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Abstract

Protecting Smart Devices from the Bottom-up

by

Aravind K Machiry

Modern systems are mainly composed of IoT devices and Smartphones. Most of

these devices use ARM processors, which, along with flexible licensing, have new secu-

rity architecture features, such as ARM TrustZone, that enables execution of a secure

application in an untrusted environment. Furthermore, with well-supported, extensible,

open-source embedded operating systems like Android allows the manufactures to quickly

customize their operating system with device drivers, thus reducing the time-to-market.

Unfortunately, the proliferation of device vendors and race to the market has resulted

in poor quality device drivers containing critical security vulnerabilities. Furthermore,

the patches for these vulnerabilities get merged into the end-products with a significant

delay resulting in the Patch Gap, which causes privacy and security of billions of users

to be at risk.

In this dissertation, I will show how the new architecture features can lead to security

issues by introducing new attack vectors. Second, I will show that the existing techniques

are inadequate to find the security issues in Linux kernel drivers and how, with certain

well-defined optimizations, we can precisely find security issues. Third, I will present my

solution to the problem of Patch Gap by showing a principled approach to automatically

port patches to vendor product repositories.

Finally, I will present our on-going work to automatically port C to Checked C, which

provides a low overhead, backward-compatible, and memory-safe C alternative that could

be used on resource-constrained modern systems to prevent security vulnerabilities.

ix



Through this work, I presented effective ways to find, fix, propagate, and prevent

vulnerabilities in modern system software, thus improving modern systems security.
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Chapter 1

Introduction

Smart devices or IoT devices have become part of the everyday life of billions of people [1].

As market research suggests, their adoption is continuously growing, and the number

of devices will reach 20 billion by 2020 [2]. One of the main reasons for this is the

availability of well-supported, open-source embedded operating systems like Android.

The manufactures usually fork the main repository and quickly customize the operating

system with device drivers and reduce the time-to-market.

Smart devices usually contain a RISC processor, predominantly an ARM processor,

as one of its main components. Unlike the x86 processor, where Intel and AMD are the

leading manufacturers, there are over 200 manufactures [3] of ARM processors, chipsets,

and, corresponding devices. One of the reasons for this is the flexible licensing by ARM,

which provides a RISC ISA and allows companies to manufacture custom chips that has

to at least support the predefined ISA.

The ARM architecture has advanced security architecture features such as Trust-

Zone [4], which provides a secure, isolated execution environment. ARM’s TrustZone

enables secure applications such as DRM and kernel integrity monitors, which improve

the security of smart devices.
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Introduction Chapter 1

1.0.1 Securing from bottom-up

I started my Ph.D. with a noble goal of trying to make smart devices the most

secure entities. Being a firm believer in having a secure base, I started to look at the

security architecture features of the ARM processor, specifically, ARM’s TrustZone. I

was fascinated by the fact that TrustZone could prevent the DMA malware problem [5]

inherent to x86 processors and also defend against sophisticated attacks that are capable

of compromising the operating system (OS) itself.

ARM TrustZone provides a mechanism to have a hardware isolated privileged execu-

tion environment known as a trusted execution environment (TEE). The TEE permits

the existence of two separate worlds on the same system on a chip (SoC), called the

secure world (i.e., the world inside the TEE) and the non-secure world (i.e., the sand-

boxed world containing the main OS). Each of these worlds contains its dedicated OS

and applications, and the software on the system is thus considered to be either trusted

(i.e., in the secure world) or untrusted (i.e., in the non-secure world).

In practice, these two worlds frequently need to communicate with each other (e.g.,

to encrypt or decrypt data with keys stored inside the TEE). This communication

is facilitated by the OSes in both worlds, which leverage specialized memory regions

and central processing unit (CPU) registers to establish an application program interface

(API) for data exchange. Moreover, most trusted OSes also permit the installation of

trusted applications (TAs) to expand functionality and offer services to the untrusted

applications in the non-secure world.

The TEE works by facilitating the creation of a non-secure world for untrusted soft-

ware (e.g., Android and its applications), which is completely isolated from any critical

code within the secure world by hardware-enforced mechanisms. Thus, by design, the

secure world necessarily has access to all of the non-secure world’s memory.

2
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I noticed that this complete isolation between secure and non-secure world results

in a semantic gap, where the trusted OS is unaware of the security mechanisms of the

untrusted OS, i.e., user and kernel level. Furthermore, this semantic gap leads to a type

of confused deputy attack, wherein a user-level application in the non-secure world can

leverage a TA to read from or write to non-secure world memory that it does not own,

including the untrusted OS’s.

More specifically, a malicious user-level application can send inputs to the TA, which

are not properly checked, that will trick the TA into manipulating memory locations that

should otherwise be inaccessible to the malicious application. My advisor, Dr. Vigna,

named this the Boomerang flaw [6], as the untrusted applications attack the untrusted

OS through trusted applications giving it a boomerang effect.

Ironically, ARM’s TrustZone is supposed to improve the security of the system, but it

leads to a new attack vector where a user-level application (e.g., an Android app) could

compromise the kernel.

I found Boomerang [6] flaw in all the commercial and open-source TEE implemen-

tations, which were acknowledged by the corresponding vendors. Furthermore, to demon-

strate the severity of Boomerang vulnerability, I developed a proof-of-concept exploit

to read arbitrary kernel memory on Android. Finally, I developed a novel, low overhead

defense, called Cooperative Semantic Reconstruction (CSR), that fixes Boomerang

flaw by bridging the semantic gap. This work will be presented in Chapter 3.

1.0.2 Poor driver quality

During my exploratory phase of Boomerang, I had to go through the kernel sources

of various smart devices. One thing I noticed is that the code quality of the kernel drivers

was bad, there were a lot of critical security issues where data from user space was blindly

3
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trusted (without validation). This observation is further validated by the growing trend

of CVEs [7] in the corresponding kernels.

Most of the existing vulnerability detection tools for Linux kernel are specialized for

individual classes of bugs like Integer overflows. The general-purpose tools have many

false-positives to be usable. What we need is a general-purpose vulnerability detection

tool that is precise and reasonably sound. I designed Dr. Checker [8] that is targeted

towards finding taint-related vulnerabilities in Linux kernel drivers. Dr. Checker uses

an extensible framework that encompasses flow-, context-, and field-sensitive pointer and

taint analysis to track user data. Furthermore, Dr. Checker provides support for

vulnerability detectors which implement taint verification policies that check if user data

is used in sensitive locations.

The novelty of Dr. Checker lies in its ability to analyze only driver code by assum-

ing all the kernel interface APIs as safe. Moreover, the driver code is analyzed in a soundy

manner where the recursive constructs like loops and recursive calls are analyzed a fixed

number of times. Specifically, Dr. Checker has the following core assumptions:

• Assumption 1. We assume that all of the code in the mainline Linux core is

implemented perfectly, and we do not perform any inter-procedural analysis on any

kernel API calls.

• Assumption 2. We only perform the number of traversals required for a reach-def

analysis in loops, which could result in our points-to analysis being unsound.

• Assumption 3. Each call instruction will be traversed only once, even in the case

of loops. This is to avoid creating additional contexts and limit false positives,

which may result in our analysis being unsound.

I implemented Dr. Checker on top of the LLVM [9] framework and evaluated on

4
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nine vendor kernels and found 158 security vulnerabilities with an overall precision of

78%. The details of which will be presented in Chapter 4.

1.0.3 The problem of patch propagation

While reporting vulnerabilities during the evaluation of Dr. Checker, I noticed

that few vendors had fixed the vulnerability long back. A careful observation of the

patch propagation mechanism used by the vendors revealed that almost all the vendors

use a reactive mechanism based on CVEs.

Unfortunately, the CVE databases are known to be ineffective for timely propagation

of security patches [10, 11, 12, 13]. In the year 2016, the Android maintainers patched

76 publicly known vulnerabilities (i.e., CVEs) from the year 2014, two from 2013, and

two from 2012, which means that 80 disclosed vulnerabilities remained unpatched in the

Android code base for more than one year [14].

What we need is a system that can automatically propagate security patches to

vendor repositories. Imagine a command like git rebase −security, that automatically

merges all the security patches from the main repository. One of the crucial components

in achieving this is a method to automatically identify security patches or in general

patches that do not affect the intended functionality of the software. The patches can be

called safe patches as they do no affect the intended functionality of the software.

The existing systems to identify safe patches are based on commit messages [15, 16, 17]

or pattern-based [18]. These systems have the advantage of being fast, lightweight,

scalable, and suitable to be used on large code bases. However, either they only match

simple patches, or they analyze commit messages, which are often not expressive enough

to convey the scope and effect of a change [19, 20, 21]. Other techniques attempt to go

a step further and analyze the semantic differences introduced by a patch using static

5
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analysis [22, 23, 24, 25, 26] and symbolic execution [27, 28, 29, 30]. Unfortunately, these

techniques suffer from scalability issues. Moreover, some of these approaches also require

the exact build environment [31] of the whole code base, restricting their practicality

and applicability to complex software, such as the Linux kernel, the VLC player, the

OpenBSD OS, etc., as these software components have many possible configurations [32].

To be effective and usable on large code bases, a system to identify safe patches should

at least satisfy the following requirements:

• R1: Only rely on the original and patched versions of the modified source code file,

without any other additional information (e.g., commit message, build environment,

etc.)

• R2: Be fast, lightweight, and scalable.

I developed Spider [33], a system to automatically find safe patches and satisfy the

above requirements.

I start with first formally defining the necessary conditions for a patch to be considered

safe. These conditions are then converted into first-order logic constraints. Second,

using the Program Dependency Graph (PDG) of the patched function, we identify all the

statements that are affected by the patch. Finally, these statements are converted into

symbolic constraints to verify the satisfiability of safe patch conditions.

I evaluated Spider on 341,767 patches from 32 large and popular source code repos-

itories as well as on 809 CVE patches. Results show that Spider was able to identify

67,408 safe patches and that most of the CVE patches are safe patches. In addition,

Spider identified 2,278 patches that fix vulnerabilities lacking a CVE; 229 of these are

still unpatched in different vendor kernels, which can be considered as potential unfixed

vulnerabilities. The details of Spider will be presented in Chapter 5.

6
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1.0.4 Achieving memory safety using Checked C

Although there exists mainstream memory-safe C alternative like Rust [34], it is

depressing to see that new C code is being developed in the 21st century. One of the

main reasons, apart from the natural learning curve of a new language, is the engineering

hurdles involved in seamlessly interacting with legacy C code [35]. There exist techniques

such as ASan [36], SoftBound+CETS [37, 38] that try to retrofit memory safety to

legacy code by automatically adding runtime checks. These techniques suffer from high-

performance overhead (both in runtime and memory) and lack backward compatibility

as they change the runtime representation of pointers (fat pointers [39]). Furthermore,

smart devices have resource constraints that pose a higher impedance to adoption.

Ideally, we need a backward-compatible safe C dialect:

• That should allow safe and unsafe code to co-exist. So that the developers can write

the new code in the safe dialect, which could interact with unsafe legacy code.

• The safe dialect should not have a steep learning curve, i.e., should be very similar

to C.

• There should be very low-performance overhead.

The Checked C [40] is an extension to the C programming language that satisfies

all the above requirements. It extends C with type annotations using which it tries

to prove spatial memory safety statically. It adds dynamic checks for the cases where

safety cannot be proven statically. During the summer of 2019, I did an internship at

the PLUM group of the University of Maryland, College Park, under the guidance of Dr.

Hicks. I was involved in a project [41] to automatically convert C code to include type

annotations supported by Checked C. We are working on a conversion technique that

tries to integrate user input into a constraint solving mechanism. This is an on-going
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work which will be presented in Chapter 6.

1.1 Permissions and Attributions

1. The content of Chapter 3 is the result of a collaboration with Eric Gustafson, Chad

Spensky, Chris Salls, Nick Stephens, Ruoyu Wang, Antonio Bianchi, Yung Ryn

Choe, Christopher Kruegel, and Giovanni Vigna, and has previously appeared in

the 2017 edition of the Network and Distributed Systems Security Symposium.

2. The content of Chapter 4 is the result of a collaboration with Chad Spensky, Jake

Corina, Nick Stephens, Christopher Kruegel, and Giovanni Vigna, and has previ-

ously appeared in the 2017 edition of the USENIX Security Symposium.

3. The content of Chapter 5 is the result of a collaboration with Nilo Redini, Eric

Camellini, Christopher Kruegel, and Giovanni Vigna and has previously appeared

in the 2020 edition of the IEEE Symposium on Security and Privacy.

4. The content of Chapter 6 is the result of an on-going collaboration with Michael

Hicks, a part of which has previously appeared in the 2019 edition IEEE Secure

Development Conference.

8



Chapter 2

Background and Related Work

Uses of TrustZone. Different works have used TEEs to implement a variety of security

systems. For instance, TZ-RKP [42], Sprobes [43], and SKEE [44] use TrustZone to ver-

ify and protect kernel integrity. The usage of TrustZone to enforce kernel integrity has

also been implemented by Samsung in its Knox platform [45]. Other interesting appli-

cations of TrustZone are transparent memory acquisition [46], untrusted world memory

introspection [47], and secure one-time password token generation [48].

TrustZone Vulnerabilities. Several researchers have tried to find vulnerabilities in

Trusted Execution Environments running on ARM TrustZone. Dan et al. [49] presented

an exploit for a vulnerability in Qualcomm Secure Execution Environment (QSEE) [50],

which is the TEE by Qualcomm. Recently, Gal wrote a series of blog posts [51] explaining

his reverse engineering efforts on identifying and exploiting vulnerabilities in QSEE. He

further showed that achieving code execution in the context of a TA allows an attacker to

compromise the untrusted OS easily. Other TEE implementations have been exploited

as well ([52, 53, 54]), resulting in a complete compromise of the secure world. Similarly,

Di presented [55] his efforts to exploit vulnerabilities in Trusted Core, which is Huawei

TEE.

9
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All the works mentioned above rely on various implementation mistakes, whereas Boomerang

vulnerability stem from design issues caused by the semantic gap between worlds.

Recently, there has been growing interest in finding side-channel attacks on ARM

TrustZone. Consequently, there are attacks based on the cache [56], electromagnetic

analysis [57], and, power management [58].

Confused Deputy Attacks. The Boomerang attacks are ultimately a form of con-

fused deputy problem, as it results from the inability of the TEE to make proper security

decisions due to the semantic gap. Other works, such as [59, 60], focused on confused

deputy problems in other areas of the system, such as between untrusted code compo-

nents.

Static vulnerability detection on Kernel drivers. There are many special purpose

vulnerability detection tools targeting kernel drivers. Johnson et al. [61] proposed a

sound CQual-based [62] tool, which is context-sensitive, field-sensitive, and precise taint-

based analysis that targets a specific class of taint based vulnerabilities, i.e., address-

space vulnerabilities, however, this tool also requires user annotations of the source code.

APISan [63] uses a symbolic-execution-based approach to find problems of the API-

misuse problem in kernel drivers. Similarly, Static Driver Verifier (SDV) [64] identified

API-misuse using static data-flow analysis. SymDrive [65] uses symbolic execution to

verify the properties of kernel drivers. However, it requires developers to annotate their

code and relies heavily on the bug finder to implement proper checkers. KINT [66] uses

taint analysis to find integer errors in the kernel. While KINT is sound, their techniques

are specialized to integer errors. DEADLINE [67] uses symbolic checking to identify

double-fetch vulnerabilities in OS kernels.

Unlike all the existing techniques, Dr. Checker is a general purpose taint anal-

ysis technique with a pluggable interface [68] to detect any taint-related vulnerabili-

ties. Dr. Checker achieves its precision by assuming that all the external code (i.e.,

10
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code not part of the driver) to be safe or implemented correctly. Linux Driver Verifi-

cation (LDV) [69] is a tool based on BLAST [70] that offers precise pointer analysis;

however, it is still a model-checker-based tool [70, 71], whereas we built our analysis on

well-known static analysis techniques.

Recently, Yamaguchi et al. have done a significant amount of work in the area taint-

style vulnerability detection based on graph queries [72, 73, 74, 75], where they use static

analysis to parse source code into novel data structures and find known vulnerable signa-

tures. However, their tool is similar to a pattern-matching [76, 77, 78] or model-checking

type approach, whereas we are performing general taint and points-to analysis with plug-

gable vulnerability detectors. VCCFinder [79] also used a similar pattern-matching ap-

proach, but automatically constructed their signatures by training on previously known

vulnerabilities to create models that could be used to detect future bugs. MECA [80] is

a static-analysis framework, capable of taint analysis, that will report violations based

on user annotations in the source code, and similarly aims to reduce false positives by

sacrificing soundness. ESP [81] is also capable of fully path-sensitive partial analysis

using “property simulation,” wherein they combine data-flow analysis with a property

graph. However, this approach is not as robust as our more general approach.

Boyd-Wickizer et al. [82] proposed a potential defense against driver vulnerabilities

that leverages x86 hardware features; however, these are unlikely to be easily ported to

ARM-based mobile devices. Nooks [83] is a similar defense; however, this too has been

neglected in both the mainline and mobile deployments thus far due to similar hardware

constraints.

Finding unpatched code clones. Finding unpatched code clones is the focus of most

of the prior research on patches in the security field [84, 13, 85]. Spider do not look

for code clones but for instances where the function affected by a patch is still equal to

the unpatched version. Brumley et al. [86], instead, show how to generate exploits for a

11
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vulnerability starting from the corresponding patch.

Easing the patching process. Prior research has been very active in designing ap-

proaches and building tools to ease and speed up the process of patching [87, 88, 89],

However, most of these techniques target only specific bug classes [90], while Spider

define generic conditions for a patch to be considered safe independent of the bug classes.

Other studies concentrate on helping developers in applying systematic changes [91, 92].

Long et al. [93], in contrast with the previously mentioned studies, use machine learning

to model correct code and generate generic defects fixes, but do not focus on propagating

existing patches targetted by Spider. Similar to what we do in this work, Kreutzer et

al. [94] use AST differencing on changes to extract metrics to help cluster the changes

by similarity.

Software evolution. Mining software repositories is a well-known technique to gain

insights into the dynamics of software evolution [95, 96]. Perl et al. [79] built VCCFinder,

a tool that leverages code metrics and patch features (e.g., keywords in commits) to

identify vulnerability-contributing changes. However, Spider do not rely on the commit

messages, and, instead perform a systematic analysis of the patches.

12



Chapter 3

The perils of absolute isolation

As mentioned in the Chapter 1.0.1, ARM architecture provides an isolated and privileged

execution environment called ARM TrustZone. This is commonly referred to as the

Trusted Execution Environment (TEE), as the code that executes in the TEE is trusted,

i.e., digitally signed and verified through the chain-of-trust [97]. Although the absolute

isolation provides a strong non-inference property, it introduces a problem with semantic-

gap. Before understanding the details of that, lets first try to understand how a TEE,

specifically ARM TrustZone works.

3.1 What is a Trusted Execution Environment (TEE)

A TEE is a separate execution environment for code and its associated data that

requires a higher level of trust than the typical operating system. TEEs can be imple-

mented as either a physically separated environment (i.e., dedicated CPU and memory)

or on the same SoC as the normal CPU with specialized hardware-isolation mechanisms

(e.g., ARM’s TrustZone [4]). Because of this strict hardware isolation (e.g., separate

registers, memory, and peripheral access), the two execution environments are typically

13
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referred to as different worlds : the secure world (i.e., the world within the TEE) and the

non-secure world. Because the software in the secure world is assumed to have a higher

level of trust than the software executing in the non-secure world, we refer to all software

in the secure world as trusted and the software in the non-secure as untrusted. Each

world has its own OS, which we refer to as the untrusted and trusted OSes, and each

OS runs its own respective accompanying applications, which we refer to as untrusted

applications (UAs) and trusted applications (TAs). Similar to traditional execution en-

vironments, both the secure and non-secure worlds segregate the applications and their

OSes using different execution privileges (i.e., user and supervisor mode).

In TEE implementations where the secure and non-secure worlds exist on the same

SoC (e.g., TrustZone), the processor will always start in the secure world. The secure

world software is then responsible for initializing the sandboxed, non-secure, world and

switching the process state to the non-secure mode. From the non-secure world’s perspec-

tive, the existence of the secure world is completely hidden, and the hardware architecture

presents itself as if the system had just booted, without any evidence of the underlying

secure world. However, by virtue of the architecture, the secure world always maintains

complete control over and visibility into the non-secure world (similar to a hypervisor

and its guests). Furthermore, the hardware enforces isolation between the two worlds

through the use of specialized CPU registers and a non-secure (NS) bit. Specifically, the

NS bit is used to restrict access to memory and all peripherals accessible on the Ad-

vanced eXtensible Interface (AXI) bus. The context switching between the two worlds

is handled by a Secure Monitor that is instantiated when a secure monitor call (SMC),

or a special exception, is issued by either a privileged (supervisor mode) application in

the non-secure world or any secure world application. To share information, the worlds

can pass a limited amount of information using either registers or memory regions, which

can either be dictated by the secure world or passed by pointer reference.
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The principal idea of the TEE is to minimize the trusted computing base (TCB), in

that the code running in the TEE is intended to be a small, more easily verified subset

of the overall system that is used for security-sensitive tasks. However, in practice, there

is a strong desire to have the TEE offer rich functionality to the non-secure world (e.g.,

digital rights management (DRM) [98], Trusted Input [99], or authentication [100]). All

of these applications require that a communication channel between the two worlds is

established to share data over. This presents a major security risk to the TEE, as it

must accept input from the non-secure world and its untrusted software. The existing

implementations still depend on the non-secure world’s OS to sanitize any inputs before

passing them into the secure world, as sanitization in the secure world is hindered by the

semantic gap.

Despite efforts to enforce strict standards (e.g., GlobalPlatform [101]) on TEE inter-

actions, most of the software running inside these TEEs is typically custom-built, and

the trusted and untrusted software are commonly developed by completely disjoint en-

tities. For example, on Android devices, while Google is responsible for the untrusted

OS, the secure world OS is commonly developed by other parties like Qualcomm[102],

Trustonic [103], Nvidia [104], and the open-source community [105, 104].

The lack of well-defined, secure, standards and mechanisms for secure world appli-

cations to verify security properties of non-secure memory addresses results in scenarios

wherein untrusted applications can convince trusted applications to read or modify the

contents of any physical memory address within the non-secure world. This is the essence

of Boomerang vulnerability.
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Figure 3.1: High-level interactions when a user-level untrusted application exchanges
data with a trusted application in a TrustZone-enabled SoC.

3.2 The Boomerang Vulnerability

Boomerang exploits the semantic gap inherent to the design of all the current

TEE implementations, where the secure world and its associated TAs have the ability

to read and write to non-secure world memory. However, most TAs have a legitimate

need to interact with the non-secure world’s memory, and this functionality is routinely

offered as a feature of the architecture. While the untrusted OS is able to protect itself

and its applications within the non-secure world, all of these security mechanisms can

be trivially bypassed from within the secure world. The trusted OS has no inherent

ability to determine the provenance or security properties of any non-secure memory

regions that are passed from untrusted applications, due to the separation provided by

the TrustZone mechanism. More precisely, while the trusted OS can analyze secure world

pointer values to protect itself and other secure-world applications, it has no insight into

the memory permissions of the non-secure world. Thus, when a TA receives a non-secure

world memory address as a parameter to a command, it has no choice but to blindly act

on that memory.
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The untrusted OS is the most obvious place to implement a defense, as it is already

enforcing the non-secure world security mechanisms, and, in fact, all current implemen-

tations do employ some form of pointer sanitization (PTRSAN) functions when handling

pointers. However, the trusted OSes and their applications frequently define their own

structures for the exchange of commands and data, making it impractical for the un-

trusted OS to determine which values in the data are pointers and need to be sanitized.

This semantic gap forces the untrusted OS to obliviously pass unknown data structures

to the secure world and similarly forces the secure world to act on non-secure memory

without any verification of whether or not the untrusted OS has authorized those ac-

tions. Thus, in these scenarios, an untrusted application is able to issue requests to the

secure world for memory that it does not own, which the secure world will manipulate,

permitting unauthorized reading and writing of another application’s memory, including

the untrusted OS’s kernel. Even when such pointer sanitizations occur in the untrusted

kernel, most of the PTRSAN functions are implemented incorrectly, making them easy

to bypass, resulting in Boomerang vulnerabilities.

We demonstrate this interaction graphically at a high level in Figure 3.1 and briefly

walk through a specific example in TrustZone; however, this general data flow holds

for all TEE implementations. Note that there are three distinct security and semantic

boundaries that must be properly handled: user mode to supervisor mode in the non-

secure world 1 , supervisor mode in the non-secure world to supervisor mode in the

secure world 2 , and supervisor mode to user mode in the secure world 3 . Since the

SMC instruction, which is used to change between the two worlds, is a protected call, the

untrusted OS must either implement a long-running service that user applications can

use as an arbiter to interact with the secure world 1a or expose an API to applications

and permit interaction with the TEE driver directly 1b (most vendors provide a library

in this case for convenience, shown as 1c ).
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All TEE implementations rely on an agreed-upon standard between the untrusted

OS and the trusted OS for passing information 2 . However, as mentioned previously,

there are various trusted OSes in circulation and there is no global standard, as of yet,

that has been agreed upon by these trusted OS vendors. Thus, each trusted OS is

accompanied by a specialized untrusted kernel driver for interacting with the secure

world, each driver using its own unique calling convention. What is worse, while the

protocol for exchanging information between the trusted OS and the trusted application

3 is well-defined, the structure of this information is not standardized. Therefore, most

TA vendors are required to devise their own unique data structures for sharing data

between the untrusted application and the trusted-world application 4 . Note that while

the untrusted OS can sanitize the memory address of the structure, it has no insight

into its contents unless the untrusted application explicitly provides it. Similarly, TAs

currently have no way of conferring with the untrusted OS to validate the authenticity

of memory pointers and they have no choice but to assume that all pointers have been

sanitized.

