
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
A Faster Parallel Algorithm and Efficient Multithreaded Implementations for Evaluating 
Betweenness Centrality on Massive Datasets

Permalink
https://escholarship.org/uc/item/3jf200kt

Author
Madduri, Kamesh

Publication Date
2009-04-15

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3jf200kt
https://escholarship.org
http://www.cdlib.org/


A Faster Parallel Algorithm and Efficient
Multithreaded Implementations for Evaluating
Betweenness Centrality on Massive Datasets

Kamesh Madduri∗

KMadduri@lbl.gov
David Ediger†

dediger@gatech.edu
Karl Jiang†

k.jiang@gatech.edu

David A. Bader†

bader@cc.gatech.edu
Daniel Chavarría-Miranda‡

daniel.chavarria@pnl.gov

Abstract

We present a new lock-free parallel algorithm for computing betweenness central-
ity of massive small-world networks. With minor changes to the data structures, our
algorithm also achieves better spatial cache locality compared to previous approaches.
Betweenness centrality is a key algorithm kernel in HPCS SSCA#2, a benchmark ex-
tensively used to evaluate the performance of emerging high-performance computing
architectures for graph-theoretic computations. We design optimized implementations
of betweenness centrality and the SSCA#2 benchmark for two hardware multithreaded
systems: a Cray XMT system with the Threadstorm processor, and a single-socket Sun
multicore server with the UltraSPARC T2 processor. For a small-world network of 134
million vertices and 1.073 billion edges, the 16-processor XMT system and the 8-core
Sun Fire T5120 server achieve TEPS scores (an algorithmic performance count for the
SSCA#2 benchmark) of 160 million and 90 million respectively, which corresponds to
more than a 2× performance improvement over the previous parallel implementations.
To better characterize the performance of these multithreaded systems, we correlate
the SSCA#2 performance results with data from the memory-intensive STREAM and
RandomAccess benchmarks. Finally, we demonstrate the applicability of our implemen-
tation to analyze massive real-world datasets by computing approximate betweenness
centrality for a large-scale IMDb movie-actor network.

1 Introduction
Graphs are a fundamental abstraction for representing data sets, and graph-theoretic algo-
rithms and analysis routines are pervasive in several application domains today. Computa-
tions involving sparse real-world graphs such as socio-economic interactions, the world-wide
∗Computational Research Division, Lawrence Berkeley National Laboratory.
†College of Computing, Georgia Institute of Technology.
‡High Performance Computing, Pacific Northwest National Laboratory.

1

mailto:KMadduri@lbl.gov
mailto:dediger@gatech.edu
mailto:k.jiang@gatech.edu
mailto:bader@cc.gatech.edu
mailto:daniel.chavarria@pnl.gov


web, and biological networks only manage to achieve a tiny fraction of the computational
peak performance on the majority of current computing systems. The primary reason is
that sparse graph analysis routines tend to be highly memory-intensive: they typically have
a large memory footprint, exhibit low degrees of spatial and temporal locality in their mem-
ory access patterns (compared to other workloads), and there is very little computation to
hide the latency to memory accesses. Thus, the execution time of a graph-theoretic computa-
tion strongly correlates with the memory subsystem performance, rather than the processor
clock frequency or the floating-point processing capabilities of the system. The design of
efficient parallel graph algorithms is quite challenging as well [23], due to the fact that mas-
sive graphs that occur in real-world applications are not amenable to a balanced partitioning
among processors of a parallel system [20, 21]. Also, the locality characteristics of parallel
graph algorithms tend to be poorer than their sequential counterparts [11].

The HPCS [13] graph theory benchmark was introduced as part of the Scalable Synthetic
Compact Applications (SSCA) benchmark suite [5], and is representative of key computa-
tions in graph informatics applications such as social network analysis, epidemiological stud-
ies, and network analysis in systems biology. It is designed to be a compact mini-application
that has multiple analysis techniques (multiple kernels) accessing a single data structure rep-
resenting a weighted, directed graph. The second version of the benchmark specification was
released in August 2006 [1], and consists of four kernels that operate on a synthetic graph
instance. We use the Recursive MATrix (R-MAT) [8] random graph generation algorithm to
generate input data that are representative of real-world networks with a small-world topol-
ogy. The most interesting computational kernel of the SSCA#2 benchmark is the parallel
evaluation of betweenness centrality, which is the focus of the paper.

Betweenness centrality is a popular graph analysis technique based on shortest-path
enumeration for identifying key entities in large-scale interaction networks. For any arbitrary
graph G(V,E), let σst denote the number of shortest paths between vertices s and t, and
σst(v) the count of shortest paths that pass through a specified vertex v. The betweenness
centrality of v is defined as follows:

BC(v) =
∑

s 6=v 6=t∈V

σst(v)

σst
(1)

Intuitively, betweenness measures the control a vertex has over communication in the net-
work, and can be used to identify critical vertices in the network. High centrality indices
indicate that a vertex can reach other vertices on relatively short paths, or that a vertex lies
on a considerable fraction of shortest paths connecting pairs of other vertices. This metric
has been extensively used for analyzing key features in networks with small-world proper-
ties. Some applications include lethality in biological networks [17], study of sexual networks
and AIDS [22], identifying key actors in terrorist networks [10, 19], organizational behavior,
supply chain management processes, and transportation networks [14].

In [3], we present the first parallel algorithms for the exact evaluation of betweenness and
other centrality metrics. The betweenness implementation in version 2.2 of the SSCA#2
benchmark is based on the fine-grained parallel algorithm discussed in [3]. In this paper,
we present a new parallel algorithm for computing betweenness centrality, which
significantly reduces the synchronization overhead in comparison to the previous algorithm,
and also exhibits better cache locality. The key idea in the design of this algorithm –

2



eliminating predecessor multisets associated with each vertex – can be applied to build
efficient algorithms for other path-based centrality metrics. We discuss this new algorithm
in more detail in Section 2.

Current hardware designs utilize multi-level caches or multithreading to hide the latency
to main memory. Hardware multithreading in particular has been shown to be very effec-
tive in the design and implementation of efficient parallel graph algorithms [4, 25]. In this
paper, we focus on optimizing betweenness centrality implementations on two state-
of-the-art multithreaded systems: the Cray XMT [12, 18] with the massively multithreaded
Threadstorm processor, and the multicore Sun UltraSPARC T2 [28] server. In Section 3,
we discuss the architectural features of these parallel systems, and present centrality imple-
mentation details and architecture-specific optimizations. Our key performance results on
these systems are summarized below:
• On a 16-processor 128 GB XMT system, we compute approximate betweenness cen-

trality for a small-world network of 268 million vertices and 2.147 billion edges in 50.1
minutes. This corresponds to a Traversed Edges Per Second (or TEPS, an algorithmic
performance count for the SSCA#2 benchmark) score of 160 million.
• We achieve a TEPS performance of 90 million on an 8-core 32 GB UltraSPARC T2

server, for a small-world network of 134 million vertices and 1.073 billion edges.
• The parallel speedup of the XMT implementation is on an average 10.5 on 16 processors

for large-scale networks. On the UltraSPARC T2, with 64 threads of execution, we
achieve an average relative speedup of nearly 40.
• We utilize the Cray XMT betweenness implementation to compute the approximate

centrality scores of all the vertices in a large-scale social network, constructed from a
recent snapshot of the IMDb movie-actor database [16]. In comparison to a parallel
run on a quad-core Intel workstation, we are able to perform this computation roughly
4.75 times faster on the 16-processor XMT system.

