic states (a, i pairs) in Eq. (3.7). Energy conservation in Eq. (3.8) has
been taken into account when forming the stochastic orbitals that sample the final excitonic
states, namely, we only sample states that preserve energy. The computational cost of Eq.
(3.8) is O (N2). This scaling does assume that the number of stochastic orbitals required to
properly converge the calculations does not increase with the system size, which has shown
to be true for a variety of electronic structure methods.88,102–105 Another beneficial feature of
Eq. (3.8) is that it is embarrassingly parallel over all sets of stochastic orbitals. The speedup
that arises from using Eq. (3.8) instead of Eq. (3.2) ranges from ∼ 5 for QDs with 1, 000
atoms to greater than 1, 000 for QDs with 10, 000 atoms. This speedup made the study of
the large core/shell QDs presented in the remainder of this chapter possible.

We have implemented the above equations using the semi–empirical pseudopotential
method to model the electron and hole states.72,79–81 We utilized the filter–diagonalization
technique83,84 to selectively calculate the low energy electron and hole states required to
accurately describe the excitonic states that compose the initial biexcitonic state and the
high energy electron and hole states that satisfy energy conservation. The Bethe–Salpeter
equation36 was solved within the static screening approximation. And all electronic structure
calculations were performed using the minimum energy atomic configuration obtained via
molecular dynamic minimization106 of the heterostructure QDs. This computational scheme
has been shown to predict quantitatively accurate single excitonic properties (e.g. optical
gap and emission polarizations) and accurately takes into account the important effects of
strain in heterostructure nanomaterials that arise from the lattice mismatch between core
and shell materials.23,95

Figure 3.2 displays the calculated AR lifetimes using Eq. (3.8) for the dcore = 3.8 nm
CdSe/CdS QDs along with the experimentally measured AR lifetimes6 and AR lifetimes
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CdSe core diameter of 3.8 nm and varying number of CdS shell monolayers.

calculated using a noninteracting, free carrier–based formalism.72 Quantitative agreement
with the experimental measurements on similarly sized CdSe/CdS QDs is observed when Eq.
(3.8) is used. It is important to note that all of the core/shell QDs studied in this work have
sharp core/shell interfaces.99 In other words, there is no alloying region between the core and
shell materials that is known to have important consequences on AR lifetimes.61,63,65 The
quantitative agreement shows the generality of the interacting (exciton–based) AR formalism
for predicting quantitatively accurate AR lifetimes in nanomaterials. It is worthwhile to note
that a noninteracting (free–carrier based) AR formalism predicts incorrect AR lifetimes in
core/shell QDs, similar to the single material case.76



28

0

50

100

150

τ
A

R
 (

p
s)

CdS Shell
ZnS Shell

0 1 2 3 4 5 6 7 8
Number of Shell Monolayers

0.8

1.0

1.2

1.4

1.6

r e-
h
 (

n
m

)

CdS Shell
ZnS Shell

Figure 3.3: Auger recombination lifetimes (top) and root–mean–square exciton radii (re-h =√
〈r2e-h〉), bottom) of CdSe/CdS (green) and CdSe/ZnS (blue) core/shell quantum dots as a

function of the number CdS and ZnS shell monolayers, respectively, for a CdSe core diameter
of 2.2 nm.

Figure 3.3 summarizes a main result of this work. The top panel of Figure 3.3 compares
calculated AR lifetimes for CdSe cores with a diameter of 2.2 nm (dcore = 2.2 nm) as a
function of the number of shell monolayers (MLs) for both CdS and ZnS from 0MLs to up to
8 MLs. This constitutes a range of nanocrystal sizes from approximately 200 atoms (VQD ∼
5 nm3) to nearly 10, 000 atoms (VQD ∼ 350 nm3). Figure 3.3 highlights the dramatically
different impact that growing a quasi–type–II shell (CdS) has on the AR lifetime compared
to growing a type–I (ZnS) shell on a QD core (CdSe). Specifically, the addition of more and
more CdS MLs leads to the AR lifetime increasing from ∼ 5 ps for the 0 ML QD to ∼ 35 ps
and ∼ 150 ps upon addition of 4 and 8 MLs of CdS, respectively, for the dcore = 2.2 nm
CdSe QD core. On the other hand, for the same CdSe core, the addition of 4 and 8 MLs of
ZnS does not lead to an increase in the AR lifetime.

In order to understand the vastly different shell thickness dependencies of the AR life-
times between CdSe/CdS and CdSe/ZnS QDs, we plot the root–mean–square exciton radius
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(
√
〈r2e-h〉 where re-h is the electron–hole radial coordinate)107 as a function of the number of

shell MLs for both series of core/shell QDs in the bottom panel of Figure 3.3. For CdSe/CdS
QDs, the root–mean–square exciton radius systematically increases with the number of shell
MLs. On the other hand, for CdSe/ZnS QDs there is an increase upon adding the first ZnS
layer, but then the addition of more and more ZnS MLs barely changes the root–mean–square
exciton radius. Specifically, the root–mean–square exciton radius increases from 1.11 nm to
1.46 nm upon going from 4 MLs to 8 MLs of CdS but only increases from 1.08 nm to 1.14 nm
upon going from 4 MLs to 8 MLs of ZnS for the same dcore = 2.2 nm CdSe core (bottom
panel of Figure 3.3).

These different dependencies of the AR lifetime and root–mean–square exciton radius
with shell thickness are a direct consequence of the quasi–type–II6,78 and type–I nature of
the CdS and ZnS shells, respectively. Figure 3.4 shows the hole and electron carrier densities
of the lowest energy excitonic state (i.e. electron–hole interactions have been included)
projected onto the x–axis of the core/shell QDs for the dcore = 2.2 nm CdSe QD cores with
0 MLs, 4 MLs and 8 MLs of shell. For CdSe/CdS (left panels of Figure 3.4), the quasi–type–
II nature can be observed as the projected hole density remains confined to the CdSe core for
all shell thicknesses while the electron density continuously spreads out into the CdS shell. In
contrast, both the hole and electron densities remain confined to the CdSe core in CdSe/ZnS
core/shell QDs, highlighting the type–I band alignment of CdSe/ZnS core/shell QDs (right
panels of Figure 3.4). The impact of the electron spreading out into the CdS shell and, thus,
increasing the root–mean–square exciton radius in larger CdS shell nanocrystals leads to a
decrease in the Coulomb coupling involved in AR calculations. This result can be understood
by noting that the larger the electron and hole wavefunctions overlap the larger the Coulomb
matrix elements, as the product φc (r′)φk (r′) where φc (r′) and φk (r′) are wavefunctions for
an initial electron and hole, respectively, arises in the Coulomb coupling (Eq. (3.3)).

The type–I band alignment of CdSe/ZnS core/shell QDs results in the addition of ZnS
MLs barely changing the root–mean–square exciton radius and not increasing the AR life-
time. Surprisingly, the AR lifetimes for all CdSe/ZnS core/shell QDs are slightly shorter,
with lifetimes of ∼ 2 ps, compared to the ∼ 5 ps AR lifetime for the bare CdSe core (Figure
3.3). To elucidate whether or not the compressive strain of the ZnS shell causes the decrease
of the AR lifetime, we performed AR lifetimes calculations on strained CdSe cores. Specifi-
cally, we performed molecular dynamics based structural minimizations with ZnS shells and
then removed the ZnS shells before performing the electronic structure calculations. This
procedure resulted in compressively strained CdSe QDs,23 where the degree of compressive
strain was related to the number of ZnS MLs that were present during molecular dynamics
minimization (Table 6.6). Our calculations on this series of CdSe QDs show that the AR
lifetime decreases from ∼ 5 ps to ∼ 2 ps upon increasing the strain on the CdSe QD (Table
6.7). Interestingly, the AR lifetime decreasing by ∼ 250% upon adding strain to the CdSe
QD is much greater than would be expected due to just a volumetric change as the compres-
sive strain only changes the CdSe QD volume by ∼ 10%. We were able to trace the decrease
of the AR lifetime to a decrease in the hole channel AR lifetime. Furthermore, the decrease
of the hole channel AR lifetime was caused by an increase in the average Coulomb coupling
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Figure 3.4: Hole and electron carrier densities of the lowest energy excitonic state for a series
of shell thicknesses for CdSe/CdS and CdSe/ZnS core/shell QDs with a CdSe core diameter
of 2.2 nm.

matrix elements (Vijck) of the hole channel and not by any substantial changes in the density
of final states (Table 6.8). Thus, it appears that the hole channel is more sensitive to stress
induced structural changes. And this suggests it is worthwhile to perform more comprehen-
sive studies on the impact of strain on AR lifetimes, as strain may be playing a role in other
nonmonotonic dependencies of AR in core/shell nanomaterials.98 That being said, we do
note that this is a rather small change of the AR lifetime and experimental confirmation of
this decrease in the AR lifetime upon ZnS shell growth on QDs would likely be impeded by
inhomogeneous broadening and alloying of the core/shell interface.

The goals of this chapter were to elucidate how biexciton Auger recombination in col-
loidal core/shell QDs can be accurately modeled and efficiently computed, and to uncover
some of the underlying physics of excitons and biexcitons in core/shell QDs by testing dif-
ferent approximations. In order to achieve these goals, we developed a stochastic com-
putational scheme for calculating the nonradiative decay rate of biexcitonic states. This
efficient, stochastic method for calculating Auger recombination lifetimes presented in this
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chapter is general and can be used for any confined nanomaterial. In fact, we utilize it
in Chapter 5 to calculate Auger recombination lifetimes in CdSe NPLs. We also utilized
this efficient method for calculating quantitatively accurate biexciton Auger recombination
lifetimes within an interacting (exciton–based) formalism to elucidate the different impact
of growing quasi–type–II (CdS) and type–I (ZnS) shells on QD cores (CdSe). Specifically,
we showed that the Auger recombination lifetime monotonically increases as the number of
quasi–type–II shell monolayers increases whereas the Auger recombination lifetime is mainly
unchanged upon the addition of type–I shells.

3.2 Impact of strain in core/shell nanomaterials
The importance of strain in core/shell QDs has been discussed in detail in many papers.108,109
The lattice mismatch between CdSe and CdS causes strain in both lattices in their het-
erostructures. An interesting finding is that if one begins with a CdSe core and grows a
CdS shell around the CdSe core that the shape (i.e. dimensionality) of the CdSe core qual-
itatively changes the impact that strain has on the emission energy (i.e. optical gap).23 A
comparative study between CdSe/CdS QDs and CdSe/CdS NPLs highlights how growing a
quasi–type–II shell (Figure 3.1) with a smaller lattice constant (the lattice constant of CdS
is approximately 10% smaller than that of CdSe) impacts the emission energy.

