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Abstract

Modern Hopfield networks (HNs) exhibit properties of a
Content Addressable Memory (CAM) that can store and
retrieve a large number of memories. They also pro-
vide a basis for modelling associative memory in humans.
However, the implementation of these networks is often
not biologically plausible as they assume the strengths of
synaptic connections are symmetric, and utilize functions
that rely on many-body synapses. More biologically re-
alistic versions of Modern HNs have been proposed, al-
though these implementations often still utilize the soft-
max function. Computing the softmax for a single node
requires the knowledge of all other neurons, and thus still
poses a degree of biological implausibility. We present
a Modern HN that uses a version of softmax that can be
computed in a more bio-realistic way, and hence moves us
closer to a model of memory that is biologically sound.
We also show that our proposed network can learn the
connection weights using a local learning rule, derived
from gradient descent on the energy function. Finally, we
verify that our proposed biological network behaves like
a Modern HN and explore some of its other interesting
properties.

Keywords: Neural networks, Hopfield networks, asso-
ciative memory, content addressable memory, biological
plausibility, attractor networks.

Introduction
A Content Addressable Memory (CAM) is a system that
can retrieve a memory (e.g. a pattern) given sufficient
partial or noisy information (part of the memory). Hop-
field Networks (HNs) are neural networks that act as
CAMs by learning patterns and retrieving them when
given a partial or perturbed pattern (Hopfield, 1982).
Human memory has some similar properties, often re-
ferred to as cued-recall whereby a full memory can be
elicited by partial information (Tulving & Pearlstone,
1966; Earhard, 1967).

HNs are based on an energy function, E, which com-
bines the cost of neurons being active in the network,
and the inconsistency/conflict between connected neu-
rons. This consistency is measured by an interaction
function, F . Traditional HNs use F(x) = x2 as this inter-
action function. A HN with d nodes (neurons) can recall
approximately 0.138d different patterns; this is called its
storage capacity. A lot of work has been put into increas-
ing the storage capacity of HNs.

More recently, Krotov and Hopfield presented Mod-
ern HNs, or Dense Associative Memory (DAM) models,
which are HNs that use polynomials as the interaction
function in the energy (Krotov & Hopfield, 2016). They
showed that using F(x) = xn increased the storage ca-
pacity to dn−1 for a network with d nodes. They later
showed that these modern HNs are much more robust
to adversarial input (Krotov & Hopfield, 2018). Other
interaction functions have been proposed, but many im-
plementations of HNs are non-biological. First of all, the
connection weights in a HN are assumed to be symmet-
ric; the strengths of two physically different synapses –
say from neuron µ to neuron i, and from i to µ – are equal.
Secondly, many of these modern HNs have many-body
synapses, where the input to a neuron depends on nonlin-
ear combinations of other neurons. For example, if one
uses a quartic interaction function, F(x) = x4, the inputs
to each neuron will depend on the products of triplets of
neurons. It is unclear how such many-body synapses can
be implemented in a biological neural network.

Krotov and Hopfield proposed a model of large asso-
ciative memory that moves closer to being biologically
plausible by addressing the many-body synapse issue
(Krotov & Hopfield, 2021). Their approach is to couple a
set of Nh “memory” or “hidden” neurons (with input cur-
rents hµ) to the Nv feature neurons (with input currents
vi). The full network of Nv+Nh neurons forms a bipartite
graph, which behaves like a classifier; each target pattern
in the feature nodes corresponds to a one-hot setting of
the hidden nodes, and vice versa. In these networks, ξ

is a connection-weight matrix in which ξµi represents the
strength of the synapse from feature neuron i to the mem-
ory neuron µ. Again, these connections are assumed to
be symmetric, so ξµi = ξiµ. There are no synaptic con-
nections among the hidden neurons, or feature neurons.
The outputs of the feature neurons and memory neurons
are denoted by gi and fµ respectively, which are (non-
linear) functions of their corresponding input currents.
A small example of the network discussed above can be
seen in Figure 1.

