
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Evaluating the Private and External Costs and Benefits of Select Large-Scale Li-ion Battery 
Energy Storage Applications

Permalink
https://escholarship.org/uc/item/3jk6r6cs

Author
Porzio, Jason

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3jk6r6cs
https://escholarship.org
http://www.cdlib.org/


 

Evaluating the Private and External Costs and Benefits of Select Large-Scale Li-ion Battery  
Energy Storage Applications 

 
 

By 
 

Jason Edward Porzio 
 
 
 

A dissertation submitted in partial satisfaction of the  
 

requirements for the degree of 
 

Doctor of Philosophy 
 

in 
 

Engineering - Civil & Environmental Engineering  
 

in the 
 

Graduate Division 
 

of the 
 

University of California, Berkeley 
 
 

 
 
 

Committee in Charge: 
 

Professor Scott Moura 
Dr. Corinne Scown 

Professor Maximillian Auffhammer 
Professor Arpad Horvath 

 
 

Spring 2024 
  



 

 



 1 

Abstract 
 
 
 

Evaluating the Private and External Costs and Benefits of Select Large-Scale Li-ion Battery  
Energy Storage Applications 

 
By 

 
Jason Edward Porzio 

 
Doctor in Philosophy in Engineering – Civil and Environmental Engineering 

 
University of California, Berkeley 

 
Professor Scott Moura, Chair 

 
 
 

Lithium-ion (Li-ion) batteries have experienced a massive rise in popularity since their initial 
commercial introduction in 1991. Their implementation into several economic sectors has been 
instrumental in achieving large-scale electrification, with the eventual goal of sector-wide 
decarbonization. However, there has been little consensus on how to report the impacts 
associated with Li-ion batteries, and the standard of modeling the use-phase of Li-ion 
technologies often relies on broad assumptions, particularly with the future prices of Li-ion 
batteries. Additionally, there is little consensus on whether the integration of Li-ion technologies 
provides net positive impacts in several sectors. My research aims to provide recommendations 
for life-cycle assessments (LCA) on Li-ion technologies with the intent of helping future studies 
be more interpretable, representative, and impactful, as well as critically examine the 
assumptions used to forecast Li-ion prices. I then employ LCA and technoeconomic analysis 
(TEA) to model the climate, human health, and economic impacts of Li-ion technologies serving 
in peaker replacement and heavy-duty long-haul freight roles. The results from these studies 
show that the relative net impact of using Li-ion batteries in these roles can be positive or 
negative depending on several factors. Greater details of these studies are provided below. 
 
Life-cycle Assessment Consideration for Batteries and Battery Materials 
Rechargeable batteries are necessary for the decarbonization of the energy systems, but life-cycle 
environmental impact assessments have not achieved consensus on the environmental impacts of 
producing these batteries. Nonetheless, life cycle assessment (LCA) is a powerful tool to inform 
the development of better-performing batteries with reduced environmental burden. This review 
explores common practices in lithium-ion battery LCAs and makes recommendations for how 
future studies can be more interpretable, representative, and impactful. First, LCAs should focus 
analyses of resource depletion on long-term trends toward more energy and resource-intensive 
material extraction and processing rather than treating known reserves as a fixed quantity being 
depleted. Second, future studies should account for extraction and processing operations that 
deviate from industry best-practices and may be responsible for an outsized share of sector-wide 
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impacts, such as artisanal cobalt mining. Third, LCAs should explore at least 2–3 battery 
manufacturing facility scales to capture size- and throughput-dependent impacts such as dry 
room conditioning and solvent recovery. Finally, future LCAs must transition away from kg of 
battery mass as a functional unit and instead make use of kWh of storage capacity and kWh of 
lifetime energy throughput. 
 
Temporal Variations in Learning Rates of Li-ion Technologies: Insights for Price  
Forecasting and Policy through Segmented Regression Analysis 
Since their initial development in 1991, Li-ion cell prices have decreased by over 97%. 
However, decades of lithium-ion battery cost reductions are often represented by a single 
learning rate in an experience curve. Learning rates are not inherently constant, however, and 
changes in learning rates can have dramatic impacts on cost forecasts and subsequent policy and 
investment decisions. This analysis is the first study to employ segmented regression to describe 
how learning rates have historically changed for lithium-ion technologies in different periods of 
time. Additionally, the distinctions between cost and price data are highlighted to emphasize the 
value of allowing learning rates to vary over time when performing experience curves for 
lithium-ion batteries. This analysis identifies past changes in the learning rate of lithium-ion 
cells, modules, and installations: for lithium-ion cells, the learning rate was 4% through 1997, 
34% through 2003, and 24.4% onward. This dynamic learning behavior is explained as periods 
of market development, shakeout, and stabilization respectively. By allowing greater flexibility 
in the experience curve, a secondary shakeout period emerges from 2013 onward, with a learning 
rate of 40.9%. While this secondary shakeout has less statistical significance, we find that it 
aligns well with the growth of Li-ion markets and may emerge as significant as more data 
becomes available. Modules and installed costs follow a similar trend, with low learning (6-8% 
for 4-6 years) followed by an acceleration to 31-37%. The importance of capturing these 
historical variances is highlighted by demonstrating the impact of varying learning rates on 
forecasted lithium-ion cell prices through scenario analysis. We observe that price forecasts are 
much more sensitive to the uncertainty in learning rate compared to the uncertainty in technology 
deployment. Utilizing multiple learning rates from a segmented experience curve can enhance 
future Li-ion technology price projections, improving both price forecasting and policy 
development. 
 
Private and External Costs and Benefits of Replacing High-Emitting Peaker Plants with 
Batteries 
Falling costs of Li-ion batteries have made them attractive for grid-scale energy storage 
applications. Energy storage will become increasingly important as intermittent renewable 
generation and more frequent extreme weather events put stress on the electricity grid. 
Environmental groups across the United States are advocating for the replacement of the highest-
emitting power plants, which run only at times of peak demand, with Li-ion battery systems. We 
analyze the life-cycle cost, climate, and human health impacts of replacing the 19 highest-
emitting peaker plants in California with Li-ion battery energy storage systems (BESS). Our 
results show that designing Li-ion BESS to replace peaker plants puts them at an economic 
disadvantage, even if facilities are only sized to meet 95% of the original plants’ load events and 
are free to engage in arbitrage. However, five of 19 potential replacements do achieve a positive 
net present value after including monetized climate and human health impacts. These BESS 
cycle far less than typical front-of-the-meter batteries and rely on the frequency regulation 
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market for most of their revenue. All projects offer net air pollution benefits but increase net 
greenhouse gas emissions due to electricity demand during charging and upstream emissions 
from battery manufacturing. 
 
Private and External Costs and Benefits of Electrifying Heavy-Duty Long-Haul Trucking 
with Li-ion Batteries 
The electrification of long-haul heavy-duty vehicles (HDVs) is necessary for the decarbonization 
of the transportation sector in the United States, but there is no clear technological pathway to 
replace the diesel internal combustion engine enabling this transport mode. Li-ion batteries have 
emerged as a popular candidate when exploring options to electrify HDVs, largely due to the 
rapidly growing popularity of Li-ion battery passenger electric vehicles and decreasing Li-ion 
battery prices. While many studies point to the climate and human health benefits that will arise 
from replacing diesel HDVs with Li-ion HDVs, other studies claim that technological limitations 
will make Li-ion HDVs economically inviable for long-haul freight. We use life-cycle 
assessment and technoeconomic analysis to model the total ownership cost, climate, and human 
health impacts associated with replacing a diesel Class 8 truck performing long-haul freight with 
a Li-ion Class 8 truck in the United States. Our results show that when including monetized 
contributions to global warming potential and human health burden, Li-ion Class 8 trucks in 
long-haul freight have greater lifetime costs per mile than diesel Class 8 trucks due to the high 
price and specific energy of Li-ion batteries, as well as high costs associated with the use of 
charging infrastructure. Additionally, the current use of Li-ion Class 8 trucks results in marginal 
improvements to social impacts relative to diesel Class 8 trucks under a high renewable energy 
cost scenario, but worse social impacts under a low renewable cost scenario. However, by 2035, 
the social impacts of Li-ion Class 8 trucks are substantially less than diesel Class 8 trucks under 
both renewable energy cost scenarios as more renewable energy is integrated into the electricity 
grid. 
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Chapter 1 
 
Introduction 
 
 
 
 
 
The price of Lithium-ion (Li-ion) batteries has decreased by over 97% since their commercial 
introduction in 1991, currently allowing for the storage of electricity at unprecedented prices.1–3 
This rapid price drop, along with the relatively high specific energy of Li-ion batteries, has 
created unique opportunities to electrify sectors that were previously dependent on the 
combustion of fossil fuels.4–6 While the reduction of fossil fuel combustion is essential for the 
decarbonization of sectors,7–9 it is still unclear whether the integration of Li-ion technologies 
provides net positive impacts in these sectors. This is largely due to the lack of consensus on how 
to report the impacts associated with Li-ion batteries as well as high levels of uncertainty on the 
future prices of Li-ion batteries.10,11 Additionally, when examining the impacts associated with 
Li-ion battery application, studies have historically only modeled their private monetary impacts 
or their external social impacts, never both. However, decision makers need to simultaneously 
examine private monetary and external social costs in order to determine where Li-ion batteries 
can feasible provide a net positive impact. 
 
This dissertation aims to aid decision makers in this role by providing recommendations for life-
cycle assessments (LCA) on Li-ion technologies with the intent of helping future studies be more 
interpretable, representative, and impactful. Additionally, this dissertation critically examines the 
assumptions used to forecast Li-ion prices to provide recommendations on how to develop Li-ion 
price scenarios when examining future Li-ion costs. LCA sand technoeconomic analyses (TEAs) 
are then performed to model the climate, human health, and economic impacts of Li-ion 
technologies serving in peaker replacement and heavy-duty long-haul freight roles. The results 
from these studies show that the relative net impact of using Li-ion batteries in these roles can be 
positive or negative depending on several factors.  
 
 
1.1 Background on Li-ion Battery Technologies 
 
A schematic breakdown of the different tiers of Li-ion battery systems is visualized in Figure 1, 
highlighting the primary components of each tier that will be frequently referenced throughout 
this dissertation. 
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Figure 1.1. Sub-system schematics of stationary Li-ion system tiers. 
 

1.1.1 Cell 
 
The cathode acts as the source of ions that move from cathode to anode and vice versa to create a 
voltage drop. There are numerous cathode chemistries available on the market, but some of the 
most widely used include lithium nickel manganese cobalt (NMC), lithium nickel cobalt 
aluminum (NCA), lithium iron phosphate (LFP) and lithium manganese oxide (LMO). Within 
each cathode chemistry, the exact material ratio can vary, thus creating different cathodes. 
Different cathodes have different properties such as energy density, voltage, duration, and more. 
The electrolyte is the medium that enables the movement of ions. For Li-ion cells, it is most 
commonly lithium salt in an organic solution, often with additives to improve cell stability and 
performance overtime. The separator acts as a barrier for electrons between the cathode and the 
anode, forcing electrons to flow through the “wire” or the grid infrastructure which the cell is a 
part of as the ions pass through the separator. Separators are commonly synthetic resins like 
polyethylene (PE) and polypropylene (PP). A single cell “unit” consists of a cathode and an 
anode physically separated by a separator, all within an electrolyte. 
 
Additionally, Li-ion cells have different designs dictating the configuration of cell sub-systems 
and potentially influencing cell characteristics. Three major categories of cells exist: cylindrical, 
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prismatic, and pouch. Cylindrical cells are the most widely used and have the recognizable 
cylindrical casing. They consist of alternating sheets of electrodes (anode and cathode), with a 
separator in between each sheet. These can then be rolled up and packed into cylindrical casings 
with an electrolyte solution. They have a high durability due to the tight electrode-separator 
packing and can be quickly and cheaply produced due to their robust pre-existing supply chain. 
Multiple types of cells (18650, 21700, and more) exist under this categorization. 
 
Prismatic cells consist of many stacked flat units of cells, or flattened cylindrical cells. These are 
packaged into small rectangular casings. Despite being less durable, prismatic cells have seen a 
growth in popularity due to their application in consumer electronics, like cell phones, thanks to 
convenient sizing and greater energy density. Pouch cells further improve upon these benefits by 
replacing a rigid rectangular casing with a flexible “pouch casing”. This allows for an even 
greater packaging density, but at the cost of a reduced durability. Similar to cylindrical cells, 
multiple types of cells exist within the prismatic and pouch categories. The preferred type of cell 
depends on the energy storage application. General schematics for Li-ion cells can be found in 
Smith et al. 2022.11 

 
1.1.2 Module 

 
The module is the next tier of Li-ion system, which consists of many Li-ion cells, supporting 
power electronics, and the housing containing all these sub-systems. The physical attributes and 
subsystems of modules can vary greatly, depending on the application, manufacturer, and cell 
type of the batteries. 
 
Within a module, multiple cells are connected to achieve a greater rated power and energy 
capacity. The power electronics in a module ensure that the battery cells are operated within 
appropriate and safe conditions. This can include regulating the charging and discharging 
current, ensuring capacity is kept within the set depth of discharge, maintaining cell temperature 
within an appropriate range, and more. However, different applications of energy storage operate 
within different ranges, and different cell types have different properties. Therefore, an optimally 
designed module would have power electronics that reflect how the battery is used. Some 
common power electronics include heat sinks, gas collectors, open circuit voltmeters, and 
air/liquid cooling components. 
 
Similarly, module housing varies greatly by the application, manufacturer, and cell type of the 
batteries. The primary purpose of the housing is to contain and protect the module as a single 
unit. The housing may be removable or opened in order to access and replace individual 
components. Additionally, battery housing may play a large role in thermal regulation. 
Li-ion battery modules are frequently categorized into two primary groups based on their 
application: electric vehicles (EV) and stationary storage. While there are many potential 
applications for Li-ion battery modules, these two applications are of particular interest to the 
study. The characteristics of modules for these two applications may vary greatly. 
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1.1.3 Installed System 
 
The installed system is the highest tiered Li-ion system and may vary greatly between EVs and 
stationary storage. In electric vehicles, the installed system has a relatively small energy 
capacity, ranging between 10 to 100 kWh. The installed system is often referred to as a “pack”, 
which consists of many connected modules and additional power electronics for thermal, safety 
and performance regulation. The installed systems for stationary storage consist of battery 
modules, the balance of systems (BOS), and additional systems.  
 
Within an installed system, multiple battery modules are connected to achieve a greater rated 
power and energy capacity. Individual modules are often easily accessible and can be replaced if 
degradation occurs, while the rest of the system remains. This can extend the lifespan of the total 
installed system. The BOS consists of the equipment required to operate and monitor the battery 
modules and those connecting batteries to the electrical infrastructure. This typically includes 
bidirectional inverters, transformers, circuit breakers, heating, ventilation, and air conditioning 
(HVAC), and fire suppression. The quantity/type of modules and the equipment in the BOS can 
vary greatly by the application of the installed system. Additional systems refers to the 
equipment required to perform the function of the installed system that is not inherently related 
to the Li-ion battery system. For example, the body of an EV would be considered an additional 
system, as it is essential for an EV but not needed for the operation of the Li-ion battery system. 
 
Finally, an installed system may have an impact on the operation of the electrical infrastructure it 
is a part of, especially if it has a large rated power or energy capacity. Its participation on the 
electric power grid may cause congestion of distribution and transmission infrastructure and 
imbalances of reactive/active power. As a result, the party managing the electrical infrastructure 
will have to perform upgrades, the cost of which may be assigned to the owner of the installed 
system.  
 
 
1.2 Research Objectives 
 
Four primary research objectives are present in this dissertation. Each objective is the primary 
focus of one of the following chapters. The objectives are as follows: 
 

1) Review the present body of literature on the life-cycle assessment of batteries and 
develop recommendations to improve the quality of future studies 
 

2) Examine the temporal variations in Li-ion technology prices to develop insights for price 
forecasting 

 
3) Identify the private and external costs and benefits of replacing high-emitting peaker 

plants with Li-ion batteries 
 

4) Identify the private and external costs and benefits of electrifying heavy-duty long-haul 
trucking with Li-ion batteries 
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1.3 Approach and Methodology 
 
The goal of the first and second research objectives is to understand the intricacies of the external 
life-cycle impacts and private costs associated with Li-ion batteries. Methods in these sections 
will be focused on the review of current and historic literature to understand shortcomings with 
the current methodologies used to assess private and external costs. 
 
This knowledge is then applied to the third and fourth objectives to produce results that report 
the combined private and external impacts associated with a Li-ion battery application. In these 
chapters, a combined TEA and LCA will be performed to model the behavior and the consequent 
impact of Li-ion batteries operating in peaker replacement and heavy-duty, long-haul trucking. 
Both the private monetary considerations and the external societal impacts will be presented as 
results. Capturing both these impact categories and their combined value is vital in determining 
if a Li-ion technology will be easily adopted in sectors without incentive, and whether this 
adoption will be associated with benefits to society. Using this approach, this dissertation aims to 
provide novel perspectives on the use of Li-ion batteries in these sectors while emphasizing the 
importance that both economic and societal costs have on the impacts associated with technology 
adoption. 
 
 
1.4 New Contributions 
 
The following four chapters of this dissertation address one of the main objectives outlined in 
section 1.2. Each chapter contains novel contributions to the existing research landscape relevant 
to each objective. The contributions in each chapter are summarized below. 
 
Life-cycle Assessment Considerations for Batteries and Battery Materials 
 

• Recommendations and best practices for battery LCAs. The publication associated with 
this chapter is the first to recommend best practices for battery LCAs. While no novel 
methods or results are produced, the review and subsequent recommendations aim to 
make battery LCAs more interpretable, representative, and impactful. (Section 2.3) 

 
Temporal Variations in Learning Rates of Li-ion Technologies: Insights for Price 
Forecasting and Policy through Segmented Regression Analysis 
 

• Segmented regression of Li-ion technology prices: The study associated with this chapter 
is the first to apply segmented regression to the price of Li-ion technologies, thus 
deriving periods of statistically distinct learning rates. (Section 3.3.1) 

• Definition of statistically distinct Li-ion market periods: The periods of statistically 
distinct learning are compared to market behavior of Li-ion technologies in order to 
define distinct market periods. (Section 3.4.1) 

• Li-ion technology price uncertainty forecasting by market scenarios: The current 
standard practice for the forecasting the uncertainty of Li-ion technology prices is to vary 
learning rates by several percentages in each direction and observe the range of projected 
prices. This chapter performs a novel uncertainty forecast by modeling independent 
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market scenarios associated with historic Li-ion technology learning rates from the 
previously defined market periods. (Section 3.4.2) 

 
Private and External Costs and Benefits of Replacing High-Emitting Peaker Plants with 
Batteries 
 

• Simultaneous modeling of life-cycle costs, climate, and human health impacts of 
replacing peaker plants with batteries: The publication associated with this chapter is the 
first to concurrently model monetary life-cycle costs, climate impacts, and contributions 
to human health burden from replacing peaker plants with Li-ion batteries. (Section 
4.3.1) 

• Sizing of Li-ion battery energy storage systems to replace peaker plants: Novel 
conclusions on the sizing of Li-ion battery energy storage systems are reached by 
comparing the battery size against the throughput of the system. (Section 4.2.2) 

• Considering battery degradation impacts when modeling costs of large-scale Li-ion 
battery energy storage systems: This chapter includes a simple model of battery 
degradation in order to include the impacts of battery degradation when determining 
potential costs of large-scale Li-ion BESS. (Section 4.2.2) 
 

Private and External Costs and Benefits of Electrifying Heavy-Duty Long-Haul Trucking 
with Li-ion Batteries 
 

• Simultaneous modeling of life-cycle costs, climate, and human health impacts of 
electrifying heavy-duty long-haul trucking with Li-ion batteries: The study associated 
with this chapter is the first to concurrently model monetary life-cycle costs, climate 
impacts, and contributions to human health burden from electrifying heavy-duty long-
haul trucking with Li-ion batteries. (Section 5.3.1) 

• Sensitivity of total lifetime costs of heavy-duty trucking: A preliminary sensitivity analysis 
is performed to explore how the monetary and social costs of Class 8 trucks operating in 
long-haul frieght may vary by scenario and impact valuation. (Section 5.3.3) 
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Chapter 2 
 
Life-cycle Assessment Consideration for 
Batteries and Battery Materials 
 
 
 
 
 
The text and research in this chapter was published in Advanced Energy Materials. The citation 
for the published article is as follows:  
 

Porzio, J., & Scown, C. D. (2021). Life‐cycle assessment considerations for batteries and 
battery materials. Advanced Energy Materials, 2100771. 
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2.1 Introduction 
 
Energy storage is essential to the rapid decarbonization of the electric grid and transportation 
sector.1,2 Batteries are likely to play an important role in satisfying the need for short-term 
electricity storage on the grid and enabling electric vehicles (EVs) to store and use energy on-
demand.3 However, critical material use and upstream environmental impacts from 
manufacturing are often cited as a drawback to widespread use of rechargeable batteries.4,5 Life-
cycle assessment (LCA) is a widely used approach for examining the potential impacts of large-
scale battery production, use, and disposal and/or recycling. At its core, LCA is a methodology 
for quantifying the direct and indirect environmental burdens associated with a product or 
service.6 It is also a useful framework to explore environmental tradeoffs between different 
technologies that provide a comparable service. However, applying LCA to batteries is 
challenging for a variety of reasons ranging from methodological choices to scarcity of primary 
data on battery manufacturing. 
 
To date, there has not been consensus in the field of LCA as to how the environmental impact of 
batteries should be analyzed, nor how the results should be reported. Studies use a wide variety 
of system boundaries, functional units, primary data sources (which in turn report data at 
different levels of granularity), and life-cycle inventory, midpoint, and impact categories. This 
makes cross-comparisons of different technologies challenging and limits the ability for LCA to 
provide a feedback loop to early scientific research and technology development. It can also limit 
our ability to detect and correct errors in the literature; it is common for life-cycle inventory 
results to vary by one or more orders of magnitude across the literature and most reviews are 
unable to explain the underlying cause of the differences. 
 
Prior review papers on the LCA of lithium-ion batteries (LIBs) can be categorized into three 
main groups dependent on their goals: identifying and reducing sources or 
uncertainty/variability;7-9 synthesizing results and determining key drivers to inform further 
research;10,11 and critical review of literature to improve LCA practices.12 Sullivan and 
Gaines9 reviewed life-cycle inventory estimates for lead-acid, nickel–cadmium, nickel-metal 
hydride, sodium-sulfur, and Li-ion batteries and calculated their own estimates for comparison; 
the conclusions focused on the need to fill key data gaps. Ellingsen et al.7 focused on life-cycle 
greenhouse gas (GHG) emissions and noted that previously published results differed by an 
order of magnitude, with differences driven by direct energy demand for cell manufacturing and 
pack assembly. Pellow et al.8 focused on gaps in the range of use cases evaluated and the need 
for additional studies on end-of-life management. Nealer and Hendrickson10 focused on EVs and 
summarized prior studies’ findings on the energy and GHG advantages of EVs. Nordelöf 
et al.12 reviewed 79 LCAs for hybrid, plug-in hybrid, and pure EVs and the study focused more 
broadly on sources of uncertainty related to light-duty vehicles and their use, as opposed to 
battery technologies specifically. Peters et al.11 reviewed a wide array of battery LCAs and 
offered valuable insights into which studies used primary data and which relied on secondary 
data sources; the review also provides an in-depth discussion of battery cycle life and round-trip 
efficiency. Peters et al.11 did note, as other reviews have, that manufacturing energy use 
estimates vary across the literature by at least an order of magnitude. However, they did not 
attempt to offer a detailed explanation and ultimately relied on calculating averages of results 
from prior studies. Using these calculated averages, combined with 1995 European 
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normalization factors for each life-cycle impact, Peters et al.11 suggested that global warming 
potential (GWP) may not be the most important environmental metric, as abiotic depletion, 
acidification potential, and human toxicity potential all resulted in larger normalized impacts. 
 
In this paper, we will not revisit all prior LCA studies on life-cycle energy and environmental 
impacts of batteries. Instead, we will focus on three key issues that have not been adequately 
explored in the literature to-date: 1) selecting relevant environmental performance metrics and 
acknowledging their limitations and data requirements, 2) understanding discrepancies in 
reported battery manufacturing impacts, and 3) defining appropriate functional units. With these 
key issues in mind, we provide a critical review of recent LCA studies applied to rechargeable 
batteries produced for grid- and vehicle-based applications and suggest some best practices for 
the field. We draw from previously published work with a focus on LIBs, although most of the 
insights in this article can apply to a wide variety of battery technologies. 
 

2.1.1 Lithium-Ion Battery Technologies 
 
LIBs are the most commonly used battery chemistry and, although this paper is not focused on 
the details of the technologies, it is worthwhile to briefly describe the most common types of 
LIBs explored in the current literature. Research has continued on the development of non-LIB 
battery technologies, including sodium-ion batteries, potassium-ion batteries, solid-state batteries 
(Li-metal, Li-sulfur, and rechargeable zinc alkaline), flow batteries, and multivalent 
batteries,13,14 but LIBs are likely to continue to dominate the market in the near-term. LIBs are 
typically differentiated based on their cathode material: lithium manganese oxide (LMO), lithium 
nickel manganese cobalt oxide (NMC), lithium iron phosphate (LFP), and lithium nickel cobalt 
aluminum oxide (NCA). Most batteries explored in prior LCA studies use a graphite carbon 
anode. As shown in Table 2.1, NMC, NCA, LFP, and LMO batteries with graphite anodes are 
typically estimated to last for 1000–3000 cycles or more.15–21 These batteries have specific 
energy at the cell level ranging from 90 to 250 Wh kg−1.15 Researchers are exploring other 
anodes, such as lithium titanate (LTO) and we have included LFP-LTO battery data in 
Table 2.1 as well; the LFP-LTO battery offers longer cycle life (5000+) at the expense of 
specific energy, which is lower than all other types of LIBs in Table 2.1.15,16,19,20,22 NCA-graphite 
batteries achieve the highest specific energy, but stand out for their relatively poor safety rating, 
with a far lower thermal runaway temperature than its competitors.15,23 Other LIB chemistries, 
such as LCO were intentionally omitted due to their decreasing relevance in vehicle- and grid-
scale energy storage systems. “Anode free” configurations, such as Zinc MnO2 batteries, are in 
the early stages of development and have the potential to improve energy density relative to 
batteries with graphite anodes.24 The remainder of this review will focus on the LIB chemistries 
outlined in Table 2.1. 
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Table 2.1. Battery characteristics by common lithium-ion battery chemistries. Price per kWh for 
each battery chemistry is qualitatively described relative to other battery chemistries.14,23 Safety 
rating for each battery chemistry is qualitatively described, primarily dependent on battery 
stability, thermal behavior, and resiliency to abuse.15 Data sources: Bloch et al., Mitchel and 
Waters, Ralon et al., Gantenbein et al., Ecker et al., Battaglia, Srinavasan, Zubi et al., Stewart 
et al., Buchmann, Grolleau et al., Nelson et al., and Nitta et al.14-23,25-27 
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2.1.2 Life-Cycle Assessment Overview 
 
To compare the environmental impacts of competing battery technologies, or simply understand 
the full impact of increased battery production and use, the LCA must be designed to answer a 
well-defined question. LCAs are commonly defined by four key phases, all of which are 
essential to completing a meaningful study: a) the goal and scope definition phase, b) the 
inventory analysis phase, c) the impact assessment phase, and d) the interpretation phase.6 It is 
during the goal and scope definition phase that researchers must decide what question they seek 
to answer and let that question guide the definition of system boundaries, environmental metrics, 
and one or more functional units. In the context of batteries, LCA results can be used to inform 
battery research and development (R&D) efforts aimed at reducing adverse environmental 
impacts,28–30 compare competing battery technology options for a particular use case,31–39 or 
estimate the environmental implications of large-scale adoption in grid or vehicle applications.40 
 
LCA is most straightforward to apply to a well-defined functional unit; in other words, any 
environmental impact is simple to normalize per unit of a product or service that is being 
provided (e.g., g CO2 emitted per kWh of electricity generated or liters of water withdrawn per 
bushel of corn produced). However, batteries pose a particular challenge for LCA as it has 
historically been applied. Batteries are simply storing energy for later use, and how batteries are 
cycled will impact their longevity and the value of the service they provide in ways that are not 
straightforward to predict. If a study is comparing multiple battery technologies applied to the 
same use case, it makes most sense to normalize results in the basis of the service provided. The 
downside of this approach is that it is very difficult to compare multiple studies, as they 
inevitably use different assumptions about how the battery is used over the course of its lifetime. 
In contrast, an assessment of one or more early-stage battery technologies intended to inform 
further research may not have reliable use-phase performance data. In this case, it may be 
appropriate to draw a system boundary ending at the factory gate, and simply note any potential 
difference in cycle life that may ultimately impact the batteries’ longevity. 
 
Studies that define system boundaries excluding the use phase and end-of-life are commonly 
referred to as cradle-to-gate (where “gate” refers to a factory gate). Studies including the use 
phase and end-of-life are referred to as cradle-to-grave; this can include reuse, recycling, and 
ultimately disposal.6 The term cradle-to-cradle has been used to refer to systems that include 
recycling, but is generally meant to suggest a zero-waste process41 and thus is not commonly 
used to refer to battery life cycles, even if they include recycling. 
 
 
2.2 The Life Cycle of Stationary and Vehicle Li-ion Batteries 
 
Figure 2.1 shows the typical life cycle for LIBs in EV and grid-scale storage applications, 
beginning with raw material extraction, followed by materials processing, component 
manufacturing, cell manufacturing, and module assembly.14 Finished modules may be assembled 
into packs and placed in vehicles, assembled into racks on-site for shipment to stationary storage 
facilities, or shipped directly as modules for off-site rack assembly at energy storage sites.42–

45 All LCAs must begin with raw material extraction, regardless of scope. Researchers then 
decide whether to tie their analysis to a particular use case and, if so, whether to extend the 
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system boundaries through the use phase and end-of-life (EOL). Even in cradle-to-gate studies, 
researchers must be careful to indicate the form batteries take at the factory gate; module, pack, 
or fully assembled rack (in the case of stationary storage). 
 

 
 

Figure 2.1: Major life-cycle stages for vehicle and stationary batteries. 
 
The majority of battery LCAs are tied to a particular use case, such as EVs, hybrid solar and 
battery systems, or standalone grid-connected storage.46–52 This is the preferred approach, where 
feasible, because performance differences (e.g., round-trip efficiency and cycle life) are 
important to the definition of a common functional unit across which different alternatives can be 
compared. However, not all studies include battery use phase for a specific application, nor is 
this always feasible for more advanced, pre-commercialization battery technologies. Wang et al. 
(2019)53 conducted a use-agnostic analysis to compare the environmental impacts of different 
cathode materials and Wang et al. (2018)54 conducted a cradle-to-gate analysis of lead acid, 
LMO, and LFP batteries. For a use-agnostic cradle-to-gate analysis of an LIB, researchers must 
still select a pack or rack configuration that is tied to a stationary or EV application. In a truly 
use-agnostic LCA, the system boundary may need to be set at the module assembly stage, since 
the assembly of the pack or rack (including such components as thermal management and 
electrical control) will differ substantially depending on how the battery will be used (see 
Figure 2.1). Cradle-to-grave LCAs consider how batteries will be used and treated at their end of 
life including collection, recycling and/or disposal. There are multiple options for recycling, 
ranging from specialized, chemistry-specific direct recycling to hydrometallurgical recycling and 
pyrometallurgical recycling, which are more flexible and aim to recover only valuable metals 
from the batteries.55,56 
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2.2.1 Raw Material Extraction and Delivery 
 
LIBs’ reliance on finite resources, combined with dramatic growth in production (approximately 
doubling every 5 years)21 and uncertain future recycling practices has generated concern over 
material constraints. Olivetti et al.57 explored the potential bottlenecks in critical material 
supplies for LIB manufacturing. The breakdown of material comprising batteries, from active 
material through individual cells, modules, and packs, is well documented in the literature; 
breakdowns of elements present in each type of cathode active material are shown 
in Table 2.2 and mass breakdowns per kWh for modules are shown in Table 2.3. Although the 
use of critical materials is often discussed as a single challenge, there are three separate issues 
worth discussing. First, there is the question of resource availability relative to consumption and 
whether scaling up battery manufacturing will deplete critical material reserves and/or drive up 
prices. Second, there is the geopolitical risk associated with highly concentrated production, 
which can lead to conflict, price instability, and artificial shortages. Here, we characterize this 
concern as supply chain risk, and argue that researchers too often conflate supply chain risk with 
resource depletion. Traditional LCA methods are not well equipped to capture supply chain risk. 
Third, there are environmental and social impacts associated with mining operations, which is 
well within the purview of LCA. 
 