2 Computing Betweenness
To evaluate the betweenness centrality of a vertex v (defined in Equation 1), we need to
determine the number of shortest paths between every pair of vertices s and t, and the
number of shortest paths that pass through v. There is no known algorithm to compute
the exact betweenness centrality score of a single vertex without solving an all-pairs shortest
paths problem instance in the graph. In this paper, we will constrain our discussion of
parallel betweenness centrality algorithms to directed and unweighted graphs. To process
undirected graphs with our new parallel algorithm, the network can be easily modified by
replacing each edge by two oppositely directed edges. While the approach to parallelization
for unweighted graphs [3] works for weighted low-diameter graphs as well, the concurrency
in each parallel phase is dependent on the weight distribution.

Let the number of vertices in the graph G(V,E) be given by n, and the number of edges
by m. Let d(s, v) denote the length of the shortest path to v from a source vertex s.

Traditionally, betweenness centrality was computed in two steps: first, the number and
length of shortest paths between all pairs of vertices were computed, and second, the pair

3



dependencies (the fractions
σst(v)

σst
) for each s-t pair were summed. The complexity of this ap-

proach was O(n3) time and O(n2) space. Exploiting the sparse nature of real-world networks,
Brandes [7] presented a sequential algorithm to compute the betweenness centrality score
for all vertices in an unweighted graph in O(mn) time and O(m+ n) space. The main idea
is to perform n breadth-first graph traversals, and augment each traversal to compute the
number of shortest path passing through each vertex. The second key idea is that pairwise

dependencies δst(v)(=
σst(v)

σst
) can be aggregated without computing all of them explicitly.

Define the dependency of a source vertex s ∈ V on a vertex v ∈ V as δs(v) =
∑

t∈V δst(v).
The betweenness centrality of a vertex v can be then expressed as BC(v) =

∑
s 6=v∈V δs(v).

Brandes shows that the dependency values δs(v) satisfy the following recursive relation:

δs(v) =
∑

w:d(s,w)=d(s,v)+1

σsv
σsw

(1 + δs(w)) (2)

Thus, the sequential algorithm computes betweenness in O(mn) time by iterating over all
the vertices s ∈ V , and computing the dependency values δs(v) in two stages. First, the
distance and shortest path counts from s to each vertex are determined. Second the vertices
are revisited starting with the farthest vertex from s first, and dependencies are accumulated
according to Equation 2.

In prior work, we presented new parallel algorithms for computing betweenness on low-
diameter graphs [3] with the same work complexity as Brandes’ algorithm. There are two
main approaches to parallelize exact betweenness computation for sparse graphs. The first
approach is a coarse-grained parallelization, where each processor independently executes an
augmented breadth-first search computation, while ensuring that the final centrality scores
are updated atomically. However, the memory requirements scale as O((m+ n)p) for this
approach, where p is the number of processors in the parallel system (or the number of thread
contexts in a multithreaded system). Thus, this is infeasible for processing massive graphs.

Our second approach is a fine-grained parallelization of each augmented breadth-first
search computation. Algorithm 1 gives a high-level schematic describing the two main steps
in each iteration. Starting the source vertex s, we successively expand the frontier of visited
vertices and augment breadth-first graph traversal (we also refer to this as level-synchronous
graph traversal) to count the number of shortest paths passing through each vertex. We
maintain a multiset P of predecessors associated with each vertex. A vertex v belongs to
the predecessor multiset of w if 〈v, w〉 ∈ E and d(s, w) = d(s, v) + 1. Clearly, the size of a
predecessor multiset for a vertex is bounded by its in-degree. The predecessor information is
used in the dependency accumulation step (step III in Algorithm 1. We also indicate the steps
in the algorithm that are amenable to parallel execution. However, note that accesses to the
shared data structures (such as the predecessor multisets and the stack) and updates to the
distance and path counts need to be protected with appropriate synchronization constructs,
which we do not indicate in Algorithm 1.

In Algorithms 2 and 3, we give more detailed pseudo-code for implementing the traversal
and dependency accumulation steps. We assume that our target architectures support two
atomic operations – compare_and_swap and fetch_and_add – and list the pseudo-code for
these parallel steps using these operations. fetch_and_add atomically increments a memory

4



Algorithm 1: A level-synchronous parallel algorithm for computing betweenness cen-
trality of vertices in unweighted graphs.
Input: G(V,E)
Output: BC[1..n], where BC[v] gives the centrality score for vertex v

for all v ∈ V in parallel do1

BC[v] ← 0;2

for all s ∈ V do3
I. Initialization
P [t]← empty multiset, σ[t]← 0, and d[t]← −1 ∀ t ∈ V ;4

σ[s]← 1, d[s]← 0;5

phase← 0, S[phase]← empty stack;6

push s→ S[phase];7

count← 1;8

II. Graph traversal for shortest path discovery and counting
while count > 0 do9

count← 0;10

for all v ∈ S[phase] in parallel do11

for each neighbor w of v in parallel do12

if d[w] < 0 then13

push w → S[phase+ 1];14

count← count+ 1;15

d[w]← d[v] + 1;16

if d[w] = d[v] + 1 then17

σ[w]← σ[w] + σ[v];18

append v → P [w];19

phase← phase+ 1;20

phase← phase− 1;21

III. Dependency accumulation by back-propagation
δ[t]← 0 ∀ t ∈ V ;22

while phase > 0 do23

for all w ∈ S[phase] in parallel do24

for all v ∈ P [w] do25

δ[v]← δ[v] + σ[v]
σ[w]

(1 + δ[w]);26

BC[w]← BC[w] + δ[w];27

phase← phase− 1;28

5



location by the specified integer value, and returns the value initially read from the memory
location. compare_and_swap atomically compares the value of the memory location with the
given value, and swaps it with the new value if they are equal. We assume that compare_-
and_swap also returns the value read from the memory location before the comparison. In
case these two instructions are not supported on a parallel system, we can protect access to
the shared variables with fine-grained mutual exclusion locks. Note that increments to the
path count and the predecessor multiset are performance bottlenecks in the graph traversal
step, but we show that they can be implemented with atomic operations. However, the
dependence accumulation step requires locks, as δ and BC values are stored as floating-
point numbers.

