
UCLA
UCLA Previously Published Works

Title
FastHap: fast and accurate single individual haplotype reconstruction using fuzzy conflict
graphs

Permalink
https://escholarship.org/uc/item/3jg1v9tm

Journal
Bioinformatics, 30(17)

ISSN
1367-4803

Authors
Mazrouee, Sepideh
Wang, Wei

Publication Date
2014-09-01

DOI
10.1093/bioinformatics/btu442

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3jg1v9tm
https://escholarship.org
http://www.cdlib.org/

Vol. 30 ECCB 2014, pages i371–i378
BIOINFORMATICS doi:10.1093/bioinformatics/btu442

FastHap: fast and accurate single individual haplotype

reconstruction using fuzzy conflict graphs
Sepideh Mazrouee* and Wei Wang
Computer Science Department, University of California Los Angeles (UCLA), 3551 Boelter Hall, Los Angeles,
CA 90095-1596, USA

ABSTRACT

Motivation: Understanding exact structure of an individual’s haplo-

type plays a significant role in various fields of human genetics.

Despite tremendous research effort in recent years, fast and accurate

haplotype reconstruction remains as an active research topic, mainly

owing to the computational challenges involved. Existing haplotype

assembly algorithms focus primarily on improving accuracy of the

assembly, making them computationally challenging for applications

on large high-throughput sequence data. Therefore, there is a need to

develop haplotype reconstruction algorithms that are not only accur-

ate but also highly scalable.

Results: In this article, we introduce FastHap, a fast and accurate

haplotype reconstruction approach, which is up to one order of mag-

nitude faster than the state-of-the-art haplotype inference algorithms

while also delivering higher accuracy than these algorithms. FastHap

leverages a new similarity metric that allows us to precisely measure

distances between pairs of fragments. The distance is then used in

building the fuzzy conflict graphs of fragments. Given that optimal

haplotype reconstruction based on minimum error correction is

known to be NP-hard, we use our fuzzy conflict graphs to develop a

fast heuristic for fragment partitioning and haplotype reconstruction.

Availability: An implementation of FastHap is available for sharing on

request.

Contact: sepideh@cs.ucla.edu

1 INTRODUCTION

All diploid organisms have two homologous copies of each

chromosome, one inherited from each parent. The two DNA

sequences of a homologous chromosome pair are usually not

identical to each other. The most common DNA sequence vari-

ants are single nucleotide polymorphism (SNP). We refer to the

sites at which the two DNA sequences differ as heterozygous

sites. Current high-throughput sequencing technologies (Eid

et al., 2009) are incapable of reading the DNA sequence of an

entire chromosome. Instead, they produce a huge collection of

short reads of DNA fragments. The process of inferring two

DNA sequences (i.e. haplotypes) from a set of reads is referred

to as haplotype assembly, which has become a crucial computa-

tional task to reconstruct one’s genome from these reads.

Haplotype assembly methods usually involve three main

stages before reconstruction phase. First, a sequence aligner is

used to align the reads to the reference genome. Then, only the

read alignments at the heterozygous sites are kept for haplotype

reconstruction. Last, reads that span multiple heterozygous sites

are used to infer the alleles belonging to each haplotype.

The quality of the reconstructed haplotypes may be dramatically

affected by errors in sequencing and alignment. The objective,

therefore, is to design algorithms that mitigate this impact and

rebuild the most likely copies of each chromosome accurately.

This has led to development of accurate haplotype reconstruc-

tion algorithms in the past few years. We are, however, observing

a critical shift in sequencing technology where larger datasets

with longer reads and higher coverage become available. This

shift necessitates the development of algorithms that not only

reconstruct haplotypes accurately but also require low computa-

tion time and can scale to large datasets. In this article, we intro-

duce a new framework for fast and accurate haplotype assembly.

1.1 Motivation and related work

The past decade has witnessed much research effort on enhan-

cing accuracy of haplotype assembly methods. The research,

however, lacks a method that is not only accurate but also fast

enough that can be used widely on large-scale datasets. In

particular, current trends in sequencing technologies demon-

strate that the sequence read lengths are being extended signifi-

cantly and access to reads of up to several thousand base pair

long will become a reality in near future.
Haplotype assembly approaches can be divided into two cate-

gories: (i) fragment partitioning; (ii) SNP partitioning. The frag-

ment partitioning techniques partition the set of fragments into

two disjoint sets each representing one copy of the haplotype.

Examples of such techniques are FastHare (Panconesi and Sozio,

2004) and the greedy heuristic in (Levy et al., 2007). The SNP

partitioning approaches such as HapCut (Bansal and Bafna,

2008), HapCompass (Aguiar and Istrail, 2012) and the approach

in (He et al., 2010) rely on partitioning the SNPs into two disjoint

sets and finding those variants whose corresponding haplotype

bits need to be flipped to improve minimum error correction

(MEC). In any of the two scenarios, an iterative process is

involved. From a computational complexity point of view, the

main drawback with existing techniques is that they perform

much computation during each iteration of the algorithm.
HapCut (Bansal et al., 2008) is an example of the algorithms

that use SNP partitioning technique to minimize MEC criterion.

The process involves iteratively reconstructing a weighted graph

and finding a max-cut of the graph. Clearly, most of the

computation occurs in a loop. The algorithm has proved to be

fairly accurate at the cost of high computation. The greedy heur-

istic algorithm in (Levy et al., 2007) is a fragment partitioning

approach. The iteration, however, involves two major computing

tasks: (i) reconstructing a partial haplotype based on the frag-

ments that are already assigned to a partition; (ii) calculating

distance between unassigned fragments and each one of the*To whom correspondence should be addressed.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits

non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

mailto:sepideh@cs.ucla.edu
one
 (HTS)
,
prior to
utilized
paper
l
1
2
,
 (minimum error correction)
1
2
XPath error Undefined namespace prefix

haplotype copies. FastHare (Panconesi and Sozio, 2004) is an-

other fragment partitioning algorithm. It sorts all fragments

based on their positions before execution of the iterative

module. Computationally intensive tasks that occur iteratively

in FastHare include (i) reconstruction of a partial haplotype

based on the fragments that are already assigned to a partition;

(ii) calculating distance between the current fragment and each

one of the two haplotype copies.

