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Abstract. An attractor modeling algorithm is introduced which draws
upon techniques found in nonlinear dynamics and pattern recognition.
The technique is motivated by the need for quantitative measures that
are able to assess the stability of biological neural networks which utilize
nonlinear dynamics to process information.

1 Introduction

In formulating neural networks which rely on nonlinear dynamics as an informa-
tion processing medium [1] [2], two pertinent questions arise when the stability
of the network is considered: 1) How stable is the network dynamics to input?
2) If one or more of the parameters in the network are altered, to what degree
are the dynamics modified? These questions are central to understanding the
utility of chaotic neural networks since their answers form the foundation for
computational stability and robustness or, ultimately, the degree in which such
systems can be relied on to perform extended parallel computations. However,
of the present tools offered to dynamicists none are capable of answering these
questions on a quantitative basis.

1.1 Nonlinear System Identification

To date a suite of nonlinear system identification methods have been introduced
for dynamical systems, each geared toward solving a particular identification
problem [3] [4]. However, of the current methods offered in the literature, none
are comparative in nature in the sense that approximative models are created
for the sole purpose of comparison. In this paper a novel nonlinear system iden-
tification method is presented which relies on tools found in nonlinear dynamics
and pattern recognition to form approximative models that lend themselves to
comparison on a statistical basis. The density of states approach is founded upon
the notion that a dynamical system has a corresponding set of attractors where
the dynamical evolution of the system in a particular volume of phase space is
governed by the attractor or its associated basin which occupies that space [5].



2 Attractor Density Models

Using a set of trajectories originating from an independent and identically dis-
tributed initial condition set S intersecting a collection of attractors A or their
associated basins B, a particular region of state space can be independently ex-
plored. From a probabilistic reinterpretation of these independent state space
trajectories a probability density model may be defined. Specifically, given a re-
alization set {y} generated from a known model F(p) with unknown parameters
or inputs p acting on a known domain {z}, F(p) : {r} — {y}, a probability
function may be estimated from a transformation of the set {y}, P(T'({y})),
such that P(T({y})) corresponds with F(p) : {z}.

2.1 Feature Selection and Segmentation

The methodology used to form attractor density models is motivated by the two
tenets of pattern recognition- Feature selection and segmentation of the feature
set. Feature selection is carried out by decomposing independent explorations
of state space, generated from a fixed domain, into reconstruction vectors. Seg-
mentation of the feature vectors relies on exploiting the variance, covariance
structure of a reconstruction vector set.

Given a time series h(a;) = y; where A is a compact finite-dimensional set of
states a € A observed with a generic function h, h : A — R, the states a may be
reproduced by n-dimensional vectors b produced by a linear operation on the
time series values

b= M[h(a)vh(a—T)a"'7h(a*(n71)7)]T (1)

where 7 is a positive real number and n > 2d 4+ 1 with box counting dimension
d [6]. In the present context of feature selection in a nonstationary process,
the reconstruction operator M = MyMsMsM; is comprised of three terms: M;
finds and removes the mean from the realization, M5 finds and normalizes the
demeaned realization to unit energy, M3 finds the spectral coefficients through
the convolution of the remaining realization with a Morlet filter bank [7]. This has
the effect of breaking each realization of the chaotic process into its dynamical
modes. To segment each set of vectors, the dominant modes are extracted using
singular value decomposition, Mjy.

2.2 Density Estimation

Each dynamical state vector represents a state a of one of the attractors A €
A. The density of trajectories in the neighborhood of state a can be viewed
statistically in terms of having a certain probability of being visited. Using this
notion an attractor representation may be built by calculating the density of
states of an attractor in reconstruction space.

Under the assumption that each dynamical state vector is a sample from an
unknown probability density function f, a kernel function K provides a means



of generating a nonparametric estimate f of f. The kernel density estimate f in
dimension d at point a’ with samples a; is defined as [4]

P = a’ —a)T(a —a;

where K is defined as the multivariate Gaussian joint probability density func-
tion.

3 A Test of Segmentation

An interesting demonstration of this methodology is to see how well attractor
density models are segmented for a range of parameter values in the Mackey-
Glass equation [8]. First, attractor density models are built for each param-
eterization (r = 6,8,...,200,a = 0.16,0.18,...,0.24) using forty realizations.
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Fig. 1. Rounded estimates (dotted lines) of a given one and forty realizations. The raw
estimates are denoted by solid lines. The true value is @ = 0.2 for all values of 7
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Fig. 2. Rounded estimates (dotted lines) of T given one and forty realizations. The true
values are denoted by the 45° solid lines

Given a set of one and forty realizations generated with unknown parameters
T =26,8,...,200 and a = 0.20, which model best describes the data? This ques-
tion is answered by finding the center of mass of the density values found for each
model using the points in each realization set. It is evident from the estimations
of a and 7 in Figure 1 and 2, respectively, that increased sample sizes reduce
the estimate variances indicating that with modest sample sizes a good degree
of segmentation can be expected. The variability in the estimates is attributed
to statistical fluctuations.

4 Conclusion

In this paper, the basis for creating attractor density models is described. The
aim in formulating this technique lies in the need for nonlinear system iden-
tification methods which promote the comparison between models. With such
methods, the ability to analyze the stability of chaotic neural networks to changes

in internal parameters or input will be greatly improved.
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