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Should we use Probability
in Uncertain Inference Systems?

Max Henrion

Department of Engineering and Public Policy,
and Department of Social and Decision Science,
Camegie Mellon University.

Abstract

Criticisms of probability as being epistemologically inadequate as a basis for
reasoning under uncertainty in Al and rule-based expert systems are largely
misplaced. Probabilistic schemes appear to be the best way to deal with
dependent evidence, and to properly combine diagnostic and predictive inference.
Suggestions that expert systems should duplicate human inference strategies, with
their documented biases, seem ill-advised. There is evidence that popular
schemes perform quite poorly under some circumstances and there is an urgent
need for careful study of when they can be relied upon. Some promising
probabilistic alternatives are available, but they need to be demonstrated in

realistic applications.
Introduction

Historically, probability has been by far the
most widely used formalism for quantifying
uncertainty and making inferences about it.
However, for various conceptual and pragmatic
reasons the majority of Al researchers have not,
hitherto, found standard probabilistic techniques
very appealing for use in rule-based, expert
systems. Among the many alternatives they
have used are the Certainty Factors used in
Mycin (Shortliffe & Buchanan, 1975) and its
descendants, Fuzzy Set Theory (Zadeh, 1984),
the quasi-probabilistic scheme of Prospector
(Duda et al, 1976), the Belief functions of
Dempster-Shafer theory (Shafer, 1976), Paul
Cohen's theory of endorsements (Cohen, 1985),
Doyle’s theory of reasoned assumptions (Doyle,
1983), and non-numerical, linguistic
representations of uncertainty (Fox, 1986). We
shall refer to both probabilistic and alternative
methods, generically, as wuncertain inference
schemes, or UISs.

Each of these techniques has its partisans
and its detractors, and discussion about their
various merits and flaws seems to be heating up
of late (Kanal & Lemmer, 1986, Gale, 1986).
Much of the discussion hitherto has focussed on
the theoretical issues of epistemological
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adequacy -- how well can each UIS represent
the different aspects of reasoning with
uncertainty? System developers have
understandably been more concerned with the
pragmatic issues of heuristic adequacy -- how
easy is it to use and what are its computational
demands?

The purpose of this paper is to give a
personal view of some of the basic issues in
evaluating and comparing UISs. Following a
very brief account of the subjective or
personalist view of probability and its
applications in Al, | shall summarize the most
common objections to probabilistic schemes,
and attempts to rebut them that have appeared
in the literature. The main focus will be on four
issues that seem to have attracted less
attention. The first concerns the treatment of
correlated sources of evidence, and
assumptions about dependence. The second is
the issue of combining diagnostic and predictive
reasoning, and the separation of inference rules
from domain knowlege. The third is the vexed
question of whether or not UISs for expert
systems should try to to approximate human
reasoning. The last is the question of whether it
matters much which approach you use, and |
shall argue the importance of more systematic
comparison of alternative UISs to find out. The



HENRION

issue is not simply what can each UIS do or not
do, but how much practical difference to the
conclusions can it make which you use?

There has been considerable controversy on
several of these topics. Researchers are
operating under different paradigms with
ditferent programmatic goals, so | cannot expect
agreement with all my arguments. What | hope
is that it will be a contribution towards creating a
more focussed debate, as a prerequisite for
more cumulative science in this important area.

The appeal of probability

The probability of a proposition or a future
event, according to the Bayesian or personalist
view, is a measure of a person’s degree of belief
in it, given the information currently known to
that person. The notion of probability may be
derived from a set of simple axioms of rational
decision-making under uncertainty, which form
the basis of decision theory (Savage, 1954). The
force of these axioms, and hence of the laws of
probability derived from them, arises from the
fact that a people who violate them and are
willing to act on “incoherent” probabilities (for
example, which do not satisfy Bayes’ rule) are
liable to demonstrable loss. Notably, an
opponent could always design a "Dutch book”,
that is a combination of bets that they would be
willing to accept, according to their professed
beliefs, but which, in sum, would result in a
guaranteed loss (de Finetti, 1974).