1.2 Contributions

Our goal in this article is to develop a framework for fast and

accurate haplotype reconstruction. Our approach consists of

four steps: (i) we measure dissimilarity of every pair of fragments

using a new distance metric; (ii) we build a weighted graph, called

fuzzy conflict graph, using the introduced dissimilarity measure;

(iii) we use the fuzzy conflict graph to construct an initial parti-

tion of the fragments through an iterative process; (iv) we refine

the initial partitioning to further improve the overall MEC of the

constructed haplotypes. More specifically, our contributions in

this article can be summarized as follows.
Inter-fragment distance: We introduce a new distance metric,

called inter-fragment distance, which quantifies dissimilarity

between pairs of fragments. This distance measure is carefully

developed to not only assign small values to the fragments that

match perfectly and large values to completely different frag-

ments but also neutralize the effect of missing alleles on final

partitioning of the fragments.
Fuzzy conflict graph: We introduce the notion of fuzzy conflict

graphs that are built based on the inter-fragment distances. In

our graph model, each node represents a fragment and edge

weights are corresponding dissimilarity measures between por-

tions of fragments.
Fragment partitioning algorithm:We present a two-phase com-

putationally simple heuristic algorithm for haplotype reconstruc-

tion. The first phase uses a fuzzy conflict graph to build an initial

fragment partition. In the next phase, the initial partition is

further refined to achieve additional improvements in the overall

MEC performance of the reconstructed haplotypes.
Validation using real data: We demonstrate the effectiveness of

the proposed techniques using HuRef dataset, a dataset that has

been widely used in haplotype assembly literature recently.

Specifically, we compare our method with several previously

published algorithms in terms of accuracy (MEC measures)

and scalability (execution time) performance. Our results show

that FastHap significantly outperforms the previous algorithms

by providing a speedup of one order of magnitude while

delivering comparable or better accuracies.
Our objective is to build a fast haplotype assembly model

where computationally intensive tasks are executed before exe-

cution of the iterative process. Our algorithm has the following

major differences compared with the previous work: (i) our

dissimilarity measure is a novel distance metric that precisely

quantifies contribution of each individual fragment for haplo-

type assembly; (ii) we perform all distance calculations at the

beginning of the algorithm and leave only computationally

simple tasks to the iterative section; (iii) we perform haplotype

reconstruction outside the iterative part of our algorithm.

2 MATERIALS AND METHODS

2.1 Problem statement and assumptions

We assume that the input to the haplotype assembly algorithm is a 2D

array containing only heterozygous sites of the aligned fragments, called

variant matrix, X, of sizem� n, wherem denotes the number of fragments

(aligned DNA short reads) and n represents the number of SNPs that the

union of all fragments cover. In the following discussion, we use xij to

refer to the allele of fragment fi at SNP sj. xij 2 f0; 1;�g, where 0 and 1

encode two observed alleles and – denotes that fragment fi does not cover

the SNP site sj. If there are more than two alleles observed at a given site,

the two most common alleles are encoded with 0 and 1, and the remaining

allele(s) are encoded by –. It is expected that most cells in X are filled with

– because, in practice, each aligned fragment covers only a few SNP sites,

limited by the fragment length (As discussed previously, the trend is that

much longer DNA reads will be available as a result of recent techno-

logical advancements in genome sequencing).

Algorithm 1 FastHap high-level overview

Initialization:

Calculate inter-fragment distance between every pair of fragments

(Section 2.2)

Store inter-fragment distances in " (Section 2.2)

Use " to construct a fuzzy conflict graph (Section 2.3)

__

Phase (I): Partitioning

Partition fragments into two disjoint sets C1 and C2 (Section 2.4 and

Algorithm 2)

__

Phase (II): Refinement

while (MEC score improves) do

Find fragment f̂ with highest MEC value

Assign f̂ to the opposite partition

end while

One of the most popular approaches for haplotype assembly is to

construct haplotypes based on partitioning of the fragments in variant

matrix. In this case, the haplotype assembly problem consists of two

steps, namely fragment partitioning and fragment merging, described as

follows. While the fragment partitioning phase aims to group rows of the

variant matrix into two partitions, C1 and C2, fragment merging is

intended to combine the fragments residing in each partition, through a

SNP-wise consensus process, and form two haplotypes h1 and h2
associated with C1 and C2, respectively. The resulting haplotype is typic-

ally denoted by H={h1, h2}. The main objective of the haplotype

assembly is, therefore, to come up with a partitioning such that the

amount of error is minimized. Our focus in this article is on minimizing

the MEC objective function. As mentioned previously, this problem is

proved to be NP-hard (Cilibrasi et al., 2005). Thus, our goal is to

develop a heuristic algorithm for the haplotype assembly problem. Our

solution relies on a novel inter-fragment distance measure, a graph

model for inter-fragment dissimilarity assessment and a fast graph parti-

tioning algorithm. A high-level overview of FastHap is shown in

Algorithm 1.