Algorithm 2: Pseudo-code for the augmented breadth-first graph traversal step in
Algorithm 1.
for all v ∈ S[phase] in parallel do

for each neighbor w of v in parallel do
dw ← compare_and_swap(&d[w],−1, phase+ 1);
if dw = −1 then

p← fetch_and_add(&count, 1);
Insert w at position p of S[phase+ 1];
dw ← phase+ 1;

if dw = phase+ 1 then
p← fetch_and_add(&Pcount[w], 1);
Insert v at position p of P [w];
fetch_and_add(&sigma[w], sigma[v]);

Algorithm 3: Pseudo-code for the dependency accumulation step in Algorithm 1.
for all w ∈ S[phase] in parallel do

for all v ∈ P [w] do
acquire lock on vertex v;
δ[v]← δ[v] + σ[v]

σ[w]
(1 + δ[w]);

release lock on vertex v;
BC[w]← BC[w] + δ[w];

2.1 A lock-free parallel algorithm

As far as we know, all previous serial and parallel algorithms for computing betweenness
centrality (and other shortest-path based centrality metrics) require the use of predecessor
multisets. Updates to these multisets tend to limit concurrency in level-synchronous graph
traversal, and can be a serious bottleneck in some cases. For instance, see Figure 1 for a
possible scenario. Vertices v1, v2, v3 are being processed in parallel and are all predecessors to
vertex w, which is one hop farther away from the source vertex. Appends to the predecessor
multiset of w will serialize in this case. Even in case of the serial betweenness centrality
algorithm, the appends tend to be cache-unfriendly memory accesses, as we are touching

6



Predecessor updates in Algorithm 1 New approach
append v1 → P [w] append w → Succ[v1]
append v1 → P [w] append w → Succ[v1]
append v2 → P [w] append w → Succ[v2]
append v3 → P [w] append w → Succ[v2]

Figure 1: An illustration of the our new representation of the predecessor multisets.

w when we are processing vi’s. Similarly, we need fine-grained locking in the dependence
accumulation step (Algorithm 3) due to this representation of the predecessor multisets.

Algorithm 4: Pseudo-code for the augmented breadth-first graph traversal step in our
new parallel algorithm (replacing lines 11–19 in Algorithm 1).
for all v ∈ S[phase] in parallel do

for each neighbor w of v in parallel do
dw ← compare_and_swap(&d[w],−1, phase+ 1);
if dw = −1 then

p← fetch_and_add(&count, 1);
Insert w at position p of S[phase+ 1];
dw ← phase+ 1;

if dw = phase+ 1 then
p← fetch_and_add(&Succ_count[v], 1);
Insert w at position p of Succ[v];
fetch_and_add(&sigma[w], sigma[v]);

To improve the performance of our fine-grained parallel approach, we explored alternate
representations for the predecessor multisets. We observe that it is possible to simplify both
the serial and parallel algorithms by slightly restructuring the code, and by not storing the
predecessors in their current form. Consider the illustration in Figure 1, where we store the
adjacencies of a vertex that lie along shortest paths when processing the vertices themselves.
Note that the correctness is not affected for an unweighted graph, as the presence of a directed
edge 〈u, v〉 implies a shortest path along that edge, and that u belongs to the predecessor
multiset of v. Since the shortest path counts are accumulated as the graph traversal proceeds,
we still need to store them as before. However, with this simple change to the predecessor
set representation, the dependence accumulation code is greatly simplified and we do not
need locking at all for updates. Algorithms 4 and 5 list the new pseudo-code for the traversal
and dependence accumulation steps respectively. We now maintain the successor multisets
(denoted by the array Succ in the pseudo-code) instead, the size of which is conveniently
bounded by the out-degree. Observe that the algorithm is more cache-friendly as well, as
the updates are applied to the vertex that is currently being processed.

7



Algorithm 5: Pseudo-code for the dependency accumulation step in our new parallel
algorithm (replacing lines 23–28 in Algorithm 1).
phase← phase− 1;
for all w ∈ S[phase] in parallel do

delta_sum_w ← 0;
sigma_w ← σ[w];
for all v ∈ Succ[w] do

delta_sum_w ← delta_sum_w +
sigma_w
σ[v]

(1 + δ[v]);

δ[w]← delta_sum_w;
BC[w]← BC[w] + delta_sum_w;

3 Centrality Implementations on Multithreaded Archi-
tectures

We next modify our shared memory implementations of the SSCA#2 graph analysis bench-
mark to reflect the improvements in the betweenness centrality algorithm. Kernel 4 of the
SSCA#2 benchmark computes approximate betweenness centrality scores of all the vertices
in a synthetic small-world network. We approximate betweenness values by traversing the
graph from a randomly chosen subset of vertices in V (the number of vertices is specified
by a benchmark parameter K4Approx), and then extrapolating the accumulated depen-
dence scores. In practice, this approach generates a reasonably good approximation of the
centrality scores for several real-world networks [2].

To compare the performance of this kernel across various implementations and architec-
tures, we use a performance metric called traversed edges per seconds, or TEPS. Given the
running time of the kernel to be t seconds, we define this normalized metric as follows:

BC TEPS =
7n · 2K4Approx

t
(3)

2K4Approx is the number of vertices we perform graph traversals from, and 7n is the estimated
number of edges visited in the SSCA#2 graph.

In this paper, we will focus on betweenness performance optimizations for two hardware
multithreaded parallel systems, the Cray XMT and the Sun Fire T5120. We next describe
the architectural characteristics of these systems, and present details of the shared-memory
implementations for these systems.

3.1 The Cray XMT

The Cray XMT [12, 18, 9] is built on the idea of tolerating latency to memory by massive
multithreading. The building block of the XMT is a 500 MHz 64-bit Threadstorm processor,
which supports 128 hardware streams of execution mapped onto a single instruction pipeline.
A processor can keep up to 1024 memory operations in flight, and so a memory reference
latency of 1024 clock cycles can be tolerated without the use of cache memory. Context

8



switching between threads is extremely light-weight and takes just 1 clock cycle. Each
processor can support up to 16 GB of commodity memory that is hashed and globally
accessible in the system. A processor also has a 128 KB, 4-way set associate data buffer for
caching local memory references.

The XMT system design differs significantly from its predecessor, the Cray MTA-2. XMT
leverages the Cray XT infrastructure for its I/O, network, and operating system modules. It
uses the Seastar-2 interconnection network; the network chips are connected in a 3D-torus
network, which leads to a drop in per-processor bisection bandwidth as the system is scaled
up. In contrast, the MTA-2 uses a custom modified Cayley graph interconnect, where the
bisection bandwidth scales linearly with the number of processors. Also, the MTA-2 uses an
older version of the Threadstorm processor clocked at 220 MHz, and there is no data buffer.

The XMT inherits several aspects of the MTA-2 software environment. Applications are
developed in C and C++, and the compiler supports language extensions for lightweight
thread creation and synchronization. In addition, the compiler can parallelize simple loops
and linear recurrences. The programmer can specify dependencies and give additional hints
to the compiler with the help of pragma statements. The programmer, however, has no
control over data locality as the address space in uniformly hashed.