One advantage of being embedded in a
theory of decision making is that it provides an
operational definition for the probability of an
event, in terms of the person’s willingness to
take bets based on the outcome of the event.
Secondly, in combination with a utility model of
preferences, it provides a clear, axiomatically-
based approach for making decisions under
uncertainty (Holtzman & Breese, 1985). Thirdly,
it provides well-defined ways of using empirical
data (Spiegelhalter, 1986), and evaluating the
accuracy, resolution and calibration of UISs
(Lichtenstein, Fischhoff & Phillips, 1982). No
non-probabilistic measure of uncertainty offers
these advantages. It has also been shown that
for any reasonable scoring rule (which rewards a
decision maker based on his or her probability

assessments and the actual outcomes or truth of
the propositions), any scalar measure of
uncertainty is either worse than probability
(produces a expected lower score) or is
equivalent to it (Lindley, 1982).

Probabilistic UISs

A set of m propositions, {A,, A, ... A}, each
of which may be true or false, gives rise to 27
different possible elementary events, each being
a particular combination of proposition values.
eg. (A; & ~A, & .. A). A complete joint
probability distribution over these propositions
specifies a probability for each event, and so
requires specification of 27-1 parameters. The
exponential complexity of this complete
representation clearly rules it out as a viable
approach for practical systems and so
simplifying assumptions are essential. In all
practical UISs, the evidential relationships are
modelled as an inference network, in which each
proposition (or variable) is directly related to only
a few others. Each such link is represented by a
rule, which provides evidence about a
consequent proposition, C, based on the degree
of belief in some logical combination of its
antecedents, A, for example, (A, & ~A,) ---> C;.
A ‘“strength" (one or more numbers) is
associated with each rule, whose probabilistic
interpretation varies according to the scheme.
Each such UIS needs to provide functions for
propagating the uncertainty measures through
logical conjunction, disjunction, negation, and
generalized modus ponens, as well as a function
for combining the evidence from multiple rules
that bear on one consequent. The best known
schemes are Certainty Factors (CFs) developed
for Mycin (Shortliffe & Buchanan, 1975) and the
scheme used in Prospector (Duda et al, 1976),
from which many variants have been derived.
Both of these were originally intended as
approximations to Bayesian inference.

Neither system is completely consistent with a
complete probabilistic scheme, and the implied
probability distributions are incoherent. Kim and
Pearl have devised an ingenious scheme for
representing and propagating probabilistic
information over a kind of inference net they
term Bayes’ networks (Kim & Pearl, 1983). This
can maintain global coherence over the network,
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using only an efficient local updating
mechanism. These are similar in spirit to the
influence diagrams developed for decision
analysis (Shachter, 1985).

An alternative approach to dealing with a
partially specified probability distribution is to
estimate the full distribution using the Maximum
Entropy Principle. This minimizes the additional
information assumed in filling out the
distribution, consistent with the specified
constraints (usually marginal and conditional
probabilities). While this approach has several
desirable properties (Shore and Johnson, 1980),
computation of maximum entropy distributions
is, in general, prohibitively expensive with more
than a few propositions, despite attempts to
improve  algorithms (Cheeseman, 1983).
However, many popular probabilistic updating
schemes, including , conditional independence
assumption, Jeffrey’s rule, and odds-ratio
updating, are actually special cases of Maximum
Entropy, and the related Minimum Cross
Entropy update (Wise, 1986).

Objections to probability

Despite its attractions, probability has been
under sustained attack as a viable scheme for
representing uncertainty in Al, ever since
McCarthy and Hayes dismissed it as
"epistemologically inadequate”. = Among the
criticisms have been the following:

1. Probability requires vast amounts of
data or unreasonable numbers of
expert judgments.

2. It can't express ignorance, vagueness
or "second-order uncertainty”.

3. It doesn't distinguish reasons for and
against, or identify sources of
uncertainty.

4. The inference process is hard to
explain.

5. It can't express linguistic imprecision.

6.1t requires unrealistic independence
assumptions.

7. It is computationally intractable.
8. It is not how humans reason.
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9. It doesn't make much difference what
method you use anyway.

Several recent articles have assembled similar
lists of objections, overlapping with the first five
or six listed here; they have provided eloquent
rebuttals (Spiegelhalter, 1986, Pearl, 1985a,
Cheeseman, 1985). Below is an extremely brief
summary of their conclusions, without attempt at
explanation. The interested reader is referred to
the original articles. The main focus of this
article will be objections six to nine and some
related issues of the heuristic adequacy of
probabilistic schemes.