Because of the isolation between secure and non-secure worlds, the virtual memory

addresses that applications use are incomparable as the worlds utilize separate page tables

within the memory management unit (MMU). Thus, any reference to memory must be

converted to a common entity before being shared with the other world. While it is

possible for both worlds to simply use a common memory map, this has been shown to

be a major security risk, as it allows the non-secure world to control the execution of

secure world by using page faults [106]. Therefore, in practice, this commonly agreed-

upon representation is typically either a physical memory address or a shared identifier

(e.g., a virtual address in the secure world), which permits each world to access the

particular memory region without any insight into the other world’s memory mapping.

We refer to this translation of memory addresses, and any associated security checks, as
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PTRSAN and depict its various implementations in Figure 3.2.

By virtue of the implementation, any data being passed between the two worlds 2

must go through a PTRSAN function, which will convert pointers to this common entity.

This PTRSAN step is typically implemented within a hardened application 1a or within

the kernel ( 1b and 1c ) for two reasons: 1) the specific pointer translation procedure

should be transparent to the user application, which increases the modularity of the code;

and 2) the PTRSAN function can perform the appropriate security checks to verify that

the pointer indeed belongs to the corresponding application and is safe for applications in

the secure world to access. PTRSAN is intended to protect both the untrusted kernel and

other untrusted applications from a malicious application. However, amongst the data

being handled by PTRSAN, there is TA-specific data, which the PTRSAN application

has no insight into. Any pointers within these TA-specific data structures must be

explicitly annotated so that the PTRSAN can translate them appropriately. Herein

lies the problem, and the core flaw being exploited by Boomerang. Specifically, the

PTRSAN function has no insight into the protocol agreed upon between user application

and the trusted application 4 , and thus it is possible for the user application to pass

pointers directly, which evade the PTRSAN security checks. This critical semantic gap

is fundamentally what makes it so difficult to prevent Boomerang attacks in practice.

To demonstrate how memory addresses can evade sanitization in practice, we will

briefly walk through an example from Figure 3.2. Note that 4 is the boundary that

the data must ultimately cross; however, the architecture does not permit this particular

interaction directly. So, the application prepares a data packet destined for the TA in

memory, using a data structure that was specified by corresponding TA. When the

user application needs to share a large amount of variable length data with the trusted

application (e.g., encrypted content), it is desirable to permit the TA to act on this data

in place (versus copying it into a separate memory region). The pointer to the data
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Figure 3.2: An example of Boomerang, where a malicious memory pointer is hidden
from pointer sanitization, ultimately tricking a TA to act on that memory address.

to be manipulated is annotated using the specific API for the TEE, and the PTRSAN

function handles the pointer appropriately. However, in most cases, this annotation can

be trivially omitted, permitting the user application to control the pointer value that

the trusted application will receive. For example, when physical memory is used as

the common entity between the two worlds, the user application could pass a physical

address in the TA-specific data structure without reporting this information to PTRSAN

(i.e., a malicious pointer). The TA has no way of validating these pointers, due to the

semantic gap, and thus has no choice but to perform the requested action resulting in a

Boomerang vulnerability.

To the best of our knowledge, Boomerang was previously completely unknown. In

fact, the most related security issue that was mentioned in the documentation [101] was

a time-of-check vs. time-of-use bug that exists in TEEs, wherein the contents of non-

secure memory may be changed while the TEE is operating on the buffer. This limitation

could lead to situations where the data could be changed in malicious ways to exhibit

unintended behavior or permit untrusted world applications to access each other’s data if
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the shared memory region is globally readable. As we show in Chapter 3.6.3, our proposed

defense, CSR, can be trivially augmented to address this security concern as well.

It is worth noting that there is already a mechanism in place for querying the non-

secure world from TAs. In an effort to decrease the TCB within the secure world, any

high-level operations (e.g., file operations, networking) that the secure world needs to

exercise are typically handled by the non-secure world on behalf of the secure world. In

practice, each trusted OS is accompanied by a user space service (i.e., a TEE daemon)

that is capable of handling these requests. In some cases, this same daemon is also

utilized as the arbiter between untrusted applications and the untrusted kernel driver ( 1c

in Figure 3.1). We show in Chapter 3.6.3, how we were able to leverage this mechanism

(i.e., the trusted world requesting information from the untrusted world) to reconstruct

the non-secure world semantics and prevent Boomerang.

3.3 Assumptions and Attacker Capabilities

To understand how the Boomerang vulnerability can be exploited in practice by

an attacker, let us first understand the environment and capabilities of the attacker.

We consider Smartphones with ARM TrustZone running Android as the untrusted

OS. We assume that an attacker can convince a user to install an app on her phone.

We also assume that this app has the ability to interact, using proper system calls, with

TEE applications. Depending on the implementation, this requires either no permissions

or a single permission to interact with a specific TEE application (e.g., the ACCESS_DRM

permission to access the DRM application in the trusted world). No root or system

permissions are required for the attacker application in the untrusted world.

The attacker goal here is to raise the privileges of the installed app to root. The was

attacker achieves this is to convince the code running within the TEE to read and write
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non-secure world memory at the attacker’s will. Thus thwarting the security mechanisms

of the untrusted OS, and, raising the privileges of the app to root.

3.4 Boomerang on Real World Devices

While Boomerang, in general, is applicable across all TEE implementations, it is

useful to examine various flavors that appear in real-world implementations. To this

end, we have examined the most popular TEE implementations to verify the existence

of Boomerang. In this chapter, we describe the architecture of each of the examined

implementations, highlighting how their specific design choices affect their susceptibility

to Boomerang.

3.4.1 Qualcomm Secure Execution Environment (QSEE)

Recent studies indicate that around 60% of all Android phones in production are

running Qualcomm’s QSEE [107], making it an exceptionally high-impact implementa-

tion, as any vulnerabilities could potentially lead to a complete compromise of these

devices [108].

Untrusted Application and Untrusted OS

QSEE exposes a kernel driver /dev/qseecom to untrusted applications ( 1b and 1c

in Figure 3.2). Interactions with this device are carried out using the ioctl system

call with various commands, which untrusted applications can use to interact with the

secure world. Qualcomm also provides a user-space library libQSEEComAPI.so, which

conveniently exposes the different ioctl commands as functions. Data is exchanged

between untrusted and trusted applications using a specialized data structure (Figure 3.3).

This data structure is then passed through a PTRSAN function to resolve any pointers
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to non-secure world memory regions. In QSEE, physical memory addresses are used as

the common entity between worlds, and the pointer translation from virtual to physical

occurs directly in the provided kernel driver ( 1b and 1c in Figure 3.2). Sending commands

to a TA happens in multiple steps, which are described hereinafter.

First, the untrusted application requests the allocation of a shared memory region

using a separate shared memory driver /dev/ion[109]. This region will be used for both

requests and responses. The shared memory driver returns a shared memory identifier

(i.e., shmid), an opaque identifier that is used to refer to this memory region, independent

of its location. This identifier can then be used to map (i.e., using mmap) the allocated

memory into the untrusted application’s memory space. The shared memory region is

then split into two buffers, one for sending data into the trusted world (i.e., send_buf)

and one for the response (i.e., resp_buf).

Second, the application prepares the command to be executed, and stores it in

send_buf (see Figure 3.3). Pointers stored directly in the driver interface structure

will always be validated and translated by the pointer translation function. However,

the untrusted application can also pass pointers within the body of the request itself

that was previously allocated using /dev/ion (i.e., within the send_buf data). Since

the request body is application-specific, these pointers cannot automatically be located

or translated. To enable this, the application can supply a replacement vector (i.e.,

QSEECom_io_fd_info), which is a list of offsets in send_buf that should contain the

pointers together with the corresponding shmids that should be translated and placed

there. The final command sent will contain the physical addresses for each shared mem-

ory region in the desired locations.

Third, the application either performs an ioctl directly on the /dev/qseecom device

with the QSEECOM_IOCTL_SEND_MODFD_CMD_REQ command, or uses the

QSEECom_send_modified_cmd command provided by the libQSEEComAPI.so library

23



The perils of absolute isolation Chapter 3

TEE Driver Interface 

struct QSEECom_handle *handle

void *send_buf

uint32_t sbuf_len

void *resp_buf

uint32_t rbuf_len

struct QSEECom_ion_fd_info  *ifd_data

unsigned char *ion_sbuffer

void *pointer

TA Input

???
void *pointer

???
void *pointer

???
void *pointer

???

TA Output 

int32_t fd

PTRSAN

uint32_t cmd_buf_offset;

int32_t fd

uint32_t cmd_buf_offset;

int32_t fd

uint32_t cmd_buf_offset;

int32_t fd

uint32_t cmd_buf_offset;

TA-specific Semantics

QSEECom_send_cmd

QSEECom_send_modified_cmd

Figure 3.3: The data structure used to communicate with the TEE in QSEE [110].

to trigger the execution of the command. This causes QSEECOM to copy the request buffer

into a temporary buffer, and optionally perform pointer translation.

Untrusted OS and Trusted OS

The untrusted OS and trusted OS interact using Qualcomm’s secure channel manger

(SCM), which defines a set of functions that prepare and execute SMC calls with the

provided data. All SMC calls are made with four parameters (i.e., send_buf, sbuf_len,

resp_buf, rbuf_len), where send_buf and resp_buf are the buffers passed by the ap-

plication. All of these parameters are packed into an scm_command structure, and the

physical address of the packed structure is passed as an argument [111].

Trusted OS and Trusted Application

TAs are executed as user mode applications within the trusted world, with no access

to any other secure world memory (e.g., other TAs or the trusted OS). Consequently, TAs

must issue system calls to the trusted OS kernel for any privileged tasks that they need to
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perform. For example, to access non-secure memory (i.e., a physical address passed from

the untrusted world), they must utilize the qsee_register_shared_buffer() syscall.

In this call, the trusted OS validates that the request memory region is not inside the

secure world (e.g., within the trusted OS), to protect itself from the untrusted world. If

the physical memory address is indeed within the non-secure world’s memory, the kernel

will map the requested physical memory region into the TA’s memory space. Note that

qsee_register_shared_buffer() only verifies that the memory is not in the secure

world; it cannot verify that this physical address indeed belongs to the untrusted world

application that initiated this request [108].

Boomerang on QSEE

As discussed above, the untrusted application makes use of the

QSEECom_send_modified_buffer function, which updates the send_buf with physi-

cal addresses before sending it to the TA using the provided replacement vector (i.e.,

QSEECom_io_fd_info). However, this puts the onus on the untrusted application to

supply the necessary information for the appropriate pointer translation to occur. A ma-

licious application that wishes to pass arbitrary physical memory addresses could simply

insert them into send_buf in the proper locations for the victim TA, and exclude them

from the replacement vector. Alternatively, the malicious application could simply uti-

lize the un-sanitized QSEECom_send_cmd command, which will send commands to the TA

without any pointer translation (see Figure 3.3). The trusted OS only checks to confirm

that these physical pointers are not mapped into the secure world. Thus, any malicious

physical address placed within the send_buf buffer, and kept hidden from PTRSAN,

will be blindly acted upon by the TA (e.g., decrypted, copied, encoded), resulting in

a Boomerang vulnerability. We show in Chapter 3.5.2 how we were able to leverage

actual Boomerang vulnerabilities to craft an arbitrary physical memory read exploit.
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While both QSEECom_send_modified_cmd and QSEECom_send_cmd are provided in

the libQSEECom.so library, where additional checks could be implemented, it would

still be possible to perform the same un-sanitized operations on the kernel driver di-

rectly. Therefore, any fool-proof solution will require at least some coordination with the

secure world to ensure that it cannot be easily bypassed, such as the ones we examine

in Chapter 3.6.

3.4.2 Trustonic

Trustonic [103] is another very popular vendor of TrustZone-based TEE technol-

ogy. Their TEE implementation is widely deployed across consumer hardware (over 400

million devices [112]), with Samsung leveraging it as part of its Knox [113] platform.

Trustonic encrypts and signs all of their trusted applications and their trusted OS ker-

nel, which makes it more challenging to audit their functionality, although recent efforts

have made headway in recovering the decrypted code [114].

Untrusted Application and Untrusted OS

Trustonic employs a kernel driver /dev/mobicore, similar to QSEE, and a service

mcDaemon, which user applications must use to communicate with the secure world.

Due to its permissions, unprivileged user applications cannot communicate with the

driver /dev/mobicore directly, as was possible in the case of QSEE. In Trustonic’s

implementation, communication with the secure world must go through the mcDaemon

service using a write-and-notify mechanism known as world-shared memory (WSM).

This communication is initiated when an untrusted application registers a buffer, called

a session buffer, with a TA to open a new session. Commands intended for the TA are

then sent by writing data into the session buffer, and issuing a notify command through
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mcDaemon. Once the data is passed to the secure world, the trusted OS will then notify

the TA that the contents are ready. Similarly, to receive responses, untrusted applications

wait for a notification from the TA (through mcDaemon).

In the Trustonic implementation, opaque identifiers are used instead of memory lo-

cations (i.e., physical memory pointers). By examining the source of mcDaemon [115], we

confirmed that the opaque id is actually a virtual address that has been mapped into the

memory space of the TA, within the secure world. If an untrusted application wants to

share some memory with a TA, it must register the buffer using the processMapBulkBuf

function in the mcDaemon service, which maps the corresponding physical memory region

into the TA’s memory space and returns an opaque identifier back to the untrusted ap-

plication. processMapBulkBuf also verifies that the pointer being converted is indeed

owned by the requesting application, which thwarts the trivial instance of Boomerang.

From this point on, the only method for the untrusted application to interact with that

shared memory region is using this opaque identifier and the mcDaemon service (i.e., the

untrusted application has no direct control over the pointers that the TA will receive and

operate on).

Untrusted OS and Trusted OS

The interaction between the untrusted OS and the trusted OS is performed using

the standard SMC TrustZone instruction. Unlike QSEE, where the physical address of

a packed structure is passed to the trusted OS, Trustonic’s implementation explicitly

passes parameters using values stored in registers (current implementations only support

up to four unique parameters [116]).
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1 void processMapBulkBuf ( Connection ∗ connect ion ) {
2 . . .
3 // Trustonic ’ s PTRSAN func t ion
4 uint64_t pAddrL2 = dev i ce ->findWsmL2(cmd . handle ,
5 connect ion ->socke tDe s c r i p t o r ) ;
6 . . .
7 // Map bu l k memory to secure world
8 // BOOMERANG i f the a t t a c k e r can con t ro l pAddrL2
9 mcResult_t mcResult = dev i ce ->mapBulk ( connect ion ,
10 cmd . s e s s i on Id , cmd . handle , pAddrL2 ,
11 cmd . o f f s e tPay load , cmd . lenBulkMem ,
12 &secureVir tua lAdr ) ;
13 . . .
14 i f ( mcResult != MC_DRV_OK) {
15 wr i t eResu l t ( connect ion , mcResult ) ;
16 return ;
17 }
18 mcDrvRspMapBulkMem_t rsp ;
19 rsp . header . r e sponse Id = MC_DRV_OK;
20 rsp . payload . s e s s i o n I d = cmd . s e s s i o n I d ;
21 rsp . payload . secureVir tua lAdr = secureVir tua lAdr ;
22 connect ion ->writeData(&rsp ,
23 s izeof (mcDrvRspMapBulkMem_t) ) ;
24 }

Figure 3.4: Code snippet from Trustonic’s MobiCore daemon that exhibits a potential
Boomerang flaw [117].

Trusted OS and Trusted Application

Given that the secure world binaries are encrypted, we were not able to completely

reverse-engineer the interaction between TAs and the trusted OS. However, based on

our experience with other implementations, we assume that it follows a similar structure,

where TAs in the trusted world run as normal user-space applications, with no access to

the trusted OS’s memory. Similarly, all privileged tasks from TAs are likely handled by

system calls to the trusted OS. We hypothesize that they also implement some checks

on the pointers (i.e., opaque ids, virtual addresses) passed by the untrusted applications

to validate that they indeed belong to the non-secure world, but currently we have no

way to confirm this.

Boomerang on Trustonic

Although there is no explicit PTRSAN mechanism in Trustonic’s implementation,

the use of opaque identifiers by mcDaemon for shared memory inherently ensures that an
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untrusted user application does not have control over the resulting pointers. Figure 3.4

shows the exact code that is enforcing this within the mcDaemon service. Note that this

construction inherently makes the assumption that all shared memory requests come

from mcDaemon, and that this daemon is not compromised. However, if an attacker were

able to gain access to /dev/mobicore, or compromise mcDaemon, pAddrL2 (in Listing 3.4)

could be replaced with an arbitrary non-secure world physical memory (just as in QSEE)

resulting in a Boomerang vulnerability. We have confirmed this issue with Trustonic,

and are working with them toward an improved design for future releases.

3.4.3 Open Source Trusted Execution Environment (OP-TEE)

OP-TEE [118] is an open source TEE implementation, which can run on a selection

of hardware development platforms. OP-TEE adheres to the GlobalPlatform [119] spec-

ification and provides libraries that ease the development of TAs. While OP-TEE has

not yet been deployed on consumer hardware, it was valuable for our research, as it pro-

vided us with an implementation into which we had complete visibility and a platform

for evaluating our defenses.

Untrusted Application and Untrusted OS

Similar to other implementations, the untrusted OS exposes a driver /dev/tee0 [122],

which can be used by applications to interact with the TAs. A client library libteec.so [123]

is also provided to make it easier for applications to communicate with this driver. All

parameters that are passed to the TA are strongly typed. There are two broad types: a

pointer type and a value type (either of which can be input to a TA, output from a TA,

or both). Every call to the secure world can only support up to four parameters, which

must conform to the strict typing.
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optee_to_msg_param Non-secure Memory

common-memory

Secure Memory

struct tee_param *params

size_t num_params

const struct optee_msg_param *msg_params

Non-secure World

Secure World

User Mode

Supervisor Mode

Supervisor Mode

User Mode

tee_ta_verify_param
struct tee_ta_session *sess

struct tee_ta_param *param

Untrusted Application

Trusted Application

Physical Memory

Figure 3.5: Outline of interactions with the TEE in OP-TEE’s implementation using
common-memory.[120, 121]

Untrusted applications again use opaque pointers (i.e., shmids) to refer to memory

that is intended to be shared with a TA. To pass a pointer argument, the untrusted

application communicates with /dev/tee0 to request memory of a specific length. The

kernel driver then allocates this memory in a dedicated shared memory region (i.e.,

common-memory), pairs it with a shmid, and returns it to the client. Untrusted applica-

tions can use this shmid to map the memory into their address space, where they can

then write commands to and read responses from the TA. This shared memory region is

accessible by both the non-secure and secure worlds. However, because it is a dedicated

memory region, it greatly reduces the risk of Boomerang vulnerabilities.

Untrusted OS and Trusted OS

Upon receiving a command from the untrusted application, the untrusted OS will first

perform the required pointer translations (i.e., PTRSAN). Next, it packs all of the param-

eters into an optee_msg_arg structure and copies it into a free region in common-memory.

Lastly, it performs a world-switch using the SMC instruction [124], with the physical ad-

dress of this region as its argument.
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Trusted OS and Trusted Application

TAs in OP-TEE run as unprivileged applications within the secure world, each run-

ning in its own thread, which are only spawned when a request is issued from the non-

secure world. All privileged operations must, again, be performed through system calls

into the trusted OS (i.e., supervisor call (SVC) instructions). For each memory param-

eter passed to a TA from the non-secure world, the physical address is first checked to

ensure that is contained within the common-memory region, and that this memory region

is mapped to the thread that is handling the request. More precisely, the trusted OS

will take the physical address that was passed as a parameter and update it with a cor-

responding virtual address within the memory space of the handling thread (i.e., TA).

Thus when the TA accesses any pointer arguments, it can access them as normal pointers

(i.e., without any additional verification calls). However, the TA must strictly ensure that

the types of all of the arguments are as expected, or else type-confusion attacks could be

utilized to exploit the TA or trusted kernel. For example, if a memory pointer could be

disguised as a value, bypassing PTRSAN, memory regions outside of the shared memory

region could be passed to a TA, which would result in a Boomerang vulnerability. This

process is shown in Figure 3.5.

Boomerang on OP-TEE

Although the use of common-memory prevents all TAs from accessing the untrusted

OS’s memory, the shared memory ids (shmids) assigned to the different untrusted appli-

cations are stored in a global structure. This allows a malicious untrusted application to

read and write the corresponding common-memory assigned to another untrusted appli-

cation resulting in

Boomerang vulnerabilities [125, 126]. As described above, common-memory provides a
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shared memory communication channel between untrusted applications and TAs, and,

depending on the TA, this memory region can contain sensitive information (e.g., DRM

decrypted content, passwords, or cryptographic keying material). Moreover, we also

found a heap overflow [127] and an out-of-bounds read [128] in the PTRSAN function

of the untrusted kernel driver. The OP-TEE developers responded promptly, fixing

all of these issues; however, these various bugs demonstrate just how difficult a shared

memory management implementation can be to deploy in practice. While shared memory

regions can be used to defend against general Boomerang vulnerabilities, they present

a significant degree of complexity and subtlety that must be overcome. There are also

other technical limitations introduced with this approach (e.g., performance, limited

parameters), which we discuss in detail in Chapter 5.6.

3.4.4 Huawei

We analyzed the TrustZone implementation from Huawei, with tens of millions of

devices in circulation.

Untrusted Application and Untrusted OS

This TEE implementation, like Trustonic, employs a kernel driver /dev/tc_ns_client

and a service teecd, which all user-space applications must use to communicate with the

secure world. The permissions are similarly set such that untrusted user applications

cannot communicate with the driver directly. Similar to OP-TEE, all parameters in the

secure-world interface are one of two broad types: pointers and values, and all calls to

secure world support up to four parameters, which can take either of those types.

However, in this instance, untrusted applications can directly pass an address with an

offset as a pointer argument in their commands. The kernel driver attempts to perform
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PTRSAN by first checking that the corresponding address is indeed in the requesting ap-

plication’s memory before replacing the address with the corresponding physical address,

incremented by the provided offset.

Untrusted OS and Trusted OS

The interactions between the untrusted world OS and the trusted world OS are, again,

done using the standard SMC instruction. All parameters to be passed are packed into a

common structure (TC_NS_SMC_CMD), and the physical address of this structure is passed

as the argument to the SMC call (similar to QSEE).

Trusted OS and Trusted Application

As with other trusted world implementations, each TA runs in an isolated process and

interacts with the trusted OS through system calls (using SVC instructions). However, in

this instance, the entire non-secure world memory space is mapped into every TA, which

makes exploiting Boomerang vulnerabilities trivial.

Boomerang on Huawei

Boomerang exists on this implementation for a few reasons. First, PTRSAN fails

to validate the offset value; a malicious untrusted application can use this to pass an

arbitrary physical address to the TA. Second, almost all the TAs we examined do not

validate the types of parameters, allowing one to bypass PTRSAN entirely, by misrepre-

senting the type of an argument to the kernel driver as a non-pointer, while still being

correctly interpreted as a pointer by the TA. Type-confusion attacks within the TA are

cumbersome to avoid, as each function that handles the parameter must independently

verify that the type of the argument is correct, since the parent function has no insight

into the ultimate use of each parameter. We found both instances of Boomerang (i.e.,
33



The perils of absolute isolation Chapter 3

PTRSAN bypass and type-confusion) in different components within this implementa-

tion, as we show in Chapter 3.5.1.

3.4.5 Sierraware Trusted Execution Environment (SierraTEE)

SierraTEE is a Trusted Execution Environment developed by Sierraware [129]. They

published an open source version of their implementation under the Open Virtualization

project [130]. Similar to OP-TEE, this adheres to the GlobalPlatform specification [119]

and provides libraries to support development. Although SierraTEE is used in academic

projects [131], we were unable to determine whether it is used in any commercial device.

Untrusted Application and Untrusted OS

Similar to OP-TEE, SierraTEE employs a kernel driver /dev/otz_client and a client

library libotzapi.so for ease of development. Applications can either use the driver

or library to interact with the TAs. Similar to OP-TEE, all parameters to the TA are

strongly typed, with three possible types: pointer, 32-bit value, or array. To pass a

pointer, untrusted applications should first use mmap on the driver to allocate memory of

the required size. The kernel driver then allocates the memory and associates it with the

requested address (i.e., usr_addr), which can be used by the corresponding application

as a shared memory id (shmid). Similar to Huawei, a pointer argument is passed as a

tuple of (shmid, length, offset).

Untrusted OS and Trusted OS

First, PTRSAN is performed on all the pointer arguments by computing the physical

address corresponding to the provided shmid. The resulting physical address and its

corresponding length are packed as the new pointer argument. Next, all the arguments
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are packed into an otz_smc_cmd structure, and the physical address of this structure is

passed as the argument to the SMC instruction, and therefore to the trusted OS.

Trusted OS and Trusted Application

Similar to OP-TEE, each TA runs as an unprivileged application within the secure

world, in its own thread. Privileged operations must be performed through system calls

(SVC instructions), and are handled by the trusted OS. All parameters from the un-

trusted OS and applications are directly passed to the destination TA. As mentioned

above, these take the form of physical memory addresses and region lengths, which must

be mapped by the TA prior to use.

Boomerang on SierraTEE

Similar to Huawei, PTRSAN in SierraTEE fails to validate the offset for pointer

arguments. This allows a malicious untrusted application to pass an arbitrary physical

address to the TA leading to a Boomerang vulnerability. Furthermore, we noticed that

PTRSAN also fails to verify the length parameter, which increases the exploitability of

this flaw.

We notified Sierraware of our findings on multiple occasions, beginning in October

2016, and received no reply. We suggest that the users of the open source version of the

SierraTEE be aware of this issue, and contact Sierraware to obtain an appropriate fix.

3.4.6 Observed Instances of Boomerang

In summary, we have observed two distinct instances of Boomerang in practice:

PTRSAN bypass attacks, where the pointer sanitization function can be bypassed alto-

gether, and type-confusion attacks, where TAs can be tricked into treating a non-pointer
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Table 3.1: Summary of the various manifestations of Boomerang across the various
TEE implementations.

