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Abstract

Co-infections or secondary infections with SARS-CoV-2 have the potential to affect disease

severity and morbidity. Additionally, the potential influence of the nasal microbiome on

COVID-19 illness is not well understood. In this study, we analyzed 203 residual samples,

originally submitted for SARS-CoV-2 testing, for the presence of viral, bacterial, and fungal

pathogens and non-pathogens using a comprehensive microarray technology, the Law-

rence Livermore Microbial Detection Array (LLMDA). Eighty-seven percent of the samples

were nasopharyngeal samples, and 23% of the samples were oral, nasal and oral pharyn-

geal swabs. We conducted bioinformatics analyses to examine differences in microbial pop-

ulations of these samples, as a proxy for the nasal and oral microbiome, from SARS-CoV-2

positive and negative specimens. We found 91% concordance with the LLMDA relative to a

diagnostic RT-qPCR assay for detection of SARS-CoV-2. Sixteen percent of all the samples

(32/203) revealed the presence of an opportunistic bacterial or frank viral pathogen with the

potential to cause co-infections. The two most detected bacteria, Streptococcus pyogenes

and Streptococcus pneumoniae, were present in both SARS-CoV-2 positive and negative

samples. Human metapneumovirus was the most prevalent viral pathogen in the SARS-

CoV-2 negative samples. Sequence analysis of 16S rRNA was also conducted to evaluate

bacterial diversity and confirm LLMDA results.

Introduction

The emergence of SARS-CoV-2 in late 2019 has severely impacted global health, lives, and live-

lihoods over the last 2 years. During the first months of the COVID-19 pandemic, beyond sin-

gular infection with SARS-CoV-2, reports of co-infection with other respiratory pathogens

emerged [1–3]. In the study by Chen et al, 51% of the 99 patients with SARS-CoV-2 from

Wuhan China in January 2020 had comorbid conditions [1]. Kim et al analyzed more than

1,200 nasopharyngeal swabs collected from Northern California in March 2020 and found that
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26% of the samples were positive for one or more co-infecting pathogens [2]. A meta-analysis

of 118 studies published between October 1, 2019 and February 8, 2021 showed as many as

19% of patients with COVID-19 had co-infections [3]. The three most frequently identified

viruses among SARS-CoV-2 samples from this meta-analysis were influenza type A, influenza

type B, and respiratory syncytial virus (RSV), while the three most frequently identified bacte-

ria were Klebsiella pneumoniae, Streptococcus pneumoniae, and Staphylococcus aureus; Asper-
gillus spp. were the most frequently reported fungi among those with co-infections [3]. The

presence of bacterial co-infection was associated with poor outcomes, including increased

mortality [4]. Additionally, a multi-center study of 905 patients from January to February 2020

reported clinically diagnosed bacterial co-infections from 9.5% of COVID-19 patients [5].

These studies have used real-time PCR to determine the presence of co-infecting pathogens.

Real-time PCR offers sensitive detection but limits the breadth of detection to known or sus-

pected targets for which PCR assays are available. The current study describes the use of a

more comprehensive and multiplexed detection platform that enables simultaneous detection

of multiple viral, bacterial and fungal infections, even those not suspected initially.

In this report, we aimed to evaluate both the burden of co-infections in patients with

COVID-19, as well as evidence for differences in microbiome between SARS-CoV-2 positive

vs SARS-CoV-2 negative samples. We analyzed a total of 203 residual clinical samples, 101

SARS-CoV-2 positive and 102 SARS-CoV-2 negative samples, originally submitted to the Cali-

fornia Department of Public Health (CDPH) for SARS-CoV-2 diagnostic testing between Feb-

ruary 2020 and July 2020. In contrast to some earlier studies where samples were collected

before February 2020, when other viral pathogens were known to be circulating [2, 4], the

majority of samples in this study were collected after the declaration of a statewide Shelter-in-

Place on March 19, 2020, co-incident with a decline in circulating respiratory viral pathogens.

We used the Lawrence Livermore Microbial Detection Array (LLMDA) to analyze these

samples. The LLMDA is a broad-spectrum microbial detection platform which contains DNA

probes to detect more than 12,000 microbial species including viruses, bacteria, fungi, proto-

zoa and archaea. The LLMDA has been applied to a variety of human and animal clinical sam-

ples to identify pathogens in disease cases and assess the microbiome differences between

healthy and diseased samples [6–11]. The LLMDA (v7) has been applied to veterinary diagnos-

tics and surveillance of viral diseases in the field [7, 12, 13]. The latest version of the LLMDA

was the Applied Biosystems Axiom Microbiome Array that can process 24 or 96 samples

simultaneously [14].

Sequence analysis of 16S rRNA was conducted as a complementary method to evaluate the

microbiome from the study samples. Bioinformatics and statistical analyses were conducted to

evaluate the microbial profiles in the 203 samples.