To gain quantitative insights on the interplay of strain and confinement in QDs and
NPLs, we have calculated the lowest excitonic state for a series of CdSe/CdS core/shell
QDs (3.5 nm diameter CdSe cores) and NPLs (4 ML thick CdSe cores) with different shell
thicknesses. Calculations were performed within the semi–empirical pseudopotential model
combined with a static approximation to the Bethe−Salpeter equation with a dielectric
constant of ε = 6.78 To this end, we first compared the experimental emission energies with
the optical gaps from our calculations for a series of core/shell CdSe/CdS QDs and NPLs
with thicknesses ranging from 0 MLs to 4 MLs. In these calculations, we first built the
heterostructures with the lattice constant of CdSe and then minimized the structure using
molecular dynamics to obtain the lowest energy configuration (details of the configurations
are given in Chapter 6). We found that the calculated optical gap of the 3.5 nm CdSe QD
was 2.20 eV for 0 ML CdS, which reduced down to 2.11 eV after addition of a 4 ML thick CdS
shell; the red–shift of 97 meV (Figure 3.5) is in quantitative agreement with the experimental
results.23 Similarly, we found good agreement with experiments for nCdS/4CdSe/ nCdS
NPLs; the optical gap red–shifted by 446 meV when going from n = 0 to n = 4 , where n is
the number of CdS shell MLs.23

In order to disentangle the contributions from strain and carrier delocalization, we per-
formed molecular dynamics (MD) based minimization with 4 MLs of CdS and then removed
the CdS shell before performing the electronic structure calculation. In other words, we
performed calculations of just the CdSe cores but for the atom positions as if there were
a 4 ML thick CdS shell, and these data points are labeled as “strained QD” and “strained
NPL” in Figure 3.5. These structures would, thus, not be able to delocalize the carrier wave
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Figure 3.5: Calculated optical gaps of 4 ML CdSe NPLs and 3.5 nm diameter CdSe QDs as
a function of the number of monolayers of CdS shell.

functions into the shell, but will have the influence of the strain induced onto the CdSe core
by the shell. Expectedly, the isotropic strain in core/shell QDs resulted in a compression
of the core in all dimensions, whereas the anisotropic strain in the NPL resulted in less
compression because the CdSe can expand in the axial direction (Table 3.1).

Specifically, we calculated averaged lattice constant along the lateral plane (ax and ay)
and axial (az) dimensions for both the CdSe core in the CdSe/CdS QDs and NPLs after MD
minimization. The results of this analysis are shown in Table 3.1. We find that, as expected,
ax = ay = az for these zinc blende QDs and ax = ay 6= az for these zinc blende NPLs.
For the QDs, the lattice constants monotonically decrease with increasing number of CdS
MLs; this is the expected result for isotropic shell growth. The percent change of the CdSe
lattice constants relative to CdSe only (i.e. 0 MLs of CdS) range from −1.2% to −1.5%.
For the NPLs, we the MD minimization captures both the axial expansion and the lateral
area compression that is seen in the experiments. The axial expansion can be seen by the
increasing az values and positive percent changes given in Table 3.1 for increasing number
of CdS shell MLs. The percent changes for the axial expansion do seem to be smaller for
the MD minimization relative to the experimental values.23 The MD predicted lateral area
lattice constant decrease by ∼ 2.3% for all CdSe/CdS NPLs shell thicknesses (Table 3.1).
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CdS MLs ax ay az
QD NPL QD NPL QD NPL

0 6.05 6.06 6.05 6.06 6.05 6.065
1 5.98 (-1.2%) 5.92 (-2.2%) 5.98 5.92 5.98 (-1.2%) 6.13 (1.3%)
2 5.97 (-1.3%) 5.92 (-2.3%) 5.97 5.92 5.97 (-1.3%) 6.13 (1.4%)
3 5.97 (-1.4%) 5.91 (-2.3%) 5.97 5.91 5.97 (-1.4%) 6.14 (1.5%)
4 5.96 (-1.5%) 5.91 (-2.4%) 5.96 5.91 5.96 (-1.5%) 6.15 (1.7%)

Table 3.1: Lattice constants of the CdSe portion for the MD minimized CdSe/CdS het-
erostructures along the different axis. The number of CdS MLs is given in the first column
and the average lattice constant for the NCs along the x, y and z directions are given in
Angstroms. For the NPLs, az corresponds the axial lattice constant, and ax = ay for all
systems studied. The numbers in parenthesis are the percent change of the lattice constant
relative to the core only (i.e., 0 ML) lattice constant.

This lateral area compression is in good agreement with the DFT lateral area contraction of
about 3%. Altogether, MD provides nano-heterostructure atomic configurations consistent
with the experiments and DFT findings for which the optical and electronic properties can
be studied using the semi–empirical pseudopotential method.23

These strain differences led to differences in the optical gap between the strained CdSe
QD and strained CdSe NPL. Quantitatively, the strained QD showed a small (∼ 20 meV)
blue–shift of its optical gap relative to the unstrained QD, whereas the strained CdSe NPL
red–shifted its optical gap by ∼ 100 meV relative to the unstrained NPL, as shown in Figure
3.5. In summary, the optical gap (i.e. emission energy) shifts (∆Eopt) upon growing CdS
shell MLs due to electron delocalization (∆Edelocalization) into the shell and strain induced
confinement changes (∆Estrain):

∆Eopt = ∆Edelocalization + ∆Estrain. (3.9)

In both CdSe/CdS QDs and NPLs, the quasi–type-II band–alignment (Figure 3.5) leads to
electron delocalization into the CdS shell, resulting in ∆Edelocalization < 0. For CdSe/CdS
QDs, the isotropic compression leads to ∆Estrain > 0 which partially cancels out the red–shift
contribution from the electron delocalization, leading to a small overall red–shift of the optical
gap as the number of CdS MLs increases. On the other hand, ∆Estrain < 0 in CdSe/CdS
NPLs because of the increase in az (the confined dimension) upon CdS shell growth. This
strain induced red–shift adds to the delocalization induced red–shift in CdSe/CdS NPLs,
resulting in a large overall red–shift of the optical in CdSe/CdS NPLs relative to CdSe/CdS
QDs (Figure 3.5).



34

Chapter 4

Nanorods

4.1 Auger recombination in nanorods
Chapters 2 and 3 discussed the importance of electron–hole correlations on the decay of
biexcitonic states via Auger recombination (AR) in QDs and core/shell QDs by comparing
the interacting formalism (Eq. (2.4)) with a noninteracting formalism (Eq. (2.7)). Now, we
show that the deviations in AR lifetimes predicted by the two formalisms are even larger
in quasi–1D nanorods (NRs). In Figure 4.1, we show the calculated and measured4,5, 7 AR
lifetimes for a series of CdSe NRs of different volumes. It is immediately evident that the
noninteracting formalism is quantitatively incorrect for all NRs studied. The noninteracting–
based AR lifetimes are also too long by approximately 1 − 2 orders of magnitude! This
result arises from an underestimation of the Coulomb coupling due to the electron–hole
wavefunctions being delocalized over the entire NR in the noninteracting formalism; there
is no electron–hole attraction to localize the electron–hole pair to form a bound Wannier
exciton in the noninteracting formalism. In contrast, the interacting formalism predicts the
scaling (nearly linearly with volume) as well as the magnitude of the AR lifetimes quiet
accurately in comparison with the experimental results depicted by the solid blue squares.4
Based on the results reported for spherical QDs, this is to be expected and further signifies
the importance of electron–hole correlations in the AR process in confined nanostructures.

Interestingly, recent experimental measurements show nearly no volume effect on the
AR lifetimes in CdSe NRs (striped blue square),5 however, the same authors reported on
the inconsistencies between transient absorption and time–resolved photoluminescence mea-
surements (for the largest system studied, the two measurements differ by a factor of ≈ 3).
Similar inconsistencies for NRs were reported for the reverse process, by which a hot exci-
ton decays into a biexcitonic state by impact excitation, leading to multiexciton generation.
Preliminary measurements reported a notable volume dependence of the impact excitation
rate,110,111 while more recent theoretical work,112 followed by experimental validation,68 ar-
gued that impact excitation rates are volume independent. This suggests that different exper-
imental setups (synthesis and optical measurements) may lead to different scaling behavior.
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Figure 4.1: Auger recombination lifetimes for CdSe NRs as a function of the volume of the
NRs predicted by the interacting (green circles), the noninteracting (red triangles) formalisms
along with experimentally measured (blue squares: solid,4 vertical5 and horizontal7 lines) AR
lifetimes. The three different sizes used correspond to the three different diameters (1.53 nm,
2.14 nm and 2.89 nm) studied computationally. Power law fits, τAR = a×V b, are also shown
for each of the three sets of AR lifetimes.

A similar reasoning may also explain the discrepancy between the two sets of experimental
results on AR lifetimes shown in Figure 4.1. However, more experimental work is needed to
fully understand the diversity of experimental outcomes, in particular, given that our new
theoretical predictions are consistent with one set of measurements but not the other.

Returning to the AR lifetime scaling with volume in NRs, the noninteracting formalism
behaves as τ (0)AR,NR ∝ V 2.02. This is expected based on the scaling of the Coulomb matrix
elements with the diameter and length of the NR,112 but is in contrast to the scaling observed
both experimentally4 and theoretically using the interacting formalism. Thus, including
electron–hole correlations is needed for both a quantitatively and qualitatively accurate
description of the AR lifetime calculation in NRs. Intuitively, this result makes sense due to
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Figure 4.2: Interacting formalism based Auger recombination lifetimes for CdSe NRs as a
function of the length (left) and diameter (right) of the NR. Power law fits, τAR = a × Db

and τAR = a× Lb, are also shown for each NR set.

both the lack of confinement along the NR axis and the large electron–hole binding energy in
CdSe NRs (∼ 200 meV)85 contributing to making the noninteracting carrier approximation
invalid in NRs.

As mentioned above, it is experimentally difficult to independently control the NR di-
ameter and length; however, it is trivial to do so computationally. Therefore, we analyzed
the AR lifetime scaling separately for the NR diameter and length. We found that the AR
lifetime scales approximately quadratically–cubically with the length of the NR in the nonin-
teracting formalism, while it scales nearly linearly in the interacting formalism (Figure 4.2),
in agreement with previous experimental measurements.4,67–70 However, the scaling with the
length of the NR depends slightly on the diameter. We also observed an approximate D3

scaling in the interacting formalism, which still awaits experimental validation. The nonin-
teracting formalism based scaling of the AR lifetimes are shown in Figure 4.3 with respect
to the NR length (left) and diameter (right). The scaling with the length is overestimated
by the noninteracting formalism relative to both the interacting formalism based scaling
and experimental scaling. This result is intuitive based on the importance of electron–hole
correlations in 1D systems and the lack of confinement along the NR axis.