Summary of rebuttals

In evaluating the criticisms and rebuttals, it is
important to  distinguish claims  about
probabilistic inference in general from claims
about specific  quasi-probabilistic  UISs
incorporating various heuristic assumptions.
These rebuttals have been primarily in defense
of the theoretical possibilities of probability
rather than particular UISs. Failure to keep in
mind this distinction has sometimes resulted in
misunderstanding and fruitless argument.

The belief that probabilistic representations
require vast amounts of data seems to derive
from frequentist interpretations of probability,
and does not apply to the Bayesian or
subjectivist interpretations usually advocated.
Inordinate quantities of subjective judgments
should not be necessary either, since humans
are subject to analagous limitations to other
UISs, and our intuitive knowledge of probabilistic
dependencies is represented by relatively
sparse networks (Bayes networks), where most
variables are not directly dependent. The
question of whether or not two variables are
directly probabilistically dependent is a
qualitative judgment which is relatively easy to
make (Pearl, 1985a).

Ignorance, vagueness or second order
uncertainty may be represented by a range of
probabilities, or by a predictive distribution over
a probability, expressing how the prior
probability might change after consulting a
specified information source (Cheeseman, 1985,
Spiegelhalter, 1986). Although it is often
sufficient 1o represent each probability by its
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mean value, unless decisions about gathering
new information are being contemplated.

It is true that a single probability by itself
doesn't distinguish the sources, type and effect
of the pieces of evidence on which it is based,
but it is certainly possible to retrieve and clearly
express this information in probabilistic schemes
(Pearl, 1985a). For example, the evidence
weight (log likelihood ratio) provides a
convenient additive measure of the relative
importance of each piece of evidence for a
conclusion. The weights of supporting evidence
can be added to the prior weight, and weights of
disconfirming evidence subtracted in a sort of
"ledger sheet" to arrive at the total final weight
(Spiegelhalter, 1986). Evidence weights are
also useful in explaining probabilistic reasoning.
As long as the underlying inference network is
sparse, as Pearl argues it will be, the inference
process should be explainable in simple,
comprehensible steps (Pearl, 1985a).

The advantage often claimed for Fuzzy Set
Theory over probability is that the former can
model linguistic imprecision, whereas
probabilities are only defined for unambiguously
specified ("crisp”) events or propositions
(Bonissone, 1982). Indeed probabilists have
generally not addressed the issue of linguistic
imprecision, aside from studies of the
correspondence between probability phrases
and numbers (Beyth-Marom, 1982). There is
plenty of experimental evidence that probabilistic
inference is not a very good model for human
linguistic reasoning (Kahneman, Slovic &
Tversky, 1982). But there has been little
experimental investigation of claims that
alternative UISs offer better models. A study
comparing human judgment to Fuzzy Set
Theory found that subjects’ judgment of the
“plausibility™ of the intersection of two fuzzy sets
was better modelled by the multiplication of
"plausibilities”, analogous to the probabilistic rule
for the intersection of two independent events,
rather than by the minimum plausibility rule of
Fuzzy Set Theory (Oden, 1977). A problem in
such studies of non-probabilistic schemes is
selting up a convincing comparison when the
measure of uncertainty has no operational
definition.

Assumptions about dependence

While probability can in theory cope perfectly
with non-independent sources of evidence, most
actual UISs cannot. Consider the following:

Chernobyl example: The first radio news
bulletin you hear on the accident at the

Chemoby! nuclear power plant reports that the

release of radioactive materials may have

already killed several thousand people. Initially
you place small credence in this, but as you start
to hear similar reports from other radio and TV
stations, and in the newspapers, you believe it
more strongly. A couple of days later, you
realize that the news reports were all based on
the same wire-service report based on a single
unconfirmed telephone interview from Moscow.

Consequently, you greatly reduce your degree

of belief again.