Vendor
Common Entity

Physical Address Shared Memory Unique Identifier

QSEE BPtr

Trustonic B∗Ptr

OP-TEE bPtr

Huawei BPtr,BType

SierraTEE BPtr

B - Full Boomerang (arbitrary non-secure memory access)

B∗ - Full Boomerang, but requires an additional exploit

b - Partial Boomerang (access to specific regions of non-secure memory)

Ptr - PTRSAN bypass vector present Type - Type-confusion vector present

value as a pointer. This general flaw (i.e., the secure world’s ability to freely influence

non-secure memory) exists on each system, regardless of the common entity used for

passing memory references between worlds. Table 3.1 demonstrates how the various bugs

affect the vendors that we examined. It is worth noting that every analyzed TEE imple-

mentation is affected by Boomerang to some degree. The table only outlines the bugs

that we personally were able to verify; however, we have reasons to believe Trustonic also

likely contains a pointer-confusion attack, but we are unable to verify this hypothesis

without access to the un-encrypted TAs.

3.5 Finding Boomerang Vulnerabilities

To evaluate the severity of Boomerang, we explored two very popular commer-

cially available TEE implementations (i.e., QSEE and Huawei) to see if exploitable

Boomerang flaws existed in deployed TAs. We were unable to perform our analysis

36



The perils of absolute isolation Chapter 3

COMMAND_DISPATCHER(request_buffer)

command_code = request_buffer->field1;
command_data = (void*) request_buffer->field2; 

switch(command_code){
    case ‘1’:
        COMMAND_HANDLER1(command_data);
        break;
    case ‘2’:
        COMMAND_HANDLER2(command_data);
        break;
    case ‘3’:
        COMMAND_HANDLER3(command_data);
        break;
    case ‘4’:
        COMMAND_HANDLER4(command_data);
        break;
}

request_buffer
(from untrusted world)

read_syscall( address,
              length,
              output);       

write_syscall( address,
               length,
               content);        

COMMAND_HANDLER1(command_data)

read_syscall((void*)command_data->field1, length, output);

COMMAND_HANDLER2(command_data)

write_syscall((void*)command_data->field1, length, content);

COMMAND_HANDLER3(command_data)

address = (int*)command_data->field1;

output_data = *address;

COMMAND_HANDLER4(command_data)

address = (int*)command_data->field1;

*address = data;

Source

Sink   

Attacker 
Controlled

Figure 3.6: Examples of the different types of data flows that our tool would detect as
being vulnerable to Boomerang.

on Trustonic’s implementation because all of their TAs are encrypted. Similarly, we did

not evaluate any TAs developed for the OP-TEE and SierraTEE architectures, as they

have not been deployed on any commercial devices. We, indeed, found the Boomerang

vulnerabilities in all of the evaluated TAs that accepted pointers from the non-secure

world, some of which we used to craft exploits.

3.5.1 Detecting Potential Vulnerabilities

As we showed in Chapter 3.4, all of the TrustZone implementations that we analyzed

will, at some point, pass commands from the untrusted application to the TA through the

untrusted OS and the trusted OS. This data usually contains an application-dependent

structure, and, in malicious instances, its contents may contain un-sanitized memory

pointers. Thus, the general approach to our detection technique is to perform data-flow

analysis to track all of the data that is passed from the non-secure world, and annotate

any functions that use any portion of this data as a pointer. By capturing any function

that dereferences non-secure data as a pointer, an analyst could then trivially use manual

analysis to see if that data can be controlled by an untrusted application in a way that
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bypasses PTRSAN, which would result in a Boomerang vulnerability.

We created a static analysis technique to locate these instances using simulated execu-

tion, which we implemented using the angr [132] static analysis and reverse-engineering

framework. Our analysis works in the following way: First, we analyze the control flow

graph and perform function recovery on a given TA, which identifies function entry points

based on standard Advanced RISC Machine (ARM) calling conventions. This step re-

quires that the binary is not obfuscated (e.g., encrypted or packed). Next, we locate

the source of any input data, by locating the primary command dispatcher of the TA.

This function is TEE-specific, but can be found easily through reverse engineering (e.g.,

identifying entry points in the program or using symbols) and is applicable to every TA

for that TEE implementation. In QSEE’s implementation, we referenced prior work to

locate the command dispatcher [108], which accepts 4 arguments, consisting of the input

and output buffers and their sizes (i.e., send_buf, send_len, resp_buf, resp_len). On

Huawei, we were able to locate the symbol referring to the command dispatcher, which

takes a list of inputs, and a list of the associated data types for each argument.

Once the command dispatcher function is located, we then perform data-flow analysis

(similar to static taint tracking) on the data in the input buffers to detect any instances

where any part of the input is used as a pointer. This pointer dereferencing may be done

explicitly in the code itself, but could also be delegated to system calls within the trusted

OS. Since the semantics of system calls are TEE-specific, we require that an analyst

annotates those calls that handle the reading or writing to non-secure memory for each

TEE (e.g., cryptographic operations or secure file-system operations). With the given

system calls identified, our data-flow analysis can detect and return relevant paths in the

TA.

Our analysis starts with the input buffers or argument lists as a source and performs

a blanket execution [133] of the program, where all of the basic blocks in the control
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flow graph (CFG) are executed, until the data from the source reaches a sink (i.e.,

an annotated system call or memory operation). TAs usually contains many possible

commands, selectable by a TA-specific command identifier included as part of the request,

which is typically checked by the TA at the beginning of execution. We can therefore

locate a unique “handler” for the different commands (i.e., cases in the main switch-case

statement of the command dispatcher), by analyzing all of the call sites in the command

dispatcher function. This information is useful when determining exploitability, as it

helps to identify the major functionality of the TA that is exercised with the identified

vulnerability. Our tool will produce as output the call chain from the input to the memory

operation or system call, and whether the final operation is a read or a write. Figure 3.6

provides a high-level overview of our technique.

3.5.2 Vulnerabilities in QSEE

While hundreds of millions of devices use QSEE as their TEE implementation, only

a few TAs are actually widely distributed for the platform. We were able to obtain the

binaries for KeyMaster, WideVine, and PlayReady, which to the best of knowledge are

the only 3 QSEE TAs that accept user input. KeyMaster is the standard cryptographic

application that is included on all Android-based devices with a TEE. WideVine is

a Google-owned DRM technology, used most prominently in the Netflix and YouTube

applications. PlayReady is a similar DRM technology provided by Microsoft, which

provides DRM support for Windows Media files, amongst others.

After running our static analysis technique on the three TAs described above, we

found that all of them were vulnerable to Boomerang attacks. KeyMaster contained

three separate call-chains that permit an untrusted application to read arbitrary physical

memory from within the non-secure world, using functionality within the TA. Similarly,
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WideVine and PlayReady both contained call-chains that permit an unprivileged appli-

cation to decrypt data to arbitrary physical memory within the non-secure world, which

could be leveraged for an arbitrary physical memory write.

Proof-of-Concept (Memory Read)

We were able to easily leverage one of the three call chains located in QSEE’s Key-

Master to craft a proof-of-concept arbitrary memory leak exploit. Figure 3.7 shows a

graphical representation of the discovered path, including the addresses of each function

call instruction between the input and a controllable memory operation, as well as the

type of memory operation (e.g., “read,” “write,” or in this case, “syscall”). The tool also

indicates the vulnerable “handler,” which is the start address of the first unique function

seen among the set of all the call chains.

In this case, the call chain terminates in QSEE system call number 0x06, which was

identified as the system call that prepares for memory read operations from the non-

secure world. Using manual analysis, we were easily able to determine the purpose of the

handler function on our chosen path, at 0x5ac, which generates cryptographic signatures

of data from the non-secure world. While the returned value is signed, the attacker can

select the key, cipher, data, and data length. To recover the original non-secure world

data, the signature is performed on a single byte, with a known key, and the result

checked against a pre-computed table of signatures for all of 256 possible values of a byte

with that key. To control the data that is to be signed, we can bypass PTRSAN in the

non-secure world using QSEECom_send_cmd (as shown in Figure 3.3). The resulting exploit

allows a malicious untrusted application, in the non-secure world, to read any amount

of memory from an arbitrary location in the non-secure world, including memory of all

other applications and the kernel.

We disclosed this vulnerability, and proof-of-concept, to Qualcomm and Google in
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June 2016, and received the designation CVE-2016-5349. We are actively working with

both companies on a fix and, as of December 2016, this critical patch is still in de-

velopment. Our tool also identified memory write functionality in the WideVine TA,

which could, in theory, be leveraged into a full exploit; however, we did not invest the

engineering time at this point to verify this exploit.

3.5.3 Vulnerabilities in Huawei

For our analysis of Huawei, we were able to obtain a set of 10 TAs. Using our static-

analysis tool, we found out that only 6 of them accepted commands and all of these 6 TAs

were vulnerable to Boomerang. We were able to locate both arbitrary read and write

functionality, which allows us to gain root privileges on any device running this TEE

implementation. We use a technique based on ret2dir [134], which allows the execution

of code as the root user, by overwriting kernel memory structures to include a malicious

return-oriented programming (ROP) payload. This technique has been implemented

and tested on Android 5.0.1, and works regardless of Privileged eXecute Never (PXN)

protections deployed by the hardware.

These vulnerabilities were reported to Huawei, as part of our submission to the

GeekPwn 2016 hacking contest [135], and received the designations CVE-2016-8762,

CVE-2016-8763, and CVE-2016-8764. We were able to develop a full exploit, which

leveraged Boomerang and other techniques to obtain full root privileges, as well as

code execution within the TEE itself1. Huawei has implemented a fix, and as of Decem-

ber 2016, updates to various Huawei devices are available to address the problem.

1A video demonstrating the exploit can be found at https://www.youtube.com/watch?v=

XjbGTZrg9DA
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3.6 Defenses

Before discussing the examined defenses, we first outline the requirements that we

set forth to ensure that our proposed defense would be both practical to implement and

usable for developers. We identify the following minimum requirements that any solution

to Boomerang must satisfy to be usable:

• Independence from the untrusted OS: The TEE implementation should not be

dependent on the untrusted OS (i.e., it should not leverage OS-specific functionality).

For example, the trusted OS should be unaffected if the untrusted OS is upgraded

or changed entirely. This requirement forces the solution to be generic, rather than

depending on a particular feature within the untrusted OS implementation.

• Minimal or no changes to user applications (untrusted and trusted): Changes

to trusted and untrusted applications should be minimal or none at all. This require-

ment eases the adoption of the solution and ensures that existing applications will be

automatically protected, without burdening the developers to re-write their applica-

tions.

• Minimal changes to the trusted kernel: No major architectural changes should

be required within the secure world. This ensures that the TCB will remain small

and that all modifications can be sufficiently audited. Since minimal is subjective, we

specify that any modifications to the trusted OS abide by a soft ceiling of 100 lines of

code.

3.6.1 Page Table Introspection

An obvious and simple method capable of defending against Boomerang is to lever-

age the trusted OS’s visibility into the non-secure world to verify the ownership of the
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memory being accessed by simply reading the same page tables that are used by the

untrusted OS. A variant of this approach is taken by NVIDIA’s Trusted Little Ker-

nel (TLK), the TEE used by Tegra processors [104]. This defense requires the trusted

OS to have a complete understanding of the page table structure within the untrusted

OS. Thus, when an untrusted application passes a memory reference, the trusted OS

would first verify that the memory actually belongs to the untrusted application that

made the call by doing a page-table walk, and, only then, map that memory into the

memory space of the requested TA.

This approach has a few notable advantages. It is entirely invisible to the untrusted

OS, as the entire PTRSAN function is implemented within the secure world. Additionally,

it does not require any extra memory copy operations, which is an improvement over

shared-memory defenses, which we explain in Chapter 3.6.2. However, the Achilles’ heel

of this approach is the amount of work that must be performed by the trusted OS

to interpret the untrusted OS’s page table structure, and then make security decisions

based on that interpretation. Researchers have shown that page table walks can be

extremely dangerous. For example, since the trusted OS is performing a walk on a page

table controlled by the untrusted OS, a malicious untrusted OS could potentially craft a

malicious page table and obtain arbitrary code execution within the trusted OS [106, 136].

Furthermore, this defense, while relatively easy to implement, does not satisfy our first

requirement, as the trusted OS must be aware of the page table structure managed by the

untrusted OS. This approach is not generalizable and would likely require a customized

trusted OS to accompany each untrusted OS, or at least a different instantiation based

on the page table structure. Finally, this defense is likely not possible to implement while

satisfying our third requirement of a minimal TCB, as an elegant and correct page table

walk requires a considerable amount of code, likely far more than 100 lines.

This approach works well for TLK, where the trusted OS is a derivative of Linux
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and is therefore able to manage Linux page tables using the same code as the untrusted

OS. However, we do not consider it a viable generic approach since it violates two of our

requirements. Thus, we did not evaluate its efficacy in practice in Chapter 3.7; however,

we do not discredit its viability as a defense against Boomerang, and we believe that

it could be a reasonable defense in specific instances.

3.6.2 Dedicated Shared Memory Region

The heart of the Boomerang flaw stems from the fact that the secure world can read

from and write to any non-secure memory it wishes. In the dedicated shared memory

region defense, a special physical memory region (e.g., common-memory in the case of

OP-TEE) is defined, which is the only region of memory that is readable and writable

by both worlds. To verify any pointers that are passed from the non-secure world, the

secure world then needs only to verify that the memory is within the common-memory,

which will protect both worlds. Note that this is the exact method employed by OP-TEE

(see Figure 3.5).

This defense is easy to implement in the secure world. In fact, this defense actually

makes the secure world’s PTRSAN function extremely simple, as it needs only to confirm

that the memory is within the shared region. Nevertheless, this defense has numerous

drawbacks in the non-secure world:

• The untrusted OS is burdened with handling all of the shared memory regions (i.e.,

sections of common-memory) amongst the various untrusted user applications. This

memory management can be exceptionally complicated, and, indeed, we found at least

4 bugs [125, 126, 127, 128] in different components of this mechanism in OP-TEE.

• For high-throughput applications (e.g., DRM video decryption), this defense adds an

undesirable overhead, since it requires all of the data to be copied into a special buffer,
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which is not in the requesting application’s memory space. This global memory region

also requires a global lock on memory, which can become a serious bottleneck in multi-

threaded applications. In our tests (Chapter 3.7.1), this global locking mechanism alone

consumed approximately 36% of the total overhead.

• Shared memory makes it extremely difficult, and in some cases impossible, to imple-

ment certain types of applications. For example, a popular use of TrustZone is memory

integrity checking [43], where an untrusted application requests that a TA monitors

its memory, which does not work with shared memory.

• This defense only thwarts the general Boomerang attack, but can still permit appli-

cations to leverage Boomerang to read from and write to arbitrary regions within

the shared memory, which may contain sensitive data.

We show in Chapter 3.7.3 how this currently advocated defense compares against our

proposed solution.

3.6.3 Cooperative Semantic Reconstruction

Due to the limitations of existing Boomerang defenses, we propose a novel de-

fense (CSR), which is capable of bridging the semantic gap between the two worlds with

minimal modification and minimal overhead. In this defense, the trusted OS and the

untrusted OS both cooperate to verify memory pointers that are passed into the secure

world to ensure that the untrusted application indeed has permission to access the refer-

enced memory region. This implementation was based on one key insight: the untrusted

OS already adequately implements memory protection mechanisms; however, this in-

formation is not currently easily accessible to the trusted OS. Thus, to implement this

defense, the untrusted OS needs only to expose a simple callback to the secure world that
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permits the trusted OS to query the untrusted OS’s PTRSAN function, where the mem-

ory address can be trivially verified. This callback can be used from within the secure

world any time that non-secure memory is to be accessed, thus thwarting any unintended

Boomerang vulnerabilities. Fundamentally, this defense bridges the semantic gap by

allowing the secure world, which has no insight into the layout of non-secure memory,

to query the untrusted OS as a security oracle, which is able to correctly respond. An

overview of the approach can be seen in Figure 3.8

In this defense, the untrusted applications prepare requests to TAs exactly as they

would without it. The call to the TA would similarly be handled by an exposed kernel

driver or TEE 1 , which would handle the world switching. Note the there is no proactive

PTRSAN necessary by either the daemon or the kernel driver. In fact, the buffer is passed

directly into the secure world with the non-secure world virtual memory address intact.

The only addition is that the process identification number (PID) of the requesting

process (we refer to this as the req_pid) is now appended to the request structure by the

untrusted OS during the SMC call 2 . Now, in the secure world, when a TA needs to

access a pointer that was passed as an argument, which is a virtual address that belongs

to the untrusted application that initiated the call, the TA must first query the trusted

OS to resolve the physical address 4 . This query is implemented as a callback to the

untrusted kernel with the pointer value (virtual address), the length of the buffer, and

the corresponding req_pid 5 . The untrusted OS kernel can trivially handle the callback

by checking that the buffer indeed belongs to the address space of req_pid 6 . If the

verification is successful, the untrusted OS then locks the corresponding pages (to avoid

them being paged out) and sends the physical addresses back to the secure world 7 . At

this point, the trusted OS will then implement its own PTRSAN function to verify that

the physical address from the untrusted OS is, in fact, in the non-secure world 8 . Then,

the trusted OS will map it into the TA’s memory space or allow the TA to access the
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physical address directly 9 . If verification fails, a corresponding error code is returned.

Given that every TEE implementation already has callback support for high-level

operations (e.g., file operations, network communication), this exact same channel can

be leveraged to implement CSR. Note that CSR provides a generic mechanism to bridge

the semantic gap between the two worlds, and that it can also be extended to verify

access to files, or other peripherals by the secure world.

At first glance, it may appear that this defense would require modifications to all of

the components (i.e., the untrusted application, the untrusted kernel, the trusted kernel,

and the trusted application). However, since all of the trusted applications that we

observed use a client library, we believe that simply updating this client library would be

enough in practice. Similar to untrusted applications, existing TAs would not require any

modification, as this defense could be implemented in the trusted kernel functions (e.g.,

qsee_register_shared_buffer() in the case of QSEE) that are already used to access

non-secure world memory. The only real modifications that would have to be deployed

would be the modifications to the untrusted and trusted kernels, which would add the

functionality to handle and perform the required callback, respectively.

The main overhead introduced by CSR is the additional verification path (i.e., 4 -

9 ). However, we show in Chapter 3.7.2 that this overhead is minimal and comparable

to other defenses.

3.7 Evaluation of Defenses

We evaluated the two most promising proposed defenses: Dedicated Shared Memory

Region (DSMR) and CSR. We decided not to include Page Table Introspection (PTI) in

our analysis, as it does not satisfy our requirements as a general Boomerang defense.

Similarly, we did not explicitly compare our defenses against a vanilla TEE implemen-
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tation, as we do not see no defense as an option. We performed our evaluation on the

OP-TEE platform [105], with Linux as our untrusted OS. OP-TEE was chosen because

it is completely open source, has a very well-maintained code base with clear documen-

tation, and includes an exhaustive test suite, which we used to evaluate the performance

overhead of our defenses.

We chose the HiKey development board (Lemaker Version) as the hardware platform

for testing, which is one of the boards recommended by the OP-TEE developers [105].

This board includes a traditional ARM processor and associated hardware, which are

almost identical to what would be found on a consumer Android handset [137]. OP-

TEE has an extensive test suite with 63 tests called xtest[138]. These tests cover both

sanity and functionality check of various TAs, TEE benchmarking, and Global Platform

compliance. We modified the test driver to record timings for each of the tests as well

as profiling information for the different phases of DSMR and CSR. All reported timing

data are averaged across 30 runs of xtest on the HiKey board, where the system was

rebooted between runs to avoid caching-related inconsistencies.

3.7.1 Dedicated Shared Memory Region

As explained in Chapter 3.4.3, OP-TEE’s default configuration uses the DSMRmethod

as the only mechanism for passing memory arguments. In this implementation, the un-

trusted OS’s client library handles the allocation of the shared memory region, which

consists of assigning an identifier (shmid), copying of data to and from the corresponding

shared buffer, and ultimately releasing it. Recall that this shared memory management

within the untrusted OS is the main overhead in this implementation. There is virtually

no overhead in the trusted OS, as it just needs to check that the pointer argument is

contained within the common-memory region. On average, allocating shared memory took
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13.795 µs, releasing memory took 7.982 µs, and the time it took to copy memory con-

tents was negligible. Thus, the total incurred overhead was 21.777 µs per secure-world

query. This low overhead is partially attributed to the fact that the maximum size being

copied in the tests was only 4,097 bytes; however, we would expect these numbers to rise

significantly with larger memory regions.

3.7.2 Cooperative Semantic Reconstruction

As we previously explained in Chapter 3.4.3, in OP-TEE all arguments to TA are

typed (i.e., pointer or value), and all pointers are already checked to ensure that they are

within the common-memory region. Thus, we were able to implement our CSR defense by

simply adding a new pointer parameter type, RAW_PTR, and modifying the trusted OS to

perform the required callback to the untrusted OS for every RAW_PTR. We also changed

the untrusted OS’s client library (i.e., libteec.so) to use the RAW_PTR as the default

type for all pointers. The untrusted kernel driver was similarly modified to handle the

callback function. We implemented our PTRSAN function in the callback, which verifies

that the argument is a valid virtual address within the appropriate untrusted application

(referenced by its PID). Upon verification, we then resolve the corresponding physical

memory pages, set them to be non-pageable, and return the physical addresses back to

the secure world. All of our modifications to OP-TEE are backward-compatible and can

easily co-exist with the existing DSMR defense. These modifications resulted in only 91

modified lines of code in the OP-TEE trusted OS (see Table 3.2 to see the modifications

per component).

As explained in Chapter 3.6.3, most of the additional overhead introduced by CSR

is caused by the callbacks from the trusted OS to the untrusted OS for every RAW_PTR

argument type. In OP-TEE, all of the pointer arguments are first sanitized by the trusted
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Table 3.2: Total modifications required to implement CSR in OP-TEE, measured in
lines of code (LOC).

Component Added LOC Modified LOC Total LOC

Trusted OS 88 3 91

Untrusted OS 273 2 275

Client Library 39 0 39

OS before invoking the TA. Hence, all of our results for CSR do not include the calls

between the TA and the trusted OS (i.e., 4 and 9 in Figure 3.8). Nevertheless, we

similarly measured the incurred overhead of CSR by running the xtest suite, which

made a total of 3,885 callbacks throughout its tests. The average time taken for the

trusted OS to confer with the untrusted OS to sanitize pointers ( 5 - 6 - 7 - 8 ) over all

3,885 callbacks was 26.891 µs, 21.909 µs of which were spent within the untrusted OS

doing validation and memory page pinning ( 6 ). This is almost identical to the 21.777

µs overhead incurred by the DSMR defense.

3.7.3 Comparative Evaluation

To get an idea of the specific performance of memory management operations with

the two defenses, we analyzed the profiling data for the various operations performed by

both approaches and found that performance for a single memory access with DSMR is

slightly better, 5.113 µs faster, than CSR. However, the performance across the entire

range of tests is much more interesting.

A summary of the testing data, in terms of the average overhead of CSR over DSMR

for each test category, is shown in Table 3.3. Note that a negative value indicates CSR

was faster than DSMR for the corresponding category. The Trusted-Untrusted Com-

munication category represents CSR’s worst performance in terms of the percentage of
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Table 3.3: Summary of benchmark results, showing the overhead of CSR over DSMR.

Category Overhead

Avg. % Avg. Time (ms)

Basic Functionality -0.58% -7.168

Trusted-Untrusted Communication 4.45% 0.510

Crypto operations -1.72% -901.548

Secure File Storage 0.03% 0.694

Total for all Tests -0.0344 -189.919

overhead. There are 14 tests in this category and all of them primarily perform a lot of

SMC operations (approximately 200) to test inter-world communication. CSR allocates

and deallocates memory-tracking structures during each SMC, as it cannot know ahead

of time when memory arguments are to be used. This contributes a very small overhead

for each SMC, which is reflected as a larger percentage in these particular tests, although

even here, this net overhead in terms of time is still low.

In the context of the other 49 tests performed, the percentage of overhead contributed

by CSR versus DSMR is very small. CSR introduces no more than 0.03% overhead in

the worst case and improves performance by up to 1.72% in others.

For those tests with non-secure memory operations, we observed that the DSMR

overhead varied significantly, whereas the overhead of CSR remained constant for a given

number of memory operations. The main reasons for variance in DSMR overhead are:

• Synchronized access: The allocation and release of shared memory involves acquiring

a global lock. For a multi-threaded application making simultaneous shared memory

requests and releases will result in idle tasks as they wait for the global lock, increasing

the overhead of DSMR. We observed this in one of the tests of the Basic Functionality
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category, which creates several threads, all of which make requests to a TA. During

this subtest, the overhead for a shared memory allocation went up to 80 microseconds

and in total CSR beat DSMR by 11.72 seconds of execution time.

• Additional copying: In DSMR, untrusted applications need to copy data to or from

shared memory to communicate with the TA. This copying time can be an overhead,

if a large amount of data is being exchanged between the untrusted application and

the corresponding TA. For example, one of the tests in the Trusted-Untrusted Com-

munication category, which passes a large amount of data, suffered a 26% overhead

because of this memory copying.

• Memory Fragmentation: Depending on how shared memory is allocated and released,

it could get severely fragmented. As DSMR in OP-TEE uses a best-fit algorithm to

find free regions of shared memory, fragmentation increases the time to find a free

chunk, thus increasing the overhead of DSMR.

Although CSR is slightly outperformed by DSMR in some tests, in practice CSR is

the best candidate for an all-around defense. CSR offers the best security properties,

requires minimal modification for implementation, incurs minimal overall performance

overhead, and actually boosts performance for multi-threaded applications. Thus, per

our evaluation, CSR appears to be the ideal defense against Boomerang.

3.8 Moving up

In addition to the novel security features such as ARM TrustZone, smart devices

have extensible software support in the form of open-source system software. The avail-

ability of well-supported open-source system software enables vendors to perform quick

customizations, e.g., by adding device drivers to the operating systems. Unfortunately,
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these customizations are poorly developed, which results in a lot of critical security issues.