Methods

Swab sample collection and SARS-CoV-2 PCR analysis

Clinical swab sample collection. Samples were provided by the California Department of

Public Health/Viral and Rickettsial Disease Laboratory (CDPH/VRDL). There were no human

subjects involved with this work and no consent was obtained or required. This work involved

residual clinical diagnostic specimens. All samples were de-identified and analyzed anony-

mously. We obtained research exemption as deemed by the Committee for the Protection of

Human Subjects (Project number 2020–127) issued under the California Health and Human

Services Agency’s Federal Wide Assurance #00000681 with the Office of Human Research Pro-

tections. The work was done for public health surveillance purposes to better understand the

pandemic. Samples were collected from individuals from various counties in the state of
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California from February 2020 to July 2020 for SARS-CoV-2 testing using a sample collection

protocol described previously [15, 16]. A total of 203 samples were shipped to Lawrence Liver-

more National Laboratory (LLNL) for array analysis, of which, 102 were SARS-CoV-2 negative

samples and 101 were SARS-CoV-2 positive samples, all tested at CDPH/VRDL. The list of the

samples run on the LLMDA is shown in S1 Table. Of the 203 samples, 177 were nasopharyn-

geal (NP) swabs (87 SARS-CoV-2 positive, 90 SARS-CoV-2 negative) and 26 were nasal/oral

pharyngeal/throat samples (14 SARS-CoV-2 positive, 12 SARS-CoV-2 negative). Six samples

were oral pharyngeal (OP) swabs, of which all 6 were SARS-CoV-2 positive; 20 samples were

nose/throat swabs, of which 8 were SARS-CoV-2 positive, and 12 were SARS-CoV-2 negative.

Clinical information was only available for 53 samples (26%), 4 of which were from asymp-

tomatic subjects. No clinical data were available for the other 148 (73%) samples.

SARS-CoV-2 PCR analysis. The CDPH/VRDL performed real-time reverse transcrip-

tion-polymerase chain reaction (RT-qPCR) on the 203 samples described above for SARS-

CoV-2. Prior to May 21, 2020 [15], samples were extracted using Qiagen DSP Viral RNA Mini

Kit with carrier RNA added (Qiagen) with extracts tested for SARS-CoV-2 using the FDA

EUA approved 2019-nCoV CDC Real-Time RT-PCR Diagnostic Panel assay, which targets

two regions of the nucleoprotein gene (N1 and N2). After May 21, 2020 [16], samples were

extracted using the KingFisher Flex (Thermo Fisher Scientific) instrument according to the

manufacturer’s instructions. These later samples were tested using the FDA EUA approved the

Taqpath™ Multiplex Real-time RT-PCR test, which includes nucleoprotein (N) gene, spike (S)

gene, and ORF1ab gene targets.

Microarray analysis of swab samples

Nucleic acid extraction. For this study, total nucleic acid was extracted from residual clin-

ical swab samples in Viral Transport Media (VTM) using the MagMAX Microbiome Ultra

Nucleic Acid Isolation Kit (Thermo Fisher Scientific). The nucleic acid in the extracted sam-

ples was quantified using a Qubit fluorimeter (Thermo Fisher Scientific). A range of DNA con-

centration was obtained, from 0.04 ng/μL to 156 ng/μL with an average concentration of 5.7

ng/μL. The RNA concentration ranged from non-detectable to 24.8 ng/μL.

Addition of SARS-CoV-2 probes to the LLMDA. In this study, the LLMDA v7 was used

because it has the flexibility to update with SARS-CoV-2 probes. The v7 was developed in 2014

and can detect 4,219 viruses, 5,367 bacteria, 293 archaebacteria, 265 fungi, and 117 protozoa.

All possible 60-mers from 41,540 SARS-CoV-2 genomes downloaded from GISAID in June

2020 were generated using Jellyfish 2.2.10 for evaluation as signatures. Only complete, medium

or high coverage genomes from GISAID were included for this analysis. Any genome with

over 3,000 N’s or genomic length below 28,000 nucleotides (nt) were filtered out. Only viruses

isolated from human hosts were included. To find unique 60-mers, the 60-mers were mapped

with BLAST against an “anti-target” sequence set consisting of all virus families other than

Coronaviridae from NCBI and SARS-CoV-1, as well as the human genome. A hybridization

probability score based on entropy, BLAST bit score, GC content, and number of mismatches

was computed for every BLAST hit [12]. 60-mers with a probability of hybridization of over

20% to any anti-target genome was filtered out, leaving 365,292 unique k-mers.