Table 2.2. Element mass ratio per cathode active material. Data sources: Nelson et al. and Nitta 
et al.26,27  
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Table 2.3. Module material inventory per kWh. Data source: Nelson et al.26  
 

Material Cell 
Component 

NMC-
111 

NMC-
532 

NMC-
622 

NMC-
811 

NCA LFP LMO 

Cathode Active 
Material 
[g/kWh] 

Cathode 1757.45 1288.79 1481.48 1257.53 1358.70 2031.28 2341.74 

Graphite 
[g/kWh] 

Anode 858.02 863.13 840.45 841.18 857.71 956.61 793.59 

Carbon Black 
[g/kWh] 

Cathode 
Additive 

36.61 26.85 30.86 26.20 28.31 42.32 48.79 

PVFD [g/kWh] Cathode Binder 36.61 26.85 30.86 26.20 28.31 42.32 48.79 

Anode Binder 17.51 17.61 17.15 17.17 17.50 19.52 16.20 

Aluminum 
[g/kWh] 

Cathode 
Current 
Collector 

104.32 77.24 88.18 75.08 79.12 156.85 149.66 

Positive 
Terminal 
Assembly 

29.57 27.28 27.06 25.75 27.05 35.88 32.08 

Cell Container 57.55 50.93 51.93 48.85 51.48 73.53 66.51 

Module Heat 
Conductors 

103.34 90.39 93.27 87.34 91.67 133.48 121.61 

Module 
Enclosure 

69.03 64.43 64.03 61.14 63.57 82.09 74.86 

Copper [g/kWh] Anode Current 
Collector 

244.18 182.03 206.82 176.73 186.31 364.82 347.55 

Negative 
Terminal 
Assembly 

98.13 90.52 89.81 85.46 89.75 119.06 106.47 

Cell 
Interconnection 

29.45 27.17 27.01 25.65 26.85 35.77 31.98 

LiPF6 [g/kWh] Electrolyte Salt 2.79 2.37 2.52 2.31 2.40 3.75 3.42 

Ethylene 
Carbonate 
[g/kWh] 

Electrolyte 
Fluid 

221.14 188.14 199.40 183.43 190.14 297.29 270.79 

Dimethyl 
Carbonate 
[g/kWh] 

Electrolyte 
Fluid 

179.26 152.51 161.63 148.69 154.13 240.98 219.50 

Polypropylene 
[g/kWh] 

Separator 16.80 12.40 14.18 12.07 12.73 25.33 24.19 

Cell Container 8.83 7.81 7.96 7.49 7.89 11.28 10.20 

Polyethylene 
[g/kWh] 

Separator 16.80 12.40 14.18 12.07 12.73 25.33 24.19 

Polyethylene 
Terephthalate 
[g/kWh] 

Cell Container 3.83 3.39 3.46 3.25 3.43 4.90 4.43 

Misc Electronics 
[g/kWh] 

BMS 11.08 11.32 10.28 10.26 11.05 11.81 10.34 

Total [kg/kWh]   3.90 3.22 3.46 3.13 3.30 4.71 4.75 

 
 

2.2.1.1 Resource Depletion and Supply Chain Risk 
 
Olivetti et al.57 synthesized the available data on consumption rates relative to available reserves 
for nickel (Ni), manganese (Mn), cobalt (Co), lithium, (Li), and natural graphite. They found that 
the ratio of known reserves to primary mine production (also known as the static depletion 
index) has increased for Co, Li, and natural graphite, suggesting that continued demand has 
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resulted in additional exploration and extraction. Mn and Ni did not show an upward or 
downward trend, indicating that the ratio of production to known reserves has remained 
relatively constant. This highlights the challenge of attempting to place a single number on finite 
resource depletion as part of an LCA; society's understanding of available resources is not static. 
Increased demand drives advancements in exploration and recovery technologies. Material 
recovery potential through recycling adds another layer of complexity. As Olivetti et al.57 rightly 
point out, there is a time lag between when batteries are manufactured and when they reach the 
end of their life, so regardless of what can be recovered, recycling is unlikely to address any 
near-term (10–20 year) material supply constraints. If battery technologies do not evolve away 
from reliance on these critical materials in coming decades, recycling can be an important long-
term strategy. Pyrometallurgical recycling facilities will recover Ni, Co, Mn, and Copper 
(Cu),58 while hydrometallurgical recycling facilities will recover all of the aforementioned 
metals, as well as Li and aluminum (Al). Direct recycling will recover an even larger range of 
materials, many of which can be reused without further processing. Given this context, it is 
worth revisiting the assertion by Peters et al.11 that abiotic depletion (an impact category 
representing depletion of non-renewable resources, such as minerals and fossil fuels) is the most 
important impact of batteries on a normalized basis, exceeding the importance of GWP. Many of 
the nuances in critical material use and supply outlooks are lost in typical LCA practices and 
reducing these impacts to a single score is more likely to create confusion than generate useful 
insights, particularly when fossil fuel and critical material depletion are combined in a single 
score. This is particularly true for materials like Co and Li, for which demand is growing rapidly. 
In fact, a greater cause for concern is the geographic diversification, or lack thereof, in reserves 
and supply for some of these materials. 
 
Olivetti et al.57 note a consensus that Co, Li, and to a lesser extent, natural graphite pose the 
greatest supply risks. These risks are driven by the concentration of known reserves and current 
production in a small number of countries. Table 2.4 shows the countries with largest reserves 
and current production for raw materials used in LIB production. Co, which is required for 
batteries with NMC and NCA cathodes, is generally regarded as posing the greatest risk because 
of its geographically-concentrated supply. Batteries are responsible for around 60% of global Co 
demand, and total demand is expected to double by 2025.59,60 Over 60% of current supply, and 
half of estimated reserves are located in the Democratic Republic of the Congo (DRC), where 
there have been serious environmental and social consequences ranging from child labor to 
human exposure to heavy metals, particularly from unregulated artisanal and small-scale mining 
operations.60–64 Co is largely a co-product of Ni and Cu mining, with 55% of supply coming 
from Ni mining, while <10% comes from dedicated Co extraction.57,65 Co processing capacity is 
even more concentrated; 95% of all Co refining occurs in China.65 
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Table 2.4. 2019 global reserves for materials relevant to Li-ion battery production, 2019 mining 
production, and distribution of resources. Data source: USGS61  
 

 
a)Representative of bauxite reserves; b)Representative of smelter production; c)Representative of iron content in ore; 
d)Morocco and Western Sahara; e)Natural Graphite 

 
Li production is concentrated in Australia, Chile, and Argentina. Combined, Australia, China, 
Argentina, and Chile make up 90% of global Li supply59–61 and demand is continuing to 
increase.66 Australia produces lithium concentrate from a lithium aluminum inosilicate called 
spodumene, while Chile and Argentina produce Li2CO3 from brine. As Olivetti et al.57 note, Li 
supply for battery manufacturing is a controversial topic, discussed at length in the literature, but 
there are many potential avenues for increasing Li supply. Potential lithium resources exist in the 
US, DRC, Bolivia, and regions throughout Europe, but these sites are not yet developed for 
commercial production of Li.59,61 Two forms of lithium deposits are viable for extraction: hard 
rock deposits and brine lake deposits.59,67,68 A majority of reserves are located in brine lakes of 
South America, while much of the remaining deposits are located in hard rock, predominantly 
located in Australia.67,69,70 As of 2016, Li-ion batteries accounted for 34% of global lithium 
demand.60 The most likely bottleneck for Li supply will be the ability to ramp up Li production 
quickly enough to avoid short-term supply constraints and price spikes.57 
 
As noted earlier, LCA is ill-equipped to capture the dynamics of demand, reserves, and annual 
trends in production and distill these factors into a single impact value. LCA is even less well-
suited to capturing the supply chain risks associated with geographically-concentrated extraction 
and processing, as these are all dependent on the location of demand and the perceived political 
stability and/or friendliness of the region from the perspective of the study's researchers. A study 
centered in the US may view the China-dominated co processing industry as a source of supply 
risk, while a study in China would likely not share that perspective. Although it is entirely 
appropriate to raise these issues as part of an LCA, and perform quantitative analysis to elucidate 
potential short- and long-term resource depletion, we advise against assigning a single impact 
value that may be reliant on outdated data or irrelevant assumptions. One approach in LCA that 
may offer some more useful insights is the notion of average versus marginal and incremental 
production impacts. For example, if the environmental burden of Li extraction will increase as a 
result of a shift toward hard rock deposits and brine lake deposits in the future, sensitivity 
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analyses could contrast the impacts of current average Li production with those of future sources 
that will supply the next ton (or million tons) of material. Such an approach draws on the 
strengths of LCA, as a method for quantifying the environmental impact of a product or service, 
to capture one dimension of the broader concerns around resource depletion. 
 

2.2.1.2 Environmental Impacts of Raw Material Extraction and Processing 
 
For perspective, battery materials are estimated to comprise approximately one third of total 
primary energy demand to produce an LMO-graphite battery pack, with the remaining energy 
demand almost entirely owed to battery manufacturing.46,52 As discussed later in this article, 
however, this ratio can vary considerably based on the specifics of the manufacturing process 
and facility scale. Al, Cu, and graphite comprise the largest shares of LIB packs (using graphite 
anodes) by mass71 and, in an LMO battery, Al is estimated to be the largest contributor to the 
materials energy footprint by a fairly wide margin, followed by the cathode, battery management 
system (BMS), Cu, and graphite.72 A challenge for conducting the life-cycle inventory for 
material inputs to LIB manufacturing is that there are not one or two components that dominate 
the energy use or emissions; the impacts are spread across a wide array of components; Al, for 
example, is used in the cathode current collector, positive terminal assembly, cell container, 
module heat conductors, module enclosure.73–75 Battery designs continue to evolve and detailed 
material breakdowns are, in many cases, proprietary. 
 
Energy used for raw material mining and processing is typically some combination of diesel fuel 
to operate mining equipment and transport material, electricity to run mechanical processes, and 
natural gas for thermal energy during processing. As a general rule, the processing/refining stage 
is usually what distinguishes materials as being more or less energy intensive. For example, the 
energy footprint and resulting impacts of Al production are dominated by smelting and refining, 
which requires large amounts of electricity.76 The majority of global Al production and refining 
occurs in China,61,76 which further increases the impact because China's national average grid 
mix continues to be coal-dominated.77 The energy footprint of Cu is dominated by solvent 
extraction and electrowinning (also known as electroextraction).78 In the case of Co, researchers 
must exercise caution in sourcing data from prior studies, as Co is a co-product of Ni or Cu 
production, meaning some form of allocation is required and the ratios of production will differ 
by location. In other words, extraction and processing impacts must be attributed appropriately to 
multiple outputs, which can be done using system expansion (to avoid formal allocation) or 
mass- or market-value based allocation. 
 
Li, although discussed extensively from a resource depletion standpoint, has so far not proved to 
be a dominant contributor to the energy and environmental footprint of LIBs. Two thirds of Li is 
extracted from brine,68 and the energy footprint of Li2CO3 can vary by a factor of two depending 
on the concentration in the brine.72 As indicated by Yuan et al.52 and Dunn et al.72 for LMO 
batteries, the LMO cathode itself is the second-largest contributor to energy use (a distant second 
to Al). However, the single largest driver of this energy footprint is the LiMn2O4 production, 
which includes a roasting process.72 Rock-based Li production has been shown to be far more 
energy-intensive brine extraction; Jiang et al.79 estimated that it is an alarming 48 times more 
GHG-intensive than brine extraction. For most environmental impacts, leaching and roasting 
seem to be larger contributors.79 These results strongly suggest that LCA studies must thoroughly 
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explore the average, marginal, and incremental Li sources and conduct sensitivity analyses to 
account for different mining and processing alternatives. 
 
Like Li, graphite is an input required across nearly all LIBs as it is the most common anode 
material. The graphite market is supplied by about half mined natural graphite and half 
synthetic.80 China mines roughly 65% of commercial natural graphite globally, followed by 
Mozambique and Brazil both producing under 10% of natural graphite supply.61,81 While natural 
graphite is cheaper and thus the typically preferred option for battery anodes, synthetic graphite 
is produced through byproducts of fossil fuel industries and is produced in high quantities in the 
US.57,82,83 The impacts of graphite are driven by the high thermal energy inputs during 
processing.82 
 
Although energy use can sometimes be the most expeditious proxy for environmental impacts, 
particularly with some knowledge of what fuels are combusted and in what types of equipment 
(internal combustion engines, boilers, etc.), it is far from a perfect metric. Nearly all of the 
articles cited so far have reported energy use without noting what fraction is in the form of 
primary fuels for thermal energy (e.g., natural gas or coal), how much is satisfied by electricity, 
and how much is used for operating liquid fuel-powered vehicle and equipment (e.g., diesel). 
Even if energy use can serve as a proxy for GHG emissions, there are other environmental 
impacts associated with raw material extraction. As noted by Peters et al.,[11]acidification 
potential, eutrophication potential, human toxicity, and ozone depletion potential have all been 
incorporated into prior battery LCAs. The question, however, is what impacts are not directly 
tied to combustion and how much confidence do we have in the published estimates? 
Acidification potential, most likely, is tied to SO2 emissions from combustion sources. 
 
Peters et al.11 suggests that Ni and Co extraction have significant toxicity impacts. Farjana 
et al.84 evaluated Co mining and presented a comparison between Co, Ni, and Cu. Their results 
indicated that acidification (driven by blasting-related emissions) and, to a lesser extent, 
particulate matter and non-cancer human toxicity were the most prominent impacts on a 
normalized basis and Ni mining is responsible for three to four times greater impacts than either 
Co or Cu on a per-kg output basis. However, that study relies on Australian data and is likely not 
representative of average global production. There is ample evidence to suggest that artisanal Co 
mining occurring in the Katanga Copperbelt of the Democratic Republic of Congo (DRC), 
estimated at 15–20% of total DRC production or 9–12% of global supply, has dramatically 
increased human exposure to heavy metals in the workers and surrounding population.63, 64 This 
case serves as a reminder that local practices and regulations or lack thereof can be as influential 
to environmental impacts as the specific type of mining activity itself. Although artisanal Co 
mining makes up a minority of total global supply, its proximity to populated areas combined 
with unsafe practices are likely to drive an outsized share of the sector's overall health impacts. 
For this reason, conducting an LCA that relies only on estimated emissions and energy use in 
formal mining operations84 may underestimate the average environmental impacts. This concept 
is analogous to the notion of “superemitters” in natural gas operations,85 which make up a small 
fraction of overall sector activity but, if ignored, lead to large underestimates in emissions and 
impacts. Accurately capturing these impacts, however, can be a challenge if the operations are 
informal, as most LCAs available on raw material extraction and processing rely on datasets 
provided by large mining companies.86 
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Amarakoon87 provided a helpful discussion of the underlying drivers of other less commonly-
reported impact categories. For example, they noted that their LFP-graphite battery was modeled 
based on Canadian production, and at the time of the report, the Canadian grid had substantially 
higher trichlorofluoromethane (CFC-11) emissions than the U.S. grid. This grid-related CFC-11 
emission factor dominated the overall results. However, more recent research has suggested that 
CFC-11 emissions are steeply declining,88 which suggests that drawing from older studies that 
include ozone depletion potential may result in overestimates of this impact. 
 
Estimates of eutrophication potential associated with raw material extraction and processing for 
LIBs can be particularly difficult to parse. Depending on the impact assessment method used, 
eutrophication may be separated into freshwater and marine eutrophication or combined into a 
single metric. These impacts are driven by emissions of ammonia, phosphate, other water-
soluble nitrogen and phosphorus-containing compounds to water bodies, as well as biological 
and chemical oxygen demand. Eutrophication is an impact most commonly associated with 
agricultural systems or other facilities that result in nutrient runoff or discharge. 
Amarakoon87 found that any battery relying on steel for the pack/housing (in their case, LMO) 
generated net negative eutrophication results because the US Life-Cycle Inventory (LCI) 
database entry for cold-rolled steel suggested that nutrient concentrations in incoming process 
water had higher concentrations of phosphate, ammonia, and other nutrients than the effluent, 
suggesting that the steelmaking process was removing these nutrients from the water. In contrast, 
Amarakoon87 found that LFP-graphite batteries resulted in net positive eutrophication potential, 
presumably owed in part to the diammonium phosphate and phosphoric acid production required 
to produce the cathode material.87 Ellingsen et al.74 indicated that Cu mining, and specifically 
management/discharge of sulfidic mine tailings, is responsible for 62% of freshwater 
eutrophication potential and 65% of freshwater ecotoxicity potential. However, it is difficult to 
find any primary literature data to support the claim that copper mine tailings, which are acidic, 
are a significant cause of eutrophication. Ellingsen et al.74 also suggested that the N-methyl-2-
pyrrolidone (NMP) solvent is a major contributor to marine eutrophication potential, driven by 
the upstream manufacturing of dimethylamine. Our survey of the literature on eutrophication 
impacts of raw material extraction and processing suggests that, for the most part, compounds 
containing nitrogen or phosphorus tend to appear as contributors. In some cases, data on how 
nutrient-containing wastewater is managed at processing facilities is sparse, making the results 
difficult to confirm. For perspective, the 8.0 kg P-equivalent for a battery pack provided by 
Ellingsen et al.74 would translate to the freshwater eutrophication associated with consuming 
around 300 kg of beef, based on our simple calculations and data from de Vries et al.89 It is clear 
that eutrophication potential, while not entirely irrelevant, must be approached with caution and 
skepticism about the underlying data inputs. 
 

2.2.2 Battery Manufacturing 
 
Battery manufacturing comprises around two thirds of the cradle-to-gate energy demand for 
LIBs,52 although this ratio can vary considerably depending on manufacturing facility scale and 
utilization.46 Unlike raw material extraction and processing, most environmental impacts during 
the battery manufacturing process are directly linked to energy use (on-site combustion and off-
site electricity generation),74 so this section will focus on energy use as the key driver of impacts. 
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Despite the importance of understanding energy use at manufacturing facilities, prior studies are 
inconsistent in how individual processes within the manufacturing facility are reported, making 
harmonization or even basic comparisons difficult. Here, we attempt to demystify the 
manufacturing process and key drivers of energy use and environmental impacts. This will allow 
future researchers to focus data gathering and sensitivity analysis efforts on the largest 
contributors to the environmental impacts of battery manufacturing, and avoid becoming mired 
in the details of processes that consume minimal energy and do not have other appreciable 
environmental impacts. 
 
Li-ion cell production is generally divided into three phases: electrode manufacturing, cell 
assembly, and cell finishing (see Figure 2.2). Electrode manufacturing is largely independent of 
cell type but may vary by battery chemistry. Cell assembly and cell finishing are typically 
independent of battery chemistry, but vary by cell configuration. Cylindrical and prismatic cells 
follow the same manufacturing procedure with some minor differences, while pouch cells 
deviate from this procedure by requiring the stacking of electrodes and separators instead of 
winding.[90] While some manufacturing steps do vary by the cell configuration, the main 
processes contributing to energy consumption and environmental impacts, NMP solvent 
evaporation and dry room conditioning, are common across all cell configurations. This is not to 
say that cell configuration is negligible with regards to the environmental impact of the Li-ion 
battery and its manufacturing. Ciez et al.91 compare pouch and cylindrical cells for NMC, NCA, 
and LFP batteries and the results suggest that pouch cells are consistently ≈10% less GHG-
intensive than cylindrical cells, enabled by the lower ratio of cell hardware to energy stored per 
cell. LCAs should clearly identify which cell type(s) are being analyzed and potentially explore 
multiple cell types to capture this variation in material requirements and environmental impacts. 
 

 
Figure 2.2. Li-ion battery production process flow diagram.26, 82, 90, 92, 93 
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Although battery manufacturing involves many different processes, the majority of energy used 
in most battery manufacturing plants operating today is dominated by two key activities, namely 
evaporating the NMP solvent and maintaining the facility's dry room.52,92 Each of these 
processes represents around 40% of the total energy use associated with cell manufacturing, 
together consuming around 80% of the total energy consumed.52 Evaporating NMP (for eventual 
condensation and recovery) is energy intensive because of the air flow needed to maintain a safe 
concentration of the flammable solvent; the result is that facilities use 45 times the minimum 
thermal energy expended to vaporize NMP for this drying process.93 This explains why some 
studies have suggested water-based cathode deposition can save energy and costs,94,95 although 
so far the industry continues to rely on NMP. The dominance of NMP evaporation and dry room 
conditioning also explains why most studies do not provide clear distinctions between electricity 
needs and primary fuel needs; dehumidification can be achieved through the use of varying 
amounts of electrical and thermal energy. Dunn et al.46 have suggested that electrode 
manufacturing is also an important contributor, and may comprise a larger fraction of energy use 
than dry room conditioning for large facilities. Beginning with these basic facts, we will discuss 
the underlying reasons why prior battery LCAs have produced manufacturing energy demand 
estimates that vary by multiple orders of magnitude, and what can be done to address these 
discrepancies in future studies. 
 

2.2.2.1 Cathode Material Manufacturing 
 
Dunn et al.46 suggested that cathode material production can be the largest or second largest 
contributor to energy use at battery manufacturing facilities under some conditions. Their results 
suggest that NMC cathode materials are more energy-intensive to make than LFP and LMO by a 
factor of two to three. For NMC cathode materials, production typically consists of 2 major 
phases: coprecipitation and calcination.92 Coprecipitation describes the process of reacting 
dissolved metal nitrates, metal sulfates, or metal acetates with hydroxide (typically sodium 
hydroxide) in a solvent to form a mixed metal hydroxide, represented in this paper as 
NixMnyCoz(OH)2 (where the values of x, y, and z vary). This is performed in a continuously 
stirred tank reactor under a carefully controlled temperature, pH, and speed setting.46 The 
NixMnyCoz(OH)2 is then isolated and dried via the recovery of the solvent. As a result of 
coprecipitation, wastewater may be produced containing ammonia and sodium sulfate, which 
needs to be treated for proper disposal or reuse and could contribute to eutrophication potential. 
The majority of energy demand associated with coprecipitation is attributable to wastewater 
treatment (presumably for aeration), with the rest is attributable to the direct production and 
environmental control of the NixMnyCoz(OH)2 in the reactor as well as drying.46,92 Dai 
et al.92 reports that the coprecipitation step consumes 11.8 kWh of heat to produce 1 kg of 
NixMnyCoz(OH)2, but the quantity of energy consumed will vary by specific conditions. 
 
Calcination describes the final production of the NMC active material through a high 
temperature sintering of the NixMnyCoz(OH)2 and a Li compound, typically a hydroxide or 
carbonate.46 In theory, this is a two-staged process with the first stage requiring temperatures of 
400–500 °C for 4–5 h82 and the second stage requiring temperatures of 700–900 °C for 8–10 
h.[46] In practice, different manufacturers may set different temperatures and durations depending 
on the capabilities of their equipment (typically a heath roller kiln) and the requirements of their 
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manufacturing process. Additionally, more stages of calcination may be required, as the priority 
of the manufacturers is maximizing yields as opposed to reducing energy consumption.92 The 
heat required to achieve the high temperatures for long durations represents a majority of the 
energy demand associated with both coprecipitation and calcination.[46, 92] The heat itself may be 
sourced through thermal fuel inputs or electricity. Dai et al.92 reports that the calcination step 
consumes 7.0 MJ of electricity to produce 1 kg of NMC active material, but the fuel type and 
quantity of energy consumed will vary by specific conditions. 
 
LFP cathode materials can be produced via a hydrothermal production or a solid state 
production. The hydrothermal production of the LFP cathode material requires the input of 
lithium hydroxide, phosphoric acid, and iron sulfate.96 Iron sulfate is produced as a waste 
product of the steel industry and can be assumed to have minimal embedded energy or 
environmental burden if it is indeed sourced from the steel industry. Otherwise, its impacts must 
still be considered. These materials are coprecipitated to produce LFP with aqueous lithium 
sulfate as a byproduct to be removed.46 Dunn et al.82 reports that the hydrothermal preparation of 
the LFP cathode active material requires 10.0 kWh per kg of LFP. The solid state production of 
the LFP cathode material consists of the heating, cooling, and reheating of a Li, Fe, and P 
compounds, potentially lithium carbonate, iron oxide, and diammonium phosphate.96 The first 
heating stage reaches a temperature between 500 and 700 degrees Celsius and is then cooled to 
room temperature. The second heating stage reaches a temperature between 700 and 
900 °C.82 Dunn et al.82 reports that the solid state preparation of the LFP cathode active material 
requires 0.82 kWh per kg of LFP. LFP cathode active material production is not as well 
documented in the literature from an energy use standpoint, but the production is generally 
simpler than NMC cathode active material production. The energy demand for heating may be 
supplied by thermal fuel inputs or electricity depending on individual site conditions. 
 
LMO cathode materials can be produced via multiple methods including solid state, sol-gel, 
hydrothermal, and combustion procedures. When referring to LMO cathode production, most 
literature discusses solid state production. This starts with the multi-stage washing of MnO2 with 
an H2SO4 solution of which up to 98% may be recovered and reused.97 The cleaned MnO2 is then 
mixed with lithium carbonate powder and water to be milled, producing a slurry which is then 
dried at around 150 °C. This dried, homogeneous mixture is then calcined at around 750 °C for 
20 h, producing the LMO cathode material.97 Once again, the energy demand for heating may be 
supplied by thermal fuel inputs or electricity depending on the manufacturer. Susarla 
et al.97 describes the energy intensity of LMO production as 5.0 kWh per kg of cathode active 
material. 
 

2.2.2.2 Electrode Manufacturing 
 
During electrode manufacturing, the cathode material (usually Li metal oxide particles) is mixed 
in dry form with a small quantity of carbon black additive (e.g., acetylene black or 
graphite).93 The dry mixture is then combined with a polymeric binder such as polyvinylidene 
difluoride (PVDF) and the NMP solvent to form a homogenous slurry.92, 93 This slurry is then 
intermittently applied to a Cu or Al current collector (Cu for anode, Al for cathode) creating a 
mother roll and the NMP solvent is evaporated and collected for reuse.90 NMP is typically used 
as the solvent for cathode manufacturing and may have a recovery rate of 99%.93 Water is 
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generally used as a solvent for anode manufacturing, which is why NMP is only discussed in the 
context of the cathode. The mother roll of electrodes is then calendared to achieve a specific 
electrode porosity and improve cell performance.98 Finally the mother roll is split into several 
daughter rolls and vacuumed dried.90 Different battery chemistries may require different types 
and quantities of active materials, additives, and binders, resulting in unique impacts associated 
with this phase.26,96 
 
Yuan et al.52 reports that the energy use associated with electrode material mixing and coating 
are minor with their combined energy consumption representing ≈1% of the energy consumption 
associated with battery manufacturing. Additionally, Yuan et al.52 reports that calendaring and 
slitting represent 2% and 4% of the energy use associated with battery manufacturing, 
respectively. The main driver of energy use and environmental impacts associated with electrode 
manufacturing is the NMP evaporation and recovery during cathode drying. 
 
Ahmed et al.93 explored the process of cathode drying, and energy implications in detail by 
constructing a process model for a facility producing 100 000 packs per year of 60 kW, 10 kWh 
LIBs (this translates to 1 GWh per year of battery storage capacity output). In their model, the 
cathode is sent to a dryer where it is exposed to flowing hot air at 140 °C. NMP concentration in 
the air must never exceed 1150 parts per million (ppm). After being cooled in a chilled water 
condenser, NMP, water, and hydrocarbons are condensed and NMP is recovered via distillation 
and any remaining NMP is recovered using a zeolite wheel to reach total solvent recovery rates 
around 99%. The resulting energy demand was estimated at 1470 kW of electricity and 4381 kW 
of thermal energy (5851 kW in total). Based on 300 operating days per year, this translates to 
112 MJ of total energy per kWh of battery capacity produced. The question, however, is how 
sensitive the NMP drying energy is to uncertain parameters, such as facility size and specific 
chemistries. Ahmed et al.93 also explored the impact of allowable NMP concentration in the 
dryer outlet, which varies roughly linearly with the flow rate and total energy demand. However, 
they did not discuss whether different regulatory frameworks might dictate different caps on 
NMP concentration or what sorts of safety measures could be taken to enable, for example, a 
doubling of allowable NMP concentration (which would cut energy demand in half). Yuan 
et al.52 suggested that the concentration of the PVDF in the NMP is tied to energy use for NMP 
recovery, and that reducing PVDF concentration can reduce energy demand for solvent recovery. 
However, they did not offer a clear explanation as to why this occurs. Yuan et al.52 also noted 
that energy demand for NMP recovery at a commercial-scale facility is considerably lower than a 
pilot-scale facility. 
 
Dunn et al.46 acknowledged the use of NMP as a solvent but do not mention any energy use 
associated with NMP recovery, which results in a very small battery assembly energy footprint 
on par with Notter et al.50 and these results are likely not representative of the current state of the 
industry. Dai et al.92 does an excellent job of noting that some of the energy use differences 
across prior battery LCAs is driven by solvent assumptions; Notter et al.50 assume water as the 
solvent for both cathode and anode, Majeau-Bettez et al.32 and Ellingsen et al.74 assume NMP as 
the cathode and anode solvent. GREET96 assumes NMP for the cathode and water for the anode, 
which seems to be the most reasonable choice given current industry practices. Given how 
significant the energy footprint of NMP recovery is, we suggest that any LIB LCA must devote 
effort to carefully choosing their solvent use assumptions, and conducting sensitivity analysis as 
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appropriate. This is an area where some of the most widely-cited studies have not done an 
adequate job of exploring and highlighting the impacts of solvent recovery on energy and 
environmental impacts. 
 

2.2.2.3 Cell Assembly 
 
Cell assembly occurs in a dry room, which is essential to battery manufacturing. Per Dunn 
et al.,72 this is where electrodes and separators are stacked or wound, current collectors are 
welded, the cells are enclosed in a container, electrolyte is added, and the cells are closed. While 
the cell assembly that occurs in a dry room makes up around 5% of the battery manufacturing 
energy demand according to Yuan et al.,52 the conditioning of the dry room itself is a major 
energy consumer. As Dunn et al.46 point out, energy demand for dry room conditioning is 
throughput- and scale-dependent. Because primary data, particularly in older (>5 year-old) 
studies, is most likely to be sourced from small-scale manufacturing facilities, this has resulted in 
very large energy use estimates. For example, the primary data provided in Yuan 
et al.52 indicates that dry room conditioning is the single largest energy consumer, at 43% of total 
cell manufacturing energy demand. Those results are based on a facility that is operating at full 
capacity, but only producing 400 cells per day (at 129 cells per pack). Ahmed et al.99 explore the 
energy implications of dry room conditioning for a much larger facility in detail using a process 
simulation approach similar to their approach for estimating NMP drying energy.99 The model in 
Ahmed et al.99 is based on a facility manufacturing 100 000 automotive battery packs annually 
with a dry room volume of 16 000 cubic meters. In contrast to Yuan et al.,52 the results from 
Ahmed et al.99 indicate energy use for dry room conditioning that is an order of magnitude 
smaller than the energy required for NMP recovery (400 kW for dry room conditioning, 
compared with 5851 kW for NMP recovery93 for a comparably-sized facility). Dunn et al.46 use a 
similarly small dry room conditioning estimate, meant to represent a very large facility with high 
throughput.99 
 
From the analysis by Ahmed et al.,99 it is clear that any battery manufacturing process requiring a 
dry room is likely to generate widely differing energy demand estimates, depending on scale, as 
well as local climate (which impacts humidity in the inlet air) and the technological choices that 
dictate the fraction of electrical versus thermal energy used in the facility. Assembling a small 
number of scenarios that represent different facility scales, and generating results for each 
scenario, would provide much-needed clarity in manufacturing energy use results. 
 

2.2.2.4 Cell Finishing and Further Assembly 
 
Cell finishing consists of a variety of processes required for the cell to be ready for use. While 
the processes included in cell finishing may vary by manufacturer, some form of cycling and 
precharging are generally required for the formation of the cell. This is associated with a small 
portion of energy consumption, with Yuan et al. reporting around 1% of the energy used for 
battery manufacturing is attributable to cell finishing. Additionally, while not a step included in 
cell manufacturing, the finished cells may be further assembled into modules or packs. This 
requires the interconnection of individual cells, balance of systems to support the cell in this 
application, and the addition of structural components. Yuan et al.52 reports that this additional 
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assembly is associated with a negligible amount of energy consumption when compared to the 
energy use associated with cell manufacturing. 
 

