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A Causality-Free Neural Network Method for High-Dimensional
Hamilton-Jacobi-Bellman Equations

Tenavi Nakamura-Zimmerer1, Qi Gong1, and Wei Kang2

Abstract— Computing optimal feedback controls for non-
linear systems generally requires solving Hamilton-Jacobi-
Bellman (HJB) equations, which, in high dimensions, are
notoriously difficult. Existing strategies often rely on specific,
restrictive problem structures, or are valid only locally around
some nominal trajectory. In this paper, we propose a data-
driven method to approximate semi-global solutions to HJB
equations for general high-dimensional nonlinear systems and
compute optimal feedback controls in real-time. To accomplish
this, we model solutions to HJB equations with neural networks
(NNs) trained on data generated without discretizing the state
space. Training is made more effective and data-efficient by
leveraging the known problem structure and using the partially-
trained NN to aid in further data generation. We demonstrate
the effectiveness of our method by learning solutions to HJB
equations for nonlinear systems of dimension up to 30 arising
from the stabilization of a Burgers’-type partial differential
equation. The trained NNs are then used for real-time optimal
feedback control of these systems.

I. INTRODUCTION

For the optimal control of nonlinear dynamical systems, it
is well-known that open-loop controls are not robust to model
uncertainty or disturbances. For slowly evolving processes,
it is possible to use model predictive control by recomputing
the open-loop optimal solution for a relatively short time
horizon in the future. However, for most applications one
typically desires an optimal feedback control law, as feed-
back controls are inherently more robust to disturbances.
Using dynamic programming, the optimal feedback control
is computed by solving a (discretized) Hamilton-Jacobi-
Bellman (HJB) equation, a partial differential equation (PDE)
in n spatial dimensions plus time. The size of the discretized
problem increases exponentially with n, making direct solu-
tion intractable for even moderately high-dimensional prob-
lems. This is the so-called “curse of-dimensionality.”

For this reason, there is an extensive literature on methods
of finding approximate solutions for HJB equations. We have
no intention to give a full review of existing results except
for a short list of some related publications, [1]–[8]. These
existing methods suffer from one or more of the following
drawbacks: the problem’s dimension is limited; the accuracy
of the solution is hard to verify for general systems; the
solution may be valid only in a small neighborhood; or the
system model must have certain special algebraic structure.

1Tenavi Nakamura-Zimmerer and Qi Gong are with the
Department of Applied Mathematics, Baskin School of Engineering,
University of California, Santa Cruz tenakamu@ucsc.edu,
qigong@soe.ucsc.edu

2Wei Kang is with the Department of Applied Mathematics, Naval
Postgraduate School, Monterery, CA wkang@nps.edu

Recently, deep learning approaches for solving high-
dimensional PDEs and HJB equations have produced promis-
ing results; see e.g. [9]–[12]. Existing neural network-based
techniques generally rely on either minimizing the residual
of the PDE and (artificial) boundary conditions at randomly
sampled collocation points [9], [10]; or modeling the solution
and its gradient near a nominal trajectory [12]. For HJB
equations arising in stochastic optimal control, [11] use a
NN basis to solve stochastic differential equations connected
to the solution of the HJB equation.

In this paper, we introduce a computational framework
for solving high-dimensional HJB equations and generating
fully nonlinear optimal feedback controls. Our approach is
data-driven and consists of three main steps. First, a small
set of open-loop optimal control solutions is generated by
solving two-point boundary value problems (BVPs) derived
from Pontryagin’s Minimum Principle (PMP). This data
generation algorithm is causality-free, i.e. the solution at
each point can be computed without using the value of
the solution at other points. This frees us from having to
discretize the state space and permits perfectly parallelizable
data generation. In the second step, we use the data set to
train a neural network (NN) to approximate the solution to
the HJB equation, called the value function, and its gradient.
Supplying this gradient information encourages the NN to
learn the shape of the value function, rather than just fitting
point data. If needed, additional data can be obtained quickly
with the aid of the NN. Lastly, the accuracy of the NN
is verified on another data set that is generated using the
causality free algorithm.