The Threadstorm processor provides excellent support for light-weight synchronization.
Each memory word has an associated full-empty bit, which can be modified for fine-grained
atomic reads and writes. Atomic increments (using the int_fetch_add operation) are light-
weight and just cost one instruction cycle.

The Cray Apprentice2 environment are very helpful in analyzing the performance of
applications on the XMT. Canal is a static analysis tool which shows compiler annotations for
parallelized loops, and also generates a report indicating the number and type of instructions
executed in the program. Hardware performance counters and profiling tools provide insight
on the run-time behavior of the application.

While the XMT is very different from current shared-memory multicore and symmetric
multiprocessor systems, the same design rules hold true for developing high-performance
parallel implementations. Since a thread can have only one instruction in the pipeline at
any given point of time, it is important to expose concurrency in the program and keep
several memory references in flight on each processor. Due to the absence of caches, this is
the only mechanism available for tolerating latency in memory-intensive applications. For
parallel runs, it is critical to efficiently utilize bandwidth, as the bisection bandwidth per
processor does not scale linearly with the processor count. We need to spawn enough threads
to keep the processor pipeline busy, but we also need to keep in mind that additional threads
may just increase memory traffic without substantial gains in instructions executed. Even
though XMT synchronization is fairly light-weight, it is important to minimize it as much
as possible, to avoid stalled threads and losses in instruction concurrency. Finally, balancing
work among the processors is important.
Betweenness Implementation

It is relatively easy to adapt the pseudo-code listed in Algorithms 4 and 5 to implement
approximate betweenness on the XMT. We use the int_fetch_add instructions for atomic
increments. Since the Threadstorm processor does not have an atomic compare_and_swap
instruction, we slightly modify the pseudo-code in Algorithm 4. We add an additional
check to see if a vertex is visited for the first time, and only then add it to the stack. Its

9



corresponding distance value from the source vertex is then updated atomically. Alternately,
we can simulate compare_and_swap with Threadstorm readfe and writeef instructions
that modify the full/empty bit associated with each memory word. The primary difference
between our new betweenness implementation and the old one (see Algorithm 1) is that we
do not store the predecessors multisets associated with each vertices. This simplifies the
accumulation step, removing the need for locking.

We need to parallelize two loops in every betweenness iteration, one in the graph traversal
step and the other in the dependency accumulation step. On the XMT, this is achieved by
just using a pragma to mark the loop parallel. Note that there are two levels of parallelism
in the graph traversal step: all the vertices in the current frontier can be visited in parallel,
and all the adjacencies of a vertex can be processed in parallel. Algorithm 4 gives the
pseudo-code with both the loops parallelized. If we do not parallelize the inner loop, then
we do not need to update Succ_count[v] atomically. Parallelizing the inner loop results in
better work distribution among the threads, particularly in the case of small-world networks.
This is because vertices in a small-world network tend to exhibit an unbalanced degree
distribution, with a high percentage of low-degree vertices, and a few high-degree (O(

√
n))

or higher) vertices. For SSCA#2 synthetic networks, however, since the vertex identifiers are
randomly permuted in the graph generation stage, parallelizing just the outer loop results
in a reasonably load-balanced work distribution.

Through inspection of our implementation and Canal annotations, we determine that the
number of memory operations per iteration of centrality for SSCA#2 R-MAT graphs should
be roughly 6.75m, where m is the number of edges in the graph. This matches with the value
of 6.5m obtained from performance counter data. Comparing with performance counter data
helps us ensure that our implementation is frugal in the use of memory bandwidth, and that
there are no extraneous memory references that we did not account for in manual inspection
of the code.

The atomic increment instructions are potential performance bottlenecks to scalability
on large XMT systems. Insertions of vertices to the stack representing the frontier of visited
vertices can be alleviated by replicating stacks and merging them at the end of the itera-
tion. Similarly, we can replicate the successor multisets for high-degree vertices to prevent
any performance drop due to serialization of insertions into the multisets. These issues do
not pose significant performance bottlenecks on the 16-processor XMT system we ran our
experiments on.

3.2 The Sun UltraSPARC T2

The Sun UltraSPARC T2 is an eight-core processor, and the second-generation chip in Sun’s
Niagara architecture family. Each core is dual-issue and eight-way hardware multithreaded.
Further, the hardware threads within a core are grouped into two sets of four threads each.
There are two integer pipelines within a core, and each set of four threads share an integer
pipeline. Each core also includes a floating point unit and a memory unit that are shared
by all eight threads. Although the cores are dual-issue, each thread may only issue one
instruction per cycle and so resource conflicts are possible. In comparison to the T2, the
UltraSPARC T1 (the T2’s predecessor) has 32 threads per processor, one integer pipeline
per core, and one floating point unit shared by all eight cores.

10



The Sun Fire T5120 server we use in this study is a single-socket system with an Ultra-
SPARC T2 processor that runs at 1167 MHz. The system has 32 GB DRAM memory, and
the latency to main memory is in the order of 100’s of clock cycles. Latency is hidden in
part by the multilevel cache hierarchy, and tolerated to some extent with eight threads per
core. Each core has an 8 KB L1 cache that is 4-way set associative. The eight cores share a
4 MB L2 cache which is 16-way set associative. The L1 and L2 cache line sizes are 16 and 64
bytes respectively. Note that the low per-thread L1 and L2 capacity and associativity values
can result in significant cache capacity and conflict misses, in addition to memory bank con-
flicts. The presence of caches makes it considerably harder to understand and characterize
performance of an application on the UltraSPARC T2.

Our parallel implementations are developed in C, with OpenMP for writing multithreaded
code. On the Sun Fire T5120, we use the OpenMP implementation of the Sun Studio 12
compiler suite. As far as we can determine, the performance impact due to our choice of
OpenMP as the threading library is minimal. We expect that POSIX threads, or any other
light-weight threading package, would yield comparable performance.
Betweenness Implementation

Our UltraSPARC T2 multicore implementation has a few notable differences in com-
parison to the XMT implementation. Threads are spawned at the start of the program,
and the number of threads is fixed throughout the execution of the program. The total
number of threads in the system (64) is much smaller than the number of active threads
on the XMT (128 per processor). Maximizing cache locality for each thread of execution is
very important, as well as reducing the per-thread memory footprint. To characterize the
spatial locality in our implementation, we maintain a count of the maximum number of non-
contiguous memory accesses, a cost metric from the Helman-JaJa symmetric multiprocessor
complexity model [15], for each step of the algorithm.