2.2 Inter-fragment distance

Given two variables x; y 2 f0; 1;�g, we define the operator � as follows.

x� y=

0 if x=y

1 if x 6¼ y& x; y 2 f0; 1g

0:5 otherwise

8>><
>>:

ð1Þ

i372

S.Mazrouee and W.Wang

prior to
:
1
2
paper
 as follows
1
2
3
4
paper
that
u
p
prior to
to
1
2
3
two-dimensional
since
1

paper
,

DEFINITION 1 (Inter-fragment distance). Given a variant matrix Xm�n

where xij 2 f0; 1;�g, we define inter-fragment distance, "ðfi; fkÞ, between

fragments fi= {xi1; xi2; . . ., xin} and fk= {xk1; xk2; . . ., xkn} by

"ðfi; fkÞ=
1

Tik

Xn
j=1

ðxij � xkjÞ ð2Þ

where Tik denotes the number of columns (SNPs) that are covered by

either fi or fk in X. In fact, Tik is a normalization factor that allows us to

normalize the distance between the two fragments such that the resulting

distance ranges from 0 to 1 (i.e. 0 � "ðfi; fkÞ � 1).

The inter-fragment distance metric is developed with the goal of mea-

suring the cumulative dissimilarity between each pair of fragments across

all SNP sites. The intuition behind (1) and (2) is as follows. At a given

SNP site sj, if two fragments fi and fk both cover it, the per-site distance is

0 if they take the same allele (suggesting they may likely belong to the

same partition) and 1 if they take opposite alleles (suggesting they may

likely belong to different partitions). We assign 0.5 distance if the SNP

is only covered by one of the two fragments to neutralize the contribu-

tion of the missing element. If the SNP is not covered by either fragment,

0 distance is cumulated at this site. An additional benefit of this

approach is that we need to examine only SNPs covered by either

of the two fragments. From a computing complexity point of

view, this can reduce the execution time of the distance calculation

significantly.

Figure 1a shows a set of fragments spanning eight SNP sites. The

resulting inter-fragment distances are shown in a symmetric distance

matrix in Figure 1b. Intuitively, " (the distance measure between two

fragments) is smaller for those fragments that need to be grouped to-

gether and larger for those that we prefer to be placed in different par-

titions. When distance between the two fragments is 0.5, the two

fragments alone do not provide sufficient information as how they

need to be partitioned.

DEFINITION 2 (Pivot distance). Given a variant matrix Xm�n, the pivot

distance between any pair of fragments in {f1, f2, . . . , fm} is �=0.5.

The pivot � allows us to decide whether the two fragments are dissimi-

lar enough to be placed in separate partitions. A pair of fragments with

an inter-fragment distance greater than � is more likely to be placed in

different partitions, although the final partitioning assignment is made

after all pairs of fragments are examined through a partitioning

algorithm. In Section 2.3, we will present a graph model that enables

us to perform fragment partitioning by linking similar and dissimilar

fragments through a weighted graph based on inter-fragment distance

values.

2.3 FastHap graph model

In this section, we present a graph model based on the inter-fragment

distance defined in (2). In Section 2.4, we will discuss how this graph

model can be used to partition the fragments into two disjoint sets and

construct haplotypes accordingly.

DEFINITION 3 (Fuzzy conflict graph). Given a variant matrix X composed

of m fragments {f1, f2, . . . , fm} spanning n SNP sites, a fuzzy conflict graph

that models dissimilarity between pairs of fragments is a complete graph G

represented by the tuple (V,E,WE). In this graph, V= {1, 2, . . . , m} is a set

of m vertices representing the fragments in X; each edge el is associated with

a weight wl equal to the distance between the corresponding fragments in X.

The conflict graph introduced in this article, fuzzy conflict graph, is

different from that used in previous research [e.g. the fragment conflict

graph in (Lancia et al., 2001)]. A conflict graph has been conventionally

defined as a non-weighted graph. Let us call it a binary conflict graph,

which represents any pair of fragments with at least one mismatch in the

variant matrix. For example, according to (Lancia et al., 2001), a conflict

graph is a graph with an edge for each pair of fragments in conflict where

two fragments are in conflict if they have different values in at least one

column in the variant matrix X. There are a number of shortcomings with

respect to using a binary conflict graph for haplotype assembly. The

major problem with the conventional conflict graph is that it does not

take into account the number of SNP sites for which the two fragments

exhibit a mismatch. Two fragments are considered in conflict even if there

is a mismatch at only one SNP site. In contrast, our fuzzy conflict

graph aims to measure the amount of mismatch across all SNP

sites of every pair of fragments. For example, consider the

three fragments f1={�� 000���}, f8={�� 111���} and

f10={�� 010���} in Figure 1. In a binary conflict graph, all the

vertices are connected because there is at least one mismatch between

every pair of fragments: three mismatches between f1 and f8, one

mismatch between f1 and f10 and two mismatches between f8 and f10.

The binary conflict graph, however, treats all three edges equally. Our

fuzzy conflict graph assigns weights of 1, 0.33 and 0.66 to these edges,

respectively, to lead the partitioning algorithm to group f1 and f10
together.

An example of a fuzzy conflict graph based on the fragments listed in

Figure 1a is illustrated in Figure 1c. For visualization, the edges with a

pivot distance are not shown. The problem of dividing the fragments into

two most dissimilar groups is essentially a max-cut problem (Ausiello,

1999). A max-cut partition may divide the fragments into C1={f1, f2, f3,

f6, f10} and C2={f4, f5, f7, f8, f9} as shown in Figure 1. We note that the

resulting partition may not be unique in its general case. As we will dis-

cuss in more details in Section 2.4, max-cut is an NP-hard problem, and

existing techniques provide solutions that are highly suboptimal. Thus,

we will leverage some properties of our fuzzy conflict graphs to develop a

heuristic approach for fragment partitioning.