Solution of high-dimensional problems is enabled by
causality-free data generation, physics-informed learning,
and the inherent capacity of NNs for dealing with high-
dimensional data. Furthermore, once the NN is trained
offline, evaluation of the control is very fast. This allows
computation of the control in real-time, which is essential for
a feedback implementation. Unlike other NN-based methods,
our approach requires computation of expensive PDE resid-
uals, and the solution is valid over large spatial domains.

As an illustrative example, the method is applied problems
of dimension n = 10, 20, and 30 arising from pseudospectral
discretization of an open-loop unstable Burgers’-type PDE.
Through this example, we demonstrate several advantages
and potential capabilities of the method. These include solv-
ing high-dimensional HJB equations on semi-global domains
and with empirically validated levels of accuracy, computa-
tionally efficient NN-based feedback control for real-time
applications, and the ability to generate rich data sets.



II. A CAUSALITY-FREE METHOD FOR HJB
Consider the optimal control problem minimize

u∈U
F (x(tf )) +

∫ tf

0

L(t,x,u)dt,

subject to ẋ = f(t,x,u).
(1)

Here x(t) : [0, tf ]→ X ⊆ Rn is the state, u(t,x) : [0, tf ]×
X → U ⊆ Rm is the control, f(t,x,u) : [0, tf ]×X ×U →
Rn is a Lipschitz continuous vector field, F (x(tf )) : X → R
is the terminal cost, and L(t,x,u) : [0, tf ]×X ×U → R is
the running cost. For simplicity let the final time tf be fixed.

For a given initial condition x(0) = x0, many methods
exist to compute the optimal open-loop solution, u =
u∗(t;x0). Due to various sources of disturbance and real-
time application requirements, for practical implementation
one typically desires an optimal control in closed-loop feed-
back form, u = u∗(t,x). To compute the optimal feedback
control, we follow the standard procedure in optimal control
(see e.g. [13]) and define the Hamiltonian

H(t,x,λ,u) := L(t,x,u) + λTf(t,x,u), (2)

where λ(t) : [0, tf ]→ Rn is the costate. The optimal control
satisfies

u∗(t,x,λ) = arg min
u∈U

H(t,x,λ,u). (3)

Now we define the value function,

V (t,x) := inf
u∈U

{
F (x(tf )) +

∫ tf

t

L(τ,x,u)dτ

}
. (4)

The value function is the optimal cost-to-go of (1) and is the
unique (viscosity) solution to the Hamilton-Jacobi-Bellman
(HJB) equation,{

− [Vt(t,x) +H∗ (t,x, Vx)] = 0,

V (tf ,x) = F (x),
(5)

where H∗(t,x,λ) := H(t,x,λ,u∗), Vt := ∂V/∂t, and
Vx := ∂V/∂x. If (5) can be solved, then the optimal control
is computed by substituting

λ(t) = Vx(t,x) (6)

into (3) to get

u∗(t,x) = arg min
u∈U

H (t,x, Vx,u) . (7)

This means that with Vx(·) available, the feedback control
is obtained as the solution of an (ideally straightforward)
optimization problem.

Unfortunately, directly solving (5) directly is computa-
tionally intractable for even moderately high-dimensional
problems. However, following the strategy in [8], we exploit
the fact that the characteristics of the value function evolve
according to

ẋ(t) =
∂H

∂λ
= f(t,x,u∗(t,x,λ)),

λ̇(t) = −∂H
∂x

(t,x,λ,u∗(t,x,λ)),

v̇(t) = −L(t,x,u∗(t,x,λ)),

(8)

with two-point split boundary conditions
x(0) = x0,

λ(tf ) =
dF

dx
(x(tf )),

v(tf ) = F (x(tf )).

(9)

For any given initial condition x0, the optimal control and
value function along the characteristic x(t;x0) are then given
by

u∗(t,x) = u∗(t;x0), V (t,x) = v(t;x0). (10)

Solutions to the two-point BVP (8–9) can be computed
independently of one another, so this approach is causality-
free. In [8], the authors construct a sparse grid of initial
conditions and solve (8–9) at each grid point. They then
interpolate the costate and apply PMP to obtain the feedback
control. This is called the sparse grid characteristics method.
However, even using a sparse grid the number of points
grows like O

(
N(logN)n−1

)
, where n is the state dimension

and N is the number of grid points in each dimension. Thus
this approach still suffers from the curse of-dimensionality.
In this paper, instead of sparse grid interpolation we use data
from solved BVPs to train a NN to approximate the value
function V (t,x). The proposed method is thus completely
grid-free and applicable in high dimensions.