2.2.2.5 Variation in Manufacturing Energy Demand Estimates 
 
With the LIB industry in a state of rapid growth and cost reductions, it is not surprising that 
battery manufacturing energy use estimates have also shifted over time. Figure 2.3 shows a 
downward trend across most of the studies based on primary data, with Pettinger and Dong51 as a 
notable exception. Some of these improvements may be driven by technological advancements, 
but we hypothesize that much of reductions in energy demand are more likely to be the result of 
increased facility utilization and scale. If, for example, rapid subsidized growth in LIB 
manufacturing facilities in China resulted in numerous facilities operating well below their 
capacity, this would translate to higher energy use estimates, as dry rooms must continue 
operating regardless of throughput. As larger facilities are built, and begin operating closer to full 
capacity, we expect that these estimates will stabilize. It is unclear whether they will achieve 
some of the more ambitious nth plant estimates documented in Notter et al.50 and Dunn 
et al.,46 both of which rely, or appear to rely, on unusual assumptions related to solvent use and 
recovery that do not reflect current industry practices. 
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Figure 2.3. Cell manufacturing energy over time. Cell assembly primary energy demand in literature over 
time. Kurland 2019—Tesla is the estimation of primary energy use at a Tesla, 35 GWh per year manufacturing 
plant. Kurland 2019—Northvolt is the estimation of primary energy use at a Northvolt, 8 GWh per year 
manufacturing plant.100 Dai 2019 is reporting primary energy at an unspecified 2 GWh year manufacturing 
plant.92 Ellingsen 2014—Low, Ellingsen 2014—Asy, Ellingsen 2014—Avg are the reported primary energy at an 
unspecified pilot plant representative of the lowest monthly consumption, stated asymptotic consumption, and 
average monthly consumption respectively.74 Notter 2010 is the modeled primary energy use at a pilot scale 
manufacturing plant.50 Dunn 2015—Pilot and Dunn 2015—Nth are the modeled primary energy use at a pilot scale 
and Nth scale plant respectively.46 Yuan 2017—Johnson Controls is the reported primary energy consumption at a 
Johnson Controls, 0.018 GWh per year manufacturing plant.52 Kim 2016—LG Chem is the reported primary energy 
use at a LG Chem 2 GWh per year manufacturing plant.49 Pettinger 2017 is the reported primary energy use at an 
unspecified pilot plant.51 
 
Figure 2.4, inspired by a plot provided in Kurland100 illustrates the impact of facility scale on 
battery manufacturing energy use estimates. Where plant capacities were not deliberately stated 
or could not be determined, we used a simple method for approximating the scale: If a plant was 
described as “pilot,” “pioneer,” or otherwise novel and small, it was assigned the smallest yearly 
plant capacity observed in this study, 0.018 GWh yr °C. If a plant was described as “nth,” it was 
assigned the largest yearly plant capacity observed in this study or 35 GWh yr−1. The impacts of 
plant utilization and economies of scale can be observed with the Ellingsen et al.74 and Dai 
et al.92 data points. Ellingsen et al.74 examined the per unit energy consumption of a cell 
manufacturing plant for 18 month: their highest data point represents the average per unit energy 
consumption for this time, their lowest data point represents the lowest monthly per unit energy 
consumption, and their central point represents a set asymptotic value. The variation of this 
energy consumption over a relatively short period of time suggests that the cell manufacturer 
studied had inefficiencies in their cell manufacturing process, potentially arising from varying 
utilization levels of the plant. In contrast, the manufacturer that worked with Dai et al.92 claimed 
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to operate at a high energy efficiency, along with having a greater total capacity and operating 
during a period of greater cell demand. 
 
 

 
Figure 2.4. Cell manufacturing energy vs plant capacity. Cell assembly primary energy demand in 
literature versus plant capacity. Kurland 2019 - Tesla is the estimation of primary energy use at a Tesla, 35 GWh/yr 
manufacturing plant. Kurland 2019 - Northvolt is the estimation of primary energy use at a Northvolt, 8 GWh/yr 
manufacturing plant.15 Dai 2019 is the reporting of primary energy at an unspecified 2GWh/yr manufacturing 
plant.16 Ellingsen 2014 - Low, Ellingsen 2014 - Asy, Ellingsen 2014 - Avg are the reported primary energy at an 
unspecified pilot plant representative of the lowest monthly consumption, stated asymptotic consumption, and 
average monthly consumption respectively.17 Notter 2010 is the modeled primary energy use at a pilot scale 
manufacturing plant.18 Dunn 2015 - Pilot and Dunn 2015 - Nth are the modeled primary energy use at a pilot scale 
and Nth scale plant respectively.19 Yuan 2017 - Johnson Controls is the reported primary energy consumption at a 
Johnson Controls, 0.018 GWh/yr manufacturing plant.20 Kim 2016 - LG Chem is the reported primary energy use at 
a LG Chem 2 GWh/yr manufacturing plant.21 Pettinger 2017 is the reported primary energy use at an unspecified 
pilot plant.22 
 
Most energy demand estimates seem to have fallen in the range of a few hundred MJ per kWh of 
production. A thorough review of the literature from the perspective of manufacturing energy use 
and impacts suggests that nearly all LCAs published so far are plagued by unusual assumptions 
or outright omissions. The question of what a reasonable nth plant manufacturing energy 
footprint should be, and the savings to be had through very large scale production, remains 
unanswered in the literature. There is a pressing need for a thorough LCA that adequately 
addresses all the sources of uncertainty associated with battery manufacturing and its energy 
demands. 
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2.2.2.6 Geographic Representativeness in Battery Manufacturing 
 
A final critique of battery LCAs is that, while most studies capture the appropriate locations and 
local grid mixes for raw materials extraction and processing, battery manufacturing has largely 
been modeled based on grid mixes and primary fuel choices appropriate for the location of the 
study rather than the most likely manufacturing location. Of the studies we reviewed that 
included the impacts associate with LIB manufacturing, over 30% used electricity mixes and fuel 
inputs representative of regions in the European Union, 25% used data representative of North 
America, and less than 15% used data representative of manufacturers in Asia. The remaining 
30% did not provide or clearly state the manufacturing location observed in the study. As of 
2019, three quarters of global LIB manufacturing capacity was located in China.101 The 
distinction between battery manufacturing in China versus the US or Europe is important for 
assumptions about the grid mix as well as the primary fuel(s) likely to be combusted on-site. 
Coal remains the single largest source of primary energy in the Chinese industrial sector; 39% 
total coal demand comes from the industrial sector. Direct coal use (excluding coke and coal gas) 
for industrial facilities exceeds natural gas use by about a factor of four.77 The grid mix in China 
is coal-dominated, with 70% of total generation from fossil fuel-fired power plants, and of that 
fraction, 91% is coal. However, a consequential LCA may require a more nuanced look at the 
source of the marginal kWh across the country, as recent capacity investments in solar, wind, 
nuclear, and hydroelectricity comprise more than half of all new generating capacity.77 
 
The degree to which any given LCA should reflect current manufacturing practices and locations 
depends on the type of question it is seeking to answer. If the analysis is meant to provide insight 
into an early-stage battery technology, establishing clear, simple assumptions (e.g., natural gas as 
the sole source of primary fuel consumption and an average US grid mix) may be sufficient. 
Varying grid mixes and on-site primary fuels can always be explored through sensitivity 
analysis. However, for LCAs that seek to offer insights into how EVs broadly compare with 
other technologies or information on the net impact of widespread adoption of grid-connected 
stationary batteries, future studies must consider scenarios that reflect the supply chains currently 
in place. This means incorporating typical practices at Chinese facilities, at least as one of a set 
of scenarios. 
 

2.2.3 Use Phase and End-of-Life 
 

2.2.3.1 Use Phase 
 
Many papers do not consider the use phase of an LIB when performing and LCA, often citing the 
uncertainty and complexity of battery performance and lifetime (see Table 2.5). However, 
accounting for different roundtrip efficiencies and lifetimes is essential when comparing 
different battery technologies.10, 31, 34, 51, 102–104 Other characteristics may be more or less relevant, 
depending on the specific application. For example, pack weight will impact vehicle efficiency 
in an electric car, truck, or aircraft, while weight is far less relevant for stationary applications. 
Table 2.1 presents several metrics used to describe an LIBs performance as it varies by battery 
chemistry, namely the battery's cycle life and shelf life. 
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Table 2.5: Life-cycle assessment studies sorted by system boundary and application area 
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Cycle life is defined as the number of charge/discharge cycles a battery can perform under 
defined conditions before its storage capacity degrades to a specified condition, typically 80% of 
its original capacity for EVs and 60% for stationary storage. A battery's actual cycle life will be 
impacted by its operating conditions, and when data is available, should be adjusted based on the 
expected use case before calculating lifetime energy throughput. Battery operations at extreme 
temperatures contribute to battery aging. Higher temperatures result in more efficient and faster 
reactions, but the aging reactions are also enhanced at high temperatures. Low operating 
temperatures may cause electrode materials to contract, reducing the available space for Li-ion 
insertion on the anode and potentially contributing to lithium plating, a major contributor to 
capacity fade.18, 25, 105, 106 Battery operations at high or low state of charge (SOC) also contribute 
to accelerate battery aging. At the extreme ends of the SOC, active material loss in the positive 
electrode is a main driver of increased battery aging.18, 25, 105, 107, 108 The shelf life metric is 
defined as the number of years before a battery degrades to a specified condition while 
remaining inactive (e.g., in very underutilized batteries). These high-level metrics capture the 
combined effects of multiple battery degradation mechanisms on capacity fade105, 109, 110 and can 
be useful in estimating the total energy discharged over a battery's lifetime as a useful functional 
unit for LCAs. 
 
Focusing exclusively on throughput (kWh discharged over a battery's lifetime) as a functional 
unit in LCA fails to account for another crucial dimension of the use phase: battery efficiency. A 
small fraction of energy in batteries cannot be recovered due to irreversible side reactions. 
Coulombic efficiency represents idealized slow charging and discharging, and is ≈99% for LIBs, 
but in practice, the ratio of total charge extracted from the battery to total energy put into the 
battery during charging depends on the charge and discharge C-rate and temperature, and is 
generally closer to 90%.111 Frequent use of ultra-fast charging, for example, will decrease battery 
efficiency, as will rapid discharging. This means that the manner in which a battery is cycled will 
impact total throughput and energy losses over its lifetime. Round-trip efficiency can refer to the 
efficiency of a pack or system, as opposed to individual cells, but this terminology is used 
inconsistently. When incorporating energy losses during charging/discharging, researchers must 
be careful to avoid omitting or double-counting energy lost in the battery itself in addition to 
losses at inverters or in parasitic loads, such as thermal management systems. To further 
complicate matters, battery efficiency decreases over time, although capacity fade is generally 
the determining factor in deciding to decommission a battery.105, 112 Impedance is often used as 
an indicator of LIB health because it can capture the effects of many of the mechanisms that 
drive capacity fade, power fade, and reduced efficiency,105, 112, 113 but this metric cannot be easily 
converted to any of the practical measures of efficiency and lifetime throughput that are needed 
to account for use-phase performance in an LCA. 
 
Given the complexity of modeling battery behavior, and the lack of performance data from real-
world applications, it is not surprising that many battery LCAs do not incorporate the use phase 
and most ignore battery aging. Sathre et al.,114 which focused on second life applications for 
LIBs from EVs, performed a sensitivity analysis to identify the battery parameters and their 
influence cumulative energy balance and cumulative greenhouse gas emissions. They noted 
considerable uncertainty in the timing at which LIBs reach an inflection point, when capacity 
fade accelerates. Hiremath et al.31 portrayed the different life-cycle impacts associated with LIBs 
used in different stationary storage applications. Their analysis provided the power rating, 



 32 

discharge duration, energy rating, and cycle frequency for multiple stationary storage 
applications, finding that use phase greenhouse gas emissions per MWh delivered can vary by 
nearly two orders of magnitude between applications. Longo et al.115 compared two theoretical 
EV batteries with one having a cycle life of 3000 cycles and a cycling frequency of 2 cycles per 
day, and the other having a cycle life of 3500 cycles and a cycling frequency of 1.6 cycles per 
day. This resulted in a 5% difference in global warming potential during the use phase of these 
two battery scenarios. Although a more thorough accounting of use-phase cycling and its impact 
on lifetime and efficiency would be ideal, reliable data for use in LCAs is rare. Future studies 
would benefit greatly from a set of standardized scenarios that capture variations in C-rate, 
operating temperatures, SOC, and the expected impacts on capacity fade, battery lifetime, and 
efficiency. 
 

2.2.3.2 Battery End-of-Life and Recycling 
 
Once a battery has reached its EOL, it must be safely disposed of or recycled. Incorporating 
reuse and recycling has long been a methodological challenge in LCA, raising questions of how 
credits for recovered materials, and the resulting avoided impacts of virgin material production, 
should be allocated.116 Recycling is categorized as closed-loop, meaning materials are recycled 
within the same production system (e.g., cathode materials recovered for use in new cathodes), 
or open-loop, where materials are recovered for use in other production systems. For batteries, 
most studies take a closed-loop approach to recycling and they explore one or more of the three 
main recycling approaches: pyrometallurgical, hydrometallurgical, and direct 
recycling.46, 50, 72, 91, 117, 118 
 
Pyrometallurgical recycling is a smelting process capable of recovering transition metals, namely 
Co, Ni, and Cu, and is used to recycle LIBs as well as Ni Metal-Hydride (NiMH) 
batteries.119 Other materials are oxidized in the process to provide process heat and are not 
generally recovered; this includes Li and Al. Hydrometallurgical and direct recycling, which are 
based on leaching and physical separation processes, respectively, recover a greater fraction of 
battery materials by mass. Both processes are designed to recover the cathode (including Li, in 
addition to metals like Co or Mn), Al, and the anode, while only direct recycling can recover the 
electrolyte (through flushing of cells).119 With the exception of water use, hydrometallurgical 
recycling achieves greater savings across a wide range of life-cycle inventory metrics relative to 
pyrometallurgical recycling.117 Direct recycling is more challenging to compare because it is less 
commonly used and the process configuration and materials recovered vary. However, as Gaines 
points out, there is more of a continuum than a clear distinction between hydrometallurgical and 
direct recycling; as the Co content of LIBs declines, a hybrid direct/hydrometallurgical approach 
may become preferable to a pyrometallurgical process.119 Although not the focus of this study, 
EV batteries have the potential to be tested, refurbished as needed, and extend their service life in 
stationary storage applications.47, 48, 114, 120–123 As noted in Sathre et al.,114 there are additional 
impacts associated with configuring vehicle batteries for use in stationary applications, including 
the installation and use of cell cooling systems, and capacity can decline rapidly once the battery 
reaches its inflection point. 
 
The attractiveness of these recycling processes is ultimately contingent upon good use-phase 
performance of the recovered materials, and this is perhaps most uncertain with direct recycling 
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processes. If recovered cathode materials cause a decrease in cycle life or round-trip efficiency, 
such impacts could easily negate the benefits of offsetting raw material production. LCA studies 
focused on battery recycling to-date have relied in the assumption that recycled materials are 
functionally equivalent to new materials. This is understandable, as empirical data to support any 
other assumption is scarce or non-existent. An additional challenge is the establishment of a clear 
business-as-usual case for use as a baseline for comparison. The quantity of stationary and EV 
LIBs reaching their EOL remains small and recycling and disposal practices vary by country. 
Globally, it is estimated that 95% of LIBs are not recycled.124 As demand for energy storage in 
EV and stationary energy storage applications grows and batteries continue to reach their EOL, 
additional studies will be needed to track the date of these batteries and establish a clearer 
understanding of what processes are being used and what materials are ultimately recovered. 
 
 
2.3 Recommendations for Battery LCA 
 
It is surprising that, despite the publication of LIB LCAs dating back more than a decade, we are 
unable to point to a single study that sets the standard for best practices in battery LCAs. This is 
not meant to suggest that prior studies have not offered value and insight to the research 
community; the most widely-cited studies often perform well in one or more dimensions, but 
each has its own drawbacks. Most of the published LCAs have provided detailed data on the 
environmental impacts of raw materials extraction and processing.32, 46, 50, 72, 74 The shortcomings 
in our understanding of raw material extraction and processing are twofold. First, the studies we 
surveyed did not adequately account for geographic variation in mining practices and variations 
in the exposure risk for nearby populations. Some mining operations that comprise a minority 
share of production are likely to drive an outsized fraction of overall environmental impacts 
because of local conditions and practices. We liken these operations, which may be informal or 
loosely regulated, to the concept of “superemitters” in the natural gas industry.85 Second, there 
are inherent limitations in the underlying midpoint and impact methodologies; it is impossible 
for any LCA to conduct detailed fate and transport modeling for every emission to air, soil, and 
water, so studies rely on regional or global average factors that are likely to be one or more 
orders of magnitude different from the actual values. These uncertainties are compounded by the 
fact that documentation of where specific waste streams are discharged from mining and material 
processing operations is sparse. Moreover, we have yet to find any study that explores the 
differences between average, marginal, and incremental sources of key material inputs, and the 
implications for mining and processing-related energy use and emissions. This seems to be an 
obvious gap in the literature, and one that could be filled with data and market projections that 
are available today. 
 
Achieving consensus and clarity in battery manufacturing energy use and impacts is where prior 
studies largely fall short. Because there is little evidence to suggest appreciable non-combustion 
emissions to air, water, or soil during manufacturing, nearly all direct environmental impacts 
from this stage are expected to be tied directly to on-site combustion of fuels and emissions from 
electricity generation. Dunn et al.46 provided the first clear and compelling discussion of dry 
room conditioning in an LCA context, and the reasons behind large differences in reported 
energy use, but did not provide a similarly detailed exploration of energy used for NMP 
recovery. Although its scope was more limited, focusing only on NMC-graphite LIBs, Dai 
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et al.92 did provide a more thorough exploration of both dry room conditioning and NMP 
recovery. Battery recycling, by comparison to battery manufacturing, is relatively well studied 
and there is better agreement across the literature, although battery recycling LCAs must rely 
largely on estimated or simulated mass and energy balances because of the limited number of 
LIBs being recycled.46, 72, 117 It is possible that, when primary data becomes more widely 
available, it will reveal inconsistencies between simulations and primary data similar to those 
found in battery manufacturing. Although battery technologies will continue to evolve, and there 
will continue to be disagreements between primary and secondary data sources, we hope to 
provide recommendations for approaching these uncertainties in a manner that makes each study 
more interpretable, and simpler to replicate and update as battery technologies and the 
infrastructure supporting their production continues to develop. 
 

2.3.1 Defining Appropriate System Boundaries 
 
Defining the system boundaries requires researchers to weigh the value of comprehensiveness 
against the downsides of incorporating more assumptions that are not central to the battery 
technology itself. Expansive system boundaries that include the use- and end-of-life phases will 
result in the most complete assessment of the net environmental impacts. Inclusion of these 
phases can alter the conclusions of battery technology (or recycling technology) comparisons; if 
a less resource-intensive batter technology or directly-recycled cathode material results in 
reduced battery cycle life, a cradle-to-grave analysis captures these important differences. A 
cradle-to-gate analysis using only kWh of battery capacity as the functional unit, in this case, 
would be misleading. Similarly, a battery that relies on a larger quantity of Co may appear to be 
at a greater disadvantage in a cradle-to-gate analysis, but Co also has a higher likelihood of being 
recovered and this recovered material can offset the impacts of raw Co extraction and 
processing. 
 
One can make a similarly compelling argument that cradle-to-grave LCAs carry, in some cases, 
considerable downsides. Tying results to a specific use case, can make results nearly impossible 
to compare across studies. This is especially true for stationary energy storage applications, 
where specific configurations and services provided vary. The layers of assumptions and 
uncertainty introduced while incorporating the use and EOL phases can dilute what might 
otherwise be a rigorous and clearly defined analysis of battery production impacts. For example, 
in analyses conducted based on novel battery technologies, the most viable use case may not be 
known and use phase performance is uncertain. For the purposes of cross-study comparisons and 
improving reproducibility of results, reporting cradle-to-gate results separately is valuable 
regardless of the study's overall system boundaries. In cases where use-phase performance is not 
known, the development of alternative functional units and scenario analysis can ameliorate 
some of the drawbacks of the constrained system boundaries, as discussed further in Section 3.3 
below. 
 

2.3.2 Selecting Relevant Environmental Metrics 
 
Above all, we recommend that future studies consider the goal and scope of the study, in 
addition to the availability of adequate quality data when selecting environmental metrics 
(inventory, midpoints, and endpoints). Presenting a long list of impacts without context or 
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uncertainty analysis is likely to generate confusion and offer limited value to the broader 
research community. Omitting an impact category may lead readers to believe it is not important, 
but producing results that are inaccurate and/or convey false precision may lead to the same 
outcome. Making additional efforts to highlight the key drivers of each impact is also critical. 
There is an important distinction between environmental impacts tied to energy use (and 
combustion to generate that thermal or electrical energy) and impacts tied to other activities, 
such as non-combustion pollutant releases to water, air, or soil or depletion of finite resources 
through mining activities. GHG emissions and 100-year GWP for LIB production are dominated 
by combustion-related CO2.11 The same is true for human health impacts from other air pollutant 
emissions, including particulate matter (PM), SOx, and NOx, and terrestrial acidification 
potential, which is driven by SOx emissions.11 We strongly recommend that future LCAs make 
an attempt to separate impacts tied to energy use with those tied to other activities. If facilities 
shift their fuel use to lower-emission alternatives (e.g., from coal to natural gas, or natural gas to 
renewable fuels), making this distinction in published LCAs will make it easier to adjust the 
results accordingly. Furthermore, denoting which impacts are dependent on assumed grid mixes 
will make the use of LCA data for future studies considerably simpler; future researchers may 
wish to update underlying grid mixes or select mixes that are more representative of where 
production occurs. Emissions may also evolve depending on the tightening or loosening of 
emissions regulations in the location selected for analysis. Given the rapid decarbonization of 
electricity occurring in many countries, it is imperative that researchers be given the opportunity 
to update our understanding of battery production impacts in the context of current and future 
grid mixes. 
 
As discussed previously, most of the non-energy-related environmental impacts in the life cycle 
of LIBs are tied to mining and material processing operations. There are various midpoint and 
endpoint metrics aimed at characterizing depletion of non-renewable resources. We argue that 
these multipliers fail to capture the nuances of some of the key inputs to battery production, 
where availability itself may be a secondary or tertiary concern and the more likely outcome is a 
long-term shift toward more costly and energy-intensive extraction methods. Rather than 
attempting to quantify resource depletion in a single metric, we recommend that future LCAs 
develop a set of current average, marginal, and incremental scenarios for the recovery and 
processing of a few key material inputs (including Li, for example) and use these scenarios to 
illustrate the long-term implications of continuing to extract these materials without recovering 
and recycling them at the battery end-of-life. The other impact most relevant to raw material 
extraction we have discussed here is eutrophication potential. We hesitate to recommend that this 
metric be included in future studies, in part because the required data on relevant waste stream 
discharges may not be of sufficient quality to draw meaningful conclusions from the results. 
Ozone depletion potential, which we briefly touch on, is not likely to be a useful metric to 
quantify given the ongoing phase-out of ozone-depleting substances such as CFC-11.88 Human 
toxicity does not feature prominently in non-energy-related impacts within the studies we 
surveyed, but as noted earlier, published values regularly rely on data provided by large mining 
companies86 and those datasets likely reflect best industry practices and fail to account for the 
impact of outliers, particularly in artisanal and small mining operations. Omitting such outliers is 
a known problem in emissions and environmental impact accounting85 and must be mitigated in 
future LCAs, particularly in the context of material extraction and processing. 
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Water consumption and withdrawals associated with battery production can be substantial, yet it 
is often overlooked in LCAs.68 Battery electric vehicles are associated with over 50% more water 
use relative to internal combustion engine vehicles over the course of their lifetime. This is 
mostly associated with the electricity use associated with vehicle charging, but a large 
contribution of water consumption is attributable to the LIB itself, consisting of 5–10% of the 
total water consumption depending on the battery chemistry.125 It estimated that 752 liters of 
water are consumed per kWh of Li-ion battery pack produced, with roughly 50% of this 
attributable to aluminum used as housing and 30% attributable to the cathode active material for 
NMC-111 cathodes.92 Electrolysis during aluminum production is responsible for 65% of the 
water use attributable to aluminum production if produced through thermal power,126 and 
mineral extraction is responsible for a large majority of water use attributable to the cathode 
active material. In particular, Co production consumes the most water, representing 50% of the 
embedded water consumption in NMC-111 cathode active materials.92 Water use, while not the 
central focus of most battery LCAs, is worthy of further exploration for studies seeking to 
broaden their scope beyond energy use and GHG emissions, particularly if the values can be 
weighted based on a water stress index or similar metric aimed at capturing local water scarcity 
impacts.127 
 

2.3.3 Defining Functional Units for Analysis 
 
Defining functional units for battery LCA presents a challenge; the closer the functional unit is to 
representing the actual service a battery provides (e.g., powering a vehicle to travel one km), the 
more underlying assumptions, none of which are standardized, must be made. This makes cross-
comparisons in the literature labor-intensive or impossible. Conversely, it is common for studies 
to report results per kg of battery mass,32, 46, 74 which has no direct relationship to the service a 
battery provides but it does provide for straightforward comparison across multiple studies. 
Functional units used in prior studies include battery or material mass (kg), individual battery 
pack, energy capacity (kWh of battery capacity), energy throughput (kWh passed through the 
system over the battery lifetime), and distance driven (km) for battery electric vehicles. Ellingsen 
et al.74 set a useful precedent in reporting their results across multiple functional units (per pack, 
per kWh, and per kg of battery mass). 
 
We suggest that the time has come to phase out the use of kg of battery mass as a functional unit 
in LCAs. Normalizing results per kWh of battery capacity offers similar potential for cross-
comparison while also serving as a more logical functional unit because storage capacity is tied 
to the core service provided by rechargeable batteries. Normalizing LCA results in terms of 
lifetime energy throughput is another compelling alternative because it incorporates differences 
in cycle life and round-trip efficiency that a per unit-capacity analysis does not. One can imagine 
fascinating assessments of the tradeoffs between, for example, a shift from NMP to aqueous 
solvents and the resulting impact on lifetime kWh throughput if phasing out NMP negatively 
impacts cycle life. As long as underlying assumptions about cycle life are clearly documented, 
we suggest that studies would be well served to report results in these two formats (per kWh of 
capacity and per kWh of lifetime throughput). This being said, studies aimed at capturing the 
contribution of battery-related impacts in the context of a larger system may justifiably choose to 
report their results differently, including per-km traveled or at the individual pack level. 
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2.3.4 Recommendations for Future Work 
 
Although we are not the first to highlight the difficulties in achieving consensus on methods for 
conducting battery LCAs,7–11 we hope this review provides the most comprehensive exploration 
of the underlying reasons behind inconsistent battery LCA results. Quantifying the 
environmental impacts of battery production can seem enormously complicated and we 
recommend that future studies simplify and prioritize their efforts based on the processes and 
materials that are the largest contributors. Comprehensiveness has value, but it must be 
acknowledged that it also comes at a cost; selecting a large number of inventory, midpoint, or 
endpoint categories increases the likelihood that researchers will rely on inventory data and 
characterization factors that are not technologically, temporally, and/or geographically correlated 
with the details of the study. Selecting life-cycle inventory, midpoint, and/or endpoint metrics 
that are likely to yield the greatest insights (and have sufficiently high quality data to support 
those conclusions) will make future battery LCAs more interpretable and impactful. We also 
urge researchers go beyond representation of industry best practices and develop datasets that 
capture outliers or “superemitters,” particularly in mining and material processing. 
Disaggregating environmental impacts by location and type of operation can provide better 
transparency and accuracy, and also establish a framework by which companies that carefully 
manage their supply chains to avoid such suppliers are able to be recognized in their estimated 
environmental footprints. 
 
Improving the interpretability and impact of future battery LCAs will also require that every 
study conduct a sensitivity analysis across a range of manufacturing facility scales. It is clear 
from our review of the literature that this point, and the resulting deviations in estimated 
manufacturing energy use, causes more confusion than any other parameter. We recommend that 
future LCAs define two or three facilities scales, on the order of 0.1, 1, and 10 GWh per year of 
battery capacity output and generate results across these different scales. Specific facility scale 
scenarios could be chosen based on economic “tipping points” for a change in design of, for 
example, the NMP recovery system or dry room conditioning equipment. Clearly indicating the 
likely breakdowns of thermal energy use versus electrical energy will also provide enormous 
value, as many studies do not differentiate between the two. An LCA that makes use of market 
reports to estimate global-average energy use for battery manufacturing, and ideally projects 
potential trends, is also sorely needed to illustrate the gap between the current literature and 
current/future practices in industry. 
 
A final conclusion from this review is that a rigorous, complete cradle-to-grave LCA of multiple 
battery technologies can be made more tractable by the production of consensus-based scenarios 
to address some of the major sources of uncertainty for these analyses. Specifically, scenarios 
that capture critical raw material availability, the geographic distribution of near- and long-term 
sources, and any expected shifts in extraction/processing methods would reduce reliance on sub-
standard data sources and enable easier cross-comparisons between different battery studies. The 
same is true for the battery use-phase; most LCA researchers and practitioners do not have the 
resources and subject matter expertise to develop detailed scenarios for battery cycling, operating 
temperatures, and SOC, nor can such a scenario easily be translated to expected shifts in capacity 
fade, efficiency, and lifetime. However, if a collection of experts were able to devise a set of 
scenarios that reflect the most likely use cases for batteries in transportation and stationary 
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applications, these would be widely used and further improve the ability to compare studies and 
externally validate results. Ambitious harmonization projects are not unheard of128and, through a 
partnership between systems analysis experts and technology experts, the community can ensure 
that future analyses of battery technologies further our understanding of their impacts on the 
environment. 
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3.1 Introduction 
 

3.1.1 Motivation 
 
Over the last three decades, lithium ion (Li-ion) batteries have revolutionized multiple sectors of 
the global economy, beginning with the proliferation of portable electronics, and now helping 
achieve environmental goals through vehicle electrification and grid decarbonization. The 
normalized price ($/kWh) of Li-ion cells has declined rapidly, dropping over 97% since their 
initial commercial availability in 1991.1 Li-ion modules, which consist of several cells combined 
into a single unit, and total installed costs for stationary storage systems have also seen 
substantial price decreases since their introduction in more recent years.2–7 Despite these 
substantial declines, further cost reductions are needed to meet policy goals. In 2022, the average 
Li-ion battery module was estimated to be $138/kWh,8 whereas the U.S. Department of Energy 
has an official manufactured cost target of $80/kWh for electric vehicle batteries and a 90% cost 
reduction from 2020-2030 for long-duration (over 10 hours) energy storage systems.9,10 In order 
to meet these policy goals and continue sustainable development and deployment of Li-ion 
batteries, it is critical to understand the drivers and patterns of historical cost reductions and how 
they inform the potential future costs of the technology. More specifically, we must improve our 
understanding of technology learning rates, which are widely used in system dynamics models, 
policy analyses, and forecasting activities that inform technology research and investment 
decisions. Though learning rates are typically calculated as a single historical value, this study is 
the first to apply a segmented regression approach to traditional experience curve analysis for Li-
ion batteries with the goal of exploring how and why learning rates for Li-ion batteries change 
over time, providing insights to better inform the uncertainty in future Li-ion technology price 
forecasting and policy development. 
 

3.1.2 Review of the Li-ion Technologies Learning Rates in Literature 
 
Past literature on Li-ion technologies assume that learning rates remain constant over the entire 
history of the technology. However, research on a variety of energy technologies has considered 
segmented experience curves and found statistically significant changes in the rate over time.11–14 
Research on the costs of Li-ion technologies typically focuses on costs at the cell level, though 
costs of higher-level “tiers'' of systems, namely modules and installed costs, may be more 
relevant to certain analyses. Table 3.1 presents the learning rates of a variety of Li-ion 
technologies from relevant literature and time period examined for each study. 
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Table 3.1. Li-ion technology learning rates in literature.1–3,15–17 
Learning Rate Li-ion Technology Time Period Source 

30 Cells - Electronics 1995 - 2011 Schmidt et al 2017 
16.3 - 17 Cells 1993 - 2004 Gerssen-Gondelach and Faij 2012 

24 Cells - Cylindrical 1992 - 2016 Ziegler and Trancik 2021 
20.4 Cells - All 1992 - 2016 Ziegler and Trancik 2021 
16 Pack - EV 2010 - 2016 Schmidt et al 2017 
9 Packs - EV 2011 - 2015 Nykvist and Nilsson 2015 

16.6 Packs - EV 2010 - 2019 Hsieh et al. 2019 
25.28 Packs - Unspecified 2007 - 2019 Penisa et al. 2020 

12 Stationary - Residential 2013 - 2016 Ziegler and Trancik 2021 
12 Stationary - Utility 2010 - 2015 Ziegler and Trancik 2021 

 
From Table 3.1 we can see that the learning rate for Li-ion cells in literature ranges between 
16.3% and 30.0%. All analyses assume this learning rate is constant over time. Literature on Li-
ion battery packs shows learning rates ranging from 9% to 20.8%. Only one source has 
constructed experience curves on total installed costs of stationary storage, finding a learning rate 
of 12%. Only one source, Nykvist and Nilson,3 performed an experience curve analysis using 
cost instead of price.  
 