In the next chapter, I will explain how we can develop efficient static analysis techniques

to detect security issues in complex system software, specifically, Linux kernel drivers.
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0x3c6b: COMMAND DISPATCHERUSER INPUT

0x37aa: COMMAND HANDLER
(import_key_pair command)

0x4a02: SYSCALL WRAPPER 1
(prepare_read_buffer) 0x6e80: SYSCALL

Figure 3.7: One of the three outputs of our data-flow analysis described in Chapter 3.5.1
for the KeyMaster TA on QSEE.
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Figure 3.8: Cooperative Semantic Reconstruction data-flow and pointer resolution technique.
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Chapter 4

Scalable static analysis of device

drivers

The mobile domain has seen an explosion of new devices, and thus new drivers, introduced

in recent years. The lack of attention being paid to these drivers, and their potential

danger to the security of the devices, has also not gone unnoticed [139]. Recent studies

even purport that mobile kernel drivers are, again, the source of up to 85% of the reported

bugs in the Android [140] kernel. Yet, we are unaware of any large-scale analysis of these

drivers. Bugs in kernel-level code can be particularly problematic in practice, as they can

lead to severe vulnerabilities, which can compromise the security of the entire computing

system (e.g., Dirty COW [141]).

This fact has not been overlooked by the security community, and a significant amount

of effort has been placed on verifying the security of this critical code by means of manual

inspection and both static and dynamic analysis techniques. While manual inspection

has yielded the best results historically, it can be extremely time consuming, and is

quickly becoming intractable as the complexity and volume of kernel-level code increase.

Low-level code, such as kernel drivers, introduce a variety of hard problems that must be
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overcome by dynamic analysis tools (e.g., handling hardware peripherals). Thus, static

source code analysis has long prevailed as the most promising technique for kernel code

verification and bug-finding, since it only requires access to the source code, which is

typically available.

Unfortunately, kernel code is a worst-case scenario for static analysis because of the

liberal use of pointers (i.e., both function and arguments are frequently passed as point-

ers). As a result, tool builders must make the tradeoff between precision (i.e., reporting

too many false positives) and soundness (i.e., reporting all true positives). In practice,

precise static analysis techniques have struggled because they are either computationally

infeasible (i.e., because of the state explosion problem), or too specific (i.e., they only

identify a very specific type of bug). Similarly, sound static analysis techniques, while

capable of reporting all bugs, suffer from extremely high false-positive rates. This has

forced researchers to make variety of assumptions in order to implement practical analysis

techniques.

Bugs in kernel-level code can be particularly problematic in practice, as they can

lead to severe vulnerabilities, which can compromise the security of the entire computing

system (e.g., Dirty COW [141]). This fact has not been overlooked by the security

community, and a significant amount of effort has been placed on verifying the security

of this critical code by means of manual inspection and both static and dynamic analysis

techniques. While manual inspection has yielded the best results historically, it can be

extremely time consuming, and is quickly becoming intractable as the complexity and

volume of kernel-level code increase. Low-level code, such as kernel drivers, introduce a

variety of hard problems that must be overcome by dynamic analysis tools (e.g., handling

hardware peripherals). While some kernel-level dynamic analysis techniques have been

proposed [43, 142, 143, 144], they are ill-suited for bug-finding as they were implemented

as kernel monitors, not code verification tools. Thus, static source code analysis has long
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prevailed as the most promising technique for kernel code verification and bug-finding,

since it only requires access to the source code, which is typically available. There

are numerous successful tools have been developed (e.g., Coverity [145], Linux Driver

Verification [69], APISan [63]), and have provided invaluable insights into both the types

and locations of bugs that exist in critical kernel code. These tools range from precise,

unsound, tools capable of detecting very specific classes of bugs (e.g., data leakages [146],

proper fprintf usage [81], user pointer deferences [147]) to sound, imprecise, techniques

that detect large classes of bugs (e.g., finding all usages of strcpy [77]). However, there

is no single tool that uses a generic technique to find all classes of vulnerabilities.

4.1 Vulnerability Detection Technique Based on Soundy

Analysis

In this Chapter, we present Dr. Checker, a fully-automated static-analysis tool

capable of identifying numerous classes of bugs in Linux kernel drivers. Dr. Checker is

implemented as a completely modular framework, where both the types of analyses (e.g.,

points-to or taint) and the bug detectors (e.g., integer overflow or memory corruption

detection) can be easily augmented. Our tool is based on well-known program analysis

techniques and is capable of performing both pointer and taint analysis that is flow-,

context-, and field-sensitive. Dr. Checker employs a soundy [148] approach, which

means that our technique is mostly sound, aside from a few well-defined assumptions

that violate soundness in order to achieve a higher precision. Dr. Checker, is the first

(self-proclaimed) soundy static-analysis-based bug-finding tool, and, similarly, the first

static analysis tool capable of large-scale analysis of general classes of bugs in driver code.

We evaluated Dr. Checker by analyzing nine popular mobile device kernels, 3.1 million
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LOC, where it correctly reported 3,973 flaws and resulted the discovery of 158 [149, 150,

151, 152, 153] previously unknown bugs. We also compared Dr. Checker against four

other popular static analysis tools, where it significantly outperformed all of them both

in detection rates and total bugs identified. Our results show that Dr. Checker not

only produces useful results, but does so with extremely high precision (78%).

In summary, we claim the following contributions:

• We present the first soundy static-analysis technique for pointer and taint analysis

capable of large-scale analysis of Linux kernel drivers.

• We show that our technique is capable of flow-sensitive, context-sensitive, and field-

sensitive analysis in a pluggable and general way that can easily be adapted to new

classes of bugs.

• We evaluated our tool by analyzing the drivers of nine modern mobile devices,

which resulted in the discovery of 158 zero-day bugs.

• We compare our tool to the existing state-of-the-art tools and show that we are

capable of detecting more bugs with significantly higher precision, and with high-

fidelity warnings.

4.2 Dr. Checker Analysis Design

Dr. Checker uses a modular interface for its analyses. This is done by performing

a general analysis pass over the code, and invoking analysis clients at specific points

throughout the analysis. These analysis clients all share the same global state, and

benefit from each other’s results. Once the analysis clients have run and updated the

global state of the analysis, we then employ numerous vulnerability detectors, which
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Figure 4.1: Pluggable static analysis architecture implemented by Dr. Checker.

identify specific properties of known bugs and raise warnings (e.g., a tainted pointer was

used as input to a dangerous function). The general architecture of Dr. Checker is

depicted in Figure 6.1, and the details of our analysis and vulnerability detectors are

outlined in the following chapters.

Below we briefly outline a few of our core assumptions that contribute to our soundy

analysis design:

Assumption 1. We assume that all of the code in the mainline Linux core is imple-

mented perfectly, and we do not perform any inter-procedural analysis on any kernel API

calls.

Assumption 2. We only perform the number of traversals required for a reach-def

analysis in loops, which could result in our points-to analysis being unsound.

Assumption 3. Each call instruction will be traversed only once, even in the case of

loops. This is to avoid creating additional contexts and limit false positives, which may

result in our analysis being unsound.

4.2.1 Terminology and Definitions

We first define the various terms and concepts used to describe our analysis.

Definition 4.2.1 A control flow graph (CFG) of a function is a directed graph where each
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node represents a basic block (i.e., a contiguous sequence of non-branch instructions) and

the edges of the graph represent possible control flow between the basic blocks.

Definition 4.2.2 A strongly connected component (SCC) of a graph is a sub-graph,

where there exists a bi-directional path between any pair of nodes (e.g., a loop).

Definition 4.2.3 Topological sort or ordering of nodes in a directed graph is an ordering

of nodes such that, for every edge from node v to u, v is traversed before u. While this

is well-defined for acyclic graphs, it is less straightforward for cyclic graphs (e.g., a CFG

with loops). Thus, when performing a topological sort on a CFG, we employ Tarjan’s

algorithm [154], which instead topologically sorts the SCCs.

Definition 4.2.4 An entry function, ε, is a function that is called with at least one of

its arguments containing tainted data (e.g., an ioctl call).

Definition 4.2.5 The context, ∆, of a function in our analysis is an ordered list of call

sites (e.g., function calls on the stack) starting from an entry function. This list indicates

the sequence of function calls and their locations in the code that are required to reach

the given function. More precisely, ∆ = {ε, c1, c2, ...} where c1 is call made from within

the entry function (ε) and for all i > 1, ci is a call instruction in the function associated

with the previous call instruction (ci−1).

Definition 4.2.6 The global taint trace map, τ , contains the information about our

tainted values in the analysis. It maps a specific value to the sequence of instructions

(I) whose execution resulted in the value becoming tainted.

τ :


v → {I1, I2, I3, ...} if TAINTED

v → ∅ otherwise
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Definition 4.2.7 An alias object, â = {ρ, t}, is a tuple that consists of a map (ρ) between

offsets into that object, n, and the other corresponding alias objects that those offsets can

point to, as well as a local taint map (t) for each offset. For example, this can be used

to represent a structure stored in a static location, representing an alias object, which

contains pointers at given offsets (i.e., offsets into that object) to other locations on

the stack (i.e., their alias objects). More precisely, ρ : n → {â1, â2, â3, ...} and t : n →

{I1, I2, I3, ...}. We use both â(n) and ρ(n) interchangeably, to indicate that we are fetching

all of the alias objects that could be pointed to by a field at offset n. We use ât to refer

to the taint map of location â, and similarly ât(n) to refer to taint at a specific offset.

These maps allow us to differentiate between different fields of a structure to provide

field-sensitivity in our analysis.

The following types of locations are traced by our analysis:

1. Function local variables (or stack locations): We maintain an alias object for each

local variable.

2. Dynamically allocated variables (or heap locations): These are the locations that

are dynamically allocated on the program heap (e.g., as retrieved by malloc or

get_page). We similarly create one alias object for each allocation site.

3. Global variables: Each global variable is assigned a unique alias object.

Stack and heap locations are both context-sensitive (i.e., multiple invocations of a

function with different contexts will have different alias objects). Furthermore, because

of our context propagation, heap locations are call-site sensitive (i.e., for a given context,

one object will be created for each call site of an allocation function).

Definition 4.2.8 Our points-to map, φ, is the map between a value and all of the possible

locations that it can point to, represented as a set of tuples containing alias objects and
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offsets into those objects.

φ : v → {(n1, â1), (n1, â2), (n2, â3), ...}

For example, consider the instruction val1 = &info->dirmap, where info represents

a structure on the stack and member dirmap is at offset 8. This instruction would result

in the value (val1) pointing to the offset 8 within the alias object info (i.e., φ(val1) =

{(8, info)}).

Definition 4.2.9 The Global State, S, of our analysis contains all of the information

computed for every function, at every context. We define it as

S = {φc, τc},

where φc : ∆→ φ is the map between a context and the corresponding points-to map, and

τc : ∆→ τ is the map between a context and corresponding taint trace map.

4.2.2 Soundy Driver Traversal (SDT)

While most of the existing static analysis techniques [155, 61] run their abstract

analysis until it reaches a fixed-point before performing bug detection, this can be prob-

lematic when running multiple analyses, as the different analyses may not have the same

precision. Thus, by performing analysis on the post-completion results, these tools are

fundamentally limiting the precision of all of their analyses to the precision of the least

precise analysis. To avoid this, and ensure the highest precision for all of our analysis

modules, we perform a flow-sensitive and context-sensitive traversal of the driver starting

from an entry point. Our specific analysis modules (i.e., taint and points-to) are imple-

mented as clients in this framework, and are invoked with the corresponding context and

current global state as the code is being traversed. This also allows all of the analyses,
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or clients, to consume each other’s results whenever the results are needed, and without

loss of precision. Moreover, this allows us to perform a single traversal of the program

for all of the underlying clients.

It is important to note that some of the client analyses may actually need more

traversals through the CFG than others to reach a fixed point. For example, a points-

to analysis might need more traversals through a loop to reach a fixed point than a

taint analysis. However, our code exploration is analysis-agnostic, which means we must

ensure that we always perform the maximum number of traversals required by all of our

analyses. To ensure this property, we use reach-def analysis [156] as a baseline (i.e., we

traverse the basic blocks such that a reaching definition analysis will reach a fixed point).

This ensures that all of the writes that can reach an instruction directly will be reached.

This means that our points-to analysis may not converge, as it would likely require

far more iterations. However, in the worst case, points-to analysis could potentially

grow unconstrained, resulting in everything pointing to everything. Thus, we make this

necessary sacrifice to soundness to ensure convergence and a practical implementation.

Loops. When handling loops, we must ensure that we iterate over the loop enough

times to ensure that every possible assignment of every variable has been exercised.

Thus, we must compute the number of iterations needed for a reach-def analysis to reach

a fix-point on the loop and then perform the corresponding number of iterations on all

the basic blocks in the loop. Note that, the number of iterations to converge on a loop for

a standard reach-def analysis is upper-bounded by the longest use-def chain in the loop

(i.e., the longest number of instructions between the assignment and usage of a variable).

The intuition behind this is that, in the worst case, every instruction could potentially

depend on the variable in the use-def chain, such that their potential values could update

in each loop. However, this can only happen as many times as their are instructions,
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since an assignment can only happen once per instruction.

Function calls. If a function call is a direct invocation and the target function is within

the code that we are analyzing (i.e., it is part of the driver), it will be traversed with a

new context (∆new), and the state will be both updated with a new points-to map (ρnew)

and a new taint trace map (τnew), which contains information about both the function

arguments and the global variables. For indirect function calls (i.e., functions that are

invoked via a pointer), we use type-based target resolution. That is, given a function

pointer of type a = (rettype)(arg1Type, arg2Type,..), we find all of the matching

functions in the same driver that are referenced in a non-call instruction (e.g., void *ptr

= &fn). This is implemented as the function resolve_call in Algorithm 1. Each call site

or call instruction will be analyzed only once per context. We do not employ any special

handlers for recursive functions, as recursion is rarely used in kernel drivers.

The complete algorithm, SDTraversal, is depicted in Algorithm 1. We start by topo-

logically sorting the CFG of the function to get an ordered list of SCCs. Then, each SCC

is handled differently, depending on whether it is a loop or not. Every SCC is traversed

at the basic-block level, where every instruction in the basic block is provided to all of

the possible clients (i.e., taint and points-to), along with the context and global state.

The client analyses can collect and maintain any required information in the global state,

making the information immediately available to each other.

To analyze a driver entry point ε, we first create an initial state: Sstart = {φstart, ∅},

where φstart contains the points-to map for all of the global variables. We then traverse

all of the .init functions of the driver (i.e., the functions responsible for driver initial-

ization [157]), which is where drivers will initialize most of their global objects. The

resulting initialized state (Sinit) is then appended with the taint map for any tainted

arguments (Sinit = Sinit ∪ τinit). We describe how we determine these tainted arguments
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in Chapter 4.4.3. Finally, we invoke our traversal on this function, SDTraversal(Sinit,

∆init, ε), where the context ∆init = {e}.

We use the low-level virtual machine (LLVM) intermediate representation (IR), Bit-

code [9], as our IR for analysis. Bitcode is a typed, static single assignment (SSA) IR, and

well-suited for low-level languages like C. The analysis clients interact with our soundy

driver traversal (SDT) analysis by implementing visitors, or transfer functions, for spe-

cific LLVM IR instructions, which enables them to both use and update the information

in the global state of the analysis. The instructions that we define transfer functions for

in the IR are:

1. Alloca (v = alloca typename) allocates a stack variable with the size of the type

typename and assigns the location to v (e.g., %1 = alloca i32). SDT uses the

instruction location to reference the newly allocated instruction. Since SDT is

context-sensitive, the instruction location is a combination of the current context

and the instruction offset within the function bitcode.

2. BinOp ( v = op op1, op2) applies op to op1 and op2 and assigns the result to v

(e.g., %1 = add val, 4). We also consider, the flow-merging instruction in SSA,

usually called phi [158], to be the same as a binary operation. Since SDT is not

path-sensitive, this does not affect the soundness.

3. Load (v = load typename op) is the standard load instruction, which loads the

contents of type typename from the address represented by the operand op into the

variable v (e.g., %tmp1 = load i32* %tmp).

4. Store (store typename v, op) is the standard store instruction, which stores the

contents of type typename represented by the value v into the address represented

by op (e.g., store i8 %frombool1, %y.addr).
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5. GetElementPtr (GEP) is the instruction used by the IR to represent structure

and array-based accesses and has fairly complex semantics [159]. A simplified way

to represent this is v = getelementptr typename ob, off, which will get the

address of the field at index off from the object ob of type typename, and store the

referenced value in v (e.g., %val = getelementptr %struct.point %my_point,

0).

Both our points-to and taint analysis implement transfer functions based on these

five instructions.

4.2.3 Points-to Analysis

The result of our points-to analysis is a list of values and the set of all of the possible

objects, and offsets, that they can point to. Because of the way in which we constructed

our alias location objects and transfer functions, we are able to ensure that our points-to

results are field-sensitive. That is, we can distinguish between objects that are pointed

to by different fields of the same object (e.g., different elements in a struct). Thus, as

implemented in SDT, we are able to obtain points-to results that are flow-, context-, and

field-sensitive.

Dynamic allocation. To handle dynamic allocation in our points-to analysis, we

maintain a list of kernel functions that are used to allocate memory on the heap (e.g.,

__kmalloc, kmem_cache_alloc, get_free_page). For each call-site to these functions,

we create a unique alias object. Thus, for a given context of a function, each allocation

instruction has a single alias location, regardless of the number of times that it is

visited. For example, if there is a call to kmalloc in the basic block of a loop, we will

only create one alias location for it.
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Internal kernel functions. Except for few kernel API functions, whose effects can

be easily handled (e.g., memcpy, strcpy, memset), we ignore all of the other kernel APIs

and core kernel functions. For example, if the target of a call instruction is the function

i2c_master_send, which is part of the core kernel, we do not follow the call. Contrary to

the other works, which check for valid usage of kernel API functions [64, 63], we assume

that all usages of these functions are valid, as we are only concerned with analyzing the

more error-prone driver code. Thus, we do no follow any function calls into the core kernel

code. While, we may miss some points-to information because of this, again sacrificing

soundness, this assumption allows us to be more precise within the driver and scale our

analysis.

The update points-to transfer functions (updatePto*) for the various instructions are

as shown in Algorithm 2.

4.2.4 Taint Analysis

Taint analysis is a critical component of our system, as almost all of our bug detectors

use its results. Similar to our points-to analysis, the results of our taint analysis are flow-,

context-, and field-sensitive.

The taint sources in our analysis are the arguments of the entry functions. Chapter 4.4.3

explains the different types of entry functions and their correspondingly tainted ar-

guments. We also consider special kernel functions that copy data from user space

(e.g., copy_from_user, simple_write_to_buffer) as taint sources and taint all of the

fields in the alias locations of the points-to map for the destination operands of these

functions. Our taint propagators are implemented as various transformation functions

(updateTaint* in Algorithm 3). Similar to our points-to analysis, we do not propagate

taint for any core kernel function calls, aside from a few exceptions (e.g., memcpy). The
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taint sinks in our analysis are dependent on the vulnerability detectors, as every detector

has its own taint policy. These detectors will raise warnings if any tainted data violates

a specified policy (e.g., if a tainted value is used as the length in a memcpy).

4.3 Vulnerability Detectors

This chapter describes the various vulnerability detectors that were used in our anal-

ysis. These detectors are highly configurable and are able to act on the results from

both our points-to and taint analysis. They are implemented as plugins that are run

continuously as the code is being analyzed, and operate on the results from our analysis

clients (i.e., taint and points-to analysis). Our architecture enables us to very quickly

implement new analyses to explore new classes of vulnerabilities. In fact, in the process

of analyzing our results for this paper, we were able to create the Global Variable Race

Detector (GVRD) detector and deploy it in less than 30 minutes.

Almost all of the detectors use taint analysis results to verify a vulnerable condition

and produce a taint trace with all of their emitted warnings. The warnings also provide

the line numbers associated with the trace for ease of triaging. The various bug detectors

used by Dr. Checker in our analysis are explained below:

Improper Tainted-Data Use Detector (ITDUD) checks for tainted data that is

used in risky functions (i.e., strc*, strt*, sscanf, kstrto, and simple_strto family

functions). An example of a previously unknown buffer overflow, detected via ITDUD,

is shown in Listing 4.1.

Tainted Arithmetic Detector (TAD) checks for tainted data that is used in opera-

tions that could cause an overflow or underflow (e.g., add, sub, or mul). An example of

a zero-day detected by TAD is shown in Listing 4.2.

Invalid Cast Detector (ICD) keeps tracks of allocation sizes of objects and checks for
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any casts into an object of a different size.

Tainted Loop Bound Detector (TLBD) checks for tainted data that is used as a

loop bound (i.e., a loop guard in which at least one of the values is tainted). These bugs

could lead to a denial of service or even an arbitrary memory write. The example in

Listing 4.2 shows this in a real-world bug, which also triggered on TAD.

Tainted Pointer Dereference Detector (TPDD) detects pointers that are tainted

and directly dereferenced. This bug arises when a user-specified index into a kernel

structure is used without checking.

Tainted Size Detector (TSD) checks for tainted data that is used as a size argument

in any of the copy_to_ or copy_from_ functions. These types of bugs can result in

information leaks or buffer overflows since the tainted size is used to control the number

of copied bytes.

Uninit Leak Detector (ULD) keeps tracks of which objects are initialized, and will

raise a warning if any src pointer for a userspace copy function (e.g., copy_to_user) can

point to any uninitialized objects. It also detects structures with padding [160] and will

raise a warning if memset or kzalloc has not been called on the corresponding objects, as

this can lead to an information leak. An example of a previously unknown bug detected

by this detector is as shown in Listing 4.3

Global Variable Race Detector (GVRD) checks for global variables that are accessed

without a mutex. Since the kernel is reentrant, accessing globals without syncronization

can result in race conditions that could lead to time of check to time of use (TOCTOU)

bugs.
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4.4 Implementation

Dr. Checker is built on top of LLVM 3.8 [9]. LLVM was chosen because of its flexi-

bility in writing analyses, applicability to different architectures, and excellent community

support. We used integer range analysis as implemented by Rodrigues et al. [161]. This

analysis is used by our vulnerability detectors to verify certain properties (e.g., checking

for an invalid cast).

We implemented Dr. Checker as an LLVMmodule pass, which consumes: a bitcode

file, an entry function name, and an entry function type. It then runs our SDT

analysis, employing the various analysis engines and vulnerability detectors. Depending

on the entry function type, certain arguments to the entry functions are tainted before

invoking the SDT (See Chapter 4.4.3).

Because our analysis operates on LLVM bitcode, we must first identify and build all

of the driver’s bitcode files for a given kernel (Chapter 4.4.1). Similarly, we must identify

all of the entry points in these drivers (Chapter 4.4.2) in order to pass them to our SDT

analysis.

4.4.1 Identifying Vendor Drivers

To analyze the drivers independently, we must first differentiate driver source code

files from that of the core kernel code. Unfortunately, there is no standard location

in the various kernel source trees for driver code. Making the problem even harder, a

number of the driver source files omit vendor copyright information, and some vendors

even modify the existing sources directly to implement their own functionality. Thus, we

employ a combination of techniques to identify the locations of the vendor drivers in the

source tree. First, we perform a diff against the mainline sources, and compare those

files with a referenced vendor’s configuration options to search for file names containing
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the vendor’s name. Luckily, each vendor has a code-name that is used in all of their

options and most of their files (e.g., Qualcomm configuration options contain the string

MSM, Mediatek is MTK, and Huawei is either HISI or HUAWEI), which helps us identify the

various vendor options and file names. We do this for all of the vendors, and save the

locations of the drivers relative to the source tree.

Once the driver files are identified, we compile them using clang [162] into both ARM

32 bit and 64 bit bitcode files. This necessitated a few non-trivial modifications to clang,

as there are numerous GNU C Compiler (GCC) compiler options used by the Linux

kernel that are not supported by clang (e.g., the -fno-var-tracking-assignments and

-Wno-unused-but-set-variable options used by various Android vendors). We also

added additional compiler options to clang (e.g., -target) to aid our analysis. In fact,

building the Linux kernel using LLVM is an ongoing project [163], suggesting that con-

siderable effort is still needed.

Finally, for each driver, we link all of the dependent vendor files into a single bitcode

file using llvm-link, resulting in a self-contained bitcode file for each driver.

4.4.2 Driver Entry Points

Linux kernel drivers have various ways to interact with the userspace programs, cat-

egorized by 3 operations: file [164], attribute [165], and socket [166].

File operations are the most common way of interacting with userspace. In this case,

the driver exposes a file under a known directory (e.g., /dev, /sys, or /proc) that is

used for communication. During initialization, the driver specifies the functions to be

invoked for various operations by populating function pointers in a structure, which

will be used to handle specific operations (e.g., read, write, or ioctl). The structure

used for initialization can be different for each driver type. In fact, there are at least
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86 different types of structures in Android kernels (e.g., struct snd_pcm_ops, struct

file_operations, or struct watchdog_ops [167]). Even worse, the entry functions

can be at different offset in each of these structures. For example, the ioctl function

pointer is at field 2 in struct snd_pcm_ops, and at field 8 in struct file_operations.

Even for the same structure, different kernels may implement the fields differently, which

results in the location of the entry function being different for each kernel. For example,

struct file_operations on Mediatek’s mt8163 kernel has its ioctl function at field

11, whereas on Huawei, it appears at field 9 in the structure.

To handle these eccentricities in an automated way, we used c2xml [168] to parse

the header files of each kernel and find the offsets for possible entry function fields (e.g.,

read or write) in these structures. Later, given a bitcode file for a driver, we locate

the different file operation structures being initialized, and identify the functions used

to initialize the different entry functions. These serve as our entry points for the corre-

sponding operations. For example, given the initialization as shown in Listing 4.4, and

the knowledge that read entry function is at offset 2 (zero indexed), we mark the function

mlog_read as a read entry function.

Attribute operations are operations usually exposed by a driver to read or write certain

attributes of that driver. The maximum size of data read or written is limited to a single

page in memory.

Sockets operations are exposed by drivers as a socket file, typically a UNIX socket,

which is used to communicate with userspace via various socket operations (e.g., send,

recv, or ioctl).

There are also other drivers in which the kernel implements a main wrapper function,

which performs initial verification of the user parameters and partially sanitizes them

before calling the corresponding driver function(s). An example of this can be seen
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in the V4L2 Framework [169], which is used for video drivers. For our implementation

we consider only struct v4l2_ioctl_ops, which can be invoked by userspace via the

wrapper function video_ioctl2.

