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ARTICLE OPEN

Stable diagonal stripes in the t–J model at nh̅ = 1/8 doping
from fPEPS calculations
Shao-Jun Dong1,2, Chao Wang1,2, Yong-Jian Han1,2✉, Chao Yang3 and Lixin He 1,2✉

We investigate the two-dimensional t–J model at a hole doping of nh ¼ 1=8 using recently developed high accuracy fermionic
projected entangled pair states method. By applying the stochastic gradient descent method combined with the Monte Carlo
sampling technique, we obtain the ground state hole energy Ehole=−1.621 for J/t= 0.4. We show that the ground state has stable
diagonal stripes instead of vertical stripes with a width of 4 unit cells, and stripe filling ρl= 0.5. We further show that the long-range
superconductivity order is suppressed at this point.

npj Quantum Materials            (2020) 5:28 ; https://doi.org/10.1038/s41535-020-0226-4

INTRODUCTION
The high-Tc superconductivity1,2 is probably one of the most
exciting and also challenging open problems in condensed matter
physics. The strong coupling between the spin and charge
degrees of freedom leads to various competing orders at low
temperature, resulting in rich phase diagrams3. Specifically, the
hole doping near nh ¼ 1=8 provides an ideal system to
experimentally study the ground state of the pseudogap4 which
is one of the most salient phenomena in high-Tc superconductiv-
ity5. Near this doping level, the charge and spin stripe orders are
observed in some cuprate compounds, e.g., La1.875Ba0.125CuO4, by
various experimental techniques, including angle-resolved photo-
emission and scanning tunneling microscopy4, neutron and X-ray
scattering6, etc.
It is widely believed that the physics of superconductivity could

be understood as doped Mott insulators5, which could be
described by the two-dimensional Hubbard model7,8 and the t–J
model9, the strong coupling limit of Hubbard model. However, the
theoretical results about the ground state near hole doping nh ¼
1=8 in the t–J model are still highly controversial10–12. The
question about whether the ground state has the stable stripe
order, and the relation between the superconductivity and the
stripe order are under intensive debates10–18. Early works on this
issue have been reviewed in refs. 19,20. Very recently, variational
quantum Monte Carlo (vQMC) simulations combined with few
Lanczos steps16, suggest that the ground state at nh ¼ 1=8 is
homogeneous without stripes order. These results are contra-
dictory to the results of the early density matrix renormalization
group (DMRG) calculations14,21–23. More recently, infinite projected
entangled pair states (iPEPS) with full update calculations17,18

suggest that the ground state has stable stripes. Nevertheless, the
calculations17,18 suggest that the uniform phase is energetically
very close to the stripe phase, and the energy difference becomes
even smaller with increasing bond dimension. Therefore, it is hard
to determine what the true ground state is unless fully converged
calculations are performed.
The projected entangled pair states method (PEPS)24–29, and its

generalization to fermionic systems (fPEPS)30–33 provide system-
atically improvable variational wave functions for many-body
problems. In recent works, we developed a gradient method

combined with Monte Carlo sampling techniques to optimize the
(f)PEPS wave functions with controlled accuracy34–36. This method
significantly reduces the scaling with respect to the bond
dimension D, thereby allowing a much larger bond dimension
to be used, resulting in highly accurate and converged results for
large finite systems. In this work, we apply this recently developed
and highly accurate fPEPS method to explore the true ground
state of the t–J model at the doping level nh ¼ 1=8. The
computational results allow us to shed some new light on this
long-standing open problem. From our computation, we obtained
the hole energy Eh=−1.621 for J/t= 0.4 in the thermodynamic
limit. Remarkably, we find that the ground state of the t–J model
at 1/8 hole doping has stable stripes that are along the diagonal
directions instead of the vertical direction suggested by the
previous works10,12,14,17,18,37 with stripe hole filling ρl= 0.5. We
further show that the long-range superconductivity order at this
point is suppressed.

RESULTS AND DISCUSSION
The model
The t–J model is defined on a two-dimensional square lattice as

H ¼ �t
X
hi;ji;σ

ðcyi;σcj;σ þ H:c:Þ þ J
X
hi;ji

ðSi � Sj � 1
4
ninjÞ (1)

where 〈i, j〉 are the nearest-neighbor sites. ci,σ (c
y
i;σ) is the electron

annihilation (creation) operator of spin σ (σ= ↑,↓) on site i,
whereas ni ¼

P
σc

y
i;σci;σ and Si are the electron number and the

spin-1/2 operators, respectively. Double occupations are not
allowed. We solve the model by using recently developed
fPEPS17,30–33,36,38 method, which is described in the Methods
section.