Our finding that the noninteracting formalism is inaccurate for NRs whereas the inter-
acting formalism is accurate further corroborates previous kinetic models and experiments
that argued that the total AR rate (kAR) in NRs increases quadratically with the number
of excitons, n (kAR (n) ∝ n (n− 1) /2).7,55,69,113 In other words, kinetic models of AR in
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Figure 4.3: Noninteracting formalism based Auger recombination lifetimes for CdSe NRs as
a function of the length (left) and diameter (right) of the NR. Power law fits, τAR = a×Db

and τAR = a× Lb, are also shown for each NR set.

NRs should model AR as a bimolecular collision of two excitons; in opposition to the com-
binatorial scaling of n2 (n− 1) /2 if modeling AR as a three particle collision between free,
noninteracting electrons and holes. Overall, these results on CdSe NRs add to the body of
work that electrons and holes form bound 1D Wannier excitons in quasi–1D systems such
as semiconductor NRs and carbon nanotubes.114–117

4.2 Exciton dynamics in hybrid CdS–Au
metal–nanorods

Hybrid semiconductor−metal nanoparticles (HNPs) manifest unique, synergistic electronic
and optical properties as a result of combining semiconductor and metal physics via a con-
trolled interface.19,118 These structures can exhibit spatial charge separation across the semi-
conductor−metal junction upon light absorption, enabling their use as photocatalysts.119
The combination of the photocatalytic activity of the metal domain with the ability to
generate and accommodate multiple excitons in the semiconducting domain can lead to im-
proved photocatalytic performance because injecting multiple charge carriers into the active
catalytic sites can increase the quantum yield.

Herein, in collaboration with the Banin group, we show a significant metal domain size
dependence of the charge carrier dynamics as well as the photocatalytic hydrogen generation
efficiencies under nonlinear excitation conditions.55 An understanding of this size depen-
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dence allows one to control the charge carrier dynamics following the absorption of light.
We utilized kinetic modeling to uncover a competition between the kinetics of Auger recom-
bination and charge separation. Specifically, a crossover in the dominant process from Auger
recombination to charge separation as the metal domain size increases allows for effective
multiexciton dissociation and harvesting in large metal domain HNPs. This was also found
to lead to relative improvement of their photocatalytic activity under nonlinear excitation
conditions.55

In order to rationalize the aforementioned experimental findings, we developed a kinetic
model that explicitly disentangles the importance of radiative recombination, Auger recom-
bination, and electron transfer in the three systems: CdS NRs, small–tipped CdS−Au HNPs
(S–HNPs), and large–tipped CdS−Au HNPs (L–HNPs). Our model includes all the essential
processes of charge dynamics in the HNPs: carrier cooling, radiative recombination, charge
transfer (both hot and band–edge electron transfer and hole recombination) and Auger re-
combination (all processes are shown pictorially in Figure (4.4)d). We solved the set of
coupled differential equations (Eq. (4.1)–Eq. (4.7)) by running trajectories with a Monte
Carlo approach using the Gillespie algorithm.120 The initial conditions were such that the
initial populations were zero for all particles except the initial populations of hot electrons
and holes which obeyed the Poisson distribution with the average number of the hot electrons
and holes equal to the average number of photons absorbed for the given excitation intensity.
The kinetic model then allowed us to simulate the decay of the hot electrons and holes on
the NR via the aforementioned processes. Because it is known how each process depends on
the particles on the NR, we were able to fit a rate constant of each process (Table 4.1). For
example, the rate constant (i.e. base rate) of Auger recombination corresponds to the Auger
recombination rate for n = 2, and the overall Auger recombination rate increases with the
number of excitons (n) with a scaling of n (n− 1) /2. The full set of kinetic equations are:

n = min (ne, nh) (4.1)
dne
dt

= −nkrad −
n (n− 1)

2
kAR,h − n (n− 1) kAR,e − nekET + nhote kcool (4.2)

dnh
dt

= −nkrad −
n (n− 1)

2
kAR,e − n (n− 1) kAR,h − nhkrec + nhoth kcool (4.3)

dnhote

dt
= −nhoth kcool − nhote khotET +

n (n− 1)

2
kAR,e (4.4)

dnhoth

dt
= −nhoth kcool − nhoth khotrec +

n (n− 1)

2
kAR,h (4.5)

dnmetal
e

dt
= nekET + nhote khotET (4.6)

dnmetal
h

dt
= nhkrec + nhoth khotrec (4.7)

where for each process we have a rate constant (i.e., base rate) multiplied by a statistical
scaling factor and kAR = kAR,e + kAR,h, kAR,e(h) = 1

2
kAR is an assumption in our model
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(breaking this assumption by having asymmetric base rates for the electron and hole channels
does not change the conclusions of the model). We also assumed equal carrier cooling
base rates (kcool = 4.0 ps-1) – this choice of a cooling base rate is consistent with the
hot electron decay signals shown in Ref. 55. An additional constraint on the parameters
was that the base rates of electron transfer and hole recombination are related by a factor
of 50 (see Supplementary Note 4 of Ref. 119 for a detailed explanation of this constraint).
Therefore, our fitting parameters were only the radiative rate constant, Auger recombination
rate constant and band–edge and hot electron transfer rate constants. The radiative and
Auger recombination rate constants were both fit using the CdS NRs transient absorption
spectrums. The radiative rate constant was fit using the low fluence transient absorption
CdS NRs decays, and the Auger recombination rate constant was fit using the higher fluence
transient absorption CdS NRs decays. We then used these rate constants when modeling
the S–HNPs and L–HNPs decays. The electron transfers rate constants were the fitting
parameters for the S–HNPs and L–HNPs. The hot electron transfer rates were estimated
such that the number of carriers in our model matched the experimental number of carriers
at ∼ 4 ps.55 Additionally, our plots have 80% of the signal coming from the electrons and
20% coming from the holes. This parameter models the fact that the bleach signal comes
primarily from electrons as compared to holes and is needed to match the experimental
decays for the L–HNPs (where our model predicts all the electrons to transfer to the metal
in much less than 1 ns). The base rates that resulted from the fitting procedure are shown
in Table 4.1.

Figure 4.4 show the average number of excitons on a NR as a function of time as predicted
by our Markov chain Monte Carlo simulations (black lines) and as determined by monitor-
ing the bleach signals in the transient absorption measurements for CdS NRs, S–HNPS,
and L–HNPS.55 Overall, considering the simplicity of the model, the model reproduces the
experimental data remarkably well. For the CdS NRs, as expected, Auger recombination
dominates the multiexcitonic decays. We found that a base biexciton Auger recombination
rate constant of (180 ps)−1 matches the experimental decays very well, and we used this
base Auger recombination rate in our small and large–tipped HNP simulations as well. For
small–tipped HNPs, Auger recombination outcompetes electron transfer from the semicon-
ductor to the metal tip. This is especially true for high fluences because the rate of Auger
recombination increases the with square of the number of excitons (i.e., kAR ∝ n (n− 1) /2)
whereas electron transfer rate only scales linearly with the number of electrons (kET ∝ n).
The smaller recovery amplitudes observed in comparison to bare NRs at 1 ns delay can
be explained by a fast hot electron transfer (lifetime of ∼ 2 ps) which lowers the excited
electron populations remaining in the NR CB state. On the other hand, for large–tipped
HNPs electron transfer dominates (lifetimes of ∼ 0.25 ps for hot electron transfer and ∼ 44
ps for band–edge electron transfer). Almost no Auger recombination events occur in the
large–tipped HNPs; thus, these simulations are consistent with the experimentally observed
absence of fluence dependence of the MX decay in large–tipped HNPs. Altogether, these
simulations point toward large–tipped HNPs benefiting more than small tips from absorb-
ing multiple photons, because the large–tipped HNPs are able to extract all the excited
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Figure 4.4: Experimental dynamics of number of excitons per rod for (a) CdS NRs and
(b) small and (c) large metal–tipped CdS−Au hybrid nanoparticles at different fluences,
alongside the fitted Markov chain Monte Carlo simulation curves (solid black lines). (d) A
pictorial representation of the states and the four types of events that make up our kinetic
model. Electrons are shown in red and holes in blue. Double–sided arrows indicate a loss of
an exciton whereas single sided arrows indicate the carrier moving from one state to another.
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Process Scaling Process Base Lifetime
CdS NRs S–HNPs L–HNPs

krad

(
n
1

)
5.0 ns 5.0 ns 5.0 ns

kAR

(
n
2

)
180 ps 180 ps 180 ps

kcool

(
ne(h)

1

)
0.25 ps 0.25 ps 0.25 ps

kET

(
ne
1

)
0.0 ps 5.0 ns 44 ps

khotET

(
nhote

1

)
0.0 ps 2.0 ps 0.25 ps

krec

(
nh
1

)
0.0 ps 50τET 50τET

khotrec

(
nhoth

1

)
0.0 ps 50τhotET 50τhotET

Table 4.1: Parameters of the kinetic model along with the scaling (i.e., how the total rate
of the process depends on the populations of the particles) of each process. The statistical

scaling factors are written in standard
(
n
k

)
= n!

k!(n−k)! notation.

electrons whereas the small–tipped HNPs lose most of their excited electrons due to Auger
recombination.

In conclusion, CdS−Au HNPs with large Au tips are found to be advantageous for MX
dissociation and transfer to the metal domain. This also led to relative improvement in
their photocatalytic activity under nonlinear excitation conditions for the hydrogen gener-
ation reaction.55 This size dependence was explained by the competition between Auger
recombination that dominates the multiexciton dynamics in NRs and small–tipped HNPs
and ultrafast electron transfer that is greatly enhanced and therefore dominates over Auger
recombination in large–tipped HNPs. Altogether, an in–depth understanding of the syner-
gistic light–induced charge separation process across the semiconductor−metal nanojunction
in both the low and high excitation limits provides a key–knob to control the relaxation dy-
namics and will lead to the further utilization of hybrid metal−semiconductor nanosystems
as efficient photocatalysts in numerous applications.
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4.3 CdSe/Cd1-xZnxS seeded nanorods with minimal
blinking and polarized emission

Colloidal semiconductor nanocrystals are outstanding building blocks for various applications
because of the ability to tune their properties by changing their size, shape, composition,
and surface characteristics.13,14,121,122 Within this family, seeded NRs (SNRs) composed of a
spherical seed from one semiconductor material embedded in a rod–shaped second semicon-
ductor material are particularly interesting, since they show tunable properties manifesting
their mixed 0D−1D character.123,124 In these SNRs, control of the electronic properties is
further enabled by independently adjusting the size of the seed and/or the rod.125

In this work, we present atomistic electronic structure calculations on CdSe/Cd1−xZnxS
SNRs with radially graded rod compositions and directly compare them to experimental
measurements performed by the Banin group.95 These novel seeded rods exhibit intense,
highly polarized emission and minimal fluorescence intermittency owing to the localization
of the electron in the region of the seed as demonstrated by molecular dynamics and elec-
tronic structure calculations. The importance of the graded composition of the nanorod as
demonstrated here offers a path for designing high–quality nanostructures with targeted op-
toelectronic properties. In other words, the controlled addition of Zn influences and improves
the nanorods’ optoelectronic performance by providing an additional handle to manipulate
the degree confinement beyond the common size control approach.95 These nanorods may
be utilized in applications that require the generation of a full, rich spectrum such as energy-
efficient displays and lighting.