Remark 1: The two-point BVP (8–9) provides a neces-
sary condition for optimality and is well-known in optimal
control theory as Pontryagin’s Minimum Principle (PMP).
In general, however, solutions of the BVP are not unique
and may be sub-optimal, i.e. the characteristics of the value
function satisfy (8–9), but there may be other solutions to
these equations which are sub-optimal and therefore not
characteristics of the value function. Optimality of solutions
to the BVP can be guaranteed under certain convexity
conditions, see e.g. [14], [15]. Addressing this challenging
problem in a broader context is beyond the scope of the
present work, but for the example problems we deal with,
solutions of (8–9) satisfy the sufficient conditions as well.

A. Data generation algorithms

Although solving the BVP (8–9) is easier than solving the
full HJB equation (5), it is still often very difficult, due to
the well-known high sensitivity to the boundary conditions
(9). So far, there is no general algorithm that is reliable
and fast enough for real-time applications. However, in our
approach the real-time feedback control computation is done
by a NN trained offline. Thus we can solve the BVP offline to
generate data for training and evaluating such a NN. For this
purpose, numerically solving the BVP can be manageable
although it may require some parameter tuning. In this paper,
we use an implementation of the BVP solver introduced
in [16]. This algorithm is based on a three-stage Lobatto
IIIa discretization, a collocation formula which provides a
solution that is fourth-order accurate. But the algorithm is
highly sensitive to the initial guess for x(t) and λ(t): there
is no guarantee of convergence with an arbitrary initial guess.



Furthermore, convergence is increasingly dependent on good
initializations as we increase the length of the time interval.

To overcome this difficulty, we employ the time-marching
trick from [8] in which the solution grows from an initially
short time interval to the final time tf . More specifically, we
choose a time sequence

0 < t1 < t2 < · · · < tK = tf ,

in which t1 is small. For the short time interval [0, t1], the
BVP solver converges given most initial guesses near the
initial state x. Then, the resulting trajectory is rescaled over
the longer time interval [0, t2]. The rescaled trajectory is used
as the initial guess to find a solution of the BVP for 0 ≤
t ≤ t2. We repeat this process until tK = tf , at which we
obtain the full solution. Still, it is necessary to tune the time
sequence {tk}Kk=1 to achieve convergence while maintaining
acceptable efficiency.

Computing many such solutions becomes expensive,
which means that generating the large data sets necessary
to train a NN can be difficult. With this in mind, we
use time-marching only to generate a (small) initial data
set, and later increase the size of the data set if needed.
The key to doing this efficiently is simulating the system
dynamics using the partially-trained NN to close the loop.
This quickly provides good guesses for the optimal state
x∗(t) and costate λ(t) over the entire time interval [0, tf ],
so that we can immediately solve (8–9) for all of [0, tf ].
We refer to this technique as NN warm start. A numerical
comparisons between this method and the time-marching
trick is given in Section IV-B.

III. NEURAL NETWORK MODELNG

Neural networks have become a popular tool for modeling
high-dimensional functions, since they are not dependent on
discretizing the state space. In this paper, we apply NNs to
approximate solutions of the HJB equation and evaluate the
resulting feedback control in real-time. Specifically, we carry
out the following steps:

1) Data generation: We compute the value function,
V (t,x), on trajectories x(t) from initial conditions
chosen by Monte Carlo sampling. Data is generated
by solving the BVP as discussed in Section II-A. In
this initial data generation step, we require relatively
few data points, since more data can be added later at
little computational cost.

2) Model training: Given this data set, we train a NN
to approximate the value function V (·). Learning is
guided by the underlying structure of the problem,
specifically by asking the NN to satisfy (6). In doing
so, we regularize the model and make efficient use out
of small data sets.

3) Model validation and refinement: Next we check the
generalization accuracy of the trained NN on a new
set of validation data computed at Monte Carlo sample
points. If necessary, we use the partially-trained NN to
aid in generating additional data and continue training
the model on the expanded data set.