The next step was to determine which of the unique k-mers were also highly conserved

among the SARS-CoV-2 genomes. 42 BLAST databases were created out of the genomes to

parallelize the conservation analysis. After the unique 60-mers were BLASTed to the target

genomes, the same hybridization probability score was calculated for each BLAST result. This

time 60-mers that had at least 95% probability of hybridizing to any of the target genomes

were kept. High scoring 60-mers were split into several categories. First, 60-mers that map to
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almost all target genomes and those that are less conserved were separated since the less con-

served 60-mers may be useful in distinguishing viral targets in different samples. Next, each of

those two groups of 60-mers were split by genomic location to make it easier to select signature

regions across the genome for assay design. Ensuring the final set of probes span the entire

genome is important in protecting the ability to detect the virus in degraded samples.

Swab sample testing on the LLMDA. The updated LLMDA with SARS-CoV-2 probes

was ordered from Agilent Technologies in the 4x180K format. The LLMDA analysis was car-

ried out as described previously [7, 17]. Where possible, 10–20 ng of RNA was used as input

into this protocol. Several samples did not have an RNA concentration that allowed for 10–20

ng of input and for these samples 8 μL was used as input. After array hybridization, washing

and scanning, the fluorescent intensity data was extracted from the microarray images using

the Feature Extraction Software (Agilent). The resulting intensity data was analyzed using the

Composite Likelihood Maximization Method (CLiMax) [18]. The CLiMax analysis method

requires that at least 20% of target-specific probes have a signal intensity above the 95th or 99th

percentile of the control probes for a positive result. For the analysis of all the SARS-CoV-2

positive and negative samples, a threshold of 99% was used for detection. For the SARS-CoV-2

positive samples that were positive by PCR but negative by LLMDA at 99% threshold, a 95%

threshold was also used to determine if SARS-CoV-2 can be detected at 95%.

Positive control standards were used to test the sensitivity of SARS-CoV-2 probes. The posi-

tive controls used included SARS-CoV-2 WA strain NR52285 (BEI), SARS-CoV-2 Italy strain

NR52498 (BEI). Five μL of the extracted RNA was used for microarray analysis. A synthetic

SARS-CoV-2 RNA Control 1 (MT007544.1) (Twist Bioscience) was used to spike into a nega-

tive CDPH sample at 10^6 and 10^5 copies.

LLMDA microbial detection prevalence analysis. The prevalence of species was calcu-

lated for both SARS-CoV-2 positive and negative samples. Significance testing of prevalence

between the two groups was performed using the prop.test [19] function available in the stats

package in R, and all P values were adjusted using the Benjamini-Hochberg method [20].

16S rRNA sequence analysis of swab samples

A total of 201 samples were run using 16S rRNA sequencing. Two of the samples (SARS-CoV-2

negative) that were run on LLMDA were not included in the 16S run due to low sample volume.

Plate-based 16S V4 region sequencing library preps were performed on the Hamilton Vantage

robotic liquid handling system using variable sample input up to a maximum of 30 ng, custom

designed target primers with incorporated Illumina sequencing adapters, and the 5 PRIME Hot-

MasterMix amplification kit with 30 cycles of PCR. Target primer sequences used for the 16S V4

region were 515F (GTGYCAGCMGCCGCGGTAA) and 806R (GGACTACNVGGGTWTCTAAT).

After library sample preparation, the samples were pooled, and the pool quantified using KAPA

Biosystem’s next-generation sequencing library qPCR kit and run on a Roche LightCycler 480

real-time PCR instrument. The pool was then loaded and sequenced on the Illumina MiSeq

sequencing platform utilizing a MiSeq Reagent Kit, v3 600 cycle, following a 2x300 indexed run

recipe. Reads were demultiplexed using Illumina’s bcl2fastq software. Raw fastq data was submit-

ted to NCBI BioProject under accession RPJNA833483.

Fastq reads were imported into QIIME2 for analysis [21]. Sequences were truncated to 220

bp and the first 6 nt were trimmed off, as guided by the quality scores. Sequences were clus-

tered to amplicon sequence variants (ASVs) using the dada2 algorithm [22], using min-fold-

parent-over-abundance = 6, which preserved 83–97% of sequences as non-chimeric. ASVs

were classified using the classify-sklearn function and the gg-13-8-99-515-806-nb-classifier.

qza reference. Phylogenetic analysis was performed using the align-to-tree-mafft-fasttree

PLOS ONE Evaluation of co-circulating pathogens and microbiome from COVID-19 infections

PLOS ONE | https://doi.org/10.1371/journal.pone.0278543 December 1, 2022 4 / 20

https://doi.org/10.1371/journal.pone.0278543


function, and weighted and unweighted unifrac distances were calculated using core-metrics-

phylogenetic. Data was imported into R for further analysis and visualization using the qii-

me2R [21], phyloseq [23] and ggplot2 [24] packages. Prevalence was calculated at the family

level and was measured as the ratio of samples containing the family. Sparsely distributed

ASVs were eliminated prior to diversity analysis by screening samples to only include ASVs

that were observed at least 4 times in two or more samples, reducing the total number of

observed ASVs from 113,232 to 40,178.