However, even in some of Krotov and Hopfield’s neu-
robiological networks, the outputs of the feature and
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Figure 1: A small example of the biological HN with
Nv = 5 feature neurons and Nh = 11 memory (hidden)
neurons and symmetric synaptic connections between
them (ξµi = ξiµ). Image taken from (Krotov & Hopfield,
2021).

memory neurons (gi and fµ) still involve “contrastive
normalization”. This means the output of a neuron is nor-
malized with respect to the currents of all other neurons
in the layer (Krotov & Hopfield, 2021). Specifically, the
model we focus on in this paper, the LSE network (cor-
responding to Model B in (Krotov & Hopfield, 2021)),
involves activation functions of the form gi = vi, and

fµ = Sµ(h) = [Softmax(h)]µ =
ehµ

∑m ehm
. (1)

Computing the softmax for a single hidden node requires
knowledge of other hidden neurons, and still poses a de-
gree of biological implausibility.

In this paper, we extend the LSE network presented
by Krotov and Hopfield to incorporate a more biological
implementation of the softmax function, and thus move
even closer to a biologically plausible model of associa-
tive memory. In addition, we show that this biological
LSE network can learn the connection weights using a
local learning rule, derived from gradient descent on the
energy function. We then explore and analyze some in-
teresting behaviours of these networks.

Mathematical Framework: LSE Network
First, we present the LSE Hopfield network in continu-
ous time as presented in (Krotov & Hopfield, 2020). Re-
call that the network is made up of Nv feature neurons
(with input currents vi), and Nh hidden neurons (with in-
put currents hµ). All feature neurons are connected to
all hidden neurons by symmetric connection weights, so
ξµi = ξiµ. The outputs of the hidden and feature neurons
are denoted fµ and gi, respectively, such that fµ = ∂Lh

∂hµ

and gi =
∂Lv
∂vi

, for some Lagrange functions Lh and Lv.
The time constants for the feature and memory neurons
are denoted by τv and τh respectively. With all of this in

mind, the model can be written as a dynamical system,

τv
dvi

dt
=

Nh

∑
µ=1

ξiµ fµ −κvi + Ii , (2)

τh
dhµ

dt
=

Nv

∑
µ=1

ξµigi −hµ , (3)

where κ controls the decay term for the feature neurons,
and Ii denotes the input current to feature neuron i. The
energy function for this model is thus the sum of three
terms: one term for the feature neurons, one term for the
hidden neurons, and one term for the interaction between
the two groups of neurons. Hence, E(t) can we written[

Nv

∑
i=1

(vi − Ii)gi −Lv

]
+

[
Nh

∑
µ=1

hµ fµ −Lh

]
−∑

µ,i
fµξµigi .

In this LSE network, the Lagrange functions are Lh =
log
(
∑µ ehµ

)
= LSE(h), and Lv =

1
2 ∑i v2

i , yielding the en-
ergy function,

E(t) =
Nv

∑
i=1

(
1
2

v2
i − viIi

)
+

Nh

∑
µ=1

(
hµ Sµ(h)−LSE(hµ)

)
−∑

µ,i
Sµ(h)ξµivi. (4)

As the theory of Hopfield networks specifies, the dynam-
ics of the nodes in the network perform gradient descent
on the energy function, so are governed by,

τv
dvi

dt
= (1−β)

Nh

∑
µ=1

ξiµSµ(h)− vi +βIi, (5)

τh
dhµ

dt
=

Nv

∑
µ=1

ξµivi −hµ, (6)

where fµ = Sµ(h) is the softmax, which is the gradient of
LSE(h), and gi = vi is the gradient of Lv. The introduc-
tion of the weighting factor β in (5) allows the input to
be turned on or off. The input to the feature neurons, I,
can be ‘turned off’ by setting β = 0. That input can be
‘turned on’ by setting β to be non-zero.

In (5), we see the biologically problematic use of soft-
max, Sµ(h). The output of hidden node µ depends on all
other hidden nodes.

Biological Softmax
We introduce a neural network that computes the soft-
max function in a more biologically plausible way. This
subnetwork is then combined with Krotov and Hopfield’s
model to enhance its biological plausibility. Recall that
we denote the softmax function by Sµ(h),

Sµ(h) =
ehµ

∑
Nh
j eh j

for h ∈ RNh .

