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Abstract
Accurate estimates of aquifer parameters are necessary for effective groundwater management and for geotechnical engineering
applications. Pumping tests may be employed to estimate the hydraulic conductivity in leaky aquifer/aquitard systems. This work
introduces a hybrid algorithmwith global search capacity (the Genetic algorithm, GA) and local search capacity—the Levenberg-
Marquardt (LM) algorithm—coupled with a modified Neuman-Witherspoon solution for leaky aquifers to estimate the aquifer’s
hydraulic parameters from pumping-test data. The GA is employed to determine the initial guesses of the aquifer parameter
values. The optimal parameter values are then obtained with the LM algorithm, yielding a mixed GA/LM algorithm, herein
named GALMA. Results show that the drawdown trends based on the estimated parameters agree well with measured draw-
down. The proposed estimation algorithm identifies aquifer parameters with greater reliability than previous approaches.
Verification of the GALMA is carried out based on three pumping tests in a layered aquifer in Tianjin, China, and on four
historical case studies involving diverse hydrogeological settings. The excellent match between observed drawdown and
GALMA-estimated parameters demonstrates the estimation accuracy and superior performance relative to previously reported
estimation methods.

Keywords Analytical solutions . Hydraulic properties . Leaky aquifer . Pumping test . Optimization

Introduction

The analysis of groundwater flow using hydrogeological and
geotechnical engineering approaches depends on various
model parameters, such as hydraulic conductivity K and

specific storage Ss. Accurate evaluation of these parameters
is key for the correct characterization of groundwater process-
es and to carry out numerical predictions (Zeng et al. 2018,
2019; Zheng et al. 2019; Ha et al. 2019). In-situ testing pro-
duces more representative estimates of aquifer hydrogeologic
properties than laboratory testing of disturbed soil samples,
especially for permeable coarse-grained soils (Mckay et al.
1993a, b; Shen et al. 2015). Graphical and numerical methods
are commonly employed to aid estimation of aquifer parame-
ters from drawdown, measured during pumping tests. These
estimation methods may yield results that depend on the ana-
lyst’s individual judgment (Cooper and Jacob 1946; Çimen
2009; dos Santos et al. 2011). Unreliable results may be ob-
tained when the graphical matching is poor (Samuel and Jha
2003). Alternatively, minimization of norms between mea-
sured and calculated groundwater variables (e.g., the sum of
square difference between measured and calculated variables)
is widely employed in three-dimensional (3D) numerical
modeling (see, e.g., Carrera and Neuman 1986; Doherty
2018). The latter approach necessitates initial parameter esti-
mates that may be obtained with approximate equations,
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which may or may not lead to accurate estimates (Bear 1979;
Yeh 1984; Wang et al. 2008; Shen et al. 2015; Liu et al. 2017;
Zhang et al. 2017). Minimizing the various norms of the dif-
ference between measured and calculated pumping-test data
may involve a considerable computational effort, and may be
hindered by poor convergence and yield inaccurate parameter
estimates (Mania and Sucche 1978; McElwee 1980; Johns
et al. 1992; Leng and Yeh 2003; Yeh and Huang 2005; Jha
et al. 2006; Bateni et al. 2015).

The equations governing groundwater flow are typically
nonlinear and nonconvex. Several optimization methods, in-
cluding traditional nonlinear optimization and meta-heuristic
algorithms, have been applied for estimating hydraulic param-
eters. Analytical solutions have been coupled with parameter-
estimation methods such as the radial basis function colloca-
tion method (RBFCM; Sahin 2016), extended Kalman filter
(EKF; Leng and Yeh 2003), particle swarm optimization
(PSO; Şahin 2018), and ant colony optimization (ACO;
Bateni et al. 2015). The latter methods yield accurate solu-
tions; however, they require significant computational effort
or local hydrogeology knowledge.

This work introduces a hybrid algorithm for estimating hy-
draulic parameters in leaky aquifer parameters, and demon-
strates its superior performance over other estimation method-
ologies with data sets from several pumping tests. An in-situ
aquifer test conducted in Tianjin, China, is described, and the
associated data are employed to assess the performance of the
proposed estimation method. The efficacy of alternative opti-
mization methods in aquifer parameter estimation is then
discussed. Subsequently, an analytical solution for leaky aqui-
fers is combined with the proposed estimation algorithm to
obtain aquifer hydraulic parameters from pumping-test data.
Validation of the proposed GALMA is carried out with three
pumping tests in a layered aquifer in Tianjin, China, and four
case studies involving diverse hydrogeological settings. The
estimation skill of the proposed GALMA is compared with that
of previously reported methods to estimate aquifer parameters.

A brief overview of optimization methods
to estimate aquifer parameters

Optimization methods for aquifer parameter estimation can be
broadly classified as traditional or nontraditional techniques
(James 2004; Zhang et al. 2009). Traditional optimization
techniques (e.g., the Levenberg-Marquardt (LM) algorithm,
Marquardt 1963), steepest-descent method, Gauss-Newton
method) apply algorithms that calculate functional derivatives
iteratively in the search for global optimal parameter esti-
mates. Nontraditional optimization techniques, on the other
hand, apply algorithms that can solve nonlinear and
nondifferentiable estimation problems and converge to near-
global parameter estimates. The genetic algorithm (GA) is a

popular nontraditional or, more specifically, evolutionary op-
timization algorithm (see e.g., Holland 1975; Bozorg-Haddad
et al. 2017). It has previously been applied in groundwater
optimization problems.

