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Abstract

Evaluation of coronary artery disease (CAD) using coronary computed tomography angiography 

(CCTA) has seen a paradigm shift in the last decade. Evidence increasingly supports the clinical 

utility of CCTA across various stages of CAD, from detection of early subclinical disease to the 

assessment of acute chest pain. Additionally, CCTA can be used to non-invasively quantify plaque 

burden and identify high-risk plaque, aiding in diagnosis, prognosis, and treatment. This is 

especially important in the evaluation of CAD in immune-driven conditions with increased 

cardiovascular disease prevalence. Emerging applications of CCTA based on hemodynamic 

indices and plaque characterization may provide personalized risk assessment, impact disease 
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detection, and further guide therapy. This review provides an update on the evidence, clinical 

applications, and emerging technologies surrounding CCTA as highlighted at the 2019 National 

Heart, Lung and Blood Institute CCTA Summit.

Condensed Abstract

Coronary computed tomography angiography (CCTA) can be utilized across various stages of 

coronary artery disease (CAD), from detection of early subclinical disease to the assessment of 

acute chest pain. The ability to identify high-risk plaque and quantify plaque burden positions 

CCTA as a unique tool for non-invasive risk stratification and treatment planning. Emerging 

applications of CCTA based on hemodynamic indices and plaque characterization may provide 

personalized risk assessment in order to further guide treatment. With more widespread 

availability, utilization, and further studies, CCTA may improve patient outcomes as well as our 

understanding of atherosclerosis and its progression.

Keywords

coronary computed tomography angiography; coronary artery disease; atherosclerosis

Introduction

Coronary computed tomography angiography (CCTA) is an effective imaging modality 

increasingly accepted as a first line test to diagnose coronary artery disease (CAD), and has 

prognostic implications for patient management (1,2). Furthermore, CCTA can be leveraged 

to image various stages of atherosclerosis ranging from plaque formation to plaque 

progression and rupture. Innovative tools derived from CCTA permit understanding of the 

development of atherosclerotic plaque and aid in risk stratification and medical decision-

making for patients with CAD. Advancements in CCTA have allowed for minimal radiation 

exposure, effective coronary characterization, and detailed imaging of atherosclerosis over 

time. Thus, CCTA provides a central platform for a multidisciplinary approach, including 

immunology, pathology, radiology, and cardiology to further our understanding of CAD and 

to improve patient care.

In November 2019, a summit held at the National Heart, Lung and Blood Institute convened 

world experts on CCTA to discuss the latest developments in the field, synthesize the 

available evidence, and to discuss the evolving clinical applications of CCTA. In this review, 

we highlight the discussions put forth in this symposium, including the current 

understanding of atherosclerotic plaque pathology and its translation to CCTA in clinical 

practice. Further described are approaches to how CCTA can be utilized to characterize 

coronary artery plaque composition and morphology and to prognosticate cardiovascular 

outcomes. Finally, emerging CCTA technologies concomitant with advances in imaging 

acquisition, advanced techniques for analysis and characterization, and computational fluid 

dynamics are reviewed.
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Atherosclerosis: From Plaque Pathology to CCTA

Prior to exploring the applications of CCTA, it is vital to consider the pathological basis of 

CAD, which CCTA seeks to detect and characterize. Atherosclerosis, a multifactorial 

systemic disease, is most often found at vessel branch points and areas of low shear stress 

that slowly evolve over time (3). Atherosclerotic lesions can be divided into early non-

atherosclerotic intimal lesions including intimal thickening and xanthoma, which further 

progress into increasingly vulnerable and rupture-prone lesions beginning with pathological 

intimal thickening and leading to fibroatheroma and thin-cap fibroatheroma (Figure 1) (4). 

These lesions may give rise to acute thrombosis in the coronary artery, most commonly via 

plaque rupture, but additionally through plaque erosion and plaque fissure (5). Furthermore, 

as atherosclerotic lesions progress, neovascularization occurs, and histopathologic 

examination demonstrates increased vasa vasorum as well as macrophage and T-lymphocyte 

infiltration concurrent with increasing vessel stenosis and necrotic core area, demonstrating 

the key role of immune cells in plaque progression (5).

Intraplaque hemorrhage (IPH) is a plaque lesion most often seen in plaque rupture as 

compared to plaque erosion and stable CAD. Further, intraplaque hemorrhage contains high 

amounts of cholesterol clefts, macrophages, and an enlarging necrotic core, potentially 

increasing plaque vulnerability (6). However, vulnerable lesions tend to evolve over time and 

can transform to non-vulnerable lesions (7). An understanding of the histopathology of 

unstable lesions including IPH, neovascularization, and recurrent plaque healing and rupture 

may partially explain the rapid progression of a lesion that occurs prior to plaque rupture 

leading to acute coronary syndrome (ACS) (8,9).

