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Abstract

We synthesized and characterized two novel sterol-anchored polyethylene glycols (PEG) as 

potential alternatives to conventional phosphatidylethanolamine-PEGs. Liposomes containing the 

dicholesterol anchored PEG at 5 mole percent exhibit canonical PEGgylated-liposome behaviors 

including retention of encapsulated small molecules, low serum protein adsorption, and reduced 

cellular uptake yet they do not exhibit long circulation.
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Liposomes are the leading class of nanoparticle therapeutics. Low molecular weight drugs 

encapsulated in PEGylated liposomes exhibit an in vivo serum half-life of almost 2 days in 

humans and over 12 hours in mice.1,2 This is achieved through the incorporation of a 2000 

mW polyethylene glycol (PEG) anchored to a 1,2-distearoyl glycerol-3-

phosphoethanolamine lipid (DSPE) which limits liposome aggregation,3 the adherence of 

serum proteins, and recognition by phagocytic cells.4

The pharmacokinetic benefits are dependent on DSPE-PEG lipids incorporating into the 

lipid bilayer. However, there are conflicting reports of the miscibility of DSPE-PEG when 

mixed with 1,2-distearoyl glycerol-3-phosphocholine (DSPC). In lipid-monolayer-coated-

microbubbles DSPE-PEG2000-biotin is immiscible with DSPC as resolved by electron and 

fluorescence microscopy.5 In addition, Lozano et al.6 reported that DSPC and DSPE-

PEG2000 coexisted as a two-phase system and were almost completely immiscible in lipid 

monolayer mixtures. However, Chou and Chu7 reported that the two lipids were fully 

miscible in lipid monolayers and that addition of DSPE-PEG caused the monolayer to 

become more compressible. In addition, Dos Santos et al.8 showed that liposomes composed 

of DSPC and DSPE-PEG2000 exhibited similar pharmacokinetics in mice with or without 

cholesterol, which modulates interactions between DSPC and DSPE-PEG.6 This uncertainty 

in the behavior of DSPE-PEG200 in DSPC liposomes highlights the need for alternatives to 

DSPE-PEG2000 that interact more favorably with saturated lipids.

Cholesterol mixes favorably with DSPC9 and is commonly used in liposomes to improve 

bilayer stability. Previously, monolayers and liposomes prepared using sterol-modified lipids 

exhibited almost identical properties to liposomes prepared with conventional linear 

phospholipids and an equivalent mole ratio of cholesterol,10–13 which provides a rationale 

for the use of cholesterol as an anchor for PEG that would mix with bilayers composed of 

saturated phospholipids. Here, we present the biophysical properties of liposomes containing 

two different sterol-anchored PEGs and provide a preliminary assessment of their utility in 

liposomal drug delivery.

We synthesized two sterol-modified PEG-2000 (2000 kDa) molecules using standard 

approaches (Scheme 1). Glycerol-mimetic backbones were produced by reacting PEG-

nitrophenylcarbonate with 3-methylamino-1,2-propanediol or 2-methyl-2-amino-1,3-

propanediol, to generate compounds 3 and 5, respectively. PEG2K-2-methyl-2-amino-1,3-

propanediol was reacted with cholesteryl hemisuccinate through EDC coupling to yield a 

dicholesteryl hemisuccinate PEG (DiCHEMS-PEG) (6). For the other sterol-modified PEG, 

cholesterol was first derivatized using tert-butylbromoacetate in the presence of sodium 

hydride. The column purified product,1, was deprotected using formic acid to yield 

compound 2, which was coupled to 3 in the presence of EDC to provide a dicholesterol PEG 

(DiCHOL-PEG) (4). DiCHEMS-PEG and DiCHOL-PEG were purified by dialysis with the 

DiCHOL-PEG requiring additional purification on a silica column.

To determine the fluidity of bilayers comprised of sterol-anchored PEGs and DSPC, 

liposomes were produced with increasing amounts of the dicholesteryl PEG lipids. 

Fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) was measured in the 

various lipid compositions and the data plotted as the anisotropy normalized to the DPH 
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probe in DSPC (Fig. 1). Pure DSPC undergoes a phase transition at 55 °C marked by a 

dramatic reduction in anisotropy at higher temperatures (Fig. S13, ESI†). The addition of 

increasing amounts of cholesterol eliminates this transition, flattening the DPH anisotropy 

versus temperature measurements (Fig. S13, ESI†). Vesicles with DSPE-PEG in DSPC at 15 

mole percent or greater exhibit an increase in the anisotropy (Fig. 1). This effect is due to the 

presence of DSPE-PEG micelles co-existing with DSPC-PEG in the bilayer (14). The 

anisotropy of DPH in vesicles containing DiCHOL-PEG or DiCHEMS-PEG with DSPC 

displayed behavior closer to cholesterol than DSPE-PEG (Fig. 1). The overall anisotropy of 

DPH is similar to that induced by cholesterol for both the sterol-anchored PEG molecules.