Optimization methods

The LM algorithm and the GA have been frequently applied
in optimization studies, including the estimation of aquifer
parameters relying on pumping-test data.

The Levenberg-Marquardt (LM) algorithm

The LM algorithm is a frequently used optimization method.
It performs better than the simple gradient-descent algorithm
and other conjugate gradient algorithms in a wide range of
problems. The LM algorithm is a hybrid of the gradient-
descent and the Gauss-Newton algorithms used to solve non-
linear least-squares minimization problems (Madsen et al.
2004). In the context of pumping-test parameter optimization,
the LM algorithm is based on a linear approximation to a
function f(x,β) employed to calculate drawdown as a function
of a vector of independent variables x (say, elapsed time of
pumping, distance to the pumping well, pumping rate) and a
vector of parameters. The empirical data from a pumping test
yields a vector of paired observed drawdown (y) and elapsed
time since pumping starts. The LM algorithm starts with user-
provided initial estimates of aquifer parameters, denoted by
the vector β0. Under suitable conditions, the LM algorithm
improves the estimates of the parameters β in each iteration
until satisfying a convergence criterion. In the k-iteration of
the LM algorithm (k = 1, 2, 3,…) the current vector of param-
eters βk is improved by adding to it the descent increment
vector δk, in which δk is obtained by solving the following
system of linear equations:

JTk Jk þ μkI
� �

δk ¼ JTk y− f xk ;βkð Þ½ � ð1Þ

where μk denotes the (nonnegative) Levenberg damping pa-
rameter in iteration k; I represents the identity matrix; JTk de-
notes the transpose of the matrix Jk, xk denotes the value of the
independent variables in the k-th iteration, and Jk represents the
Jacobian matrix in the k-th iteration whose j-th row is given by
the gradient (row) vector of the drawdown function evaluated at
the current βk and the j-th element of the vector xk:

Jkj ¼
∂ f xkj;βk

� �
∂βk

ð2Þ

The improved vector of the parameter is calculated as fol-
lows:

βkþ1 ¼ βk þ δk ð3Þ
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The LM algorithm’s convergence to a (minimum) global
solution can be guaranteed only when the function f is convex.
In the case of more complex functions the initial guess β0

must be close to the solution. Otherwise, the LM algorithm
may be trapped in a local optimum.

The genetic algorithm (GA)

The GA is a stochastic search procedure (i.e., evolutionary
algorithm) that searches the optimal solution by mimicking
the processes of natural selection and genetic evolution
(Holland 1975; Abdel-Gawad and El-Hadi 2009; Cavazzuti
2013). It begins by initializing a population of candidate so-
lutions randomly sampled from a feasible solution space. The
GA improves the initial randomly generated population of
solutions, and continues to improve subsequent populations
as it advances through the iterative search until a convergence
criterion is satisfied (Bozorg-Haddad et al. 2017). The popu-
lation of solutions in the k-th iteration is called the k-th gener-
ation. Each generation is improved by the application of mu-
tation and cross-over techniques (see e.g., Bozorg-Haddad
et al. 2017) in each iteration.

Criteria for iterative solution of optimization
problems

The object function

An objective function defines a measure of the agreement
between the observed data and estimated data. The standard
error of estimates (SEE) is often employed to evaluate the
error (Leng and Yeh 2003; Yeh and Huang 2005), in which
case the objective function is expressed as follows:

SEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ν
∑n

i¼1e
2
i

r
ð4Þ

where ei represents the i-th difference between the value of the
observed drawdown and the estimated drawdown; ν denotes
the degrees of freedom, which equals the number of data
points in the drawdown test minus the number of estimated
parameters.

Termination criterion

uitable termination criterion is required to terminate the
calculation during the computational process (Johns et al.
1992; Jha et al. 2006). The mean square error (MSE) is
frequently relied upon to evaluate the difference between
the observed and estimated drawdowns, or estimation er-
rors (Yeh and Huang 2005; Leng and Yeh 2003); it is
calculated as follows:

MSE ¼ 1

n
∑n

i¼1e
2
i ð5Þ

The parameter estimation search is commonly terminated
when the MSE equals or is less than 10−3, or when a maxi-
mum number of iterations in the optimization search is
reached.

Pumping tests

Site description

The field site chosen for the experiments is the suburban area of
Tianjin, China, situated about 90 km southeast of Beijing,
China’s capital. The Quaternary deposits at the experimental
site reach a thickness of 500 m. These Quaternary coastal de-
posits consist of saturated clayey soils and silty soils character-
ized by a stratified distribution (Chai et al. 2004; Yang et al.
2008; Shen and Xu 2011; Zheng et al. 2014, 2015a, b). The
multi-layer aquitard-aquifer system (MAAS) prevailing at the
study site contains several aquifers separated by aquitards.
Above a depth of approximately 80 m the MAAS comprises
one phreatic aquifer and several semiconfined layers.