2.4 Fragment partitioning

As stated previously, our goal is to partition fragments into two disjoint

sets such that fragments within each group are most similar and can form

a haplotype with minimum MEC. Using the fuzzy conflict graph model

presented in Section 2.3, a weighted max-cut algorithm needs to be used

to find the optimal partition. The max-cut problem, however, is known to

S1 S2 S3 S4 S5 S6 S7 S8

f1 - - 0 0 0 - - -

f2 - - - 0 - - 1 1

f3 1 1 - - - - - -

f4 - 0 1 - - 1 - -

f5 - - - - 1 1 - -

f6 1 0 - - - - 1 -

f7 - 0 0 - - - - 0

f8 - - 1 1 1 - - -

f9 - - - - - 1 1 0

f10 - - 0 1 0 - - -

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f1 - 0.4 0.5 0.6 0.63 0.5 0.4 1 0.5 0.33

f2 - 0.5 0.5 0.5 0.4 0.6 0.6 0.5 0.6

f3 - 0.63 0.5 0.5 0.5 0.5 0.5 0.5

f4 - 0.37 0.5 0.37 0.4 0.4 0.6

f5 - 0.5 0.5 0.37 0.37 0.63

f6 - 0.5 0.5 0.4 0.5

f7 - 0.6 0.4 0.4

f8 - 0.5 0.66

f9 - 0.5

f10 -

a) Variant Matrix X

X = {f1,f2,f3,f4,f5,f6,f7,f8,f9,f10}
C1 = {f1,f2,f3,f6,f10}
C2 = {f4,f5,f7,f8,f9}
MEC = 4
Reconstruction rate = 100%

b) Inter-Fragment Distance Matrix Δ

c) Fuzzy Conflict Graph (G)

d) Resul�ng par��on and MEC

Fig. 1. An example of variant matrix with 8 SNP sites (a), corresponding

distance matrix (b), the fuzzy conflict graph associated with the variant

matrix (c) and results of applying FastHap on the data (d). The graph in

(c) shows only edges with non-pivot distances

i373

FastHap

which
(
)
8
(
)
which
in order
paper
(
,
)
that
tiliz
,
,
s
(
)
(
)
-

be NP-hard even when all edge weights are set to one (Garey and

Johnson, 1990). All edges in our fuzzy conflict graph have a positive

weight. There exist heuristic algorithms (Sahni and Gonzales, 1974)

that produce a cut with at least half of the total weight of the

edges of the graph when all edges have a positive weight. In fact, a

simple 1
2 – approximate randomized algorithm is to choose a cut at

random. This means that each edge el in the fuzzy conflict graph G is

cut with a probability of 12. Consequently, the expected weight of the edges

crossing the cut, W(C1,C2), is given by

WðC1;C2Þ=
1

2

XL
l=1

wl �
1

2
OPT ð3Þ

This algorithm can be derandomized to obtain a 1
2 – approximate de-

terministic algorithm. There exist two major shortcomings with this par-

titioning algorithm: (i) Unfotunately, derandomization works well only

on unweighted graphs where all edges have equal/unit weights. A similar

approach for a weighted graph is not guaranteed to run in polynomial

time; (ii) the obtained partition is highly suboptimal with an approxima-

tion factor of 1
2. Thus, we introduce a novel heuristic algorithm based on

properties of fuzzy conflict graphs.

Algorithm 2 FastHap partitioning algorithm

Require: Fuzzy conflict graph G=(V,E,WE)

Ensure: Partition P=½C1;C2� composed of two groups C1 and C2 of

fragments

(1) Delete edges with pivot weights from G

(2) Sort remaining edges el in G based on their weights wl and store

results in list D

(3) Let el=ðfi; fkÞ be the edge with the largest weight in D

(4) Initialize partition by assigning fi and fk to opposite groups

(e.g. C1= ffig & C2= ffkg

while (not all vertices are partitioned) do

(5) Let el=ðfi; fkÞ be next edge with highest weight in D such that

fi 2 P or fk 2 P

(6) Let fi 2 P; if fi 2 C1, then C2=C2 [ffkg, otherwise

C1=C1 [ffkg

(7) Let er=ðfi; fkÞ be next edge with lowest weight in D such that

fi 2 P or fk 2 P

(8) Let fi 2 P, then if fi 2 C1, then C1=C1 [ffkg, otherwise

C2=C2 [ffkg

(9) If none of el and er exist, assign each remaining fragment to the

more similar set

end while

repeat

(10) Let MEC be the switching error for existing partition

(11) Let fi be the fragment with largest switching error among all

fragments in P

(12) If fi 2 C1 (alternatively fi 2 C2), move fi from to C2 (alterna-

tively to C1)

(13) Let newMEC bet the switching error for the new partition

until (newMEC �MEC)

The FastHap partitioning algorithm is shown in Algorithm 2 and

briefly explained as follows. First, the algorithm eliminates all edges

with pivot weights from the fuzzy conflict graph G. Such edges do not

contribute to formation of the final partition. The algorithm then sorts all

edges of the graph (equivalently, pairs of the fragments) based on the

edge weights and stores the results in D. An initial partition is formed by

placing the two fragments with largest inter-fragment distance (associated

with the heaviest edge in G) into two separate partition sets C1 and C2.

In the next phase, the algorithm alternates between the heaviest and

lightest edges and assigns adjacent vertices (associated with fragments

in X) to the existing partition if either of the vertices is already assigned

to the partition. An edge with highest weight results in placing

the adjacent vertices in different partitions and an edge with lowest

weight attempts to assign the vertices to the same partition in

P. This occurs only if the chosen edge is adjacent to an already parti-

tioned edge.

THEOREM 1. Algorithm 2 terminates in polynomial time.