Thousands

AR

Newspaper
report report

\’[\ /articla

phone
interview

Figure 1: Inference network for
Chernobyl example

This illustrates how multiple, independent
supporting sources of evidence increase the
confirmation of a hypothesis, but the
confirmation is reduced if they are correlated.
Most of us seem quite capable of handling this
kind of intuitive reasoning in practice, even if we
don't have the terminology to describe it.
However none of the better known UISs are
actually capable of distinguishing between
independent and correlated sources of
evidence. They each make various arbitrary
fixed assumptions about the presence or
absence of dependence. So all are inherently
incapable of performing this normal
commonsense reasoning. For example, the
Fuzzy Set operators for and and or, are
equivalent in effect to probabilistic rules
assuming subsumption among antecedents, i.e.
where the least likely proposition logically
implies the more likely one(s). This is equivalent
to assuming the maximum possible correlation
between input propositions. Prospector and
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Mycin CFs use similar rules for and and or. On
the other hand, Prospector, and Bayes networks
assume conditional independence when
combining evidence from different rules, as in
the Chernobyl example. Figure 2 shows
Pr(A&B) as a function of Pr(A) given Pr(B)=0.6,

assuming minimum overlap between A and B

(Minc), independence (Ind), or maximum overlap
(MaxC), which is the Fuzzy Set assumption. It
illustrates the range of results possible from
alternative assumptions about correlation.

p(h&Bi vs. p(A), for p(B)=0.6

4
9.7591'
-".” -’_-’
8.580 + v i i N o
_,.-‘-;/"
o O Ll
i -’-
9.250 T - o ','d-" . ,_;/ . 2
o’ "f ’/._l
-~
i -~
it

@ ©.250 @.508 0.750
a = p(A)

Rgg e e messemae s
Uis MinC Ind MaxC

Figure 2: The effect of assumptions about
correlation, (Wise & Henrion, 1986)

It has sometimes been claimed as an
advantage of some non-probabilistic UISs,
including Fuzzy Set Theory (Bonissone, 1986),
that they avoid having to make any assumptions
about dependencies. But in fact, as we have
seen, the Fuzzy Set combination functions are
equivalent, at least in effect, to specific
probabilistic assumptions. |t is true that non-
probabilistic languages for uncertainty do not
provide a general framework for modelling
correlated evidence, since they do not provide a
well-defined language for expressing the ideas.
But to claim that they can therefore avoid
making unsupported assumptions about
correlations is akin to claiming that a new settler
in Alaska can deal with the winter precipitation
by adopting the language of an equatorial tribe
with no word for snow.

Unfortunately to deal completely with
probabilistic dependences is inherently complex
(exponential in the number of evidence
sources), and no inference network system
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which represents uncertainty in each proposition
by one or a few parameters can deal with its full
complexity. An altermative approach to is to
represent uncertainty by a range of two
probabilities and to compute both the largest
and smallest probabilities compatible with the
ranges of the antecedents. This does avoid
making any specific, unsupported assumptions ,
although there is a danger of ending up with
vacuous results (probability limits of 0 and 1).

The original Bayes' Network scheme of Kim
and Pearl is restricted to Chow Trees i.e. singly
connected graphs, so that conditional
independence between convergent sources of
evidence can be preserved (Kim & Pearl, 1983).
However Pearl has suggested a method of
removing the cycles, either by conditioning on
variables in the cycle, or by adding extra nodes
(hidden variables) that allows restructuring the
probabilistic dependencies to avoid cycles
(Pearl, 1985b).

Another approach is to represent the
uncertainty in each proposition by a sample of
truth values representing a random sample of
possible worlds. These can be combined and
propagating using the usual mechanisms of
deterministic logic. Correlations due to multiple
paths in the inference network or dependencies
specified between inputs are handled correctly
without special mechanisms. This incidence
calculus (Bundy, 1986) or logic sampling
(Henrion, 1986) involves a form of Monte Carlo
simulation. Its accuracy depends on the sample
size chosen. This approach can be reasonably
efficient ( it is linear in the network size) and
seems promising, but its full potential remains to
be explored.

Diagnostic and predictive
inference

Diagnostic inference involves reasoning from
observable manifestations to hypotheses about
what may be causing them, for example
reasoning from symptoms to diseases.
Predictive or causal inference involves
reasoning from causes (or causal influences,
such as genetic or environmental factors that
might increase susceptibility to a disease) to
possible manifestations (Tversky & Kahneman,
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1982). Consider the following:

The sneeze example: Suppose you find
yourself sneezing unexpectedly in the house of
an acquaintance. It might either be due to an
incipient cold or your allergy to cats. You then
observe animal paw marks, which increases
your judged probability of a cat in the vicinity
(diagnostic inference), which, in turn, increases
the probability that you are having an allergic
reaction (predictive inference). This also
explains away the sneezing, and so decreases
the probability you are getting a cold.