In contrast with these prior studies, we apply segmented regression to experience curves for Li-
ion technologies to describe the historical variations in learning rates. We employ the 
methodology outlined in Smith et al.13 to identify time periods with statistically distinct learning 
rates. We propose that understanding the relationship between these periods in a segmented 
experience curve and the development of Li-ion markets can explain the variance of Li-ion 
learning rates in literature. Additionally, we propose that the multiple learning rates from a 
segmented experience curve can be used to better inform the uncertainty in the future prices of 
Li-ion technologies, leading to improved price forecasting and policy development. 
 
 
3.2 Theoretical Framework, Methods, and Data 
 

3.2.1 Theoretical Framework 
 
This work aims to build on the foundational learning curve analysis that typically follows 
Wright's law, while also better accounting for temporal variations and cost patterns in technology 
learning analysis. This improvement is accomplished by applying the segmented regression 
approach and utilizing price data instead of cost data.  
 
Segmented regression analysis has proven valuable in diverse research fields for exploring and 
comprehending relationships between variables that may display distinct patterns within different 
segments of the data. This statistical method is especially advantageous when examining cases 
with abrupt changes or shifts in the relationship between variables. In learning curve analysis, the 
literature18 suggests that projecting the learning rate beyond 3-4 doublings of cumulative 
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production may lead to significant under or overestimation of costs. This indicates that the 
relationship between the cost of a technology and the cumulative production volume can change 
over time, resulting in temporary variations in learning rates. 
 
Wright’s law19 proposes that an increase in the cumulative production of a good results in an 
increased efficiency in production, observable as a decrease in a good’s cost. The rate at which 
the cost declines is often expressed as a learning rate, which is quantified as the percent cost 
decrease for every doubling in cumulative production. Equations 1 and 2 outline Wright’s law 
and the mathematical representation of a learning rate, where Y represents the cost of a product 
over time, X represents the cumulative production of the product over time, a and b are 
coefficients derived by regression, and LR represents the learning rate. 
 

Equation 1.   Y=aXb 
Equation 2.   LR = 1 - 2b 

 
This formulation is useful for describing overall cost reductions (either sector-wide or at a 
specific facility) but developing true learning curves via Wright’s Law’s often poses a challenge 
for analysts, in that actual cost data is difficult to obtain due to the confidential nature of the 
manufacturing industry. Thus, price data is often used instead; when prices are used as the Y 
values in Equation 1, the result is referred to as an experience curve rather than a learning curve. 
The learning rate developed from this experience curve therefore captures cost reductions that 
come from multiple factors beyond the technological “learning” that Wright set out to describe. 
Though multiple drivers of cost reduction are captured, the formulation is unable to provide 
insight on individual mechanisms affecting cost reductions. More information on individual cost 
reduction factors and their modeling through learning rates can be found in Appendix A1. 
 
The differences between price and underlying cost will cause learning rates based on experience 
curves to differ from those based on learning curves. Further, the price vs. cost relationship is 
thought to evolve as a technology matures, as described originally by Boston Consulting Group 
(BCG).20 The BCG model separates the price dynamics of a technology into three main phases: 
(1) “Development,” (2) “Shakeout,” and (3) “Stability.” “Development” describes the period 
when a technology is novel on a market and typically has relatively constant prices (less than 
10% learning rate, according to IEA21 even as costs initially fall. This is followed by a 
“Shakeout” period in which price reduction accelerates (typical learning rate of 60%). The 
Shakeout phase is considered a correction period, where inflated prices (due to limited market 
competition and a holdover from early creators recouping their losses from the development 
phase) are brought down to be better aligned with costs, as expected in a competitive market. 
Finally, a “Stability” phase occurs as technological knowledge of a good depreciates and its 
market matures, causing price reductions to mimic the underlying cost reductions and observed 
learning continues, though at a slower rate than in the “Shakeout” period.  
 

3.2.2 Methods 
 
This study aims to describe the variance in learning rates of Li-ion technologies attributable to 
the behavior documented by BCG by applying segmented regression to an experience curve 
analysis. Experience curves are constructed by graphing a representative price in a given year 
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against the cumulative production of a technology (in this case, GWh of Li-ion cells, modules, or 
installed systems) that had been produced up until that year. Cumulative production data from 
multiple sources was aggregated into representative series for each Li-ion system tier studied 
here. The uncertainty behind these series was explored in low, medium and high scenarios, 
though learning rate results were not found to be sensitive to this underlying assumption.  
 
Segmented experience curves were developed using the methodology described in Smith et al.,13 
where learning curves are iteratively generated for an increasing number of change points and 
evaluated for best fit and statistical justification. For a given number of change points, the 
location of the breakpoints that lead to the lowest mean squared error (MSE) are chosen. We 
tested models with up to three breakpoints for cells and up to two breakpoints for modules and 
installed costs (due to the shorter time period those datasets cover). Model selection between 
different numbers of breakpoints (i.e. a constant learning rate compared to ones that change once 
or twice over time) is based on the Akaike Information Criterion (AIC), which evaluates the 
justification of the additional degree of freedom that an additional breakpoint provides. The 
results from the segmented experience curve are compared against constant learning rates from 
literature. A discussion on the behavior described by the segmented experience curve and its 
implications on forecasting is also presented. 
 

3.2.2 Data 
 

3.2.2.1 Li-ion Battery Prices 
 
Data on the price of Li-ion technologies at all tiers (cells, modules, and total installed costs for 
consumer, EV, and stationary batteries) was collected from literature. In total, over 9,000 data 
points were collected globally. The vast majority of these (8,000) are for installed stationary 
systems, mostly coming from the California SGIP database. Otherwise, data points are split 
relatively evenly across cells (330), modules (350), BOS (310), soft costs (260) and unspecified 
(110). Representative series were generated from the collected data in order to perform 
experience curve analysis. Descriptions of the methods used to produce the representative series 
are available in the Appendix A2. Figure 3.1 displays the price data points and the representative 
series used in this study. 
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Figure 3.1. Individual price data points and representative price series overtime. 
 

3.2.2.2 Cumulative Production of Li-ion Batteries 
 
Representative series for the cumulative production of Li-ion technologies was determined from 
a number of different sources.1,2,22–29 Appendix A2 outlines the procedure for creating these 
representative series, visualized in Figure 3.2a. Additionally, to aid in analyses, the cumulative 
storage capacity of all Li-ion technologies distinguished their market applications (consumer, 
EV, or stationary) visualized in Figure 3.2b. This was done by assuming the remainder of 
modules when stationary storage is removed are used for EV applications, and the remainder of 
cells when module capacity is removed are used for general consumer applications 
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Figure 3.2. a) Cumulative capacity of Li-ion technology tiers overtime. b) Annual capacity of 
Li-ion technology applications overtime. 
 
 
3.3 Results 
 

3.3.1 Historical Variations in Learning Curves 
 
The results of the segmented experience curve analysis are presented in Figure 3.3. The red solid 
lines show the curve with the maximum statistically-justified breakpoints, while the gray dashed 
lines results for additional numbers of breakpoints. Additionally, Table 3.2 summarizes the 
learning rates, uncertainty, AICs, and MSEs from all relevant segmented experience curve 
analyses. 
 
 

 
Figure 3.3. Learning rates for Li-ion technology tiers. 
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Table 3.2. Learning rates for Li-ion technology tiers over time. 

 
 
For Li-ion cells, the traditional experience curve (0 breakpoints) shows a learning rate of 17.3%. 
However, the statistically significant 2-breakpoint model found that the learning rate was much 
lower from 1991-1997 (4.0%) before increasing significantly from 1997 through 2003 (34.0%), 
then declining through 2018 (24.4%). The 3-breakpoint cell model showed that the 2003-2018 
time period is perhaps more accurately split into two, with a learning rate of 15.7% from 2003-
2013 and 40.8% from 2013-2018. This breakpoint was not statistically justified (via the AIC), 
though future analysis with more data collection from recent years may show with more certainty 
that a second acceleration in the learning rate has occurred. 
 
A 1-breakpoint model is most representative for Li-ion modules, with a modest learning rate in 
the first few years (7.9%) before significant acceleration after 2014 (36.8%); the installed cost 
experience curve shows a similar pattern, but with a slightly lower learning rate (5.9% 2010-
2015, 30.6% 2015-2017). The constant learning rate model for modules installed costs are 19.9% 
and 9.9%, respectively. Learning rate values and trends for both modules and installed costs 
mimic the early years (1991-2003) of the cell learning curve. While our analysis finds the 1 
breakpoint model to be statistically significant for modules and installed systems, one can 
qualitatively observe that the number of data points in each segment are small, potentially 
indicating statistically insignificance. Therefore, learning rate results for modules and installed 
systems are more likely to change as additional years of data are observed.  
 
 

3.3.2 Comparison with Prior Works 
 

When employing traditional learning curve techniques, the results of the learning rate are 
frequently heavily influenced by the time during which the research was conducted. Figure 3.4 
shows the learning rates found in this study in comparison to previously published values. The 
length of a given line in the figure represents the years over which the study assessed the 
learning rate. As shown in Figure 3.4a, where we compare our cell learning rates to four results 
from three other publications,1,2,15 studies that assess earlier years of data tend to have lower 
learning rates. This is consistent with our finding that the cell learning rate was much lower in 
the first six years of the technology than afterwards. Schmidt et al.’s analysis produced the 
highest learning rate previously published, utilizing data from 1995-2011.2 This value is aligned 
with this study’s post-1997 results, which sit slightly above and then slightly below their finding. 
However, it is still significantly lower than the 2013-2018 learning rate from our 3-breakpoint 
model. 
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Figure 3.4. Comparison of learning rate results to previously published values, for (a) cells and 
(b) modules. 1–3,15–17  
 
The impact of study timeline on results is even more pronounced in literature on Li-ion modules 
and packs, shown in Figure 3.4b. Nykvist and Nilsson’s3 2011-2015 learning rate is nearly 
identical to this study’s 2011-2014 result, while other studies that included later years of data 
found higher learning rates. But again, even the highest value previously published, 25.5% in 
Pensia et al.,17 is much lower than the recent learning rate observed in this study. Comparison for 
installed costs is not visualized, as only one prior study2 had a comparable value (12% for 2010-
2015), which was higher than our rate over that same time period (5.9%), but much lower than 
later years in our analysis.   
 
 
3.4 Discussion 
 

3.4.1 Learning Rates and Market Behavior 
 

The 2 breakpoint learning rate model for Li-ion cells shows a clear agreement with the price 
phases identified by BCG,20 further supported by the cumulative capacity of Li-ion technologies 
presented in Figure 3.2. Between 1991 and 1997, the low learning rate of 4.0%, as well as the 
small cumulative capacity of Li-ion technology indicates that the technology was in a 
“Development” and “Price Umbrella” resulting from its novel commercialization. From 1997 
through 2003, the high learning rate of 34.0% indicates a “Shakeout” period where price 
reduction occurs at a rapid rate. This is supported by the increasing cumulative capacity during 
this period, indicating greater sales of Li-ion technology. Between 2003 and 2018, the learning 
rate of 24.4% indicates a “Stabilization” period, indicating a maturity of the technology. 
However, it is noteworthy that this learning rate is slightly higher than those typically associated 
with mature technologies.21 
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This anomaly can be explained if we consider the 3-breakpoint model and examine the time 
period of 2003 to 2013 and 2013 to 2018 as separate. From 2003 to 2013, the learning rate of 
15.7% indicates a “Stabilization” period and agrees with the learning rates of mature 
technologies.21 Additionally, the relatively consistent rate of growth of the cumulative capacity 
of Li-ion technologies indicates a stable market for Li-ion technologies. In this period, the 
majority of battery capacity is still dominated by the consumer portable applications and the 
technology is relatively more mature compared EV batteries. Based on international patent 
analysis,30 the number of patents targeting electric vehicles overtook consumer electronics in 
2011 and, while patents for portable electronic battery pack designs levelled off after this time, 
electric vehicle patents continued to grow with even more vigorously, primarily dominated by 
Japanese companies. Interestingly, between 2013 and 2018, the high learning rate of 40.8% 
indicates a second “Shakeout” period. At first glance, this secondary “Shakeout” appears to 
contradict the idea of knowledge depreciation and market maturity that occurs during the 
“Stability” phase. However, we observe that the EV market experienced rapid growth during this 
time period, as visualized by Figure 3.2, spurring the additional cost reduction mechanisms that 
offset knowledge depreciation. This may be attributable to more aggressive EV and renewable 
energy targets and incentives issued in different parts of the world since 2010,31 in tandem with 
the rapid growing EV batteries patenting activities since 2009.30 The effects of knowledge 
depreciation may also be mitigated by reduction in labor requirements, changes in raw materials 
costs, or new manufacturing and engineering advancements, and therefore the learning rate may 
even rise as knowledge depreciation occurs.32 Additionally, discontinuities in the learning curve 
may occur from “technology structural change”, “a new variant of the technology or a major 
change in the way the technology is produced.”33 These factors, along with more competition 
emerging as the global market developed34,35 all contributed to a this secondary “Shakeout,” 
suggesting a pathway where the growth of new market applications of a good can provoke 
technological change and competition, leading to another “Shakeout” of a good. The preliminary 
results from the module and installed experience curve analysis indicate that these Li-ion 
technologies are undergoing similar stages of development to the early phases of Li-ion cell 
development that was dominated by the consumer portable applications. Further discussions can 
be made on these technologies as more data points become available with time. However, all 
models explored have a lower AIC than a generic experience curve (0-breakpoint model), 
indicating greater statistical significance than traditional methods. 
 

3.4.2 Learning Scenarios for Uncertainty in Forecasting 
 

Many modeling tools and analyses forecast technology prices using (1) an assumed, constant 
learning rate and (2) a demand forecast. Often uncertainty in these forecasts only arises from the 
standard errors associated with a learning curve analysis and potential demand scenarios. We 
propose that incorporating scenarios that correspond to different historical learning rates may 
allow for a greater understanding of likely scenarios in price forecasting. To demonstrate this, we 
performed an uncertainty analysis on the future price of Li-ion cells, starting from 2021 (sample 
year 0). We forecast cell prices 14 years forward using three global Li-ion demand forecasts and 
four different learning rates. The medium demand forecast comes from Bloomberg,36 and the 
high and low forecasts are then generated by raising and lowering annual demand by 20% before 
summing up the series to the cumulative production (Appendix A3). 
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Four different learning rates are applied based on historical data for Li-ion cells as well as other 
mature technologies. The “Average Learning” rate of 17.3% represents the constant Li-ion cell 
learning rate from 1991 to 2018, while “Stability Learning” rate of 24.4% and the “Shakeout 
Learning” rate of 40.5% represent the final segments of our 2- and 3-breakpoint cell learning 
curves, respectively. The fourth learning rate modeled represents the potential learning rate of 
Li-ion cells once the technology is considered fully mature, meaning no more significant 
technological advancements are occurring. This scenario is included because even the modest 
learning rates seen in the Li-ion cell analysis are quite high relative to mature technologies. An 
aggregation of 108 energy technology learning rates (representing both mature and developing 
technologies) found an average value of 18%, with 10% of cases having learning rate less than 
10.5%.37 Additionally, technologies in earlier stages of development (less cumulative 
production) are found to have higher learning rates than more mature technologies.37 Therefore, 
the “Mature Learning” rate of 10.5% is selected to demonstrate this potential future. 
 
The resulting twelve price scenarios are presented in Figure 3.5. Within a learning scenario, 
adjusting demand has a modest effect on forecasted Li-ion cell prices, at most causing a 17.6% 
difference by year 14. However, price forecasts vary significantly between learning scenarios, at 
most causing a 79.0% - 83.3% difference between demand scenarios by the end of the observed 
period. With a medium demand scenario, the Mature Learning scenario sees a price reduction of 
36.4%, the Average Learning scenario sees a price reduction of 53.8%, the Stability Learning 
scenario sees a price reduction of 67.9%, and the Shakeout Learning scenario sees a price 
reduction of 88.2% by the end of the observed period. Knowing which learning and demand 
scenarios (or combination of scenarios) are most likely to occur is impossible to predict with 
certainty. However, the high variation in potential prices among scenarios highlights the 
importance of performing a thorough uncertainty analysis, since using a single learning rate may 
vastly mischaracterize the uncertainty in forecasted prices. Understanding the differences in 
prices among these scenarios and what market behaviors may lead to potential scenarios is 
crucial for informed decision making.  
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Figure 3.5. Forecasted Li-ion cell prices in different demand and learning scenarios 
 
 
3.5 Conclusions 
 
Our segmented experience curve analysis shows both a greater conceptual agreement and 
statistical justification with existing price behavioral analyses than studies that perform 
traditional experience curves with Li-ion technology prices. A segmented experience curve 
analysis should be performed when using price instead of cost in order to gain greater insight and 
a more accurate description of the price reductions over time. Our novel application of these 
methods to Li-ion technologies exemplifies the importance of using segmented experience 
curves to better understand the temporal patterns of Li-ion technology changes. For instance, we 
identified different learning rates for lithium-ion cells: the learning rate was 4% through 1997, 
34% through 2003, and 24.4% onward. Additionally, by allowing greater flexibility in the 
experience curve, a secondary period of increased learning (40.9%) emerges from 2013 onward. 
This secondary “Shakeout” aligns well with Li-ion market behavior but is slightly less 
statistically significant than the previous model; however, this model may emerge as significant 
with the availability of more price and market size data. 
 
Using a segmented experience curve may have significant implications on the modeling of 
uncertainty for price forecasting. Traditional forecasting approaches use a limited number of 
learning rates, typically centered around the average learning rate across the lifespan of the 
technology. This modeling approach does not account for the effects of market emergence and 
technological change that may still occur, a consideration especially important for batteries given 
the ongoing growth of the EV market and the emergence of stationary applications.26,34,38 
Excluding these considerations from price forecasting of Li-ion technologies may lead to 
artificially diminish uncertainties since the learning rates may deviate significantly from the 
average learning rate as they have in the past. Examining historical learning rates through the 
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segmented regression experience curve model employed in this study allows for greater 
consideration of these price dynamics into the future. 
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Chapter 4 
 
Private and External Costs and Benefits of 
Replacing High-Emitting Peaker Plants with 
Batteries 
 
 
 
 
 
The text and research in this chapter was published in Environmental Science & Technology. The 
citation for the published article is as follows:  
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Costs and Benefits of Replacing High-Emitting Peaker Plants with 
Batteries. Environmental Science & Technology, 57(12), 4992–5002. 
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4.1 Introduction 
 
The cost of lithium-ion (Li-ion) batteries has dropped dramatically in the last three decades, 
making them a competitive option for deployment in electric vehicles, household power 
management, and grid-scale energy storage.1–5 These battery energy storage systems (BESS) can 
help address the intermittency of renewable generation and the need for frequency regulation on 
the grid.6-8 Because Li-ion batteries offer fast ramping, they are well suited to mitigate the grid 
impacts of the “duck curve” in typical summer-peaking regions where renewable energy is 
plentiful during midday but less available during some of the highest-demand times (e.g., 
evening and early morning, although this timing may change with the emergence of new 
technologies like heat pumps).9-12 Properly operating Li-ion batteries do not emit local or global 
pollutants at the point of installation, which makes them an attractive replacement for high-
emitting “peaker plants,” which are often located in disadvantaged communities and operate on 
hot days when ambient ozone concentrations are high.13 The practice of decommissioning peaker 
plants and installing BESS in their place has been hypothesized to generate significant benefits 
by reducing onsite air pollutant emissions and providing other revenue-generating grid services 
(e.g., grid stabilization).14-17  
 
In California and New York, there are active requests for proposals to replace peaker plants with 
Li-ion BESS, and the first battery storage installations have already come online (Table B4).18-

22 These facilities aim to earn revenue while avoiding peaker plant generation and its associated 
emissions. What remains unanswered is how total social costs (private and external) compare to 
total social benefits for these peaker replacement projects. In other words, if the goal is to reduce 
greenhouse gas (GHG) emissions and decrease the burden on human health, can these peaker 
plant replacement projects deliver on their promise? If so, what conditions are required to make 
the BESS installations economically attractive for profit-maximizing firms and society as a 
whole? To answer these questions, we evaluate the full life-cycle costs and air quality impacts of 
replacing California’s highest-emitting natural gas peaker plants with BESS. We explore how the 
net present value (NPV) is impacted by incorporating monetized human health benefits from 
avoided air emissions as well as revenue from arbitrage and grid services that BESS can provide. 
 
 
4.2 Materials and Methods 
 

4.2.1 Selection of Natural Gas Peaker Plants 
 
We focused our analysis on California because the state is home to the only completed peaker 
plant replacement project to-date, in addition to several BESS installations designed to reduce 
(but not eliminate) peaker activity, with large amounts of energy storage projects that are 
planned.19-21 Additionally, due to the high penetration of solar photovoltaics (PV) in California, 
the state is facing near-term grid impacts associated with the “duck curve” that must be mitigated 
through energy storage investments and/or fast-ramping power plants.10-11 To understand the 
economic attractiveness of BESS replacements for peakers, we selected a set of peaker plants 
currently operating across California and then modeled their hypothetical replacement. We began 
the process of selecting peaker plants by considering California’s 228 natural gas-fired power 
plants included in the EPA’s Continuous Emissions Monitoring Systems (CEMS); although 
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California does have oil and diesel-fired generators, these plants are not large enough to be 
included in CEMS.23 Peakers were chosen for further analysis if they are in the top quintile of 
total air emission-related damages (monetized, including climate change and human health) per 
unit of energy output, have a maximum continuous output (a single generation event) under 1200 
MWh, and are not a cogeneration facility. Climate damages were estimated based on the social 
cost of carbon, and human health damages were modeled using the Estimating Air pollution 
Social Impact Using Regression (EASIUR) model, as described in Procedure B7. The selection 
criteria yielded 19 generation facilities for hypothetical replacement. Figure 4.1 displays the 
location of all plants (selected and not selected) with maximum continuous output under 1200 
MWh, their normalized climate and human health damages from stack emissions (CO2, NOX, 
SOX, and PM2.5), and rated power in MW. Upstream/life-cycle emissions were not included in 
the screening criteria used to select peaker plants for replacement. Operational data and stack 
emissions for natural gas combusting generators in California are from 2018 through 2020 and 
were obtained through CEMS.23 We assume that all modeled BESS are sited as close as possible 
to the corresponding offset peaker plants in order to reduce uncertainty with geographical market 
variance and infrastructure requirements. Additionally, each BESS is modeled independently, so 
the model does not consider any interactions that might occur if multiple peakers were 
simultaneously replaced with BESS. 
 

 
Figure 4.1. Map of natural gas peaker power plants in California. Each natural gas peaker plant is 
represented by one icon on the map. Color represents the monetized damages per MWh in USD caused by emissions 
from that plant between 2018 and 2020. Size represents the rated power of a power plant in MW. A circle indicates 
that replacement by BESS may be feasible but is not studied in the paper. An oblique square indicates that the 
impacts of replacement by BESS are studied for the natural gas peaker plant. 
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4.2.2 Battery Energy Storage System Sizing, Operation, and Upfront Costs 
 
To understand the costs and net air pollutant emission impacts of installing BESS in place of 
peaker plants, we needed to identify locations, size each system appropriately based on the 
peaker it is replacing, and then simulate how the battery would be charged and discharged 
throughout each day. We assumed each new BESS will be located at the same site as the 
corresponding peaker plant it replaces and will not exceed the peaker’s maximum power output 
during charging or discharging. This avoids having to model additional potential costs associated 
with upgrading transmission and distribution infrastructure, which are outside the scope of this 
study. Additionally, we assumed that the BESS will have a four-hour discharge duration; while 
this represents the higher end of durations for front-of-the-meter BESS in the US,24 a four-hour 
duration is frequently used when studying peaker replacement capabilities and in rulemaking for 
California and New York.25-27  This assumption dictates that the power-to-energy ratios of all 
modeled BESS will be 0.25. 
 
We used optimization to determine the minimum necessary rated energy storage capacity of the 
BESS based on how each peaker plant has historically operated. Unlike peaker plants, the BESS 
must be charged, and those charging decisions will impact the optimal sizing, facility economics, 
and emissions. The optimization program developed for this study considers the historical output 
of each natural gas peaker plant and local hourly electricity prices from 2018 through 2020, 
obtained through California Independent System Operator (CAISO) Open Access Same-time 
Information System (OASIS) and CEMS,23,28 to minimize the rated energy storage capacity of 
the BESS while simultaneously determining the charging decisions that minimize the cost of 
purchasing electricity. Several previously published studies used optimization to estimate profits 
earned during the operation of BESS;29-32 we used an approach most similar to the linear method 
outlined by Nguyen et al.,33 which reduces the computational requirements. The optimization 
model is described in greater detail in Procedure B1. 
 
After determining the minimum necessary rated energy storage capacity, we determined the 
capacity fade (referred to here as degradation) that the Li-ion cells will experience during their 
operation. Battery systems for each BESS were then over-sized to ensure they could deliver a 
consistent level of service after compensating for this loss. Degradation is accounted for based 
on two separate mechanisms: degradation from cycling, and degradation from maintaining a 
state-of-charge over time (shelf-life degradation). Increasing the number of times the system is 
cycled and extending the length of time before the battery is replaced will both increase the 
required size of the battery system. We assume that all BESS will have a scheduled battery 
replacement midway through the facility’s lifespan. This assumption reflects expected market 
behavior, given the longer lifetimes of many system components relative to the Li-ion batteries 
themselves.34-36 The simulated charging and discharging behavior for peaker replacement and 
arbitrage behavior is used to determine the expected degradation. Further details of battery 
oversizing and degradation are presented in Procedure B8, B9, Tables B5, B6, and Figure B2. 
 
Figure 4.2 visualizes the optimized charging behavior of three example BESS for peaker 
replacement only, each replacing a different natural gas peaker plant representing the minimum 
(Chula Vista Energy Center Unit 1A), median (Long Beach Generating Station Unit 1), and 
maximum (Larkspur Energy Facility Unit 1) annual electrical generation of all peaker plants 
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included in this study. The number of full charge–discharge cycle-equivalents required for 
peaker replacement varies widely by facility, with a high of approximately 62 cycles/year, a low 
of around 8, and an average across all facilities of 27 (Table B7). The charging times and loads 
determined by the optimization align with the expected behavior of an energy storage system, 
charging mostly during the day and early morning when electricity is cheapest. Exceptions to 
this expected behavior are due to daily variation in electricity price and peaker output. Large 
periods of continuous output may require charging at nonideal hours in order to store enough 
electricity to fully meet the required load. This is more common in plants with greater energy 
throughput, such as the Larkspur facility. 
 
 

 
 
Figure 4.2. Charging behavior of selected BESS in 2018–2020 for peaker replacement 
considering electricity prices. The time of day and load (MWh) of each charge and discharge event from 2018 
through 2020 is illustrated for three natural gas peaker plants. The optimized charging events are represented as blue 
circles. The fixed discharging events are represented as red x’s. Chula Vista Energy Center Unit 1A is the peaker 
plant with the least output of the studied peaker plants; Long Beach Generating Station Unit 1 has the median 
output; and Larkspur Energy Facility Unit 1 has the maximum output. The average electricity price at each time of 
day from 2018 to 2020 is plotted on the second axis to visualize the relationship between charging/discharging 
events and electricity price. Figure A3 visualizes the state of charge of the BESS offsetting Long Beach Generating 
Station 1 for two example weeks to further visualize behavior. 
 
Using the optimal BESS sizing for each peaker replacement system as an input, we constructed a 
detailed technoeconomic model to quantify the private costs associated with the installation and 
operation of each BESS, using a bottom-up method similar to that of Feldman et al.,37 which is 
further documented in Procedure B4, Figure B4, Tables B8, B10, and B11. The initial cost 
results suggest that sizing BESS to fully replace natural gas peaker plants would require rated 
capacities well beyond what could be considered economically feasible. A first, albeit somewhat 
obvious, finding of this research is that building BESS to fully replace peaker plants will result in 
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massive capital expenditures (CapEx) and insufficient revenue to compensate for those costs. 
However, if a BESS is instead sized to meet the 95th percentile load event for each peaker plant 
(by hours of continuous generation), the required rated capacity decreases by nearly 80% in 
some cases. Other strategies or infrastructure will be required to supply the energy otherwise 
provided during the largest fifth percentile of load events served by natural gas peaker plants 
(roughly 19% of the current peaker output on average), such as demand response measures.38-

40 For example, a cell phone alert from the California Governor’s Office of Emergency Services 
sent during a recent heat wave prompted a 1.2 GW drop in demand in a span of just 5 min.41 The 
relationship between BESS sizing and the fraction of peaker plant activity avoided is further 
explored in Procedure B2 which illustrates the BESS size required to offset varying percentiles 
of natural gas peaker plant activity. 
 

4.2.3 Potential for Arbitrage and Grid Services 
 
While the hypothetical BESS studied here are sized and operated based on the need for peaker 
replacement, operators would be free to take advantage of other revenue-generating activities 
through arbitrage and the provision of grid services. BESS can engage in a variety of revenue-
generating activities, and based on available information on the size and value of these markets, 
we identified arbitrage and frequency regulation as the most attractive options in the near 
term.6,42-45 We determined the revenue and emission impacts associated with arbitrage using a 
similar optimization approach to that previously described for predicting charging and 
discharging behavior (described in Procedure B3). In addition to arbitrage, providing grid 
services can serve as a source of substantial revenue for BESS. 
 
Within the grid services that BESS are well positioned to provide, participation in frequency 
regulation markets offers a particularly large potential source of revenue for BESS.46,47 We 
model the revenue from frequency regulation as three main components in accordance with Xu 
et al.:48 capacity revenue, mileage revenue, and fast regulation revenue. Each component is 
further broken into an individual component for upward and downward mileage. Capacity 
revenue is modeled as the BESS available capacity for frequency regulation multiplied by the 
hourly frequency regulation capacity clearing price. Mileage revenue is modeled as the BESS 
available capacity for frequency regulation, multiplied by the hourly percentage of that capacity 
that is called on by CAISO, the hourly accuracy score, and the hourly mileage clearing price. 
The hourly frequency regulation capacity clearing price, the hourly percentage of called capacity, 
the hourly accuracy score, and the hourly mileage clearing price are sourced from CAISO for the 
years 2018 through 2020 modeled in this study. Additionally, while some independent system 
operators have an additional market minute regulation activity (referred to as fast regulation in 
this study), CAISO does not have a market for this service, so this component is omitted from 
modeling. Furthermore, we assume that frequency regulation and mileage cannot occur during 
arbitrage or peaker replacement to avoid conflicts with available capacity. Additional modeling 
details are available in Procedure B4. 
 
In many instances, profits from frequency regulation exceed the profits from arbitrage in the 
same period (Table B12), yet our analysis prioritizes arbitrage over frequency regulation. This 
choice is based on the small size of the frequency regulation market and high likelihood that 
arbitrage will be more common in the future as the frequency regulation market becomes 
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saturated.43,46,47,49 Table B13 illustrates this point by comparing total electricity charged and 
discharged by batteries in California with the total frequency regulation market sizes (up and 
down). 
 
 
4.3 Results and Discussion 
 

4.3.1 Net Present Value of Battery energy Storage Systems 
 
To understand whether replacing peaker plants in California with BESS is profitable, we 
explored a range of scenarios and calculated the NPV for each. To capture differences among Li-
ion cathode materials, we explored three alternatives: LiFePO4 (LFP), LiNixCoyAlzO2 (NCA), 
and LiNixMnyCozO2 (NMC). We assigned a normalized price per kWh and set of degradation 
characteristics to each battery type, representing current prices and performance. Each battery is 
sized for a four-hour discharge duration. The system lifetime was varied between 15 and 20 
years, with battery replacement occurring at 7.5 and 10 years, respectively (conservatively 
assuming battery prices remain constant). We performed upfront system sizing with respect to 
the battery replacement timeline through the methods outlined in Procedure B1 as well as the 
details outlined in Procedure B8, B9, Table B5, B6, and Figure B2. We used the federally 
mandated social cost of carbon of 51 USD per metric ton of CO2eq emitted in 202050 as well as a 
higher social cost of carbon of 185 USD per metric ton of CO2eq from Rennert et al.51 and 
included monetized human health damages from pollutants that form secondary fine particulate 
matter: primarily NOX. We explored three different discount rates: 3, 5, and 7% and applied 
these rates to both private costs/revenues and changes to monetized climate and human health 
damages. Additionally, the analysis includes operations and maintenance (O&M) costs, which 
entail replacement of heating, ventilation, and air conditioning (HVAC) equipment and other 
components with limited lifespans. Separate from the scenarios discussed here, we capture 
uncertainty in all other cost and design parameters using probability distributions (Table B8) and 
Monte Carlo simulations. The NPV of all BESS across all scenarios is presented in Figures B5–
B10. 
 