Calcification in CAD is associated with plaque progression and can be visualized by CCTA 

and non-contrast computed tomography (CT) in the form of calcium scoring (10). Calcified 

coronary plaque can be seen histopathologically across atherosclerotic lesions beginning 

with early intimal microcalcifications, which progress to punctate and fragmented 

calcifications of fibroatheroma, followed by sheet calcium and calcified nodules (11). The 

progression of these calcium morphologies can be matched between histology and CCTA 

and may play a role in prognosis and risk stratification of rupture-prone plaques. For 

example, spotty calcifications on CCTA corresponding to speckled and fragmented 

calcification on histopathology import a greater risk of plaque rupture when compared to 

dense calcification such as diffuse calcium or calcium sheets (11). Further, in a recent case-

control study, high density calcifications in the form of “1K” plaque, or plaque having 

greater than 1000 Hounsfield units (HU) on CCTA, were associated with lower risk for 

future ACS, suggesting that measurement of 1K plaque may improve risk stratification (12).

In addition to CCTA, histopathologic features of coronary atherosclerosis can be represented 

using other imaging techniques including intravascular ultrasound (IVUS), optical coherence 

tomography (OCT), and near infra-red spectroscopy (NIRS). For example, quantitative 

analysis using IVUS and NIRS has been used to identify plaque characteristics such as the 

lipid-rich necrotic core (13). This “virtual histology” characterization of plaque features has 

been applied to CCTA and validated against histopathology as well as IVUS (14–17). 

However, the limited spatial and temporal resolution of CCTA have historically restricted its 
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ability to differentiate plaque subtypes and detect plaque rupture when compared to OCT 

and IVUS (17,18). Additionally, calcifications can appear falsely enlarged on CCTA and 

result in overestimation of stenosis due to blooming and partial volume artifacts (19). 

Various reports have demonstrated mixed results showing underestimation or overestimation 

of lumen area by CCTA when compared to IVUS (14,20,21).

These historical limitations of CCTA plaque characterization are being potentially 

challenged with emerging technologies to achieve tissue characterization performance 

comparable to catheter-based methods by patient-specific image restoration, mitigation of 

calcium blooming, and machine intelligence for comprehensive plaque characterization (22).

CCTA in Clinical Practice

CCTA utilization has increased in recent years in the United States (US) and around the 

world, driven in part by increasingly strong outcome data and similar or lower cost when 

compared with functional testing (23,24). Nevertheless, CCTA utilization in the US has 

lagged compared to Europe due to guidelines that do not yet reflect this evidence, 

reimbursement that does not match the resources required, and need for improved education 

(25). In contrast to the US, the 2016 United Kingdom National Institute for Health and Care 

Excellence (NICE) guidelines and 2019 European Society of Cardiology (ESC) guidelines 

have incorporated CCTA as a first line modality for the evaluation of chest pain patients and 

chronic coronary syndromes respectively (1,2).

The uses of CCTA in the United States span several settings, from evaluation of suspected 

ACS in the emergency setting, planning prior to cardiac surgery, to follow up of ischemic 

functional tests and preceding lower probability catheterization cases. CCTA can also be 

useful as part of cardiac evaluation prior to liver transplantation (26–28). However, in other 

countries such as the United Kingdom, CCTA is used to assess all patients with stable chest 

pain, irrespective of the pre-test probability; particularly since multiple studies have shown 

that the pre-test probability of obstructive CAD is often overestimated (2). This clinical 

utility is driven by the strong ability of CCTA to effectively rule out CAD given its high 

negative predictive value (e.g. >95%), which makes the modality especially useful in 

patients with low to intermediate risk of CAD (29–32).

CCTA may be a better predictor of obstructive CAD compared to traditional functional 

testing, which has been shown to be a poor predictor of obstructive CAD (33). In the 

Evaluation of Integrated Cardiac Imaging in Ischemic Heart Disease (EVINCI) study, a 

prospective study of patients with stable chest pain comparing CCTA and several function 

tests including single photon emission computed tomography (SPECT), positive emission 

tomography (PET), echocardiography and cardiac magnetic resonance (CMR), CCTA was 

shown to be the most accurate non-invasive imaging modality for detection of significant 

CAD (34).Both the Prospective Multicenter Imaging Study for Evaluation of Chest Pain 

(PROMISE) and the Scottish COmputed Tomography of the HEART Trial (SCOT-HEART) 

randomized controlled trials demonstrated the prognostic value and robust cardiovascular 

event prediction of CCTA compared to functional testing and standard care, respectively, in 

the setting of stable chest pain(35,36). Furthermore, five-year follow-up of the SCOT-
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HEART trial demonstrated that a CCTA-first strategy significantly reduced the occurrence 

of myocardial infarction (MI) and coronary heart disease death without increasing invasive 

testing compared to standard care, although a CCTA-first strategy did not improve clinical 

outcomes compared to functional testing in the PROMISE trial (37,38). The prognostic 

superiority of CCTA in the PROMISE trial was even more pronounced in subgroup analysis 

of type 2 diabetes mellitus patients, further highlighting the role of CCTA as an initial 

diagnostic test in this population, although more prospective trials are needed to validate 

these findings (39). Finally, a meta-analysis of CCTA use in patients with stable chest pain 

compared to usual care showed a 31% relative reduction in MI and an absolute reduction in 

MI rates of 1.8 events per 1000 patient-years (40). In addition to diagnostic effectiveness, an 

approach integrating CCTA prior to selective invasive testing for suspected CAD also 

significantly reduces diagnostic costs while reducing the need for angiography (41).