We use a compact array representation for the graph that requires just m+n+1 machine
words. We assume that the vertices are labeled with integer identifiers between 0 and n-
1. All the adjacencies of a vertex are contiguously stored in a block of memory, and the
neighbors of vertex i are stored next to ones of vertex i+1. The size of the adjacencies array
is m, and we require an array of pointers to this adjacency array, which is of size n+1 words.
This representation is motivated by the fact that all the adjacencies of a vertex are visited in
the graph traversal step after it is first discovered. Thus, we may incur two non-contiguous
memory accesses when visiting adjacencies of an arbitrary vertex in the graph.

The minimum granularity of data transfer size from main memory to the L2 cache is the
size of the cache line. Data is always fetched from main memory into the L2 cache as entire
cache lines, or 64 bytes on the UltraSPARC T2. However, we may just require 4 or 8 bytes
of data (for instance, reading the predecessor multiset size, updating the distance value, and
incrementing the the shortest path count in Algorithm 2) when processing a vertex, and so
the rest of the cache line tends to be wasted. To maximize reuse and minimize the number
of non-contiguous memory accesses in our implementation, we use an array of structures
representation for storing the auxiliary data structures associated with each vertex; thus,
the number of shortest paths, the distance from the source vertex, the partial dependency
value, and the shortest path count are stored in a contiguous block instead of separate arrays.
The size of the structure is a multiple of 16 bytes and is aligned to the cache line to avoid any
misses due to fragmentation. This representation cuts down the number of non-contiguous

11



memory references by a factor of four.
On the UltraSPARC T2, we use Solaris 10 C intrinsics for atomic increment and compare

and swap operations. However, since atomic operations are expensive compared to the XMT,
we try to minimize them as far as possible. As the number of threads are considerably smaller
than the XMT, we maintain a separate stack of visited vertices for each thread in the graph
traversal step, and the stacks are merged at the end of a phase. Thus, we avoid an atomic
increment every time a vertex is inserted into the stack (see Algorithm 4). Also, we only
parallelize the outer loop to avoid the successor array count increment.

Let ms denote the average number of edges that lie along shortest paths in one iteration
of betweenness computation. For SSCA#2 graphs, we observe that ms is approximately
0.25m. Since we know that the size of the successor multiset is bounded by the out-degree,
we can pre-allocate memory for each vertex. However, it might be wasteful to do this if
ms is only a small fraction of m. For an arbitrary graph, we have no way of determining
ms beforehand, and the count varies depending on the source vertex. The value of ms also
determines the amount of computation in the dependency accumulation phase.

In summary, the maximum number of non-contiguous memory references per iteration
in our new implementation is 3n+m in the graph traversal step, and 4n in the dependency
accumulation step (neglecting the lower order terms). The m term is due to the fact that
the auxiliary data structures used in the betweenness centrality kernel are constructed at the
start of the kernel and not stored along with the graph representation. Hence we incur one
non-contiguous memory access per edge for loading the auxiliary data (assuming that the
vertex identifiers are randomly permuted), and this is the best we can do with the current
algorithm.

4 Performance Analysis
We now present a detailed analysis of our new betweenness centrality algorithm performance,
using the SSCA#2 graph analysis benchmark kernel 4 (approximate betweenness) as the
reference implementation. We will refer to performance in terms of the normalized TEPS
score, as defined in equation 3.

We report Threadstorm performance results on a 16-processor Cray XMT system with
128 GB memory. We built our code using the C compiler of the Cray XMT programming
environment (version 5.2.1) and flags -par -O3. We also compare performance with a 40
processor Cray MTA-2 system with 140 GB memory. On the MTA-2, we use the C compiler
of the Cray programming environment (version 6.0.3) with the same optimization flags. We
do not need to make any changes to run the code on the MTA-2.

We build our multicore C implementation on the Sun Fire T5120 using the Sun Studio
12 C compiler and the flags -fast -m64 -xopenmp -xtarget=ultraT2 -xchip=ultraT2.
The Sun server is a single-socket UltraSPARC T2 system with 32 GB memory.

We set K4Approx to 8 in the SSCA#2 benchmark, thus approximating centrality scores
by traversing the graph from 256 randomly chosen vertices. A synthetic graph instance
generated by the SSCA#2 benchmark is typically composed of one large strongly connected
component with more than 95% vertices, and so we touch almost all the edges in the network
in most of these 256 iterations. Using large K4Approx values gives better centrality score

12



Scheduling mode Average time (seconds)
Block 41.78

Block Dynamic 29.95
Interleaved 35.49
Dynamic 30.71

Table 1: Average execution time of the SSCA#2 centrality kernel (SCALE 21) on 16 pro-
cessors of the XMT with various loop scheduling modes.

approximations. However, since we parallelize a single iteration of the centrality computa-
tion, the parallel scaling results are independent of the value of K4Approx we choose. The
number of vertices and edges in the graph are set by a parameter SCALE: n = 2SCALE and
m = 8n.

Stream Allocation on the XMT. Running our new implementation on 16 processors
of the XMT, we achieved a TEPS score of 117 million for a graph of SCALE 21 (2.09 million
vertices and 16.77 million edges). The loops in the centrality kernel were annotated using
#pragma mta assert no dependence (indicating that the loop iterations can be scheduled
independently) and the compiler automatically parallelized them. However, note that we
parallelize only the outer loops in both the traversal and path accumulation steps. The
static analysis tool Canal reported that 60 streams were being requested on each processor,
for each loop. We experimented with several values between 60 and 120 using the #pragma
mta use k streams statement and achieved peak performance with k = 100 streams on 16
processors. Thus, by hand-tuning the number of streams being requested, we were able to
increase the TEPS score from 117 million to 131.7 million on 16 processors. Note however
that the optimal number of streams is dependent on the graph topology, the problem size, as
well as the number of processors. Using more streams than necessary increases the number
of speculative loads, which would lead to a drop in performance as the number of processors
in the system is scaled up (since the per-processor memory bandwidth decreases). In future
work, we will try to automatically determine the optimal number of streams for each loop
at run-time. In this paper, we will use a setting of 100 streams in all further experiments.

Parallel loop scheduling on the XMT. The Cray XMT compiler supports several
different ways of scheduling iterations of a parallel loop, including block or static scheduling,
dynamic, interleave, and block dynamic. The compiler picks an appropriate scheduling
scheme, but the programmer can override it with a specific choice. We experiment with
different scheduling modes for the two parallel loops in the betweenness implementation. For
a graph of SCALE 21, we record the average execution time of five trials on 16 processors (see
Table 1). We observe that the best performance is achieved with block dynamic scheduling,
while static block scheduling performs poorly. This is most likely due to the power-law vertex
degree distribution. Block dynamic scheduling, as the name suggests, combines aspects of
block and dynamic scheduling. Threads are assigned blocks of iterations through a shared
counter, and a thread gets its next block after completion of its current block by incrementing
the counter. In pure dynamic scheduling, the block size can be just one iteration and
the overhead is higher than static and block dynamic scheduling. We override the default
dynamic scheduling with block dynamic scheduling in all further experiments. Again, this

13



(a) Cray XMT and Sun Fire T5120 (b) 2.0 GHz Intel Xeon

Figure 2: SSCA#2 betweenness kernel performance on the Sun Fire T5120, the Cray XMT
system, and a 2.0 GHz Intel Xeon system for problem instances of various sizes.

setting is dependent on the graph topology, size, and number of processors. In future work,
we will automate this process to pick the appropriate scheduling scheme.