Notice that this reasoning involves a mixture of
both diagnostic and predictive inference. Having
rules that allow reasoning backwards and
forwards like this creates a danger of vicious
circles, where, say, the probability of a cat would
increase the probability of the allergic reaction,
and vice versa. To avoid this, it seems
necessary to keep a record of the sources of
different uncertain evidence for each variable, so
that you can avoid possible double counting.
Pearl's scheme for Bayes’ Networks keeps the
flows of diagnostic and predictive evidence
separate to avoid such cycling, and only
combines them to calculate the aggregate
degree of belief in each node (Pearl, 1985b).
Figure 3 shows a Bayes Network representation
of propositions mentioned.

Cat

Incipient Allergic \l Paw
cold \l \?eaction marks

Sneezing
Figure 3: Bayes’ network for sneeze example

Independent evidence for the allergy helps to
explain the sneezing and so reduces the
probability of a cold. Alternatively, the
observation of a mild fever might increase the
probability that it was a cold and so decrease
the probability of the allergy. Thus the presence
of sneezing induces a negative correlation
between the cold and the allergy, which would
otherwise be independent. This kind of
reasoning, which we may term intercausal, is a
natural consequence of the simple logical
relation that sneezing can be caused either by a
cold or an allergy. Pearl’s propagation scheme
for Bayes Networks models this correctly, but
other rule-based schemes have a very hard time
with it.

Consider the following rule for medical
diagnostic inference which performs intercausal
reasoning (Clancey, 1983):

If the patient has a petechial rash and does not
have leukemia, then neisseria may be present.
This reflects the medical fact that a petechial
rash can be caused either by neisseria or by
leukemia, and so the rash is evidence for
neisseria unless it has been explained by

leukemia.

Neisseria

v

petechial
rash

Leukemia

Figure 4: Bayes’ network for rash example

If the system was also intended to help
diagnose leukemia, it would need an additional
rule:

If the patient has a petechial rash and does not
have neisseria, then leukemia may be present.

With both rules the inference network would
contain a cycle (from leukemia to neisseria and
back again), which is liable to cause updating
difficulties, at least sensitivity to the sequence in
which evidence arrives. The underlying problem
is that these rules embody general knowledge
about inference under uncertainty as well as
specific medical knowledge.

It would be far better to be able to specify the
essential medical knowledge in causal form, that
"a petechial rash can be caused either by
neisseria or by leukemia" (with specified
conditional probabilities if the relationships are
uncertain). The UIS should then be able use
this to make the uncertain diagnostic inferences
implied by either rule, or even reason
predictively from the diseases to the symptom,
according to the demands of the situation.
Pearl's scheme can do this effectively and
consistently, while maintaining a clear
separation between the inference methods and
domain knowledge. Clancey in a critique of
Mycin has emphasized the desirability of
separating the representation of inference
strategy from domain knowledge (Clancey,
1983). But it does not appear that schemes, like
Mycin, or Prospector representing knowledge
primarily as diagnostic rules, rather than
probabilistic causal relations, are capable of this.
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Should UISs emulate humans?

This objection to probabilty has been
forcefully stated by Paul Cohen:

"[it is] puzzling that Al retains models of
reasoning under uncertainty that are derived
from normative theories..., because the
assumptions of the normative approaches are
frequently violated, and because the
probabilistic interpretation -- and numerical
representation -- of uncertainty summarizes and
fails to discriminate among reasons for believing
and disbelieving. ... models of humans as
perfect processors of information are not only
inaccurate, but also unlikely to lead to efficient
and intelligent reasoning.” (Cohen, 1985), p.9

Cohen here advocates the strategy, which
appears to have been successful elsewhere in
Al research, of adopting heuristic approaches
based on human intuitive reasoning, rather than
theoretically optimal, but computationally
intractable schemes. Cognitive psychologists
have indeed provided us with ample evidence
that human inference under uncertainty is not
accurately modelled by Bayesian decision
theory (Kahneman, Slovic & Tversky, 1982).
But there is little experimental evidence that
proposed non-probabilistic UISs are better
models. Very likely there is considerable
variation between tasks and between
individuals. It is an important and challenging
task for cognitive psychologists to build better
models of judgment under uncertainty, but it
seems quixotic for those primarily interested in
developing better expert systems to seriously
attempt to emulate human judgment. That is not
to say that evidence about human reasoning
including introspection may not give us excellent
ideas for devising new and better UISs, but the
criterion for judging their usefulness should be
the quality of their performance, rather than how
well they simulate human thought processes.