Ground state energies
For the 4 × 4 system, the ground state energy obtained by our
calculation is EfPEPS=−0.56428, compared with the exact energy
EED=−0.56436, where the energy difference is about 1 × 10−4.
Figure 1 depicts the ground state energies of t–J model at hole

doping nh ¼ 1=8, for different system sizes L1 × L2, ranging from
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6 × 8 to 12 × 12, and these energies are given in Table S239. To
reduce the boundary effects in the extrapolation, we exclude the
data of two smallest sizes: the 4 × 4 and 4 × 8 lattices. We
extrapolate the ground state energies to the thermodynamic limit
via a second-order polynomial fitting on

ffiffiffiffiffiffiffiffiffi
L1L2

p
. The extrapolated

ground state energy in the thermodynamic limit is E∞=−0.6704
(E∞=−0.6711 if the two smallest lattices are included). The
corresponding energy per hole is defined as
Ehole ¼ ½EðnhÞ � E0�=nh, where E0=−0.467775 is the energy at
zero doping, taken from ref. 40. We compare the ground state hole
energies at nh ¼ 1=8 obtained by various methods in Table 1. The
hole energy we obtained is EfPEPShole ¼ �1:621 (EfPEPShole ¼ �1:626 if the
two smallest lattices are included), which is lower than the hole
energy obtained from DMRG calculation17, EDMRG

hole ¼ �1:612 with χ
extrapolated to ∞. The result is also lower than the one from iPEPS
SU calculations EiPEPShole ¼ �1:59317, which was obtained by extra-
polating bond dimension D to ∞. The recent iPEPS full update
calculations with D= 14 give the hole energy EiPEPShole ¼ �1:578 for
nh ¼ 0:1218, which is expected to have lower (more negative) hole
energy than that of nh ¼ 1=8. As a comparison, the recent
variational QMC simulation gives EQMC

hole ¼ �1:54616. We note that
the ground state energy obtained in this work is significantly
lower than the ground state energies obtained by DMRG and
iPEPS calculation before extrapolation, which are close to EQMC

hole .

Diagonal stripe orders
We now take a closer look at the t–J model. The hole density and
magnetization of the 4 × 4 lattice obtained from fPEPS are
compared with those obtained by diagonalization method13 in
Fig. S139. They are in remarkably good agreement. The calcula-
tions suggest that the ground state of the t–J model with hole
filling of nh ¼ 1

8 on the 4 × 4 lattice is in a uniform phase with
virtually no local magnetization (the local magnetization is less
than 10−4), which is in good agreement with the conclusions of
ref. 13.
Would the uniform state be stable when the size of the system

is increased? Unfortunately, the hole distribution becomes non-
uniform when increasing the size of the system. For the 4 ×
8 system, the ground state of the system is not uniform anymore.
The holes clusters are more localized in the center of the lattice
without local magnetic order (see Fig. S2a39). When the lattice size
is further increased to 6 × 8 and larger, the holes form stripes
along the diagonal direction (see Fig. S2b, c39).
Figure 2 depicts the ground state hole distribution and local

magnetization of the 12 × 12 lattice. The sizes of the circles and
arrows represent the magnitude of the hole density and local
magnetic moments. The systems show clear stripe order along the
diagonal direction on the antiferromagnetic background, with a π
phase-shifted magnetic order across the domain wall14.
To investigate the structure of the diagonal stripe states, we

plot the hole density hnhi;ji= 1− 〈ni,j〉, where 〈ni,j〉 is the average
number of electrons on site (i, j), and staggered magnetization
ð�1Þi�1Szi;j along the diagonal direction perpendicular to the
stripes in Fig. 3. The staggered magnetization (red line) shows a
period of 8, whereas the hole density shows a period of 4. The site-
centered nature of the hole stripes is evident from the hole
density hnhi;ji (green line). These hole and spin patterns with a
period of 4 and 8, which are robust for different size of systems,
can be used to explain why the stripe order cannot be stabled in
the small 4 × 4 and 4 × 8 systems, which are too small to
accommodate such stripes. The stripes have a hole filling
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Fig. 1 The extrapolation of the ground state energies. The ground
state energies of t–J model with t= 1, and J/t= 0.4 at hole doping
nh ¼ 1

8. The red squares represent the energies on different lattice
sizes. The energies are extrapolated to the thermodynamic limit via
a second-order polynomial function of

ffiffiffiffiffiffiffiffiffi
L1L2

p
. The green, blue, and

black lines are the ground state energies obtained by QMC, iPEPS
simple update, and DMRG methods, respectively.

Table 1. The ground state energies.