To begin to better understand the influence of Zn on the optical properties of the SNRs,
we developed an atomistic model of CdSe/Cd1−xZnxS SNR with no adjustable parameters
and computed the fundamental and optical band gaps for SNRs with varying degrees of
Zn:Cd alloying.95 All calculations were performed for a 1.5 nm diameter CdSe seed and a
20 nm × 4 nm rod (see insets of Figure 4.5). The fundamental gaps are higher than the
optical gaps by ∼ 200 meV. For the neat CdSe/CdS SNR, we find that there is an excellent
agreement between the measured and computed optical gaps as well as for the value of
the exciton binding energy in comparison to experimental results obtained from scanning
tunneling spectroscopy measurements.126 This provide additional validation of the model.

We find an increase in the fundamental and optical gap energies upon the addition of
Zn, which can be explained by a stronger confinement of the electron to the CdSe seed
when Zn is added to the rod. This is illustrated in Figure 4.5, where we plot the electron
density projected onto the rod axis for the fundamental (upper panel, ignoring electron−hole
interactions) and optical (lower panel) excitations (the insets show the corresponding 3D
electron densities as well as the seed location). In both cases, it is clearly seen that the
extent of overlap between the electron wave function and the CdSe core increases with the
Zn content. The effect is more pronounced for the noninteracting (fundamental) case but is
significant also when the electron−hole interactions are included (the width of the projected
electron density decreases by 20% when Zn is added at a ratio of 2 : 1).95 The observed
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Figure 4.5: Comparison between measured (left panel) and calculated (right panel) of
the absorption degree of polarization as a function of energy above the optical gap for
CdSe/Cd1-xZnxS seeded nanorods.

localization of the electron near the core as the Zn content increases leads to a quantum
confinement effect which results in an increase of the optical gap upon addition of Zn to
the shell. This electron localization is also intertwined with the improved QY and reduced
blinking seen in the Zn containing SNRs.95

In our theoretical investigation of the polarization, we were able to explicitly calculate
the energies of the individual optical transitions along with their intensities, polarization,
and radiative lifetimes. In our comparison of CdSe/CdS and CdSe/Cd1−xZnxS SNRs, we
found that the Zn being radially distributed was imperative for the improved polarization of
the CdSe/Cd1−xZnxS SNRs. Specifically, the separation between the z–polarized transition
(which arises from the lowest energy exciton) and the xy–polarized transitions were calcu-
lated to be 88, 118, and 87 meV for the CdSe/CdS, graded composition CdSe/Cd0.75Zn0.25S,
and homogeneously distributed CdSe/Cd0.75Zn0.25S SNRs, respectively. The calculated ab-
sorption polarization spectrum is shown in the right panel of Figure 4.6 and is clearly in
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Figure 4.6: Comparison between measured (left panel) and calculated (right panel) of
the absorption degree of polarization as a function of energy above the optical gap for
CdSe/Cd1-xZnxS seeded nanorods.

agreement with the measured absorption polarization that is shown in the left panel of Fig-
ure 4.6.95 Thus, the control of the rod’s radial composition provides an additional powerful
knob to tune the optoelectronic properties. These insights will enable further design of
SNRs with specific properties (e.g., type–I or quasi–type–II band alignments) for various
applications.
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Chapter 5

Nanoplatelets

5.1 Exciton size in CdSe nanoplatelets
Colloidal, quasi–2D semiconductor nanoplatelets (NPLs) exhibit strong quantum confine-
ment in only one dimension, which results in an electronic structure that is significantly
altered compared to that of other quantum–confined nanomaterials. Whereas it is often as-
sumed that the lack of quantum confinement in the lateral plane yields a spatially extended
exciton, reduced dielectric screening and enhanced Coulomb interactions in quasi–2D sys-
tems potentially challenges this picture. Herein, we performed atomistic electronic structure
calculations of the exciton size for NPLs with varying lengths, widths, and thicknesses to
elucidate that the exciton lateral extent is comparable in magnitude to the NPL thickness,
indicating that the quantum confinement, reduced screening, and the quasi–2D nature of
NPLs strongly reduce the exciton lateral extent compared to bulk excitons.

Since the first detailed report of CdSe NPLs,40 the topic of excitons in CdSe NPLs has
been treated theoretically,127–130 but with only one explicit calculation of exciton size.131 As
in Ref. 131, estimates regarding exciton size can be developed based on the exciton binding
energy,132 but discrepancies in reports of this energy exist, with experimental and theoretical
papers conveying values ranging from about 100 meV to greater than 400 meV.127,128,131,133
Derived values also depend upon whether the NPLs are treated using 3D or 2D Coulomb
potentials. Whereas it is apparent that the change in dimensionality from 3D bulk material
to quasi–2D NPLs increases the exciton binding energy through reduced dielectric screening
and the enhanced Coulomb interaction in two dimensions, as is the case with monolayer
transition metal dichalcogenides,134,135 it is not clear to what degree this alters the lateral
exciton extent in the II–VI NPLs.

In order to better understand the lateral exciton extent in CdSe NPLs, magneto–optical
spectroscopy was performed to obtain

〈
r2plane

〉
from the diamagnetic shift coefficient (σ):

σ =
e2

8µr,plane

〈
r2plane

〉
. (5.1)

In the above, rplane is the radial coordinate between the electron and hole in the direction
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perpendicular to the magnetic field, e is the elementary charge, and µr,planeis the in–plane
exciton reduced mass. Thus,

〈
r2plane

〉
is the expectation value of x2 + y2 with respect to

the exciton wavefunction.107 In order to understand and to be able to compare directly to
experiments, we calculated the root–mean–square exciton radius (rplane =

√〈
r2plane

〉
).

Specifically, we employed the semi–empirical pseudopotential method to obtain the non-
interacting (i.e. single–particle) electron and hole states. These calculations were performed
on real–space grids and converged with respect to the grid point density. Because we are only
interested in the lowest energy excitonic states, we were able to use filter–diagonalization
techniques81,83 to calculate only the lowest energy electron (φa) and hole (φi) eigenstates.
The eigenstates obtained from the application of filter–diagonalization techniques were then
used as input to the Bethe-Salpeter equation.36 The Bethe–Salpeter equation was solved
within the static dielectric constant approximation (ε = 5). Although the quantitative accu-
racy may improve if a more complicated approximation for the screening was used (e.g. the
random phase approximation), we do not expect any qualitative changes. In other words, it
would be expected the dependence of rplane with the number of MLs should hold, because
if the screening were different between the 3, 4 and 5 ML NPLs, it would be expected that
the thinner NPLs would have the least amount of screening (i.e. lowest ε) which would lead
to even smaller rplane values for the thinner NPLs relative to the thicker NPLs. The output
from solving the Bethe–Salpeter equation are the excitonic states:

ψ (re, rh) =
∑
a,i

ca,iφa (re)φi (rh) (5.2)

where φa (φi) are the single–particle electron (hole) eigenstates, re (rh) is the position of the
electron (hole), and the coefficients (ca,i) are obtained by diagonalizing the Bethe–Salpeter
Hamiltonian.36 After calculating the excitonic states (i.e. correlated electron-hole states),
we then calculated the in–plane exciton size, as follows:〈

r2plane
〉

=
〈
ψ
∣∣(xe − xh)2 + (ye − yh)2

∣∣ψ〉 (5.3)

where |ψ〉 is the output from the Bethe–Salpeter equation discussed above. The calculated
values for rplane =

√〈
r2plane

〉
are shown in Figure 5.1 and reported in Table 5.1.

The calculated in–plane exciton radii (shown in Figure 5.1) are of similar magnitude
to the experimentally determined in–plane exciton radii,107 in the range of 1.0 − 1.5 nm
depending only weakly on the NPL thickness and lateral area. The increase of the in–plane
exciton radius with increasing NPL dimensions (both lateral area and thickness) can be
justified on account of the reduction in Coulomb attraction between the electron and hole
when the volume of the NPL is increased. Notably, although dielectric screening affects
the overall lateral extent of the exciton, the exciton spatial extent remains small (in the
range of 1.2 − 2.0 nm) even when a larger, less warranted dielectric constant is chosen (see
Table 5.1 and the discussion below). The measured and calculated small, in–plane exciton
radii found here are consistent with reports for other 2D structures, such as transition metal
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Figure 5.1: Atomistic electronic structure calculations of rplane for 3, 4, and 5 ML CdSe
NPLs of varying lateral sizes.

dichalcogenides. An often–invoked explanation for the small exciton size is based on reduced
screening, where the electron and hole interact through the surrounding lower dielectric
environment, leading to localization of the electron−hole pair, but are also consistent with
pictures of minimized orbital kinetic energy.107

The calculations described above use a value of ε = 5 as the high frequency dielectric
constant. While the static dielectric constant of bulk CdSe is typically taken to be 10, the
contribution from the nuclei (ε = 3.5) does not contribute as the energy scale of excitons
is in the 100 − 200 meV range, which is much larger than the highest energy phonons for
this composition. Furthermore, in quantum–confined materials, the dielectric screening is
reduced, and our calculations have suggested that a dielectric constant of ε = 5 is most
appropriate. Nevertheless, as the value of the dielectric constant does impact the spatial
extent of the exciton, we have performed additional calculations using ε = 10 to investigate
the effect of altered dielectric screening. Table 5.1 compares values for the in–plane exciton
radius for ε = 5 versus ε = 10. While the in–plane exciton radius is larger when the
dielectric screening is increased to 10, the values (which range from 1.2 nm to 2.0 nm) are
still significantly less than the bulk exciton Bohr radius of 5.6 nm for CdSe. Additionally,
all of the qualitative trends for the in–plane exciton size are valid, irrespective of the choice
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ML Lx × Ly (nm × nm) rplane for ε = 5 (nm) rplane for ε = 10 (nm)
3 4× 4 1.02 1.22
3 4× 6 1.09 1.39
3 4× 8 1.13 1.43
3 4× 10 1.13 1.45
3 4× 12 1.15 1.50
3 6× 6 1.18 1.61
3 6× 8 1.21 1.69
3 6× 10 1.30 1.74
3 8× 8 1.30 1.79
4 4× 4 1.16 1.36
4 4× 6 1.21 1.47
4 4× 8 1.25 1.53
4 4× 10 1.28 1.60
4 4× 12 1.31 1.62
4 6× 6 1.32 1.60
4 6× 8 1.34 1.69
4 6× 10 1.38 1.79
4 8× 8 1.37 1.79
5 4× 4 1.19 1.34
5 4× 6 1.30 1.53
5 4× 8 1.32 1.60
5 4× 10 1.36 1.63
5 4× 12 1.41 1.69
5 6× 6 1.40 1.76
5 6× 8 1.44 1.85
5 6× 10 1.47 1.89
5 8× 8 1.48 1.96