Figure 4.3 presents the NPV and net 100-year global warming potential (GWP) for each of the 
BESS replacing the 19 natural gas peaker plants considered in the study. These results include a 
LFP cathode with a replacement battery at 10 years, a total project lifespan of 20 years, and a 
discount rate of 3%. A more detailed breakdown of life-cycle GWP for the Long Beach 1 facility 
(a representative average case) is presented in Figures B11a and B11b, and the impact of 
changing design parameters and discount rates is discussed in the Sensitivity Analysis section. In 
14 of the 19 hypothetical peaker replacements shown in Figure 4.3a, the expected total NPV falls 
below zero, while 5 have expected NPVs above zero. In 10 of the total projects presented, the 
uncertainty around the total NPV spans both negative and positive values, indicating that some 
of these BESS could be viable, particularly if Li-ion battery costs continue to fall. However, 
these results rely on current market values for frequency regulation, which may also fall as more 
BESS come online and saturate the market. 
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Figure 4.3. Net present value and global warming potential of BESS replacing natural gas 
peaker plants. Figure 4.3 illustrates the (a) NPV and (b) global warming potential of all the BESS explored for the 
scenario described, and breaks down the sources of costs and revenues by category. The NPVs and emissions are 
presented, as well as the uncertainty at two standard deviations, determined through Monte Carlo Simulation with 
500 model runs. These results represent an LFP cathode with a battery replacement occurring after 10 years, a total 
facility lifetime of 20 years, and discount rate of 3%. 
 
Figure 4.4 provides a more detailed breakdown of the NPV for a single BESS, distinguishing 
between the private costs and revenue, as well as the monetized emissions impacts. The bars 
labeled “monetary” represent the private revenues and costs associated with building and 
operating the BESS. The emissions cost bars represent the monetized human health damages and 
climate damages resulting from the induced electricity generation due to battery charging. 
Emission offsets are modeled as the avoided damages to human health and the climate from 
electrical generation that the battery displaces when it is discharging. The remaining peaker plant 
activity that cannot be economically replaced with the BESS (any event with a greater energy 
demand than the 95th percentile peaker event) is not included as either a cost or benefit. Further 
details are provided in Procedure B7. 
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Figure 4.4. Net present value of BESS replacing Long Beach Generation Station Unit 1. Figure 
4.4 illustrates the NPV of the BESS replacing Long Beach Generating Station Unit 1 and breaks down the sources of 
costs and revenues by category, additionally specifying the impact from monetary and environmental sources per 
category. Error bars represent two standard deviations. 
 
As shown in Figures 3a and 4, the monetary upfront and battery replacement costs represent the 
two largest costs across all BESS. The costs associated with both O&M and battery charging and 
losses are near negligible in comparison. Frequency regulation is the dominant source of 
revenue, despite the fact that we model the BESS to prioritize arbitrage whenever it is profitable. 
The other revenue-generating activities offsetting peaker activity, arbitrage, and mileage offer 
relatively small economic revenue streams compared to the total system cost. Prior studies have 
also emphasized the near-term profitability of ancillary service markets relative to arbitrage 
when choosing how to operate energy storage systems.43,44,52 The results in Figure 4.3a highlight 
that, while the key cost and revenue drivers remain consistent across all facility designs, the 
relative breakdown of costs and revenues for each BESS do vary. This variation suggests that 
some peaker plant replacement projects can be prioritized based on system characteristics that 
lead to more profitable BESS. 
 
The two largest costs (upfront materials and assembly and battery replacement) are dictated by 
the BESS storage capacity required to meet the 95th percentile load event of the natural gas 
peaker plant being replaced (see Figure B1 and Table B9). Plants that historically have required 
frequent extended, continuous generation must be replaced with larger BESS, often with a rated 
power much greater than that of the peaker plant (Table B7), in part because of the degradation 
the batteries will experience over their lifetime. In contrast, the potential revenue from frequency 
regulation is dictated by the maximum power output of the BESS. In this study, the maximum 
power output for each BESS when it is operating is capped at the rated power of the replaced 
natural gas peaker plant. This prevents the model from inadvertently exceeding the capacity of 
the local grid infrastructure. However, the BESS can have a rated power greater than this if 
needed to ensure adequate storage capacity while maintaining a power-to-energy ratio of 0.25. 
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Ultimately, a BESS will have a higher total NPV if the natural gas peaker plant being replaced 
has a relatively high rated power, yet is rarely called upon for extended, continuous generation. 
 
While frequency regulation represents the greatest near-term source of revenue for all BESS, the 
future of this revenue stream is uncertain. Frequency regulation represents a small, fairly 
localized market.43,46,47,49 Given the forecasted growth of grid-connected energy storage in 
California,19 the value of frequency regulation will likely decrease over time. A key question is 
how this may be counterbalanced by anticipated reductions in battery costs. 
 
In this study, the prices of replaced Li-ion cells are held constant at current market prices. 
However, many forecasts suggest that Li-ion cell prices will decrease,1,53-55 meaning the cost of 
battery replacements may be lower than what is modeled here. The degree of this potential price 
reduction is highly variable on how the Li-ion technology develops, especially since constant 
learning is not guaranteed.56 Technological learning for Li-ion batteries can drive prices lower, 
while material shortages and supply chain challenges for Li-ion cells may counterbalance some 
of these improvements.57-59 If the US Department of Energy’s $60/kWh target for Li-ion 
modules60 is reached in advance of when battery replacement occurs for the facilities in Figure 
4.3, nine of the 19 BESS explored will have a positive NPV (as opposed to 5, based on current 
Li-ion battery prices). 
 

4.3.2 Global Warming Potential of Battery Energy Storage Systems 
 
Figure 4.3b presents the life-cycle GWP of BESS in the previously described scenario. We 
conservatively assumed no recycling of Li-ion cells given the current challenges with Li-ion 
recycling supply chains.61-62 For perspective, a prior study estimated that recycling could save 
approximately one quarter of the Li-ion batteries’ GHG footprint, although results vary by the 
cathode material and recycling process.63 Future uncertainty in cell manufacturing and other 
energy storage components were captured in a Monte Carlo analysis. Probability distributions for 
input parameters are provided in Table B14. The life-cycle GWP for all plants across all 
scenarios is presented in Figures B12–B14. 
 
The GWP for all BESS examined is net positive (based on the current grid mix), as illustrated 
in Figure 4.3b, meaning that system-wide life-cycle GHG emissions increase relative to the 
counterfactual case in which the peaker plant continues to operate and no BESS is installed. 
There are two reasons for this: first, the embedded emissions associated with the BESS and its 
eventual replacement are substantial and second, the replacement of peaker plant activity and 
engagement in arbitrage induce more GHG emissions at power plants elsewhere on the grid 
during BESS charging than what is saved during discharging. This result is not without 
precedent; Craig et al.64 found that grid-scale electricity storage would increase system-wide 
CO2 emissions for Electricity Reliability Council of Texas (ERCOT) in the very near-term, based 
on the outputs of their economic dispatch model. Our results for California echo this finding: 
with the current grid, charging can induce additional fossil-based generation, particularly when 
excess solar capacity is not available. Our modeling approach, described in Procedure B7, 
captures this behavior and estimates the impact on GWP from this induced thermal generation. 
Our modeling does not consider how the availability of storage may impact capacity expansion 
in the long run. As demonstrated by Bistline and Young,65 the availability of grid-scale battery 
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systems can influence future investments in generating capacity and infrastructure, although the 
effects may increase or decrease emissions. Finally, energy losses attributable to the Li-ion cells 
and the balance-of-systems components such as HVAC translate to a round-trip efficiency 
ranging from 80 to 95%, meaning the battery consumes more electricity during charging than it 
supplies during discharging. 
 
One may reasonably expect the impact of battery charging and discharging on GWP to be larger 
than what is shown in Figure 4.3b. When not replacing peaker plant activity, the optimization 
model allows each BESS to engage in arbitrage whenever it is profitable (accounting for 
electricity prices and battery degradation). However, as shown in Table B7, this occurs 
infrequently (an average of 8 cycles per year for LFP BESS). Replacing peaker plant activity 
requires more cycles (average of 27 across all BESS in this study). From our analysis, we 
determined that each BESS would likely spend the majority of the year participating in 
frequency regulation, which is the most profitable strategy but adds a negligible number of 
cycles and little to no emissions benefits. However, BESS installed for different use cases are 
reported to cycle more frequently. For example, a 2020 IHS report that sampled eight projects, 
with an average rated power of under 20 MW (considerably smaller than the BESS modeled here 
which have an average rated power of 97 MW) over a period of 1 to 5 years reported that the 
BESS cycled an equivalent of 251 times per year on average, with a minimum of around 75 and 
a maximum over 450.66 
 
While it may be possible to achieve greater avoided emissions from offset electricity─and 
potentially a negative net GWP─through intentional system behavior and arbitrage,34,67-69 this 
behavior is not achievable in any profit-maximizing peaker replacement scenarios explored (in 
the context of the 2018–2020 grid) and may lead to significantly reduced revenues and increased 
costs associated with battery sizing due to higher degradation from cycling. 
 

4.3.3 Sensitivity Analysis 
 
BESS design and input parameters for the cash flow analysis are likely to change as technology 
and market conditions evolve. The LFP cathode chemistry (shown in Figures 3 and 4) results in 
the most profitable BESS due to its reduced cell price, and it also results in lower life-cycle GWP 
because it avoids the need for cobalt, nickel, and manganese. Five of 19 BESS had a positive 
expected NPV when modeled with an LFP cathode, a 3% discount rate, 20-year lifespan, and 
social cost of carbon of 51 USD per metric ton of CO2eq. Similarly, five of the 19 BESS also had 
a positive expected NPV when modeled with an NCA cathode but had a lower average NPV 
across all 19 plants (−33 million 2020 USD versus −31 million 2020 USD for LFP cathodes). 
Only one BESS had a positive expected NPV with the NMC cathode. The impact of different 
cathode materials on NPV is provided in Figures B5–B10. 
 
Altering the lifespan of the entire BESS facility can also substantially impact the NPV. Our 
modeling approach assumes a single battery replacement will occur midway through the lifespan 
of the BESS. The battery system is sized to deliver a consistent level of service, accounting for 
capacity fade from cycling and shelf-life degradation that will occur over half of the total BESS 
facility’s lifespan. Shortening the battery replacement time from 10 to 7.5 years (total BESS 
lifespan from 20 to 15 years) will require a smaller battery system to maintain a consistent level 
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of service and, thus, CapEx decreases. However, decreasing the lifespan of the BESS also 
reduces the revenue earned while it is in service. In all scenarios explored, the revenue earned 
during a longer battery lifetime (replacement at 10 years, total BESS lifetime of 20 years) 
outweighed the increased CapEx. Specifically, at a 3% discount rate and a social cost of carbon 
of 51 USD per metric ton of CO2eq, going from a BESS lifespan of 15 to 20 years, the number of 
BESS with a positive NPV increased from 2 to 5 for the LFP and NCA cathode and 0 to 1 for the 
NMC cathode chemistry. The impact of different lifespans on NPV is demonstrated in Figures 
B5–B10. However, increasing lifespan is also associated with increasing life-cycle GWP, as 
more materials are required for the larger battery capacity, as shown in Figures B12–B14. 
 
Varying discount rates also affects the NPV. While increasing the discount rate will lower the 
present value of the future battery replacement cost, it will also lower the value of future 
revenues. In the scenarios explored, increasing the discount rates slightly decreased the NPV of 
all BESS. For example, when modeled with an LFP cathode chemistry, a 20-year lifespan, and a 
social cost of carbon of 51 USD per metric ton of CO2eq, increasing the discount rate from 3 to 
7% decreased the number of BESS with a positive NPV from 5 to 2. Figures B5–B10 visualize 
the impacts of changing discount rates on NPV. 
 
To understand the impact of an elevated social cost of carbon, scenarios were performed with a 
cost of 185 USD per metric ton of CO2eq emitted in 2020. This increased the upfront 
environmental costs associated with battery production as well as increasing the costs and 
benefits of battery operation. The cumulative impact is a net decrease in NPV across all 
scenarios because all BESS evaluated resulted in net positive life-cycle GWP. For example, 
when modeled with an LFP cathode chemistry, a 20-year lifespan, and a 3% discount rate, 
increasing the social cost of carbon from 51 to 185 USD per metric ton of CO2eq caused the 
number of BESS with positive NPV to remain the same, but the average NPV decreased from 
−31 million 2020 USD to −36 million 2020 USD. Figures B5–B10 visualize the increasing the 
social cost of carbon on NPV. 
 
 
4.4 Discussion 
 
Analyzing Li-ion BESS as replacements for natural gas peaker plants reveals several insights, 
some of which have implications for all front-of-the-meter battery storage. First, sizing BESS to 
fully replace the service provided by natural gas-fired peaker plants is unlikely to be 
economically viable. Instead, sizing each BESS to serve all but approximately the top fifth 
percentile of load events (appropriate threshold may vary by facility) dramatically reduces the 
required storage capacity and, thus, CapEx, while still meeting 81% of load on average (Table 
B9). This result highlights the continued need for demand-response38-40 and potentially mobile 
battery storage that can be called upon during extreme heat and other exceptional 
circumstances.70 
 
Based on California’s current electricity market, BESS sized to meet the 95th percentile of loads 
served by natural gas peaker plants can achieve a positive NPV, but only if the value of 
frequency regulation does not decline. The BESS most likely to be profitable are those with LFP 
cathodes replacing large natural gas peaker plants that do not output large quantities of energy 
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frequently and continuously, since most profits come from slack capacity sold in the frequency 
regulation market. Arbitrage, in contrast, is only a small contributor to total revenue. These 
findings are consistent with prior studies.43,44,71 However, given the limited size of the frequency 
regulation market and the forecasted growth of energy storage in California, the value of 
frequency regulation may decrease in the future.43,46,47,49 A remaining question is whether the 
social benefits of energy storage can compensate for the declining value of frequency regulation. 
Additionally, peaker plants can place a disproportionate environmental burden on historically 
marginalized groups.72-74 For example, the Hanford 2 peaker plant sits in a census tract where the 
PM2.5 concentrations are in the 99th percentile for the United States and nearly half of the 
population is Hispanic or Latino.75 Based on our analysis, this plant is potentially the most 
profitable target for replacement with a BESS. The community around the Wolfskill 1 facility 
averages PM2.5 concentrations in the top 95th percentile for the nation and is also approximately 
half Hispanic or Latino.75 Combining an understanding of the economics of replacement, 
alongside data on the distributional impacts of each plant’s emissions, can be a compelling 
strategy for replacing high-emitting plants. 
 
The BESS scenarios evaluated in this study yielded small monetized climate and human health 
impacts relative to the private costs and benefits. While replacing peaker power plants does 
reduce air quality-related health damages in surrounding communities, the profit-maximizing 
behavior for the BESS we modeled also increased life-cycle GHG emissions once the embodied 
emissions in the BESS were accounted for. It may be possible to achieve a net zero or negative 
GWP through an intentional arbitrage strategy to reduce emissions68,69 and the installation of 
additional renewable resources on the grid can increase the likelihood that BESS will offer net 
environmental benefits.34,67 In the near-term, optimizing for emissions reductions would be less 
profitable due to increased cycling and reduced availability for frequency regulation. 
 
Future prices of Li-ion cells and the evolution of electricity markets are critical to increasing the 
NPVs of BESS. If the value of frequency regulation does indeed decrease over time, battery 
costs must decrease and revenue from arbitrage must increase to maintain or increase NPVs. If 
the US Department of Energy target price for Li-ion modules, $60/kWh,60 is reached as battery 
replacement occurs for the scenario in Figure 4.3a, then nine of the 19 BESS explored will have 
a positive NPV, instead of 5. However, achieving this price reduction in 7.5 to 10 years will 
require learning rates much higher than the recent average learning rates for Li-ion cells.1 The 
rate at which Li-ion battery prices will decrease in the future is highly uncertain.76 Additionally, 
we modeled the future operation of BESS assuming electricity prices will remain at 2018 to 2020 
prices over the next 15 to 20. This will almost certainly not be the case. In reality, transmission 
investments, new generation capacity, shifting demand, and changes in utility rate structures will 
influence the NPVs of BESS. 
 
While we modeled realistic conditions for Li-ion energy storage aimed at replacing peaker plants 
in California, there may be a greater monetary value of storage technologies in other scenarios. 
In particular, some regions rely on coal combustion to meet peak demand, and combining BESS 
with renewable generation resources may further increase profitability while avoiding emissions 
associated with electricity generation.34,67,77-79 Other energy storage technologies like redox flow 
batteries or hydrogen storage may ultimately prove to be better suited for peaker replacement as 
they mature.80-85 Additionally, uncertainty in near-term energy supply may cause variation in 
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market sizes and structure, altering future revenues.86,87 Finally, the modeled NPVs also do not 
capture the monetized human health impacts tied to rolling blackouts or prolonged outages,88-

90 as well as the nonhealth community impacts associated with the removal of natural gas 
combustion peaker plants.91 Including these considerations may increase the value of BESS, 
especially since greater renewable integration and worsening effects from climate change 
increase the variability of electricity supply and demand.92-96 
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Chapter 5 
 
Private and External Impacts of Electrifying 
Heavy-Duty Long-Haul Trucking with Li-ion 
Batteries 
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5.1 Introduction 
 
The transportation sector is the greatest emitter of greenhouse gases (GHGs) in the US, 
representing nearly 29% of domestic GHG emissions in 2022.1 Heavy-duty vehicles (HDVs) are 
responsible for a disproportionate amount of these emissions, accounting for 27% of on-road 
GHG emissions despite only representing 1% of on road vehicles.2 Diesel combustion in the 
internal combustion engine (ICE) of HDVs is also associated with high burdens to human health, 
responsible for 50% of PM2.5 emissions from on-road vehicles, often in highly populated urban 
corridors resulting in disproportionate impacts to disadvantaged communities.2–5 While there are 
several mandates and legislation at the state and national level to electrify, decarbonize, and 
reduce the human health impacts of HDVs, the technological pathway to achieving these changes 
remains unclear.6–8  
 
Lithium-ion (Li-ion) batteries are a popular candidate when exploring options to electrify HDVs, 
largely due to the rapidly growing popularity of Li-ion battery passenger electric vehicles (EVs) 
and decreasing Li-ion battery prices. Since 2010, the size of the US passenger EV fleet has 
increased by nearly two orders of magnitude, all while the price of Li-ion batteries has decreased 
by nearly 90%.9,10 Despite this, there are relatively few options for Li-ion battery electric HDVs, 
particularly for those designed for long-haul freight (trips over 250 miles). When reviewing the 
HDV market (Figure C1), we found only three makes of Li-ion battery electric heavy-duty trucks 
with a range greater than 250 miles, all with limited commercial availability. However, long-haul 
trips over 250 miles are responsible for 68% of GHG emissions from HDVs.11 
 
Several studies report that the limited range, along with other factors like increased refueling 
time and less available weight for cargo, make current Li-ion HDVs uneconomical in long-haul 
freight applications when compared to diesel HDVs.12–14 However, other studies frequently 
report the social and environmental benefits of using Li-ion HDVs in long-haul settings, 
primarily due to reduced GHG and particulate matter (PM2.5) emissions.15–19 Yet no study to-
date examines both the private and social impacts from the life-cycle of Li-ion HDVs operating 
in long-haul freight. 
 
This study aims to determine if the electrification of long-haul HDVs with Li-ion batteries can 
reduce greenhouse gas (GHG) emissions and decrease the burden on human health while being 
economically feasible for the truck operator. If not, what are the conditions required to make Li-
ion battery long-haul HDVs attractive economically and societally from a life-cycle perspective? 
To answer this, we compare the total lifetime costs (TLCs) of Li-ion battery electric Class 8 
trucks operating in a long-haul capacity relative to diesel internal combustion engine Class 8 
trucks performing the same trips. Included in the TLCs are the private monetary costs to the 
owner as well as contributions to global warming potential and human health burdens due to air 
pollution across the lifetime of the vehicles. We model the TLC for trucks operating in 2024 and 
2035 while accounting for changes in vehicle design, battery technology, and electricity 
generation. Additionally, we compare the differences in TLC that arise when using different Li-
ion battery chemistries. 
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5.2 Materials and Methods 
 

5.2.1 Class 8 Truck Life-cycle and Study Boundaries 
 
The life-cycle of a Class 8 truck is nonlinear and variable between individual trucks.20  Figure 
5.1 outlines common life-cycles of a Class 8 truck and the boundaries set for this study. Included 
in this study are the impacts associated with the material extraction, manufacturing and 
assembly, and long-haul freight use phase of a Class 8 truck. The long-haul fright use phase is 
often the first phase of life for a Class 8 truck. The average Class 8 truck spends around 4 years 
in this use phase, accruing around 110,000 vehicle miles traveled (VMT) per year.13,20,21 This use 
phase concludes when the truck has depreciated to around 40% its intital value or major engine 
rebuilds are required.20 The long-haul freight operator then sells the truck to a regional freight 
operator or a local freight operator.  
 

 
Figure 5.1. Class 8 truck life-cycle and study boundaries. 
 
In our TLCs, we include the costs of ownership during the long-haul freight use phase, the 
contributions to global warming potential (GWP) and human health burdens during this use 
phase, and the contributions to GWP from the material extraction, manufacturing and assembly 
phases. Monetary costs and societal impacts outside of these phases are assumed to be 
attributable to other life-cycle phases. Human health burdens arising from material extraction, 
manufacturing and assembly are excluded due to high levels of uncertainty and limited data 
availability. 
 

5.2.2 Truck Power Model and Design Parameters 
 
A model of battery electric truck power demand and performance is required to determine costs 
of ownership and impacts to society. Equations 5.1 through 5.8 make up the standard model for 
the instantaneous power demand of a vehicle used in this study. 22  
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Eq 5.1: 𝑃!"# =	$𝜆 ∗ $
$

%!"
' ∗ 𝑃&'() + (1 − 	𝜆) ∗ (𝜂*+ ∗ 	𝜂*,) ∗ 		𝑃&'() +	𝑃-(' ∗ (1 − 𝑅*,) 

 
Eq 5.2: 𝜆 = 1	𝑖𝑓	𝑃&'() ≥ 0; 	𝜆 = 0	𝑖𝑓	𝑃&'() < 0 
 
Eq 5.3: 𝑃&'() = 𝑃-. + 𝑃/ +	𝑃0 +	𝑃1 
 
Eq 5.4: 𝑃-. = 0.5 ∗ 𝜌 ∗ 𝐶2 ∗ 𝐴 ∗ 𝑣3 
 
Eq 5.5: 𝑃/ = 𝐶.. ∗ 𝑚 ∗ 𝑔 ∗ 𝑣 
 
Eq 5.6: 𝑃0 = 𝑚 ∗ 𝑔 ∗ 𝑣 ∗ 𝑍  
 
Eq 5.7: 𝑃1 = 0.5 ∗ 	𝑚 ∗ 𝑣 ∗ 𝑎 
 
Eq 5.8: 𝑚 = min	(𝑚* + 	𝑚4 +	𝑚5 , 𝐺𝑉𝑊𝑅) 
 
A time resolution of a minute was used in Equations 5.1 through 5.8. All variables represent the 
average value over this resolution. In these equations PTot represents the total battery power 
demand, PAR represents the power contribution due to air resistance, PF represent the power 
contribution due to friction, PG represents the power contribution due to gravity, PI represents the 
power contribution due to inertia, and PAc represents the power contribution from accessory 
loads. Since the impacts from regenerative braking typically occur at a time resolution less than a 
minute, we instead model describe the energy recovered as reduction to power demand. The 
value of this reduction (RBr) is determined via review of reported regenerative braking 
performance of electric Class 8 trucks commercially available today. Variables hBW and hBr 
represent the battery-to-wheels efficiency and brake efficiency respectively. Parameters r 
represents air density, CD represents the vehicle’s drag coefficient, A represents the frontal area 
of the truck, v represents the velocity of the truck, Crr represents the coefficient of rolling 
resistance between the truck tires and the road, g represent the gravitational coefficient, Z 
represents the current grade of the road, and a represents the acceleration. Additionally, m 
represents the total weight of the vehicle is comprised of the weight of battery (mB), the weight 
of the tractor and trailer excluding the battery weight (mV), and the weight of the payload (mP). 
The maximum total weight of the vehicle is set at the maximum federal gross vehicle weight 
rating (GVWR) of 82,000 lbs for Li-ion Class 8 trucks and 80,000 for diesel Class 8 trucks.21,23  
 
Table 5.1 shows the parameter values and battery size, as well as the resulting range of the 
vehicles included in this study. Uncertainties for all these parameters is presented in Table C1. 
Battery weight varies by the battery chemistry chosen and is determined by multiplying the 
chemistry-specific pack specific energy by the battery size. The pack specific energies for each 
chemistry are provided in Table C2.24 
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Table 5.1. Truck design parameters by performance scenario. 

Parameter 
Li-ion Class 8 

Truck 
Diesel Class 8 

Truck 
RBr [%] 7.5  -  
hBW [%] 0.85  -  
hBr [%] 0.97 0.97 
hGB [%] 0.95  -  
hE [%]  -  0.42 
hTW [%]  -  0.9 
CD 0.63 0.63 
A [m^2] 5.4 5.4 
Crr 0.0055725 0.0055725 
mB [kg] Var. by Chem. 0 
mV [kg] 8,767 13,267 
GVWR [lbs] 82,000 80,000 

PAC [kW] If ref.* 8 kW 
Else 2 kW 

If ref.* 8 kW 
Else 2 kW 

Full Rated Capacity 
[kWh] 1000  -  

Available Capacity 
[kWh] 85  -  

Range [mi] 560  -  
* Refrigerated trailer 
 
The design parameters and power demand model of diesel Class 8 trucks are similar to Li-ion 
Class 8 trucks with hBW being replaced by the product of the diesel engine efficiency (hE) and 
the transmission-to-wheels efficiency (hTW). The parameters for the diesel truck design scenario 
are also displayed in Table 5.1.15,22,25 
 

5.2.3 Trip Generation and Behavioral Model 
 
We constructed a model to describe the trips performed by a truck and how it would complete 
them over a year of operating in long-haul freight. To determine the routing of a Class 8 truck, 
we referenced the 2017 Commodity Flow Survey (CFS)26 and only observed trips that were over 
250 miles and performed by Class 8 trucks. The CFS provides origin-destination (OD) pairs 
between all major metropolitan areas and describes characteristics for typical trips along these 
OD pairs. These characteristics include payload weight, whether the trailer was refrigerated, and 
a statistical-weight parameter that describes how frequently trips had these characteristics and 
how frequently trips occurred between OD pairs. These statistical weight parameters were used 
to construct discrete probability density functions (PDFs) describing the likelihood of going to 
specifics destination from different origins, the likelihood common payload weights, and the 
likelihood a trailer was refrigerated. 
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We assigned the major metropolitan areas from the CFS as nodes in a network of all major US 
trucking corridors and set the corridors as links.27 Additionally, nodes where charging could 
occur were placed at every major metropolitan area and every 250 miles along corridors. The 
length of corridors and road grade were stored in these links. The constructed PDFS were then 
used to determine an OD pair, a payload weight, and whether the trailer was refrigerated. A 
standard shortest path algorithm was used to determine the specific routing a truck would follow 
within the corridor network. This procedure was repeated, using the previous destination as the 
origin for the next trip. If chosen payload weight for a trip causes the total vehicle weight to 
exceed the federal GVWR limit, we assume that the excess weight is removed from payload and 
must be shipped by taking up a portion of another vehicle’s cargo space. These excess tonne-
miles are considered when calculating ownership costs. 
 
A behavioral model of Li-ion and diesel Class 8 trucks was constructed to determine dispatch 
times, vehicle speeds, when and how charging occurs, and when to rest while completing the 
routes determined from the trip generation model for a year of operation. The outputs of this 
model included the VMTs and power demand along every kilometer driven in the network, the 
hourly electricity power demand at every node where charging occurs, time spent driving, time 
spent simultaneously resting and charging, and time spent solely charging over the course of a 
year.  
 
Initial trip dispatching from a location was decided via a discrete probability density function 
presented in Figure C2.28 We assumed truck velocity and acceleration followed the California 
Air Resource Board Heavy Heavy-Duty Diesel Truck Cruise Segment drive cycle when 
driving.29 This drive cycle is visualized in Figure C3. Using the power model outlined in 
Equations 5.1 through 5.8 while assuming a max payload, no accessory power demand, and no 
elevation change results in a energy efficiency of 1.52 kWh per mile along this drive cycle. 
Additionally, our model employed logic to ensure that the state-of-charge of a Li-ion battery on a 
Class 8 truck remained between zero and one, and that the labor regulations for truck drivers in 
the US were followed.30 We assumed there was no preference on the time of day when charging 
occurred. Similar logic was used to determine diesel trucking behavior. Charging speeds as a 
function of state-of-charge and infrastructure type are presented Figure C4.31–33 
 

5.2.4 Grid Emissions Modeling, Global Warming Potential, and Human Health 
 
The hourly electricity power demand at charging nodes is used to determine the use phase 
contributions to GWP and human health burden from Li-ion Class 8 truck operation. We employ 
the electricity grid model outlined in McNeil et al.19  to determine marginal generator type and 
location responding to the hourly electricity demand at each node. Procedure C1 describes the 
methodology for determining the hourly marginal generator responding to the electricity demand 
at each node. The emitted GHGs and criteria air pollutants at the responding marginal generators 
is then estimated using emission factors from the Grid Optimized Operation Dispatch Model.34 
GHG emissions are then converted to tonnes of CO2-equivalents (CO2eq) to determine 
contributions to GWP. Emissions of primary and secondary fine particulate matter (PM2.5) are 
used to determine resulting human health damages using the InMAP source–receptor matrix 
(ISRM).35–38 Two scenarios of renewable energy adoption are used to determine responding 
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marginal generators: one where renewable energy costs are high and one where renewable 
energy costs are low. These scenarios are outlined in NREL’s Standard Scenarios.39,40 
 
For diesel Class 8 truck operation, we use the modeled VMT and power demand along each 
kilometer segment of all trucking corridors to determine contributions to GWP and human health 
burden following procedure outlined in McNeil et al.19  Emission factors from GREET41 and 
Preble et al.42 are used to determine GHG and PM2.5 emissions at each kilometer segment. GHG 
emissions are then converted to tonnes of CO2-equivalents (CO2eq) to determine contributions to 
GWP. Two sets of emission factors are used: one representing current the performance of 
pollution control technologies (diesel particulate filter and selective catalytic reduction), and one 
representing the performance of potentially improved pollution control technologies.15,41–43 Table 
C3 contains the specific emission factors used. Emissions of PM2.5 are used to determine 
resulting human health damages using the InMAP source–receptor matrix (ISRM).35–38 For TLCs 
in 2024, we assume emission factors match those of model year 2010 through 2018 diesel Class 
8 trucks. For TLCs in 2035, we assume incremental improvements to 2024 emission factors. 
 

5.2.5 Battery and Truck Material Extraction and Manufacturing Emissions 
 
The contributions from battery material extraction and manufacturing are modeled using the 
procedure used in Porzio et al.44 The inputs, outputs, and emissions associated with the material 
extraction and manufacturing of truck materials are added to the framework used to determine 
life-cycle emissions,44,45 and presented in Tables C4 and C5. 
 

5.2.6 Ownership Costs 
 
Ownership costs are broken into six major categories: general operations (general ops), fuel, 
battery, standing, payload, and tax credits. We calculate the costs ownerships cost after modeling 
truck behavior for a year and assuming four years a spent performing long-haul freight. The 
annual VMT, age, and other statistics are used to model the categories of ownerships. Discount 
rates of 3%, 5% and 7% are used for determining costs into the future. 
 
General ops costs consist of vehicle depreciation, insurance, taxes, additional fees, maintenance, 
and driving labor. Vehicle depreciation is modeled as a percentage of the initial manufacturer 
suggested retail price of a vehicle. This percentage is determined by a function of the VMT and 
age of a vehicle and is assigned to occur at the end of the long-haul freight use phase.12,13 The 
cost of the battery for Li-ion Class 8 trucks is excluded from this calculation given that no 
significant second-life battery market currently exists.46 Insurance is modeled as an annual cost 
per annual VMT.13 Taxes consist of an upfront component due to the federal excise tax and a 
fixed annual component due to the Heavy Vehicle Use Tax.47,48 Fees consist of a variable annual 
component dependent on vehicle weight representing registration fees and a variable annual 
component dependent on VMT due to tolls and miscellaneous permits.13 Maintenance consists of 
a variable annual component determined by a function of vehicle miles traveled and vehicle age. 
Additionally, maintenance costs are high for diesel Class 8 trucks due to the increased 
complexity of their powertrain.12,13 Driving labor is modeled as an annual cost per annual VMT. 
Table C6 describes the calculation and uncertainties of the values used to calculate general ops 
costs. 
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Fuel costs for Li-ion battery Class 8 trucks consist of two components: one representing the cost 
of purchasing electricity, and one representing the cost of utilizing provided charging 
infrastructure. The cost of purchasing electricity is set at a forecasted national average and varies 
by the future renewable cost scenario and years of operation modeled.49 For 2024, electricity 
prices are set at $0.141/kWh and $0.142/kWh in the low and high renewable cost scenarios 
respectively. For 2035, electricity prices are set at $0.141/kWh and $0.146/kWh in the low and 
high renewable cost scenarios respectively. These prices represent the averages over the years of 
vehicle operation. The cost of utilizing charging infrastructure is estimated at $0.114/kWh in 
2024 by Burnham et al.50 and primarily considers equipment costs, installation costs, 
infrastructure lifetime, and infrastructure provider margins. For diesel Class 8 trucks, the cost of 
fuel consists of the national average diesel prices. Figure C5 visualizes forecasted electricity and 
diesel costs under high and low renewable cost scenarios. 
 