Loop scheduling on the UltraSPARC T2. We try out the three possible OpenMP
loop scheduling schemes on the UltraSPARC T2: static, dynamic, and guided. As in the
case of the XMT, static performs poorly while the performance of guided and dynamic is
similar. We use the guided mode for all the experiments in this paper.

Variation of performance with problem size. An important performance metric
associated with the SSCA#2 benchmark is the largest problem instance that can be solved
on a particular system. The performance on both the system varies as the problem size
is varied. Figure 2(a) plots the performance on 16 processors of the XMT and 8 cores of
the Sun Fire T5120 (64 threads) for SSCA#2 graphs of various sizes (SCALE = 18 to
SCALE = 28). The largest problem instances we could run on the Sun server and the
XMT were graphs of size SCALE 27 (memory footprint 24 GB) and SCALE 28 (memory
footprint 90 GB) respectively. The factor-of-two difference in memory footprint is due to
the fact that we use 32-bit unsigned integers for representing vertex identifiers on the Sun
Fire T5120, and 64-bit words on the XMT. On the XMT, the performance picks up by a
factor of 2.45 (64 to 160 million TEPS) as the problem size is increased from SCALE 18
to SCALE 24. This is due to the lack of sufficient concurrency for the problem instances
to saturate all the threads on 16 processors. Similarly, on the Sun Fire T5120, the parallel
overhead is significant for smaller problem sizes, but the performance plateaus SCALE 22
onwards. Comparing the performance of the XMT and the Sun Fire T5120 for SCALE 27,
it is note-worthy that the single-socket Sun Fire system delivers performance equivalent to
nearly eight XMT processors. At 160 million TEPS, the 16-processor XMT system is a
factor of 1.77 faster than the Sun server for an identical problem instance of SCALE 27.

Parallel performance on the XMT. Since the XMT processor performance is rela-
tively constant for problem instances greater than SCALE 24, we study strong scaling of the
betweenness kernel for this problem instance. Figure 3(a) plots the TEPS score achieved

14



(a) Cray XMT (b) Sun Fire T5120

Figure 3: Parallel performance of SSCA#2 betweenness kernel on the Cray XMT and the
Sun Fire T5120 for a graph of 16.77 million vertices and 134.21 million edges (SCALE 24).

by varying the number of processors from 1 to 16. On 16 processors, we achieve a parallel
speedup of 10.41. The speedup is near-linear until 8 processors, but drops slightly for the
case of 12- and 16-processor runs. Atomic insertions to a single stack of discovered vertices is
likely one cause for the slowdown. This can be fixed by replicating the number of stacks to re-
duce contention, similar to the UltraSPARC T2 implementation. The reduced per-processor
bisection bandwidth may be another reason for the performance drop. In future work, we
will undertake a detailed analysis of performance bottlenecks, as well as study scaling on
larger XMT systems.

Parallel performance on the UltraSPARC T2. We repeat the strong scaling ex-
periment on the UltraSPARC T2. Figure 3(b) plots the performance of the betweenness
kernel for SCALE 24, as the number of threads is varied from 1 to 64. Using the Solaris
environment variable SUNW_MP_PROCBIND to bind threads to virtual processors, we
experimented with several different configurations. In most cases, we achieved best results
for a balanced distribution of threads: for instance, in case of a 16-thread run, we assigned
2 threads to each core, and one thread per thread group. Similarly, for a 32-thread run,
assigning two threads to each thread group gave the best performance among all the pos-
sible scenarios. The operating system did a consistently good job scheduling threads, and
the running time variation between the best combination and the OS-picked configuration
was never more than 5%. We report performance for OS-scheduled runs in Figure 3(b).
The relative speedup on 64 threads is 40.27 (ratio of the running time on 1 thread to the
time on 64 threads). Further, the parallel code on 1 thread is just 4.4% slower than a serial
implementation. Hence, the absolute speedup on the UltraSPARC T2 is 38.56. The final
observed parallel speedup is remarkable, and the scaling is near-linear up to 56 threads. Note
however that this is a single-socket system, and the performance may not scale as well on
larger servers due to NUMA (non-uniform memory access) effects. The data layout in the
current algorithm will need to be modified to improve performance on larger systems.

Performance comparison with predecessor systems. Table 2 compares the per-

15



Configuration TEPS score
XMT, 1 processor 15.33
XMT, 16 processors 160.00
MTA-2, 1 processor 10.39
MTA-2, 16 processors 160.16
MTA-2, 40 processors 353.53
UltraSPARC T2 90.62
UltraSPARC T1 26.74

Table 2: Performance of the SSCA#2 betweenness centrality kernel for SCALE 24 on the
Cray XMT, Cray MTA-2, Sun UltraSPARC T1, and the Sun UltraSPARC T2.

System/Algorithm TEPS score Speedup factor with
new approach

Cray XMT, Alg. 1 69.14 2.31
UltraSPARC T2, Alg. 1 38.35 2.36
UltraSPARC T2, Alg. 4 (locks) 85.36 1.06

Table 3: A comparison of the performance of the new algorithm and the old approach on
the UltraSPARC T2 and the Cray XMT.

formance of the XMT and UltraSPARC T2 with their respective predecessor architectures,
the MTA-2 and the UltraSPARC T1 (please see [27] for a detailed discussion of architec-
tural details and microbenchmark results on these architectures), for a problem instance of
SCALE 24. We observe that the single-processor XMT implementation is 47% faster than
the single-processor MTA-2. However, the performance is comparable on 16 processors, and
the MTA-2 scales extremely well for even the 40-processor run, with a relative speedup of
34. We clearly notice the impact of XMT 3D-torus interconnect on the parallel performance
scaling.

The UltraSPARC T2 is 3.4 times faster than its predecessor for this particular run. Note
that the T2 has double the number of threads and a faster processor (1167 MHz compared
to 1000 MHz). But the biggest difference is the number of floating point units. The T1 has
just 1 FPU that is shared by all eight cores, which becomes a major performance bottleneck
in the accumulation step of each iteration. We achieve better parallel speedup on the T2
due to the presence of one FPU per core.

Performance comparison with older algorithm. In Table 3, we report the per-
formance of the previous parallel approach (using predecessor sets) on the XMT and the
UltraSPARC T2, for the same SSCA#2 graph instance of SCALE 24. On the UltraSPARC
T2, we also give performance of a code variant that uses OpenMP mutex locks instead
of atomic operations. We observe that both our XMT and the T2 implementations are
significantly faster than their corresponding older implementations. Using Solaris atomic
instructions instead of OpenMP locks, we achieve a performance improvement of 6% for this
problem instance.