2
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Notice that computing a single element (i.e. Sµ(h)) re-
quires the input from all Nh elements of h. To be biolog-
ically plausible, each neuron’s output must depend only
on its own input. Thus, softmax cannot be computed by
each neuron by itself, but must be implemented by a net-
work of neurons.

First, let us consider log(Sµ(h)):

log(Sµ(h)) = log

(
ehµ

∑
Nh
j eh j

)

= log(ehµ)− log

(
Nh

∑
j

eh j

)
= hµ −LSE(h).

Suppose we have a node (or a collection of neurons), de-
noted b, that stores ∑

Nh
j eh j . Then ,

log(Sµ(h)) = hµ − log(b) .

Next, if we define rµ = hµ − log(b), then we get
log(Sµ(h)) = rµ. Taking the exponential function of both
sides yields,

Sµ(h) = erµ .

This is similar to the way Bogacz and Gurney use log-
arithms to do normalization of probabilities (2007). We
can model this biological softmax network as a system
of differential equations,

τs
db
dt

=
Nh

∑
j=1

eh j −b

τs
drµ

dt
= hµ − log(b)− rµ

τs
d fµ

dt
= erµ − fµ ,

where we have introduced a population of output nodes,
denoted f , and τs is the time constant for computing
softmax. It is straightforward to show that, for fixed h,
the equilibrium solution of this dynamical system yields
fµ = Sµ(h), the softmax function (consistent with (1)).
This biological softmax network is shown in Figure 2.

Biological LSE Network

Finally, we combine the LSE and the biological softmax
networks to arrive at the biological LSE network, replac-
ing the softmax function, Sµ(h) in (5) with erµ . This re-
sults in the following set of coupled differential equa-

... ... ...
h2

hNh

r1

r2

rNh

f1h1

f2

fNh

b

exp log

exp

Figure 2: Biological softmax subnetwork.

tions,

τs
db
dt

=
Nh

∑
j=1

eh j −b

τs
drµ

dt
= hµ − log(b)− rµ

τv
dvi

dt
= (1−β)

Nh

∑
µ=1

ξiµerµ − vi +βIi

τh
dhµ

dt
=

Nv

∑
µ=1

ξµivi −hµ .

It is important that the time constant for computing the
softmax function, τs, is smaller than τv and τh; we need
the softmax network to produce its output quickly so that
the sofmax function appears instantaneous relative to the
rest of the network.

Notice that we avoid the need to model the f nodes
by projecting directly from the r nodes to the v nodes.
Figure 3 shows the network before and after the addition
of the biological softmax subnetwork.

Learning Weights
Consider how we might change ξ to learn a set of target
patterns. In (4), we see that ξ appears only in the last
term of the energy function. Thus, we get

∂E
∂ξµi

=−Sµ(h)vi .

Collecting all the partial derivatives into a matrix ∇ξE,
we get

∇ξE =−S(h)⊗ v ,

where ⊗ is the outer-product. Gradient descent on ξ then
leads to

τξ

dξ

dt
= S(h)⊗ v, (7)

where τξ is a time constant that determines the rate at
which ξ is learned.

3
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(b) LSE Hopfield network using biological softmax

(a) LSE Hopfield network using artificial softmax

Figure 3: Krotov and Hopfield’s network (a) before, and
(b) after the addition of the biological softmax subnet-
work. Each node represents a population of neurons.
Specifically, the v node represents a population of Nv
neurons, while h and r each represent a population of
Nh neurons. The connection weight matrix is ξ.

To discourage large connection weights, we add a
penalty term, ∥ξ∥2

F , to the energy function in (4), based
on the Frobenius norm of the weight matrix. Gradient de-
scent on that term (with respect to ξ) introduces a weight-
decay term,

τξ

dξ

dt
= er ⊗ v − ξ (7)

where we have replaced S(h) with er.
Thus, if we clamp the feature neurons to their values

for one of the target patterns, and set the hidden neurons
to the corresponding one-hot state, the biological LSE
network is able to learn the connection weights through
(7), instead of having them prescribed a priori. The other
set of connection weights, ξT , are updated using the same
rule. It should be noted, however, that the r nodes are not
local to those connections, so ξT essentially constitutes
weight copying.