PROOF. We prove that the algorithm terminates and its running time

is polynomial. Let M be the total number of edges in the given fuzzy

conflict graph, respectively. During each iteration, the algorithm attempts

to assign two edges (those with highest and lowest weights and adjacent

to an already partitioned vertex) to the final partition P. Clearly,

the iterative loop does not repeat more than M0 times. In fact, during

each iteration at least one edge (i.e. el or er or both) is selected to be added

to the final partition. If the algorithm cannot find such an edge, all

remaining edges are allocated to the final partition and the algorithm

ends. Therefore, the iterations cannot repeat more than M0 times and

the algorithm will terminate after at most M0 iterations. The proof

regarding computing complexity of the algorithm is as follows.

Removal of edges with pivot weight in (1) in Algorithm 2 can be

completed in O(M); the process of sorting the edges in instruction

(2) can be done in O(Mlog M); instruction (3) takes O(1) to complete.

The initialization of the partition in (4) can be done in O(1); (5) detecting

the edge with the highest weight and checking if one of its vertices

(i.e. fragments) is already in the partition P require O(1) and O(M),

respectively, to be completed; (6) assigning the selected edge to the

partition require O(1); similarly, instructions in (7) require O(1) and

O(M) to finish; similar to (6), the instructions in (8) can be done

in O(1). The instructions in (9) have a complexity of O(M); reading

the MEC value of the partition in (10) and (13) takes O(1);

instructions in (11) and (12) can finish in O(M). Given that instructions

in the loop are executed at mostM times, the complexity of the algorithm

is O(M2).

2.5 Refinement phase

The second loop in Algorithm 2 shows second phase of the

proposed haplotype reconstruction approach. The idea is to itera-

tively find the fragment that contributes most to the MEC score

and reassign it to the opposite partition. This process repeats as long as

the MEC score improves. Our experimental results show that the first

phase of the algorithm performs most of the optimization in terms of

MEC improvements, leaving minimal improvements for the second

phase.

2.6 Fragment purging

Because the complexity of FastHap is a function of the number of frag-

ments in the variant matrix, it is reasonable to attempt to minimize the

number of such fragments by eliminating any potential redundancy be-

fore execution of the main algorithm. Therefore, FastHap uses a prepro-

cessing phase during its initialization to combine those fragments that are

highly similar. Fortunately, the inter-fragment distance measure provides

a means to assess similarity between every two fragments. The criterion

for combining two fragments fi and fk is based on the inter-fragment

distance "ðfi; fkÞ and a given threshold �. The two fragments are

merged if

"ðfi; fkÞ � � ð4Þ

The purging process is straightforward. It eliminates the shorter frag-

ments from the variant matrix. The value of � needs to be set based on

the quality of data. For the dataset used in our experiments on different

i374

S.Mazrouee and W.Wang

-
1
2
-
e
,
,
 □
s
Since
prior to

chromosomes, we set � experimentally and found that �=0:2 provides

the best performance.

3 VALIDATION

3.1 Setup

We used HuRef (VenterInst, 2014), a publicly available dataset,

to demonstrate the effectiveness of FastHap for individual haplo-
type reconstruction. Our goal was to assess performance of

FastHap in terms of both accuracy and speed in comparison
with HapCut (Bansal and Bafna, 2008) and greedy algorithm
in Levy et al. (2007). The main reason for choosing these two

algorithms is that these algorithms have been historically popular
in terms of accuracy and computing complexity. We ran all our

experiments on a Linux x86 server computer. The server had 16
CPU cores of 2.7GHz with 16GB of RAM. Each algorithm
performed per-block haplotype reconstruction. Each block con-

sisted of the reads that do not cross adjacent blocks. Although
haplotype assembly solutions cannot do more than random

guess between two consecutive variant site that do not share
any fragments, our effort in this article was to provide technol-

ogy that is appropriate for longer reads in each end of paired
alignment and ample insertion size to minimize disconnection
between different haplotype blocks.

3.2 Dataset

The HuRef dataset used for our analysis contains reads for all 22

chromosomes of an individual, J.C. Venter. The data include 32
million DNA short reads generated by Sanger sequencing
method with 1.85 million genome-wide heterozygous sites.

There are too many fairly short reads of �15bp (each end)
while still tens of thousands of reads are long enough to cover

more than two SNP sites and can be used for haplotype assembly
purposes. In fact, many fragments within each block span several
hundred SNP sites owing to the pair-end nature of the aligned

reads. The variant matrix used for haplotype assembly was
generated based on aligned short reads with paired-end

method for each pair of various length (from 15 to 200bp each
end) while the insert length follows a normal distribution with a

mean of 1000.

Figure 2a shows read coverage for each chromosome. Read

coverage numbers are calculated by taking an average over the

coverage values of all SNP sites within each chromosome. The

coverage vary from 6.49 reads for chromosome 19 to 8.72 reads

for chromosome 3. The average genome-wide coverage across all

chromosomes is 7.43. Figure 2b shows distribution of the cover-

age for chromosome 20 (exemplary), which includes 39 767 SNP

sites. The coverage numbers range from 1 to 20 reads. Only two

SNP sites had a coverage of 20. The average coverage for

chromosome 20 was 6.83.
Figure 3 shows several statistics on haplotype length of various

chromosomes in HuRef dataset. Figure 3a shows chromosome-

wide haplotype length, equivalent ally total number of SNP sites,

for each chromosome. As mentioned previously, each chromo-

some is divided into non-overlapping blocks. Haplotype length

of such blocks may vary significantly from one chromosome to

another. For example, Figure 3b shows distribution of haplotype

length for a subset of chromosomes with ‘small’, ‘medium’ and

‘large’ haplotypes. For instance, chromosome 8 has a number of

blocks spanning42500 SNPs. In contrast, haplotypes in chromo-

some 18 barely exceed 1000 SNP sites.
In addition to running FastHap on real HuRef data, we con-

structed several simulated read matrices based on HuRef data

(Bansal and Bafna, 2008). A simulated dataset based on real data

allows us to assess performance of the proposed algorithm and

extend its capabilities by changing various parameters (e.g. error

rate, coverage and haplotype length or block width). To assess

the accuracy of our method, we simulated a pair of chromosome

copies based on real fragments and consensus SNP sites provided

by HuRef data. The variant matrix for each chromosome

on HuRef data was suitably modified to generate an ‘error

free’ matrix at first. This was accomplished by modifying

alleles in each fragment such that it perfectly matches a prede-

fined haplotype. To introduce errors in the variant matrix, each

variant call was flipped with a probability of " ranging from 0 to

0.25. We also modified the variant matrix to produce vari-

ant matrices of different coverage. Another change to the simu-

late variant matrix was to generate blocks of varying haplotype

length ranging from 200 to 1000 SNPs. Such variant

matrices were then used to examine how performance of

different algorithms (i.e. FastHap, Greedy, HapCut) changes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