Pumping tests were conducted to assess the response of an
aquifer to groundwater withdrawal. Groundwater flowed un-
der natural conditions at the study site and was not influenced
by underground infrastructures (Ma et al. 2014) commonly
found in the subsurface of Chinese urban areas. Figure 1 de-
picts the location of the test site and wells installed, which
included one pumping well (labeled H11-1) and 11 observa-
tion wells (labeled G8-1 through G11-7).

The soil in the experimental site comprises artificial fill,
silt, and silty clay. The experimental site stratigraphic profile
features, from top to bottom, one phreatic layer (Aq0), two
shallow semiconfined silty layers (AqI, AqII), and a deep
semiconfined silty-clay aquifer (AqIII) recharged mainly
through overlying layers (Wang 2013). Ground elevation
ranges from 2.1 to 2.3 m above mean sea level (amsl) at the
study site. A uniform ground elevation was chosen as the
reference datum for measured water level at the experimental
site. Figure 2 displays two cross-sectional views of the soil
profile (labeled A–A′ in Fig. 1) and details about observation
wells (labeled B–B′ in Fig. 1). Layer Aq0 consists of the
topmost shallow soil, layer AqI, mainly composed of silt with
an average thickness of 2.9 m, is situated beneath the overly-
ing aquitard AdI and its initial piezometric head was −8.6 m
amsl. Layer AqII, with an initial piezometric head of −13.6 m
amsl, consists mainly of silt with an average thickness equal to
1.8 m. Aquifer AqIII has an average thickness equal to 7.8 m
and is mainly composed of silty sand, with initial piezometric
head equal to −15.1 m amsl. The three semiconfined layers
were separated by several aquitards (referred to as AdI, AdII,
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Fig. 2 Cross-sectional views of the soil profile (A–A′) and wells (B–B′)

Fig. 1 a Map of China. b
Locations of field pumping tests.
c Plan of the pumping and
observation wells
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and AdIII). The internal radii of the single-pumping well and
eleven observation wells were 325 and 275 mm, respectively.
The pumping well (H11–1) and the observation wells G11–1
through G11–7 were installed within AqIII to a depth of 50 m,
and the screens of the seven wells in AqIII were 9 m long.

Table 1 lists the experimental site’s soils properties obtain-
ed from geological investigation and laboratory tests. The
specific storage Ss for a saturated soil is related to the com-
pression index Cc (Leake 1991) according to the following
formula:

Ss ¼ 0:434Ccγw
σ0 1þ e0ð Þ ð6Þ

where e0 is the initial void ratio, σ′ is the pre-consolidation
stress, and γw denotes the unit weight of water.

Experimental scheme

Pumping tests were performed in aquifer AqIII between
January 9, 2016, and January 18, 2016. Table 2 lists details
pertaining to the three pumping tests, which featured pumping
rates averaging 2.1, 3.0, and 3.5 m3/h, and durations of
pumping respectively equal to 24.5, 24.0, and 25.0 h.

Pumping was maintained approximately constant through
the tests until the water level in the observation wells stabi-
lized. Figure 3 displays a slight variation of the pumping rates
during the three tests due to transient conditions developed in
the pumped aquifer and measures taken with the controlling
equipment to reach steady pumping rates.

The small drawdown test (with 148 measured data) was
selected for parameter estimation because it conforms best
with the theoretical solutions for leaky aquifers used in this
project, which assume small drawdown. The estimated param-
eters were used for drawdown prediction. Comparison be-
tween measured and predicted drawdownwas carried out with

the intermediate-drawdown test (with 150 measured draw-
down data) and the large-drawdown test (with 152 measured
drawdown data).

Figure 4 presents the variation in the measured water levels
within the observation wells during the pumping and recovery
phases. Only the pumping tests were analyzed herein; the
analysis of the recharge tests is beyond the scope of this study.
It is seen in Fig. 4 that the hydraulic head in the observation
wells G11-4, G11-5 and G11-7 tapping AqIII decreased rap-
idly in the early stage of testing in the intermediate drawdown
test; thereafter, the groundwater level approached steady state.
The groundwater level recovered rapidly after the pump was
shut down and regained its initial value after 12 h. The
groundwater levels in the observation wells G11-4, G11-5,
and G11-7 tapping AqIII corresponding to the three scales of
drawdown followed a similar pattern. Additionally, the ob-
served water level in observation wells G9-1 and G9-2 tap-
ping AqII was only slightly affected by groundwater extrac-
tion, exhibiting drawdowns less than 0.3 m during three
pumping tests. The hydraulic head in the AqI measured in
observation wells G8–1 and G8–2 was nearly constant during
the three pumping tests.