Results

SARS-CoV-2 probe testing on the LLMDA array

The LLMDA successfully detected all positive control DNAs tested. Fig 1 is an example array result

using the synthetic SARS-CoV-2 RNA control (MT007544.1) (Twist Bioscience). The outputs result

includes log-odds ratios and the detected versus expected array features. The light and dark colored

portions of the bars represent the unconditional and conditional log-odds scores, respectively. In

this experiment, the target genome on the array with the closest match to the experimental sample is

MT262993.1. The next closest is MT079844.1. The scores of these two closest matched sequences

are very similar and correspond well to the identity of the SARS-CoV-2 control.

LLMDA analysis of all samples

The updated LLMDA detected 358 unique species across all 203 samples. An example of an

LLMDA results summary is shown in Table 1. This is from a SARS-CoV-2 positive sample

(#217). For simplicity, only the ten most frequently detected species are shown in this table.

The columns show the iteration of analysis, conditional scores, the number of probes expected,

the number of probes detected, and the family, species and the genomic sequence level detec-

tion. In this sample, several species from the Streptococcaceae, Prevotellaceae, and Veillonella-
ceae families were detected by the LLMDA, along with SARS-CoV-2 from Coronaviridae. The

entirety of targets identified by the LLMDA from all samples are compiled in S2 Table.

Overall, viral and bacterial taxa were detected from 125 samples (62%), 92 SARS-CoV-2 pos-

itive samples and 33 SARS-CoV-2 negative samples. There was no significant difference

(p = 0.1994) in the number of species detected in SARS-CoV-2 positive and negative samples

(Fig 2). The OP samples were more diverse than the NP (P = 1.002e-6) and Nose/Throat

(P = 9.938e-5) samples. The microbial diversity of NP and Nose/Throat samples were not signif-

icantly different (P = 0.071). The species that were detected in at least 5% of the samples are

shown in Fig 3. The prevalence is calculated using the number of samples in which a species

was detected vs all samples tested. SARS-CoV-2 was the only species that displayed a significant

difference (adj P = 1.207e-27) in prevalence between SARS-CoV-2 positive and negative sam-

ples with all other detected species having an adjusted P-value of 1. The most prevalent bacteria

detected among the 203 samples were Streptococcus pyogenes and Streptococcus pneumoniae.
The family level comparison using prop.test also showed that Coronaviridae was the only family

with significant difference (adj P value = 5.784e-36) with all other detected family level taxa hav-

ing an adjusted P-value of 1 (S1 Fig). The other most common families of bacteria detected

includedMycoplasmataceae, Streptococcaceae, Prevotellaceae and Veillonellaceae (S1 Fig).

SARS-CoV-2 detection: RT-qPCR vs LLMDA

The LLMDA showed 91% concordance with SARS-CoV-2 RT-qPCR, with LLMDA detecting

SARS-CoV-2 from 92 of 101 SARS-CoV-2-positive samples, including all samples with a Ct

<23 (Table 2). Eighty-nine samples were LLMDA positive for SARS-CoV-2 at the default 99%
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threshold above random controls while 3 samples were positive at 95% above random controls.

The Ct values for the 3 samples detected at 95% threshold were 25.5, 30.6, and 33.2, respec-

tively. For samples with Ct� 23, the LLMDA detection rate was inconsistent with the PCR

results and Ct values. For example, the LLMDA detected SARS-CoV-2 from a sample with

Ct = 34.8 but failed to detected SARS-CoV-2 in samples with Ct values as low as 23, 25, and 26.

Co-circulating pathogens from COVID-19 samples

The species detected by LLMDA were compared against the list of pathogens on the virulence

factor database (VFDB) (http://www.mgc.ac.cn/VFs/main.htm). LLMDA identified 8 viral

Fig 1. LLMDA result of synthetic SARS-CoV-2 RNA control (Twist Bioscience). The array was analyzed using the 99%

threshold of signal above random controls. The light and dark colored portions of the bars represent the unconditional and

conditional log-odds scores, respectively. The conditional log-odds scores show the contribution from a target that cannot be

explained by another, more likely target above it. The unconditional score illustrates that some very similar targets share a

number of probes.

https://doi.org/10.1371/journal.pone.0278543.g001
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species in the CDPH samples (Table 3). SARS-CoV-2 was the only human viral pathogen

detected in the samples listed as SARS-CoV-2 positive (92 out of 101). Ten percent (12/102) of

the SARS-CoV-2 negative samples were positive for known pathogens, including human

metapneumovirus (6/102) (all NP samples), Betacoronavirus 1 (1/102) (NP sample), Hepatitis

B (1/102) (NP sample), Influenza B (1/102) (Nose/throat swab), and Human parvovirus B19

(1/102) (NP sample). Betacoronavirus 1 is a promiscuous CoV species that includes human

coronavirus OC-43, bovine coronavirus and other coronaviruses [25].