4.4.3 Tainting Entry Point Arguments

An entry point argument can contain either directly tainted data (i.e., the argument

is passed directly by userspace and never checked) or indirectly tainted data (i.e., the

argument points to a kernel location, which contains the tainted data). All of the tainted

entry point functions can be categorized in six categories, which are shown in Table 4.1,

along with the type of taint data that their arguments represent.

An explicit example of directly tainted data is shown in Listing 4.5. In this snippet,

tc_client_ioctl is an ioctl entry function, so argument 2 (arg) is directly tainted.

Thus, the statement char c=(char*)arg would be dereferencing tainted data and is

flagged as a warning. Alternatively, argument 2 (ctrl) in iris_s_ext_ctrls is a

V4Ioctl and is indirectly tainted. As such, the dereference

(data = (ctrl>controls[0]).string) is safe, but it would taint data.

4.5 Limitations

Because of the Dr. Checker’s soundy nature, it cannot find all the vulnerabilities

in all drivers. Specifically, it will miss following types of vulnerabilities:

• State dependent bugs: Since Dr. Checker is a stateless system, it treats each

entry point independently (i.e., taint does not propagate between multiple entry

points). As a result, we will miss any bugs that occur because of the interaction

between multiple entry points (e.g., CVE-2016-2068 [170]).
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• Improper API usage: Dr. Checker assumes that all the kernel API functions are

safe and correctly used (Assumption 1 in Chapter 4.2). Bugs that occur because of

improper kernel API usage will be missed by Dr. Checker. However, other tools

(e.g., APISan [63]) have been developed for finding these specific types of bugs and

could be used to complement Dr. Checker.

• Non-input-validation bugs: Dr. Checker specifically targets input validation vul-

nerabilities. As such, non-input validation vulnerabilities (e..g, side channels or

access control bugs) cannot be detected.

4.6 Evaluation

To evaluate the efficacy of Dr. Checker, we performed a large-scale analysis of the

following nine popular mobile device kernels and their associated drivers (437 in total).

The kernel drivers in these devices range from very small components (31 LOC), to

much more complex pieces of code (240,000 LOC), with an average of 7,000 LOC per

driver. In total, these drivers contained over 3.1 million lines of code. However, many of

these kernels re-use the same code, which could result in analyzing the same entry point

twice, and inflate our results. Thus, we have grouped the various kernels based on their

underlying chipset, and only report our results based on these groupings:

Mediatek:

• Amazon Echo (5.5.0.3)

• Amazon Fire HD8 (6th Generation, 5.3.2.1)

• HTC One Hima (3.10.61-g5f0fe7e)

• Sony Xperia XA (33.2.A.3.123)

Qualcomm
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• HTC Desire A56 (a56uhl-3.4.0)

• LG K8 ACG (AS375)

• ASUS Zenfone 2 Laser (ZE550KL / MR5-21.40.1220.1794)

Huawei

• Huawei Venus P9 Lite (2016-03-29)

Samsung

• Samsung Galaxy S7 Edge (SM-G935F_NN)

To ensure that we had a baseline comparison for Dr. Checker, we also analyzed these

drivers using 4 popular open-source, and stable, static analysis tools (flawfinder [78],

RATs [76], cppcheck [171], and Sparse [172]). We briefly describe our interactions with

each below, and a summary of the number of warnings raised by each is shown in Table 4.2.

Flawfinder & RATs Both Flawfinder and RATs are pattern-matching-based tool used

to identify potentially dangerous portions of C code. In our experience, the installation

and usage of each was quite easy; they both installed without any configuration and

used a simple command-line interface. However, the criteria that they used for their

warnings tended to be very simplistic, missed complex bugs, and where overly general,

which resulted in an extremely high number of warnings (64,823 from Flawfinder and

13,117 from RATs). For example, Flawfinder flagged a line of code with the warning,

High: fixed size local buffer. However, after manual investigation it was clear this code

was unreachable, as it was inside of an #if 0 definition.

We also found numerous cases where the string-matching algorithm was overly gen-

eral. For example, Flawfinder raised a critical warning ([4] (shell) system), incorrectly

reporting that system was being invoked for the following define:

#define system_cluster(system, clusterid).

Ultimately, the tools seemed reasonable for basic code review passes, and perhaps for
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less-security minded programs, as they do offer informational warning messages:

Flawfinder: Statically-sized arrays can be improperly restricted, leading to poten-

tial overflows or other issues (CWE-119:CWE-120). Perform bounds checking, use

functions that limit length, or ensure that the size is larger than the maximum

possible length.

RATs: Check buffer boundaries if calling this function in a loop and make sure you

are not in danger of writing past the allocated space

Sparse Sparse was developed by Linus Torvalds and is specifically targeted to analyze

kernel code. It is implemented as a compiler front end (enabled by the flag C=2 during

compilation) that raises warnings about known problems, and even allows developers to

provide static type annotations (e.g., __user and __kernel). The tool was also relatively

easily to use. Although, Sparse is good at finding annotation mis-matches like unsafe

user pointer dereferences [147]. Its main drawback was the sheer number of warnings

(64,823 in total) it generated, where most of the warnings generated were regarding non-

compliance to good kernel code practices. For example, warnings like, “warning: Using

plain integer as NULL pointer ” and “warning: symbol ’htc_smem_ram_addr’ was not

declared. Should it be static?,” were extremely common.

cppcheck Cppcheck was the most complicated to use of the tools that we evaluated, as

it required manual identification of all of the includes, configurations, etc. in the source

code. However, this knowledge of the source code structure did result in much more

concise results. While the project is open-source, their analysis techniques are not well-

documented. Nevertheless, it is clear that the tool can handle more complex interactions

(e.g., macros, globals, and loops) than the other three. For example, in one of the raised

warnings it reported an out-of-bounds index in an array lookup. Unfortunately, after

76



Scalable static analysis of device drivers Chapter 4

manual investigation there was a guard condition protecting the array access, but this

was still a much more valuable warning that those returned by other tools. It was also

able to identify an interesting use of snprintf on overlapped objects, which exhibits

undefined behavior, and appeared generally useful. It also has a configurable engine,

which allows users to specify additional types of vulnerability patterns to identify. Despite

this functionality, it still failed to detect any of the complex bugs that Dr. Checker

was able to help us discover.

To summarize our experience, we provide a side-by-side feature comparison of the

evaluated tools and Dr. Checker in Table 4.3. Note that cppcheck and Dr. Checker

where the only two with an extensible framework that can be used to add vulnerabil-

ity detectors. Similarly, every tool aside from Sparse, which needs manual annotations,

was more-or-less completely automated. As previously mentioned, Sparse’s annotations

are used to find unsafe user pointer dereferences, and while these annotations are used

rigorously in the mainline kernel code, they are not always used in the vendor drivers.

Moreover, typecasting is frequently used in Linux kernel making Sparse less effective.

Pattern-based tools like flawfinder and RATS do not require compilable source code,

which results in spurious warnings because of pre-processor directives making them un-

usable. Of the evaluated features, traceability of the warnings is potentially the most

important for kernel bug-finding tools [173], as these warnings will ultimately be analyzed

by a human. We consider a warning to be traceable if it includes all of the information

required to understand how a user input can result in the warning. In Dr. Checker, we

use the debug information embedded in the LLVM bitcode to provide traceable warnings.
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Algorithm 1: Soundy driver traversal analysis
function SDTraversal((S, ∆, F ))
sccs← topo_sort(CFG(F ))
forall scc ∈ sccs do

if is_loop(scc) then
HandleLoop(S, ∆, scc)

else
VisitSCC(S, ∆, scc)

end
end

function VisitSCC((S, ∆, scc))
forall bb ∈ scc do

forall I ∈ bb do
if is_call(I) then

HandleCall(S, ∆, I)
else

if is_ret(I) then
S ← S ∪ {φ∆(ret_val), τ∆(ret_val)}

else
DispatchClients(S, ∆, I)

end
end

end
end

function HandleLoop((S, ∆, scc))
num_runs← LongestUseDefChain(scc)
while num_runs 6= 0 do

VisitSCC(S, ∆, scc)
num_runs← num_runs− 1

end

function HandleCall((S, ∆, I))
if ¬is_visited(S,∆, I) then
targets← resolve_call(I)
forall f ∈ targets do

∆new ← ∆||I
φnew ← (∆new → (φc(∆)(args), φc(∆)(globals)))
τnew ← (∆new → (τc(∆)(args), τc(∆)(globals)))
Snew ← {φnew, τnew}
SDTraversal(Snew, ∆new, f)

end
mark_visited(S,∆, I)
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Algorithm 2: Points-to analysis transfer functions
function updatePtoAlloca (φc, τc, δ, I, v, locx)
mappt ← φc(δ)
locx ← (x, ∅, ∅)
mappt(v)← (0, locx)

function updatePtoBinOp (φc, τc, δ, I, v, op1, op2)
mappt ← φc(δ)
pto1 ← mappt(op1)
pto2 ← mappt(op2)
set1 ← {(0, ob) | ∀(_, ob) ∈ pto1}
set2 ← {(0, ob) | ∀(_, ob) ∈ pto2}
mappt(v)← mappt(v) ∪ set1 ∪ set2

function updatePtoLoad (φc, τc, δ, I, v, op)
mappt ← φc(δ)
ptoop ← mappt(op)
set1 ← {ob(n) | ∀(n, ob) ∈ ptoop}
set2 ← {(0, ob) | ∀ob ∈ set1}
mappt(v)← mappt(v) ∪ set2

function updatePtoStore (φc, τc, δ, I, v, op)
mappt ← φc(δ)
ptoop ← mappt(op)
ptov ← mappt(v)
setv ← {ob | ∀(_, ob) ∈ ptov}
∀(n, ob) ∈ ptoop do ob(n)← ob(n) ∪ setv

function updatePtoGEP (φc, τc, δ, I, v, op, off)
mappt ← φc(δ)
ptoop ← mappt(op)
setop ← {ob(n) | ∀(n, ob) ∈ ptoop}
setv ← {(off, ob) | ∀ob ∈ setop}
mappt(v)← mappt(v) ∪ setv
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Algorithm 3: Taint analysis transfer functions
function updateTaintAlloca (φc, τc, δ, I, v, locx)
Nothing to do

function updateTaintBinOp (φc, τc, δ, I, v, op1, op2)
mapt ← τc(δ)
setv ← mapt(op1) ∪mapt(op2)
mapt(v)← setv||I

function updateTaintLoad (φc, τc, δ, I, v, op)
mappt ← φc(δ)
ptoop ← mappt(op)
setop ← {obt(n)||I | ∀(n, ob) ∈ ptoop}
mapt ← τc(δ)
mapt(v)← mapt(v) ∪ setop

function updateTaintStore (φc, τc, δ, I, v, op)
mappt ← φc(δ)
ptoop ← mappt(op)
mapt ← τc(δ)
trv ← mapt(v)
∀(n, ob) ∈ ptoop do obt(n)← obt(n) ∪ (trv||I)

function updateTaintGEP (φc, τc, δ, I, v, op, off)
updateTaintBinOp(φc, τc, δ, I, v, op, off)

Listing 4.1: A buffer overflow bug detected in Mediatek’s Accdet driver by Improper
Tainted-Data Use Detector (ITDUD) where buf is assumed to be a single character
but the use of “%s” will continue reading the buffer until a null-byte is found.

1 stat ic char ca l l_s t a tu s ;
2 . . .
3 stat ic s s i z e_t
4 accdet_store_ca l l_state
5 ( struct dev ice_dr iver ∗ddri ,
6 const char ∗buf , s i z e_t count )
7 {
8 // ∗∗ Improper use o f t a i n t e d data ∗∗
9 // buf can contain more than one char !
10 int r e t = s s c an f ( buf , "%s " , &ca l l_s t a tu s ) ;
11

12 // The return va lue i s checked , but i t ’ s too l a t e
13 i f ( r e t != 1) {
14 ACCDET_DEBUG(" accdet : I nva l i d va lue s \n" ) ;
15 return -EINVAL;
16 }
17

18 switch ( c a l l_s t a tu s ) {
19 case CALL_IDLE:
20 . . .
21 }
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Listing 4.2: A zero-day vulnerability discovered by Dr. Checker in Mediatek’s
mlog driver using our Tainted Arithmetic Detector (TAD) and Tainted Loop Bound
Detector (TLBD) analysis. First TAD identified an integer overflow bug (len -
MLOG_STR_LEN). TLBD then identified that this tainted length was being used as a
bound condition for the while loop where data is being copied into kernel space.

1#define MLOG_STR_LEN 16
2 . . .
3 int mlog_doread (char __user ∗buf , s i ze_t l en )
4 {
5 unsigned i ;
6 int e r r o r = -EINVAL;
7 char mlog_str [MLOG_STR_LEN] ;
8 . . .
9 // len i s unsigned
10 i f ( ! buf | | l en < 0)
11 goto out ;
12 e r r o r = 0 ;
13 // len not checked aga ins t MLOG_STR_LEN
14 i f ( ! l en )
15 goto out ;
16 // buf o f l en confirmed to be in user space
17 i f ( ! access_ok (VERIFY_WRITE, buf , l en ) ) {
18 e r r o r = -EFAULT;
19 goto out ;
20 }
21 . . .
22 i = 0 ;
23 . . .
24 // ∗∗ In t e ge r underf low bug ∗∗
25 // len - MLOG_STR_LEN (16) can be nega t i v e
26 // and i s compared with unsigned i
27 while ( ! e r r o r && (mlog_start != mlog_end )
28 && i < len - MLOG_STR_LEN) {
29 int s i z e ;
30 . . .
31 s i z e = snp r i n t f (mlog_str , MLOG_STR_LEN,
32 s t r fm t_ l i s t [ str fmt_idx++], v ) ;
33 . . .
34 // t h i s func t i on i s an unsafe copy
35 // t h i s r e s u l t s in wr i t i n g pas t bu f
36 // p o t e n t i a l l y in to ke rne l address space
37 i f (__copy_to_user ( buf , mlog_str , s i z e ) )
38 e r r o r = -EFAULT;
39 else {
40 buf += s i z e ;
41 i += s i z e ;
42 }
43 }
44 }
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Listing 4.3: An information leak bug via padded fields detected by our Uninit Leak
Detector (ULD) in Mediatek’s FM driver where a struct’s memory is not sanitized
before being copied back to user space leaking kernel stack data.

1 fm_s32 fm_get_aud_info ( fm_audio_info_t ∗data )
2 {
3

4 i f ( fm_low_ops . b i . get_aud_info ) {
5 return fm_low_ops . b i . get_aud_info ( data ) ;
6 } else {
7 data ->aud_path = FM_AUD_ERR;
8 data ->i2 s_ in fo .mode = FM_I2S_MODE_ERR;
9 data ->i2 s_ in fo . s t a tu s = FM_I2S_STATE_ERR;
10 data ->i2 s_ in fo . r a t e = FM_I2S_SR_ERR;
11 return 0 ;
12 }
13 }
14 . . .
15 case FM_IOCTL_GET_AUDIO_INFO:
16 fm_audio_info_t aud_data ;
17 // ∗∗ no memset o f aud_data ∗∗
18 // Not a l l f i e l d s o f aud_data are i n i t i a l i z e d
19 r e t = fm_get_aud_info(&aud_data ) ;
20 i f ( r e t ) {
21 WCN_DBG(FM_ERR|MAIN, "fm_get_aud_info e r r \n" ) ;
22 }
23 // Copying the s t r u c t r e s u l t s in data - l eakage
24 // from padding and u n i n i t i a l i z e d f i e l d s
25 i f ( copy_to_user ( ( void ∗) arg , &aud_data ,
26 s izeof ( fm_audio_info_t ) ) ) {
27 WCN_DBG(FM_ERR|MAIN, "copy_to_user e r r o r \n" ) ;
28 r e t = -EFAULT;
29 goto out ;
30 }
31 . . .

Listing 4.4: An initialization of a file operations structure in the mlog driver of Mediatek
1 stat ic const struct f i l e_op e r a t i o n s
2 proc_mlog_operations = {
3 . owner = NULL,
4 . l l s e e k = NULL,
5 . read = mlog_read ,
6 . p o l l = mlog_poll ,
7 . open = mlog_open ,
8 . r e l e a s e = mlog_release ,
9 . l l s e e k = gen e r i c_ f i l e_ l l s e e k ,
10 } ;

Listing 4.5: Example of tainting different arguments where tc_client_ioctl has a
directly tainted argument and iris_s_ext_ctrls’s argument is indirectly tainted.

1 stat ic long t c_c l i e n t_ i o c t l ( struct f i l e ∗ f i l e ,
2 unsigned cmd , unsigned long arg ) {
3 . . .
4 char c=(char∗) arg
5 . . .
6 }
7 stat ic int i r i s_s_ext_ct r l s ( struct f i l e ∗ f i l e ,
8 void ∗priv , struct v4l2_ext_contro ls ∗ c t r l ) {
9 . . .
10 char ∗data = ( c t r l ->con t r o l s [ 0 ] ) . s t r i n g ;
11 . . .
12 char curr_ch = data [ 0 ] ;
13 }
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Table 4.1: Tainted arguments for each driver entry function type wether they are
directly and indirectly tainted.

Entry Type Argument(s) Taint Type

Read (File) char *buf, size_t len Direct

Write (File) char *buf, size_t len Direct

Ioctl (File) long arg Direct

DevStore (Attribute) const char *buf Indirect

NetDevIoctl (Socket) struct *ifreq Indirect

V4Ioctl struct v4l2_format *f Indirect

Table 4.2: Summary of warnings produced by popular bug-finding tools on the various
kernels that we analyzed.

Kernel
Number of Warnings

cppcheck flawfinder RATS Sparse

Qualcomm 18 4,365 693 5,202

Samsung 22 8,173 2,244 1,726

Hauwei 34 18,132 2,301 11,230

Mediatek 168 14,230 3,730 13,771

242 44,900 8,968 31,929

Table 4.3: Comparison of the features provided by popular bug-finding tools and
Dr. Checker, where

√
indicates availability of the feature.

Feature cppcheck flawfinder RATS Sparse Dr. Checker

Extensible
√

- - -
√

Inter-procedural - - - -
√

Handles pointers - - - -
√

Kernel Specific - - -
√ √

No Manual Annotations
√ √ √

-
√

Requires compilable sources
√

- -
√ √

Sound - - - - -

Traceable Warnings - - -
√ √
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4.6.1 Dr. Checker

The summarized results of all of the warnings that were reported by Dr. Checker

are presented in Table 4.4. In this table, we consider a warning as correct if the report and

trace were in fact true (e.g., a tainted variable was being used by a dangerous function).

All of these warnings were manually verified by the authors, and those that are marked as

a bug were confirmed to be critical zero-day bugs, which we are currently in the process

of disclosing to the appropriate vendors. In fact, 7 of the 158 identified zero-days have

already been issued Common Vulnerabilities and Exposures (CVE) identifiers [149, 150,

151, 152, 153]. Of these, Sparse correctly identified 1, flawfinder correctly identified 3,

RATs identified 1 of the same ones as flawfinder, and cppcheck failed to identify any of

them. These bugs ranged from simple data leakages to arbitrary code execution within

the kernel. We find these results very promising, as 3,973 out of the 5,071 were confirmed,

giving us a precision of 78%, which is easily within the acceptable 30% range [145].

While the overall detection rate of Dr. Checker is quite good (e.g., KernelUninit-

MemoryLeakDetector raised 24 warnings, which resulted in 11 zero-day bugs), there a

few notable lessons learned. First, because our vulnerability detectors are stateless, they

raise a warning for every occurrence of the vulnerable condition, which results in a lot of

correlated warnings. For example, the code i = tainted+2; j = i+1; will raise two In-

tegerOverflowDetector warnings, once for each vulnerable condition. This was the main

contributor to the huge gap between our confirmed warnings and the actual bugs as each

bug was the result of multiple warnings. The over-reporting problem was amplified by

our context-sensitive analysis. For example, if a function with a vulnerable condition is

called multiple times from different contexts, Dr. Checker will raise one warning for

each context.

GlobalVariableRaceDetector suffered from numerous false positives because of gran-
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ularity of the LLVM instructions. As a result, the detector would raise a warning for any

access to a global variable outside of a critical section. However, there are cases where

the mutex object is stored in a structure field (e.g., mutex_lock(&global->obj)). This

results in a false positive because our detector will raise a warning on the access to the

global structure, despite the fact that it is completely safe, because the field inside of it

is actually a mutex.

TaintedPointerDerefenceDetectors similarly struggled with the precision of its warn-

ings. For example, on Huawei drivers (row 2, column 1), it raised 552 warnings, yet only

155 were true positives. This was due to the over-approximation of our points-to analy-

sis. In fact, 327 of these are attributed to only two entry points rpmsg_hisi_write and

hifi_misc_ioctl, where our analysis over-approximated a single field that was then re-

peatedly used in the function. A similar case happened for entry point sc_v4l2_s_crop

in Samsung, which resulted in 21 false warnings. The same over-approximation of points-

to affected InvalidCastDetector, with 2 entry points (picolcd_debug_flash_read and

picolcd_debug_flash_write) resulting in 66 (80%) false positives in Huawei and a

single entry point (touchkey_fw_update.419) accounting for a majority of the false

positives in Samsung. IntegerOverflowDetector also suffered from over-approximation at

times, with 30 false warnings in a single entry point hifi_misc_ioctl for Hauwei.

One notable takeaway from our evaluation was that while we expected to find nu-

merous integer overflow bugs, we found them to be far more prevalent in 32 bit archi-

tectures than 64 bites, which is contrary to previously held beliefs[174]. Additionally,

Dr. Checker was able to correctly identify the critical class of Boomerang [6] bugs

that were recently discovered.
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Table 4.5: Runtime comparison of 100 randomly selected entry points with our analysis
implemented a “sound” analysis (Sound), a soundy analysis, without analyzing kernel
functions (No API), and a soundy analysis without kernel functions or fixed-point loop
analysis (Dr. Checker).

Runtime (seconds)

Analysis Avg. Min. Max. St. Dev.

Sound∗ 175.823 0.012 2261.468 527.244

No API 110.409 0.016 2996.036 455.325

Dr. Checker 35.320 0.008 978.300 146.238

∗ Only 18/100 sound analyses completed successfully.

4.6.2 Soundy Assumptions

Dr. Checker in total analyzed 1207 entry points and 90% of the entry points took

less than 100 seconds to complete. Dr. Checker’s practicality and scalability are made

possible by our soundy assumptions. Specifically, not analyzing core kernel functions and

not waiting for loops to converge to a fixed-point. We evaluate how these assumptions

affected both our precision (i.e., practicality) and runtime (i.e., scalability). This analysis

was done by randomly selecting 25 entry points from each of our codebases (i.e., Huawei,

Qualcomm, Mediatek, and Samsung), resulting in 100 randomly selected driver entry

points. We then removed our two soundy assumptions, resulting in a “sound” analysis,

and ran our analysis again.

Kernel Functions Our assumption that all kernel functions are bug free and correctly

implemented is critical for the efficacy of Dr. Checker for two reasons. First, the

state explosion that results from analyzing all of the core kernel code makes much of

our analysis computationally infeasible. Second, as previously mentioned, compiling the

Linux kernel for ARM with LLVM is still an ongoing project, and thus would require

a significant engineering effort [163]. In fact, in our evaluation we compiled the 100
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randomly chosen entry with best-effort compilation using LLVM, where we created a

consolidated bitcode file for each entry point with all the required kernel API functions,

caveat those that LLVM failed to compile. We ran our “sound” analysis with these

compiled API functions and evaluated all loops until both our points-to and taint analysis

reached a fixed point, and increased our timeout window to four hours per entry point.

Even with the potentially missing kernel API function definitions, only 18 of these 100

entry points finished within the 4 hours. The first row (Sound) in Table 4.5 shows the

distribution of time over these 18 entry points. Moreover, these 18 entry points produced

63 warnings and took a total of 52 minutes to evaluate, compared to 9 warnings and less

than 1 minute of evaluation time using our soundy analysis.

Fixed-point Loop Analysis Since we were unable to truly evaluate a sound analysis,

we also evaluated our second assumption (i.e., using a reach-def loop analysis instead

of a fixed-point analysis) in isolation to examine its impact on Dr. Checker. In this

experiment, we ignored the kernel API functions (i.e., assume correct implementation),

but evaluated all loops until they reached a fixed point on the same 100 entry points. In

this case, all of the entry points were successfully analyzed within our four hour timeout

window. The second row (No API ) in Table 4.5 shows the distribution of evaluation

times across these entry points. Note that this approach takes 3× more time than the

Dr. Checker approach to analyze an entry point on average. Similarly, our soundy

analysis returned significantly fewer warnings, 210 compared to the 474 warnings that

were raised by this approach.

A summary of the execution times (i.e., sound, fixed-point loops, and Dr. Checker)

can be found in Table 4.5, which shows that ignoring kernel API functions is the main

contributor of the Dr. Checker’s scalability. This is not surprising because almost all

the kernel drivers themselves are written as kernel modules [175], which are small (7.3K
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lines of code on average in the analyzed kernels) and self-contained.

4.7 Discussion

Although Dr. Checker is designed for Linux kernel drivers, the underlying tech-

niques are generic enough to be applied to other code bases. Specifically, as shown

in Chapter 4.6.1, ignoring external API functions (i.e., kernel functions) is the major

contributor to the feasibility of Dr. Checker on the kernel drivers. Dr. Checker in

principle can be applied to any code base, which is modular and has well-defined entry

points (e.g., ImageMagick [176]). While our techniques are portable, some engineering

effort is likely needed to change the detectors and setup the LLVM build environment.

Specifically, to apply Dr. Checker, one needs to:

1. Identify the source files of the module, and compile them in to a consolidated

bitcode file.

2. Identify the function names, which will serve as entry points.

3. Identify how the arguments to these functions are tainted.

We provided more in-depth documentation of how this would be done in practice on

our website.