Method Parameter nh Hole energy

vQMC+ Lanczos16 p= 2 1/8 −1.546

iPEPS simple update17 D→∞ 1/8 −1.593

iPEPS full update18 D= 14 0.120 −1.578

DMRG17 χ→∞ 1/8 −1.612

This work D= 12 1/8 −1.621

Compare the ground state hole energies of t–J model obtained by
different methods at hole doping nh ¼ 1=8 (except for the full update
iPEPS calculation where nh ¼ 0:120). The parameters t= 1, J/t= 0.4 are
used in all calculations. The values obtained by DMRG and iPEPS.

Fig. 2 The ground state hole density and spin moment. The
ground state hole density and spin moment on the 12 × 12 lattice.
The diameter of the circles represents the magnitude of holes
density and the length of the arrow represents the local magnetic
moments.
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ρl ¼ W � nh ¼ 0:5, where W is the width of the domain wall, i.e.,
half filling14.
To further test the robustness of the diagonal stripes against the

size of the system, we simulated on lattices of different sizes (see
Table S139), and aspect ratios. Except in some extreme cases, e.g.,
the width of the lattice is less than 4, we always obtain the
diagonal stripes with similar spin and hole distribution structures.
These results clearly demonstrate the diagonal stripes ground
states are robust against the size and shape of the lattices. We also
tried to induce the vertical stripes by applying zig-zag magnetic
field on the boundary14. However, the stripes slightly distort after
the magnetic field is switched off, and the energy of the state is
about 0.0015 higher than the ground state with diagonal stripe
orders in the 12 × 12 system.
The t–J model at nh ¼ 1=8 has been intensively investigated by

various methods, and the results are still highly controversial10–12.
On the one hand, the recent variational quantum Monte Carlo
(QMC) simulations combined with few Lanczos steps16 suggest
that the ground state at nh ¼ 1=8 is homogeneous without stripes
order. Its hole energies are very close to those obtained from
DMRG14,21–23 and recent iPEPS calculations18. On the other hand,
DMRG calculations show that the ground state has stable
stripes14,18,21–23.
Our results support that the stripe phase is stable, which is in

agreement with the DMRG calculations14,18,21–23. In DMRG
calculations, the stripes are further characterized as the site-
centered vertical stripes, and the width of the stripes is 4 at
nh � 1=814, which are also in good agreement with our results.
However, in our calculations, the stripes are along the diagonal
direction in contrast to the vertical stripes obtained from DMRG
calculations. This discrepancy may come from different boundary
conditions (BCs) used in the calculations. In the DMRG calcula-
tions, a periodic BC in the y-axis, and an open BC in the x-axis are
used, which favors the vertical stripes along the y direction14. One
possible way to clarify this problem would be to perform DMRG
calculations with periodic BC along the diagonal direction, to
enforce a ground state with diagonal stripes, and compare the
energy with that of vertical stripes.
Very recently, the iPEPS calculations17,18 also suggest that the

ground state is a vertical stripe phase, where the width of stripes
and stripe hole filling depend on the exchange parameter J. At J/t
= 0.4, and nh � 1=8, they obtain stripe filling ρl ~ 0.5, which is in
agreement with DMRG calculations. They also compare the
energies of diagonal stripes and vertical stripes, and it has been
found that the diagonal stripes have somewhat higher energies
than the vertical stripes17,18. However, the diagonal stripes
obtained by the iPEPS calculations are very different from our
cases. In ref. 18, the L × L (for L up to 11) supercells were used to
obtain the diagonal stripe phase, but only L (instead of L2) tensors

were independent. With these constraints, the resulting diagonal
stripes are insulating with filling ρl= 1 holes per unit length,
compared to ρl= 0.5 holes per unit length in our calculations. We
remark that our calculations are unbiased in the sense that we do
not have any constrains on the tensors. All L1 × L2 tensors are
independent and free to change during the optimization. We
always obtain the same stripe ground states for randomly chosen
initial states. Another important difference between our method
and the iPEPS method is that the iPEPS method directly works in
the thermodynamic limit, which requires extremely large D to
converge the results. In practice, such large D is infeasible, and
therefore, the final results rely heavily on the extrapolation on the
bond dimension D. In fact, it has been found that the energy
differences between the uniform state and the stripes states
become smaller and smaller with increasing D18, Therefore, no
definite conclusion can be made based on their current numerical
results. On the contrary, we work on finite systems, where the
results can be fully converged with the given D. We then
extrapolate the results to the thermodynamic limit by the well
established finite-scaling method41.
As a comparison, we also calculate the anisotropic t–J model

with tx/ty= 0.85, and Jx/Jy= 0.852 following ref. 18. We show the
result of Jx= 0.4tx, ty= 0.85tx, and Jy= 0.289tx for different sizes in
Fig. S339. Compared with the isotropic case, the stripe orients
along the bonds with stronger couplings, which is in agreement
with the previous results18,42,43. The results can be understood as
the kinetic energy can be effectively lowered by hopping along
these directions. The anisotropic interaction converts the site-
centered diagonal stripes into bond-centered vertical ones in
these simulations.