Behaviours of biological LSE Hopfield
network

Softmax Network
To show that the softmax subnetwork does, indeed, com-
pute the softmax of h, we ran some experiments in which
we held h constant and let the rest of the network (shown
in Fig. 2) run to equilibrium. We used 6 hidden nodes,
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(b) One element of h is larger than the others

Figure 4: Examples of output of the softmax subnetwork.
The plots show the evolution of the fµ nodes, as shown
in Fig. 2. Here, the solid lines represent the activities of
the fµ nodes, with each colour representing a different
node. The horizontal dotted lines show the true values of
softmax(h).

and τs = 1 ms. Two example runs are shown in Figure 4.
It is clear that the fµ nodes approach the true softmax
values, and hence the network successfully computes the
softmax of h.

Content Addressable Memory

In this section we look at how the biological LSE net-
work acts as a CAM. Let us start by defining a dataset
of patterns, X , which contains Nh patterns, each with Nv
bits. Ordinarily, the weight matrix ξ is constructed us-
ing the target patterns themselves (i.e. ξ = X). However,
we learn the weights using the biological LSE network.
The network acts as a CAM since the feature nodes con-
verge to a target pattern, X [k], given a noisy version of
that pattern. This behaviour is illustrated in the following
experiment.

Convergence to Closest Target: Here we illustrate
that the biological LSE network exhibits the same be-
haviours as a normal HN. This is done by providing our
network with some random input pattern, I, and showing
that the network converges to the pattern in its memory

4
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Bio LSE Hopfield Network State Plot

Figure 5: State plot showing the dynamics of the fea-
ture neurons when given a random input pattern. Here,
the solid lines represent the activities of the feature neu-
rons (vi), with each colour representing a different neu-
ron. The gray shaded region shows when the input was
on.

that is the closest to I. Let X be a dataset of Nh = 20 pat-
terns, each with Nv = 12 bits (1s and −1s). The input, I,
is a random binary pattern. Suppose we compute H (I),
the hamming distance between I and each of the target
patterns, and get

H (I) = [6,6,7,9,5,5,5,7,4,8,7,5,6,7,9,5,8,5,7,8].

The target pattern closest to the input differs from it by
4 bits. Hence, we would like the network to converge to
this closest pattern. This is indeed what happens, as seen
in Figure 5. For the first second, while the input is on
(shaded grey in the plot), the feature nodes settle to equi-
librium values. That equilibrium state does not match
any of the target patterns. But once the input is turned
off (after 1 second), the feature nodes converge to states
corresponding to the closest pattern. It is interesting to
note that when the input is on, the 4 incorrect bits con-
verge to the midpoint between what they are in I and the
closest pattern (0 in this case since the patterns are made
up of 1s and -1s).

To demonstrate that this behaviour occurs consistently,
we ran this experiment 100 times. In each run, a new
dataset of target patterns was created, and the network
learned these weights by the process described above.
Then, with those weights fixed, we initialized all neurons
to random values between 0 and 0.1. The input, I, was
set to a random binary pattern and held ‘on’ for 1s, and
then turned off. Once the input was off, we continued
simulating the network for an additional second to allow
convergence. The run is considered a ‘success’ if the net-
work converged to the pattern with the smallest hamming
distance to I. Out of 100 runs, the network successfully
converged to the closest pattern 94% of the time.

This experiment demonstrates one of the fundamental
properties of HNs; when given a noisy version of one
of the patterns, the network corrects the perturbed bits
and converges to the closest pattern. This is similar to
how humans can read the word “STRABWERRY” with
ease since our brain automatically corrects it to the word
“STRAWBERRY”, which is stored in our memory.
Thus, we can conclude that the biological LSE network
behaves as a CAM.