CCTA plays a vital role in the emergency setting, where there are approximately 7 million 

emergency department visits annually for chest pain, accounting for 5.4% of all visits and 

$10 billion of spending annually (42). While most of these presentations are found to be 

non-cardiac in nature, missed diagnosis of acute MI accounts for significant mortality and a 

significant proportion (20%) of emergency medicine litigation costs (43–45). Several 

multicenter clinical studies in the emergency setting have demonstrated that CCTA is a safe, 

rapid, and effective tool for ruling out CAD in low-intermediate risk patients presenting with 

acute chest pain and is associated with improved time to diagnosis and reduced length of 

stay (46–51). Initial studies have suggested the safety of CCTA or CMR in the setting of 

non-ST elevation myocardial infarction (NSTEMI) as a first step prior to invasive coronary 

angiography, with similar rates of hospitalization, major adverse cardiac events, and 

complications compared to routine care. However, additional larger studies are needed to 

assess the role of CCTA in this setting (52). Nonetheless, as current approaches in low to 

intermediate risk patients may miss the culprit lesion, CCTA could also help to enhance 

culprit vessel identification, leading to improved treatment targets, intervention, and 

resource utilization (53).

CCTA offers significant advantages in the clinical setting compared to coronary artery 

calcium scoring (CACS) which is obtained by a non-contrast CT scan, implies the presence 

of atherosclerosis, and is an established predictor of future coronary events (54,55). CACS is 

inexpensive and reproducible with the ability to detect patients at high-risk or low risk of 

CAD (56). In contrast to CACS, CCTA can additionally identify coronary stenosis severity, 

as well as plaque composition and morphology including both calcified and non-calcified 

plaque (Figure 2). This is especially valuable as non-calcified plaques are associated with 

increased all-cause mortality when compared to calcified plaques (57). Furthermore, CCTA 

can capture CAD modulation with treatment and thus has the potential to be used in the 

clinical setting to identify treatment response (58).

However, there are patient-specific limitations to the utility of CCTA in clinical practice. 

Firstly, image quality may be limited in patients with dense calcifications, morbid obesity, 

multiple or small diameter stents, high heart rates, and non-sinus rhythm. CCTA requires the 

use of iodinated intravenous contrast agents which are potentially nephrotoxic. CCTA has 

the potential of leading to excessive downstream testing, although the recent Coronary 
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Artery Disease Reporting and Data System (CAD-RADS) consensus statement provides 

guidance on how to appropriately manage patients following CCTA (59). The utility of 

CCTA should also be limited in those with a high pre-test probability for CAD, where 

invasive angiography may be more appropriate (60).

CCTA Assessment of High-Risk Plaque Features and Plaque Features Over 

Time

Recent studies have implicated coronary plaque progression as one of the major 

determinants of future MI even when accounting for coronary stenosis severity (8). This risk 

is compounded by the presence of high-risk coronary plaque features associated with plaque 

vulnerability (9). In this context, CCTA presents a unique ability to accurately and non-

invasively quantify and characterize coronary atherosclerosis (58). As a robust and validated 

research tool, quantitative analysis of CCTA can also be used to track coronary features over 

time, including to assess response to treatment and to determine plaque characteristics that 

are predictors of rapid plaque progression and medication non-response.

The capability to characterize coronary atherosclerosis using CCTA has led to an abundance 

of large-scale clinical outcomes data that directly relate plaque morphology and 

characteristics to adverse CAD outcomes. This includes the visual identification and 

discrimination of high-risk plaque features that are associated with future ACS and correlate 

strongly with adverse histologic and IVUS features (61,62). These features were initially 

based on partitioning analyses performed in histopathological samples that demonstrated the 

features of hierarchical importance in plaque vulnerability—namely, presence of a thin 

overlying fibrous cap, extent of macrophage infiltration, and size of the necrotic core 

(63,64). The latter two features are intimately related and can be assessed by CCTA as a low 

attenuation plaque (LAP) based on HU. Several high-risk features identifiable on CCTA 

correspond with IVUS-defined thin cap fibroatheroma and portend greater risk for rupture, 

including positive remodeling (PR), LAP, spotty calcifications, and the napkin-ring sign 

(Figure 3) (65–67).

High-risk plaques are clinically significant and robust markers of vulnerable, rupture-prone 

lesions. The SCOT-HEART trial demonstrated that patients with one or more characteristics 

of positively remodeled coronary segments or LAP have higher risk of coronary heart 

disease death or nonfatal MI (67). Further, a recent report from the SCOT-HEART trial 

demonstrated that burden of LAP quantified from CCTA using semi-automated plaque 

analysis software (Autoplaque, Version 2.5, Cedars-Sinai Medical Center) was the strongest 

predictor of MI and, further, provided incremental prediction of MI beyond standard 

assessments such as CACS or luminal stenosis severity (68). While these high-risk features 

are strongly associated with cardiovascular outcomes and have a high negative predictive 

value, they are limited by a low positive predictive value (69). However, Motoyama et al. 

demonstrated that when additional features such as significant stenosis and plaque 

progression are assessed alongside high-risk plaque characteristics, patients with stenotic or 

progressive high-risk plaques had higher event rates compared to patients with non-stenotic 

and non-progressive high-risk plaque, thus adding to the prognostic value of these 
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characteristics (70). Furthermore, the number of high-risk plaque characteristics by CCTA 

present in a vessel including LAP, PR, napkin-ring sign, and spotty calcification in addition 

to stenosis severity is significantly associated with clinical events (66,71). Despite variability 

in prevalence of high-risk features by CCTA between studies, studies have generally 

concluded that the presence of a high-risk plaque is relevant to risk assessment in patients 

with CAD.