Battery costs are only present for Li-ion Class 8 trucks and assigned as an upfront cost. Current 
battery pack prices for each cathode chemistry are used when modeling 2024 costs of ownership. 
A learning rate of 17% and a forecast of Li-ion battery demand as used to model 2035 costs. 
Figure C6 and Tables C7 and C8 visualize the modeled future battery prices, battery demand, 
and uncertainty. The procedure used in Porzio et al.44 is employed to size truck batteries such 
that they can maintain their rated power over the entire time spent operating in long-haul freight 
even as they degrade due to cycling and calendar aging.  
 
Standing costs for Li-ion Class 8 trucks represents the additional cost of labor accrued while the 
truck is charging. This is modeled by multiplying the annual time spent charging (excluding time 
simultaneously used to rest for the driver) by the hourly cost of labor and supporting operations 
incurred from this additional time.13 
 
Payload costs for Li-ion Class 8 trucks represent the cost of performing the excess tonne-miles 
due to the offset cargo from the additional battery weight relative to diesel Class 8 trucks. The 
average excess tonne-miles is normalized by the payload capacity of an additional Li-ion Class 8 
truck and multiplied by the total cost of ownership excluding payload costs.13,51 
 
Tax credits represent an upfront federal tax credit due to the Commercial Clean Vehicle Credit.52 
Table C9 contains the values and uncertainties used to calculate standing, payload costs, and tax 
credits. 
 
 
5.3 Results 
 

5.3.1 Total Lifetime Costs 
 
A Monte Carlo simulation consisting of simulating a fleet of 25 trucks was used to determine the 
average TLCs for each Class 8 truck type in each scenario. Figure 5.2 visualizes the TLCs of Li-
ion and diesel Class 8 trucks over the four-year average lifetime of a Class 8 truck in long-haul 
freight. Figure 5.2a and b visualize the TLCs of truck operation starting in 2024 under high and 
low renewable cost scenarios respectively. Figure 5.2c and d visualize the TLCs of truck 
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operation starting in 2035 under high and low renewable cost scenarios respectively. A social 
cost of carbon (SCC) of $190/tonne CO2eq53 and a 5% discount rate are used. Error bars represent 
two standard deviations. 
 

 
Figure 5.2. TLC of Li-ion and diesel Class 8 trucks in 2024 and 2035 under high and low 
renewable cost scenarios. Tax credits are representative of values from the Commercial Clean 
Vehicle Credit. 
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5.3.2 GWP and Human Health Impacts 
 
Figure 5.3 visualizes the contributions to GWP and human health from Li-ion and diesel Class 8 
trucks in 2024 and 2035 under high and low renewable cost scenarios. Figure 5.3a and b 
visualize contributions of truck operation starting in 2024 under high and low renewable cost 
scenarios respectively. Figure 5.3c and d visualize the contributions of truck operation starting in 
2035 under high and low renewable cost scenarios respectively. A social cost of carbon (SCC) of 
$190/tonne CO2eq1 and a 5% discount rate are used. Error bars represent two standard deviations. 
 

 
Figure 5.3. Contributions to GWP and human health burden from Li-ion and diesel Class 8 
trucks in 2024 and 2035 under high and low renewable cost scenarios. 
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5.3.3 Sensitivity Analysis 
 
The value of the SCC is continually evolving as modeling continues to climate improve and 
societal understanding of the impacts associated with global warming grows.53,54 Additionally, 
methodologies for determining human health burdens resulting from emitted air pollutants 
continue to improve due to developments in meteorology, environmental sciences, biology, 
public health, and environmental justice.35–38 Battery prices and the cost of utilizing charging 
infrastructure are added sources of high unpredictability in our TLC model. 
A sensitivity analysis was performed to determine how the TLC costs to society would vary 
given changes to the SCC, methods of determining human health burden, battery prices, and 
infrastructure utilization costs. The Figure 5.4 visualizes the TLC and the total percent change 
for a Li-ion NMC811 Class 8 truck compared to a diesel Class 8 truck under 4 sensitivity 
scenarios relative to the 2035 low renewable cost TLC.  
 

 
Figure 5.4. TLC and percent change from sensitivity scenarios relative to 2035 low renewable 
cost scenario. 
 
Under the High Human Health Impacts scenario, the burden to human health is determined using 
the methods outlined by Krewski et al.,38 resulting in higher damages from PM2.5 emissions. In 
the High SCC scenario, the social cost of carbon is set to the 95th percentile estimate of 413 
$/tonne modeled by Rennert et al.54 In the Favorable Batt. Economy scenario, the learning rate 
for battery prices is increase by 2% to 19% and the cost of utilizing charging infrastructure is 
decreased by 50%. 24,50 All these changes are present in the Combined Scenarios figure, showing 
the stacked effects of the sensitivity scenarios.. Additionally, the impacts of varying discount 
rates are presented in Figures C7 and C8. 
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5.4 Discussion 
 
As seen in Figure 5.2, the TLC across all scenarios is higher for Li-ion Class 8 trucks relative to 
diesel Class 8 trucks. Other than the cost from general ops, the greatest contributors to TLC for 
Li-ion Class 8 trucks are the fuel costs from charging, battery costs, payload costs from offset 
cargo, and in some scenarios the contributions to GWP from induced electricity generation. TLC 
contributions from standing costs due to labor associated with the additional time of charging, 
burdens to human health, and tax credits are lesser but still significant. The TLC of diesel Class 8 
trucks is lower than the TLC of Li-ion Class 8 trucks in all scenarios due to reduced fuel costs 
and the absence of battery, payload, and standing costs. 
 
In three of the four scenarios modeled, the TLC of LFP Li-ion Class 8 truck is the lowest of the 
battery electric trucks. This is attributable to the lower price of Li-ion batteries with the LFP 
cathode chemistry. The reduced battery costs are enough to overcome effects of the lower energy 
density associated with the LFP cathode chemistry (increased fuel and payload costs). In all 
scenarios modeled, the TLC of the NCA Li-ion Class 8 truck is the highest due to its middling 
energy density but relatively high price. 
 
The social costs of Li-ion Class 8 trucks relative to diesel Class 8 trucks fluctuates by scenario, 
illustrated in Figure 5.3. In 2024 under a high renewable energy cost scenario, the social impacts 
of Li-ion Class 8 trucks are marginally less than impacts from diesel Class 8 trucks. However, 
under the low renewable energy cost scenario, the 2024 social impacts of Li-ion Class 8 trucks 
are greater than those from diesel Class 8 trucks. More fossil fuel combusting generators are 
responding to the marginal load under the low renewable energy cost scenario than the high 
renewable energy cost scenario, resulting in greater contributions to GWP and human health 
burden.  
 
In 2035, the social impacts from Li-ion Class 8 trucks are lower than diesel Class 8 trucks under 
both renewable energy cost scenarios since both assume that less fossil fuel combusting 
generator are responding to marginal electricity demand. Less fossil fuel combustion is assumed 
to occur in the low renewable energy cost scenario, resulting in significantly lower contributions 
to GWP and human health burden. These reductions to social costs highlight the importance of 
offsetting fossil fuel combustion from responding to marginal electricity demand. 
 
Figure 5.4a and b visualize how the magnitudes and relative differences of the TLC and social 
impacts associated with Class 8 trucking fluctuates with the value of the SCC and how we model 
human health burden. In 2035, increasing the SCC or contributions to human health burden both 
raise the TLC diesel Class 8 trucks by a greater magnitude than the TLC Li-ion Class 8 trucks. 
Additionally, Figure 5.4c shows how favorable economic development can lower the future TLC 
of Li-ion Class 8 trucks relative to the diesel alternative. Combining these impacts in Figure 5.4d 
illustrate how the future difference between the TLC of diesel and Li-ion Class 8 trucks is largely 
dependent on highly unpredictable factors like how we model the SCC and human health 
burdens, as well as how the battery economy develops. 
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5.5 Conclusions and Future Work 
 
Our analysis reveals several insights on the TLC and social impacts associated with Li-ion Class 
8 trucks relative to diesel. First, without major improvements to battery technology, it is unlikely 
that the TLC of Li-ion Class 8 trucks operating in long-haul freight ever falls below the TLC of 
diesel trucks. As shown in Figure 5.4c, Reductions in Li-ion battery prices and the costs of 
charging are essential in improving the TLC of Li-ion Class 8 trucks in long-haul freight. 
Improved specific energy into the future can result in lower standing and fuel costs, visualized by 
comparing these cost categories between NMC811 and NCA Li-ion Class 8 trucks. However, the 
future TLC of both Li-ion and diesel Class 8 trucks is largely dependent on highly unpredictable 
factors, like society’s valuation of contributions to climate change and human health burdens, as 
well as the economic development of batteries. 
 
Additionally, the current use of Li-ion Class 8 trucks does not result in clear improvements to 
social impacts relative to diesel Class 8 trucks when studied at a national level. However, 
regional variations in the value of social impacts are likely due to differences in electricity 
generation portfolios and the amount of renewable generation available by region.55 Continued 
integration of renewable energy, particularly low-cost renewable energy, is required to offset 
fossil fuel combustion from responding to marginal electricity demand and achieve improved 
social impacts of Li-ion Class 8 trucks in the future. 
 
Future works will examine the impacts of different driving behaviors and regulations on the 
social and economic costs Li-ion Class 8 trucks in long-haul freight. The impacts of 
incentivizing versus requiring charging to occur at night on the TLC of Li-ion Class 8 trucks will 
be studied. A more thorough sensitivity analysis on the impacts of improved Li-ion Class 8 truck 
performance will be modeled as well. This analysis will account for the forecasted technological 
improvements associated with Li-ion Class 8 trucking to determine if an of the expected 
technological improvements can significantly change the TLC relative to the diesel alternative. 
Finally, the impacts of increasing the lifetime of a Li-ion Class 8 truck relative to diesel will be 
examined. 
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Chapter 6 
 
Conclusions 
 
 
 
 
 
6.1 Summary of Major Findings 
 
 6.1.1 Life‐cycle assessment considerations for batteries and battery materials 
 
To date, we are unable to find studies that set the standard for best practices in battery LCAs. 
While many studies perform well in one or more dimensions, they often still have their own 
drawbacks. Most of the published LCAs have provided detailed data on the environmental 
impacts of raw materials extraction and processing. The shortcomings in our understanding of 
raw material extraction and processing are twofold. First, the studies we surveyed did not 
adequately account for geographic variation in mining practices and variations in the exposure 
risk for nearby populations. Some mining operations that comprise a minority share of 
production are likely to drive an outsized fraction of overall environmental impacts because of 
local conditions and practices. Second, there are inherent limitations in the underlying midpoint 
and impact methodologies; it is impossible for any LCA to conduct detailed fate and transport 
modeling for every emission to air, soil, and water, so studies rely on regional or global average 
factors that are likely to be one or more orders of magnitude different from the actual values. 
These uncertainties are compounded by the fact that documentation of where specific waste 
streams are discharged from mining and material processing operations is sparse. Moreover, we 
have yet to find any study that explores the differences between average, marginal, and 
incremental sources of key material inputs, and the implications for mining and processing-
related energy use and emissions. This seems to be an obvious gap in the literature, and one that 
could be filled with data and market projections that are available today. 
 
Achieving consensus and clarity in battery manufacturing energy use and impacts is where prior 
studies largely fall short. Because there is little evidence to suggest appreciable non-combustion 
emissions to air, water, or soil during manufacturing, nearly all direct environmental impacts 
from this stage are expected to be tied directly to on-site combustion of fuels and emissions from 
electricity generation. Battery recycling, by comparison to battery manufacturing, is relatively 
well studied and there is better agreement across the literature, although battery recycling LCAs 
must rely largely on estimated or simulated mass and energy balances because of the limited 
number of LIBs being recycled. It is possible that, when primary data becomes more widely 
available, it will reveal inconsistencies between simulations and primary data similar to those 
found in battery manufacturing. Although battery technologies will continue to evolve, and there 
will continue to be disagreements between primary and secondary data sources, we hope to 
provide recommendations for approaching these uncertainties in a manner that makes each study 
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more interpretable, and simpler to replicate and update as battery technologies and the 
infrastructure supporting their production continues to develop. These suggestions are provided 
in the Recommendations for Future Works section. 
 
 6.1.2 Temporal Variations in Learning Rates of Li-ion Technologies 
 
Our segmented experience curve analysis shows both a greater conceptual agreement and 
statistical justification with existing price behavioral analyses than studies that perform 
traditional experience curves with Li-ion technology prices. A segmented experience curve 
analysis should be performed when using price instead of cost to gain greater insight and a more 
accurate description of the price reductions over time. Our novel application of these methods to 
Li-ion technologies exemplifies the importance of using segmented experience curves to better 
understand the temporal patterns of Li-ion technology changes. For instance, we identified 
different learning rates for lithium-ion cells: the learning rate was 4% through 1997, 34% 
through 2003, and 24.4% onward. Additionally, by allowing greater flexibility in the experience 
curve, a secondary period of increased learning (40.9%) emerges from 2013 onward. This 
secondary “Shakeout” aligns well with Li-ion market behavior but is slightly less statistically 
significant than the previous model; however, this model may emerge as significant with the 
availability of more price and market size data. Understanding these historical changes to Li-ion 
technology prices is essential for informing the methods used to project future Li-ion prices. 
 

6.1.3 Private and External Costs and Benefits of Replacing High-Emitting Peaker  
         Plants with Batteries 

 
Our results show that sizing BESS to fully replace the service provided by natural gas-fired 
peaker plants is unlikely to be economically viable. Instead, sizing each BESS to serve all but 
approximately the top fifth percentile of load events (appropriate threshold may vary by facility) 
dramatically reduces the required storage capacity and, thus, CapEx, while still meeting 81% of 
load on average. Based on California’s current electricity market, BESS sized to meet the 95th 
percentile of loads served by natural gas peaker plants can achieve a positive NPV, but only if 
the value of frequency regulation does not decline. The BESS most likely to be profitable are 
those with LFP cathodes replacing large natural gas peaker plants that do not output large 
quantities of energy frequently and continuously, since most profits come from slack capacity 
sold in the frequency regulation market. Arbitrage, in contrast, is only a small contributor to total 
revenue. Given the limited size of the frequency regulation market and the forecasted growth of 
energy storage in California, the value of frequency regulation may decrease in the future. A 
remaining question is whether the social benefits of energy storage can compensate for the 
declining value of frequency regulation. 
 
The BESS scenarios evaluated in this study yielded small monetized climate and human health 
impacts relative to the private costs and benefits. While replacing peaker power plants does 
reduce air quality-related health damages in surrounding communities, the profit-maximizing 
behavior for the BESS we modeled also increased life-cycle GHG emissions once the embodied 
emissions in the BESS were accounted for. Future prices of Li-ion cells and the evolution of 
electricity markets are critical to increasing the NPVs of BESS. If the value of frequency 
regulation does indeed decrease over time, battery costs must decrease and revenue from 
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arbitrage must increase to maintain or increase NPVs. Additionally, transmission investments, 
new generation capacity, shifting demand, and changes in utility rate structures will influence the 
NPVs of BESS. 
 

6.1.4 Private and External Impacts of Electrified Heavy-Duty Long-Haul Trucking  
         with Li-ion Batteries 

 
Our analysis reveals several insights on the TLC and social impacts associated with Li-ion Class 
8 trucks relative to diesel. First, without major improvements to battery technology, it is unlikely 
that the TLC of Li-ion Class 8 trucks operating in long-haul freight ever falls below the TLC of 
diesel trucks. Reductions in Li-ion battery prices and the costs of charging are essential in 
improving the TLC of Li-ion Class 8 trucks in long-haul freight. Improved specific energy into 
the future can result in lower standing and fuel costs, visualized by comparing these cost 
categories between NMC811 and NCA Li-ion Class 8 trucks. However, the future TLC of both 
Li-ion and diesel Class 8 trucks is largely dependent on highly unpredictable factors, like 
society’s valuation of contributions to climate change and human health burdens, as well as the 
economic development of batteries. 
 
Our study also highlights how the aggregated social impacts of Li-ion Class 8 trucks operating 
across the nation is not clearly lower than the aggregated social impacts of diesel Class 8 trucks. 
However, our study does not capture the potential for substantial regional differences in social 
impact to variations in local generation capacity, population density, and meteorology. But 
regardless of regional variations, the ongoing integration of low-cost renewable energy will aid 
in achieving improved future social impacts of Li-ion Class 8 trucks at a national level. 
 
 
6.2 Limitations 
 
We identify limitations for our chapters where we perform novel analyses. When performing 
segmented regression, temporally varied learning rates can only be statistically justified if 
enough data points are included. However, the historic price of Li-ion technologies is often not 
publicly available, especially in more recent years. As a result, conclusions about the current 
behavior of learning rates are limited to several years prior to the date of a study, when Li-ion 
price data is made available. Additionally, learning rates are inherently poor at extrapolation due 
to the unpredictability of future markets and their dependence on events outside the bounds of 
their interpolation. For example, no learning scenario in any study predicted the impact of the 
global COVD19 pandemic on battery prices. 
 
Data availability in electricity markets is a major limitation when modeling the impacts 
associated with replacing peaker plants with large-scale Li-ion BESS. This is especially true 
when modeling the value of resource adequacy (RA), or the monetary value a Li-ion BESS may 
receive for providing “large-scale, stand-by, backup” power for operational generators, which 
was excluded from our study due to a lack of data availability and marginal importance. In 
CAISO, generators must self-provide or outsource an amount of standby power relative to their 
generation capacity, known as RA. In recent years, this outsourced RA component has 
represented a significant portion of revenue for large-scale Li-ion BESS. However, contracts for 
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RA are entirely private and only reported once every two years with a two year delay. This delay 
causes major uncertainty in the current value of providing RA due to changes in the CAISO 
energy generation market. The rapid addition of solar and other renewable generation in CIASO 
has resulted in high demand for the provision of RA, raising its price. However, this change in 
value was unreported to the public until 2024. 
 
Additionally, the rapid state of change of current electricity markets poses a significant challenge 
to TEA modelers. Between 2020 and 2022, the BESS generation capacity reported on the 
CAISO increased over five-fold from 500 MW to over 2500 MW. This unprecedented growth 
was associated with the saturation of the frequency regulation market and a decreased value for 
providing said service. Our study examined the BESS market in 2020, and while our conclusions 
were not incorrect at the time, they were already out of date for BESS in 2022. Modelers should 
be forward looking in their efforts in order to better capture expected changes to electricity 
markets. 
 
When modeling the TLC of Li-ion Class 8 trucks, the high uncertainty in DCFC and extremely 
fast charging (XFC) infrastructure limits the overall certainty of our study. We assumed that 
charging infrastructure will be readily available for utilization throughout the United States aat a 
fixed price. In realty, this utilization price and the availability of the infrastructure is unknown 
since the development of this charging infrastructure for electrified Class 8 trucks has yet to 
occur at a large-scale. How and where this infrastructure is developed can change the cost of 
charging, while also limiting the viability of these Li-ion Class 8 trucks to certain routes, 
inducing additional costs when trying to perform long-haul freight. Additionally, this may impact 
how a Li-ion Class 8 truck passes through its use-phases in its overall lifetime. The value of 
depreciation may be substantially impacted if charging infrastructure is not available to support 
Li-ion Class 8 trucks in regional or distributional/local freight. This may increase the general ops 
cost incurred by the owner if a Li-ion Class 8 truck cannot be resold at a comparable value to 
diesel Class 8 trucks due to infrastructure limitations. 
 
Finally, the modeling of human health impacts is associated with high uncertainty attributable to 
several sources of potential error. One source of potential error stems from our estimations of 
which marginal generators are responding to induced electrical loads. It is an impossibility to 
model the electrical grid response to additional demand with absolute certainty. Therefore, the 
quantity and location of pollutant emissions associate with electricity generation will be 
inherently flawed. Additionally, our understanding of pollution transport and the interactions 
between pollutants and humans is constantly improving. While our current modeling of 
contributions to human health burdens is highly detailed, future models will be able to assess 
impacts to human health with less uncertainty.  
 
 
6.3 Policy Implications 
 
LCA studies are frequently used to inform government policy and decision making, particularly 
given the recent importance placed on environmental justice. The standards for the depth and 
quality of LCA should be improved to inform better decision making related to Li-ion batteries. 
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Suggestions for achieving these improvements are provided in the Recommendations for Future 
Works section. 
Additionally, policy based on the future prices of Li-ion batteries should use a wide range of 
learning rates to forecast short-term prices. Our results show that the “instantaneous” learning 
rate of Li-ion batteries is highly variable and dependent on market developments. Using a 
learning rate based on the complete history of Li-ion prices may result in widely inaccurate price 
forecasts. Instead, different learning scenarios based on potential market growth should be used 
to better understand the different pathways future Li-ion prices may follow. 
 
The fourth chapter of this dissertation highlights how Li-ion BESS replacing peaker plants are 
not inherently a win-win for advocacy groups and electricity providers. Replacing many peaker 
plants may result in net negative impacts when considering the monetized impacts of GWP and 
human health burden contributions. Additionally, all Li-ion BESS replacing peaker plants are a 
positive carbon emission technology due to the high emissions associated with material 
extraction, refining, and assembly, as well as the frequency in which thermal generators respond 
to the charging loads of the Li-ion BESS. While local human health benefits are observed, it is 
important that decision makers perform thorough analysis to determine where the highest value 
peaker replacements can occur and have an accurate understanding of the climate impacts 
associated with the technology. 
 
Finally, policy makers should emphasize the continued integration of low-cost renewable 
electricity in order to achieve higher social benefits associated with Li-ion Class 8 trucks 
performing long-haul freight. This will help in reducing the TLC of L-ion Class 8 trucks 
performing long-haul freight, but ultimately their TLC will remain higher than diesel under all 
modeled scenarios unless major technological improvements occur, cheap charging is made 
available, or higher tax credits are provided.  
 
 
6.4 Recommendations for Future Works 
 
This dissertation puts forth several recommendations to improve the quality and depth of LCA 
for Li-ion batteries. First, LCAs should focus analyses of resource depletion on long-term trends 
toward more energy and resource-intensive material extraction and processing rather than 
treating known reserves as a fixed quantity being depleted. Second, future studies should account 
for extraction and processing operations that deviate from industry best-practices and may be 
responsible for an outsized share of sector-wide impacts, such as artisanal cobalt mining. Third, 
LCAs should explore at least 2–3 battery manufacturing facility scales to capture size- and 
throughput-dependent impacts such as dry room conditioning and solvent recovery. Finally, 
future LCAs must transition away from kg of battery mass as a functional unit and instead make 
use of kWh of storage capacity and kWh of lifetime energy throughput. 
 
On the topic of learning rates for Li-ion batteries, understanding the historical changes in Li-ion 
battery prices provides insight on price forecasting into the future. All the studies examined in 
this study simplify the decades of Li-ion price history into a single learning rate and continue this 
trend into the future. Our study highlights how significantly the learning has changed since its 
development and how much this deviates from the single learning rate model. Future analysis 
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should consider a wider range of learning rates when projecting costs into the future to better 
account for the variation that occurs at a smaller temporal resolution. 
 
With regards to modeling the impacts associated with replacing peaker plants with Li-ion BESS, 
future works should account for how electricity markets and regulation will evolve overtime, 
affecting the source and quantity of revenue earned by the BESS. This is particularly important 
in regions like CAISO where the rapid growth of Li-ion BESS capacity is capitalizing on high 
resource adequacy prices while simultaneously saturating the frequency regulation market and 
forcing more involvement in arbitrage. Capturing these market dynamics may significantly alter 
the modeled net impact associated with these facilities, especially over a longer lifetime. 
 
Future works should examine the impacts of different driving behaviors and regulations on the 
social and economic costs Li-ion Class 8 trucks in long-haul freight. The impacts of 
incentivizing versus requiring charging to occur at night on the TLC of Li-ion Class 8 trucks 
should be studied. Future analyses should consider the forecasted technological improvements 
associated with Li-ion Class 8 trucking to determine if an of the expected technological 
improvements can significantly change the TLC relative to the diesel alternative. The potential 
impacts of increasing the lifetime of a Li-ion Class 8 truck relative to diesel should be examined 
as well. Additionally, there is a high level of uncertainty on future electricity prices and costs 
associated with utilizing charging infrastructure. A more in-depth sensitivity analysis on the 
relationship between TLC and these costs should be performed to understand how these factors 
will affect the relative TLCs of Li-ion and diesel Class 8 trucks. Variations by regionality should 
also be considered since electricity prices and generation portfolios may differ substantially by 
geography. Future analysis should consider comparing advanced technologies that may further 
alter Li-ion Class 8 truck behavior, like battery swapping instead of recharging and self-driving 
fleets. Finally, comparisons to alternative powertrains like fuel-cell and hybrid-electric Class 8 
trucks will be modeled to better understand what niche Li-ion Class 8 trucks might occupy in the 
near future. 
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Regression Analysis 
 
 
 
. 
 
  



 109 

A1 Cost reduction mechanisms 
 
Literature on economics and manufacturing generalizes the mechanisms that contribute to a 
product’s cost reductions across an entire sector to four main factors: (1) learning by doing, (2) 
economies of scale, (3) innovation, and (4) cost reduction of material inputs.1 These factors and 
their relationships to costs can be briefly defined as follows:  
 
(1) Learning by doing is the well established concept that cost reductions are achieved through 
increased productivity as individuals passively self improve and innovate through practice. These 
effects may extend beyond an individual facility to an entire sector as knowledge is shared and 
individuals move. Cost impacts are most often characterized as varying with the cumulative 
production of a product.2–4  
 
(2) Economies of scale states that as the production capacity of a facility increases, the fixed 
costs of said production are subsequently spread across a great number of units, decreasing the 
per unit cost of production. Cost impacts are characterized in relation to facility capacity or 
output.5,6  
 
(3) Innovation is a complex process in which a product, its means of production, or its market are 
improved upon and altered through technological advancements. Innovation’s impacts on costs 
are often described as varying with the quantity and quality of research being conducted in a 
sector or tangential sector. The number of patents or amount of spending on research and 
development are common proxies for research quantity and quality.7–10 
 
(4) Variations in the cost of material inputs directly impact production costs.1 
 
Other factors, such as regulations and supply chain constraints, can also influence the pace and 
trajectory of technology progress. For instance, over the past decade, the learning rates of nuclear 
power have accelerated, partly attributable to enhanced safety regulations.11  
 
Multi-factor regressions are often performed in an attempt to characterize and distinguish the 
impacts of two or more factors on the cost of a product. These analysis frequently the generic 
form: 
 
 Equation 1.   log(Y) = a + Σcilog(Xi) 
 
Where Y represents the cost of a product over time, Xi represents the proxy data series used to 
describe a factor over time, and ci represents the regression coefficients that characterize the 
effect of each factor. In practice distinguishing the effects of these factors may be difficult since 
these factors may be highly correlated and there is often a lack of data available at a high enough 
level of detail to support statistically significant analyses.12 
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A2 Representative Series Construction 
 
Cell Capacity (GWh) 
The representative series for annual cell capacity was constructed by taking an average of 
reported cell annual capacities from Kittner et al.,(Kittner et al. 2017) Pillot et al.,13 and Ziegler 
and Tancik.8 These sources perform robust searches for market data, often with overlapping 
sources themselves. While the reported values for capacity are all similar between sources, 
taking the average between them may capture any variances in excluded or included datapoints. 
Cumulative capacity was determined from the annual capacity series. 
 
Module Capacity (GWh) 
The representative series for annual module capacity was determined by summing the reported 
EV and stationary capacity from Beuse et al.14 Cumulative capacity was determined from the 
annual capacity series. 
 
Installed Systems Capacity (GWh) 
The representative series for annual installed system capacity was determined by summing all 
relevant entries in the GESDB15 (as of 2021) for each year and averaging this with the Beuse et 
al. stationary series. This combination was performed in order to compensate for the possibility 
of a time delay for uploading energy storage entries into the GESDB,15 which may result in an 
artificially low global storage capacity. Cumulative capacity was determined from the annual 
capacity series. 
 
Cell Price ($/kWh) 
The representative series for annual cell price constructed by Ziegler and Trancik8 was used in 
this study. Ziegler and Trancik8 performed an exhaustive survey of market data points to 
construct this series, and any adjustments from us would likely result in the double counting of 
primary sources. 
 
Module Price ($/kWh) 
The representative series for annual cell price was constructed from the average of nine different 
cost series across five different sources.16–20 Six of these series represented EV module costs, two 
represented modules in unspecified applications, and one represented modules in utility scale 
energy storage applications. This representative series is not weighted by the size of market 
applications due to uncertainty in primary sources for these series, as well as uncertainty in the 
accuracy of the size of market applications for Li-ion modules. Thus this representative series is 
associated with high levels of uncertainty itself. 
 
Installed Price ($/kWh) 
The representative series for installed system prices was constructed from the average of the cost 
of utility stationary storage from Schmidt et al.,21 the mean cost of utility stationary storage from 
the EIA,22 and the cost of utility stationary storage from Lazard et al.23 Each of these sources 
cover different time periods, but averaging the three series is done in an attempt to create a 
smooth, representative series for analysis. 
  



 111 

A3 Scenarios of forecasted demand for Li-ion cells by sector 
 

 
Scenarios of forecasted global demand for Li-ion cells by sector 

 
Three representative forecasts of global cumulative production of Li-ion capacity are generated 
from the historic cumulative market described by Ziegler and Trancik,8 and the historic and 
forecasted demand from BNEF24 as well as FCAB.25 The global cumulative production forecasts 
represent three different scenarios for US Li-ion demand growth out to 2035. The first scenario 
assumes a moderate amount of domestic EV integration, with EVs representing 62% of domestic 
passenger car sales by 2035. The second scenario assumes a low amount of domestic EV 
integration, with EVs representing only 25% of domestic passenger car sales by 2035. The final 
scenario assumes a high amount of domestic EV integration, with EVs representing 95% of 
domestic passenger car sales by 2035. The forecasted Li-ion cell demand in other sectors and 
other countries is identical between the three scenarios in order to isolate the effects of increasing 
EV domestic EV demand. The cumulative production forecasts corresponding to these different 
domestic EV adoption scenarios will be referred to as the “Medium”, “Low”, and “High” 
forecasts, corresponding to moderate, low, and high EV integration. Error bars represent the low 
and high demand scenarios. Medium forecasts are represented by the barplots. 
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Procedure B1 Peaker Replacement Behavior and Sizing 
Optimization 
  
The following optimization formulation is used to determine the charging behavior and rated 
power of the BESS when operating to offset natural gas combustion at peaker plants. The 
formulations represent the optimization for a single 24-hour period, repeated for everyday from 
2018 through 2020. The maximum rated power observed over the entire three-year span is set as 
the rated power for the BESS.  
  

(1)             min(R ∗ P6788 +∑ P9:;<,>?
> ∗ r>) 

 
Such that:  
 

(2)             0 ≤ r> ≤ R ≤ R@7A 
 

(3)             z> =	z>B$ + 	η ∗ r>B$ −	
C#$%
D

 
 

(4)             0 ≤ z> ≤ R ∗ D 
 

(5)             zE =	zA  
 

(6)             r> ∗ Q> = 0 
 

(7)             R ≥ 	Q> 
  
Table S1 defines the variables and scripts. For the first optimization period observed from 

2018 through 2020, zp is set to zero. Negative prices are artificially set to near-zero positive 
values during optimization in order to avoid unrealistic charging behavior – when calculating 
costs and revenues, negative prices are allowed. 24 hour segments are optimized at a time to 
mimic the day-ahead market structure. When optimization is infeasible for 24 hour periods 
(generally if discharging events occur too near the beginning of these periods and/or if the 
discharge event is very large), the period is expanded earlier by an additional 24 hours until 
feasible. The largest R solved from the optimization of the all the periods in the three-year span 
considered is set as the rated power of the BESS. Our methods ensure that R remains less than 
rcap (the rated power of the existing peaker plant) for all optimization periods to minimize 
impacts associated with upgrading transmission and distribution infrastructure while still meeting 
the historic output of the peaker plant, Qi. The price for increasing energy storage is set 
artificially high to minimize battery size while simultaneously minimizing the cost of purchasing 
electricity while still requiring that the BESS have sufficient energy storage capacity to displace 
all considered discharge periods from purchased electricity. The largest energy capacity from all 
24 hour segments optimized and the annual number of cycles, are used to size the BESS such 
that it maintains its rated energy capacity despite calendar and cycling capacity fade.   
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Table B1 Natural Gas Peaker Replacement Optimization Definitions 
 
Variable/Script Definition 

i  Hour timestep 

n Maximum hour observed, set to 24 

p Final timestep from prior optimization period 

R Required rated power (kW) for the optimization period 

PBatt BESS price per kW, set artificially high to dissuade increasing rated power 

PElec, i Historical electricity price per kW from 2018 through 2020 

ri BESS charging in kW 

RCap Maximum allowed charging per period in kW, set to the rated power of the 
peaker plant  

zi State of charge of the BESS in kWh 

η One way efficiency of the BESS, set to square root of 0.85 

Qi Fixed BESS discharging in kW from historical peaker output from 2018 
through 2020 

D Duration of BESS, set to 4 

Variables and scripts used in the optimization along with their associated definitions.  