4) Feedback control: We compute the optimal feedback
control online by evaluating the gradient of the trained
NN, V NNx (·), and applying PMP. Notably, evaluation
of the gradient is extremely cheap even for large n,
enabling implementation in high-dimensional systems.

The crux of the proposed method depends on modeling the
value function (4) over a semi-global domain X ⊂ Rn. We
present details of this process in the following subsections. In
Section III-A, we review the basic structure of feedforward
NNs and describe how we train a NN to model the value
function. Then in Section III-B, we propose a simple way to
incorporate information about the known problem structure
into training. Finally, in Section IV the method is applied
to synthesize optimal controls for an open-loop unstable
Burgers-type PDE.

A. Feedforward neural networks

In this paper we use multilayer feedforward NNs. While
more sophisticated architectures have been developed for
some applications, we find this basic architecture to be more
than adequate for our purposes. Let V (·) be the function we
wish to approximate and V NN (·) be its NN representation:

V (t,x) ≈ V NN (t,x) = gM ◦ gM−1 ◦ · · · ◦ g1(t,x),

where each layer gm(·) is just

gm(y) = σm(Wmy + bm).

Here Wm and bm are the weight matrices and bias vectors,
respectively. σm(·) represents a nonlinear activation function
applied component-wise to its argument; popular choices
include ReLU, tanh, and other similar functions. In this
paper, we use tanh for all the hidden layers. The final layer,
gM (·), is typically linear, so σM (·) is the identity function.

We denote by θ the collection of all parameters, i.e.

θ := {Wm, bm}Mm=1.

The NN is trained by optimizing over the parameters θ to
best approximate V (t,x) by V NN (t,x;θ). Specifically, by
solving the BVP (8–9) from a set of randomly sampled initial
conditions, we get a data set

D =
{((

t(i),x(i)
)
, V (i)

)}Nd

i=1
,

where
(
t(i),x(i)

)
are the inputs, V (i) := V

(
t(i),x(i)

)
are the

outputs to be modeled, and i = 1, 2, . . . , Nd are the indices
of the data points. The NN is then trained by solving the
nonlinear regression problem,

min.
θ

1

Nd

Nd∑
i=1

[
V (i) − V NN

(
t(i),x(i);θ

)]2
. (11)

B. Physics-informed learning

Motivated by advances in physics-informed deep learning
[17], we expect that we can improve on the rudimentary
loss function in (11) by incorporating information about
the underlying physics. In [17], and in particular in the
context of HJB equations in [9] and [10], a known underlying



PDE and boundary conditions are imposed by minimizing a
residual loss over spatio-temporal collocation points. In this
approach, no data is gathered: the PDE is solved directly
in the least-squares sense. However, the residual must be
evaluated over a large number of collocation points and can
be rather expensive to compute. Thus we propose a simpler
approach of modeling the costate λ(·) along with the value
function itself, taking full advantage of the ability to gather
data along the characteristics of the HJB PDE.

Specifically, we know that the costate must satisfy (6), so
we train the NN to minimize∥∥λ(t;x)− V NNx (t,x;θ)

∥∥2 ,
where V NNx (·) is the gradient of the NN representation of the
value function with respect to the state, which is calculated
using automatic differentiation. In machine learning, auto-
matic differentiation is usually used to compute gradients
with respect to the model parameters, but is just as easy
to apply to computing gradients with respect to inputs. The
computational graph is also pre-compiled so evaluating the
gradient is cheap.

Costate data λ(t) is obtained for each trajectory as a
natural product of solving the BVP (8–9). Hence we have
the augmented data set,

D̄ =
{((

t(i),x(i)
)
,
(
V (i),λ(i)

))}Nd

i=1
, (12)

where λ(i) := λ
(
t(i);x(i)

)
. We now define the physics-

informed learning problem,{
min.
θ

L
(
θ; D̄

)
,

where L
(
θ; D̄

)
:= LV

(
θ; D̄

)
+ µ · Lλ

(
θ; D̄

)
.