Table 5.1: Root–mean–square in–plane exciton radius (rplane) for 3, 4, and 5 ML CdSe NPLs
of varying lateral sizes, for different values of the dielectric constant.

of dielectric constant.
In conclusion, the atomistic modeling using realistic, discrete NPL structures arrives at

similar rplane values as those determined from magneto–optical experiments and supports the
picture of excitons in NPLs being small and nearly spherical symmetric.107 These small values
of rplane relative to the NPL lateral area has important consequences for both the radiative
recombination rate (smaller rplane values lead to larger oscillator strengths) and, as discussed
in detail in the next section, on the decay rate of biexcitons via Auger recombination.
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5.2 Auger recombination in nanoplatelets
Colloidal semiconductor nanoplatelets (NPLs) are quasi–2D materials with thicknesses that
can be controlled with monolayer (ML) precision and lengths and widths that can be con-
trolled on the nanometer scale.40,136,137 The ability to vary the synthesis to separately yield
NPLs of 2 through 8 ML thickness, with 3, 4, and 5 ML thicknesses the most well studied,
opens the door to tuning the properties of the quasi–2D semiconductor NPL by just changing
their thickness.138–140 The most obvious property that can be tuned is that of the optical
gap (i.e. absorption and emission energies), as the thickness is the primary determinant of
the degree of quantum confinement in NPLs.8,29,40,137 A more subtle aspect of the emission
that also changes upon a change in the thickness is the rate of radiative recombination.
Not only does the radiative recombination rate depend on the thickness, it also depends on
the lateral area of the NPL.133,141,142 An additional aspect related to applications of NPLs,
ranging from lasers to photocatalysts, is that multiple excitons are required to be present in
the NPL at the same time.8,44,45,143–145 Thus, it is of general interest to understand how the
lifetime of multiexcitonic states depends on the lateral area and thickness of NPLs.

Herein, we focus on the decay of biexcitonic states via Auger recombination (similar to
exciton–exciton annihilation). Auger recombination (AR) is a nonradiative process in which
one electron–hole pair recombines by transferring its energy to an additional quasiparticle
(Figure 5.2A) and is typically the dominant mechanism by which multiexcitonic states decay
in semiconductor nanomaterials, making it of central importance to many nanomaterial–
based applications.3,41 Therefore, a fundamental understanding on how the AR lifetime
(τAR) depends on the size and dimensionality of nanomaterials is of broad interest.

In quasi–0D quantum dots, the AR lifetime (see Eq. (5.4)) depends linearly on the
nanocrystal volume and has become known as the “universal volume scaling law.”3,16,68,76,92
For quasi–1D nanomaterials, the AR lifetime scales linearly with the length of the nanorod
and nearly quadratically with its diameter, thereby approximately following the universal
volume scaling law.4,76 The situation is somewhat more evolved for quasi–2D CdSe NPLs.
Most recently, Li and Lian9 reported that the AR lifetime scales linearly with the lateral
area, A = LxLy (see sketch in Figure 5.2B). This linear dependence was rationalized by
thinking of AR in NPLs as a classical collision of two particles in which the frequency of
collision is limited by their spatial diffusion. Because electron–hole pairs are known to form
bound Wannier excitons that are nearly spherical with average in–plane separation distances
of approximately 1 − 2 nm in CdSe NPLs,107,131 the classical picture of AR as a collision
between two independent particles where the particles are excitons is reasonable at first
glance. Underlying this picture of AR are the assumptions that the biexciton binding en-
ergy is negligible such that the two excitons do not form a bound biexciton. And that the
excitons are not coherent throughout the NPL and, therefore, diffuse in the NPL. A linear
dependence of the AR lifetime on the lateral area was also recently reported for CsPbBr3
perovskite NPLs.93 These studies contradict an earlier report by She et al.8 which found
that the AR lifetimes are independent of area. It is important to note that the two studies
on CdSe performed their studies using similarly sized NPLs.8,9 In contrast to the volume
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Figure 5.2: (A) Schematic of an Auger recombination event. The initial biexcitonic state is
shown as two spatially uncorrelated excitonic states and the final states are shown as unbound
electron–hole pairs. The hole (electron) channel on the left (right) shows the hole (electron)
receiving a majority of the energy from the recombining exciton. (B) Representation of a
3 ML (Lz = 0.91 nm) CdSe nanoplatelet with Lx = Ly = 8 nm. Cd (Se) atoms are shown
in yellow (green).

(i.e. τAR ∝ A1) or sub–volume (τAR ∝ A0) scaling of AR lifetimes with respect to the lateral
area of NPLs, the scaling of the AR lifetime as a function of the NPL thickness (Lz) or
number of monolayers (MLs) was reported to obey a seventh power dependence, τAR ∝ L7

z,
in CdSe NPLs, a super–volume dependence.9

In this study, we provide an alternative mechanism that leads to similar area scaling for
AR lifetimes in NPLs, which is based on the traditional scattering picture within lowest order
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perturbation theory coupling the initial biexcitonic state with the final electron–hole pair. A
similar approach has been successfully applied to describe AR lifetimes in 0D quantum dots
and quasi–1D nanorods, with very good agreement in comparison to experimental results
over a wide range of system sizes.76 Here, we focus on the regime A ≤ 100 nm2 which is
suitable for this coherent scattering picture and study the AR lifetimes for different CdSe
NPLs shapes and thicknesses by applying our recently developed stochastic approach.146 We
uncover the underlying physics that cause the particular scaling in this coherent scattering
picture. In addition, we analyze the thickness–dependent AR lifetimes in quasi–2D NPLs
(as well as other properties, such as electron and hole kinetic energy, exciton binding energy,
exciton Bohr radius, and screening), and provide reasonings for the mild thickness depen-
dence observed in the coherent scattering picture as well as in other experiments on similar
NPLs.

Due to the computational methods being described in details in previous chapters, only a
brief description will be recapped here. AR is commonly described as a Coulomb–mediated
scattering process for which an initial biexcitonic state (|B〉) of energy EB decays into a final
excitonic state (|S〉) of energy ES via Coulomb (V ) scattering (Figure 5.2). An AR lifetime
(τAR) for a nanostructure can be calculated using Fermi’s golden rule where we average over
thermally distributed initial biexcitonic states and sum over all final decay channels into
single excitonic states:72,76

τ−1AR =
∑
B

e−βEB

ZB

[
2π

~
∑
S

|〈B |V |S〉|2 δ (EB − ES)

]
. (5.4)

In the above, the delta function (δ (EB − ES)) enforces energy conservation between the
initial and final states and the partition function (ZB) is for the initial biexcitonic states
(we assume biexcitons follow Boltzmann statistics). Utilizing the interacting, exciton–based
framework, previously developed by Philbin and Rabani,76 a deterministic calculation of an
AR lifetime can be performed using

τ−1AR = τ−1AR,e + τ−1AR,h (5.5)

τ−1AR,e =
2π

~ZB

∑
B

e−βEB

∑
a,i

∣∣∣∣∣∑
b,c,k

cBb,ic
B
c,kVabck

∣∣∣∣∣
2

δ (EB − ES)

τ−1AR,h =
2π

~ZB

∑
B

e−βEB

∑
a,i

∣∣∣∣∣∑
j,c,k

cBa,jc
B
c,kVijck

∣∣∣∣∣
2

δ (EB − ES) ,

where ES = εa − εi and Vrsut is the Coulomb coupling given by

Vrsut =

∫∫
φr (r)φs (r)φu (r′)φt (r′)

|r− r′|
d3r d3r′. (5.6)

In the above equations, φr (r) are quasiparticle states for electrons (r ∈ a, b, c, ...) or holes
(r ∈ i, j, k, ...) and the coefficients (cBc,k) in Eq. (5.5) are determined by solving the Bethe–
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Salpeter equation.36 The above approach includes spatial correlations within the electron–
hole pairs but ignores correlations between the excitons77 and in the final electron–hole pair.
It was previously shown that this interacting formalism predicts quantitively accurate AR
lifetimes for quantum dots, nanorods and core/shell quantum dots.76,146 On the other hand,
noninteracting formalisms that ignore all electron–hole interactions in the initial biexcitonic
state do not predict accurate AR lifetimes except for quantum dots in the very strong
confinement regime72 — highlighting the importance of exciton formation in nanocrystals.
However, a major drawback of the interacting formalism for calculating AR lifetimes (Eq.
(5.5)) is the computational cost, which scales with the system size (N) as O (N5). To reduce
the computational cost, we utilize a stochastic formulation of Eq. (5.5) to calculate AR
lifetimes for the CdSe NPLs studied in this work:146

τ−1AR = τ−1AR,e + τ−1AR,h (5.7)

τ−1AR,e =
2π

~ZB

∑
B

e−βEB

〈〈∑
b

cBb,iAR
ζ′

θAb

∑
c,k

cBc,kR
ζ′

ck

〉∗
ζ′

〈∑
b

cBb,iAR
ζ
θAb

∑
c,k

cBc,kR
ζ
ck

〉
ζ

〉
A

τ−1AR,h =
2π

~ZB

∑
B

e−βEB

〈〈∑
j

cBaI ,jR
ζ′

θIj

∑
c,k

cBc,kR
ζ′

ck

〉∗
ζ′

〈∑
j

cBaI ,jR
ζ
θIj

∑
c,k

cBc,kR
ζ
ck

〉
ζ

〉
I

,

Eq. (5.7), the indices θA, iA and aI , θI are sampled final states from the complete set of single
excitonic states (a, i pairs) in Eq. (5.5) and the notation 〈...〉ζ denotes an average over Ns

stochastic orbitals. The Rζ
rs matrices are calculated using

Rζ
rs =

∫
φ∗r (r)φ∗s (r) θζ (r) d3r, (5.8)

where θζ (r) is a stochastic representation of the Coulomb integral given by101

θζ (r) =
1

(2π)3

∫
dk
√
ũC (k) eiϕ(k) eik·r (5.9)

where ϕ (k) is a random phase between 0 and 2π at each k–space grid point, ũC (k) = 4π/k2

is the Fourier transform of the Coulomb potential. The computational cost of Eq. (5.7), is
drastically lower than Eq. (5.5) for large systems sizes, scaling as O (N2) instead of O (N5).146

To begin to understand biexciton AR in CdSe NPLs, we compare the calculated AR life-
times using both a noninteracting, free carrier–based formalism and an interacting, exciton–
based formalism146 to experimental measurements performed herein using transient absorp-
tion spectroscopy and to past measurements8,9 for 4 ML (Lz = 1.21 nm) CdSe NPLs with
various lateral areas (A = LxLy). NPLs were synthesized according to previous reports8,23,147
using reaction time and temperature to adjust the lateral areas, later determined via trans-
mission electron microscopy. For transient absorption measurements, samples were excited
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at 1 kHz using the 400 nm, frequency–doubled output of a 35 fs Ti:sapphire laser and
probed using white light generated by passing 800 nm light through a sapphire plate. Scans
were acquired at fluences corresponding to very low (〈Nexc (t = 0)〉 � 0.1) to moderate
(〈Nexc (t = 0)〉 ≈ 0.2 − 0.5) average number of initial excitons (〈Nexc (t = 0)〉). Kinetics at
the bleach maximum were normalized at 1.5 − 2.0 ns, where dynamics are dominated by
single exciton recombination, and then differenced to separate out biexciton–only dynam-
ics. Biexciton dynamics were fit to a single exponential, and this process was repeated for
multiple measurements at moderate fluences to yield an average AR lifetime.