Influence of wellbore storage

The wellbore storage may influence the accuracy of estimated
parameters in the early stage of pumping in the presence of
low hydraulic conductivity and clogged granular material in
the annular space outside the well casing. The wellbore-
storage effect generally becomes negligible after a period of
pumping, at which time the observed drawdown data become
well approximated by the analytical solution. Therefore, a
critical time ta is commonly introduced to account for the
wellbore storage effect (Shen et al. 2015; Chapuis and
Chenaf 2003). The critical time ta is estimated by the follow-
ing formula (Schafer 1978)

Table 1 Summary of soil
properties at the experimental site Hydrogeology

profile
Soil
strata

Unit
weight
(kN/m3)

Depth e0 Cc Ss K
(m/day)(m)

Aq0 Backfill 17.8 6.5 1.182 0.16 0.00628 –

Aq0 Fat clay 19.3 14.2 0.791 0.0811 0.00161 0.0004

AdI Silty clay 19.9 16.9 0.713 0.0745 0.00127 0.022

AqI Silt 19.4 19.8 0.721 0.0418 0.000598 1.2

AdII Silty clay 19.3 28.1 0.832 0.0872 0.000814 0.0036

AqII Silt 20 29.9 0.628 0.0295 0.00029 2.2

AdIII Silty clay 19.3 41.8 0.801 0.038 0.00024 0.0026

AqIII Silty sand 20.1 49.6 0.597 0.027 0.000158 4

AdIV Silty clay 19.9 60 0.652 0.0368 0.000171 0.00001

Notes: e0 initial void ratio; Cc compression index; Ss specific storage; K hydraulic conductivity; the values in the
table represent mean values
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ta ¼ 0:017 d2c−d
2
p

� �
= Q=sð Þ ð7Þ

where dc denotes the internal diameter of the well casing (in
mm); dp denotes the outer diameter of the pump rising pipe (in
mm);Q/s represents the well specific capacity (in (m3/day)/m) at
time ta. The values of dc and dp in this work equal 325 and
100 mm, respectively. The estimated critical times ta are listed
in Table 3, which imply that the wellbore storage effect can be
ignored after 90 min of elapsed time of pumping during the tests.

Application of the proposed optimization
method

This section evaluates the effectiveness of the LM and GA
methods based on the pumping tests results.

Analytical model for analyzing pumping tests

The aquifer AqIII is recharged from above through the over-
laying layers. The thickness of the aquitard AdII overlying the
aquifer AqIII is about 12 m. The hydraulic head in AqIII was

nearly constant during the pumping tests (i.e., the drawdown
was less than 0.3 m, as shown in Fig. 4).

A modified version of the Neuman and Witherspoon
(1969) solution for drawdown developed by Yeh and Huang
(2005) is considered appropriate for the semiconfined or leaky
aquifer AqIII:

s r; tð Þ ¼ Q
2πT

∫∞0
1

y
1−exp −y2tD

� �� �
J 0 w yð Þ½ �dy ð8Þ

where s(r, t) represents the drawdown a distance r from the
pumping well and elapsed time t since the beginning of
pumping; Q denotes the constant pumping rate; tD equals Tt/
r2S; tD denotes the dimensionless time equal to tDL

2/16ψ2; B

denotes the leakage factor defined by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T= K 0=M 0ð Þp

; L = r/B;

ψ = β/L; β = r
ffiffiffiffi
S0

p
=4B

ffiffiffi
S

p
; w2(y)= (L2y2/16ψ2) − L2y cot y; J0

denotes the Bessel function which must be set equal to zero
when w2(y)< 0; K denotes the hydraulic conductivity of the
semiconfined aquifer; K′ represents the vertical conductivity
of the aquitard;M is the thickness of the semiconfined aquifer;
M′ is the thickness of the aquitard; T denotes the transmissiv-
ity, which equals KM; S denotes the storage coefficient of the
semiconfined aquifer; S′ denotes the storage coefficient of the
aquitard overlying the semiconfined aquifer AqIII.
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m
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Small drawdown test

Intermediate drawdown test

Large drawdown test

Fig. 3 Pumping rates of the three
tests

Table 2 Details of the pumping tests

Drawdown scale Aquifer Pumping well tp (h) Q (m3/h) sw (m) t0 te

Intermediate drawdown test AqIII H11–1 25 3 3.59 13:00 10th Jan 14:00 10th Jan

Large drawdown test AqIII H11–1 24.2 3.5 4.21 10:00 15th Jan 10:10 16th Jan

Small drawdown test AqIII H11–1 24.5 2.1 2.67 10:00 17th Jan 10:30 18th Jan

tp duration of pumping time; Q pumping rate; t0 starting time; te ending time; sw drawdown in the pumping well; h hour
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The integral of Eq. (8) was accurately calculated with the
Gauss-Kronrod quadrature in MATLAB, which achieves a rel-
ative error tolerance equal to 0.001. The LM algorithm and the
GA are implemented in conjunction with the analytical solution
(Eq. 8) in a simulation-optimization (SOM) approach: (1) the
analytical solution is evaluated with generated initial estimates
of the hydraulic parameters, (2) the algorithms improve the
initial guess; (3) the analytical solution is re-evaluated with
the improved solution, and the algorithms generate a newly
improved solution, and (4) the simulation-optimization itera-
tions are repeated until a termination criterion is satisfied.

Performance of selected optimization methods

This section illustrates how the LM algorithm and the
GA are coupled with the modified solution (Eq. 8) to
estimate hydraulic parameters. Thereafter, the results ob-
tained from these algorithms are compared.