(13)
Here µ ≥ 0 is a scalar weight, the loss with respect to data
is

LV
(
θ; D̄

)
:=

1

Nd

Nd∑
i=1

[
V (i) − V NN

(
t(i),x(i);θ

)]2
,

(14)
and the physics-informed gradient loss regularization is de-
fined as

Lλ
(
θ; D̄

)
:=

1

Nd

Nd∑
i=1

∥∥∥λ(i) − V NNx

(
t(i),x(i);θ

)∥∥∥2 .
(15)

A NN trained to minimize (13) learns not just to fit
the value data, but it is rewarded for doing so in a way
that respects the underlying structure of the problem. This
physics-informed regularization takes the known problem
structure into account, so is preferable to the usual L1

or L2 regularization, which are based on the (heuristic)
principle that simpler representations of data are likely to
generalize better. Furthermore, we recall that the optimal
control depends explicitly on Vx(·) through (7). Accurate
approximation of Vx(·) is therefore essential for calculating
optimal controls. Our method achieves this through auto-
matic differentiation to compute exact gradients and by
minimization of the physics-informed loss term (15).

In common practice, one usually randomly partitions the
given data set (12) into a training set D̄train and validation
set D̄val. During training, the loss functions (14) and (15) are
calculated with respect to the training data D̄train. We then
evaluate the performance of the NN against the validation
data D̄val, which it did not observe during training. Good
validation performance indicates that the NN generalizes
well, i.e. it did not overfit the training data. We make the
validation test more stringent by generating D̄train and D̄val
from independently drawn initial conditions, so that the two
data sets do not share any part of the same trajectories.

IV. APPLICATION TO BURGERS’-TYPE PDE

In this section, we test our method on high-dimensional
nonlinear systems of ODEs arising from Chebyshev pseu-
dospectral (PS) discretization of a one-dimensional forced
Burgers’-type PDE. An infinite-horizon version of this prob-
lem is studied in [7], in which the value function is approx-
imated by a polynomial. We note that in [7], separability
of the nonlinear dynamics is required to compute the high-
dimensional integrals necessary in the Galerkin formulation.
Our method does not require this restriction, although it does
apply in this problem.

As in [7], let X(t, ξ) : [0, tf ] × [−1, 1] → R satisfy
the following one-dimensional controlled PDE with Dirichlet
boundary conditions:

Xt = XXξ + νXξξ + αXeβX + Iω(ξ)u,
for t > 0, ξ ∈ (−1, 1),

X(t,−1) = X(t, 1) = 0,
for t > 0,

X(0, ξ) = X0,
for ξ ∈ (−1, 1).

(16)

For notational convenience we have written X = X(t, ξ). We
denote Xt = ∂X/∂t, Xξ = ∂X/∂ξ, and Xξξ = ∂2X/∂ξ2.
The scalar-valued control u(t,X) is actuated only on ω, the
support of the indicator function

Iω(ξ) :=

{
1, ξ ∈ ω,
0, ξ 6∈ ω .

The optimal control problem we consider is
min.
u(·)

F (X(tf , ξ)) +

∫ tf

t

L(X,u)dτ,

s.t. Xt = XXξ + νXξξ + αXeβX + Iω(ξ)u,
X(t,−1) = X(t, 1) = 0.

(17)

Here
F (X(tf , ξ)) =

W2

2
‖X(tf , ξ)‖2L2

(−1,1)
,

L(X,u) =
W1

2
u2(t,X) +

1

2
‖X(t, ξ)‖2L2

(−1,1)
,

‖X(t, ξ)‖2L2
(−1,1)

:=

∫ 1

−1
|X(t, ξ)|2 dξ,

and we set
ω = (−0.5,−0.2), ν = 0.2, α = 1.5,

β = −0.1, W1 = 0.1, W2 = 1, tf = 8.



The objective of stabilizing X(t, ξ) is made more challenging
by the added source term, αXeβX , which renders the origin
unstable. This can be seen clearly in Fig. 2a.