As expected, the inclusion of electron–hole correlations in the initial biexcitonic state
drastically impacts both the predicted AR lifetimes and scaling of the AR lifetimes with
respect to the NPL lateral area. Specifically, Figure 5.3 shows that the noninteracting (free
carrier–based) method predicts AR lifetimes that are 1− 2 orders of magnitude longer than
those predicted by the interacting, exciton–based formalism (Eq. (5.5)). For example, the
AR lifetime of the 4 ML (Lz = 1.2 nm) CdSe NPL with Lx = 4 nm and Ly = 10 nm has
a calculated AR lifetime of ∼ 3800 ps using the free carrier–based formalism and an AR
lifetime of ∼ 90 ps using the exciton–based formalism. Figure 5.3 also highlights the general
accuracy of the atomistic electronic structure calculations. Specifically, exciton–based AR
lifetime (green circles) calculations appear to provide quantitative agreement compared to
our measurements (black squares) and previous measurements (blue and brown squares).8,9
Importantly, both theory and experiments predict an increase in the AR lifetime as the area
of the NPL increases for A ≤ 100 nm2. For larger lateral areas, at this point not accessible
by the current theory, there seems to be a change in behavior in some of the experiments
(see discussion below).

The disagreement between the free carrier–based and exciton–based formalisms arises
from two primary reasons. The first is that the attractive Coulomb interaction that is re-
sponsible for exciton formation between the band–edge electron and band–edge hole mixes in
band–edge states that have large momentums into the lowest energy excitonic states which
facilitates momentum conservation in Auger processes.9,71 The second reason derives from
the free carrier–based formalism neglecting the large electron–hole attractive interaction on
the single exciton level. This leads to an overestimation of the exciton Bohr radius (aB,exc)

and the root–mean–square exciton radius (re-h =
√〈

(re − rh)2
〉
where re and rh are the co-

ordinates of the electron and hole, respectively) when electron–hole interactions are ignored.
Figure 5.4 shows that the noninteracting formalism predicts that re-h is nearly proportional
to the square root of the NPL area, and, in contrast, that re-h is nearly independent of
the NPL area when electron–hole interactions are taken into account by solving the Bethe-
Salpeter equation as is done using the interacting formalism. This overestimation of re-h
by noninteracting formalisms leads to an underestimation of the Coulomb matrix elements
in Eq. (5.6) and, thus, an overestimation of AR lifetimes by free carrier–based formalisms
(Figure 5.3).

Transitioning now to the lateral area dependence of AR in NPLs, Figure 5.5 shows a
nearly linear dependence of the AR lifetimes on the lateral area (A = LxLy) for 3, 4, and
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Figure 5.3: Biexciton Auger recombination lifetimes (τAR) for 4 ML CdSe NPLs calculated
using both noninteracting, free carrier–based (red circles) and interacting, exciton–based
(green circles) formalisms. The AR lifetimes predicted by the free carrier–based formalism
are 1 − 2 orders of magnitude longer than those predicted by the exciton–based formalism
and those measured experimentally.8,9 The experimentally measured lifetimes are shown
using square symbols and calculated lifetimes are shown using circular symbols.
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Figure 5.4: Root–mean–square exciton radii (re-h =
√〈

(re − rh)2
〉
) for 3 ML (bottom), 4 ML

(middle), and 5 ML (top) thick CdSe NPLs as a function of the area of the NPLs. The red
triangles show the calculated value using noninteracting (i.e. free–carrier) electron–hole pair
states and the green circles show the calculated value using the interacting (i.e. excitonic)
electron–hole pair states.

5 ML CdSe NPLs. The linear dependence on the NPL area is in agreement with recent
experimental reports for both CdSe NPLs and CsPbBr3 perovskite NPLs.9,93 Interestingly,
both the coherent scattering mechanism used in our calculations and the exciton diffusion–
based model9 described previously lead to linear dependencies with the lateral area.

The results of She et al.8 are not necessarily at odds with this linear dependence. In
fact, She et al. reported that the AR lifetime increases upon increasing the lateral area of
4 ML CdSe NPLs from 72 nm2 to 133 nm2, which is consistent with results presented in
this work for the size regime that we focus on (A ≤ 100 nm2). At larger areas, She et al.
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reported a plateau of the AR lifetime, whereas Li and Lian9 do not observe a plateauing
of the AR lifetime, even for NPLs with lateral areas greater than 200 nm2. At this point,
our computational technology is still limited to the size regime of A ≤ 100 nm2 and further
developments are required to address larger areas.

The last main result (before we discuss the results in detail) is that of the thickness
dependence of AR in NPLs. An important aim of this work was to determine and understand
the prediction of the exciton–based, interacting formalism for the thickness (Lz) dependence
of AR in CdSe NPLs. The only previous experimental work on this found a seventh power
dependence (τAR ∝ L7

z). Figure 5.6 shows the calculated AR lifetime as a function of the
thickness for six different lateral dimensions that were kept fixed upon changing the thickness.
The power law fits for each set of three thicknesses studied here (corresponding to 3, 4, and
5 MLs) give a calculated AR lifetime dependence on the thickness ranging from 0.6 to 1.6
(τAR ∝ L0.6−1.6

z ). While this is a rather large range of power dependence on thickness, it
is certainly a milder dependence than reported previously.9 In fact, it is rather close to
the scaling that would be predicted by the universal volume scaling law (i.e. τAR ∝ L1.0

z ).
The increase of the AR lifetime upon increasing NPL thickness is intuitive as thinner NPLs
have larger exciton binding energies and smaller exciton Bohr radii. Both of these result in
an increase of the Coulomb coupling matrix elements which overtakes the decrease in the
density of states, thus leading to shorter AR lifetimes for thinner NPLs.

Experimentally, it is difficult to perform a systematic study of the thickness dependence,
as control over NPL lateral area is more difficult to achieve than thickness control. In
particular, 3 ML NPLs tend to have larger lateral dimensions than those of 4 and 5 ML
CdSe NPLs using presently available syntheses, making it difficult to compare thickness
independent of lateral area.8,148,149 That being said, we determined AR lifetimes for many 4
and 5 ML CdSe NPLs and consistently found longer AR lifetimes for the 5 ML NPLs, which
is also consistent with the work of She et al.8 and Li and Lian.9 Therefore, we conclude that
AR lifetimes increase upon increasing thickness based on our experimental measurements
and calculations; however, we believe that the dependence on the thickness is milder than
previously reported.9

We begin the discussion of the lateral area dependence of AR lifetimes predicted by our
Coulomb–mediated scattering approach by introducing an important concept of the exciton
coherence area (Aexc) and its lateral area dependence in CdSe NPLs. The exciton coherence
area is a measure of the area over which the center of mass of the exciton undergoes coherent
motion.150,151 An implicit assumption of our model (Eq. (5.5)) is that the two excitonic states
that comprise the initial biexcitonic state are coherent throughout the NPL. This is shown
pictorially in Figure 5.7. Specifically, the electron (red) and hole (blue) densities without
(top panel) and with (bottom panel) electron–hole interactions included in the calculation
of the low lying excitonic states are shown for a 3 ML (Lz = 0.91 nm) CdSe NPL with
Lx = Ly = 8 nm. It can be seen in Figure 5.7 that in both the noninteracting and interacting
cases the electron and hole densities look similar: they both are delocalized over almost the
entire NPL area and the electron density is composed primarily of S–type atomic orbitals
and the hole density is composed primarily of P–type atomic orbitals. The delocalization
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Figure 5.5: Auger recombination lifetimes, τAR, for CdSe NPLs as a function of the area
of the NPL. Power law fits, τAR ∝ Aα, are also shown for each set of AR lifetimes with
α = 1.2, 1.3, and 1.8 in descending ML thickness.

of their projected densities and similar spatial extent suggest that the exciton center–of–
mass coherence area is similar and is almost equal to the entire size of the NPL. This result
makes sense as our calculations were performed with the 0 K atomic configuration and, even
if considered at room temperature, the exciton coherence area measured experimentally is
greater than or equal to the NPL areas for which we have calculated AR lifetimes.151,152

The fact that the exciton is coherent throughout the entire NPL highlights the wave–
like nature of electron–hole pairs in CdSe NPLs. As a side note, this wave–like nature of
electron–hole pairs is also very important in single exciton decay as it, together with the
small average electron–hole separations shown in Figure 5.4, is responsible for the giant
oscillator strengths of NPLs as the radiative decay rate is proportional to the ratio of the
exciton coherence area to the square of the exciton Bohr radius.127,133,153,154 In terms of our
calculations of AR lifetimes, the linear dependence of the AR lifetime on the lateral area
observed in our calculations arises from the Coulomb coupling between initial biexcitonic
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Figure 5.6: Auger recombination lifetimes (τAR) for CdSe NPLs as a function of the thickness
of the NPL. Power law fits, τAR ∝ Lγz , are also shown for each set of AR lifetimes. The lateral
dimensions are shown as Lx × Ly in nm.

states and final excitonic states decreasing upon increasing area and not from the collision
frequency of the two excitons decreasing upon increasing area as previously used to explain
the measured linear area dependence.9,93 Thus, the measurement of a linear area dependence
cannot distinguish between the two mechanisms, and the coherent mechanism developed here
is an alternative picture that seems consistent with the exciton coherent areas of the CdSe
NPLs studied in this work (A ≤ 100 nm2).151,152