Effectiveness of the LM algorithm

The LM algorithm is a modified Gauss-Newton optimiza-
tion approach in which the parameter vector is updated

iteratively. The parameters T, S, S′ and B are considered
time-invariant during the pumping tests. A maximum
number of 100 iterations of the LM algorithm was
adopted in this study as the termination criterion; an ini-
tial damping parameter μ0 is set equal to 10−3 (Madsen
et al. 2004).

The parameter vector β has four elements, namely:

βT ¼ T ; S; S
0
;B

h i
ð9Þ

The value of the parameter vector in the k-th iteration of the
LM algorithm is denoted by βk.

The Jacobian matrix Jk in the k-th algorithmic LM iteration
reduces to a 4-D vector of derivatives of the drawdown func-
tionwith respect to the aquifer parameters evaluated in the k-th
iteration—with fk = f(xk,βk):

Jk ¼ ∂ f k
∂T

∂ f k
∂S

∂ f k
∂S0

∂ f k
∂B

	 
T
ð10Þ

∂ f k
∂T ,

∂ f k
∂S ,

∂ f k
∂S0 ,

∂ f k
∂B are approximated with the difference equa-

tions introduced by Yeh and Huang (2005) as follows:
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∂ f k
∂T

¼ −
Q

2πT2 Gþ Q
2πT

G T þΔT ; S; S0;Bð Þ−G T ; S; S0;Bð Þ
ΔT

ð11Þ

∂ f k
∂S

¼ Q
2πT

G T ; S þΔS; S0;Bð Þ−G T ; S; S0;Bð Þ
ΔS

ð12Þ

∂ f k
∂S0

¼ Q
2πT

G T ; S; S0 þΔS0;Bð Þ−G T ; S; S0;Bð Þ
ΔS0

ð13Þ

∂ f k
∂B

¼ Q
2πT

G T ; S; S0;BþΔBð Þ−G T ; S; S0;Bð Þ
ΔB

ð14Þ

in whichG represents the integral on the right-hand side of Eq. (8).
Notice that the increments in the denominators of Eqs. (11–

14) are approximated by the parameter value times a factor of
10−3 (Leng and Yeh 2003), i.e., ΔT =10−3 T. Reasonable ini-
tial estimates of T, S, S′ and B must be specified to initiate the
LM search. The specific storage ranges from 1.02 × 10−3 to
1.6 × 10−5 in sandy and clayey soils, respectively (Domenico
and Mifflin 1965; Batu 1998). Awide range from 1 × 10−3 to
1 × 10−5 was assigned to Ss. AqIII consists of silt and silty
sand. The representative hydraulic conductivity of sand (rang-
ing from silty sand to sand) ranges from 0.5 to 50 m/day (Lin
2005). By multiplying these values by the layer thickness, the
ranges of transmissivity and storage coefficients are respec-
tively 3.9–390 m2/day and 7.8 × 10−3 – 7.8 × 10−5. The ratio
between the hydraulic conductivity of the semiconfined aqui-
fer AqIII and the aquitard AdIII ranges from 10 to 105. The
adopted leakage factor B ranges from 30.5 to 3,050. Eighteen
sets of initial guesses of T, S, S′ and B covering the range of
parameters were generated to assess LM search convergence.
The initial sets are summarized in Table 4, which also lists
convergence or nonconvergence of the LM method corre-
sponding to each initial set of parameter estimates.

It is evident from Table 4 that the method is sensitive to the
initial estimates. Convergence before the maximum number
of allowed iterations occurred only for initial estimates 8, 13,
and 14, whereas nonconvergence occurred with the other ini-
tial estimates. These convergence anomalies can be explained
primarily with the following two reasons:

1. The Jacobian matrix elements in Eqs. (11)–(14) are small
when the initial guess of the transmissibility coefficient T
is large. As a result, the increments of the four parameters
(i.e., T, S, S′ and B) are too small for convergence.

2. The Yeh and Huang (2005) Eq. (8) is typically nonconvex
and nonlinear. This means the LM algorithm is frequently
trapped within local optima when the initial parameter
estimates are substantially different from the true values
(Trinchero et al. 2008; Bateni et al. 2015).

The LMmethod’s success hinges on having a priori knowl-
edge about the approximate values; otherwise, initial guesses
far from the optimal solution commonly fail to converge to the
correct solution.

Effectiveness of the GA

The initial population of solutions is generated randomly by
the GA. Awide range of storage coefficients may be generated
far from an optimal solution and cause slow convergence.
Therefore, the specific storage is shifted to exponential format
to reduce the range of the storage coefficient. Specifically, this

Table 3 Wellbore storage effect
for pumping tests (estimates of ta
from Eq. 7)

Scale Q (m3/h) s (m) dc (mm) dp (mm) ta (min)

Small drawdown test 2.14 2.67 325 100 86

Intermediate drawdown test 3.00 3.6 325 100 81

Large drawdown test 3.50 4.21 325 100 81

Table 4 Initial guesses of the parameters in the LM algorithm

Guess No. Initial guesses Convergence?