Twenty-six species listed by the VFDB were detected among the 203 CDPH set of SARS-

CoV-2 positive and negative samples (Table 4). Most of the bacterial “pathogens” that were

detected are commonly isolated from human samples and are more accurately described as

opportunistic pathogens that can be present as normal or transient flora [26]. The “opportu-

nistic” species include Escherichia coli,Haemophilus influenzae, Klebsiella pneumoniae,Myco-
plasma hominis, Neisseria meningitidis, Staphylococcus aureus, Staphylococcus epidermidis, and

nine Streptococcus spp. The remaining bacteria detected cause a variety of illnesses in humans

including digestive infections: Campylobacter jejuni, Salmonella enterica, and Shigella flexneri;
sexually transmitted infections: Haemophilus ducreyi and Neisseria gonorrhoeae; and pneumo-

nia: Acinetobacter baumannii, Klebsiella oxytoca,Mycoplasma pneumoniae, and Pseudomonas
stutzeri. None of the bacteria were detected in a majority of the SARS-CoV-2 positive or nega-

tive samples. Three species of Streptococci were the most frequently detected bacteria among

both SARS-CoV-2 positive and negative samples in all three sample types: S. pneumonia, S.

pyogenes (Group A Strep), and S. agalactiae (Group B Strep) (Table 4).

Table 1. LLMDA results summary example.

Iter

sel

Condi-

tional score

Probes

expected

Probes

detected

Family Species Target description

0 210 48 40 Streptococcaceae Streptococcus pneumoniae NC_014498.1 Streptococcus pneumoniae 670-6B, complete

genome

1 207 27 26 Prevotellaceae Prevotella sp. P5-108 1 Prevotella sp. F0091 Scaffold

2 111 26 26 Coronaviridae Severe acute respiratory

syndrome-related

coronavirus

MT262993.1 Severe acute respiratory syndrome coronavirus 2

isolate SARS-Cov-2/human/PAK/Manga1/2020, complete genome

3 110 25 23 Prevotellaceae Prevotella oris 1 Prevotella veroralis DSM 19559 = JCM 6290 strain DSM 19559

D464DRAFT_scaffold000

4 87 25 25 Coronaviridae Severe acute respiratory

syndrome-related

coronavirus

MT079844.1 Severe acute respiratory syndrome coronavirus 2

isolate SARS-CoV-2/human/CHN/WHUHnCoV002/2020,

complete genome

5 85.9 23 18 Streptococcaceae Streptococcus gallolyticus NZ_CP018822.1 Streptococcus gallolyticus subsp. gallolyticus DSM

16831, complete genome

6 75.5 15 14 Veillonellaceae Veillonellaceae bacterium

SB90

1 Veillonella sp. AF42-16 AF42-16.Scaf

7 69.8 20 20 Coronaviridae Severe acute respiratory

syndrome-related

coronavirus

vipr-gisaid_18176 hCoV-19/Canada/ON_MU-S218/2020|

EPI_ISL_463974|2020-03-26

8 67.6 28 23 Streptococcaceae Streptococcus pneumoniae 1 Streptococcus pneumoniae strain SMRU693, whole genome

shotgun sequence

9 63.3 19 19 Prevotellaceae Prevotella timonensis 1 Prevotella nanceiensis DSM 19126 = JCM 15639, whole genome

shotgun sequence

10 52.5 19 16 Prevotellaceae Prevotella marseillensis 1 Prevotella pallens strain DSM 18710 Ga0131133_1

LLMDA results summary example from SARS-CoV-2 positive sample #217 of the CDPH sample set. Only the ten most frequently detected species are shown here.

https://doi.org/10.1371/journal.pone.0278543.t001
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Microbial community analysis by 16S rRNA amplicon sequencing

A 16S rRNA V4 amplicon dataset was analyzed using dada2. Most of the observed amplicon

sequence variants (ASV) were very sparsely distributed, with none observed in more than 23%

of the samples. An analysis of the most prevalent families shows differences between the

SARS-CoV-2 positive and negative samples (Fig 4, Table 5). ASVs observed to have signifi-

cantly higher prevalence among SARS-CoV-2-negative samples included bacterial families

Streptococcaceae, Pasturellaceae, Corynebacteriaceae, Staphylococcaceae,Moraxellaceae and

Veillonellaceae. In addition to the above families, ASVs observed to have significantly higher

prevalence among SARS-CoV-2 positive samples included the Flavobacteriaceae, Enterobacter-
iaceae, and Prevotellaceae (Fig 4B). There was no significant difference in alpha diversity (Fig

5). Principal component analysis was performed on the weighted Unifrac distances between

samples and the first two components plotted (Fig 6). Most samples cluster in one area of the

graph. There are three other clusters that contain SARS-CoV-2 positive and negative samples

and one sparsely populated area which contains only SARS-CoV-2 positive samples.