Switching our focus to the disagreement with an earlier report that measured area–
independent AR lifetimes,8 the question that arises is why the exciton–based formalism
given in Eq. (5.5) predicts a linear dependence and not an area independent AR lifetime?
This can be addressed by analyzing the initial biexcitonic states. In Eq. (5.5), the initial
biexcitonic state is given by

|B〉exc =
∑
b,j

∑
c,k

cb,jcc,ka
†
baja

†
cak |0〉 ⊗ |χB〉 , (5.10)
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Figure 5.7: Electron (red) and hole (blue) carrier densities for the lowest lying noninteracting
(top, red box) and interacting (bottom, green box) excitonic state for a 3 ML (Lz = 0.91 nm)
CdSe nanoplatelet with Lx = Ly = 8 nm. The quasiparticle densities are integrated over all
possible locations of the other quasiparticle for the interacting (i.e. correlated electron–hole
pair state). The densities are visualized by looking down the x–axis and z–axis to show that
the exciton coherence areas extend throughout a majority of the NPLs and the total area
does not change much upon inclusion of electron–hole correlations.
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where |B〉exc denotes the initial biexcitonic state within the exciton–based (interacting) for-
malism and |χB〉 is the spin part of the biexciton. Eq. (5.10) does not include spatial
correlations between the excitonic states; correlations are only included within the single
excitons by the two index coefficients (cb,j and cc,k). On the other hand, a fully–correlated
biexcitonic state,

|B〉biexc =
∑
b,j,c,k

cb,j,c,ka
†
baja

†
cak |0〉 ⊗ |χB〉 , (5.11)

includes spatial correlations between all four quasiparticles by using four index coefficients,
(cb,j,c,k). Unfortunately, the calculation of the four index coefficients in Eq. (4) is currently
not feasible for NPLs. However, the biexciton binding energy is believed to be comparable
to kBT at room temperature where kB is the Boltzmann constant and T is the temperature
in CdSe nanocrystals155 and quasi–2D materials,8,156 implying that two excitons do not
bind to form a stable biexciton. Thus, the combination of large coherence lengths of single
excitons on the order of hundreds of nanometers in II–VI 2D materials150 and the relatively
small biexciton binding energies should make Eq. (5.10) a good approximation of the initial
biexcitonic states involved in AR. If, on the other hand, the biexciton binding energy were
large8,44,157 and the lateral dimensions of the NPL were larger than the biexciton Bohr
radius, then one could imagine that the initial biexcitonic state would stop changing as the
NPL lateral dimensions increase beyond the biexciton Bohr radius. This could lead to a
plateauing of the AR lifetime with increasing lateral area. Currently, it is unclear if this is
the regime the experiments have been in (A ∼ 200 nm2 and T = 298 K).

A brief discussion of the thickness dependence of AR will now be given. An important
aspect of the calculations shown in Figure 5.6 is that the dielectric constant (ε) used to
obtain the coefficients (cBc,k) in Eq. (5.7) by solving the Bethe–Salpeter equation was set to
a fixed value of 5 for all NPLs. We believe that the use of ε = 5 is justified because the
screening in the Bethe–Salpeter equation arises from the electron motion (i.e., not the ions)
and the larger optical gap of confined systems combine to reduce the screening compared to
bulk CdSe. That being said, we calculated the AR lifetime for NPLs with Lx = Ly = 6 nm
for the three thicknesses (Lz = 0.91, 1.21, 1.52 nm) for dielectric constants ranging from 4
to 6 to test if these changes in the dielectric constant would change the predicted thickness
dependence of AR lifetimes in CdSe NPLs. If we were to assume that the dielectric constants
were 4 for 3 ML NPLs, 5 for 4 ML NPLs, and 6 for 5 ML NPLs, the thickness dependence
is τAR ∝ L2

z, suggesting that dielectric changes can make the thickness dependence of AR
lifetimes a bit steeper in NPLs. However, this is a far from comprehensive study on how the
dielectric constant changes as a function of NPL thickness and how these changes impact AR
lifetimes. Furthermore, our calculations neglect the dielectric mismatch between the NPLs
and the surrounding environment, which is known to have important consequences on the
electronic structure of excitons in NPLs.128,130,158 Altogether, this suggests a more detailed
investigation of the impact of dielectric changes and dielectric mismatch on AR lifetimes in
nanomaterials along with more experiments to better understand the scaling with respect to
the NPL thickness.
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In summary, we report the first atomistic, electronic structure based calculations of AR
lifetimes in quasi–2D NPLs. We find that electron–hole correlations in the initial biexcitonic
state are necessary to obtain AR lifetimes that are in agreement with experimental mea-
surements. The AR lifetimes show an increase with the lateral area for NPLs in the regime
A ≤ 100 nm2 according to both our theory and current and previous measurements.8,9 For
larger lateral areas (A ≥ 150 nm2), not accessible by current computational technology, two
distinct behaviors were observed. The current work suggests that AR lifetimes plateau with
increasing area, consistent with the measurements of She et al.,8 while previous experiments
observed a linear increase with area.9,93 The linear increase of the AR lifetime with area was
previously explained using an exciton diffusion–based mechanism.9,93 Our theory provides
an alternative explanation based on a coherent scattering mechanism that seems consistent
with exciton coherent lengths in CdSe NPLs152 and shows a nearly linear increase of AR
lifetimes with lateral area. In addition, we find that the AR lifetimes depend on the NPL
thickness with a power law of L1−2

z , depending on the shape of the NPL, which is milder
than previously reported.9 This milder thickness dependence together with the nearly linear
lateral area dependence are consistent with the universal volume scaling law observed in
quasi–0D quantum dots and quasi–1D nanorods.3,4, 76,92
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Chapter 6

Methods

6.1 Atomic configurations

Quantum dots and nanorods

The nanostructure configurations were obtained by cleaving a sufficiently large wurtzite
crystal with a lattice constant of bulk wurtzite CdSe

(
a = 4.30Å, c = a

√
8
3

)
such that all

Cd and Se atoms have at least two bonds. For the electronic structure calculations, dangling
bonds on the nanostructure surface must be passivated by ligand potentials. These ligand
potentials (details in Ref. 81) were placed in the correct geometry by using the positions of
the outermost monolayer of Cd and Se atoms and replacing each Cd (Se) atom by a ligand
potential for Se (Cd). Details on the sizes of the QD and NR configurations are given in
Table 6.1 and Table 6.2, respectively.

Core/shell quantum dots

The nanostructure configurations were obtained by initially cleaving a sufficiently large
wurtzite crystal with a lattice constant of bulk wurtzite CdSe

(
a = 4.30Å, c = a

√
8
3

)
such

that all Cd, Zn, S and Se atoms have at least two bonds. Because of the lattice mismatch
between CdSe and the CdS or ZnS shells, we relaxed the atomic coordinates of the core/shell
quantum dots (QDs) prior to performing the electronic structure calculations. Specifically,
we utilized molecular dynamics (MD) minimization of the core/shell QDs using the conju-
gate gradient algorithm. We used LAMMPS with Stillinger–Weber interaction potentials,
which were previously developed for Cd, Zn, Se, S heterostructures, to obtain the minimized
CdSe/CdS and CdSe/ZnS core/shell QD configurations.106,159 In the next step, we passi-
vated the MD minimized structures by using ligand potentials that were taken from Ref.
81. The ligand potentials were placed in the correct location by utilizing the atomic posi-
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Configuration Diameter (nm) Volume (nm3)
Cd20Se19 1.23 0.97
Cd35Se41 1.58 2.06
Cd41Se45 1.73 2.70
Cd80Se78 2.05 4.54
Cd84Se84 2.11 4.89
Cd139Se141 2.54 8.55
Cd163Se153 2.59 9.05
Cd202Se208 2.81 11.59
Cd226Se221 2.94 13.33
Cd313Se302 3.22 17.51
Cd397Se395 3.48 22.05
Cd585Se575 3.98 32.89
Cd639Se642 4.21 39.13
Cd750Se750 4.33 42.54
Cd858Se850 4.50 47.67
Cd1104Se1105 4.89 61.31
Cd1358Se1360 5.28 76.94

Table 6.1: CdSe quantum dot configuration details.

Configuration Diameter (nm) Length (nm) Volume (nm3)
Cd133Se145 1.53 5.12 9.42
Cd202Se197 1.53 7.49 13.77
Cd266Se273 1.53 10.04 18.46
Cd406Se411 1.53 15.21 27.97
Cd544Se539 1.53 20.12 37.01
Cd672Se677 1.53 25.04 46.04
Cd810Se805 1.53 29.95 55.08
Cd299Se301 2.14 5.38 19.26
Cd421Se419 2.14 7.49 26.80
Cd539Se541 2.14 9.59 34.35
Cd859Se861 2.14 15.21 54.46
Cd1141Se1139 2.14 20.12 72.05
Cd548Se547 2.89 5.38 35.19
Cd766Se767 2.89 7.49 48.97
Cd1132Se1131 2.89 11.00 71.93

Table 6.2: CdSe nanorod configuration details.
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Configuration Shell MLs Diameter (nm) Volume (nm3)
Cd462Se462 0 3.8 30.1

Cd462Se462/Cd735S735 2 5.4 83.7
Cd462Se462/Cd1326S1326 3 6.2 127.2
Cd462Se462/Cd2085S2085 4 7.1 183.8
Cd462Se462/Cd3033S3033 5 7.9 255.6

Table 6.3: CdSe/CdS quantum dot configuration details for core/shell quantum dots with
core diameters of 3.8 nm.

Configuration Shell MLs Diameter (nm) Volume (nm3)
Cd102Se102 0 2.2 5.2

Cd102Se102/Cd120S120 1 2.9 13.2
Cd102Se102/Cd333S333 2 3.7 27.6
Cd102Se102/Cd651S651 3 4.6 49.8
Cd102Se102/Cd1095S1095 4 5.4 81.7
Cd102Se102/Cd1686S1686 5 6.2 125.1
Cd102Se102/Cd2445S2445 6 7.0 181.7
Cd102Se102/Cd4551S4551 8 8.7 341.8

Table 6.4: CdSe/CdS quantum dot configuration details for core/shell quantum dots with
core diameters of 2.2 nm.

tions of the extra outermost monolayer of Se/S and Cd/Zn atoms and replacing each Se/S
(Cd/Zn) atom by a corresponding ligand potential for Cd/Zn (Se/S). Details on the sizes of
the core/shell QD configurations are given in Table 6.3, Table 6.4, and Table 6.5.

Strained CdSe quantum dots and nanoplatelets

Strained CdSe/ZnS quantum dots

For the strained CdSe QD nanostructures, MD minimizations were performed with ZnS
shells using the aforementioned procedure, and, afterwards, all of the Zn and S atoms were
removed from the shell such that the final configuration was that of just the CdSe QD but
with strained positions. The results of this procedure for varying amounts of ZnS MLs are
shown in Table 6.6. Because ZnS has a smaller lattice constant than CdSe, the strain is
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Configuration Shell MLs Diameter (nm) Volume (nm3)
Cd102Se102 0 2.2 5.2

Cd102Se102/Zn120S120 1 2.8 11.7
Cd102Se102/Zn333S333 2 3.5 23.3
Cd102Se102/Zn651S651 3 4.3 41.1
Cd102Se102/Zn1095S1095 4 5.0 66.5
Cd102Se102/Zn1686S1686 5 5.8 101.1
Cd102Se102/Zn2445S2445 6 6.5 146.2
Cd102Se102/Zn4551S4551 8 8.1 273.9

Table 6.5: CdSe/ZnS quantum dot configuration details for core/shell quantum dots with
core diameters of 2.2 nm.

