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Abstract

Rationale: Susceptibility to ventricular arrhythmias (VT/VF) is difficult to predict in patients 

with ischemic cardiomyopathy either by clinical tools or by attempting to translate cellular 

mechanisms to the bedside.

Objective: To develop computational phenotypes of patients with ischemic cardiomyopathy, by 

training then interpreting machine learning (ML) of ventricular monophasic action potentials 

(MAPs) to reveal phenotypes that predict long-term outcomes.

Methods and Results: We recorded 5706 ventricular MAPs in 42 patients with coronary 

disease (CAD) and left ventricular ejection fraction (LVEF) ≤40% during steady-state pacing. 

Patients were randomly allocated to independent training and testing cohorts in a 70:30 ratio, 

repeated K=10 fold. Support vector machines (SVM) and convolutional neural networks (CNN) 

were trained to 2 endpoints: (i) sustained VT/VF or (ii) mortality at 3 years. SVM provided 

superior classification. For patient-level predictions, we computed personalized MAP scores as the 

proportion of MAP beats predicting each endpoint. Patient-level predictions in independent test 

cohorts yielded c-statistics of 0.90 for sustained VT/VF (95% CI: 0.76-1.00) and 0.91 for 

mortality (95% CI: 0.83-1.00) and were the most significant multivariate predictors. Interpreting 

trained SVM revealed MAP morphologies that, using in silico modeling, revealed higher L-type 

calcium current or sodium calcium exchanger as predominant phenotypes for VT/VF.
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Conclusion: Machine learning of action potential recordings in patients revealed novel 

phenotypes for long-term outcomes in ischemic cardiomyopathy. Such computational phenotypes 

provide an approach which may reveal cellular mechanisms for clinical outcomes and could be 

applied to other conditions.

Graphical Abstract
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INTRODUCTION

Sudden cardiac arrest (SCA) affects over 300,000 individuals per year in the U.S. alone and 

is a major contributor to healthcare utilization.1PP Individuals with reduced left ventricular 

ejection fraction (LVEF) are at elevated risk for SCA and may qualify for implantable 

cardiac defibrillators (ICD)s, yet such devices are rarely needed to deliver life-saving 

therapy in 1 year (< 5-10%)2 and further risk stratification has proven elusive.3

Cellular mechanisms may reveal risk for SCA in inherited conditions, such as specific 

changes in voltage-gated membrane channels in the long-QT and Brugada syndromes that 
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correlate with risk for ventricular tachycardia (VT) or fibrillation (VF).4 However, a cell-to-

bedside foundation does not yet exist for broader populations at risk for SCA. In models of 

heart failure, abnormalities in intracellular calcium homeostasis and in voltage-gated 

membrane channels5,6 indicate arrhythmic risk in vitro,7 yet produce complex effects on 

action potential morphology which have not been translated to clinical care. This may reflect 

challenges in probing tissue data in patients, or in quantifying those action potential changes 

that predict specific clinical outcomes.

We hypothesized that the morphology of individual ventricular monophasic action potentials 

(MAPs) in patients with ischemic cardiomyopathy may identify tissue or cellular 

electrophysiology phenotypes that can be identified by machine learning and predict long-

term outcomes. Franz and colleagues have shown that MAPs accurately reflect 

transmembrane action potentials in patients.8 Subsequent studies showed that oscillations in 

MAPs may increase arrhythmic risk.9-11 However, it is undefined if the morphology of in 
vivo action potentials, that indicate structural and cellular remodeling including changes in 

membrane-sensitive ion channels, predict clinical outcome. Machine learning (ML) is a 

rapidly developing science which has been used to classify data in complex areas including 

voice recognition, image analysis and game-playing decisions.12 Clinically, ML can 

diagnose abnormal heart rhythms from the ECG as well as experts,13 identify low LVEF 

from the ECG alone,14 and uncover immunological phenotypes.15 ML has been used to 

predict clinical phenotypes from inputs at the molecular scale.16 However, ML has yet to be 

applied to bridge tissue or cellular mechanisms for SCA with clinical outcomes.

We used ML and traditional statistics of MAPs recorded in patients to identify specific 

ventricular action potential morphologies that predict sustained VT/VF or mortality on long-

term follow-up, coupled with biophysical modeling to identify corresponding alterations in 

cellular electrophysiology, in a well characterized10,11,17 cohort of individuals with chronic 

ischemic cardiomyopathy.

METHODS

To enable researchers to verify the results or procedures of the study, non-proprietary 

software code developed for this project and samples of anonymized data are available at 

URL: https://github.com/NarayanLab/VT_MAP_Project, as detailed in the Supplemental 

Materials in sections on Major Resources with Readme documents.

Subject Recruitment.

The study protocol was approved by the Institutional Review Boards of Stanford University 

and the University of California, San Diego. All subjects provided written informed consent. 

We recruited 53 patients with LVEF ≤ 40 % and coronary artery disease (CAD) undergoing 

programmed ventricular stimulation, excluding those with prior sustained ventricular 

arrhythmias or aborted SCA. All patients were fully revascularized at least three months 

prior to electrophysiological testing, and antiarrhythmic medications were washed out for > 

5 half-lives. We excluded subjects with < 50 high quality MAP tracings due to technical 

difficulties (N=11). Our resulting population for this study was 42 patients.
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Ventricular Pacing at Electrophysiologic Study.