Assessing high-risk features in combination with plaque characteristics by quantitative 

CCTA has also been utilized to identify high-risk patients especially since high-risk plaques 

evolve over time (72). In the Incident Coronary Events Identified by Computed Tomography 

(ICONIC) study, quantitative CCTA was used to compare 234 patients who developed ACS 

after undergoing CCTA to paired control patients. While percent diameter stenosis (%DS) 

was demonstrated to be a multivariable predictor of AMI in the ACS group, 65% of patients 

and 75% of culprit lesion precursors in the ACS group had a maximal %DS <50% at the 

time of CCTA. While there were no differences in total plaque volume or percent diameter 

stenosis between ACS and control patients, the study found significant differences in plaque 

composition, including increased fibro-fatty (58.7 ± 85.8 vs. 41.4 ± 62.2 mm3, p = 0.009) 

and necrotic core plaque volume (6.5 ± 14.0 vs. 4.2 ± 8.8 mm3, p = 0.026) as well as 

increased high-risk plaque features in patients with ACS, emphasizing the importance of 

both compositional and morphological plaque features by CCTA (73).

The Progression of Atherosclerotic Plaque Determined by Computed Tomographic 

Angiography Imaging (PARADIGM) study, a large, prospective study that demonstrated the 

role of serial quantification and characterization of CAD using CCTA, assessed the 

progression of coronary atherosclerosis over time in patients undergoing clinically indicated 

serial CCTA utilizing a semi-automated plaque analysis software (QAngioCT, Medis, The 

Netherlands) (74). PARADIGM demonstrated that statin use was associated with decreased 

progression of rupture-prone non-calcified plaque over time and increased conversion to 

calcified plaque, thus conferring increased plaque stability (Figure 4) (75). Determinants of 

plaque progression over time in the PARADIGM study were assessed using machine 

learning techniques, and demonstrated the superiority of quantitative CCTA characterization 

to clinical and qualitative measures in identifying patients at risk of plaque progression (76). 

Quantitative CCTA analysis has also been used to evaluate the effects of optimal medical 

therapy and colchicine in patients with recent ACS, demonstrating favorable effects on 

plaque characteristics over time independent of high intensity statin therapy (77). Future 

studies should further assess the effect of targeted treatment therapies on both coronary 

plaque composition as well as morphology including high risk features over time.

Role of CCTA in Immune-driven Phenotypes

Inflammation is critical to the development and progression of atherosclerosis (78). The 

Canakinumab Anti-Inflammatory Thrombosis Outcome Study (CANTOS) trial further 

demonstrated the critical role of inflammation in atherogenesis by highlighting that 

canakinumab, an interleukin-1B inhibitor, led to a decrease in recurrent cardiovascular 

events compared to placebo in patients with residual inflammatory risk as assessed by 

history of prior MI and high-sensitivity C-reactive protein level of 2 mg/L or greater (79). 
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Furthermore, several chronic inflammatory conditions such as human immunodeficiency 

virus (HIV), psoriasis, rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE) 

have high systemic inflammation and increased cardiovascular disease prevalence, providing 

natural disease models for studying the effects of systemic inflammation and immune 

activation on CAD (80–83).

The importance of studying HIV-associated CVD is highlighted by a dramatically increased 

rate of incident MI among patients with HIV compared to non-HIV patients, especially as 

widespread access to antiretroviral therapy has led to prolonged survival and shifted focus to 

chronic disease management (84). Furthermore, HIV-associated CVD has tripled globally 

over the past two decades, representing a major public health problem with residual 

inflammation and immune dysfunction playing a major role in the progression of CAD (85–

88). Quantitative CCTA analysis has demonstrated increased non-calcified plaque burden 

and high-risk plaque features including LAP and PR in relatively young HIV patients, tying 

together plaque morphology in both HIV and non-HIV patients in terms of cardiovascular 

risk profile (89). The vascular inflammation and high-risk plaque morphology in HIV have 

been assessed together in registered 18FDG-PET and CCTA images which demonstrated a 

positive relationship between arterial inflammation and high-risk plaque features of LAP 

and PR (90). Response to statin therapy in the HIV population measured by quantitative 

CCTA has been assessed in a longitudinal randomized controlled trial, which demonstrated 

reduced non-calcified plaque volume and high-risk plaque features in HIV patients receiving 

statin therapy.

Similarly, psoriasis is a chronic inflammatory disease with increased cardiometabolic 

disease burden compared to the general population (91). Quantitative CCTA has 

demonstrated that young psoriasis patients have increased non-calcified coronary artery 

plaque burden as well as high-risk plaque features compared to 10-year-older hyperlipidemia 

patients and healthy controls (92). Serial imaging in an observational cohort study of 

psoriasis patients has allowed for monitoring of disease using quantitative CCTA. For 

example, it has been demonstrated that biologic therapy for severe psoriasis is associated 

with favorable modulation of plaque characteristics including a 6% reduction in non-

calcified coronary artery plaque burden and reduction in necrotic core volume by CCTA at 

one-year follow up (Figure 5) (93). Future trials are being planned to test the effect of 

different anti-inflammatory therapies on CAD progression in this patient population.