Fig 2. Observed species richness in SARS-CoV-2 positive vs negative samples detected by the LLMDA. Samples with no species detected are not included.

The samples were coded by color based on their types: nose/throat swabs are shown in red circles; NP swabs are shown in green circles; OP swabs are shown in

blue circles.

https://doi.org/10.1371/journal.pone.0278543.g002
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Fig 3. The prevalence of species detected in SARS-CoV-2 positive and negative samples using the LLMDA. Prevalence is measured as the fraction of

samples in which the taxon was found. Species with a prevalence less than 5% across all samples are not shown.

https://doi.org/10.1371/journal.pone.0278543.g003
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Discussion

Potential utility of LLMDA in co-infection analysis from pandemic diseases

Viral and bacterial co-infections could be a significant concern in treatment and management

of patients during a pandemic. In previous influenza pandemics, bacterial co-infections have

been a major cause of mortality. In the 2009 influenza pandemic, 1 in 4 severe or fatal cases of

influenza A (H1N1) had a bacterial infection, with an apparent association with morbidity and

mortality [27]. The goal of this study was to evaluate the status of co-infection in SARS-CoV-2

positive and negative samples and examine the microbiome profiles of this sample set using

LLMDA and 16S rRNA sequencing technologies.

The LLMDA is a comprehensive multiplexed detection platform that includes more than

12,000 microbial and viral species. It is a tool that may be utilized for both detection and sur-

veillance of known and emerging viral, bacterial and fungal pathogens and opportunistic path-

ogens. The LLMDA was recently updated to detect SARS-CoV-2, such that a single test run on

LLMDA will include SARS-CoV-2 and 12,000 other microbes and viruses, providing more

information than a single COVID-19 test. The LLMDA could serve as a cost-effective tool for

rapid analysis of large number of samples, complementing next generation sequencing and

PCR analysis. Though the turnaround time is slower than PCR, it is still faster than DNA

sequencing which may take 2–3 days from sample prep to bioinformatics data analysis. The

commercial version of the LLMDA, or Applied Biosystems Axiom Microbiome Array can run

96 samples at one time, with costs closer to PCR and 16S rRNA sequencing, but much lower

than metagenomic sequencing [14].

LLMDA detection of SARS-CoV-2 and co-infections from swab samples

We found that the LLMDA detected 92 of 101 (91%) of SARS-CoV-2 PCR-positive samples.

The LLMDA SARS-CoV-2 discrepant (9%; 9/101) samples had PCR Ct values ranging

between 23 to 33. A previous study showed that the LLMDA platform was able to detect viral

RNAs in samples with Ct values of 30 or less [28]. The non-detection of SARS-CoV-2 in sam-

ples with Ct of less than 30 by the LLMDA may be related to sample quality factors, such as

prolonged storage time from the original RT-qPCR test, multiple freeze-thaw cycles, and

extraction method used, rather than due to a defect with the LLMDA. Indeed, the LLMDA

was able to detect SARS-CoV-2 in a sample with Ct > 34.

In addition to SARS-CoV-2, the LLMDA identified other viruses and bacteria from this

clinical sample set. Streptococcus, Prevotella,Haemophilus,Mycoplasma, and Veillonella were

the most prevalent genera detected and were found in both SARS-CoV-2 positive and negative

samples. At the species level, Streptococcus pyogenes, Streptococcus pneumoniae, Streptococcus
agalactiae, Prevotella intermedia,Mycoplasma testudinis were the top five most abundant bac-

teria (Fig 3). Out of 203 samples, viruses and bacteria were detected from 125 samples. The

other 78 samples, 9 positive for SARS-CoV-2 and 69 negative for SARS-CoV-2 were negative

Table 2. SARS-CoV-2 detection results.

SARS-CoV-2 LLMDA Result Number of samples PCR Ct values

Detected 92a 13.8–34.8

Not detected 9 23–33.2

Summary of LLMDA detection compared to SARS-CoV-2 RT-qPCR Ct values.
aEighty-nine samples were LLMDA positive for SARS-CoV-2 at the default 99% threshold above random controls

while three samples were positive at 95% above random controls.

https://doi.org/10.1371/journal.pone.0278543.t002
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Fig 4. Family prevalence and relative abundance from 16S rRNA sequencing data. ASV detected in SARS-CoV-2 negative (A) and positive (B) samples.

Prevalence is measured as fraction of samples in which the ASV was found. Families displayed were those with the highest overall prevalence.

https://doi.org/10.1371/journal.pone.0278543.g004

Table 5. 16S family level relative abundance.