6X

7X

8X

9X

Chromosome#

C
ov

er
ag

e

(a) Coverage for each chromosome

1X 5X 10X 15X 20X
0

1000

2000

3000

4000

5000

Coverage

of

 S
N

P

(b) Histogram of coverage for
randomly selected chromosome

Fig. 2. Coverage of HuRef dataset; (a) coverage for each chromosome;

numbers vary from 6.49 to 8.72 for various chromosomes with an average

genome-wide coverage of 7.43. (b) Histogram of coverage for chromo-

some 20 as an example; Y-axis shows number of SNPs, with each specific

coverage shown on x-axis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

4

8

12

16
x 104

Chromosome#

H
ap

lo
ty

pe
 le

ng
th

(a) Haplotype length per chromosome

100 500 1000 1500 2000 2500
0

10

20

30

40

50

60

Haplotype length

of

 b
lo

ck
s

Chromosome 8
Chromosome 17
Chromosome 18

(b) Histogram of haplotype length for
three exemplary chromosomes

Fig. 3. Chromosome-wide haplotype length for each chromosome (a)

and histogram of per-block haplotype length for chromosomes 8, 17

and 18 as examples of chromosomes with ‘small’, ‘medium’ and ‘large’

blocks, respectively (b)

i375

FastHap

paper
in order
s
di
s
approximately
due
bp -
(
)
(
)
a total of
2
(
)
(
)
over
,
,
In order
,

as a result of changes in error rate, coverage and haplotype

length.

3.3 Results

Table 1 shows speed and accuracy results for all chromosomes

on HuRef dataset. As it can be observed from the timing values,

FastHap is significantly faster than both Greedy and HapCut. In

particular, FastHap is up to 16.4 times faster than HapCut

and up to 15.1 times faster than Greedy. The average speedup

achieved by FastHap is 7.4 and 8.1 compared with Greedy and

HapCut, respectively. In terms of accuracy performance,

FastHap achieves 35.4 and 1.9% improvement in reducing

switch error compared with Greedy and HapCut, respectively.
A number of parameters affect speed performance of different

algorithms. In particular, number of SNP sites within each vari-

ant matrix is an important factor in many well-known algorithms

such as HapCut. One advantage of FastHap is that its perform-

ance is primarily influenced by the number of fragments in the

variant matrix rather than the number of SNP sites. That is, a

higher read coverage allows FastHap to generate better accuracy

without significant impact on its running time. In contrast, as the

haplotype length grows, HapCut algorithm runs very slowly

compared with FastHap. As shown in Table 1, HapCut is very

slow when applied to chromosome 8 primarily owing to the large

haplotype length. This is also confirmed through Figure 3b,

which shows that chromosome 8 contains blocks that span

42500 SNPs. In contrast, chromosome 18, for example, can be

reconstructed much faster when HapCut is used. Figure 3b

shows that most of the blocks for chromosome 18 span51000

SNP sites.
Using the simulated data described in Section 3.2, we ran

FastHap on variant matrices of varying error rates and com-

pared the reconstructed haplotypes with the true haplotypes.

With this, we obtained the absolute accuracy results shown in

Table 2. For brevity, results are shown only for 6 error rate

values. The table shows how the absolute accuracy of the ob-

tained haplotype is affected as a result of introduced errors. We

observe that the accuracy numbers are always larger than what

one may expect owing to the error rate. For example, when the

error rate is 20%, one may expect an absolute accuracy of 80%,

but the measured accuracy is 85.7%. This can be interpreted as

follows. As the error rate (i.e. number of flipped variant calls)

increases, some variant calls may become consistent with a dif-

ferent haplotype of higher accuracy.

Figure 4a shows the MEC score per variant call versus the

simulated error rate obtained by each one of the three algo-

rithms. The average MEC (normalized by number of variant

calls) was 2.48, 2.56 and 2.86 for FastHap, HapCut and

Greedy, respectively. The amount of improvement in MEC

using FastHap was 13 and 2.8% compared with Greedy and

HapCut, respectively. Figure 4b shows the running time of the

Table 1. Comparison of FastHap with Greedy and HapCut in terms of

accuracy (MEC) and execution time using HuRef dataset. Best results in

each column showed in bold

Time

(min)

Speedup using

FastHap

MEC (accuracy

performance)