Finally, patients with other chronic inflammatory diseases such as rheumatoid arthritis and 

SLE also have increased prevalence of non-calcified coronary artery plaque burden as 

captured by CCTA compared to the general population (94,95). Thus, CCTA has helped to 

characterize coronary artery disease in patients across a wide spectrum of immune-driven 

conditions and may aid in early identification of patients at risk of CVD.

Emerging CCTA Technologies

Despite the widespread applications of quantitative CCTA and high-risk features previously 

described, there are many challenges associated with visual plaque assessment, including 

observer variability, need for expert opinion, and the time-consuming nature of assessing 
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these features. Thus, software applications dedicated to increasing automation of identifying 

high-risk plaque have emerged, and technologies including Fractional Flow Reserve Derived 

from Coronary Computed Tomography Angiography (FFRCT), perivascular fat attenuation 

index (FAI), and wall shear stress (WSS) show promise in understanding both the anatomic 

and physiologic significance of plaque and improving risk stratification (Figure 6) (96).

Advancements in CCTA technology, including improvements in acquisition quality, spatial 

and temporal resolution, radiation exposure, and application-based analysis alongside data 

supporting its clinical and prognostic utility have positioned CCTA as a leading modality in 

cardiac imaging. Additionally, the application of non-invasive comprehensive 

hemodynamics, 3D-plaque assessment, and machine learning algorithms promise to 

optimize coronary imaging through improved diagnosis and prognostication, prediction of 

treatment response, and non-invasive physiologic assessment. Furthermore, integration of 

these technologies into the standard reporting of CCTA may allow personalized risk 

assessment with major impacts on primary and secondary prevention.

One major concern with the widespread use of CCTA is radiation exposure, as long-term 

exposure to low levels of radiation has been associated with increased cancer risk in 

epidemiological studies (97). Furthermore, a 2007 study demonstrated a nonnegligible 

increased lifetime attributable risk of cancer incidence associated with the radiation 

exposure from a CCTA study (98). In recent years, several initiatives have focused on 

reducing radiation exposure from CCTA, with initially expressed goals of achieving 

submillisievert scans (99). Radiation reduction strategies involve optimization of CT 

scanners for image acquisition, involving a complex interplay between patient preparation, 

x-ray beam peak tube voltage, tube current, collimation, focal spot size, gantry rotation time, 

pitch and field of view/wedge selection, as well as improved electrocardiogram (ECG) scan 

acquisition modes and image processing.

Advances in image reconstruction and computing power have also enabled reductions in 

radiation dose with progression from iterative reconstruction methods to next generation 

technology utilizing convolution neural networks and artificial intelligence (Figure 7). At the 

NHLBI, routine submillisievert CCTA while maintaining image quality has been 

demonstrated since 2013 (100). Studies published in 2018 have demonstrated a nearly 80% 

worldwide reduction in radiation exposure from CCTA compared to 2007, although there 

remains significant variability between centers (101). Consistently low radiation exposure 

from CCTA creates new opportunities to serially evaluate CAD while minimizing risk to the 

patient.

Beyond improved acquisition and optimization of radiation, recent developments have led to 

the development of new imaging biomarkers from CCTA such as perivascular FAI, which 

provides visualization and quantification of inflammation in the coronary arteries. FAI may 

further aid in identifying vulnerable plaques as well as vulnerable patients, helping predict 

future heart attacks (102). This novel radiotranscriptomic biomarker is based on the 

principle that vascular inflammation precedes atherosclerosis, triggers atherosclerosis 

development, and induces plaque rupture, and that adipocytes in perivascular fat “sense” 

vascular inflammation and respond via phenotypic changes that inhibit adipogenesis 
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(103,104). These phenotypic changes can then be detected on CCTA as FAI, capturing the 

three-dimensional spatial changes in the perivascular space as well as texture changes such 

as angiogenesis and fibrosis, and have been shown to enhance cardiac risk prediction and 

restratification as an indicator of increased cardiac mortality beyond the current state of the 

art (102). FAI can also be used to track changes in inflammation over time independent of 

the presence of a coronary plaque. For example, psoriasis patients undergoing serial CCTA 

had reduced coronary inflammation by FAI in response to biologic therapy, demonstrating 

the feasibility of tracking response to intervention using this novel biomarker (105).

In addition to imaging biomarkers, it has been suggested that effective, personalized 

diagnostic tools for detecting early subclinical coronary artery disease may allow for 

interventions aimed at preventing the progression of coronary plaque and reducing coronary 

events (9). Emerging technology such as the commercial software application vascuCAP 

(Elucid Bioimaging, Boston, MA) utilizes histologically validated, application-based tissue 

quantification to characterize atherosclerosis. This technology could allow for earlier 

detection of CAD, capitalizing on machine intelligence for interpretation and increased 

automation compared to contemporary quantitative CCTA approaches (106). While a 

multitude of studies have utilized software-based approaches for plaque characterization, 

many of these applications are limited by pre-specified thresholds that do not consider 

various technical limitations including different scanners and scan protocols. However, 

model-based quantification algorithms as utilized by vascuCAP claim to reduce inter-scan 

and observer variability and allow for detailed characterization of morphological features 

including PR, lipid-rich necrotic core, and coronary artery plaque burden (107). The 

potential granularity of morphologic assessment provided by automated software 

applications may help further elucidate mechanisms of CAD and enable earlier interventions 

or tailored therapeutics based on treatment response.