Family Total ASVa ASV in NEGb ASV in POSc Higher in NEGd Higher in POSe

Prevotellaceae 4066 1891 3694 2 34

Corynebacteriaceae 3368 2863 3090 76 299

Streptococcaceae 3100 2208 2439 117 51

[Tissierellaceae] 2420 2167 2038 0 1

Veillonellaceae 2154 1315 1691 12 42

Neisseriaceae 2043 1639 1810 1 1

Lachnospiraceae 1638 931 1405 0 0

Leptotrichiaceae 1268 605 1041 1 0

Pasteurellaceae 1137 712 1019 81 20

Staphylococcaceae 1083 1060 915 62 53

Micrococcaceae 965 720 621 0 0

Fusobacteriaceae 956 469 854 0 1

Flavobacteriaceae 904 96 849 0 330

Moraxellaceae 872 539 804 55 67

Bacillaceae 824 586 724 23 0

Enterobacteriaceae 772 614 495 0 45

Family relative abundance in SARS-CoV-2 negative (“NEG”) and positive (“POS”) samples from 16S rRNA amplicon

analysis.
aTotal number of ASVs assigned to the family that passed quality threshold.
bASVs with prevalence > 0 in SARS-CoV-2 negative samples.
cASVs with prevalence > 0 in SARS-CoV-2 positive samples.
dASVs with significantly higher relative abundance (2 standard deviations) in SARS-CoV-2 negative samples.
eASVs with significantly higher relative abundance in SARS-CoV-2 positive samples.

https://doi.org/10.1371/journal.pone.0278543.t005
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for viruses and bacteria. Among these 78 samples, 4 samples were nose/throat swabs (and neg-

ative for SARS-CoV-2 by PCR), the other 74 were all NP samples (9 positive for SARS-CoV-2

and 65 negative for SARS-CoV-2). These samples were collected throughout February to July

of 2020 and were not from a specific month. It is likely that there was insufficient microbial or

viral DNA in these samples, or the viral and bacterial concentrations were below the detection

limit of the LLMDA. Previous evaluation of the 4-plex version of the LLMDA showed that the

Fig 5. Alpha diversity analysis from 16S rRNA sequencing data. Violin plots comparing observed ASV count, Shannon index, and inverse Simpson index for

SARS-CoV-2 negative and SARS-CoV-2 positive samples. P-values from Welch’s two sample t-test are displayed.

https://doi.org/10.1371/journal.pone.0278543.g005
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array could detect 100–1,000 copies of viral or bacterial DNA [29]. Another LLMDA study on

veterinary samples correlated the sensitivity of LLMDA vs PCR and LLMDA was able to detect

viruses when the Ct was less than 30 [28]. Since there were 25% (4/20) of nose/throat samples

negative for any virus or bacteria, while there were 42% (74/177) of NP samples negative for

any virus or bacteria, nose/throat swab seemed to be more efficient in terms of sample collec-

tion and downstream nucleic acid extraction.

The most prevalent bacteria detected in this sample set show some similarities to previous

studies, though not identical. For example, in a retrospective study by Zhu et al [30], 257 labo-

ratory-confirmed COVID-19 patients in Jiangsu Province were tested for 39 respiratory patho-

gens using RT-qPCR. These patients were enrolled from January 22 to February 2, 2020.

Twenty-four respiratory co-infecting pathogens were identified, of which Streptococcus pneu-
moniae was the most common, followed by Klebsiella pneumoniae and Haemophilus influen-
zae. Lansbury et al conducted a meta-analysis of 30 studies including 3,834 patients published

from January 2020 to April 2020. They found that 7% of hospitalized COVID-19 patients had

a bacterial co-infection and 14% of ICU patients had bacterial co-infections with the most

common bacteria identified beingMycoplasma pneumonia, Pseudomonas aeruginosa and Hae-
mophilus influenzae and the most common co-infecting viruses (3%) identified as RSV and

influenza A [31]. In contrast, we foundHaemophilus influenzae was the fourth most com-

monly detected bacterial species (8/101 or 8%) among SARS-CoV-2 positive samples

(Table 3). We did not detect influenza A or RSV from SARS-CoV-2 positive samples, consis-

tent with decreased levels of these viruses circulating once widespread shelter-in place orders

and mandated masking policies were enacted. We found that human metapneumovirus was

the most prevalent virus detected in SARS-CoV-2 negative samples (Table 4). These 6 samples

with human metapneumovirus detected were all collected in March or April 2020. No human

metapneumovirus was detected in any of the samples collected between May to July of 2020.

Results from this study showed that only a small proportion of SARS-CoV-2 positive sam-

ples had co-detection of a viral or bacterial pathogen indicative of co-infection, consistent with

other studies evaluating SARS-CoV-2 co-detections [31, 32].

Fig 6. Principle component analysis of beta diversity distances (weighted Unifrac) between samples based on 16S rRNA amplicon sequencing data. Axes

are the first two components representing the indicated percentages of the total variation explained. No clear separation between SARS-CoV-2 positive and

SARS-CoV-2 negative samples is apparent, nor is there a significant distinction between sample types.

https://doi.org/10.1371/journal.pone.0278543.g006
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Microbiome analysis from 16S rRNA sequencing

In addition to the LLMDA analysis, we conducted 16S rRNA sequence analysis to assess bacte-

rial microbiome diversity and prevalence in SARS-CoV-2 positive and negative samples.