Chr Greedy HapCut FastHap versus

Greedy

versus

HapCut

Greedy HapCut FastHap

1 606 880 183 3.3 4.8 29657 19750 19423

2 1001 2446 149 6.7 16.4 22980 14677 14220

3 1809 1053 188 9.6 5.6 16878 10738 11794

4 542 694 63 8.6 11.0 18153 11931 11812

5 1381 3229 282 4.9 11.4 16590 10630 10362

6 681 750 109 6.2 6.9 15587 9992 9870

7 456 604 76 6.0 7.9 17402 11290 11245

8 5052 4514 334 15.1 13.5 14887 9845 10830

9 2006 1747 293 6.8 6.0 13812 9318 9204

10 667 1445 170 3.9 8.5 15291 9906 9796

11 332 288 69 4.8 4.2 12906 8294 8091

12 1303 1638 165 7.9 9.9 12630 8297 7467

13 428 761 158 2.7 4.8 9312 6131 6143

14 3315 1919 383 8.7 5.0 9734 6360 5725

15 907 1137 208 4.4 5.5 13988 9783 9695

16 157 248 42 3.7 5.9 12621 8354 8215

17 2223 2790 246 9.0 11.3 11157 7398 7386

18 698 798 87 8.0 9.2 8578 5043 4846

19 309 501 41 7.5 12.2 8214 5497 4886

20 326 348 32 10.2 10.9 5752 3784 3437

21 482 154 48 10.0 3.2 6611 4715 4707

22 535 128 39 13.7 3.3 8295 5864 5875

Overall 25217 28 074 3365 7.4 8.1 301 035 197597 195029

Sum over all

chromosomes

Average Sum over all

chromosomes

Note. FastHap achieves speedups of 16.4 and 15.1 compared with HapCut and

Greedy, respectively, is 1.9 and 35.4% more accurate than HapCut and Greedy,

respectively. Statistics on coverage and haplotype length are shown in Figs 2 and 3

and further discussed in Section 3.2.

0 5 10 15 20 25
0

0.5

1

1.5

2

ε (error rate %)

N
or

m
al

iz
ed

 M
E

C

FastHap
Greedy
HapCut

(a) MEC Values

5X 7X 10X 15X 20X
0

100

200

300

400

500

600

Coverage

Ti
m

e
(m

in
.)

FastHap
Greedy
HapCut

(b) Running Time

Fig. 4. Effect of error rate and coverage on performance of different

algorithms. The analysis was performed on chromosome 20 (randomly

selected) of HuRef dataset. (a) Switching error (MEC) of the three algo-

rithms under comparison as a function of error rate; (b) execution time of

the algorithms as a function of coverage

Table 2. Absolute accuracy of FastHap as a function of error rate

Error rate (" in %) 0 5 10 15 20 25

Accuracy on HuRef (%) 100 96.2 90.3 86.0 85.7 80.6

Note. Results are obtained using variant matrix based on HuRef datasets.

i376

S.Mazrouee and W.Wang

,
to
%
to
to
s
due
(
)
over
tilized
(
)
less that
tilizing
due
that
,
(
)
,
,
%
to
(
)

three algorithms as the coverage varies from 5 to 20. For this

experiment, the variant matrix was carefully modified to obtain
the right coverage needed for the analysis. Furthermore, the ob-

tained matrix was first made ‘error free’. We then flipped the

variant calls with a probability of �=0:25 for this analysis.
To assess running time of different algorithms with respect to

changes in haplotype length, variant matrices with different

number of columns were built as explained previously in

Section 3.2. Figure 5a shows execution time of the three algo-

rithms as the partial haplotype length grows from 200 to 1000

SNPs. For this analysis, an injected error rate of �=0:25 was
used. We note that the results are shown only for one block of

data. It can be observed that the running time of HapCut in-

creases significantly as the block width grows. That is, while

HapCut can build a partial haplotype of length 200 in 25 s, its

running time increases to 784 s when the length of the haplotype

increases to 1000 SNPs.
To demonstrate superiority of FastHap partitioning algorithm

over a random partitioning, we selected a subset of the dataset at

random. We ran both FastHap and random partitioning algo-

rithms on the same variant matrix 10 times and calculated per-
centage of improvements in MEC achieved by FastHap. The

improvement numbers ranged from 12.17 to 31.64%, with an

average improvement of 19.13%.

4 DISCUSSION AND FUTURE WORK

Development of efficient and scalable algorithms for haplotype

assembly and reconstruction is by large an open research prob-

lem. Presence of error and missing data in the DNA short reads
makes the problem challenging. Current approaches suffer from

limited accuracy and are not scalable for application on large

datasets. In this article, we presented design, implementation and

validation of FastHap, a highly scalable haplotype assembly and

reconstruction method that has shown promising results

compared with the state-of-the-art assembly techniques. We pre-

sented a novel dissimilarity metric that quantifies inter-fragment
distance based on the contribution of individual fragments in

building a final haplotype. The notion of fuzzy conflict graph

was proposed to model the haplotype reconstruction as a max-

cut problem. We then introduced a fast heuristic algorithm for

fragment partitioning based on the fuzzy conflict graphs. The

framework lowers computing complexity of haplotype recon-
struction dramatically while also outperforming accuracy per-
formance of several popular assembly algorithms. In particular,

FastHap is up to one order of magnitude faster than HapCut
(Bansal and Bafna, 2008) and Levy’s greedy approach (Levy
et al., 2007).

In this article, we compared FastHap with two well-
known haplotype reconstruction algorithms, namely Levy’s
greedy algorithm and HapCut. The greedy algorithm is his-

torically known for its high speed while it also outperforms
accuracy of other computationally simple and greedy al-
gorithms such as FastHare (Panconesi and Sozio, 2004).

HapCut, in contrast, is popular for its high accuracy, but
demands much higher computational resources compared with
Greedy.