Emerging applications of CCTA have allowed for non-invasive assessment of the functional 

significance of atherosclerotic lesions from CCTA-derived models, as CCTA alone does not 

effectively define the hemodynamic significance of coronary lesions (108). While fractional 

flow reserve (FFR), the gold standard for assessing functional significance of CAD, involves 

invasive measurement of pressure in the coronary arteries at the time of cardiac 

catheterization, a large retrospective study found that less than 40% of patients undergoing 

coronary angiography had anatomically-obstructive CAD (109). Furthermore, in the 

Fractional Flow Reserve Versus Angiography for Multivessel Evaluation (FAME) study, 

only 35% of patients with anatomically-obstructive CAD on angiography had FFR-positive 

lesions (110). Thus, the ability to identify patients with both anatomically and functionally 

significant CAD prior to catheterization using non-invasive testing could dramatically 

reduce the need for invasive testing while improving its diagnostic yield.

Several recent reports have examined the relationship between various CCTA-derived plaque 

characteristics and the ability to predict ischemia as measured by various techniques 

including myocardial perfusion and FFR. In the Combined Non-invasive Coronary 

Angiography and Myocardial Perfusion Imaging Using 320 Detector Computed 

Tomography (CORE320) study, CCTA-derived features including percent stenosis, percent 

atheroma volume and the impression of “vulnerable plaque” independently predicted 
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provocable myocardial ischemia by SPECT (111). Additionally, Gaur et al. investigated 254 

patients and reported that non-calcified plaque volume predicted FFR ≤0.80, independent of 

stenosis severity (112). Park et al. demonstrated that established high-risk plaque features 

(i.e., PR and LAP) and aggregated plaque volume were independently related to invasive 

FFR (113). These results were confirmed by a recent post-hoc analysis from the single 

center Prospective Comparison of Cardiac PET/CT, SPECT/CT Perfusion Imaging and 

CCTA with Invasive Coronary Angiography (PACIFIC) trial showing that PR and non-

calcified atherosclerotic plaque volume were associated with decreased absolute myocardial 

blood flow by [15O]H2O PET and invasive FFR (114).

Capitalizing on this ability of CCTA to predict physiologic consequences of CAD, FFRCT 

(HeartFlow, Redwood City, CA) is a technology whereby patient-specific models of blood 

flow are constructed from CCTA images and used to non-invasively estimate FFR. The 

technology utilizes deep learning algorithms to extract lumen boundaries from CCTA using 

an approach validated against OCT, and creates a patient-specific physiologic model based 

on form-function principles and computational fluid dynamic analysis to compute the blood 

flow solution (115,116). The Analysis of Coronary Blood Flow using CT Angiography: 

Next Steps (NXT) trial demonstrated that the diagnostic accuracy of FFRCT (AUC under the 

receiver operating curve: 0.90 (95% confidence interval [CI]: 0.87 to 0.94) was significantly 

greater than CCTA alone (0.81 (95% CI: 0.76 to 0.87) (117). In addition, the PACIFIC study 

compared diagnostic accuracy of various modalities using invasive FFR as the gold standard, 

and found AUC on a per-vessel basis was significantly greater for FFRCT (0.94) in 

comparison with CCTA (0.83), SPECT (0.70) and PET (0.87) (118).

Like FFRCT, myocardial perfusion by cardiac CT (stress-CTP) also allows for non-invasive 

assessment of the physiologic consequences of stenoses in CAD (119,120). Stress-CTP 

combined with CCTA has been demonstrated to detect functionally relevant stenoses with 

greater diagnostic accuracy, specificity, and positive predictive value when compared with 

CCTA alone, and comparable to FFRCT combined with CCTA (121). The increased 

diagnostic accuracy of stress-CTP over CCTA alone was recently demonstrated in patients 

with previous stent implementation and suspected in-stent restenosis or CAD progression, 

suggesting its utility in stent evaluation (122). However, clinical utility and outcome data 

with stress-CTP have not been reported.

Several follow-up studies have demonstrated the prognostic utility of FFRCT in predicting 

outcomes from one year to five years (123–127). Additionally, a percutaneous coronary 

intervention (PCI) planner tool derived from FFRCT has been developed which can estimate 

the FFR contribution of an individual stenotic lesion in a vessel, allowing for prediction of 

the effects of revascularization of a stenosis (128). The real-world utility of FFRCT in 

clinical practice is exemplified by the Assessing Diagnostic Value of Non-invasive FFRCT 

in Coronary Care (ADVANCE) registry which demonstrated that a decision- making 

pathway utilizing CCTA and FFRCT results in decreased negative invasive angiography and 

helped predict subjects at low risk of adverse cardiac events (129). Two large randomized 

controlled trials, Fractional Flow Reserve Derived From Computed Tomography Coronary 

Angiography in the Assessment and Management of Stable Chest Pain (FORECAST) and 
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Prospective Randomized Trial of the Optimal Evaluation of Cardiac Symptoms and 

Revascularization (PRECISE) on FFRCT are currently underway.