Configuration ZnS MLs in MD 〈rCd-Se〉 (nm) Diameter (nm) Volume (nm3)
Cd93Se93 0 2.620 2.155 5.242
Cd93Se93 1 2.545 2.078 4.702
Cd93Se93 2 2.533 2.068 4.634
Cd93Se93 4 2.521 2.059 4.569
Cd93Se93 8 2.520 2.056 4.552

Table 6.6: Configuration details of the strained CdSe QDs. The quantum dots average Cd–Se
bond lengths (〈rCd-Se〉), diameters, and volumes are given in nm, nm, and nm3, respectively.

compressive in all dimensions and results in smaller average Cd–Se bonds (〈rCd-Se〉) and
diameters in the strained CdSe QDs relative to the unstrained CdSe QD.

This procedure allowed us to isolate the impact of the compressive strain, which is induced
by the ZnS shell, has on the Auger recombination lifetime (τAR). Table 6.7 shows how the
addition of the compressive strain results in a reduction of τAR by about a factor of 2, and the
reduction primarily arises from the hole channel. In other words, the Auger recombination
channel in which the hole receives a majority of the additional energy (τAR,h) becomes faster
when the core is compressed. The electron channel lifetime (τAR,e) also becomes faster, but
not significantly in comparison to the hole channel (Table 6.7).

In order to understand the decrease in the hole channel Auger recombination lifetime,
we analyzed the Coulomb matrix elements (Vijck) and number of final states (nh,final) in each
of these CdSe QDs in a noninteracting formalism to simplify the analysis. Interestingly,
we found that the major difference arises from an increase in the Coulomb matrix elements
(Vijck). Specifically, the average of the square of the Coulomb matrix elements (

〈
V 2
ijck

〉
) is

approximately twice as large in the strained CdSe QDs (bottom four lines in Table 6.8)
compared to the unstrained CdSe QD (top line of Table 6.8). A similar increase of the
Coulomb matrix elements in the electron channel (Vabck) is not observed. This suggests that
the increase of the Coulomb matrix elements in the hole channel arises from the φi (r)φj (r)
part of the Eq. (3.3) as both the electron and hole channels contain φc (r′)φk (r′). The
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Configuration ZnS MLs in MD τAR (ps) τAR,h (ps) τAR,e (ps)
Cd93Se93 0 4.6 8.7 9.8
Cd93Se93 1 2.0 3.2 5.5
Cd93Se93 2 2.0 3.2 5.7
Cd93Se93 4 2.4 3.6 6.9
Cd93Se93 8 2.6 3.8 7.6

Table 6.7: Auger recombination lifetimes the strained CdSe QDs. The total Auger recom-
bination lifetime (τAR), Auger recombination lifetime of the hole channel (τAR,h), and the
Auger recombination lifetime of the electron channel (τAR,e) are given in picoseconds (ps).

Configuration ZnS MLs used in MD nh,final
〈
V 2
ijck

〉
(a.u.) ne,final 〈V 2

abck〉 (a.u.)
Cd93Se93 0 27 1.0 16 1.0
Cd93Se93 1 22 2.0 17 1.1
Cd93Se93 2 22 2.1 19 1.1
Cd93Se93 4 22 2.4 16 1.1
Cd93Se93 8 22 2.5 16 1.1

Table 6.8: The number of final high energy hole (nh,final) and electron (ne,final) states that sat-
isfy energy conservation along with the average of the squared Coulomb matrix elements that
couple to the high energy hole and electron states, respectively, in a noninteracting Auger
recombination lifetime calculation. The average of the squared Coulomb matrix elements is
normalized to the unstrained (top line) value.

φi (r)φj (r) is a product of the initial band–edge hole state (φj (r)) with the final high energy
hole state (φi (r)). We speculate that the compressive strain increases the rate of the hole
channel decay by increasing the oscillatory nature of the band–edge hole states, which leads
to better overlap with the highly oscillatory final high energy hole states.

Strained CdSe/CdS quantum dots and nanoplatelets

6.2 Free carrier states
All calculations were preformed within the semi–empirical pseudopotential method for CdSe
(Ref. 81) implemented on real–space grids with spacings of at most 0.8 a.u. – sufficient
to converge the results. Ligand potentials were used to passivate the surface atoms with
dangling bonds. The ligand potentials taken from Ref. 81.

The first step in both the noninteracting and interacting formalisms calculations of an
AR lifetime was to apply the filter–diagonalization technique to obtain the band–edge quasi-
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Configuration CdS MLs Thickness (nm) Length (nm) Width (nm)
Cd1019Se800 0 1.21 6.06 6.06

Cd1019Se800/CdxxSxx 1 1.81 5.93 5.93
Cd1019Se800/CdxxSxx 2 2.39 5.93 5.93
Cd1019Se800/CdxxSxx 3 2.97 5.92 5.92
Cd1019Se800/CdxxSxx 4 3.56 5.92 5.92
Strained Cd1019Se800 0 1.23 5.92 5.92

Table 6.9: Configuration details of the strained CdSe/CdS NPLs.

Configuration CdS MLs Diameter (nm)
Cd408Se429 0 3.53

Cd408Se429/Cd451S434 1 4.43
Cd408Se429/CdxxSxx 2 5.07
Cd408Se429/CdxxSxx 3 5.83
Cd408Se429/CdxxSxx 4 6.30
Strained Cd408Se429 0 3.48

Table 6.10: Configuration details of the strained CdSe/CdS QDs.

particle states. This involved filtering electron and hole states at a target energy near the
HOMO and LUMO energies using an interpolation polynomial of length Nc ≈ 4, 096 (a
shorter interpolation polynomial could be used for the smaller nanostructures and longer
interpolation polynomials were required for the largest nanostructures). The states obtained
form this application of the filter–diagonalization technique were then immediately used
to build the initial biexcitonic states in the noninteracting formalism or used as input to
the Bethe–Salpeter equation before writing the initial biexcitonic states in the interacting
formalism. To obtain the final excitonic states, we again filtered electron and hole states
at energies resonant with the initial biexcitonic state using an interpolation polynomial of
length Nc ≈ 8, 192 (a longer length needed here reflecting the greater density of quasiparticle
states at high energies compared to the band–edge). For each interpolation polynomial filter
we generated 10 electron states and 10 hole states. We then calculated the Coulomb cou-
pling using the initial and final states and enforced energy conservation as discussed below
to obtain AR lifetimes.

6.3 Excitonic states
The correlated electron–hole pair (excitonic) states used in the initial biexcitonic states in the
interacting formalism were represented as a linear combination of noninteracting electron–
hole pairs as discussed in detail in Ref. 36. The electron–hole kernel in the Bethe–Salpeter
equation included both the screened direct Coulomb attraction and unscreened exchange–
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like repulsive term, as the latter term is needed for bright excitons (i.e. excitons generated
by a photon absorption) in CdSe nanostructures. The number of quasiparticle (electron and
hole) states used to build the Bethe–Salpeter Hamiltonian varied from ∼ 50 in the smaller
systems to ∼ 300 in the larger systems studied; we checked that the exciton energies and
AR lifetimes were converged with respect to the number of quasiparticle states included in
the Bethe–Salpeter equation.

6.4 Energy conservation in Auger recombination
lifetime calculations

We enforced conservation of energy (δ (EB − ES)) in Fermi’s golden rule by approximating
the delta function as:

δ (x) =

{
1

2dE
−dE < x < dE

0 otherwise
, (6.1)

where dE is a parameter (i.e. all final single excitonic states with energies between EB± dE
were taken to conserve energy). We reported AR lifetimes for dE ≈ 20 meV – similar
broadening to what was used in previous calculations.72,76 Importantly, the conclusions
discussed in the main text do not change for dE values ranging from 5− 50 meV.
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Chapter 7

Summary

The first take home message of this dissertation is that the inclusion of the electron–hole
interactions that are responsible for exciton formation is imperative if one wants to have the
formalism predict quantitatively accurate Auger recombination (AR) lifetimes in quasi–0D
quantum dots (QDs), quasi–1D nanorods (NRs), quasi–2D nanoplatelets (NPLs), and het-
erostructure nanomaterials (e.g. core/shell QDs).76,146 This requirement is best summarized
in Figure 7.1. Specifically, the interacting formalism (whether implemented deterministically
or stochastically) models biexciton Auger recombination in a framework that is very similar
to exciton–exciton annihilation and predicts quantitively accurate AR lifetimes, as indicated
by the green arrow in Figure 7.1. The overestimation of AR lifetimes by noninteracting
formalisms, as indicated by the red x in Figure 7.1, stems from the fact that the Coulomb
matrix elements (Eq. (3.3)) in Eq. (2.4) are underestimated due to the lack of correlation
between the initial electrons and holes in noninteracting formalisms.

Figure 7.1: A pictorial representation of the decay of a biexcitonic state via an Auger re-
combination event in the interacting (left) and noninteracting (right) formalisms. The green
checkmark (red x) arrow signifies that the formalism predicts accurate (inaccurate) Auger
recombination lifetimes.
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An important aspect of the quantitative accuracy of the interacting formalism (Eq. (2.7))
is that the accuracy is not limited to a specific size or dimensionality limit, as evidenced by its
accuracy in the very strong and moderate confinement regimes for QDs and all size regimes
studied thus far in NRs and NPLs. This generality resulted in the interacting formalism being
the first theoretical and computational method to predict the “universal volume scaling law”
of AR lifetimes in QDs and, furthermore, accurate AR lifetimes in NRs and NPLs.3,16,76
Interestingly, the impact of electron–hole interactions is noticeable even in the rather strong
confinement regime (radius of the QD being significantly less than the bulk exciton Bohr
radius).76 For NRs and NPLs, the approximate linear dependence of the AR lifetime with
the weakly confined dimensions (i.e. NR length and NPL lateral area) predicted by the
interacting formalism provides a new mechanism based on coherent scattering of excitons
that can explain the experimental measurements showing a linear dependence of the AR
lifetime with the NR length and NPL lateral area.4,9, 93

In a broader context, this work exemplifies how electron–hole correlations are very im-
portant to the decay of multiexcitonic states in systems of reduced dimensionality – similar
to had been found for the radiative decay of single excitons in 1D and 2D systems.39,136
Additionally, the interacting formalism shows the similarity between Auger recombination
discussed in the colloidal nanocrystal communities and that of exciton–exciton annihilation
discussed in the 1D and 2D communities. In summary, this work unraveled details on how
the size, shape, and composition of nanomaterials impacts the electronic and optical prop-
erties of the nanomaterials through the development and application of atomistic electronic
structure methods.
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