To compare the morphology of liposomes prepared using the sterol-anchored PEG 

molecules, transmission electron microscopy was performed. Formulations containing 5 % 

DiCHEMS-PEG or DiCHOL-PEG with DSPC had vesicle profiles similar to 

DSPC:Cholesterol:DSPE-PEG formulations with 10 % cholesterol (to match the total 

cholesterol present), and DSPC:Cholesterol:DSPE-PEG with the more conventional 40 % 

cholesterol (Fig. 2).

Liposomes containing 5 % DSPE-PEG, DiCHEMS-PEG, or DiCHOL-PEG were evaluated 

for bilayer stability by measuring the retention of encapsulated carboxyfluorescein (CF).

Liposomes loaded with CF were placed in serum and incubated at 37 °C. CF leakage was 

measured at various times over a week (Fig. 3). All liposomes exhibited an initial burst 

release of CF within the first 24 h before equilibrating in serum. DSPC liposomes containing 

5 % DiCHEMS-PEG or DiCHOL-PEG relea sed approximately 12 % of encapsulated CF 

within 7 days which was comparable to the stable DSPC:Cholesterol (60:40) liposome 

formulation. Leakage was also comparable to DSPC:Cholesterol:DSPE-PEG (85:10:05) 

with 10 % cholesterol.

To learn if the sterol-anchored PEG lipids could prevent or reduce plasma protein binding, 

we incubated DiCHOL-PEG and DiCHEMS-PEG and DSPC:Cholesterol:DSPE:PEG 

liposomes with bovine serum albumin (BSA) (Fig. 4). Liposomes were mixed with 

fluorescently labeled BSA and the amount of bound protein was determined following size 

exclusion chromatography to remove unassociated proteins. There were no significant 

differences among the four formulations investigated (Fig. 4). The trend in BSA binding to 

the various liposome compositions mirrored the binding trend for, mouse plasma proteins 

(Fig. S14, ESI†).

Next, we measured cellular uptake in the presence and absence of apolipoprotein 3 (apoE3). 

ApoE3 can absorb onto the surface of neutral liposomes to facilitate hepatic clearance.15 

Only the DiCHEMS-PEG showed an increase in uptake in the presence of apoE3 (Fig. 5, 

Fig. S15, ESI†). In addition, the DiCHEMS-PEG had the greatest cellular association 

compared to all other liposome formulations.

†Electronic Supplementary Information (ESI) available: Including experimental details, synthesis, and characterization.see DOI:
10.1039/x0xx00000x
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Subsequently, liposomes of the four lipid compositions were produced with diameters that 

were within ±10 nm and we measured the percent dose in mouse plasma 24 hours post-

dosing (Table 1). Unexpectedly, DSPC liposomes containing 5 mole percent DiCHEMS-

PEG or DiCHOL-PEG had the lowest percent dose remaining 24 h post dosing (Table 1). 

There was only approximately 3 % of the dose remaining for liposomes with the sterol-

anchored PEGs, whereas DSPC:Cholesterol:DSPE-PEG (55:40:05) liposomes had 14% of 

the dose remaining and DSPC:Cholesterol:DSPE-PEG (85:10:05) liposomes had 22 % of 

the dose remaining at 24 h post dosing.

In summary, we synthesized and characterized two sterol-anchored PEG molecules with 

similar biophysical properties as potential alternatives to DSPE-PEG. Liposomes containing 

these dicholesteryl anchored PEGs at 5 mole percent exhibit an array of canonical 

PEGgylated-liposome behaviors including, retention of encapsulated small molecules, low 

serum protein adsorption, reduced cellular uptake yet they do not exhibit long circulation.

The primary structural difference between the two lipids is the use of cholesteryl 

hemisuccinate or cholesterol as the sterol anchor. Although cholesteryl hemisuccinate is 

conventionally used as a reactive form of cholesterol,16–18 it contains an ester linkage on the 

free hydroxy of cholesterol, where that ester carbonyl is believed to interfere with bilayer 

packing.12 Therefore, in the DiCHEMS-PEG formulation the cholesterol may be more 

accessible to protein adhesion. This structural difference could account for the increase in 

apoE3-driven uptake observed with the DiCHEMS-PEG lipid.