Because DNA short fragments are used in the process of
haplotype assembly, the number of SNPs that each short read
encompasses is considered to be an important factor. As a

general rule, short reads that cover less than two SNP sites
are eliminated in our analysis. When two or more variant
positions are spanned by a single read, or occur on paired

reads derived from the same shotgun clone, alleles can be
linked to identify larger haplotypes. Current sequencing technol-
ogies provide us with fragments that may or may not span

multiple SNP sites. Although such reads do not link multiple
SNPs, they can provide useful haplotype information for the
SNP they cover. Our approach in this article does not require

a preprocessing phase to eliminate such reads from further
analysis.
FastHap is a heuristic approach and may result in a subopti-

mal solution. Yet, it can provide high-quality phasing of hetero-
zygous variant sites. Unlike many prior works that use a
randomly generate vector to seed the initial haplotype, the start-

ing point of our algorithm is not a completely random pair of
haplotypes but created using our intelligent distance measure. As
demonstrated through our results, this approach would signifi-

cantly improve the time complexity and accuracy of the obtained
haplotypes.
Given the promising speed results that we have achieved using

FastHap, we are planning to further improve the accuracy of our

algorithm. We believe that the algorithm can become much
smarter if a cross-optimization approach is applied where both

fragment and SNP sets are considered for haplotype reconstruc-
tion/refinement.
In this article, we performed per-block analysis of speed and

accuracy. As part of our future work, we plan to study how

haplotypes generated from each block can be effectively com-
bined to form genome-wide haplotypes. We also plan to study
if the errors condensed by MEC values coincide when two haplo-

type reconstruction algorithms are compared.
With recent advancements in the sequencing technologies,

access to long reads of more than few thousand bases is becom-

ing a reality (Huddleston et al., 2014). For example, Pacific
BiosciencesTM released an extra-long set of DNA fragments
with average read length of 8849 bp and up to 54X coverage.

The dataset has recently become publicly available
(PacificBiosciences, 2014). This dataset, which contains single-
end long fragments, is expected to be an excellent means to dem-

onstrate huge speed/accuracy benefits that FastHap can provide.

200 400 600 800 1000
0

100

200

300

400

500

600

700

800

Haplotype length

Ti
m

e
(s

ec
.)

FastHap
Greedy
HapCut

(a) Running Time

200 400 600 800 1000
0

5

10

15

20

Haplotype length

S
pe

ed
up

FastHap vs. Greedy
FastHap vs. HapCut

(b) Speedup

Fig. 5. Speed performance of the three algorithms as a function of haplo-

type length. Analysis was performed on chromosome 20 (randomly se-

lected) of HuRef dataset. (a) Execution time as a function of haplotype

length. (b) Amount of speedup achieved by FastHap compared with

Greedy and HapCut

i377

FastHap

In order
(
)
econds
econds
In
order
%
paper
,
which
ve
very
to
paper
s
to
Since
paper
-
very
paper
over
,

Another example is newly released datasets based on 1000
Genome project (Siva, 2008). These datasets are also large with
high-density SNP sites. Our ongoing work involves application
of FastHap on such datasets.

ACKNOWLEDGEMENT

The authors would like to thank Vikas Bansal and Derek Aguiar

for providing the source code of their software and datasets. Also
special thanks to members of ZarLab-UCLA for their insightful
discussions and comments.

Funding: This work was funded by NIH R01HG006703, NIH
P50 GM076468-08 and NSF IIS-1313606.

Conflict of interest: none declared.

REFERENCES

Aguiar,D. and Istrail,S. (2012) Hapcompass: a fast cycle basis algorithm

for accurate haplotype assembly of sequence data. J. Comput. Biol., 19, 577–590.

Ausiello,G. (1999) Complexity and Approximability Properties: Combinatorial

Optimization Problems and Their Approximability Properties. Springer,

Springer-Verlag New York, Inc. Secaucus, NJ, USA.

Bansal,V. and Bafna,V. (2008) Hapcut: an efficient and accurate algorithm for the

haplotype assembly problem. Bioinformatics, 24, i153–i159.

Bansal,V. et al. (2008) An mcmc algorithm for haplotype assembly from whole-

genome sequence data. Genome Res., 18, 1336–1346.

Cilibrasi,R. et al. (2005) On the complexity of several haplotyping problems. In:

Algorithms in Bioinformatics. Springer, Springer-Verlag New York, Inc.

Secaucus, NJ, USA, pp. 128–139.

Eid,J. et al. (2009) Real-time DNA sequencing from single polymerase molecules.

Science, 323, 133–138.

Garey,M.R. and Johnson,D.S. (1990) Computers and Intractability; A Guide to the

Theory of NP-Completeness. W. H. Freeman, New York, NY, USA.

He,D. et al. (2010) Optimal algorithms for haplotype assembly from whole-genome

sequence data. Bioinformatics, 26, i183–i190.

Huddleston,J. et al. (2014) Reconstructing complex regions of genomes using long-

read sequencing technology. Genome Res., 24, 688–696.

Lancia,G. et al. (2001) SNPs problems, complexity, and algorithms. In:

AlgorithmsESA 2001. Springer, pp. 182–193.

Levy,S. et al. (2007) The diploid genome sequence of an individual human. PLoS

Biol., 5, e254.

PacificBiosciences,P. (2014) Human 54x dataset. http://datasets.pacb.com/2014/

Human54x/fast.html.

Panconesi,A. and Sozio,M. (2004) Fast hare: a fast heuristic for single individual

SNP haplotype reconstruction. In: Algorithms in Bioinformatics. Springer,

pp. 266–277.

Sahni,S. and Gonzales,T. (1974) P-complete problems and approximate solutions.

In: Proceedings of the 15th Annual Symposium on Switching and Automata

Theory (Swat 1974). SWAT’74, IEEE Computer Society, Washington, DC,

USA, pp. 28–32.

Siva,N. (2008) 1000 genomes project. Nat. Biotechnol., 26, 256.

VenterInst (2014) Diploid human genome project website, J. Craig Venter Institute.

http://www.jcvi.org/cms/research/projects/huref/overview/.

i378

S.Mazrouee and W.Wang

http://datasets.pacb.com/2014/Human54x/fast.html
http://datasets.pacb.com/2014/Human54x/fast.html
http://www.jcvi.org/cms/research/projects/huref/overview/