To solve (17) using our framework, we perform Chebyshev
PS collocation to transform the PDE (16) into a system of
ODEs. Following [18], we let

ξj = cos(jπ/Nc), j = 0, 1, . . . Nc,

where Nc + 1 is the number of collocation points. After ac-
counting for boundary conditions, we collocate X(t, ξ) at in-
ternal (non-boundary) Chebshev points, ξj , j = 1, 2, . . . , n,
where n = Nc− 1. The discretized state x(t) : [0, tf ]→ Rn
is defined as

x(t) :=
(
X(t, ξ1), X(t, ξ2), . . . , X(t, ξn)

)T
and the PDE (16) becomes a system of ODEs in n dimen-
sions:

ẋ = x�Dx+ νD2x+ αx� eβx + Iωu, (18)

In the above, “�” denotes element-wise multiplication (the
Hadamard product), Iω is the discretized indicator function,
and D,D2 ∈ Rn×n are the internal parts of the first and
second order Chebyshev differentiation matrices, obtained by
deleting the first and last rows and columns of the full ma-
trices. This automatically enforces the boundary conditions.
Finally, since X(t, ξ) is collocated at Chebyshev nodes, we
approximate the inner product appearing in the cost function
by Clenshaw-Curtis quadrature [18]:

‖X(t, ξ)‖2L2
(−1,1)

=

∫ 1

−1
|X(t, ξ)|2 dξ ≈ wTx2(t),

where w ∈ Rn are the internal Clenshaw-Curtis quadrature
weights and x2 := x � x. Now the original problem (17)
can be reformulated as an ODE-constrained problem, min.

u(·)

∫ tf

t

L̃(x, u)dτ +
W2

2
wTx2(tf ),

s.t. ẋ = x�Dx+ νD2x+ αx� eβx + Iωu,
(19)

where

L̃(x, u) =
1

2

[
wTx2(t) +W1u

2(t,x)
]
.

A. Learning high-dimensional value functions

The state dimension n of the optimal control problem (19)
introduced in the previous section can be adjusted, presenting
a good opportunity to test the scalability of our algorithms.
We learn the value function V (t,x) over the spatial domain

X0 = {x ∈ Rn| − 2 ≤ xj ≤ 2, j = 1, 2, . . . , n} .

Using the proposed deep learning framework, we approx-
imate solutions to (19) in n = 10, 20, and 30 dimensions.
In [7] the infinite-horizon version of the problem is solved
up to twelve dimensions, but the accuracy of the solution is
not readily verifiable. The ability to easily measure model
accuracy for high-dimensional problems with no known
analytical solution is a key advantage of our approach.
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Fig. 1: Validation accuracy and training time of NNs for
modeling the time-dependent value function V (t,x) of (19).
All NNs have the same parameter initialization and are run
on an NVIDIA RTX 2080Ti GPU.

For each discretized optimal control problem, n = 10, 20,
and 30, we apply the time-marching strategy and use the
Scipy [19] implementation of the three-stage Lobatto IIIa
algorithm in [16] to solve BVPs for 30 uniformly sampled
initial conditions, x(i)

0 ∈ X0, i = 1, 2, . . . , 30. For each x(i)
0 ,

the BVP solver outputs an optimal trajectory x(i)
(
t(k)
)
,

where t(k) ∈ [0, tf ] are collocation points chosen by the
solver. Typically this can be a few hundred points per initial
condition, depending on the state dimension n and solver
tolerances. We use a standard feedforward NN with three
layers of 64 neurons each, implemented in TensorFlow [20].

In Fig. 1, we present validation accuracy results for the
trained NNs. We include the mean absolute error (MAE) in
predicting the value function and the mean relative L2 error
(MRL2) in predicting the costate, λ(t;x) ≈ V NNx (t,x).
Accuracy is measured empirically on independently gener-
ated validation data sets comprised of trajectories from 50
randomly selected initial conditions. The results in Fig. 1
show that even in 30 dimensions and with tiny data sets,
we are able to train accurate models. This level of accuracy
with small data sets is obtained only with physics-informed
learning: NNs trained with properly tuned gradient weight µ
are orders of magnitude more accurate than those trained by
pure regression (11), i.e. with µ = 0. Fig. 1 also shows the
training time for each NN, not including time spent generat-
ing the initial data. Besides this startup cost, the training time
is short and scales reasonably with the problem dimension n
and the gradient weight µ. This demonstrates the viability of
the proposed method for solving high-dimensional optimal
control problems.