4.8 Just Finding Vulnerabilities is Not Enough!

As mentioned in Chapter 1, vendors frequently customize the open-source versions

of the system software to suit their devices. The customizations are usually done on

codebases that are maintained in different repositories (e.g., forks) separate from the

main open-source repository. In order to ensure that vulnerability is fixed, the patch
89



Scalable static analysis of device drivers Chapter 4

for the vulnerability should propagate to all the codebases (or repositories) as soon as

possible. Vulnerability databases such as the Common Vulnerabilities and Exposures

(CVE) database were born to facilitate this process: project maintainers can take them

as a reference to know which security-related patches they need to apply, without having

to find them manually. Despite the existence of these databases, security patches still

take a substantial amount of time to propagate to all the project forks [10, 11, 12, 13]. In

the year 2016, the Android maintainers patched 76 publicly known vulnerabilities (i.e.,

CVEs) from the year 2014, two from 2013, and two from 2012, which means that 80

disclosed vulnerabilities remained unpatched in the Android code base for more than one

year [14]. This shows that patch propagation is another important problem that needs

to be addressed to ensure the security of smart devices. In the next chapter, we will

should an automated technique that can help in automatically propagating patches to

the related repositories.
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The problem of patch propagation

Given the existence of various vendors repositories for open source software, it is im-

portant that a security applied to the main repository is quickly propagated to all the

vendors repositories. Common Vulnerabilities and Exposures (CVE) database were born

to facilitate this process: project maintainers can take them as a reference to know which

security-related patches they need to apply, without having to find them manually. When

a security patch is available, maintainers have to “cherry-pick” the patch: That is, they

have to understand the patch and its behavior, adapt it to their own code base, and

finally ensure that the whole system, after applying the patch, still works as expected.

Not surprisingly, this is a manual and resource-intensive process [177, 178]. As a result,

changes in the main code base of a project are usually applied to the code of dependent

software with a significant delay [179]: Android 10, for example, is based on Linux kernel

4.19, while the latest release of the Linux kernel is version 5.3.8 [180].

Recent work [181] shows that attackers who monitor source repositories often get

a head start of weeks (and sometimes months) on targeting vulnerabilities prior to any

public disclosure. Furthermore, as we will show in this study (Chapter 5.6.4), it is possible

that the maintainers of a project underestimate the severity of a patched bug, and fail to
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request a corresponding entry in a vulnerability database (a CVE ID) [182]. When this

happens, maintainers of related projects are not aware that a patch actually addresses

a security problem. This is a growing problem, as exemplified by the recent VLC secu-

rity issue [183], which is caused because developers of libebml failed to associate the

corresponding security fix with a CVE ID [184], and the vulnerability existed for nearly

two years after the fix was available. Unfortunately, hackers are known to scan source

repository commits for fixes that might address vulnerabilities, and then check for the

presence of these vulnerabilities in related repositories [185]. Therefore, the security fixes

lacking a CVE ID provide a potential source of unfixed vulnerabilities as they are most

likely not ported to related repositories.

Existing approaches that ease the process of cherry-picking relevant patches rely on

commit-related information, such as code diff or commit messages [15, 16, 17], or they

look for specific patterns [18]. These tools have the advantage of being fast, lightweight,

scalable, and suitable to be used on large codebases. However, either they only match

simple patches, or analyze commit messages, which are often not expressive enough to

convey the scope and effect of a change [19, 20, 21]. Other techniques attempt to go

a step further and analyze the semantic differences introduced by a patch using static

analysis [22, 23, 24, 25, 26] and symbolic execution [27, 28, 29, 30]. Unfortunately, these

techniques suffer from scalability issues.

An ideal solution, which would help maintainers in selecting and applying important

changes, would be a system that is capable of identifying those patches that do not affect

the intended functionality of the software. If the intended functionality of the software

is not changed by a patch, this patch can be applied without the need for testing: we

call these changes safe patches. In this paper, we argue that a significant portion of all

security-related fixes falls under the category of safe patches [?]. Thus, a tool that can

identify safe patches could be used to monitor the main repository and automatically
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alert or apply this kind of patches on a target forked repository.

To be effective and usable on large codebases, a system to identify safe patches should

at least satisfy the following requirements:

• R1: Only rely on the original and patched versions of the modified source code file,

without any other additional information (e.g., commit message, build environment,

etc.)

• R2: Be fast, lightweight and scalable.

We present the design and implementation of a static analysis approach that aims

to identify safe patches and that satisfies both the requirements above. Our approach

is designed specifically to target source code changes and to identify patches that could

be applied with minimal testing, as they do not modify the program’s functionality.

Specifically, we make the following contributions:

• We provide the first formal definition of safe patches, and design a general technique

to identify them.

• We implement Spider, a system based on this technique, that takes as input only

the source code of the original and patched file.

• We evaluate Spider on 341,767 commits taken from 32 source code repositories

(Linux kernel repositories, Android kernel repositories, interpreters, firmware, util-

ities and various other repositories), as well as on 809 CVE patches.

• We identify 67,408 safe patches and show that Spider could help developers in the

process of selecting and testing changes, resulting in a speed-up in the propagation

of security fixes.
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• We also provide the Security Patch mode of Spider that can precisely identify

security patches. It identified 2,278 patches that most likely fix security vulnera-

bilities, despite the fact that they were not associated with any CVE entry. 229

of these issues are still unpatched in several kernel forks. As such, they can be

considered unfixed vulnerabilities.

Unlike previous work, our approach is the first that focuses on determining those

patches that can be propagated to related projects with minimal effort, and without

defining a priori specific types of changes or semantic characteristics that should be

detected (i.e., we do not just target patches that fix a specific type of vulnerability). We

envision our system to be part of the recently introduced Github security alerts [186], or

it could be used to build a variant of the git rebase feature that suggests patches that

are most likely safe and should be prioritized.

5.1 What are Safe Patches?

Our goal is to identify patches that can be applied without subsequent testing. We

call such patches safe patches (sps). Intuitively, for a patch to be considered an sp, it

should satisfy the following two conditions:

• Non-increasing input space (C1): The patch should not increase the valid input

space of the program. That is, the patched version should be more restrictive in

the inputs that it accepts. The assumption is that some of inputs that the original

program accepted resulted in security violations, and the patched version “removes”

these inputs as invalid.

• Output equivalence (C2): For all the valid inputs that the patched program

accepts, the output of the patched program must be the same as that of the original
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program.

The condition C1 ensures that there is no need to add new test cases, as there are no

new inputs that are accepted by the patched program 1. Furthermore, the condition C2

ensures that there is no need to run the existing test cases as the output will be the

same as that of the original program (for all the valid inputs). Consequently, if a patch

satisfies the above two conditions then it can be applied without any effect on the existing

test cases. Of course, the purpose of testing is to ensure that the program behaves as

expected, so it is always a recommended step after applying a patch. In Chapter 5.1.2,

we define more formally the two conditions above.

5.1.1 Running Example

Listing 5.1 shows our running example, a C language example of a safe patch in the

unified diff format (i.e., where + and − indicate inserted and deleted lines, respectively).

In this example, the programmer decided that it was necessary to add an extra length

check (Lines 3-5), presumably to protect against a buffer overflow later in the program.

In addition, the patch also includes the length of the header (HDR) as part of a size

check in Line 10.

This patch is safe. The inserted modifications to the variables len and tlen do not

change the output of the function. Moreover, the extra conditional statement in Line 3

adds a missing length check, thereby restricting the input space. That is, all inputs where

t->len is larger than MAX_LEN now lead to the function returning an error, while those

inputs were accepted by the original function.

Figure 5.1 shows the control flow graph (CFG) after the application of this example

1However, for regression testing purposes, one may want to add a test case that checks that the

inputs are indeed invalid and the corresponding security flaw is patched.
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1 long get_read_size ( s t r u c t dr ing ∗ t ) {
2 long len , t l e n ;
3 + i f ( t−>len > MAX_LEN) {
4 + return −1;
5 + }
6 . . .
7 − l en = t−>len ;
8 + len = t−>len + 4 ;
9 . . .

10 i f ( l en % 2) {
11 l en += DEF_SIZE ;
12 }
13 . . .
14 − t l e n = len ;
15 + t l en = len − 4 ;
16 . . .
17 t−>to t a l = t l en ;
18 . . .
19 return t l en ;
20 }

Listing 5.1: Running Example of a safe patch.

patch: underlined text indicates the pieces of code inserted, while the left (blue) and

right (red) children of each basic block are the true and false branches, respectively.

2:long len, tlen;
3:if(t->len > MAX_LEN)

4:return -1;

15:tlen = len - 4;
17:t->total = tlen;
19:return tlen;

BB1

BB2
8:len = t->len + 4;
10:if(len % 2)

 11:len += DEF_SIZE;

BB4

BB3

BB5

Figure 5.1: Control flow graph of the patched program from Listing 5.1

5.1.2 Formal Definition

We first define terminology used throughout the paper:

• Input i to a program: The input data with which the program is executed; I
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indicates the set of all the possible inputs to the program.

• Function of a program: The symbol f denotes the original function, and any sub-

script to it identifies its patched version. For example: fp indicates the function f

after applying the patch p.

• Error-handling basic blocks : The symbol BBerr denotes the basic blocks of a func-

tion that are part of its error-handling functionality. In Figure 5.1, BB2 is an

error-handling basic block. We will explain later how error-handling basic blocks

are identified.

• We use the notation i ↪→ f to indicate that input i successfully executes through

function f . That is, starting from the entry basic block of f , and given input i,

none of the error-handling basic blocks (BBerrs) of f will be reached. In other

words, i represent a valid input to the function f .

• Output of a function: The output of a function f is its return value and all the

externally visible changes to the program’s data. Specifically, the output includes

the return value, all writes to heap and global variables, and the arguments to all

function calls. For instance, the output of the function get_read_size in Listing 5.1

is its return value (line 19), and the value written to the pointer variable t->total

(line 17). Furthermore, output(i, f) indicates the output of the function f when

run with input i.

Now, we will use the definitions we introduced to formally define two conditions (C1 and

C2) introduced at the beginning of Chapter 5.1.
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Non-increasing input space (C1)

The non-increasing input space (C1) condition requires that the patched program

does not accept any inputs as valid that are not also accepted as valid by the original

program. This condition can be defined at the granularity of functions; that is, for C1

to hold, we require that all patched functions, individually, do not accept any additional

valid inputs. In other words, any valid input to a patched function must also be a valid

input to the corresponding original function. More formally:

∀i ∈ I | (i ↪→ fp)→ (i ↪→ f). (5.1)

In the case of Listing 5.1, the patch restricts the original input space by adding an

additional constraint (i.e., t → len > MAX_LEN in Line 3). As a result, all valid

inputs to the patched function are also valid inputs to the original function (but not vice

versa). This satisfies Equation 5.1.

Output correspondence (C2)

The output correspondence (C2) condition requires that, for all valid inputs, the

output of the patched program must be the same as the output of the original program.

This condition, again, can be defined at the function granularity: For each patched

function, for all corresponding valid inputs, the patched function must produce the same

outputs as the original function. More formally:

∀i ∈ I | (i ↪→ fp)→ (output(i, fp) = output(i, f)). (5.2)

In the case of Listing 5.1, although the patch inserts changes that modify the values

of some variables (for example, len), the changes do not affect the externally visible

data of the program, and thus, they do not change the output of the function, thereby

satisfying Equation 5.2.
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If all the patched functions satisfy both Equation 5.1 and Equation 5.2, then we can

say that the patch satisfies the conditions C1 and C2. As a result, the patch can be

considered as a safe patch (sp). Note that, as a trivial case, an empty patch (fp = f)

satisfies Equations 1 and 2, making it an sp. Furthermore, there exist patches that do

not satisfy the above conditions but still could be applied without testing, making our

conditions sufficient but not necessary. There are also other shortcomings of our formal

definition.

5.1.3 Shortcomings of the sp formalism

First, a patch that removes all the functionality as shown in Listing 5.2 is an sp.

This is because none of the inputs execute through the program or in other words all the

inputs will end up in an error basic block. Equation 5.1 and 5.2 trivially hold as for all

the inputs (i ↪→ fp) evaluates to false.
i n t main ( i n t argc , char ∗∗ argv ) {
+ i f ( argc > 0) {
+ return −1;
+ }
. . .
}

Listing 5.2: a patch that removes all the functionalities

i n t decrypt ( . . ) {
char secre t_buf f [ 4 0 9 6 ] ;

. . .

. . .
− memset ( secret_buf f , 0 , s i z e o f ( s ec re t_buf f ) ) ;
}

Listing 5.3: an optimizing patch that may induce a security vulnerability.

Second, we ignore all the updates to local variables as they are not part of the function

output. Consider the patch as shown in Listing 5.3, which removes a seemingly useless

memset. This is valid and commonly known as dead-store elimination [187]. However,

on closer inspection, one can recognize that the memset may be required as it would

potentially clean up some secret data to avoid information leaks. Our current definition
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EN

7:len = t->len

17:t->total = tlen

11:len += DEF_SIZE

10:if(len % 2)

14:tlen = len

19:return tlen

T

T

T

T
T

T

Figure 5.2: PDG of the original function in Listing 5.1

of sp does not handle these cases. Nonetheless, we believe that our definition provides a

reasonable approach to identify safe patches.

5.2 Identifying Safe Patches

Lets first look at a possible way to determine whether a given patch is an sp based

on our formal definition.

5.2.1 Program Dependency Graph (PDG)

Our technique leverages the concept of a program dependency graph (PDG). A pro-

gram dependency graph [188] captures both data and control dependencies in a single

graph. Formally, the PDG of a function f , denoted as PDG(f) = (V,C,D), is a directed

graph where

• V = {v0, v1, ..., vn, En} is a set of nodes, one for each instruction (v•) of the function.

The additional node, En represents the function entry.
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3:if(t->len > MAX_LEN)

8:len = t->len + 4

17:t->total = tlen

11:len += DEF_SIZE

10:if(len % 2)

15:tlen = len - 4

19:return tlen

4:return -1;

En

T

T
F

F

F

F

F

T

Figure 5.3: PDG of the patched function in Listing 5.1

• C is a set of directed, labeled edges, where each edge (vi, vj, T |F ) represents the

(direct) control dependency of vj on vi. An instruction vj is control-dependent on

vi, and the edge is labeled as true (T ) [or false (F )], when vj is executed if and

only if vi evaluates to true [or false]. To complete the PDG, if an instruction v

is not control-dependent on any other instruction in the function (in other words,

it does not have any incoming control flow edges), we connect it to the function

entry node (En). That is, we add the edge (En, v, T ) to C. Note that all source

nodes of control-flow edges are either conditional statements (if, while, etc.) or

the function entry node En. In addition, all conditional statements will have at

least one outgoing control-dependency edge.

• D is a set of directed edges, where each edge (vi, vj) represents a data dependency.

That is, instruction vi defines a variable that can reach the corresponding use in

instruction vj.

For our running example in Listing 5.1, Figures 5.2 and 5.3 show the program depen-
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dency graphs for the original and the patched function, respectively. The labels on the

control dependency edges [true(T ) or false(F )] indicate whether the destination node is

reachable from the source node via the true or false branch.

Control dependency versus control flow: The concept of control dependency is

different from the more commonly-used concept of control flow. Control flow captures

possible flows of execution, while control dependency captures the necessary conditions

that must hold for the execution to reach a particular statement. Consider the PDG of

the patched function in Figure 5.3. We can see a control dependency edge from the node

(that corresponds to the instruction) at Line 3 to Line 15 with label F . This means that

the condition at Line 3 must evaluate to false for the execution to reach Line 15. This

is correct because if the condition at Line 3 evaluates to true, then the execution will

immediately return from the function (Line 4). On the other hand, consider the control-

flow graph of the patched function in Figure 5.1. There is no direct edge from BB1 (that

contains Line 3) to BB5 (that contains Line 15). This is because the execution does not

flow directly from BB1 to BB5 as there are other instructions in between (in BB3 and

BB4).

Control-Dependency Path: Given a PDG(f) = (V,D,C) of a function f , we say

that a control dependency path exists from instruction x ∈ V to instruction y ∈ V ,

denoted as x 7→c y, if there exists a path in the PDG from x to y that only follows

control-dependency edges. Formally,

x 7→c y = {< x, v1, v2, ..., vn, y >| v• ∈ V ∧ (x, v1, •) ∈ C∧

(vn, y, •) ∈ C ∧ ∀1≤i<n(vi, vi+1, •) ∈ C}.

In the PDG shown in Figure 5.3, there exists a control-dependency path (a path along

solid edges) from the instruction at Line 3 to the instruction at Line 11: {3, 10, 11}.

Path Constraint (PC ): For any instruction v, the condition derived from the sequence
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of nodes and edges (with their labels) along the control-dependency path from the func-

tion entry En to v is called its path constraint. For example, consider the instruction

at Line 11 in the PDG in Figure 5.3. The control-dependency path from En to Line 11

is {En, 3, 10, 11}. The corresponding path constraint is PC(En 7→c 11) = ((En ==

T )∧ ((t->len > MAX_LEN) == F )∧ (((len % 2) 6= 0) == T )). That is, Line 11 is only

executed if (t->len <= MAX_LEN) and (len % 2) 6= 0.

Data-Dependency Path: Given a PDG(f) = (V,D,C) of a function f , we say that

a data-dependency path exists from instruction x ∈ V to instruction y ∈ V , denoted as

x 7→d y, if there exists a path in the PDG from x to y that only follows data-dependency

edges. More formally:

x 7→d y = {< x, v1, v2, ..., vn, y >| v• ∈ V ∧ (x, v1) ∈ D∧

(vn, y) ∈ D ∧ ∀1≤i<n(vi, vi+1) ∈ D}.

In the PDG shown in Figure 5.3, there exists a data-dependency path (a path along

dotted edges) from instruction at Line 8 to the instruction at Line 19: {8, 15, 19}. We

say that a given data-dependency path x 7→d y =< x, v1, v2, ..., vn, y > is complete if

there is no data dependency path to x. Formally, (•, x) 6 ∈D. The data dependency path

example from Line 8 to 19 is complete as there is no data dependency path to Line 8.

Also, note that although a data dependency path exists from the instruction at Line 8

to instruction at Line 19, there is no control-dependency path between these instructions.

This is because the execution of the instruction at Line 19 is not controlled by the

instruction at Line 8.

5.2.2 The Spider Approach

Our system is given as input a patch p, with f and fp being a function before and

after applying the patch, respectively. The technique to detect whether p is a safe patch
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works in four steps, as outlined below.

Checking modified instructions

We first need to identify what statements are affected by a patch, and determine

whether these modifications can be soundly analyzed given our requirement R1. Recall

that R1 requires that the analysis operates directly on the original and patched versions

of the modified source code file, without any other additional information (e.g., commit

message, build environment, etc.).

Affected Statements: A statement can be affected either directly or indirectly by the

patch. We call a statement directly affected if it is modified, inserted, deleted, or moved

by the patch. A statement is indirectly affected if it is either control- or data- dependent

on any of the directly affected statements. Given the set of directly affected statements

Ad and the PDG of the corresponding function, all the instructions reachable from the

statements in Ad, either through control flow or data flow edges, are indirectly affected.

Consider the patch for our running example in Listing 5.1. Here, the directly affected

statements are at Lines 3, 4, 8, and 15. However, looking at the corresponding PDG

in Figure 5.3, we can see that all instructions are reachable from the node that corresponds

to the instruction at Line 3. Consequently, all statements are affected by the patch.

Locally analyzable statement: We call a directly affected statement locally analyzable

if all the writes made by the statement can be captured without any interprocedural and

pointer analysis. Specifically, the modifications made by the patch should not involve any

new function calls or pointer manipulation. Consider the patch represented by Listing 5.4:

The inserted statement at Line 4 is locally analyzable. However, the inserted statement

at Line 5 is not locally analyzable, because it involves a new function call.

If a patch has any directly affected statements that are not locally analyzable, we
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do not consider it an sp. This is because we cannot soundly analyze the affected state-

ments without analyzing the effects on the whole program. Moreover, performing whole-

program analysis requires a static analysis tool (like LLVM), which in turn, requires

access to the sources of the entire program, violating our requirement R1.
1 i n t kthread_ini t ( ) {
2 . . .
3 − t o t a l_ s i z e = f i l e −>s i z e ;
4 + to t a l_s i z e = header + f i l e −>s i z e ;
5 + ini t_c leanup ( ) ;
6 . . .
7 i f ( t o t a l_ s i z e > MAX_SIZE) {
8 . . .
9 }

10 . . .
11 }

Listing 5.4: Patch illustrating locally analyzable statements.

Error-handling basic blocks

In the next step, we need to identify all the error-handling basic blocks (BBerrs) in

f and fp, so that all the changes to the statements within BBerrs are discarded and not

considered in the next steps. This decision is based on the assumption that any changes to

error basic blocks do not disrupt the original functionality (i.e., they just result in better

or adjusted error-handling). The remaining statements affected by p are then analyzed

to check if Equations 1 and 2 can be proved. We leverage previous work [189, 190] to

identify error-handling basic blocks, as discussed in more detail in Chapter 5.3.4.

Non-increasing input space (C1)

To verify the non-increasing input space condition (C1), we need to ensure that the

patch does not accept more inputs than the original function. In other words, the patch

must not increase the valid input space for the modified function.

Intuitively, if a patch does not affect any control-flow statements (such as if, while,

for, etc.), then it cannot change the input space of the function. However, if a patch
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affects one or more control-flow statements, we must verify that no additional inputs can

successfully execute through the function.

This can be done by first identifying the valid exit points (VEP) of a function. The

valid exit points of a function are those instructions that, if reached during the execution

of an input, imply that the input successfully executed through the function. For instance,

in the case of our running example in Listing 5.1, the return tlen instruction at Line 19

is a valid exit point.

We consider all return statements as possible valid exit points. However, a function

might exit because of an error (for instance, Line 4 in Listing 5.1), and the corresponding

return statement does not represent a valid exit point. Hence, to identify the VEP set,

we need to filter out all the return statements that are part of error basic blocks (BBerr).

In summary, to identify the VEP set of a function f with PDG(f) = (V,D,C), we

need to find all the exit points of f , i.e., Ex(f), and filter out all the return instructions

that belong to error basic blocks. More formally:

VEP(f) = {r | ((r ∈ Ex(f)) ∧ (BB(r) 6 ∈BBerrs(f)))}.

where BB(r) indicates the basic block of instruction r.

To ensure that a patch satisfies condition C1, we need to verify that all inputs that

go through the valid exit points, i.e., VEP of the patched function fp, also go through

the valid exit points of the original function f .

We observe that, in order for an input i to be successfully executed by a function, the

input must satisfy the path constraint (PC ) of a valid exit point. Thus, all the inputs

that are accepted as valid by a function, which we denote as vinputs(f), are the union

of all the inputs that satisfy the path constraints for at least one valid exit point. More

formally, the constraints on the inputs that are successfully executed by the function f
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are captured by the following disjunction:

vinputs(f) =
∨

i∈VEP(f)

(PC(i)). (5.3)

If we have vinputs(fp) → vinputs(f), which shows that all the inputs that can be

successfully executed by the patched function fp are also successfully executed by the

original function f , we have succeeded in proving condition C1.

For our running example in Listing 5.1, with the PDG of the patched function

in Figure 5.3, the valid exit point is at Line 19 (return tlen). By following the solid

edges backwards and computing the path constraints for the patched function, we obtain

vinputs(fp) = ((En == T ) ∧ (t->len > MAX_LEN == F )). For the original function,

whose PDG is in Figure 5.2, we obtain vinputs(f) = (En == T ). We can easily see that

vinputs(fp)→ vinputs(f), thus satisfying C1.

To perform this step, we use symbolic interpretation to convert the C language state-

ments into symbolic expressions (as discussed in more detail below). Then, we prove the

implications between the two symbolic expressions using a SAT solver [191] (more details

are provided in Chapter 5.3.5).

Output equivalence (C2)

To verify the output equivalence condition (C2), we need to verify that all externally

visible changes (as described in Chapter 5.1.2) in the patched function are the same as that

of the original one. Specifically, we want to ensure that for any input that successfully

executes through the patched and original function, the output of the two functions will

be identical.

We first look at all the affected (non-control-flow) statements. First, we discard all

the statements that modify local variables. While local variables can have an indirect
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effect on a function’s output (which we take into account, as explained below), the local

variables themselves are not externally visible. Thus, we do not need to consider them

in this step. In the next step, we need to verify that all the updates (writes) to non-local

(global and pointer) variables, function call arguments, and return values in the patched

function are the same as that of the original function. In other words, we aim to prove

that all global and pointer variables have the same values after the patched function

has executed (compared to the original function), the patched function returns the same

value, and it calls the same functions with the same arguments (and in the same order).

When we are able to prove this, we are sure that, for every valid input, the patch does

not change the externally visible effect of executing this function.

Given a statement t, we need to show that for all (valid) inputs that reach t in the

patched and the original function, their outputs will be the same. More formally:

∀i ∈ I | (i ↪→ tp)→ (output(tp) = output(t))

The output value of a statement depends on the values of the inputs (input variables).

Consider, for example, the statement c = a + b. Here, the output is assigned to the

variable c, and the value depends on the inputs a and b. We can determine where these

inputs come from by looking at the data-dependency graph for the statement. Of course,

the inputs for a statement could come from multiple data-dependency paths. Consider

again the PDG in Figure 5.3. For the statement at Line 15, there are two complete data

dependency paths: < 8, 15 > and < 8, 11, 15 >. The execution can take two different

paths to reach this line, based on whether the function input satisfies the constraint on

Line 10 or not.