T S × 10−5 S′ × 10−5 B

1 3.9 780 780 30.5 No

2 3.9 7.8 7.8 30.5 No

3 39 780 780 30.5 No

4 39 7.8 7.8 30.5 No

5 390 780 780 30.5 No

6 390 7.8 7.8 30.5 No

7 3.9 780 780 305 No

8 3.9 7.8 7.8 305 Yes

9 39 780 780 305 No

10 39 7.8 7.8 305 No

11 390 780 780 305 No

12 390 7.8 7.8 305 No

13 3.9 780 780 3,050 Yes

14 3.9 7.8 7.8 3,050 Yes

15 39 780 780 3,050 No

16 39 7.8 7.8 3,050 No

17 390 780 780 3,050 No

18 390 7.8 7.8 3,050 No

T transmissivity of the semiconfined aquifer, S storage coefficient of the
semiconfined aquifer, S′ storage coefficient of the aquitard, B leakage
factor
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work specifies the parameters S and S′ as the product of two
random numbers, as follows:

S ¼ A� 10−INT Bð Þ �M ð15Þ
where A is a random number in the range ≥1 to <10, and B is a
random number in the range >3 to <6, M is the thickness.

The upper and lower bound of the hydraulic parameters
used with the GA are listed in Table 5. The upper and lower
bounds of the hydraulic parameters are considered sufficiently
broad to assess the global optimization capabilities of the hy-
brid algorithms. Additionally, the crossover rate Pc and muta-
tion rate Pm are set equal to 0.8 and 0.005, respectively
(Goldberg and Holland 1988; Reed et al. 2000). The number
of populations of solutions in each GA iteration was set equal
to 300 (Samuel and Jha 2003). The maximum number of
generations or algorithmic iterations equals 50.

Because of the randomness of the GA, ten runs (labeled runs
1–10) were implemented to search for the optimal parameters.
It is seen in Fig. 5 that all 10 runs of the GA exhibit a rapid
decline in the objective function and reach a constant value that

differs across runs after 10 iterations or generations (Andre et al.
2001). The objective function is the standard error of estimate.
It is customary to express solutions obtained from the GA as
averages of values obtained from multiple runs (Kapelan et al.
2003; Wan and Birch 2013), aided by calculation of the stan-
dard deviation of the values from the runs tomeasure dispersion
about the average value (Bozorg-Haddad et al. 2017). Yet, the
dispersion of values about the average may be too high, in
which case a hybrid solution method exhibiting the best prop-
erties of the LM method and the GA may prove advantageous,
as the following sections demonstrate.

Development of the hybrid algorithm

Due to the limitations of the LMmethod and the GA for global
optimization of the hydraulic aquifer parameters this work
introduces a hybrid algorithm combining the advantages of
the GA and the LM method, herein named GALMA.
Figure 6 describes a computational diagram of the hybrid
algorithm. The GA is implemented to find a near-optimal
solution. The best solution obtained by the GA serves as an
initial guess with which to launch the LM algorithm whenever
the GA does not achieve a near-global solution during the
allowed maximum number of iterations.

The hydraulic parameters are identified according to the
following steps of the GALMA:

Step 1. The initial generation is produced randomly with the
GA. The selection, evaluation, crossover, and muta-
tion processes are repeated until the termination

Table 5 Ranges of the parameters used with the GA

Hydraulic parameters

T (m2/day) S S′ K/K′ B

Upper bound 390 7.8 × 10−3 7.8 × 10−3 1 × 105 3,050

Lower bound 3.9 7.8 × 10−5 7.8 × 10−5 10 30.5

K hydraulic conductivity of the semiconfined aquifer, K′ hydraulic con-
ductivity of the aquitard, S coefficient of storage of the semiconfined
aquifer; S′ storage coefficient of the aquitard, B leakage factor
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criterion is satisfied, in which case the algorithm pro-
ceeds to step 3. Otherwise, upon reaching the maxi-
mum number of generations, the best-fitting solution
calculated with the GA is used as the initial parame-
ters in the LM algorithm.

Step 2. The trial solution and the SEE are updated along the
steepest descent direction dp calculated with the LM
algorithm.

Step 3. The optimal solution is obtained when the calculated
and measured drawdowns satisfy a convergence
criterion.

Ten runs (labeled runs 1–10) were solved in search of the
optimal results with the GALMA. The 50th generation of
solutions calculated with the GA was specified as the initial
solution of the LM algorithm. Figure 7 displays the results

Fig. 6 Flow diagram of the hybrid algorithm

Fig. 7 Convergence history of the
GALMA corresponding to the
small drawdown pumping test
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obtained with the GALMA. A sub-optimal result is first
attained with the GA; the LM starts its search with the 50th
generation of solutions calculated with the GA. A remarkably
improved SEE is achieved with the GALMAwhich converges
to a unique global optimum in all 10 runs. The global opti-
mum was reached in 8 LM iterations.

The drawdown was assessed based on the hydraulic
parameters estimated with the GALMA. Figure 8a depicts
a comparison between the measured and estimated draw-
down corresponding to the small drawdown test. The cor-
responding coefficient of determination (R2) is 0.9762.
The time-drawdown curve based on the hydraulic param-
eters identified by GALMA is reasonably close to the
observed time-drawdown curve. The identified parameters
are employed to estimate the drawdown corresponding to
the characteristics of the intermediate drawdown and the
large drawdown tests, as shown in Fig. 8b,c. The estimat-
ed drawdown calculated with the calculated analytical so-
lution is relatively larger than the observed drawdown in

the early stages of pumping. This behavior stems from the
influence of the wellbore storage; however, the calculated
results generally coincide with the measured values, and
the R2 for intermediate drawdown and the large draw-
down tests equal 0.9510 and 0.9742, respectively. The
results demonstrate that the identified parameters are suit-
able estimates of the hydraulic properties of the aquifer.