The two cholesterol modified lipids also differ in the aminopropyl moiety that anchors the 

cholesterol to the PEG. For the DiCHEMS-PEG, cholesteryl hemisuccinate was anchored to 

the 1- and 3-positions of the glycerol-like backbone with the PEG attached to the amine at 

the 2-position. Whereas in the DiCHOL-PEG, the cholesterol esters were attached to the 1- 

and 2-positions with the PEG anchored to the methylamino group at the 3-position. It is not 

evident how these positional changes would influence the behavior of the appended 2000 

MW PEG chain.

These sterol-anchored PEGs provide an interesting mystery. The properties of liposomes 

containing 5 mole percent of either sterol-anchored PEG or DSPE-PEG are similar but there 

is a substantial difference in the amount circulating 24 h post-injection in mice. In the case 

of the DiCHEMS-PEG, the sterol-anchor may facilitate the recognition of liposomes by 

lipophilic apoE proteins since they are known to interact with cholesterol, triglycerides, and 

lipoproteins.19,20 As a result, the apoE3 accumulation could increase the hepatic clearance 

of liposomes which might have contributed to the reduced circulation. Liposomes containing 

DiCHOL-PEG showed slightly greater uptake in cells than liposomes with DSPE-PEG 

which suggests that DiCHOL-PEG liposomes may also be cleared more rapidly due to 

increased cellular recognition.

Notably, the overall absorption of DiCHEMS-PEG or DiCHOL-PEG modified liposomes to 

cells in culture was relatively low since the adhesion of PEGylated liposomes to themselves 

or non-PEG-coated surfaces is greatly reduced.21 Thus, the complete explanation for the 

significantly lower levels in plasma remains puzzling. These results however, highlight the 
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complexity of relationship between DSPE-PEG, DSPC, and cholesterol in lipid bilayers and 

raise questions regarding the criteria for the extended circulation of PEGylated systems 

Future studies with these lipids could be used to help clarify this complex relationship.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Normalized DPH fluorescence anisotropy of DSPC vesicles with increasing amounts of 

additives. A) Cholesterol, B) DSPE-PEG, C) DiCHEMS-PEG, and D) DiCHOL-PEG. 

DSPC liposomes containing sterol-anchored PEG exhibit similar anisotropy traces to 

liposomes with cholesterol. The mole percent of unmodified cholesterol is twice that of the 

mole percent of DiCHEMS-PEG or DiCHOL-PEG to have an equivalent amount of 

cholesterol in the bilayer. Errors bars represent mean ± SD.
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Fig. 2. 
TEM images of liposome formulations. DiCHOL-PEG and DiCHEMS-PEG (bottom) form 

vesicles when mixed with DSPC comparable to vesicles formed from 

DSPC:Cholesterol:DSPE:PEG liposomes (top).
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Fig. 3. 
CF leakage from liposomes. DiCHEMS-PEG and DiCHOL-PEG liposomes exhibit similar 

CF leakage in serum as cholesterol containing liposomes. Error bars represent mean ± SD.
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Fig. 4. 
Normalized liposome protein binding. Liposome formulations exhibit minimal differences in 

non-specific protein binding. Percent BSA binding shows no significant changes in the 

levels of BSA associated with the liposomes. Protein content normalized to liposome 

concentration. Error bars represent mean ± SD, n=3/group. p = 0.64 ANOVA.
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Fig. 5. 
ApoE3 cellular uptake. Liposomes containing DiCHEMS-PEG exhibit increased cellular 

uptake in the presence of apoE3. Error bars represent mean ± SD, n=4 wells/group. *p < 

0.05 ANOVA with Tukey’s post-hoc test; **p < 0.01, t-test.
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Scheme 1. 
Synthetic scheme for synthesis of sterol-anchored PEG lipids.
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Table 1

Percent dose remaining of similar diameter DSPC vesicles containing DSPE-PEG with cholesterol, 

DiCHEMS-PEG or DiCHOL-PEG

Formulation Size % Dose at 24 h

DSPC:Cholesterol:DSPE-PEG (55:40:05) 100 ± 3 14 ± 2.4

DSPC:Cholesterol:DSPE-PEG (85:10:05) 94 ± 4 22 ± 2.4

DSPC:DiCHOL-PEG (95:05) 95 ± 4 3 ± 0.2

DSPC:DiCHEMS-PEG (95:05) 93 ± 5 2.4 ± 1.2
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