Multistability: In this experiment, we illustrate the
multistability of the biological LSE network. First, we
set the network state to one of its target patterns: its fea-
ture nodes contain the target pattern, the hidden nodes
are set to the corresponding one-hot state, and the input
is turned off. Let us denote this initial target pattern as k1.
Then, for a small period of time, from 0.25s-0.5s, the in-
put is turned on. The input pattern, I, is set to a different
target pattern, which we will denote k2. During that brief
period of time, pattern k2 is fed into the feature nodes,
after which the input is turned off again, from 0.5s-2s.
Figure 6 shows the network starting in pattern k1. Once
the input is turned on, the network starts to shift toward
the state of pattern k2. Even after the input is turned back
off, the network continues converging and stabilizes at
pattern k2’s state. One way to think of this is that the net-
work is initially “thinking about” the first memory (pat-
tern k1), then, prompted by some reminder (the pulse of
input), the network shifts to the second memory (pattern
k2).

Again, we want to ensure that this is a consistent be-
haviour for the biological LSE network. To do so, this
experiment was run 100 times. In each run, a new dataset
of target patterns was created, and the network learned
those new weights. Then the network was initialized
with target k1, and then provided with a 0.25s-long input
pulse corresponding to a different target, k2. The network
successfully converged to k2 in 99% of the runs, demon-
strating the mulistability of the biological LSE network.

Conclusions

In this paper we present a more biologically plausible
modern HN. Modern HNs have received attention for
their ability to store a large number of memories and
then recall a memory in its entirety prompted by a sub-
set or perturbed version of it. This is notable since
human memory can operate in a very similar manner,
with memories often being elicited by cues of partial or
noisy information. Nevertheless, these networks are bi-
ologically unrealistic for a number of reasons, the most
prominent being the assumption of symmetric connec-
tion weights, and the use of functions that require many-
body synapses. Although more biological Modern HNs
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Bio LSE Hopfield Network State Plot

Figure 6: State plot showing the dynamics of the feature
neurons when starting in the state of k1, then switching
to the state corresponding to target k2 after a pulse of in-
put. The solid lines represent the activities of the feature
neurons, with each colour representing a different neu-
ron. The gray shaded region shows when the input was
on.

have been proposed, some still involve “contrastive nor-
malization”, meaning the output of a single neuron is
normalized with respect to all other neurons in that layer.
In Krotov and Hopfield’s LSE network that we focus
on here, the output of the hidden neurons is normalized
according to the softmax function, which requires the
knowledge of other neurons.

We implemented a neural network that computes the
softmax function in a more biologically sound manner.
Introducing this as a subnetwork to the LSE network
overcomes the nonbiological aspects still posed from the
traditional softmax function. Our experiments showed
that this softmax network dependably computes the soft-
max, and the resulting biological LSE Hopfield network
behaves like a high-capacity Content Addressable Mem-
ory.

Future Work
Even though our goal was to demonstrate a biologically
plausible implementation of modern Hopfield networks,
there are still aspects of the resulting network that are bi-
ologically problematic. For example, we learn the con-
nection weights, ξ, using a local learning rule. However,
a separate, symmetric set of connection weights, ξT , are
copied from the learned weights. This weight copying
is similar in nature to using a symmetric weight matrix
in the original formulation of Hopfield networks, where
convergence to a set of steady-state patterns was ob-
served even when ξ was not symmetric (Hopfield, 1982).
Also, some work has shown that association networks
can still learn even when one set of weights is random
(Lillicrap, Cownden, Tweed, & Akerman, 2016). Still,

strategies for learning ξT are an interesting area for fur-
ther development.

Another aspect of the softmax network that might be
biologically questionable is the use of exp and log as ac-
tivation functions. While these functions might seem un-
orthodox in the neural-network community, there is no
reason in principle why a neuron could not perform those
transformations, so long as the input currents fall within
a reasonable range. One possible issue that might arise
is if b is small, causing log(b) to be large and negative.
The fact that the log function has a vertical asymptote at
b = 0 suggests that our model is not valid if all the hµ
values are large and negative.

One last factor that is biologically suspicious is the fact
that each target pattern corresponds to the activation of a
single hidden neuron. Such one-hot representations are
not robust, and not observed in real biology. It is interest-
ing to consider if one could instead learn a combinatorial
hidden representation. Of course, such a method would
preclude the need to write a paper on a biological im-
plementation of softmax. But a strategy similar to ours
might be used to enforce some other attractor dynamics.
We leave this as an area for future work.
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