Performance correlated with other benchmarks. To better characterize perfor-
mance of the SSCA#2 graph analysis benchmark on these two systems, we give parallel

16



System/Configuration STREAM avg. (MB/s) RandomAccess (GUPS * 10−3)
XMT, 1 thread 48.47 0.55
XMT, 1 proc 1057.97 32.90
XMT, 16 proc 13375.32 338.60
UltraSPARC T2, serial 915.30 5.73
UltraSPARC T2, 8 threads 7030.75 44.69
UltraSPARC T2, 32 threads 7234.02 117.09
UltraSPARC T2, 64 threads 5562.53 119.97
UltraSPARC T2, best 8649.35 121.13

Table 4: STREAM and RandomAccess results on the XMT and the UltraSPARC T2.

performance results of two other memory-intensive benchmarks: STREAM [26] and Ran-
domAccess [24]. STREAM is a synthetic benchmark that measures sustainable memory
bandwidth in MB/s for a simple kernel with unit-stride memory references. In Table 4,
we give the average value of the performance obtained for the four variants of STREAM.
For XMT results, we modified the reference benchmark in C and OpenMP by replacing each
#pragma omp parallel for with a corresponding #pragma mta assert parallel. On the
XMT, the benchmark reports 1056.3 MB/s for a single processor run. Each read or write is
seen by the benchmark as 8 bytes, but the XMT interconnection network transfers 64 bytes
during each memory operation. Thus, the sustained bandwidth between the processor and
the network is 8450 MB/s, which is approximately equal to the bandwidth of the Seastar2
link to the processor. With 16 processors, we see a 13× speed-up in total sustained memory
bandwidth. On the UltraSPARC T2, we achieve a peak performance of 8649 MB/s for a
16-thread (binding two threads per core) run. The performance starts dropping after that
point, likely due to contention for the single memory unit per core. The parallel speedup over
a serial implementation is just 9.45. Note that our STREAM implementations do not have
any architecture-specific optimizations, and we just run the code with the same optimization
flags as the SSCA#2 benchmark.

RandomAccess measures the rate of random integer updates to memory. This compu-
tation is representative of a kernel with no spatial or temporal locality. On the XMT, we
achieve a peak performance of 338.6 ∗ 10−3 GUPS, with a relative speedup of 10.29. The
UltraSPARC T2 peak performance of 121.13 ∗ 10−3 is achieved for a 48-thread run, and the
relative speedup is 21.13. Note that the performance saturates after 32 threads on the Ultra-
SPARC T2. In future work, we will investigate reasons for the drop in parallel performance.

Comparing the peak performance of the three benchmarks, we observe that the 16-
processor XMT is faster than the UltraSPARC T2 by a factor of 1.54, 1.77, 2.79 for STREAM,
SSCA#2, and RandomAccess respectively. On the XMT, the 16-processor parallel speedups
of RandomAccess and SSCA#2 are comparable, while STREAM achieves a slightly higher
speedup of 13. However, on the Niagara2, the relative speedup for SSCA#2 is nearly 40,
and is significantly higher than the speedup achieved by STREAM (9.45) and RandomAccess
(21.13).

Performance on x86 cache-based multicore systems. Our C/OpenMP multi-
threaded implementation can also be executed on cache-based x86 architectures without any
modifications. We first ran the serial version of the SSCA#2 benchmark on a single core of

17



(a) Node degree vs. frequency (b) Node degree vs. Centrality score

Figure 4: Centrality analysis of the IBDb movie actor data set (1.54 million vertices and
78 million edges). Vertices represent actors, and edges correspond to actors co-starring in
movies.

a quad-core 2.0 GHz Intel Xeon Harpertown processor. The code was built with the Intel
C compiler version 11.0. Figure 2(b) plots the TEPS score achieved as the problem size is
varied from SCALE 13 (8192 vertices) to SCALE 21 (two million vertices). We observe that
the performance drops by an order of magnitude when the graph does not fit in the L2 cache
of the system.

We also ran the parallel version of the benchmark on a 2.4 GHz single-socket quad-core
Intel Xeon workstation with 8 GB of main memory. The benchmark was compiled using the
GNU C compiler version 4.2.1. For a graph of SCALE 21, the SSCA#2 betweenness central-
ity kernel performance on one and four threads is 9.1 million and 15.2 million respectively,
which corresponds to a relative speedup of 1.67. We will investigate parallel performance
bottlenecks on x86 architectures in future work.

Betweenness computation on the IMDb dataset. To demonstrate the applica-
bility of our implementation to real-world data analysis, we perform a large-scale approxi-
mate betweenness calculation on a network constructed from the Internet Movie Database
(IMDb) [16]. We obtained raw text data files that make up IMDb and used the actor, ac-
tress, and movie data to construct a graph with vertices representing actors (and actresses),
and edges connecting actors who have co-starred in a movie. We removed television shows
as well as uncredited roles.

The input dataset we developed produces an undirected graph with 1.54 million vertices
(movie actors) and 78 million edges. Plotting the node degree versus frequency (Figure
4(a)), we observe an unbalanced degree distribution that can be approximated by a power-
law graph, which is typical of real-world social networks [6]. On the XMT, the approximate
betweenness calculation takes about 83.6 seconds (using 256 randomly selected sources). The
same problem run on a 2.4 GHz quad-core Intel Xeon workstation requires 398 seconds to
complete. Thus, we achieve a speedup of 4.75 using the 16-processor XMT. Studying the
distribution of centrality scores (Figure 4(b)), it is interesting to note that the degree of the

18



actor with the highest centrality score is one order of magnitude less than highest degree
in the network. It is also interesting that a number of actors appearing in movies with
only 10 or fewer other actors have centrality scores 100 times less then the maximum, but a
million times greater than the minimum. The actors of low-degree but high betweenness (or
a high number of shortest paths passing through them) are particularly of interest in a social
network, as we cannot identify them by a linear-time computation. Approximate centrality
computation reveals these actors, and it is important to note that there are quite a few of
these in the IMDb network.

5 Conclusions and Future Work
We present a new parallel approach for computing betweenness centrality, and conduct
a detailed performance analysis of two optimized multithreaded implementations for the
Cray XMT and the Sun UltraSPARC T2. We show that the new algorithm has a lower
synchronization overhead and better cache locality compared to the previous approach, and
this results in more than a 2× performance improvement for parallel runs on both the
systems.

This paper raises several interesting questions that we hope to answer in future work.
With our new algorithm, we have eliminated a few performance bottlenecks for any centrality
implementation on the XMT. However, it is still unclear on how this approach will scale on
larger XMT systems. The single-socket UltraSPARC T2 performance is promising, but
non-uniform memory access (NUMA) effects on multi-socket Sun servers will likely lead
to a significant performance slowdown. Continued performance scaling on larger systems
may necessitate changes in the graph data structures we are using, as well as the data
representations in the centrality algorithms. We are also working on adapting this fine-
grained parallel betweenness centrality algorithm to develop optimized implementations for
local-store memory based architectures such as the IBM Cell processor.