For a given statement t, and for each data-dependency path to this statement, we

compute a symbolic expression for the possible output values (along these paths). The

idea is that the union of the symbolic expressions (overall data-dependency paths) for

108



The problem of patch propagation Chapter 5

Current Statement
Symbolic State

Input Output

For path: < 8, 15, 17 > starting with initial state

8: len = t->len + 4
len = sym1, t->len = sym2, MAX_LEN = sym3

len = sym2 + 4
tlen = sym4, DEF_SIZE = sym5, t->total = sym6

15: tlen = len - 4
len = sym2 + 4, t->len = sym2, MAX_LEN = sym3

tlen = sym2
tlen = sym5, DEF_SIZE = sym5, t->total = sym6

17: t->total = tlen
len = sym2 + 4, t->len = sym2, MAX_LEN = sym3

t->total = sym2
tlen = sym2, DEF_SIZE = sym5, t->total = sym6

For path: < 8, 11, 15, 17 > starting with initial state

8: len = t->len + 4
len = sym1, t->len = sym2, MAX_LEN = sym3

len = sym2 + 4
tlen = sym4, DEF_SIZE = sym5, t->total = sym6

11: len += DEF_SIZE
len = sym2 + 4, t->len = sym2, MAX_LEN = sym3

len = sym2 + 4 + sym5
tlen = sym4, DEF_SIZE = sym5, t->total = sym6

15: tlen = len - 4
len = sym2 + 4 + sym5, t->len = sym2, MAX_LEN = sym3

tlen = sym2 + sym5
tlen = sym4, DEF_SIZE = sym5, t->total = sym6

17: t->total = tlen
len = sym2 + 4 + sym5, t->len = sym2, MAX_LEN = sym3

t->total = sym2 + sym5
tlen = sym2 + sym5, DEF_SIZE = sym5, t->total = sym6

Table 5.1: Symbolic interpretation of the data-dependency path < 8, 15, 17 > and
< 8, 11, 15, 17 > of the PDG in Figure 5.3.
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t are the same for the patched function as for the original one. While this intuitively

makes sense, there is one additional consideration. It is not enough to ensure that just

the symbolic expressions are the same; they need to be the same under the same path

constraints. Thus, we need to extend the symbolic expressions with their corresponding

path constraints. We refer to these extended symbolic expressions as symbolic output-

constraint pairs, which are computed as described hereinafter:

For a given statement t in a function f and the corresponding PDG(f) = (V,D,C),

we can compute the output-constraint pairs from all the complete data dependency paths

to t. For each such path, we compute an output-constraint pair as:

Ψs = (interpret(< x1, x2, ..., xn, t >),
∧

1≤i≤n

PC(xi)).

where interpret represents the symbolic expression that is computed by interpreting

each of the instructions in sequence, and PC(•) is the path constraint of the corresponding

instruction in the PDG .

Let Ψp(t) and Ψ(t) be the symbolic output-constraint pairs for the statement t in

the patched and original function, respectively. We say that the output of statement t

is equivalent in the original and the patched function, denoted as Ψp(v) ≡ Ψ(v), if the

following equation holds:

∀(ox, cx) ∈ Ψp(v) · ∃(oy, cy) ∈ Ψ(v) ` (ox == oy) ∧ (cx → cy). (5.4)

Note that o• are not concrete values but rather symbolic values.

It is possible that there is an infinite number of data dependency paths that lead

to a statement. This happens when there are loops or cyclic dependencies in the data

dependency graph (for example, when a value is updated inside the body of a loop and

later used by an affected statement). We will show in Chapter 5.3.5 how we resolve cycles

in the data dependency graph. We will further argue that our approach is safe for a

subset of instances, and we only consider these cases as safe patches.
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Consider how we verify that condition C2 holds for our running example in Listing 5.1:

The affected statements are at Lines 3, 8, 10, 11, 15, 17, and 19. Recall that we only

consider non-control-flow statements. Thus, we can remove Line 3 and 10 from further

consideration. Next, we can discard all statements that write to local variables, which

removes Lines 8, 11, and 15. We end up with the statements at Lines 17 and 19, which

write to a non-local variable through a pointer and return a value, respectively.

Looking at the PDG for the patched function (in Figure 5.3), we see that there exist

two complete data dependency paths for Line 17: < 8, 15, 17 > and < 8, 11, 15, 17 >. The

symbolic interpretation steps for both paths is shown in Table 5.1. For every path, we first

initialize each of the variables with a unique symbol, and then start interpreting each

instruction according to its semantics. The symbolic output with corresponding path

constraints along the path < 8, 15, 17 > is (o1
p, c

1
p) = (t->total = sym2, ((En == T ) ∧

((sym2 > sym3) == F )∧((((sym2+4)%2) 6= 0) == F ))). For the path < 8, 11, 15, 17 >,

the result is (o2
p, c

2
p) = (t->total = sym2 + sym5, ((En == T ) ∧ ((sym2 > sym3) ==

F ) ∧ ((((sym2 + 4)%2) 6= 0) == T ))).

For interpreting the original function, we start with the same initial symbols for the

same variables that were used in the patched function. From the original function’s PDG

in Figure 5.2, for Line 17, there are also two data dependency paths: < 7, 14, 17 > and

< 7, 11, 14, 17 >. The symbolic output along with the corresponding path constraints

are (o1
c , c

1
c) = (t->total = sym2, ((En == T ) ∧ (((sym2%2) 6= 0) == F ))) and

(o2
c , c

2
c) = (t->total = sym2 + sym5, ((En == T ) ∧ (((sym2%2) 6= 0) == T ))).

We can see that o1
p == o1

c ∧ c1
p → c1

c and o2
p == o2

c ∧ c2
p → c2

c . Hence, Equation 5.4

holds.

Similarly, we can show that the output at Line 19 is equivalent in both the patched

and the original function. As a result, our system has verified that the patch satisfies

condition C2, and the patch is safe. For a patch that affects multiple functions, the steps
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described above are performed for each function.

5.3 Spider: Design and Implementation

Preprocessing

Parsing

Fine-grained diff

Patch analysis

original.c

patched.c

sp

?

3.1
+
+
-

CFG and PDG
CFG and PDG

with diff information

3.2

3.3

3.4

Figure 5.4: Flow of the actions performed by Spider.

In this chapter we show the details of Spider, a tool, that satisfies our requirements

R1 and R2, uses the approach described in Chapter 5.2 to analyze a given C source code

patch and determine if it is an sp. The Figure 6.1 shows the various steps of Spider

when analyzing a patch.

5.3.1 Preprocessing

Spider starts by handling the C preprocessor directives. File inclusions (i.e., #include)

are ignored, since as a requirement we do not want to collect information outside of the

two input source code files. Macro definitions are ignored as well: macro calls will be

treated as regular function calls, as explained later. The system then uses the unifdef 1

tool to handle conditional code inclusion directives (e.g., #ifdef, #ifndef, etc.): the

output of unifdef is a valid C source file, without any of these constructs. Note that this
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step could exclude certain code segments. Chapter 5.4 explains this in detail. This first

step outputs two C source files ready to be parsed.

5.3.2 Parsing

The preprocessed source files are parsed using the Joern [75] fuzzy parser, which

provides an Abstract Syntax Tree (AST) for all the functions in the file. Although Joern

also provides a Control Flow Graph (CFG), with nodes linked to the ones in the AST,

we had to modify it to suite our needs. Specifically, we had to implement the reaching

definitions analysis [156], simple type inference [192], control dependency analysis [193],

and, finally, program dependency graph [188]. At the end of this phase, Spider has

access to the AST, CFG, and PDG for each of the functions affected by the patch.

5.3.3 Fine-grained diff

Spider uses function names to pair the functions in the original file with the corre-

sponding ones in the new files, assuming patches that insert, delete, or rename one or

more functions not to be sps. Spider then identifies the functions affected by the patch

using java-diff-utils2, a common text diff tool. Our system then applies a state-of-the-art

AST diffing technique, Gumtree [194], between the original and patched ASTs of the af-

fected functions. Gumtree maps the nodes in the old AST with the corresponding nodes

in the new one and identifies nodes that have been moved, inserted, deleted, or updated.

A moved node is a node that the patch moved in another position in the AST, but whose

content was unchanged, while an updated node is a non-moved node whose content was

changed. The differences in the ASTs are also associated to the corresponding nodes in

the CFG.
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int init_device() {
 int ret = -1;
 dev_t *obj = kmalloc(sizeof(dev_t));
 
if(!obj) {
   goto out;
 }

 if(setup_dev(obj)) {
   goto error;
 } 
 
...
 ret = add_dev(obj);
 goto out;

error:
 kfree(obj);  

out:
 return ret;
}

BB1

BB3

BB2

BB4

BB6

BB5

Figure 5.5: Control flow annotated listing where the greyed out blocks, i.e., BB2 and
BB3, represent the error-handling basic blocks identified by our approach.

5.3.4 Identification of error-handling basic blocks

We use a technique similar to the ones proposed in the works by Kang et al. [189]

and Tian et al. [190] in order to identify error-handling basic blocks.

Figure 5.5 illustrates our approach, where the identified error-handling basic blocks

are greyed out. Specifically, we consider a basic block BB to be an error-handling basic

block if it satisfies any of the following conditions:

• If BB forces the function to return a constant negative value or a C standard error

code (i.e., one of the constant symbols defined in errno.h, e.g., EINVAL) prepended

by a minus sign or NULL. For this, we do a basic reaching definition analysis and

check that all paths through the basic block reach a function exit that returns a

constant negative value or a C standard error code. This is based on the observation

that functions use negative integers or values in errno.h or NULL to indicate error

conditions. For the CFG of our running example in Figure 5.1, we detect BB2 as

an error-handling basic block as it causes the function to return a negative integer
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(return -1). Similarly, in Figure 5.5, BB2 causes the function to return the value

of the variable ret, which is a negative integer (-1) set in BB1. Hence, BB2 will

be considered as a BBerr.

• If BB ends in a direct jump (a goto) to a label that might indicate an error con-

dition. We maintain a set of 15 error-related labels (e.g., panic, error, fatal,

err), and we check if the BB ends with a goto error-related-label; statement.

We derived our labels from an existing survey [195] and our experience in work-

ing with system code. This is based on the observation that most of the system

code, especially operating system kernels [196], use goto to handle error condi-

tions [197, 195]. In Figure 5.5, BB3 has the goto error; statement, and since

error is one of our labels, BB3 will be considered as a BBerr. Note that, BB3

also satisfies the first condition, similar to BB2, as it can also cause the function

to return a negative integer.

Unlike the work by Tian et al. [190], we do not consider the post-dominators of aBBerr

to be BBerrs, thus, in Figure 5.5, the post-dominators of the error-handling basic blocks

BB2 and BB3 (BB5 and BB6, respectively) will not be considered as BBerrs. This

conservative approach improves precision by avoiding certain basic blocks to be wrongly

identified as BBerrs (such as BB6). However, we may miss certain error-handling basic

blocks (BB5). Note that, our approach for improving the precision by missing potential

error-handling basic blocks is safe.

To check that our error-block detection approach is accurate, we randomly sampled

100 patches, and we verified that all the error basic blocks that we identified are indeed

valid BBerrs.

As explained in Chapter 5.2, Spider discards all changes that happen within the

identified BBerrs.
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1 − max_len = s t r l e n ( buf ) ;
2 + max_len = s t r l e n ( buf ) + msg−>len ;
3 total_mem = max_len ;
4 i f (max_len < MIN) {
5 total_mem = MIN;
6 }
7 i f ( total_mem >= MAXMEM) {
8 return −EINVAL;
9 }

10 return send_msg (msg , buf ) ;

Listing 5.5: Patch affecting the control-flow of a function.

5.3.5 Patch Analysis

In the remaining part of this chapter, we explain how Spider identifies sps based on

the general technique described in Chapter 5.2.

En

3:total_mem = max_len

5:total_mem = MIN; 

4:if(max_len < MIN)

7:if(total_mem >= MAXMEM)

10:return send_msg(msg, buf) 8:return -EINVAL;

2:max_len = strlen(buf) + msg->len;

F T

TT
T

T

T

Figure 5.6: Program-Dependency Graph of the patched function in Listing 5.5.

Given the PDG, we remove all the data-dependency and control-dependency cycles

in the PDG by removing all the back edges [198]. Given a statement t, we consider an

edge to be a back edge if it is originated from a statement that is dominated by t in the

PDG.

Note that, removing back-edges is safe when a patch does not directly modify a

statement within a loop. In principle, removing back-edges in the PDG unrolls [199] the

corresponding loop once. The symbolic expression of the values computed inside the loop

will be as if the loop is executed once.

If the output of the function does not depend on the number of iterations of a loop

then unrolling the loop once or multiple times does not affect our output equivalence
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checking, and hence it is safe. As explained in Chapter 5.2.2, we use symbolic expressions

(Table 5.1) to check the output equivalence of the functions. Now, consider the case

where the output of the function depends on the number of iterations of a loop, and the

symbolic expressions of the output are same in the original and the patched function.

This means that the number of iterations of the loop will be the same in the original and

patched function, and consequently, the output should be the same.

Hence, our approach of removing the back-edges and using symbolic expressions for

output equivalence checking is safe when a patch does not directly modify a statement

within a loop. However, if the patch directly modifies a statement within a loop, the

removal of the back-edges prevents the back-propagation of this information resulting in

computation of potentially wrong symbolic output-constraint pairs, thus is not safe. To

be safe, a patch that directly modifies a statement within a loop will not be considered

as an sp.

Using the diff-annotated CFG of the patched function, first we find all the directly

affected statements. As explained in Chapter 5.2, these are the statements that are

directly modified by the patch.

Second, given the PDG, we follow the edges from the nodes corresponding to the

directly affected statements to identify all the statements that are reachable, which rep-

resent the indirectly affected statements. The union of the directly and indirectly affected

statements is our total affected statements. As mentioned in Chapter 5.2, we ignore the

affected statements that belong to the error-handling basic blocks (BBerrs).

Verifying non-increasing input space (C1): To verify condition C1, we first check

if any of the affected statements is a conditional statement. By the definition of PDG

(Chapter 5.2.1), these are the nodes that have an outgoing control dependency (solid)

edge.

If there are affected conditional statements, then we find all the valid exit points, i.e.,
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the valid return statements (or VEP). For each statement in the VEP , we identify the

conditional statements that are part of the path constraint by following the solid edges

backward until En.

Given a path constraint, we convert each of the conditional in the path constraint into

a symbolic expression. As explained in Chapter 5.2.2, we start by initializing each of the

variables with unique symbolic values in the original and patched function. Therefore, if

a variable is not modified by the patch, it will have the same symbolic value in both the

original and patched functions.

Conversion to symbolic expression: For a statement to be converted into symbolic

expression, its data dependencies need to be first converted to symbolic expressions as

well.

Therefore, given a statement s, we first check if it has any incoming data dependency

edges, if this is the case, we go to the parent and try to repeat this process backward in a

breadth-first manner until we find all the nodes with no incoming data dependency edges,

i.e., the nodes from which all the data-dependency paths are complete (Chapter 5.2.1).

We call the nodes with no incoming data dependency edges as free nodes. We first

convert each of the free nodes into symbolic values by following the corresponding in-

struction semantics (as shown in Table 5.1).

We then forward-propagate the values from the free nodes to the statements along

the data dependency edges until we reach s.

To interpret function calls, we create a new symbolic value based on the hash of

the function name and the symbolic values of its arguments. For instance, for the call

strlen(buf), we create a symbolic value with name equal to hash(strlen, sym(buf)),

where sym(buf) is the symbolic value of the variable buf.

When multiple definitions of a variable reach an instruction, we use conditional sym-

bolic variables based on the path constraint of the stricter path. For a variable x, if two
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definitions d1 and d2 from statements v1 and v2, respectively, reach a statement v3. Then

the symbolic value of x at v3 would be:

v3(x) =

 Ite(PC(v1), d1, d2) if PC(v1)→ PC(v2)

Ite(PC(v2), d2, d1) otherwise
(5.5)

Where Ite(c, a, b) represents an if-then-else symbolic value, which dictates to use

the value a if c is satisfiable else b, PC is the path constraint, and, from the rules of

implication, PC(c1)→ PC(c2) indicates that PC(c1) is a stricter condition than PC(c2).

The Equation 5.5 correctly handles multiple definitions.

Consider the statement at line 7 in the PDG of Figure 5.6. Here, multiple definitions

of the variable total_mem reach line 7. i.e., from line 3 and 5. By using the initial

symbolic values, for strlen(buf) = sym1, msg->len = sym2, MIN = sym3, and MAXMEM

= sym4. The definitions of total_mem at line 3 and 5 are sym1 + sym2 and sym3,

respectively. The path constraint for line 3 and 5 are PC(3) = (En==T) and PC(5) =

((En==T) ∧ ((sym1 + sym2) < sym3)), respectively. We can see that PC(5) → PC(3),

as PC(5) is a stricter condition, consequently the symbolic value of total_mem at line 7

will be: Ite(PC(5), sym3, (sym1 + sym2)).

The symbolic expression for the path constraint of the valid return (line 10) in the

patched function from the PDG of Figure 5.6 would be (En == T∧(Ite(PC(5), sym3, (sym1+

sym2)) >= sym4)), for brevity we did not expand PC(5), but the actual symbolic ex-

pression would be only in terms of initial symbolic values.

Following the steps described above, we convert the path constraints of each of the

valid returns in the patched function to symbolic expressions. Then we obtain Equation 5.3

by the disjunction of the symbolic expressions. Finally, we convert the disjuncted sym-

bolic expression into a Z3 [191] expression, i.e., vinputs(fp) (see Chapter 5.2.2).
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We follow the same steps in the original function to compute vinputs(f), then, using

the Z3 tool once again, we verify the implication vinputs(fp)→ vinputs(f), thus proving

that the patch satisfies condition C1.

Verifying output equivalence (C2): Given the list of affected non-control-flow state-

ments, as explained in Chapter 5.2.2, we only consider the statements that update the

non-local state of the function, i.e., the function output.

Consider the patch in Listing 5.1, where, although all the statements are affected by

the patch, the only statements of interest are at line 17 and 19, as they update the heap

and return value.

As explained in Chapter 5.2.2 and shown in Table 5.1, we compute the symbolic

expressions along each complete data dependency path along with the corresponding

path constraints.

Finally, we convert the symbolic expressions into Z3 expression and verify Equation 5.4

using Z3. This verifies that the function affected by the patch satisfies condition C2. Note

that the patch showed in Listing 5.5 changes only local variables and thus the output of

the function remains the same as that of the original function for all valid inputs, thus

satisfying condition C2.

We follow the above steps for each of the functions modified by the patch. We consider

a patch to be a safe patch, only when C1 and C2 can be proved by following the steps

described above.

Handling library functions: As explained in Chapter 5.2, we consider patches that

have only locally analyzable statements, i.e., patches that do not directly affect function

calls and pointers. However, we noticed that there are certain library functions, whose

effects can be easily summarized. Such as, memset. There are other print and logging

library functions, like printf and printk, that do not affect the output of the patched

function.
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To handle this, we maintain a few categories of commonly used, well-known library

functions, whose effects can be either summarized or ignored.

5.4 Assumptions

Our implementation as specified in Chapter 5.3.5 tries to guarantee that a patch

is a safe patch. However, a careful reader might have noticed that there are certain

assumptions made by our implementation. In this chapter, we explicitly describe the

assumptions in our implementation:

Non-alias dependencies: As explained in Chapter 5.3.5, we use a PDG based on vari-

ables to compute all the affected statements. However, this ignores the data dependencies

that could happen through pointers [200]. Handling this requires precise pointer analysis,

which in turn require access to the whole program violating our requirement R1.

Pure functions: We consider all functions to be pure functions [201], i.e., the output

of a function only depends on the input arguments. In other words, multiple calls to a

function with the same arguments results in the same output. Furthermore, reordering

function calls without any change to the arguments will also be treated as equivalent.

That is, f1(arg1); f2(arg2); is equivalent to f2(arg2); f1(arg1);. However, there

could exist impure functions, whose output could also depend on the global state of the

program. Soundly detecting whether a function is impure requires analyzing the function

and its callees, which is not scalable and requires resolving function pointers.

Conditional compilation: The preprocessor conditional code directives (e.g., #ifdef,

#ifndef, #else, etc.) allow different pieces of code to be be compiled depending on the

values of certain preprocessor variables. We use the unifdef tool to handle these condi-

tional compilation directives. unifdef attempts to obtain maximal code by enabling all

preprocessor variables. However, for #ifdef-#else constructs, to be consistent, it has
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to select the code either under the if or the else directive. This could result in certain

statements in the patch (which are controlled by preprocessor variables) to be invisible to

Spider, and, in turn, this could lead to false positives. Handling conditional code com-

pilation precisely requires analyzing the patch under all possible values of preprocessor

variables and their combinations. This is not scalable for large codebases like the Linux

kernel. To handle this, we allow users to enable the no preprocessor mode ( NoPP).

In NoPP mode, any patch that affects statements controlled by preprocessor variables

will not be considered as an sp.

We consider the limitations above to be fundamental implications of our require-

ments R1 and R2. Nonetheless, we believe that our system provides a reasonable ap-

proach to identify safe patches. Moreover, if these assumptions are considered too strong,

it is always possible to fall back to the more conservative Security Patch (SeP) mode

(see Chapter 5.5 for details). Finally, it is also possible to use our system to rank patches

and prioritize those identified as safe for manually vetting (and testing).

5.5 Security Patch mode

As explained in Chapter 5, there could exist security patches without a corresponding

CVE entry. To verify this, we have a configuration of Spider called Security Patch

(SeP) mode that identifies security patches with no false positives, i.e., all the patches

identified by this configuration are indeed security patches. SeP is based on the intuition

that most of the security patches add additional input validation checks. Therefore, in

SeP mode, we restrict ourselves to safe patches that affect only control-flow statements.

Furthermore, when the commit message is available, we use the technique proposed by

Zhou et al. [202] to filter out non-security related fixes. However, there can be false

negatives, that is, potential security patches not detected as such.
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Note that while SeP mode is more limited in the patches that it considers safe, it

does not rely on any of the assumptions discussed in Chapter 5.4. We believe that SeP

mode of Spider is the first step towards a practical solution of automatically identifying

security patches that could be easily integrated into any source-control system. We plan

to integrate SeP mode of Spider into GitHub security alerts [186], which helps both the

developers and maintainers to handle security patches. Note that our running example

(shown in Listing 5.1), although being a security patch, is not detected by the SeP mode

because it also affects non-control flow instructions.

5.6 Evaluation

We evaluate the effectiveness of Spider in three different ways. First, we run it on a

large dataset of 341,767 changes (i.e., commits) spanning over 32 repositories, collected

from the year 2016 for a total of 32 months, in order to understand if it actually detects

sps, according to our definition (see Chapter 5.6.1). Second, we run Spider on a set

of security patches (i.e., CVE patching commits) to evaluate the usefulness of this tool

in speeding the propagation of these critical fixes. Third, in Chapter 5.6.4, we show a

way to use the SeP mode of Spider as a vulnerability finding tool by identifying non-

CVE security patches that are missing in various active forks of the analyzed projects.

Finally, we show in Chapter 5.6.5, that there are several non-CVE security patches in the

Linux kernel and many of these are still unpatched, at the time of writing, on some of its

Android-related forks: this provides real examples where Spider can be useful in fixing

potential n-day vulnerabilities.

The analysis that Spider performs, described in Chapter 5.3, is an intra-procedural

static analysis that does not consider the interaction between different modified func-

tions. For this reason, to isolate the effect of these interactions that represent a possible
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confounding factor, we evaluate Spider only on patches that affect a single C source file

(i.e., .c format only). All the patches studied in our evaluation are real changes extracted

from repositories of widely used open-source projects (see Chapter 5.6.1 for more details).

Performance: On average Spider took 3.4 seconds to analyze a patch on a machine

equipped with a two-core 2.40 GHz CPU, and 8GB RAM, demonstrating its speed and

scalability.

Active forks: We noticed that most of the forks of repositories are inactive or dead,

i.e., there are no new commits made to the repository since they are forked. Considering

such inactive forks could exaggerate our results, and, therefore, we considered only active

forks. We consider a fork to be active if it has at least ten new commits in the last six

months, and using this filter, we were able to eliminate a number of forks. For instance,

in the case of Linux kernel (ID 1), we consider only 269 active forks out of 23,854 forks.

5.6.1 Large-scale evaluation

We ran Spider on a large set of patches: we selected 32 open-source projects widely

used by desktop, mobile, and embedded operating systems, and we collected from each of

them all the single-C-file commits for the past 32 months from the time of writing (con-

sidering merges as single commits). All the details of the projects are shown in Table 5.2.

5.6.2 Effectiveness of patch analysis

Table 5.2 also shows the number of sps identified by Spider in the dataset. Over the

total 341,767 commits studied, Spider identified 67,408 (19.72%) safe patches (Column

6). Furthermore, 58.72% of these patches are missing in at least one of the active forks

(MIAFs).

Checking for patch applicability: We use the following syntactic approach to identify
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whether a patch of a project is applicable to (or missing from) a fork or other projects.

Given a patch, we extract the affected file’s source code before the patch (i.e., original

file) and compare it to the latest version of the corresponding file in the fork. If the file

is present in the fork and all the functions affected by the patch do not differ between

the original file of the patch and the corresponding latest file in the fork, then it means

that the patch can be applied to the fork. To perform the comparison, we use the git diff

tool, and check that there are no modifications in the targeted functions.

It is interesting to note that, across all repositories, the percentage of sps mostly

stays around 20%-25%, without much variation. There are certain projects where the

percentage of detected sps is low, such as IDs 15 and 16. After manual investigation of

the subset of these patches, we found the following reasons:

Complex code: There are certain projects that mostly contains complex functions with

data-dependencies inside nested loops. Specifically, the Python (ID 15) and PHP (ID 16)

interpreters, and cURL (ID 24). Here, although the patches themselves are simple, the

data dependencies increase the complexity of constraints, resulting in Spider failing to

prove implication for the condition C1 (Chapter 5.2.2) resulting in a smaller sp detection

rate.

Complex patches: In projects such as libpng (ID 30) and, OpenVPN (ID 28), the

commits tend to be complex as they deal with media file formats and cryptographic

protocols. Consequently, Spider fails to prove the equivalence for the condition C2.

Listing 5.9 shows a patch identified as an sp, where the patch modifies error basic

blocks, which are ignored. Also, the patch moves certain function calls Py_INCREF and

Py_DECREF. However, as the arguments to these calls (i.e., dll and ftuple) are not mod-

ified by the patch, the symbolic expressions of the arguments are proved to be equivalent

by Z3, resulting in the patch being considered an sp.
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Looking at these results, we argue that Spider would be helpful for project main-

tainers and could be directly used to port the fixes or to prioritize the changes that must

be ported.

5.6.3 Evaluation on CVEs

We wanted to determine how many security patches are indeed sps, as claimed in

Chapter 5. To this end, we collected all the patching commits linked as reference fixes

for kernels CVEs from the Android security bulletins [14], and, similar to the large-scale

evaluation, we studied only the CVEs that patch a single C file. We also collected all the

CVEs for the remaining repositories over the same amount of time. This resulted in the

analysis of 809 CVE patches.