One feature of human judgment observed by
psychologists has been termed the
representativeness heuristic.: When asked the
probability that object A belongs to class B,
people typically evaluate it by the degree to
which A is representative of B, that is by the
degree to which A resembles B (Kahneman,
Slovic & Tversky, 1982). This leads to
judgments which are insensitive to the prior
probability of A, and contrary to Bayes' rule.
Cohen and colleagues explicity adopt the

326

representativeness heuristic for representing
uncertainty in the classification system, GRANT,
(Cohen et al, 1985), which deliberately ignores
prior information. Other UISs also explicitly
exclude prior probabilities, including Mycin
(Buchanan & Shortliffe, 1984). The rationale
has been that prior probabilities are too hard to
estimate, and it is better to avoid them.
However, for both GRANT and Mycin (and its
derivatives), ignoring priors is functionally
equivalent to assuming equal priors (for the
probabilities of agencies funding a proposal, or
the probabilties of disease organisms).
Occasionally such flat priors may be
appropriate, but more often it means ignoring
important information about differing
frequencies.

The following example points up the dangers
of this approach:

Blood test example: James is engaged to be
married, and takes the routine pre-marital blood
test required by the state. To his horror, the test
comes back positive for syphilis. His physician
explains to him that the test is very reliable,
having an false positive rate of 1%, and so the
chance he has the disease is 99%. Aghast,
James wonders what to tell his fiancee.

Most physicians will give the same advice as
James’ one does. Like other people, they are
poor intuitive Bayesians (Kahneman, Slovic &
Tversky, 1982) and tend to ignore prior or base-
rate information. Using the representativeness
heuristic, the chance that James has VD is
judged by the degree to which he (having a
positive blood test) is representative of people
with VD. In this, and many similar cases, the
heuristic leads to a conclusion that is badly
wrong:

Fortunately, James’ fiances, Alice, is not only
understanding, but a Bayesian statistician. She
finds out from the physician that the prevalence
of syphilis among men from James' background
is about 1 in 10,000. Based on this, she
concludes that the probability he actually has the
disease is about 1%, and decides to go ahead
with the wedding.

For those of us not so lucky as to be marrying a
Bayesian, would we rather consult a physician
or an expert system modelled on normal human
judgment, or would we prefer one based on
normative Bayesian principles?
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Does it matter which you use?

Even if one accepts the arguments that
probability is epistemologically adequate to
represent uncertainty, it is clear that only
approximations to it are computationally
tractable for real systems. Despite the
theoretical differences between systems, does it
really make much difference to the conclusions
of a rule-based expert system which scheme
you use? There has been a common perception
in the Al community that the performance of
systems is relatively insensitive to the choice of
UIS; that the important differences are to do with
qualitative knowledge rather than quantitative
uncertain inference. This may be true, at least
for some domains. But so far, belief in this
insensitivity seems to have been based primarily
on ideology, since there has been little
systematic analysis or experimental evidence
published.

One early piece of evidence was a
comparison of Mycin's method for combining
evidence from different rules with a probabilistic
model (Shortliffe & Buchanan, 1975). This
showed a pronounced tendency to under-
respond. On average, strong aggregate
evidence for or against a conclusion was
computed to be as about half as strong (half the
CF) as it should be. This in itself, may not have
mattered much, since Mycin used relative CFs
for making decisions. But in 25% of the cases
the system responded in the wrong direction.
Confirming evidence actually reduced the CF or
vice versa. The developers of Mycin suggest
that Certainty Factors are satisfactory for the
initial application domain (selecting antibiotic
therapy), but that "We would need to perform
additional experiments to determine the breadth
of the model's applicability”, (Buchanan &
Shortliffe, 1984) p. 700. However CFs and
related UISs are now being used for many other
applications, apparently without the benefit of
such experiments.