 117 

Procedure B2 Additional Peaker Replacement Characteristics  
 
The initial optimization indicated that a BESS must have a large rated power and energy capacity 
to fully offset a natural gas peaker plant. In order to reduce the potential sizing and CapEx of a 
BESS, we performed an analysis in which the top nth percentile load events from the historical 
activity of a natural gas peaker plant are excluded from the optimization above. Figure S1a, S1b, 
and S1c illustrate the results of the performed analysis. Figure S1a plots the required rated power 
of the BESS against the percentile of load events excluded. Figure S1b plots the annual load 
passing through the BESS against the percentile of load events excluded. Figure S1c plots the 
annual load passing through the BESS against the normalized required rated power of the BESS. 
 
Figure S1a illustrates how excluding the top 5th percentile of load events from the optimization 
allows for a significantly reduced rated power for all BESS explored, in some cases even 
reducing the required rated power by around 80%. In Figure S1b, the impact of excluding the top 
nth percentile of load events on the annual load passing through the BESS can be observed. In 
Figure S1c, the effect of reducing the required rated power of a BESS on the annual load passing 
through the system can be observed. Significant size reductions can be achieved by excluding the 
5th percentile of load events while still meeting over 75% of the total annual load that would 
otherwise be offset by a fully sized BESS. Therefore, all BESS are optimized to meet the 95th 
percentile load event for natural gas peaker replacement – a decision that will significantly 
reduce CapEx and increase the feasibility of BESS for natural gas peaker replacement.  
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Figure B1 Relationship Between Percentile of Load Events 
Excluded, BESS Rated Power, and Offset Annual Load by BESS. 
 
 

 
Each color represents the characteristics of each peaker studied and each line represents an 
individual BESS offsetting peaker plant activity. The “Percentile of Load Events Excluded” 
refers to the omission of discharge events by the events’ sizes. For example, at the 5th percentile 
of load events excluded, any discharge event from 2018 to 2020 that is in the top 5th percentile 
by size (MWh) has been omitted from the study. As a result, the required rated power of the 
BESS to offset all considered peaker activity is reduced, since less storage capacity is required. 
(A) The plot visualizes the relationship between the required BESS rated power and the 
percentile of load events excluded when sizing through optimization. (B) The plot visualizes the 
relationship between the offset annual load by the BESS and the percentile of load events 
excluded when sizing through optimization. (C) The plot visualizes the relationship between the 
offset annual load by the BESS and the BESS rated power, with an additional point indicating 
where the BESS are sized for this study, excluding the 5th percentile of load events.  
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Procedure B3 Arbitrage Behavior Optimization 
  
The following optimization formulation is used to determine the charging and discharging 
behavior of the BESS when performing arbitrage. The formulations represent the optimization 
for a single 24 hour period, repeated for everyday from 2018 through 2020.  
 

(8)             min∑ {(Q> − r>) ∗ P9:;<,> −
C#
F∗H

∗ P@I<:;}?
>  

 
Such that:  
 

(9)             0 ≤ r> ≤ R ≤ R@7A 
 

(10) z> =	z>B$ + 	η ∗ r>B$ −	
C#$%
D

 
 

(11) 0 ≤ z> ≤ R ∗ D 
 

(12) zE =	zA  
 

(13) r> ∗ Q> = 0 
  
For the first optimization period observed from 2018 through 2020, zp is set to zero. Negative 
prices are artificially set to near-zero positive values. When optimization is infeasible for 24 hour 
periods, the period is expanded early by an additional 24 hours until feasible. The optimization 
skips periods when the BESS is participating in natural gas peaker replacement. A cost penalty 
equivalent to the fractional cost of the battery degraded from cycling (Table S15) is incurred 
with discharging. The price of electricity controls the revenues from selling electricity and the 
costs of purchasing electricity. Table S2 outlines the variables used for modeling.  
 
In order to perform the optimization on a convex set, we artificially set the discharging event of 
maximum power at the hour with the highest electricity price during the period. If arbitrage is 
found to be profitable, we set a second maximum discharge event at the hour with the next 
highest hour and perform the optimization again. We repeat this until profits decrease; after that 
we use the prior discharge scenario. If we find the initial optimization scenario unprofitable, then 
no arbitrage occurs over the period.  
 
After the number of cycles associated with arbitrage is determined, the upfront size of the BESS 
is increased to ensure it can maintain its rated power despite the additional degradation from 
cycling for arbitrage.  
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Table B2 Natural gas peaker replacement optimization definitions. 
 
Variable/Script Definition 

i  Hour timestep 

n Maximum hour observed, set to 24 

p Final timestep from prior optimization period 

R Required rated power (kW) for the optimization period, set to results from 
peaker replacement optimization 

PElec, i Historical electricity price per kW from 2018 through 2020 

PCycle Incurred cost per cycle attributable to additional upfront sizing to compensate 
for degradation from battery cycling. See Table S12 for description of PCycle 
as it varies by battery chemistry. 

ri BESS charging in kW 

RCap Maximum allowed charging per period in kW, set to the rated power of the 
peaker plant  

zi State of charge of the BESS in kWh 

η One way efficiency of the BESS, set to square root of 0.85 

Qi BESS discharging in kW, set iteratively 

D Duration of BESS, set to 4 

Variables and scripts used in the optimization along with their associated definitions. 
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Procedure B4 Frequency Regulation and Mileage Revenue 
Modeling 
 
The following modeling approach is modified from the description of frequency regulation 
markets in Xu 20161 and is used to estimate revenues from participation in frequency regulation 
and mileage. Generally, total revenue can be broken into three main components, Capacity, 
Mileage, and Fast Response: 
 

𝑇𝑜𝑡𝑎𝑙	𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦	𝑅𝑒𝑣. +𝑀𝑖𝑙𝑒𝑎𝑔𝑒	𝑅𝑒𝑣. +𝐹𝑎𝑠𝑡	𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑅𝑒𝑣. 
 
Capacity revenue represents the revenue earned from bidding a capacity available for charging or 
discharging (regulation up or regulation down). It takes the following form: 
 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦	𝑅𝑒𝑣. =^𝐶𝑖 ∗ 𝑃JK

L

KM$

 

 
Where Ci represents the bid capacity (kW) for each hour i, and PCi represents the clearing price 
($/kW) for capacity for each hour i. 
 
Mileage revenue represents the revenue earned from charging or discharging a portion of a 
system’s bid capacity and takes the following form: 
 

𝑀𝑖𝑙𝑒𝑎𝑔𝑒	𝑅𝑒𝑣. = ^𝐶𝑖 ∗ 𝑀K ∗ 𝑃&K ∗ 	𝜌K

L

KM$

 

 
Where Ci represents the bid capacity (kW) for each hour i, Mi represents the proportion of that 
capacity that is actually called upon for regulation up or down, PMi represents the clearing price 
($/kW) for mileage for each hour i, and ri represents an accuracy score from 0 to 1 that varies 
based on the performance of the system. 
 
Fast response revenue is an additional stream of revenue that is employed by some independent 
system operators but is not used by CAISO. Thus, it is excluded from this study. More 
information on this revenue stream and all other revenue components can be found with Xu 
2016.1 Additionally, environmental impacts associated with frequency response are not included 
in NPV results due to their minor contributions and complexity of modeling relative to other 
emission categories.  
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Procedure B5 BESS CapEx Modeling 
  
The CapEx of the BESS can be categorized into 8 primary components: the battery, the inverter, 
the container balance of systems (BOS), the electrical BOS, the structural BOS, installation and 
labor sales tax, and developer costs. These primary cost components align with categories 
specified by NREL in past works2,3 with some modifications to allow for a greater level of 
granularity inspired by PNNL modeling.4 These primary components are made up of secondary 
components that generally represent a single type of equipment, material, or soft cost. Table S3 
shows the 8 primary cost components and their associated secondary components.  
 
The battery primary component consists of the Li-ion battery module itself and the systems 
contained within it. This generally includes the Li-ion cells, miscellaneous electronics associated 
with module level controls, and housing/cooling elements. We determine the sizing of this 
component by the required rated power determined from optimization for natural gas peaker 
replacement, the amount of annual cycles determined from optimization for natural gas peaker 
replacement and arbitrage, and the scenario specific system lifetime and battery replacement 
timeframe. We provide additional details on the sizing of the battery system and all other 
primary components in the Procedures S8 and S9. 
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Table B3 Primary and secondary components of BESS. 
 
Primary 
Component Secondary Component 

Battery System Battery Module 

Inverter Inverter 

Container BOS Thermal Regulation, Fire Suppression, Gas/Fire Detection 

Electrical BOS Transformer, Switchgear, Substation*, Conductors, Conduits, 
Communications 

Structural BOS Battery Housing, Battery Racks, Inverter Housing, Foundations 

Installation and 
Labor 

Battery Module Installation, Inverter Installation, Electrical BOS 
Installation, Structural BOS Installation, Site and Misc. Labor 

Sales Tax State Taxes, Local Taxes 

Developer 
Costs 

Developer Overhead, EPC Overhead, Permitting, Inspection, 
Interconnection, Contingency, Net Profit, Environmental Study and 
Mitigation, Land Acquisition 

* Substation only included if certain model conditions met, i.e. rated power exceeds 100 MW2–4  
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Procedure B6 Life-Cycle Assessment 
  
A hybrid process-based/physical units-based input-output method was used to calculate the life-
cycle GHG footprint of each BESS using an approach described in prior studies.5–7 LCA 
generally considers four phases of a product’s lifecycle: material extraction and processing, 
assembly, use, and end-of-life. For a BESS and its subcomponents, values pertaining to the 
impacts associated with material extraction and processing are generally sourced from GREET2 
as well as other bodies of literature or first order estimations, all of which are presented in Table 
S13. For the assembly of BESS and its subcomponents, distributions and ranges are assembled 
from literature values to best reflect the many possibilities in cell manufacturing. These 
distributions are presented in Table S11. The local environmental damages associated with Li-
ion cell manufacturing are excluded due to the unavailability of data on foreign energy mixes, 
generation dynamics, and on site fuel consumption. However, as illustrated in Figure 4, 
environmental damages are minor relative to monetary considerations, and the exclusion of these 
damages will likely not significantly alter the final NPV. Use phase impacts are determined 
through the analyses Experimental Procedure previously outlined for each potential revenue 
stream. Additionally, the impacts associated with induced and offset electricity demand are 
outlined in the following section. A BESS is assumed to be landfilled at its end-of-life, with the 
partial recovery of certain high value materials like the HVAC refrigerant and fire suppressant. 
No battery recycling is assumed due to the current, limited state of the battery recycling supply 
chain.8,9 Impacts associated with material transportation and onsite BESS construction are 
considered negligible, excluding the emissions associated with concrete. Future extraction and 
processing, manufacturing, and end-of-life conditions are assumed to mimic current conditions. 
Additionally material breakdowns and assumptions are presented in Table S13 and S14.  
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Procedure B7 Induced and Offset Electricity Demand 
  
In order to understand the impacts of battery charging and discharging behavior – we must know 
something about the electricity and emissions associated with charging a battery and the 
electricity that the battery offsets.  We use a regression-based reduced form approach to this 
problem based on widely used Experimental Procedure in the economics literature.10–12 We build 
a model to predict individual plant behavior based on the aggregate demand for electricity in a 
plant’s region. This model allows us to statistically estimate which plants respond to the 
increased electricity load from battery charging.     
 
We conducted this analysis by leveraging EPA’s Continuous Emissions Monitoring Systems 
(CEMS) data—which allows us to observe hour-by-hour power output and emissions for nearly 
all of the plants in the Western Interconnection.  The EPA reports CEMS data for each 
generating unit within a plant separately.  The data we use consists of hourly measures of 
generation in MWh, CO2, SO2, NOX and PM2.5 for 574 unique generating units contained within 
224 power plants.  CEMS data are highly accurate given the requirement of these data for 
regulatory purposes and because the methodology used to impute missing data creates a 
disincentive for firms to skirt regulations by turning off their monitoring equipment.13   
 
In order to relate emissions to system load, we merged these CEMS data with aggregate demand 
(or load) data for the relevant North American Electric Reliability (NERC) regions servicing 
California. Since California operates a fairly distinct wholesale market from the rest of the 
Western Interconnection, we tabulated loads via Federal Energy Regulatory Commission 
(FERC) Form 714 data for California and the remainder of WECC separately. 
 
With these two datasets, we estimated a model of how each generating unit responds to 
additional electricity load, which allows us to measure the explicit impacts from increased 
demand for electricity derived from battery charging.  Specifically, we ran a set of generator-
specific regressions that relate a generator's power output and emissions to aggregate electricity 
demand for the two NERC regions separately.  As such, the dependent variable in each of our 
regressions is an hourly measure of generator i’s hourly generation or emissions (CO2, SO2, 
NOX, PM25).  We regress each dependent variable on a set of variables constructed from the 
aggregate demand for each NERC region.  We allow for heterogeneity in the responsiveness of 
generators by hour-of-day since it is likely a plant responds to increased demand at 5AM 
differently than 3PM.  Functionally, we estimate the following equation to determine how plants 
respond to additional system load: 
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Here Yit represents hourly generation or emissions for generator i in hour t.  The set of 𝜷int 
coefficients measure the marginal effect of additional (or decreased) load from NERC region n in 
hour-of-day h on that generator’s emissions or generation.  Allowing these changes to vary by 
NERC region n, allows, for example, a generator in California to respond to increased electricity 
demand in California in a different manner than it responds to increased electricity load in 
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Nevada.  This is an important feature of the market given that NERC regions are interconnected–
but remain separate entities when it comes to market-based generation behavior. We also note 
the 𝜷int coefficients are specific to generator i, allowing for these marginal effects to differ by 
generator.  The set of ɣihm coefficients act as high-dimensional fixed effects that net out any fixed 
shifts in behavior for generator i at the sample-month-by-hour-of-day level.  These fixed effects 
soak up any seasonal or hour-of-day variation that may be related to trends in electricity 
demand.  Hence, our 𝜷int coefficients measure the impact of additional load net of any of this 
hour-of-day-by-sample month variation.  We used these coefficients to calculate generator-
specific power output and emissions responses to additional system load induced by battery 
charging in region n and hour h. 
 
We next converted these changes in emissions into monetary damages.  For CO2, we simply 
multiplied each generator’s emissions by the social cost of carbon since these damages do not 
vary across location.  Air pollution damages (i.e.  SO2, NOX and PM2.5), however, vary 
depending on where they are emitted, so we use generator-specific marginal damage estimates 
from the EASIUR model to convert these damages into monetary units for each plant 
separately.  The EASIUR model provides marginal damage estimates for 16,576 cells from a 
148x112 grid representing the United States.  For each generator, we determined the relevant 
grid cell based on the generator’s GPS coordinates and apply marginal damage estimates from 
EASIUR to the induced emissions from charging for that generator.  Since EASIUR reports 
monetized damages for three different emission altitudes (0M, 150M and 300M), we matched 
generators to the nearest altitude based on the generator or plant smokestack height. We report 
damages in 2020 USD throughout the paper. 
 
Accounting for the impacts of offset generation from the peaker generator we replace with a 
battery storage facility presents an easier task.  Since we model the battery storage facility to 
replace a given amount of observed generation for a specific generator, we can simply calculate 
the offset emissions associated with that replaced generation directly based on the observed 
hourly data in the EPA CEMS data. We do not replace all generation hours for each generator in 
our final model, so we only remove the emissions associated with the hours our model selects to 
offset with the battery storage facility. For hours where we only partially offset generation, we 
remove emissions in proportion to the ratio of offset generation and total generation for that 
hour. We convert these reductions in emissions to monetary units using the same procedure 
outlined above for induced emissions from charging.  
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Table B4 Connected or under contract large-scale battery energy 
storage systems in CA.14 

 
Name Location Rated Power 

(MW) 
Commissioned 
Date 

Gateway BESS San Diego, CA 50 August 2020 

NextEra Blythe BESS Riverside, CA 63 August 2021 

Vistra Moss Landing 
BESS 

Moss Landing, CA 400 August 2021 

Coso BESS Little Lake, CA 60 August 2021 

Diablo BESS Contra Costa County, 
CA 

200 August 2021 

Elkhorn BESS Moss Landing, CA 182.5 April 2022 

Beaumont BESS Beaumont, CA 100 August 2023 

Edwards Sanborn BESS Mojave, CA 169 August 2023 

Canyon Country BESS Santa Clarita, CA 80 October 2023 

MOSS350 BESS Moss Landing, CA 350 August 2023 

Inland Empire BESS Rialto, CA 100 April 2024 

Corby BESS Vacaville, CA 125 June 2024 

Kola BESS Tracy, CA 275 June 2024 

Nighthawk BESS Poway, CA 300 June 2024 

Caballero BESS Nipomo, CA 100 June 2024 
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Procedure B8 Additional details on battery sizing. 
The battery system of the Li-ion BESS is sized to ensure that the whole system can output its 
rated power and energy capacity over the entire lifespan of the battery, either 7.5 years or 10 
years, before the battery is replaced. The following equations are used to perform this sizing. 
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 Table B5 Battery sizing definition. 
 
Variable/Script Definition 

rCal Battery degradation attributable to calendar aging, converted to % per cycle  

rCyc Battery degradation attributable to cycling, converted to % per cycle 

TLife Shelf life in years, varies by cathode chemistry, collected from literature. See 
Table S6 

CLife Cycle life in number of cycles, varies by cathode chemistry, collected from 
literature. See Table S6 

EOL Battery state of health (%) at end of life. Set to uniform distribution of 70% 
to 80% to reflect uncertainty in reporting in literature 

Cycles Per 
Year 

Equivalent cycles per year from peaker replacement and arbitrage 

rTot Total battery degradation attributed to each cycle 

Dn Required initial depth of discharge 

D0 Maximum allowable depth of discharge, set to 95% 15 

RAdj Adjusted battery capacity to achieve rated power over entire battery lifespan 

R Rated power 

RTE Round trip efficiency calculated from battery efficiency, transformer 
efficiency, inverter efficiency, HVAC power draw, and miscellaneous power 
draw. 

  
Table S5 defines variables used for sizing. This formulation does not mimic the real behavior of 
battery degradation but rather estimates the required battery capacity to maintain a rated power 
throughout its lifetime using high level properties. Additionally, other options exist for 
maintaining a rated power, but the oversizing approach has the least uncertainty with battery 
pricing and is frequently used for projects this size.16,17  
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Table B6 Battery shelf and cycle life definitions by chemistry.18–26 

 
Chem TLife CLife 

NCA 8 – 10 2000 – 3500 

NMC 8 – 10  2000 – 3000  

LFP 8 – 12  3000 – 5000  
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Procedure B9 Additional details on other primary component sizing. 
  
The container BOS primary component consists of the controls and balance of systems that 
support battery modules. This includes equipment associated with thermal regulation (i.e. HVAC 
or cell cooling) , fire suppression, and gas detection.27–30 Each containerized group of battery 
modules has its own container BOS.4  
  
The inverter primary component consists of the bidirectional inverters used to convert the energy 
from AC to DC while the system is charging and from DC to AC while the system is 
discharging. In utility scale BESS, multiple bidirectional inverters may be used, each one 
connected to a single or set of containers housing battery modules.16,27,28,31,32 
  
The electrical BOS primary component consists of the transformers, switchgear and breakers, 
conductors, conduits, and communications required to transfer energy within the system and onto 
the grid infrastructure. The quantity and properties of transformers in the system can vary by grid 
properties such as voltage and interconnection limits. The configuration of conductors and 
conduits is highly variable and dependent on-site constraints, system design, and grid 
interactions. Additional equipment may be required for site integration, such as a substation, 
depending on the size of the energy storage system and the characteristics of the grid.27,28,30,32 
  
The structural BOS primary component includes the racks and housing for the batteries, the 
inverter housing, and foundations required for the equipment in the system.27,28 
  
The installation and labor primary component is made up of the costs associated with the wages 
of workers and the time spent installing the equipment tied to each of the previous primary 
components, as well as any other miscellaneous work that must be performed. This 
miscellaneous work may include grading, trenching, and hauling among others.27 28 
  
Developer costs are generally defined as the soft costs that are passed onto the project developer 
and include developer overhead, permitting, inspection, interconnection, contingency, net profit, 
environmental study, and environmental mitigation. Developer overhead is defined as the fees 
required for the developers to maintain their operations. EPC overhead is defined as the fees 
required for the EPC company to maintain their operations. Permitting is defined as the 
administrative review and permits required to construct a battery energy storage project. 
Interconnection is defined as all the grid upgrades required to integrate the battery energy storage 
system to the grid. Inspection is defined as the testing that must occur before the BESS is fully 
integrated into the grid. Contingency is defined as a factor to account for any unforeseen events 
that may occur during development of the BESS. The environmental study is defined as the 
study that must be performed to determine if further environmental mitigation is required, while 
environmental mitigation is defined as the additional site work that may be required to minimize 
damage to impacted ecosystems in our surrounding the site.16,17,27,28,33 
  
Sales tax consists of both local and state taxes that are applied as a factor to the total cost of 
materials required.34  
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These primary components and the secondary components they include are visualized in Figure 
S2. 
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Figure B2 Primary components, secondary components, and 
interactions of a BESS.4,27 

 

 
Schematic representation showing the secondary components included in each primary 
component and their interactions of the BESS when discussing CapEx.    
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Table B7 Characteristics of natural gas peaker plants in CA and 
optimized characteristics of BESS. 
 

Replaced 
Peaker Plant 

CAISO 
Region 

Peaker 
Rated 
Power 
(MW) 

Opt. 
BESS 
Rated 
Power 
(MW) 

Annual 
Eq. 

Cycles - 
Peaker 

Rep. 

Annual Eq. 
Cycles - 

LFP 
Arbitrage 

Annual Eq. 
Cycles - 

NCA 
Arbitrage 

Annual Eq. 
Cycles - 
NMC 

Arbitrage 

Long Beach 
Generating 

Station - Unit 
1 

SP15 65 113.72 13.89 9.62 4.43 1.19 

Long Beach 
Generating 

Station - Unit 
2 

SP15 66 108.67 13.94 9.82 4.30 0.86 

Long Beach 
Generating 

Station - Unit 
3 

SP15 66 108.62 13.24 9.67 4.20 0.86 

Long Beach 
Generating 

Station - Unit 
4 

SP15 65 108.11 12.92 10.27 4.66 1.00 

Harbor 
Generating 

Station - Unit 
10 

SP15 47 142.65 9.32 7.47 4.20 1.92 

Harbor 
Generating 

Station - Unit 
13 

SP15 47 118.69 10.48 8.98 4.88 1.95 

Harbor 
Generating 

Station - Unit 
14 

SP15 47 118.37 10.20 8.87 4.90 2.28 

Glenarm - Gas 
Turbine 4 SP15 47 57.55 58.07 7.69 3.95 1.29 

CalPeak 
Power Border SP15 51 64.06 45.24 9.75 5.31 2.39 
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- Gas Turbine 
1 

Cuyamaca 
Peak Energy - 
Gas Turbine 1 

SP15 45 112.24 21.51 6.62 3.57 1.47 

CalPeak 
Power 

Enterprise - 
Gas Turbine 1 

SP15 51 64.81 41.38 9.05 5.25 3.02 

Chula Vista 
Energy Center 

- Unit 1A 
SP15 18 38.62 9.08 11.53 6.64 3.22 

Chula Vista 
Energy Center 

- Unit 1B 
SP15 18 42.98 8.42 10.51 5.97 2.90 

Larkspur 
Energy 

Facility - Unit 
1 

SP15 49 150.29 38.16 3.56 1.85 0.76 

Larkspur 
Energy 

Facility - Unit 
2 

SP15 49 84.20 61.94 7.37 4.22 2.04 

Hanford 
Energy Park 
Peaker - Unit 

2 

NP15 47 47.00 32.77 7.33 4.42 2.92 

Wolfskill 
Energy Center 

- Unit 1 
NP15 48 69.60 26.91 6.90 4.31 2.76 

Riverside 
Energy 

Resource 
Center - Unit 

4 

SP15 51 87.64 49.98 7.86 5.24 3.15 

Center 
Generating 

Station - 
Combined 
Turbine 1 

SP15 48 139.21 28.07 4.52 2.20 0.91 
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Figure B3 Example State-of-Charge for BESS Offsetting Long 
Beach Generator Unit 1 
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Figure B4 Example CapEx of BESS 
 

 
The CapEx for the BESS replacing the Long Beach Generating Station Unit 1 peaker plant is 
presented by category. An LFP cathode chemistry is assumed, with a 15 year lifespan and battery 
replacement at 7.5 years. Error bars represent two standard deviations with 500 runs in the 
Monte Carlo analysis.  
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Table B8 Distributions and values for design and cost parameters of 
BESS. 
 
Component/Parameter Distribution/equation/description Source 

LFP Module Price ($/kWh): lognormal distribution; alpha = 99, 
beta = 1.25, mu = 0, sd = 5, min = 99, max = 225 
  
Additional rack multiplier of 1.07 on price to account 
for additional structural components due to reduced 
energy density 
  
Labor: labor hours = 1 hr/module; labor rate = 50.70 
$/hr 
  
One way efficiency: Uniform distribution; min = 
98%, max = 99% 

16,28,35–37
 

NCA Module Price ($/kWh): lognormal distribution; alpha = 115, 
beta = 5*10^-6, mu = 0, sd = 20, min = 115, max = 
415  
  
Labor: labor hours = 1 hr/module; labor rate = 50.70 
$/hr 
  
One way efficiency: Uniform distribution; min = 
98%, max = 99% 

16,28,35,37
 

NMC Module Price ($/kWh): lognormal distribution; alpha = 115, 
beta = 100, mu = 0, sd = 5, min = 115, max = 525 
  
Labor: labor hours = 1 hr/module; labor rate = 50.70 
$/hr 
  
One way efficiency: Uniform distribution; min = 
98%, max = 99% 

16,28,35,37
 

Inverter Price ($/W): Triangular distribution; min = 0.04. 
mode = 0.06, max = 0.08 
  
Labor: modeled as transformer 
  
Losses: Normal distribution; mean = 1.83%, sd = 
0.599% 

16,28,36,38 
  
Sampled 
from 
available 
products 
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Transformer Price ($): Mode interpolated by size, see Table S10. 
Triangular distribution; max/min = mode +/- 
12.5%*mode 
  
Labor: Labor hours interpolated by size, see Table 
S10; labor rate = $60.07/hr 
  
Losses: Normal distribution; mean = 0.47 %, sd = 
12.5% * mean 

16,28,39
 

Switchgear Price ($/MW): Triangular distribution; If under 
electrical BOS size is less than 25 MW, mode = 
100,000 USD. If electrical BOS is greater than 25 
MW, mode = 100,000 USD + 1,333.33 $/MW. 
max/min = mode +/- 12.5%*mode 
  
Labor: modeled as transformer  

16,28
 

Interconnection Price ($/MW): Uniform distribution; min = 1,000,000 
USD, max = 3,000,000 USD 

16,17,36
 

Conductors Price ($/ft): Uniform distribution: min = 2.5, max = 
7.5 
  
Labor: labor hours = 5.5 hrs per 100 ft; labor rate = 
$54.24/hr 

16,28,36
 

Conduits Price ($/ft): Normal distribution; mean = 18.9, sd = 
3.4 
 
Labor: labor hours = 0.16 hrs per foot; labor rate = 
$54.24/hr 

16,28
 

BMS Price ($): Uniform distribution; min = 200,000, max = 
600,000 
  
Labor: labor hours = 13.33 hrs/MW_rated_power; 
labor rate = $54.20/hr 

16,17,28,36
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Fire Suppression Price ($/Battery container): Normal distribution; mean 
= 1975 + 1.76 * container_volume_ft^3, sd = 12.5% * 
mode 
 
Labor: labor hours = (2 + 0.1 * container_length_ft + 
containter_length/30) hours per container ; labor rate 
= $52.12/hr 

28–30,32
 

HVAC Price ($/Battery container): Uniform distributuion; 
min = $5,000/battery_container, max = 
$15,000/battery_container 
  
Labor: labor hours = 6.67 hours per 
MW_rated_power, 
Labor rate = $53.31/hr 
  
Losses (%): min = 0.5%, max = 2.5% 

28,36,40–42
 

Battery Housing Price ($/container): Normal distribution; mean is 
variable by container size (30,000 for 40 ft container, 
15,000 for 20 ft container, 5,000 for cabinet), sd = 
25% * mean 
  
Labor: modeled as transformer 

16,28,36
 

Inverter Housing Price ($/container): Normal distribution; mean is 
variable by container size (15,000 for 20 ft container, 
5,000 for cabinet, 0 for in battery), sd = 25% * mean 
  
Labor: Installed with inverter 

16,28 
 
Sampled 
from 
available 
products 

Foundation Price ($/cubic yard): normal distribution; mean = 
$140/cubic yard, sd = 12.5% * mean 
  
Labor: labor hours = 0.957 hrs/cubic yard, labor rate = 
46.00 

28
 

Grading Labor: labor hours and rates variable by site size, see 
Table S11 

28
 

Trenching Labor: Labor hours = 4 hrs/cubic_yard, labor rate = 
$46/hr 

28
 

Backfill Labor: Labor hours = 0.691 hrs/cubic yard, labor rate 
= $50.69/hr 

28
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Communications Price ($): Uniform distribution; min = 100,000 USD, 
max = 300,000 USD 
  
Labor: labor hours modeled as transformer, labor rate 
= $54.24/hr 

16,28,36
 

Gas Detection Probes Price ($/Battery Container): 630 
  
Labor: Labor hours = 1 hr/battery_container, labor 
rates = $54.24/hr 

16,28,30
 

Gas Detection 
Controllers 

Price ($/Battery Container): 2925 
 
Labor: Labor hours = 1 hr/battery_container, labor 
rates = $54.24/hr 

16,28,30
 

Fire Detection Price ($/Battery Container): 51.50 
  
Labor: Labor hours = 1 hr/battery_container, labor 
rates = $54.24/hr 

16,28,30
 

Misc. Power Loss Losses (%): Uniform distribution; min = 1%, max = 
5% 

16
 

Total Labor Normal distribution; mean = total labor cost, sd = 
12.5% * mean 

Assumed 

EPC Overhead 25% total labor cost + 8.67% material cost 16,27,28,36
 

Sales Tax National average = 6.5696% 34
 

Dev Overhead (12% +.0315%/MW_rated_power) * (Total labor cost 
+ material cost) 

27,28,36
 

Permits Varies by state, national set to 0 16,27,36
 

Inspection Uniform distribution; min = 5,000 USD, max = 
15,000 USD 

16,27,36
 

Contingency Uniform distribution; min = 0.03% * (Total labor cost 
+ material cost), max = 0.05% * (Total labor cost + 
material cost) 

16,27,28,36
 

Net profit Normal distribution; mean = 5% * (Total labor cost + 
material cost), sd = 12.5% * mean 

16,27,28,36
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Environmental Study Uniform distribution; min = 5,000 USD, max = 
15,000 USD 

16
 

Environmental 
Mitigation 

Uniform distribution; min = 0 USD, max = 100,000 
USD 

16
 

Land Uniform distribution; min = 125,000 USD, max = 
375,000 USD 

16
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Table B9 Annual Output and Omitted Load by Peaker Sized for the 
95th Percentile Load Event 
 

Replaced Peaker Rated Power (MW) Avg. Annual Peaker 
Replacement Output 

(MWh) 

Avg. Annual Omitted 
Load (MWh) 

Long Beach 
Generating Station - 

Unit 1 114 

 
 

6,360 1,360 
Long Beach 

Generating Station - 
Unit 2 109 

 
 

6,100 1,300 
Long Beach 

Generating Station - 
Unit 3 109 

 
 

5,810 1,170 
Long Beach 

Generating Station - 
Unit 4 108 

 
 