Acknowledgments
This work was supported in part by the PNNL CASS-MT Center, NSF Grant CNS-0614915,
and the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We would
like to thank PNNL for providing access to the Cray XMT, and Cray Inc. for access to the
MTA-2. We are grateful to Jonathan Berry, Bruce Hendrickson, John Feo, Jeremy Kepner,
and John Gilbert, for discussions on large-scale graph analysis and algorithm design for
massively multithreaded systems.

References
[1] D.A. Bader, J.R. Gilbert, J. Kepner, and K. Madduri. HPC graph analysis benchmark,

2006. http://www.graphanalysis.org/benchmark.
[2] D.A. Bader, S. Kintali, K. Madduri, and M. Mihail. Approximating betweenness central-

ity. In Proc. 5th Workshop on Algorithms and Models for the Web-Graph (WAW2007),

19

http://www.graphanalysis.org/benchmark


volume 4863 of Lecture Notes in Computer Science, pages 134–137, San Diego, CA,
December 2007. Springer-Verlag.

[3] D.A. Bader and K. Madduri. Parallel algorithms for evaluating centrality indices in real-
world networks. In Proc. 35th Int’l Conf. on Parallel Processing (ICPP), Columbus,
OH, August 2006. IEEE Computer Society.

[4] D.A. Bader, K. Madduri, G. Cong, and J. Feo. Design of multithreaded algorithms for
combinatorial problems. In S. Rajasekaran and J. Reif, editors, Handbook of Parallel
Computing: Models, Algorithms, and Applications, chapter 31, pages 1–29. Chapman
and Hall/CRC, 2007.

[5] D.A. Bader, K. Madduri, J.R. Gilbert, J. Kepner, T. Meuse, and A. Krishnamurthy.
Scalable synthetic compact applications for benchmarking high productivity computing
systems. CTWatch Quarterly, 2(4B):41–51, 2006.

[6] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

[7] U. Brandes. A faster algorithm for betweenness centrality. J. Mathematical Sociology,
25(2):163–177, 2001.

[8] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive model for graph
mining. In Proc. 4th SIAM Intl. Conf. on Data Mining (SDM), Orlando, FL, April
2004. SIAM.

[9] D.G. Chavarría-Miranda, A. Márquez, J. Nieplocha, K.J. Maschhoff, and C. Scherrer.
Early experience with out-of-core applications on the Cray XMT. In Proc. Workshop
on Multithreaded Architectures and Applications (MTAAP’08), Miami, FL, April 2008.

[10] T. Coffman, S. Greenblatt, and S. Marcus. Graph-based technologies for intelligence
analysis. Communications of the ACM, 47(3):45–47, 2004.

[11] G. Cong and S. Sbaraglia. A study on the locality behavior of minimum spanning tree
algorithms. In Proc. 13th Int’l Conf. on High Performance Computing (HiPC 2006),
Bangalore, India, December 2006. Springer-Verlag.

[12] Cray, Inc. Cray XMT platform. http://www.cray.com/products/xmt, 2007.
[13] DARPA Information Processing Technology Office. High productivity computing sys-

tems project, 2004. http://www.highproductivity.org.
[14] R. Guimerà, S. Mossa, A. Turtschi, and L.A.N. Amaral. The worldwide air trans-

portation network: Anomalous centrality, community structure, and cities’ global roles.
Proceedings of the National Academy of Sciences USA, 102(22):7794–7799, 2005.

[15] D. R. Helman and J. JáJá. Prefix computations on symmetric multiprocessors. Journal
of Parallel and Distributed Computing, 61(2):265–278, 2001.

[16] IMDb.com, Inc. The internet movie database. http://www.imdb.com/interfaces,
2008.

[17] H. Jeong, S.P. Mason, A.-L. Barabási, and Z.N. Oltvai. Lethality and centrality in
protein networks. Nature, 411:41–42, 2001.

[18] P. Konecny. Introducing the Cray XMT. In Proc. Cray User Group meeting (CUG
2007), Seattle, WA, May 2007. CUG Proceedings.

[19] V.E. Krebs. Mapping networks of terrorist cells. Connections, 24(3):43–52, 2002.
[20] K. Lang. Finding good nearly balanced cuts in power law graphs. Technical report,

Yahoo! Research, 2004.
[21] K. Lang. Fixing two weaknesses of the spectral method. In Proc. Advances in Neurals

20

http://www.cray.com/products/xmt
http://www.highproductivity.org
http://www.imdb.com/interfaces


Information Proc. Systems 18 (NIPS 2005), Vancouver, Canada, December 2005.
[22] F. Liljeros, C.R. Edling, L.A.N. Amaral, H.E. Stanley, and Y. Åberg. The web of human

sexual contacts. Nature, 411:907–908, 2001.
[23] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry. Challenges in parallel graph

processing. Parallel Processing Letters, 17(1):5–20, 2007.
[24] P. Luszczek, D. Bailey, J. Dongarra, J. Kepner, R. Lucas, R. Rabenseifner, and D. Taka-

hashi. The HPC Challenge (HPCC) benchmark suite. SC06 Conference Tutorial, Nov
2006. http://icl.cs.utk.edu/hpcc.

[25] K. Madduri, D.A. Bader, J.W. Berry, J.R. Crobak, and B.A. Hendrickson. Multi-
threaded algorithms for processing massive graphs. In D.A. Bader, editor, Petascale
Computing: Algorithms and Applications, chapter 12, pages 237–262. Chapman and
Hall/CRC, 2007.

[26] J.D. McCalpin. Memory bandwidth and machine balance in current high performance
computers. IEEE Tech. Comm. Comput. Arch. Newslett, 1995. http://www.cs.
virginia.edu/stream.

[27] J. Nieplocha, A. Márquez, J. Feo, D.G. Chavarría-Miranda, G. Chin Jr., C. Scherrer, and
N. Beagley. Evaluating the potential of multithreaded platforms for irregular scientific
computations. In Proc. 4th Conf. on Computing Frontiers, Ischia, Italy, May 2007.

[28] Sun Microsystems. UltraSPARC T2 processor. http://www.sun.com/processors/
UltraSPARC-T2, 2007.

21

http://icl.cs.utk.edu/hpcc
http://www.cs.virginia.edu/stream
http://www.cs.virginia.edu/stream
http://www.sun.com/processors/UltraSPARC-T2
http://www.sun.com/processors/UltraSPARC-T2

	1 Introduction
	2 Computing Betweenness
	2.1 A lock-free parallel algorithm

	3 Centrality Implementations on Multithreaded Architectures
	3.1 The Cray XMT
	3.2 The Sun UltraSPARC T2

	4 Performance Analysis
	5 Conclusions and Future Work