Table 5.3 shows the results obtained after running Spider on these patches, which

show that 55.37% of the CVE-patching commits are non-disruptive, while on generic

patches (i.e.,

Table 5.2) the percentage was 19.72%. This finding shows that Spider could be useful

not only to speed-up the process of selecting and applying a significant number of changes

(as shown in Chapter 5.6.1) but also to apply more than half of the security patches in a

faster way.

Listing 5.7 shows an example of CVE patching commit from Android security bulletin

identified as a sp by Spider. Listing 5.7 is also one of the CVEs that we mentioned in

Chapter 5, which was patched in Android more than a year after the appearance of the

corresponding entry in the database.

Looking at Table 5.3, it is interesting to see that Spider performed relatively well

with more than 50% success rate in all but OpenSSL and VLC CVEs.Most of the CVEs

in OpenSSL fix security issues related to cryptographic operations that affect the control
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flow in complex ways. A few OpenSSL CVEs fix cryptographic implementations against

time side-channel attacks, which Spider is unable to reason about. For instance, the

commit hash ae50d8270026edf5b3c7f8aaa0 c6677462b33d97 [203] for CVE-2016-0703 of

the OpenSSL repository fixes SSLv2 implementation against the Bleichenbacher [204]

attack. We fail to identify this as an sp because the changes does not satisfy our definition

of sp (refer Chapter 5.1.2).

5.6.4 Security patches missing a CVE number

We used Spider in SeP mode on all the commits to identify security patches. We

then checked if these patches have an associated CVE number. Listing 5.9 and 5.6 show

examples of security patches missing CVE entries, which are detected by the SeP mode

of Spider.
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Figure 5.7: Distribution of the security (non-CVE) patches (identified by the SeP
Mode of Spider) and sps in Mainline Linux kernel (Project ID 1) that are missing in
other related kernel projects.

CVE patches source sps / CVE

Linux 333 / 611 (54.5%)

Android bulletin 98 / 164 (59.75%)

OpenBSD 5 / 6 (83.33%)

OpenSSL 7 / 21 (33.33%)

Systemd 4 / 4 (100%)

VLC 1 / 3 (33.33%)

Total 448 / 809 (55.37%)

Table 5.3: Results of Spider on CVE patches.

i n t check_aboot_addr_range_overlap ( uint32_t s ta r t , uint32_t s i z e )
{

/∗ Check f o r boundary cond i t i on s . ∗/
− i f ( ( s t a r t + s i z e ) < s t a r t )
+ i f ( (UINT_MAX − s t a r t ) < s i z e )

return −1;

Listing 5.7: Real integer overflow patch identified as sp by Spider (CVE-2014-9795
from July 2016 Android security bulletin).

The last two columns of Table 5.2 shows the complete results: Overall Spider

identified 2,278 security patches across all the repositories. After manual verification,

we found these results to be correct. This shows that CVE IDs are not always used

for security patches, and that relying on them is not an effective way to secure related
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e r ro r = −EINVAL;
goto out_put_tmp_file ;

}

+ i f ( f . f i l e −>f_op != &x f s_ f i l e_ope ra t i on s | |
+ tmp . f i l e −>f_op != &x f s_ f i l e_ope ra t i on s ) {
+ er ro r = −EINVAL;
+ goto out_put_tmp_file ;
+ }
+

ip = XFS_I( f i l e_ inode ( f . f i l e ) ) ;
t i p = XFS_I( f i l e_ inode (tmp . f i l e ) ) ;

Listing 5.6: a security patch identified by Spider on the main Linux kernel repository
(commit 3e0a3965464505). which does not have a corresponding CVE ID.

repositories. The number of patches identified by the SeP mode is smaller compared to

the total number of sps (i.e., 2,278� 67,408). This is because the SeP mode, as explained

in Chapter 5.5, imposes strict requirements. Nonetheless, the SeP mode identified 2,278

security patches missing a CVE number.

Furthermore, 60.71% of these patches are missing in at least one of the active forks

denoted as MIAFs. This is alarming, as these cases reveal unpatched security vulner-

abilities in the forks, which could be exploited by a motivated attacker monitoring the

patches. We observed a considerable number of patches (for example see Listing 5.8),

where the commit message contains the vulnerability-triggering input, further reducing

the effort for the attacker.
avpriv_report_miss ing_feature ( s−>avctx , "Lowres f o r weird subsampling

") ;
return AVERROR_PATCHWELCOME;

}
+ i f ( (AV_RB32( s−>upscale_h ) | | AV_RB32( s−>upscale_v ) ) && s−>prog r e s s i v e

&& s−>avctx−>pix_fmt == AV_PIX_FMT_GBRP) {
+ avpriv_report_miss ing_feature ( s−>avctx , " p rog r e s s i v e f o r weird

subsampling ") ;
+ return AVERROR_PATCHWELCOME;
+ }

i f ( s−>l s ) {
memset ( s−>upscale_h , 0 , s i z e o f ( s−>upscale_h ) ) ;
memset ( s−>upscale_v , 0 , s i z e o f ( s−>upscale_v ) ) ;

Listing 5.8: A non-CVE security patch (commit ee1e3ca5eb1) in FFmpeg (ID 21) that
has triggering input in the commit message.

−Py_INCREF( d l l ) ; /∗ f o r KeepRef ∗/
−Py_DECREF( f t up l e ) ;
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− i f ( ! _val idate_paramflags ( type , paramf lags ) )
+i f ( ! _val idate_paramflags ( type , paramf lags ) ) {
+ Py_DECREF( f t up l e ) ;

return NULL;
+}
s e l f = ( PyCFuncPtrObject ∗)GenericPyCData_new( type , args , kwds ) ;
− i f ( ! s e l f )
+i f ( ! s e l f ) {
+ Py_DECREF( f t up l e ) ;

return NULL;
+}
. . .
∗( void ∗∗) s e l f −>b_ptr = address ;
+Py_INCREF( d l l ) ;
+Py_DECREF( f t up l e ) ;

Listing 5.9: A non-CVE security patch (commit d77d97c9a1f) fixing a reference
counting vulnerability in the Python interpreter identified by Spider. This patch
does not have a corresponding CVE ID.

5.6.5 Missing patches in vendor kernels

parse_exthdrs ( s t r u c t sk_buff ∗skb , const s t r u c t sadb_msg ∗hdr , void ∗
. . .

uint16_t ext_type ;
i n t ext_len ;

+ i f ( l en < s i z e o f (∗ ehdr ) )
+ return −EINVAL;

ext_len = ehdr−>sadb_ext_len ;

Listing 5.10: A non-CVE security patch (commit 4e7REDACTED) in Main kernel (ID
1) that is missing in Qualcomm (ID 4) kernel.

To identify missing patches in vendor kernels, we check how many of the Linux Kernel

mainline commits identified as sps still have to be applied to one or more of the eight

vendor kernel repositories that we studied (i.e., projects 2 - 9 in Table 5.2), at the time

of writing. To do that, given a commit identified as an sp, we extract the affected file’s

source code before the change, and we compare it to the same file, if present, in all the

listed kernel repositories (Table 5.2 show the git branch or tag that we studied) using the

git diff technique described in Chapter 5.6.2.

The stripe bars in Figure 5.7 shows the percentage of missing sps in different vendor

kernels. We found that 9,427 of the 20,171 Linux kernel identified sps (i.e., 46.74%) are

still not applied in at least one of the considered vendor kernels. A significant portion
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of these changes not considered useful by the maintainers (e.g., removals of unused code,

small refactoring, etc.), and therefore, not imported. However, we found out that 297

of them are CVE patching commits (i.e., the ones that we linked to the corresponding

CVEs, as shown in Chapter 5.6.3) that still have to be imported by the maintainers of

some repositories: this supports the findings of previous studies [10, 11, 12, 13] that

report that vulnerability databases are not always effective in speeding the propagation

of security fixes.

Unfixed vulnerabilities in vendor kernels: We also checked the security patches

(which do not have a CVE number) identified by the SeP mode in the Linux Kernel

mainline that still have to be applied to one or more of the eight Linux Kernel repositories

that we studied (i.e., projects 2 - 9 in Table 5.2). The plain bars in Figure 5.7 show the

percentage of missing non-CVE security patches in different vendor kernels. There are in

total 229 security patches that do not have a corresponding CVE number and are missing

on different kernel repositories, including the ARM Linux kernel main repository (i.e.,

project 2 in Table 5.2): these can be seen as potential unfixed or n-day vulnerabilities.

Given their potential severity, we manually verified them to assess their impact. For a

few of these vulnerabilities, the impact is less severe because of the variation in kernel

configurations. However, we found several missing patches in critical components like

netfilter, which applies to all kernel configurations. The snippet of a non-CVE security

patch that is missing in the msm kernel (ID 4) is shown in Listing 5.10, this patch, as

mentioned before also contains the triggering input.

We are in the process of reporting all of these patches to the corresponding project

maintainers and vendors, and submit all the necessary requests for CVEs.
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Figure 5.8: The distribution of the size of all the commits studied and sp identified
by Spider.

5.7 Limitations

Along with the assumptions described in Chapter 5.4, Spider comes with several

limitations. Specifically,

Small patches: As we can see from Figure 5.8, the majority (57.1%) of the patches

detected as sps are small (0-5 lines). Furthermore, Spider cannot verify patches that

modify statements within a loop. These limitations are mainly because Spider tries to

verify a patch to be safe in a sound way. We believe it is important to have a system

with no false positives, that provides stronger guarantees, and that can be used by the

maintainers safely.

Syntactic approach for patch applicability check: We use a syntactic approach

to check for patch applicability in the related repositories. However, a patch although

syntactically applicable to a file in a project may not be semantically applicable because

the condition fixed by the patch could be impossible to occur in the project [206]. This

limitation is induced by our requirement R1, as checking for semantic applicability of

patches require sound static analysis techniques which require build environment and
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access to all source files, thus violating our requirement R1.

Heuristic approach for error-handling basic blocks detection: As explained in

Chapter 5.3.4, we use a heuristic approach to identify error-handling basic blocks. How-

ever, these heuristics may not hold for other projects resulting in cases where a basic

block matching our heuristics is not a true error-handling basic block. Consequently, we

could have unsafe patches being identified as safe. To handle this, we provide the NoEB

mode of Spider where we do not ignore the changes in the error-handling basic blocks.

This mode provides a safer version of Spider, albeit with a slight decrease in detection

rate.

Susceptible to adversarial evasion: As a consequence of our assumptions (Chapter 5.4),

Spider is susceptible to adversarial evasion. For instance, as we treat macros as function

calls, an adversarial developer or contributor could use macro calls to make Spider

consider otherwise safe patches as unsafe. However, as we explained in Chapter 5, the

main use case of Spider is for developers and maintainers. Furthermore, we assume

developers to be non-malicious users who want to ensure that their applications are as

secure as possible.

Tool dependencies: The current implementation of Spider works only on C source

code; however, the parser that we use should be easily extensible to other languages. The

fine-grained diff step is language agnostic, thus, to extend the tool to other languages, we

would only need to add language-specific heuristics and preprocessing. A good solution

would be to have a configurable front end for different languages, similar to LLVM [207].

As our implementation is based on Joern and Gumtree, we also share the same limitations

that these tools have.
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5.8 Can we prevent memory corruption?

It is the 21st century, with over three decades of research on finding memory safety

issues, but memory corruption is still the most prevalent class of vulnerability in modern

applications. Specifically, spatial memory issues remain the most common vulnerability

category [208].

Although memory-safe systems programming languages exist, they are not well-suited

to seamlessly interact with legacy C code [35]. On the other hand, retrofitting tech-

niques [36, 37, 38] that add memory safety to legacy code have high-performance overhead

and are not backward compatible.

What we need is a memory-safe language that should not have a steep learning curve,

i.e., should be very similar to C, backward-compatible, i.e., allows safe and unsafe code to

co-exist. So that the developers can write the new code in the safe dialect, which could

interact with unsafe legacy code, and finally should have very low-performance overhead

(both memory and runtime).

The Checked C [40] is an extension to the C programming language that satisfies

all the above requirements. It extends C with type annotations using which it tries to

prove spatial memory safety statically. It adds dynamic checks for the cases where safety

cannot be proven statically. However, an issue here is that these type-annotations needs

to be added to the existing C code. Can we solve this problem? Specifically, can we have

a technique that can automatically add type annotations to already existing C code? In

the next chapter, I will present our on-going work on a technique that can automatically

convert C to Checked C.
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Interactively converting C to Checked

C

Suppose a developer wishes to port an existing C program to take advantage of the

guarantees of Checked C. Ideally, the developer will aim to completely port the program,

i.e., to place all of the code inside of checked regions. What sorts of changes will a

developer have to make?

1. Best case: Add annotations (mostly to types) but otherwise not change the code

as shown in Listing 6.1.

2. Second-best case: Add minor/obvious bits of code, e.g., to initialize newly-annotated

variables as shown in Listing 6.2.

3. So-so case: Rewrite bits of code and annotate them, so they are checkable (Listing 6.3).

4. Worst case: Not able to port the code at all—either it’s fundamentally incompatible

with Checked C, or else the port would impose a too-high performance overhead

(Listing 6.4).
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Listing 6.1: The best case where we just need to add annotations without changing
any code. The code in comments is the original C code.

1 int f oo (void ) {
2 // in t ∗p = NULL;
3 _Ptr<int> p = NULL;
4 // s t a t i c char da tebu f [ 6 4 ] ;
5 stat ic char datebuf _Checked [ 6 4 ] ;
6 . . . .
7 }

Listing 6.2: The second best case where we need to add annotations and split the
declaration in to multiple lines and add initializer.

1 int foo1 (void ) {
2 // in t p ,∗ q ;
3 int p ;
4 _Ptr<int> q = NULL;
5 . . . .
6 }

Listing 6.3: The so-so case that involves adding explicit Checked C casts.
1

2 // const char∗
3 // vsf_sysuti l_group_getname ( const s t r u c t vs f_sysut i l_group ∗ p_group )
4 // {
5 // const s t r u c t group∗ p_grp = ( const s t r u c t group ∗) p_group ;
6 // return p_grp ->gr_name ;
7 // }
8 const _Ptr<char>
9 vsf_sysutil_group_getname ( const _Ptr<struct vsf_sysut i l_group> p_group )
10 {
11 const _Ptr<struct group> p_grp = _Assume_bounds_cast<const _Ptr<struct group>>(

p_group ) ;
12 return p_grp ->gr_name ;
13 }

Listing 6.4: Function that has inline assembly that represents a worst case for conver-
sion and is impossible to safely convert to Checked C.

1 stat ic i n l i n e void cpuid ( int code , uint32_t∗ a , uint32_t∗ d)
2 {
3 asm volat i le ( " cpuid " : "=a" (∗ a ) , "=d" (∗d) : "0" ( code ) : "ebx" , " ecx" ) ;
4 }

Ideally, the developer performs all of steps (1)-(3) and minimizes resorting to step (4).

We call this a full port. Carrying out this process entirely manually would be incredibly

time consuming, and thus unreasonable [209]. Therefore, in this paper, we present a tool

we call checked-c-convert (cc-conv for short) aimed to assist a developer to perform

a full port.

The core of cc-conv is a novel type-inference based approach to determine the

Checked C types of all pointers in a given program.

137



Interactively converting C to Checked C Chapter 6

However, there are cases where the type-inference fails to determine the Checked

C types e.g., In the presence of unsafe pointer casting. Furthermore, automatically

converting arbitrary C to Checked C code is hard or rather impossible.

We had been tacitly assuming that the cc-conv would be run once to annotate as

many pointers as possible, and the developer would take over to finish the job from there.

No conversion tool can be perfect (the conversion problem is undecidable), so there will

always be work left for the human to do. This follow-on, human work is often neglected

in, but should not be: After all, our goal is to minimize the total work required to port

a program.

To minimize total porting work, we should make the conversion algorithm interactive:

Do some work, let the human do some, do some more work automatically, and so on until

the job is complete. Such a workflow allows us to let the developers move things forward

at the places where their knowledge is most useful. The tool can handle all of the grunt

work.

There are two times where interaction is particularly helpful.

1. There are times when a series of constraints leads to a proliferation of non-checked

(or WILD) pointers. We can ask the user to “break” the constraints at a particu-

lar place (via an unsafe cast) to avoid this proliferation. After asking for his/her

input, we solve. This is illustrated by the code in Listing 6.5, which can be con-

verted with human input ((const char*)) by introducing an explicit cast as shown

in Listing 6.6.

2. In general, we want the user to be able to make a small change to the program,

e.g., by manually annotating a variable, and then be able to re-run the porting tool

to propagate the effect of that change, e.g., to other variables to which (or from

which) the annotated variable is assigned. This should be as fast as possible.
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Constraint 
Builder

Array bounds 
Inference

Constraint 
Solver

cc-conv

Original 
Source code

Fully ported 
Checked C 

Code

Type Inference

Figure 6.1: Dataflow diagram of cc-conv showing interaction between various com-
ponents. The user can use any IDE that implements language server to interact with
our base constraint solving mechanism.

Listing 6.5: The case of proliferation where passing a pointer to a library function will
make it WILD and consequently this information is propagated to all the callers of
the function.

1 int vsf_sysut i l_mkdir ( const char∗ p_dirname , const unsigned int mode)
2 {
3 // Here , pass ing p_dirname as a parameter to e x t e rna l func t i on w i l l make i t WILD
4 // and t h i s propagates to a l l the c a l l e r s o f vs f_sysut i l_mkdir
5 return mkdir ( p_dirname , mode) ;
6 }
7 void c a l l e r 1 ( ) {
8 char ∗ bu f f = NULL;
9 . . .
10 i n i t i a l i z a t i o n o f bu f f
11 . . .
12 vsf_sysut i l_mkdir ( buf f , RW) ;
13 }

The first case is, in some sense, an instance of the second case, but it uses the

constraint graph to guide the programmer to variables that are particularly high-value

to update.

Based on the above observations, we designed cc-conv to be interactive, wherein cc-

conv directs the developer to the places where the inference failed. This enables the

developer to provide directions to cc-conv, on how the failure should be resolved, much

like the way developers interact with a code refactoring tool.
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Listing 6.6: The conversion of code in Listing 6.5 by using explicit casts.
1 int vsf_sysut i l_mkdir (_Nt_array_ptr<const char> p_dirname , const unsigned int mode)
2 {
3 // Adding cas t at the f o l l ow i n g c a l l - s i t e w i l l break the propagat ion o f
4 // con s t r a i n t s and thus make p_dirname a checked po in t e r .
5 return mkdir ( ( const char∗) p_dirname , mode) ;
6 }
7 void c a l l e r 1 ( ) {
8 _Nt_array_ptr<char> buf f = NULL;
9 . . .
10 vsf_sysut i l_mkdir ( buf f , RW) ;
11 }

6.1 Design and Implementation

The high level architecture of cc-conv is as shown in the Figure 6.1. First, given

a program with C sources, we automatically parse the source files to get the AST and

create a constraint graph where each node represents a pointer declaration. We then

solve the constraints to get Checked C types. Second, for each of the identified array

pointers, we infer length associations using various heuristics. Third, for the unconverted

pointers (Listing 6.5), we identify the root cause and provide the user suggestions on how

to fix it. Finally, the user can provide fixes which cause the constraint solver to re-run,

and this process continues until the user is satisfied with the currently converted code,

at which point we rewrite the code with Checked C annotations.

We use clang [162] tooling for our implementation. This is currently work in progress

and maintained open-source at https://github.com/plum-umd/checkedc-clang, with

various collaborators from the University of Maryland, College Park and Microsoft Re-

search.

6.2 Preliminary Evaluation

We used vsftpd (a full-blown FTP server) and various benchmark programs from

ptrdist [210] dataset to evaluate cc-conv. The overall results are shown in the Table 6.1.
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6.2.1 Inference Effectiveness

As shown under column WILD, on average cc-conv is unable to infer Checked C

types for 41.15% of the total pointers. As mentioned before, this is because either the

pointer is improperly used (i.e., p_dirname in Listing 6.5), or the pointer depends on other

pointer that is improperly used (i.e., buff (that depends on p_dirname) in Listing 6.5).

However, the actual pointers that are improperly used are only 8.33%, as shown by

the last column of Table 6.1. This confirms our intuition that it is only a small set of

pointers that pollute various other pointers through constraints. Further investigating

the improper usages of these pointers, we observed that most of the improper usages

are either because of casting or being passed as arguments to external library functions,

whose parameters we assume to be unsafe.

Furthermore, the small percentage (8.33%) of improperly used pointers shows that

the amount of effort a human has to invest in achieving the full conversion is less and

can be further eased with an interactive system.

6.2.2 Array bounds Inference

The column Inferred Bounds shows our techniques were able to infer bounds for

27% of variable-length array pointers. This again could be further improved by an in-

teractive system, where the user provides bounds that can be then propagated to other

dependent array pointers.
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The results of our preliminary evaluation are encouraging. This is an on-going work

where steady progress is made and will be released as an open-source tool that can be

used arbitrary C to Checked C.
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Chapter 7

Conclusion

In this work, we looked into the smart device ecosystem and various issues that arise

with new processor security features and extreme customizations. The ARM architec-

ture, which is commonly used in smart devices, has an advanced security architecture

feature called ARM TrustZone, which provides a secure, isolated, and trusted execution

environment (TEE). In Chapter 3, we identified a previously unknown class of vulnerabil-

ities, Boomerang, that affects systems where the secure world (i.e., the TEEs) and the

non-secure world (i.e., the traditional OS) share resources. The vulnerability arises from

the critical semantic gap when passing data between the two worlds, specifically memory

pointers, and flaws in sanitizing these pointers. We identified Boomerang vulnerabili-

ties in four of the most popular commercial TEE platforms (affecting hundreds of millions

of devices world-wide). In order to explore the generality and severity of Boomerang,

we developed a static-analysis tool to automatically identify Boomerang bugs in real-

world TEE applications. These findings have resulted in major efforts from the respec-

tive parties (e.g., Google and Qualcomm) to fix their implementations, as the identified

vulnerabilities could be leveraged to completely compromise the untrusted OS (e.g., An-

droid) of the affected devices. We similarly analyzed three potential Boomerang de-
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fenses, comparing the trade-offs and design considerations of each. Due to the limitations

of the existing defenses (i.e., shared memory and page table introspection), we devised a

novel solution, Cooperative Semantic Reconstruction, which addresses the shortcomings

of the previous proposals, while still offering an efficient and easy-to-use interface.

Smart devices have extensible software support in the form of open-source system

software. The availability of well-supported open-source system software enables vendors

to perform quick customizations, e.g., by adding device drivers to the operating systems.

Unfortunately, these customizations are poorly developed, which results in a lot of critical

security issues. In Chapter 4, we have presented Dr. Checker, a fully-automated static

analysis bug-finding tool for Linux kernels that is capable of general context-, path-, and

flow-sensitive points-to and taint analysis. Dr. Checker is based on well-known static

analysis techniques and employs a soundy analysis, which enables it to return precise

results, without completely sacrificing soundness. We have implemented Dr. Checker

in a modular way, which enables both analyses and bug detectors to be easily adapted

for real-world bug finding. In fact, during the writing of this paper, we identified a

new class of bugs and were able to quickly augment Dr. Checker to identify them,

which resulted in the discovery 63 zero-day bugs. In total, Dr. Checker discovered 158

previously undiscovered zero-day bugs in nine popular mobile Linux kernels. While these

results are promising, Dr. Checker still suffers from over-approximation as a result of

being soundy, and we have identified areas for future work. Nevertheless, we feel that

Dr. Checker exhibits the importance of analyzing Linux kernel drivers and provides a

useful framework for adequately handling this complex code.

The extreme customization also results in the problem of patch propagation. The

customizations are usually done on codebases that are maintained in different reposi-

tories (e.g., forks) separate from the main open-source repository. In order to ensure

that vulnerability is fixed, the patch for the vulnerability should propagate to all the
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codebases (or repositories) as soon as possible. We noticed that security patches still

take a substantial amount of time to propagate to all the project forks. To solve this,

we need an automated technique that can help in automatically propagating patches to

the related repositories. In Chapter 5, we designed, implemented, and evaluated Spi-

der, a fast and lightweight tool (R2) based on our sp identification approach that can

determine if a patch is safe using only the original and the patched source code of the

affected file (R1), without the need for external information (e.g., build environment,

commit message, etc.). Our large-scale evaluation on 341,767 commits extracted from

32 different open-source repositories, and on 809 CVE patches, demonstrates the effec-

tiveness of Spider, and shows that a significant amount of security patches could have

been automatically identified (i.e., 55.37%). Furthermore, we show how the SeP mode

of Spider can be used to find unpatched security issues.

Finally, I believe that Checked C provides a promising alternative to prevent spa-

tial memory issues in C code. In Chapter 6, we briefly present our on-going work on

automatically converting C to Checked C code.
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What’s next?

In this work, I had the opportunity to apply various program analysis techniques to

systems codebases. System codebases being inherently complex, large, and not well-

specified present the worst case for program analysis techniques. However, as presented

in Chapters 45, we can apply precise program analysis techniques on system codebases

by scoping to only certain components, e.g., Drivers instead of entire Linux kernel. There

are other techniques one can apply to scale precise program analysis techniques to system

codebases.

Gradual precise analysis: For vulnerability detection, instead of directly applying

very precise analysis, we can gradually increase the precision of the analysis such that

increasing the precision will gradually eliminate false positives.

In the past, this technique has been explored in pointer analysis [211] and recent

work [212] shows that being gradually precise might help in finding very complex bugs

with very low false positives. Can we have a system where this can be done in a principled

manner? and What are the guarantees of such a system?

Interactive analysis: Our on-going work with Checked C has shown that it is feasible

to seamlessly interact with humans to improve the precision of the underlying analysis.
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There are many interesting directions in this area: Can we have interactive analysis

designs? Specifically, can we create an analysis engine where human input is treated as

a first-class entity? Can we integrate human input into dynamic analyses? For example,

Fuzzing.

Finally, I believe collaborations result in high-quality research and are necessary for

the field of security, which is, by nature, interdisciplinary. If you want to work on any of

the above problems, please do not hesitate to contact me.
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