Assessment of the proposed approach

Further evaluation of the optimization capacity of the GALMA
was pursued with four case histories of pumping tests gathered
from the literature. The presented pumping tests were conduct-
ed in diverse hydrogeological conditions which allowed for
testing of the applicability of the GALMA based on the mod-
ified Neuman and Witherspoon’s (1969) solution by Yeh and
Huang (2005) and Hantush and Jacob’s (1955) solution. There
was no available information about the local hydrogeology

0 5 10 15 20 25

2.0

1.5

1.0

0.5

0.0

Time (h)

D
ra

w
d

o
w

n
(m

)

G11-4

Estimations Observations

G11-5

Estimations Observations

G11-7

Estimations Observations

R2=0.9762

(a) Small drawdown test

0 5 10 15 20

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Time (h)

D
ra

w
d

o
w

n
(m

)

G11-4

Estimations Observations

G11-5

Estimations Observations

G11-7

Estimations Observations

R2=0.9510

(b) Intermediate drawdown test

0 5 10 15 20

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Time (h)
D

ra
w

d
o

w
n

(m
)

G11-4

Estimations Observations

G11-5

Estimations Observations

G11-7

Estimations Observations

R2=0.9742

(c) Large drawdown test

Fig. 8 Comparison between the observed and estimated drawdown in three pumping tests

Hydrogeol J (2019) 27:3081–3095 3091



associated with the case histories or the pre-assumed upper and
lower bound of the storage coefficient. Therefore, the transmis-
sivity coefficient of the semiconfined aquifer, and the leakage
factor were allowed to range from 10−3 to 10−5, from 0.5 to
3,000 m2/day, and from 0 to 10,000, respectively. These are
reasonable ranges for T, S, S′ and B in most field settings.
These ranges were obtained from Yeh and Huang (2005), Yeh
et al. (2007) and Bateni et al. (2015).

Unsteady flow in leaky confined aquifers with storage
effect in an aquitard

A pumping test scheme with an observation well reported by
Sridharan et al. (1987) was chosen for GALMA evaluation.
The distance between the pumping well and the observation
well was 29 m, and the pumping rate Q equaled 136.26 m3/
day. The parameters identified by the proposed hybrid algo-
rithm and the identified parameters from GA, SA (simulated
annealing algorithm), Newton’s method (NLN), EKF (extend
Kalman filter) are compared in Table 6. It is seen in Table 6 that
the GALMA produced a smaller mean error (ME) and standard
error estimate (SEE) than the other optimization methods.

The second case-history data were taken from Cooper
(1963). There were three observation wells, and the distances

between the pumping well and the observation wells were
30.48 m, 152.4 m, and 304.8 m. The pumping rate equaled
5,450.98 m3/day, and the duration of pumping was 1,000 min.
It is evident fromTable 6 that theME and SEE of the proposed
hybrid algorithm are smaller than those of other approaches,
demonstrating the superior optimization capacity of the
GALMA in estimating the aquifer parameters.

Unsteady flow in leaky confined aquifers
without storage effect in an aquitard

Two pumping test data sets associated with leaky confined
aquifers were chosen for GALMA evaluation. The first data
set is from Batu (1998). The uniform pumping rate equaled
625 m3/day, the thicknesses of the aquifer and aquitard were
80 and 28 m, respectively, the distance between the pumping
well and the observation well was 105 m, while the test dura-
tion was approximately 881.28 min. The second data set is
from Fetter (2001), whereby the uniform pumping rate
equaled 135.92 m3/day, the distance between the pumping
well and the observation well was 29.26 m and the test dura-
tion was approximately 1,185 min.

The assumed bounds of the hydraulic conductivity and
specific storage are similar to last section. The ME and SEE

Table 6 Comparison of estimated
hydraulic parameters of the leaky
confined aquifer considering the
storage effect in an aquitard.
Italics shows smaller mean error
(ME) and standard error estimate
(SEE) of GALMA as opposed to
other optimization methods

Resource Method Estimated parameters Errors

T (m2/
day)

S B (m) S′ ME
(×10−3)

SEE
(×10−3)

Sridharan et al.
(1987)

SA 23.4 1.64 × 10−4 218.045 2.59 × 10−9 −1.81 1.02

GA 23.9 1.59 × 10−4 228.346 2.59 × 10−9 −2.67 1.18

EKF 22.6 1.73 × 10−4 204.225 2.76 × 10−9 1.49 1.36

NLN 23.3 1.65 × 10−4 216.418 1.3 × 10−9 −1.78 1

GALMA 21.1 1.51 × 10−4 205.415 1.24 × 10−4 0.081 0.97

Cooper (1963) EKF 1,242.7 1.16 × 10−4 596.871 3.4 × 10−7 −1.81 57.9

GALMA 1,237.8 1.06 × 10−4 692.871 2.95 × 10−9 1.56 17.8

T transmissivity of the semiconfined aquifer, S storage coefficient of the semiconfined aquifer; S′ storage coeffi-
cient of the aquitard, B leakage factor