Our16S analysis of the ASVs (which represent species-to-strain-level resolution) suggests that

the nasal microbiome is highly individualized, but there is a more common composition when

phylogenetic relatedness is taken into account. ASVs within the Streptococcaceae and Pasture-
llaceae have a lower prevalence and/or abundance in the SARS-CoV-2 positive samples, while

ASVs in the Corynebacteriaceae andMoraxellaceae have a higher prevalence and/or abun-

dance in the SARS-CoV-2 positive samples. These results showed a similar trend to a recent

study of 40 SARS-CoV-2 positive samples where the microbiota of the nasopharynx was not

different in patients positive for SARS-CoV-2 RNA compared to the microbiota of patients

negative for SARS-CoV-2 RNA [33]. Five phyla, namely Firmicutes, Bacteroidetes, Proteobac-
teria, Actinobacteria, and Fusobacteria comprised 98% of the sequences detected by 16S rRNA

sequence analysis [33]. Another recent study showed that there was no apparent effect of

COVID-19 on the nasopharyngeal microbial profiles among 33 subjects, rather, inter-personal

differences were the main reason for differences in microbial composition based on the 16S

rRNA sequences, regardless of COVID-19 status [34]. These observations are different from a

study by Mostafa, et al. where a decrease of nasopharyngeal microbiome diversity was

observed in COVID-19 confirmed patients [32]. A study of 56 SARS-CoV-2 positive and 18

SARS-CoV-2 negative patients, revealed 62 Operational Taxonomic Unit (OTU)s, mostly

members of Bacteroidota and Firmicutes, that were only detected in SARS-CoV-2 positive

samples, with Prevotella, a genus in Bacteroidia, found to be significantly more abundant in

patients with more severe COVID-19 [35]. Therefore, though some studies have shown that

COVID-19 infection causes changes of the gut microbiome [36], there is insufficient evidence

that SARS-CoV-2 infection (as measured by detection of SARS-CoV-2) has a strong effect on

the overall diversity of the nasal and oral microbiome. More microbiome data, in particular

longitudinal studies following patients through infection and clearance, would provide clearer

answers as to which populations in the nasal microbial community correlate to COVID-19 dis-

ease and related health outcomes in the patient.

Study limitations

This was a retrospective study using residual previously tested and frozen samples. It is likely

that some of the samples may have degraded over time and from multiple freeze-thaws, which

may have affected the sensitivity of detection by LLMDA. Thus, some of the samples that

tested negative for all viruses and bacterial could be false negatives. There were 4 samples (3

SARS-CoV-2 negative, and 1 SARS-CoV-2 positive) in this study collected from individuals

who reported being asymptomatic at the time of collection, but we have no information about

subsequent symptom development. The original testing done for this sample set was for

SARS-CoV-2 only and no testing was pursued for other respiratory pathogens at that time.

Other potential confounding factors that may have affected the outcome of the microbiome

survey include the methods employed. We used the LLMDA and 16S rRNA sequencing to

detect viruses and microbes present in this set of 203 samples to characterize and analyze the

microbial communities present and identify possible co-infections. We did not use PCRs tar-

geting specific respiratory pathogens or metagenomic sequencing. When compared with 16S

rRNA sequencing, LLMDA is more specific, more comprehensive, but less sensitive. LLMDA

uses random amplification while 16S rRNA sequencing uses targeted amplification of the 16S

rRNA region to enrich for 16S rRNA gene region. Neither the LLMDA nor the 16S rRNA
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sequence analysis showed significant differences in the microbiome diversity between

SARS-CoV-2 positive and negative samples.

Conclusions and recommendations

In summary, we conducted a study using the LLMDA and 16S rRNA sequencing to evaluate

co-infecting pathogens and the microbiome from SARS-CoV-2 positive and negative oral,

nasal or nasopharyngeal swab samples collected between February and July, 2020. We found

that from the 203 samples, 62% of samples were positive for one or more viruses and/or bacte-

ria. Beyond SARS-CoV-2, the most prevalent detected pathogens were the bacterial species

Streptococcus pyogenes and Streptococcus pneumoniae. There was no significant difference in

the number of additional species detected from SARS-CoV-2 positive vs negative samples. The

samples collected overlapped with the start of the quarantine in most Northern California

counties. It is possible that transmission of other co-circulating pathogens such as influenza

was reduced due to the quarantine. The clinical data associated with the samples collected

were limited, therefore the presence of co-infections cannot be correlated with clinical symp-

toms. Future studies using samples with well-characterized clinical data will further elucidate

the possible roles that the microbiome and co-infections play in COVID-19 infection, disease

progression, and mortality.
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