The application of machine learning algorithms to assess FFR by CT may significantly 

improve computation speeds with diagnostic accuracy comparable to workstation-based 

computational fluid dynamics modeling approaches, although clinical utility and outcomes 

have not been established (130,131). The accuracy of these deep learning models was further 

evaluated by results from the MACHINE consortium which also demonstrated correct 

reclassification of false positive CCTA results with the addition of machine learning based 

assessment of FFR by CT (132).

However, evaluating values of any test, including FFRCT and invasive FFR, as they approach 

a threshold invariably leads to lower reported accuracy, also known as a diagnostic “gray 

zone” (133). Further development and large, randomized controlled trials of FFRCT may 

increase its utility in planning PCI, evaluating risk of rupture of coronary plaques, 

computing the myocardial territory affected by ischemic lesions, and assessing functional 

significance of diffuse atherosclerosis.

Finally, wall shear stress (WSS) is a computational fluid dynamics (CFD) metric that may 

help to explain the implications of an atherosclerotic coronary plaque and can be derived 

using invasive techniques or non-invasively from CCTA. WSS represents the tangential 

frictional force of blood acting on the coronary vessel wall (134). Vascular biology has long 

linked WSS to coronary atherosclerosis via alterations in endothelial cell pathways, 

including the demonstrated relationship between low shear stress and vascular cell adhesion 

molecule (VCAM), a critical molecule in the pathogenesis of atherosclerosis (135–139).

WSS derived from CCTA has also been shown to aid in identification of high-risk plaque 

beyond percent stenosis alone, and is independently related to increases in coronary plaque 

burden (140–142). Furthermore, in the EMERALD study, integration of various 

hemodynamic indices including WSS from CCTA, FFRCT, change in FFRCT, and axial 

plaque stress demonstrated incremental prognostic value in addition to anatomic stenosis 

severity and CCTA-derived plaque characteristics, suggesting that assessment of WSS may 

also help identify future lesions leading to ACS and functionally significant plaques with 

high-risk features (143). Similar findings have been reported in WSS derived from IVUS, 

which has been shown to predict progression of atherosclerotic features and development of 

high-risk features including PR (96). Thus, the consideration of WSS in CCTA analysis may 

have the potential to identify at-risk patients and guide management strategies for patients 

with CAD.

Future Directions and Unmet Needs

Clinical utilization of CCTA has seen a surge in cardiovascular care and research. The 

technology is in its prime for understanding atherosclerosis as well as the effects of 

interventions on atherosclerosis progression. CCTA captures a wide field of view and 

thereby may be better positioned to characterize disease as well as to track it longitudinally 

compared to other techniques. Furthermore, outcomes beyond total atheroma burden, plaque 
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volume, and plaque progression are ready to test in larger trials. Indeed, improved 

understanding of early atherosclerosis features from CCTA may provide targets to reduce 

disease progression and development of high-risk features. This may help to assess more 

sensitive outcomes in the era of statin therapy and maximal secondary prevention efforts. 

Endpoints for trials utilizing CCTA are a dynamic field of study and with more widespread 

availability, CCTA will continue to contribute to improved patient outcomes and 

understanding of coronary artery disease.

Without effective mitigation, there remain important limitations to the use of CCTA, some of 

which have been mentioned previously. CCTA is still limited in spatial and temporal 

resolution compared to invasive methods including coronary angiography, which may be 

better suited for high risk patients with extensive calcifications or those that have multiple 

stents. Moreover, in patients who have lesions of uncertain hemodynamic significance, other 

functional testing approaches may be preferable (32,59,60). Furthermore, interpretation of 

CCTA requires highly trained readers to ensure diagnostic accuracy and minimize inter-

observer variability. Additionally, CCTA based outcomes as well as emerging technologies 

have not been validated in randomized controlled trials with well-defined outcomes, which 

are needed to validate the clinical benefit of many applications of CCTA, from assessment of 

high-risk plaque to emerging technologies like FAI and WSS.

Conclusions

CCTA is emerging as a first-line diagnostic modality for CAD with a strong basis in 

histopathology and strong clinical applicability driven by excellent negative predictive value. 

The ability of CCTA to quantify coronary plaque composition and identify coronary plaque 

morphology including high-risk plaque morphology will help inform monitoring of therapy 

and may one day become a cornerstone in personalizing treatment. Emerging technologies 

which capitalize on reduced radiation doses, advances in feature extraction, and 

computational fluid dynamics have increased the prognostic value of CCTA and further 

integrated CCTA into clinical practice.
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CAD coronary artery disease

CVD cardiovascular disease
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NIRS near infra-red spectroscopy

IVUS intravascular ultrasound
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CAC coronary artery calcification

ACS acute coronary syndrome

AMI acute myocardial infarction

FFRCT Fractional Flow Reserve Derived from Coronary Computed 

Tomography Angiography
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Highlights

• CCTA is a non-invasive first-line modality for the assessment of CAD.

• CCTA can be used to characterize disease burden, add prognostic value, and 

guide patient management.

• CCTA-derived characteristics can be leveraged to predict plaque evolution, 

rupture, and to predict ischemia.