Table 7 Comparison of estimated
hydraulic parameters for leaky
confined aquifer without
considering storage effect in an
aquitard. GALMA ME and SEE
values are italicized for
comparison with other methods

Resource Method Hydraulic parameters Errors

T (m2/day) S B ME (×10−3) SEE (×10−3)

Batu (1998) EKF 907 3.5 × 10−3 312.5 −2.68 4.97

GALMA 1,329.61 2.5 × 10−3 795.3 0.219 2.4

Fetter (2001) Graphical 26.4 1.7 × 10−3 292.1 −15.7 67

NLP 31.5 8.4 × 10−4 457.2 13.4 96.1

GA 22.1 1.32 × 10−3 221.3 142.2 174

ACO 25.4 1.27 × 10−3 256.1 26.2 63.8

GALMA 21.9 1.7 × 10−4 180.9 5.6 45.8

T transmissivity of the semiconfined aquifer, S storage coefficient of the semiconfined aquifer, B leakage factor
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of GALMAwere compared with those obtained from graph-
ical, nonlinear programming (NLP), ant colony optimization
(ACO), and the GA, as shown in Table 7.

In the first case (data from Batu 1998) the GALMA re-
duced the SEE of drawdown by 52% compared with the
EKF. A significant decrease of ME was also obtained from
−2.68 × 10−3 to 2.19 × 10−4. Concerning the second case
(Fetter 2001) the GA yields the largest errors. The ME and
SEE for graphical, NLP, and ACO range from −1.57 × 10−2 to
2.62 × 10−2, and 6.38 × 10−2 to 9.61 × 10−2, respectively. The
ME and SEE for GALMA equal 5.6 × 10−3 and 4.58 × 10−2,
respectively, which are lower than those of the other ap-
proaches. These results demonstrate the superiority of the pro-
posed hybrid algorithm.

Figure 9 shows a comparison between the observed and
calculated drawdown for each pumping test using the devel-
oped hybrid algorithm. All of the data points were near to the
1:1 line and the calculated drawdown yielded high goodness
of fit (R2), which equaled 0.9898, 0.9945, 0.9989 and 0.9997
for the four pumping-test case histories. The performance of
the proposed approach in identifying the hydraulic parameters
in the leaky aquifer is satisfactory.

Conclusion

Three pumping tests were performed in Tianjin, China.
A hybrid algorithm for identifying hydraulic parameters
was introduced. The applicability of the hybrid

algorithm was also tested using four sets of time-
drawdown data for two different aquifer systems. The
following conclusions are drawn:

1. Analytical solutions of drawdown are typically
nonconvex and nonlinear. The LM algorithm may be
trapped in a local optimal solution rather than a global
optimal solution. Nonconvergence may be encoun-
tered during the iterative search process for a global
optimum. Successful convergence of the LM algo-
rithm depends on the choice of an initial solution
guess. The GA, on the other hand, exhibits premature
convergence to a suboptimal solution.

2. GALMA features robust global and a local searching ca-
pacity. The GA is implemented to find a suitable initial
solution with which to start the LM algorithm to obtain
the optimal global solution by local searching. The results
of this study demonstrate that the proposed hybrid algo-
rithm outperforms the GA and the LM algorithm
concerning the global and the local capacity to search
for an optimal solution of the aquifer parameter-
estimation problem.

3. The accuracy of the proposed approach was evaluated
with case histories from previous studies. The precision
and efficiency of the GALMA are superior to those of
other optimization approaches employing analytical
solutions, i.e., the Neuman and Witherspoon (1969) solu-
tion modified by Yeh and Huang (2005), and the Hantush
and Jacob (1955) model.

0.0 0.1 0.2 0.8 1.2 1.6 2.0

0.0

0.1

0.2

0.8

1.2

1.6

2.0

R
2

Sridhara
=0.9989

R
2

Cooper
=0.9997

R
2

Fetter
=0.9945

Observations (m)

Batu

Fetter

Sridharan

Cooper

R
2

Batu
=0.9898

1:1 line

C
a
lc

u
la

ti
o
n
s

(m
)

Fig. 9 Drawdown estimates
using the identified parameters

Hydrogeol J (2019) 27:3081–3095 3093



The proposed GALMA for aquifer parameter estimation can
be generalized to more complex conditions, where, for exam-
ple, heterogenous and anisotropic aquifer characteristics pre-
clude the application of analytic solutions. In this instance pre-
dictions of drawdown must be carried out with a numerical
groundwater model (say, MODFLOW). The GALMA is ap-
plied in a simulation/optimization modeling (SOM) approach
whereby (1) aquifer parameters are generated within realistic
ranges; (2) drawdowns are simulated (i.e., predicted) at obser-
vation locations with the numerical model; (3) the GALMA
improves the aquifer parameters based on a suitable objective
function involving measured and predicted drawdowns; (4) the
numerical model simulates anew the drawdown at observation
locations with the improved aquifer parameters; (5) steps 2–4
are repeated until a termination criterion is met. This extension
of GALMA constitutes research in progress by the authors.
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