Superconductivity
To further investigate the relationship between the stripe order
and the superconductivity, we calculate the hole pair correlation
functions, which are defined as

Ps;dði; jÞ ¼ Δy
s;d rið ÞΔs;d rj

� �þ Δs;d rið ÞΔy
s;d rj
� �D

i (2)

where s, d denote the s- or d-wave paring. The superconductivity
order parameter Δs,d(ri) is defined as

Δs;d rið Þ ¼ P
±

1
2 ci"ci ± x̂# � ci#ci ± x̂"

� �
± ci"ci ± ŷ#
�� �ci#ci ± ŷ"

��
(3)

with ri being the coordinate at site i, with “+” for s-wave and “−”
for d-wave paring. In Fig. 4, we show both the s- and the d-wave
pair correlation functions Ps,d(i, j) with ri fixed at site (6,2) and rj
changed from (6,2) to (6,12) in the 12 × 12 lattice. To obtain highly
accurate results, Dc= 6D is used to calculate the correlation
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Fig. 3 The average hole density along the diagonal direction. The
average hole density 〈nh〉 (green squares) and spin structure
function (red circles) along the diagonal direction on the 12 × 12
lattice.
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Fig. 4 The superconductivity pair correlation functions. The pair
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tivity on 12 × 12 lattice. We fix ri= (6, 2) and scan rj= (6, 2) to rj= (6,
12), where r is defined as ∣rj− ri∣.
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functions. The dips in the correlation functions around r ~ 3–5 are
presumably related to the hole stripe structures. As shown in the
figure, the superconductivity order for both s-wave and d-wave
pairing in the t–J model at nh = 1/8 decay rather quickly with
distance. Even though the pair correlations can be fitted roughly
by power law decay functions, i.e., Ps,d(r) ~ r−α, with α ~ 4.9 and 4.4
for s-wave and d-wave pairing respectively, since α≫ 1, the long-
range order of superconductivity is suppressed at nh ¼ 1=8.
To summarize, we investigate the ground state of t–J model at

hole doping nh ¼ 1=8, using the recently developed highly
accurate fPEPS method. We obtain the most competitive ground
state hole energy. We find that the ground state has stable stripes
along the diagonal direction, with stripe hole filling ρl= 0.5. These
results partially agree with recent DMRG and iPEPS calculations, in
the sense that the ground state has stable stripes, except that in
the above calculations the stripes are vertical. We further show
that the long-range order of superconductivity is suppressed in
this phase. The work provides a new scenario of the ground state
of the long-standing open problem.

METHODS
We solve the t–J model by using recently developed fPEPS17,30–33,36,38

method. The fPEPS wave functions are first optimized via an imaginary
time evolution with simple update (SU)26 scheme, followed by gradient
optimization combined with Monte Carlo sampling techniques34,36. U(1)
symmetry is enforced during the calculations to conserve the number of
electrons in the system. More details of the methods are discussed in
refs. 34–36. It is well known that the environment effects are oversimplified
in the SU method. Therefore, the use of SU may introduce large errors.
However, the results can be used as a good starting point for the
subsequent gradient optimization. The gradient optimization method
treats the environment effects exactly with controllable errors, and
therefore can obtain much more accurate results. The Monte Carlo
sampling techniques44,45 are used to calculate the energies and their
gradients, which may greatly reduce the complexity of the calculations,
and allow us to use large virtual bond dimension D and truncation
parameters Dc to converge the results36. In this work, open boundary
conditions (BC) are used. Using a periodic BC may have less boundary
effects. However, due to the extremely high computational costs [O(D8) for
periodic BC vs O(D6) for open BC], it is still infeasible to treat periodic
systems via fPEPS. We focus on the parameters of t= 1 and J/t= 0.4 with
hole doping of nh ¼ 1

8. In all calculations, the virtual bond dimension D is
fixed to 12, and the truncated dimension is set to Dc= 56 (~4.7D) to ensure
that the energies are well converged at the given D, where the errors due
to Dc are less than 10−5.

DATA AVAILABILITY
All data generated and/or analyzed during this study are included in this article and
its Supplementary Information files.
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