• Further clinical trials are needed to validate clinically relevant endpoints and 

increase utilization of CCTA.
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Figure 1. Progression of human coronary atherosclerosis.
Non-atherosclerotic lesions including intimal thickening and intimal xanthoma progress into 

atherosclerotic lesions beginning with pathologic intimal thickening and leading to 

fibroatheroma and thin-cap fibroatheroma. Reproduced with permission from Yahagi et al 

(4).
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Figure 2. Coronary artery calcium scoring compared to Coronary Computed Tomography 
Angiography.
Coronary artery calcium scoring (CACS) is quick, reproducible, does not require contrast, 

and provides strong prognostic data (left). Coronary computed tomography angiography 

(CCTA) (right) provides unique practical advantages over CACS, including high resolution 

of plaque features such as non-calcified, rupture-prone plaque and characterization of 

stenosis severity.
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Figure 3. Coronary Plaque Features on Coronary Computed Tomography Angiography and 
Intravascular Ultrasound.
Coronary atherosclerotic plaque features associated with increased vulnerability including 

(A) positive remodeling, (B) low attenuation plaque, (C) spotty calcification, and (D) 

napkin-ring sign from the Scottish COmputed Tomography of the HEART Trial (SCOT-

HEART) trial are visualized on coronary computed tomography angiography (CCTA). (A) 

Positive remodeling was defined as an outer vessel diameter (yellow line) that was 10% 

greater than the mean diameter of the segments immediately proximal (short yellow line) 

and distal to the plaque. (B) Low attenuation plaque was defined as a focal central area of 

plaque with an attenuation density of <30 Hounsfield Units (yellow arrow). (C) Spotty 

calcification was defined as focal calcification within the coronary artery wall that measured 

<3 mm in maximum diameter (yellow arrow). (D) The “napkin ring” sign was defined as a 

central area of low-attenuation plaque with a peripheral rim of high attenuation (yellow 

arrow). (E) Correspondingly, features of vulnerable plaque such as necrotic core can be 

visualized on virtual histology from intravascular ultrasound. Reproduced with permission 

from Williams et al. and Joshi et al (66,67).
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Figure 4. Temporal coronary computed tomography angiography assessment of coronary artery 
plaque characteristics according to statin use.
Coronary computed tomography angiography (CCTA) images of coronary artery lesions at 

baseline and follow-up from the Progression of Atherosclerotic Plaque Determined by 

Computed Tomographic Angiography Imaging (PARADIGM) study demonstrate favorable 

modulation of rupture-prone non-calcified burden in statin-taking patients when compared to 

non-statin taking patients, demonstrating the utility of coronary computed tomography 

angiography in assessing treatment response. Reproduced with permission from Lee et al 

(75).
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Figure 5. Coronary computed tomography angiography demonstrates favorable modulation of 
coronary plaque characteristics in response to treatment with biologic therapy in psoriasis.
Left anterior descending artery plaque in a psoriasis patient identified before (2A) and after 

(2B) biologic therapy, demonstrating a reduction in non-calcified plaque burden and total 

atheroma volume. (A) (a) Longitudinal planar and (b) curved planar reformat. (c and d) 

Representative cross-sectional views with color overlay for plaque subcomponents. Lumen 

is encircled in yellow, vessel wall in orange with subcomponents in between, including 

fibrous (dark green), fibro-fatty (light green), necrotic (red), and dense-calcified (white). 

Non-calcified plaque burden = 1.03 mm2 and total atheroma volume = 99.2 mm3. (B) (a) 
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Longitudinal planar and (b) curved planar reformat. (c and d) Representative cross-sectional 

views with color overlay for plaque subcomponents. Lumen is encircled in yellow, vessel 

wall in orange with subcomponents in between, including fibrous (dark green), fibro-fatty 

(light green), necrotic (red), and dense-calcified (white). Non-calcified plaque burden = 0.85 

mm2 and total atheroma volume = 80.6 mm3. Reproduced with permission from Elnabawi et 

al (93).
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Figure 6. Emerging technologies derived from Coronary Computed Tomography Angiography.
(A) Two patients with high and low perivascular fat attenuation index (FAI) identified on 

coronary computed tomography angiography (CCTA) are shown. (B) Plaque quantification 

and characterization from CCTA using vascuCAP (Elucid Bioimaging) is shown in a 3-

dimensional view of the left and right coronary arteries. (C) Example of a wall shear stress 

(WSS) profile superimposed on a coronary artery tree from CCTA. Reproduced with 

permission from Samady et al (96). (D) FFRCT calculations (HeartFlow) are superimposed 

on a coronary artery tree extracted from CCTA.
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Figure 7. Reconstruction techniques for radiation reduction and coronary computed tomography 
angiography image quality.
Coronary computed tomography angiography (CCTA) radiation dose can be reduced while 

maintaining high image quality using deep learning reconstruction techniques, which 

provide superior image quality compared to hybrid iterative reconstruction techniques. Axial 

CCTA sections reconstructed using (A) hybrid iterative and (C) deep learning techniques are 

shown, as well as multiplanar reformatting of the right coronary artery using (C) hybrid 

iterative reconstruction and (D) deep learning reconstruction.
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Central Illustration. Utility of coronary computed tomography angiography in coronary artery 
disease.
Coronary Computed Tomography Angiography is a powerful clinical tool that can be used to 

detect and characterize coronary artery disease across various stages from early, subclinical 

disease to myocardial infarction.
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