TABLE I: Convergence of BVP solutions for (19) when using
time-marching. BVP integration time is measured only on
successful attempts.

n K % BVP convergence mean integration time

10
4 40% 0.7 s
6 83% 0.8 s

10 90% 1.3 s

20
4 46% 3.6 s
5 86% 4.2 s
6 99% 4.7 s

30
4 47% 11.3 s
6 90% 14.6 s
8 100% 19.1 s

TABLE II: Convergence of BVP solutions for (19) when
using NN warm start. BVP integration time is measured only
on successful attempts.

n µ gradient MRL2 % BVP conv. mean int. time

10
0 1.9× 100 96% 0.6 s

10−1 5.0× 10−2 95% 0.5 s
101 3.5× 10−2 96% 0.6 s

20
0 8.7× 100 63% 2.5 s

10−1 2.0× 10−1 99% 2.4 s
101 2.7× 10−2 100% 2.3 s

30
0 6.3× 100 89% 7.0 s

10−1 3.1× 10−1 97% 7.0 s
101 3.8× 10−2 100% 6.8 s

B. Fast BVP solutions with NN warm start

Generating the initial training data set can be the most
computationally expensive part of the process, especially
as the problem dimension n increases. Consequently, for
difficult high-dimensional problems it may be infeasible to
generate a large-enough data set from scratch. This obstacle
can be largely overcome by using low-fidelity NNs to aid in
further data generation. In this section, we briefly compare
the reliability and speed of BVP convergence between our
two strategies: time-marching and NN warm start.

For each of n = 10, 20, and 30, we randomly sample a set
of 1000 candidate points from the domain X0, from which
we pick 100 points with the largest predicted value gradient
norm. We find that the BVP tends to be more difficult to
solve at such points. This set of initial conditions is fixed
for each n. First in Table I, we give results for the time-
marching trick, depending on the problem dimension, n, and
the number of steps in the sequence {tk}Kk=1. Time-marching
is effective once the sequence of time steps is properly tuned,
but the speed of this algorithm scales poorly with n.

Next in Table II, we solve the same BVPs directly over
the whole time interval t ∈ [0, 8] with NN warm start. The
NNs are trained on the same data set but with different
gradient weights, µ, and thus have varying costate prediction
accuracy. Now the advantage of utilizing NNs to aid in
data generation becomes clear: the average time needed for
convergence is drastically lower than with time-marching.
Even with low-fidelity NNs, we get good initial guesses
which allow us to reliably solve the BVP. Thus quickly
training a low-fidelity NN to aid in data generation is the
most efficient strategy for building larger data sets.

C. Closed-loop simulations

In this section we show that the feedback control output by
the trained NN stabilizes the high-dimensional system and
is close to the true optimal control. The optimal feedback
control which minimizes (7) is given by

u∗(t,x) =− 1

W1
[Iω]T Vx(t,x), (20)

which we approximate with

uNN (t,x) =− 1

W1
[Iω]T V NNx (t,x). (21)

We plot the uncontrolled and closed-loop dynamics in
Figs. 2a and 2b, respectively, starting from two different
initial conditions, X(0, ξ) = 2 sin(πξ) and X(0, ξ) =
−2 sin(πξ). The dimension of the discretized system is n =
30. For both of these initial conditions (and almost all others
tested), the NN controller successfully stabilizes the open-
loop unstable origin. Further, as shown in Fig. 2c, the NN-
generated controls are very close to the true optimal controls
which are calculated by solving the associated BVPs. Finally,
the speed of control computation is fast: independent of n,
each evaluation of the control takes just milliseconds on both
an NVIDIA RTX 2080Ti GPU and a 2012 MacBook Pro.
This feature is essential for real-time feedback.

V. CONCLUSION

In this paper, we have developed a novel machine learning
framework for solving HJB equations and synthesizing op-
timal feedback controls in real-time. Unlike most other state
of the art techniques, our method requires no linearization or
restrictions on the structure of the dynamics. The causality-
free algorithm we use for data generation enables application
to high-dimensional systems, as well as validation of model
accuracy. We also emphasize that while our method is data-
driven, by leveraging the costate data we are able to learn
more physically-consistent models and better controls with
surprisingly small data sets.

These promising results leave plenty of room for future
development. Of special interest are extensions of the frame-
work to solve problems with free final time, state and control
constraints, and non-differentiable value functions. These
appear ubiquitously in practical applications and present
substantial challenges for data generation and NN modeling.
Overcoming these obstacles would open the door to solving
many important and difficult optimal control problems.
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