Recently there have been a few comparative
studies of UISs. Tong and colleagues have
compared 12 variants of the Fuzzy Set Rules for
and, or, and modus ponens combinations in
terms of their performance in a fixed rule base
(Tong, 1985). They found that the performance
of all rules with smooth response (i.e. not

discontinuous) did reasonably well in their
example. Vaughan and colleagues have done a
comparison of the Prospector scheme with
odds-ratio updating (Vaughan, 1986) for a
systematic range of single rules. They found
that Prospector did well in many cases, but that
there are some situations in which it performs
poorly. Wise has argued that the appropriate
standard for comparison is a system using
Maximum Entropy to fit a complete prior to
specified input probabilities and rule strengths,
and Minimum Cross Entropy for updating it
(Wise & Henrion, 1986, Wise, 1986). This
ME/MXE approach is actually a generalization of
the odds-ratio approach used by Vaughan et al.
Wise has performed comparisons of six UISs,
including CFs, Fuzzy Set Theory, and a
probabilistic scheme with Conditional
Independence, against the ME/MXE scheme, for
individual rules, and small assemblies of 2 or 3
rules, 30 cases in all, each with all input
probabilities systematically varied (Wise, 1986).
For purposes of comparison, the degree of
membership of a Fuzzy Set was equated to
probability. The performance of the UISs varied
considerably over the different situations. All
worked well in at least some cases, and none
worked well in all cases. There were some
situations in which some UISs were worse than
random guessing.

It is not hard to construct examples in which
CFs (and other widely-used UISs) produce
results that disagree badly with a complete
probabilistic analysis, even having the wrong
qualitative sensitivities. Experienced knowledge
engineers may be aware of at least some of the
problems inherent in the UIS they use, and may
know how to modify rule-sets to mitigate the
undesirable behavior, at least for some
anticipated situations. However, some of the
problems are quite subtle, even though their
effects can be severe. In any case it seems
dangerous to rely on the ability of the knowledge
engineer to "program around” such problems,
particularly given our sketchy understanding of
what all the problems are.
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Conclusions

Probability has often been criticized as
epistemologically inadequate for representing
uncertainty in Al, but many of these criticisms
have stemmed from incomplete understanding
of probabilistic inference. In this paper, | have
focussed on a number of important advantages
that probabilistic representations have over
other proposed measures of uncertainty, which
have not loomed so large in the debate hitherto.
Personal probability has an unambiguous
operational definition, and it is embedded in a
rational theory of decision-making under
uncertainty -- we know what it means, and we
know how to make decisions using it
Probabilistic inference is epistemologically
adequate to perform three important kinds of
reasoning that humans are capable of: (a)
taking into account non-independence between
sources of evidence, (b) engaging in mixed
diagnostic and predictive inference, and (c)
inter-causal inference, between alternative
causes of an event, as in "explaining away".
Non-probabilistic rule-based UISs may be able
to simulate these in particular cases, at least
qualitatively, but only by confounding general
knowledge about uncertain inference with the
domain specific knowledge in the rules.

These types of inference are important, and
we can learn a great deal from studying human
reasoning. But it is not necessarily desirable
that a UIS should duplicate allfeatures of human
judgment under uncertainty, including such
strategies as the representativeness heuristic
that can lead to severe biases, as in the blood
test example. Where cognitive limitations cause
human judgments to diverge from the results of
normative theory, surely it is better to use the
latter when expert systems are advising on
important decisions, as in medical or defense
applications.

If one accepts the arguments for the
epistemological adequacy, or even superiority,
of probability, serious questions may still be
raised about its heuristic adequacy -- can
practical, computationally efficient
implementations be built? The Bayes' Network
approach seems very promising, but work still
remains to be done to deal conveniently and
generally with multiply connected networks (i.e.
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dependent sources of evidence). Monte Carlo
logic sampling seems to offer possibilities here,
both as a practical implementation and as an
intellectual link to deterministic logic. Although
several probabilistic methods for dealing with
second-order uncertainty, distinguishing the
effect of different sources of evidence, and
explaining probabilistic reasoning have been
suggested, there remains considerable work to
be done to develop implementations and
experimental study of their acceptance and
usefulness to system builders and users.
Whatever the theoretical merits of probabilistic
representations, the Al community has a
venerable tradition of pragmatism, and many will
understandably remain unconvinced until these
more sophisticated probabilistic schemes have
demonstrated success in large scale
applications. On the other hand, disturbing
evidence is emerging about the performance of
the most popular UISs, and complacency would
be inappropriate as they are applied to new
tasks with major potential consequences. There
is an wurgent need for more rigorous
experimental evaluations of UISs for a range of
realistic rule-bases to find out under what
circumstances they can be relied on, and when
they may be seriously wrong.
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