5,630 1,000 
Harbor Generating 
Station - Unit 10 143 

 
5,390 1,200 

Harbor Generating 
Station - Unit 13 119 

 
5,000 980 

Harbor Generating 
Station - Unit 14 118 

 
4,900 1,130 

Glenarm - Gas 
Turbine 4 58 

 
13,370 3,170 

CalPeak Power 
Border - Gas Turbine 

1 64 

 
 

11,590 3,330 
Cuyamaca Peak 

Energy - Gas Turbine 
1 112 

 
 

9,680 1,990 
CalPeak Power 
Enterprise - Gas 

Turbine 1 65 

 
 

10,730 2,700 
Chula Vista Energy 

Center - Unit 1A 39 
 

1,430 280 
Chula Vista Energy 

Center - Unit 1B 43 
 

1,470 290 
Larkspur Energy 
Facility - Unit 1 150 

 
22,940 4,960 

Larkspur Energy 
Facility - Unit 2 84 

 
20,860 4,290 

Hanford Energy Park 
Peaker - Unit 2 47 

 
6,160 1,850 
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Wolfskill Energy 
Center - Unit 1 70 

 
7,490 2,880 

Riverside Energy 
Resource Center - 

Unit 4 88 

 
 

17,520 5,200 
Center Generating 
Station - Combined 

Turbine 1 139 

 
 

15,630 4,250 
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Table B10 Transformer price and labor hours by size.28 

 
Size (MW) Labor Hours Price (USD) 

0.15 30.769 9750 

0.3 44.444 13900 

0.05 50 19700 

0.75 52.632 25000 

1 76.923 29600 

1.5 86.957 35200 

2 100 44400 

3.75 125 83500 
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Table B11 Grading labor hours and rates.28 

 
Size Area (SF) Labor hours Labor Rate ($/hrs) 

0 - 400 12 37.76 

400 - 1,000 24 37.76 

1,000 – 3,000 16 47.46 

3,000 – 5,000 24 47.46 

5,000 – 8,000 40 43.33 

8,000 – 10,000 12 81.85 

10,000 – 20,000 9 81.12 

20,000 – 25,000 11.5 81.12 

25,000 – 30,000 13.33 81.12 

30,000 – 35,000 16 81.12 

35,000 – 40,000 18 81.12 

40,000 – 45,000 20 81.12 

45,000 – 50,000 22 81.12 

50,000 – 75,000 32 81.12 

75,000 – 100,000 44 81.12 
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Table B12 Frequency regulation and arbitrage profit comparison.43 

 
Peaker Plant Instances where FR 

profits exceed 
Arbitrage profits 

Potential Annual 
FR Profits 
Change 

Potential Annual 
Arbitrage Profits 
Change 

Long Beach 
Generating Station - 
Unit 1 

99 of 128 $589,547 -$255,285 

Long Beach 
Generating Station - 
Unit 2 

101 of 128 $618,180 -$265,720 

Long Beach 
Generating Station - 
Unit 3 

101 of 128 $611,610 -$261,342 

Long Beach 
Generating Station - 
Unit 4 

103 of 133 $620,101 -$269,646 

Harbor Generating 
Station - Unit 10 

95 of 149 $421,873 -$186,109 

Harbor Generating 
Station - Unit 13 

101 of 155 $455,235 -$201,492 

Harbor Generating 
Station - Unit 14 

96 of 152 $439,535 -$193,935 

Glenarm - Gas Turbine 
4 

52 of 70 $206,180 -$99,168 

CalPeak Power Border 
- Gas Turbine 1 

55 of 85 $290,338 -$116,934 

Cuyamaca Peak 
Energy - Gas Turbine 
1 

76 of 114 $302,456 -$133,897 

CalPeak Power 
Enterprise - Gas 
Turbine 1 

51 of 79 $285,913 -$113,591 

Chula Vista Energy 
Center - Unit 1A 

108 of 164 $179,922 -$81,687 
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Chula Vista Energy 
Center - Unit 1B 

109 of 165 $181,276 -$82,188 

Larkspur Energy 
Facility - Unit 1 

53 of 76 $241,310 -$105,043 

Larkspur Energy 
Facility - Unit 2 

57 of 84 $251,139 -$115,036 

Hanford Energy Park 
Peaker - Unit 2 

44 of 61 $228,193 -$77,197 

Wolfskill Energy 
Center - Unit 1 

52 of 73 $246,754 -$83,121 

Riverside Energy 
Resource Center - Unit 
4 

46 of 71 $247,419 -$111,019 

Center Generating 
Station - Combined 
Turbine 1 

70 of 90 $310,380 -$140,728 

 
Instances in 2018 to 2020 where frequency regulation (FR) activity profits exceed arbitrage 
profits in the same time period, as well as the potential annual change in FR and arbitrage profits 
from these instances; determined from CAISO AS clearing prices and CAISO hour ahead 
markets.43  
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Table B13 Monthly energy for frequency regulation markets and 
monthly energy discharged and charged by batteries in CAISO.43,44 

 
Month Regulation Up 

(MWh) 
Regulation Down 
(MWh) 

Battery Discharge 
(MWh) 

Battery Charge 
(MWh) 

January 
2022 368,820 538,900 102,520 140,010 

February 
2022 309,070 468,660 101,090 166,390 

March 2022 338,650 558,430 76,270 155,490 

April 2022 325,630 580,410 88,280 188,050 

May 2022 312,240 551,580 94,140 210,510 

June 2022 254,840 552,790 159,390 238,720 
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Figure B5 Net present values of BESS with LFP cathode chemistry 
and a social cost of carbon of $51/tonne CO2eq. 
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Figure B6 Net present values of BESS with LFP cathode chemistry 
and a social cost of carbon of $185/tonne CO2eq. 
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Figure B7 Net present values of BESS with NCA cathode chemistry 
and a social cost of carbon of $51/tonne CO2eq. 
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Figure B8 Net present values of BESS with NCA cathode chemistry 
and a social cost of carbon of $185/tonne CO2eq. 
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Figure B9 Net present values of BESS with NMC cathode chemistry 
and a social cost of carbon of $51/tonne CO2eq. 
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Figure B10 Net present values of BESS with NMC cathode 
chemistry and a social cost of carbon of $185/tonne CO2eq. 
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Figure B11a Example LCA GWP of BESS replacing long beach 
generating station unit 1. 
 
 

 
 
Figure B11b Example LCA GWP breakdown of BESS replacing 
long beach generating station unit 1. 
 

 
Exemplary graphical representation of the GWP of BESS replacing Long Beach Generating 
Station Unit 1. Emissions are categorized into “Battery Charging & Losses”, “Energy Storage 
BOS Emissions”, and “Module Materials & Assembly Emissions.” A percent breakdown of the 
components contributing to each category are also presented. 
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Table B14 Distributions and assumptions for cell assembly and BOS 
of BESS.18,45–47 

 
Component/Parameter Distribution/equation/description (prices and 

efficiencies) 

Battery Assembly Energy Demand 
(MJ/kWh) – Pilot Scale 

Triangular distribution; mode = 1,000; min = 100; 
max = 10,000 
  

Battery Assembly Energy Demand 
(MJ/kWh) – Nth Scale 

Uniform distribution; min = 100; max = 1,000 
  

Battery Assembly Energy Demand 
(MJ/kWh) - Unspecified 

Triangular distribution; mode = 101; min = 100; max 
= 10,000 

Battery Assembly Energy Supply – 
Max Thermal 

Thermal energy percent of total energy = 80% 
Electrical energy percent of total energy = 20% 

Battery Assembly Energy Supply – 
Min Thermal 

Thermal energy percent of total energy = 0% 
Electrical energy percent of total energy = 100% 

Battery Assembly Energy Supply – 
Unspecified Thermal 

Thermal energy percent of total energy: uniform 
distribution; min = 0%, max = 80% 
Electrical energy percent of total energy = 100% - 
thermal energy percent 

Battery Assembly Thermal Source – 
Natural Gas 

Thermal energy provided by natural gas = 100% 

Battery Assembly Thermal Source – 
Coal 

Thermal energy provided by coal = 100% 

Battery Assembly Thermal Source – 
Unspecified 

Thermal energy provided by natural gas: uniform 
distribution; 
min = 0%, max = 100% 
Thermal energy provided by coal = 100% - natural 
gas percent 

For all runs presented in the main body of literature, the “unspecified” distributions for battery 
assembly energy demand, battery energy supply, and battery assembly thermal source are 
selected to include all possible scenarios for cell assembly. 
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Figure B12 Lifecycle greenhouse gas emissions of BESS with LFP 
cathode chemistry. Plants listed in order of highest to lowest 
expected NPV with a 3% discount rate and a social cost of carbon of 
$51/tonne CO2eq. 
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Figure B13 Lifecycle greenhouse gas emissions of BESS with NCA 
cathode chemistry. Plants listed in order of highest to lowest 
expected NPV with a 3% discount rate and a social cost of carbon of 
$51/tonne CO2eq. 
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Figure B14 Lifecycle greenhouse gas emissions of BESS with NMC 
cathode chemistry. Plants listed in order of highest to lowest 
expected NPV with a 3% discount rate and a social cost of carbon of 
$51/tonne CO2eq. 
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Table B15 Cost per cycle by Li-ion cathode chemistry derived from 
Monte Carlo Assessment. 
 
Cathode Chemistry Average Cost per Cycle [$/(MWh*Cycle)] Standard 

Deviation 

NMC 149.6 27.9 

NCA 89.58 11.3 

LFP 65.27 5.18 

 
Cost per cycle is representative of the additional upfront cost associated with the increasing 
upfront battery capacity in order to compensate for the degradation that will occur from 
performing a cycle during the lifetime of a BESS. The impacts of non-cycle degradation are 
excluded from the cost per cycle. It is derived through a Monte Carlo simulation with 1000 runs 
that considers the degradation mechanisms and battery prices used throughout this study. 
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Table B16 Distributions and assumptions for BESS component 
LCAs. 
 
Component/Parameter Distributions and characteristics Source 

Li-ion Modules Material Breakdown: 
Module material breakdown by chemistry 
taken from Porzio and Scown 2021 Table 
3. 

18,48
 

Inverters Mass Equation: 
Mass [kg] = 1987.3 * Size [MW] ^ 0.7484 
  
Material Breakdown by Mass: 
Steel =  60.24% 
Aluminum = 17.74% 
Copper = 12.40% 
Plastics = 9.62% 
  
Energy Consumption: 
Electricity [kWh] = 5.6856 * Size [MW] ^ 
0.68 
Refined Oil [MJ] = 0.1211 * Size [MW] ^ 
0.68 
Natural Gas [MJ] = 1.9131 * Size [MW] ^ 
0.68 
Heatwaste [MJ] = 4.9277 * Size [MW] ^ 
0.68 
  
Additional Characteristics: 
Lifetime = 10 years 

49
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Transformers (Medium 
Voltage) 

Mass Equation: 
Mass [kg] = 2780.7 * Size [MW] ^ 0.8674 
   
Material Breakdown by Mass: 
Transformer oil = 24% 
Steel = 56% 
Copper = 12% 
Pressboard = 3% 
Paper = 1% 
Other = 4% 
  
Energy Consumption: 
Electricity [kWh] = 1993.3 * Size [kW] 
Natural Gas [kWh] = 3865.2 * Size [kW] 
  
Additional Characteristics: 
Lifetime = 40 years 

49,50
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Switchgears Mass: 
Mass[kg] = 2400 
  
Material Breakdown by Mass: 
Aluminum = 15% 
Steel = 31.67% 
Stainless steel = 1.7917% 
Copper = 1.0833% 
SF6 = 0.4167% 
EPDM = 0.05% 
Copper tungsten = 0.125% 
PTFE = 0.0625% 
Epoxy resin = 0.1667% 
Molecular sieve = 0.070833% 
Porcelain = 44.1667% 
Other = 5.4% 
  
Energy Consumption (Modeled as 
inverter):  
Electricity [kWh] = 1993.3 * Size [kW] 
Natural Gas [kWh] = 3865.2 * Size [kW] 
  
Additional Characteristics: 
SF6 annual leak rate = 2% 
Lifetime = 40 years 

49,51  

Conductors Mass Breakdown: 
XLPE [kg/ft] = 0.1643 (XLPE modeled as 
HDPE) 
Copper [kg/ft] = 0.887 

28 
 
Sampled from 
available 
products 

Conduits Mass Breakdown: 
Galvanized steel [kg/ft] = 2.1098 
  

28 
 
Sampled from 
available 
products 



 166 

Battery Management System 
(BMS) 

Mass Breakdown: 
Copper = 8.79% 
Glass fiber = 9.99% 
Epoxy resin = 3.03% 
Steel = 43.0% 
Aluminum = 4.53% 
Nylon = 4.21% 
HDPE = 4.57% 
PC = 8.39% 
Other = 13.5% 
 
Energy Consumption: 
Electricity [kWh] = 1.0275 
Natural gas [MJ] = 0.03661 

52
 

Fire Suppression Mass Breakdown (40 ft Container): 
Galvanized steel = 635.81 [kg per 
container] 
HFC227ea = 193.09 [kg per container] 
  
Mass Breakdown (20 ft Container): 
Galvanized steel = 408.74 [kg per 
container] 
HFC227ea = 96.55 [kg per container] 
  
Mass Breakdown (Cabinet): 
Galvanized steel = 100 [kg per container] 
HFC227ea = 25 [kg per container] 
  
Additional Characteristics: 
HFC227ea recovery leak rate: uniform 
distribution; min = 2.5%, max = 7.5% 
HFC227ea lifetime = 10 years 

28,29,53–55 
 
Sampled from 
available 
products 
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HVAC Mass Breakdown (40 ft Container): 
Steel = 156 [kg per container] 
Galvanized steel = 70 [kg per container] 
Aluminum = 34 [kg per container] 
Copper = 34 [kg per container] 
R410a: uniform distribution; min = 6; max 
= 9 [kg per container] 
  
Mass Breakdown (20 ft Container): 
Steel = 78 [kg per container] 
Galvanized steel = 35 [kg per container] 
Aluminum = 17 [kg per container] 
Copper = 17 [kg per container] 
R410a: uniform distribution; min = 3; max 
= 4.5 [kg per container] 
  
Mass Breakdown (Cabinet): 
(Assumed glycol cell cooling with 
negligible mass) 
  
Additional Characteristics: 
R410a annual leak rate: Triangular 
distribution; min = 2%; max = 20%, mode 
= 10% 
R410a recovery leak rate: Triangular 
distribution; min = 15%; max = 100%; 
mode = 0.56% 
HVAC lifetime = 15 
R410a to R32 conversion = 1 to uniform 
distribution; min = 0.7; max = 0.8 

40–42,56 
 
See Table S17  
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Battery Container Mass Breakdown (40 ft Container): 
Steel = 3563 [kg per container] 
Wood = 637.1 [kg per container] 
  
Mass Breakdown (20 ft Container): 
Steel = 1881 [kg per container] 
Wood = 318.6 [kg per container] 
  
Mass Breakdown (Cabinet): 
Steel = 212.7 [kg per container] 

Sampled from 
available 
products 

Inverter Housing Mass Breakdown (20 ft Container): 
Steel = 1881 [kg per container] 
Wood = 318.6 [kg per container] 
  
Mass Breakdown (Cabinet): 
Steel = 212.7 [kg per container] 
  
Mass Breakdown (In Module):  
No additional inverter housing 

Sampled from 
available 
products 
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Foundation Energy Consumption: 
Electricity [MJ/cu-yard] = 0.01543 
Residual Oil [MJ/cu-yard] = 0.0004071 
Diesel [MJ/cu-yard] = 0.001750 
Petcoke [MJ/cu-yard] = 0.01847 
Natural Gas [MJ/cu-yard] = 0.01805 
Coal [MJ/cu-yard] = 0.04213 
Waste heat [MJ/cu-yard] = 0.004776 
Tire [MJ/cu-yard] = 0.004776 
Waste Oil [MJ/cu-yard] = 0.000742866 
Renewables [MJ/cu-yard] = 0.0007428 
  
Process Emissions: 
CO2 [kg/cu-yard] = 0.07925 
CH4 [kg/cu-yard] = 4.496 * 10-6 
N2O [kg/cu-yard] = 4.62*10-7 
VOC [kg/cu-yard] = 7.782*10-5 
CO [kg/cu-yard] = 1.246*10-4 
NOx [kg/cu-yard] = 1.415*10-4 
PM10 [kg/cu-yard] = 7.408*10-5 
PM25 [kg/cu-yard] = 2.566*10-5 
SOx [kg/cu-yard] = 3.114*10-5 

48
 

Battery Racks Mass Breakdown (40 ft Container): 
Steel: Uniform distribution; min = 1,200; 
max = 4,800 [kg per container] 
  
Mass Breakdown (20 ft Container): 
Steel: Uniform distribution; min =  600; 
max = 2,400 [kg per container] 
  
Mass Breakdown (Cabinet): 
Steel = 0 [kg per container] 

Sampled from 
available 
products  

Impacts from electricity consumption as associated with the US national average generation mix. 
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Table B17 HVAC Properties, Assumptions, and Calculations for 
BESS Cooling Load and Refrigerant Quantities.40–42,57 

 
Design Parameter/Assumptions 20 ft Container 40 ft Container 

Internal Thermal Load 9 kW 
2.6 tons cooling 
30,857 btu/hr 

18 kW 
5.1 tons cooling 
61,714 btu/hr 

Footprint 12 x 20 ft 12 x 40 ft 

Height 10 ft 10 ft 

U Value 0.1 0.1 

Indoor Temp 70 70 

Design Day Outdoor Temp 85 85 

Datacenter Modeling Approach 

Oversizing factor 30% 30% 

Environmental Thermal Load [btu/hr] 
(Roof & Wall Area * U Value * DT) 

1320 2280 

Total Load [btu/hr] 
(100% + Oversize Factor) * Internal 
Thermal Load + Environmental Thermal 
Load 

41,194 82,509 

Total Load [tons] ~3.33 ~6.66 

lbs of r410a per ton Uniform distribution: min 
= 2 lbs per ton; max = 3 
lbs per ton 

Uniform distribution: 
min = 2 lbs; max = 3 
lbs 

Total r410a Min = 6.66 lbs; max = 10 
lbs 

Min = 13.33 lbs; max 
= 20 lbs 
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Appendix C 
 
Supplemental Information 
 
Private and External Impacts of Electrified 
Heavy-Duty Long-Haul Trucking with Li-ion 
Batteries 
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Figure C1 2024 Market Class 8 Trucks – Rated Capacity vs Range 
 

 
All data collected via independent review of available Class 8 trucks to date. 
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Table C1 Uncertainty of Truck Model Parameters 
 
Parameter Uncertainty 
RBr [%]  +/- 1%, triangle distribution 
hBW [%]  +/- 1%, triangle distribution 
hBr [%]  +/- 1%, triangle distribution 
hGB [%]  +/- 1%, triangle distribution 
hE [%]  +/- 1%, triangle distribution 
hTW [%]  +/- 1%, triangle distribution 
CD  +/- 5%, triangle distribution 
A [m^2]  +/- 5%, triangle distribution 
Crr  +/- 5%, triangle distribution 
mV [kg]  +/- 5%, triangle distribution 
PAC [kW]  +/- 5%, triangle distribution 
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Table C2 Li-ion Pack Specific Energy by Cathode Chemistry1 
 
Cathode Chemistry Specific Energy [Wh/kg] Uncertainty 
LFP 165 Triangle distribution: Min = 150, Max = 180 
NMC* 255 Triangle distribution: Min = 250, Max = 260 
NCA 177 Triangle distribution: Min = 172, Max = 188 

* Assumed NMC811 
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Figure C2 Discrete Probability Density of Initial Dispatch Times2 
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Figure C3 Class 8 Truck Drive Cycle - CARB Heavy Heavy-Duty 
Diesel Truck (HHDDT) Cruise Segment3 
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Figure C4 Modeled Charging Power vs State-of-Charge by 
Charging Infrastructure4–6 
 

 
“Realistic” DCFC is the primary charging option used in this study. 
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Procedure C1 Determining Marginal Electricity Generators 
 
A short run marginal grid model is employed when determining grid response to incremental 
changes in demand, or charging loads for this study.7 Charging loads are assigned to a balancing 
area by geography which are then assigned to a transmission connected region (T-region) made 
up of several balancing areas.8 The charging loads are then allocated to all the power plants in 
that T-region classified as the marginal generator type. We then assume that the charging load is 
distributed between each generator, such that the induced load is proportional to their current 
generation.9 While the approach is imperfect, it provides a decent estimate for which generators 
are responding to a theoretical load. For greater detail, see McNeil et al.10 
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Table C3 Tailpipe emissions factors of long-haul diesel trucks by 
scenario11 
 

Scenario: Diesel Truck 2024 Diesel Truck 2035 

Vehicle Technology:  MY 2010-2018 Advanced Design 

Pollution Control 
Technology: DPF* DPF + SCR** 

CO2 [g/kg-fuel] 3194 3194 
CH4 [g/kg-fuel] 0.01 0.67 
N2O [g/kg-fuel] 0.004 0.004 
PM2.5 [g/kg-fuel] 2.2 0.3 
SO2 [g/kg-fuel] 0.022 0.022 
NOX [g/kg-fuel] 14.3 5.2 
NH3 [g/kg-fuel] 0 0.18 
Mile per Gallon 5.4 6.7 

*DPF: Diesel particulate filter 
**SCR: Selective catalytic reduction 
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Table C4 Mass Breakdown of Truck Components11–14 
 
Component Diesel Truck 

Percentage 
Li-ion Truck 
Percentage 

Truck Body   
 Body & Glass 5.8% 6.6% 
 Interior 6.3% 7.1% 
 Exterior 1.4% 1.6% 
Chassis   
 Steer Axle 3.1% 3.5% 
 Drive Axle 3.9% 4.4% 
 Shafts 4.6% 5.2% 
 Suspensions 4.5% 5.0% 
 Wheels and Tires 4.1% 4.7% 
 Cradle 8.9% 10.1% 
Powertrain   
 Engine 10.6% 0.0% 
 Engine Fuel Storage and Exhaust 1.7% 0.0% 
Electric Drive Components   
 Traction Motor 0.0% 2.9% 
 Electronic Controller 0.0% 0.3% 
Transmission   
 Clutch 0.2% 0.0% 
 Gearbox 3.1% 1.4% 
 Final Drive and Coupling 0.4% 0.4% 
Trailer   
 Trailer Body 24.1% 27.3% 
 Trailer Chassis 18.8% 21.3% 
 Trailer Auxiliary 2.6% 2.9% 
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Table C5 Distribution and Assumptions for Truck Component 
LCAs14 
 
Component/Parameter Distribution/Characteristics 
Truck Body – Body and glass Material Breakdown by Mass: 

Glass fiber = 54% 
Aluminum = 23% 
Steel = 19% 
LDPE = 25% 

Truck Body - Interior Material Breakdown by Mass: 
Steel = 49% 
LDPE = 25% 
Fabric = 7% 
Latex = 5% 
Leather = 4% 
Rubber = 3% 
Aluminum = 6% 

Truck Body - Exterior Material Breakdown by Mass: 
LDPE = 43% 
Steel = 24% 
Glass fiber = 10% 
Aluminum = 10% 
Rubber = 8% 
Copper = 4% 

Truck Chassis – Steer Axle Material Breakdown by Mass: 
Aluminum = 100% 

Truck Chassis – Drive Axle Material Breakdown by Mass: 
Steel = 82% 
Cast iron = 17% 

Truck Chassis – Shafts Material Breakdown by Mass: 
Steel = 96% 
Cast iron = 4% 

Truck Chassis – Suspension Material Breakdown by Mass: 
Steel = 92% 
Cast iron = 2% 
Rubber = 6% 

Truck Chassis – Wheels and 
tires 

Material Breakdown by Mass: 
Aluminum = 50% 
Rubber = 33% 
Steel = 17% 

Truck Chassis – Cradle Material Breakdown by Mass: 
Steel = 98% 
Rubber = 2% 

Diesel Truck Powertrain - 
Engine 

Material Breakdown by Mass: 
Steel = 46% 



 187 

Cast iron = 37% 
Aluminum = 11% 
LDPE = 3% 
Copper = 3% 

Diesel Truck Powertrain – 
Fuel Storage and Exhaust 

Material Breakdown by Mass: 
Aluminum = 35% 
Ceramic = 23% 
LDPE = 19% 
Stainless steel = 13% 
Steel = 10% 

Li-ion Truck Electric Drive 
Components – Tractive 
Motor 

Material Breakdown by Mass: 
Steel = 36% 
Aluminum = 36% 
Copper = 28% 

Li-ion Truck Electric Drive 
Components – Electronic 
Controller 

Material Breakdown by Mass: 
Steel = 5% 
Aluminum = 47% 
Copper = 8% 
Rubber = 4% 
LDPE = 24% 

Diesel Truck Transmission - 
Clutch 

Material Breakdown by Mass: 
Steel = 86% 
Cast iron = 7% 
LDPE = 5% 
Rubber = 1% 

Diesel Truck Transmission - 
Gearbox 

Material Breakdown by Mass: 
Steel = 86% 
Cast iron = 7% 
LDPE = 5% 
Rubber = 1% 

Diesel Truck Transmission – 
Final Drive and Coupling 

Material Breakdown by Mass: 
Steel = 86% 
Cast Iron = 7% 
LDPE = 5% 
Rubber = 1% 

Li-ion Truck Transmission – 
Gearbox 

Material Breakdown by Mass: 
Steel = 86% 
Cast iron = 7% 
LDPE = 5% 
Rubber = 1% 

Li-ion Truck Transmission – 
Final Drive and Coupling 

Material Breakdown by Mass: 
Steel = 86% 
Cast iron = 7% 
LDPE = 5% 
Rubber = 1% 

Truck Trailer - Body Material Breakdown by Mass: 
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Aluminum = 51% 
Wood = 38% 
Steel = 11% 

Truck Trailer - Chassis Material Breakdown by Mass: 
Steel = 58% 
Rubber = 18% 
Cast iron = 14% 
Aluminum = 9% 

Truck Trailer - Auxiliary Material Breakdown by Mass: 
Steel = 69% 
Glass fiber = 17% 
Aluminum = 6% 
Rubber = 5% 
Copper = 3% 

Truck Assembly Energy 
Demand (MJ) 

Uniform distribution; min = 6255; max = 10425 

Truck Assembly Energy 
Demand - Thermal 

Thermal energy percent of total energy: triangle 
distribution; min = 0%, max = 80%, mode = 40% 

Truck Assembly Energy 
Demand - Electricity 

Electrical energy percent of total energy: 100% - 
thermal energy percent 

Truck Assembly Thermal 
Source – Natural Gas 

Thermal energy provided by natural gas: uniform 
distribution; min = 0%, max = 100% 

Truck Assembly Thermal 
Source – Diesel 

Thermal energy provided by natural gas: 100% - 
natural gas energy percent 

Diesel Engine Assembly 
Energy Demand (MJ) 

Uniform distribution; min = 682; max = 1137 

Diesel Engine Assembly 
Energy Demand - Thermal 

Thermal energy percent of total energy: triangle 
distribution; min = 0%, max = 80%, mode = 40% 

Diesel Engine Assembly 
Energy Demand - Electricity 

Electrical energy percent of total energy: 100% - 
thermal energy percent 

Diesel Engine Assembly 
Thermal Source – Natural 
Gas 

Thermal energy provided by natural gas: uniform 
distribution; min = 0%, max = 100% 

Diesel Engine Assembly 
Thermal Source – Diesel 

Thermal energy provided by natural gas: 100% - 
natural gas energy percent 

Electric Motor Assembly 
Energy Demand (MJ) 

Uniform distribution; min = 363; max = 604 

Electric Motor Assembly 
Energy Demand - Thermal 

Thermal energy percent of total energy: triangle 
distribution; min = 0%, max = 80%, mode = 40% 

Electric Motor Assembly 
Energy Demand - Electricity 

Electrical energy percent of total energy: 100% - 
thermal energy percent 

Electric Motor Assembly 
Thermal Source – Natural 
Gas 

Thermal energy provided by natural gas: uniform 
distribution; min = 0%, max = 100% 

Electric Motor Assembly 
Thermal Source – Diesel 

Thermal energy provided by natural gas: 100% - 
natural gas energy percent 
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Table C6 Class 8 Truck General Ops Cost Calculation and 
Uncertainty 
 
Component/Parameter Distribution/Characteristics Source 
Vehicle Depreciation Lifetime Cost = MSRP * (1 – exp(A * lifetime + M 

* annual_VMT * lifetime / 1000) * (1 – r)^lifetime 
 
MSRP: Uniform Distribution; min = 100,000; max 
= 140,000 
A = log(0.9071) 
M = log(0.9990) 
r = discount rate 

15 

Insurance Lifetime Cost = ∑ (𝑖𝑛𝑠_𝑝𝑒𝑟_𝑚𝑖𝑙𝑒 ∗eKf'#Kg'
#M$

𝑎𝑛𝑛𝑢𝑎𝑙_𝑉𝑀𝑇	 ∗ 1/(1	– 	r)^t) 
 
ins_per_mile: Triangle distribution; min =  
0.06292; max = 0.09438; mode = 0.07865 
r = discount rate 

13 

Taxes  Fixed Lifetime Cost = (MSRP + Battery Cost) * 0.12 16 
Taxes Annual Lifetime Cost = ∑ (550 ∗ 1/(1	– 	r)^t)eKf'#Kg'

#M$  
 
r = discount rate 

17 

Fees Annual Lifetime Cost = ∑ ((fees_per_kg ∗eKf'#Kg'
#M$

vehicle_weight	 + 	fees_fixed) ∗ 1/(1	– 	r)^t) 
 
fees_per_kg: Uniform distribution; min = 0.04545; 
max = 0.06363 
fees_fixed = 5952 
r = discount rate 

13,15 

Maintenance and Repairs Lifetime Cost = ∑ ((t ∗ M + b) ∗eKf'#Kg'
#M$

𝐵𝑎𝑡𝑡_𝐴𝑑𝑗	 ∗ 𝑎𝑛𝑛𝑢𝑎𝑙_𝑉𝑀𝑇 ∗ 1/(1	– 	r)^t) 
 
M = 0.03 
b = 0.09 
Batt_Adj: if diesel, Batt_Adj = 1 
      If Li-ion, Triangle distribution; min = 
0.48; max = 0.72; mode = 0.6 
r = discount rate 

13,15 

Labor Driving Lifetime Cost = ∑ (lab_per_mile	 ∗eKf'#Kg'
#M$

annual_VMT ∗ 1/(1	– 	r)^t) 
 
lab_per_mile: Triangle distribution; min = 0.7837; 
max = 1.176; mode = 0.9796 
r = discount rate 

13,15 
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annual_VMT: annual vehicle miles traveled 
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Figure C5 Forecasted Electricity and Diesel Prices18 
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Figure C6 Forecasted Battery Prices with 17% Learning Rate19,20 
 

 
Demand growth in Table C7 used to forecast relative battery prices 
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Table C7 Forecasted Global Li-ion Battery Demand Scenario19 
 
Year Demand (GWh) 
2022 1611 
2023 2456 
2024 3582 
2025 5079 
2026 6892 
2027 8987 
2028 11463 
2029 14348 
2030 17657 
2031 21358 
2032 25452 
2033 29931 
2034 34774 
2035 39955 
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Table C8 2022 Li-ion Battery Pack Triangular Distribution Prices 
($/kWh) by Chemistry in USD202421 
 
Chemistry Min Max Mode 
NMC811 156 234 195 
NCA 129 193 161 
LFP 114 172 143 
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Table C9 Class 8 Truck Standing, Payload, and Tax Cost 
Calculation and Uncertainty 
 
Component/Parameter Distribution/Characteristics Source 
Standing Lifetime Cost = ∑ (lab_per_hour	 ∗eKf'#Kg'

#M$
𝑎𝑛𝑛𝑢𝑎𝑙_𝑐ℎ𝑎𝑟𝑔𝑒_𝑡𝑖𝑚𝑒	 ∗ 1/(1	– 	r)^t) 
 
lab_per_hour: Triangle distribution; min = 29.76; max = 
44.64; mode = 37.2 
r = discount rate 

13,15 

Payload Lifetime Cost = ∑ (avg_penalty_weight	/eKf'#Kg'
#M$

	𝐺𝑉𝑊𝑅 ∗ 𝑇𝐿𝐶	 ∗ 1/(1	– 	r)^t) 
 

13,15 

Tax Credit Min(0.3*(MSRP + Battery_Cost), 40000) 22 
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Figure C7 TLC of Li-ion and diesel Class 8 trucks in 2024 and 2035 
under high and low renewable cost scenarios with a 3% discount 
rate 
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Figure C7 TLC of Li-ion and diesel Class 8 trucks in 2024 and 2035 
under high and low renewable cost scenarios with a 7% discount 
rate 
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