Subjects were studied in the post-absorptive state under conscious sedation with midazolam 

and fentanyl. In addition to standard catheters, a 7Fr monophasic action potential (MAP) 

catheter (Boston Scientific, MA) was used to record ventricular action potentials. The MAP 

catheter measures signals that closely match transmembrane potentials of single cells using a 

distal exploring hemispherical electrode at its tip and a reference electrode 5mm proximal 

that removes far-field electrograms.8 The MAP catheter was advanced transvenously to the 

apex of the right ventricle (RV, n=37) or, in a minority, via the aorta to the apex of the left 

ventricle (LV, n=5) with heparin anti-coagulation. Electrophysiological signals were 

recorded on a physiologic recorder (Bard-Boston Scientific, Marlborough, MA), filtered at 

0.05 – 100 Hz (ECG), 0.05-500 Hz (MAPs) and 30-500 Hz (other intracardiac signals) and 

digitized at 1 kHz.

We performed pacing for 90 seconds at rate of 109 beats/min (cycle length, CL 550ms; IQR: 

550-600). Figure 1 illustrates ventricular MAPs, which we recorded at sites of highest 

regional amplitude to avoid scar and borderzone. Programmed ventricular stimulation was 

then performed, and considered positive if monomorphic ventricular tachycardia (VT) was 

induced with 1-3 extrastimuli or polymorphic VT or ventricular fibrillation (VF) were 

induced with 1-2 extrastimuli. Electrophysiological study was performed under guidelines 

for ischemic cardiomyopathy with LVEF < 40%, NSVT, and > 90 days from 

revascularization.18 Subsequently, ICDs were offered to all patients with LVEF ≤ 35% and 

were placed in 86% of patients within 2 weeks and 88% of patients overall.

Export of Ventricular Electrogram Data and MAP Preprocessing.

Figure 2 shows data flow in this study. MAP electrograms were exported at 16-bit digital 

resolution for analysis using custom software (Python 3.6). MAP signals were bandpass 

filtered from 0.5-250 Hz to remove low frequency drift (0.05-0.5 Hz). Analysis focused on 

each MAP beat as a voltage-time series in a 370 ms window (to encompass the longest 

MAP11,17). MAPs were aligned using the diastolic voltage baseline. Artifactual8 phase 0 

overshoots or undershoots were clipped at 3.0x standard deviation above and below the 

mean amplitude (Online Figure I).

K-Fold Cross Validation.

Our study design randomly split patients into a 70% cohort for training and an independent 

30% cohort for testing. To improve generalizability, we used stratified Monte Carlo cross-

validation to evaluate the trained ML classifiers, similar to the approach used by Feeny et al 
for cardiac resynchronization therapy.19 We performed K-fold cross-validation using K=10, 

each iteration providing 1 training set and 1 independent test set not used in training. Online 

Figure II illustrates K splits of data from patients in this project.

Mathematical Features of MAP Morphology.

Individual MAP waveforms were summarized by the tsfresh package (ver. 0.12.0 in Python 
3.6),20 which calculates mathematical “features” linked to a defined endpoint (here, VT/VF 

or mortality in turn). We ranked features by p-values, and removed the least significant using 

the Benjamini-Yekutieli procedure.21 Features that correlated highly to one another 
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(coefficient > 0.9) were represented by the feature with highest p-value to minimize co-

linearities. Features were then standardized by the z-score computed using the mean and 

standard deviation.

To identify the most important features, we implemented logistic regression with L1 

regularization on features standardized with z-score transformation, using a regularization 

factor C = 1 and the ‘liblinear’ solver in the scikit-learn library (0.21.3). The optimized 

model was constructed using features with the 40 highest absolute coefficients. The 

procedure for calculating and filtering features for supervised learning is summarized in 

Online Figure III and detailed in the Supplemental Methods, which also includes a Glossary 

of Terms used in this study.

Supervised Machine Learning for Clinical Predictions.

We developed a method to predict patient-level outcomes from raw MAP beats. First, we 

trained supervised learning models to use a single MAP recording to predict the endpoints of 

VT/VF or mortality, by training on all beats across patients (beat-level model). Second, 

because a single MAP may not capture prognostic information in any given patient in vivo 
due to biological or technical variability, we calculated the proportion of each patient’s beats 

classified by the beat-level model to predict the clinical endpoint. The resulting MAP score 
provided a patient-level prediction (Figure 2).

To develop the beat-level model we compared several ML approaches (Supplemental 

Methods). Support vector machines (SVM) are a data-efficient architecture that can classify 

complex data from a more limited training dataset than typically required for convolutional 

neural networks (CNN) or other supervised ML architectures (Online Figure IV, Online 

Table I).22 SVM identifies a subset of inputs, termed support vectors, that form a decision 

boundary that separates output classes (endpoints). Training aims to increase the distance 

between boundaries and improve generalizability of the model.22 Extensive testing revealed 

that SVM provided superior test characteristics to CNN (Online Table II).

Patient-level predictions were made by computing the MAP score, that indicates the 

proportion of test set beats in that patient computed by the beat-level model to predict the 

endpoint. The MAP score generates a continuous patient-level output as:

MAP score = (# of beats predicting tℎe endpoint
total # of beats )

for each endpoint in turn.

Prospective Follow-up and Endpoint Labels.

Subjects were followed prospectively for a median of 1290 days (inter-quartile range 920 to 

2409) using 4-6 monthly device interrogations, a telephone questionnaire, and reviews of 

electronic medical records. There was no loss to follow-up. Outcome definitions were (i) 

VT/VF detected by ICDs programmed uniformly for VT > 170-210 beats/min and VF > 210 

beats/min, by analyzing 16/24 intervals on first and 8/12 intervals on subsequent detections. 

The small number of patients without ICDs had evaluation of VT/VF > 30 s by clinical care 
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assessments. (ii) All-cause mortality was defined by the death registry. All data were 

consolidated via a comprehensive electronic medical records system. Endpoints were 

assigned by 3 senior clinical authors blinded to electrophysiological analyses at the 3-year 

follow-up in all patients (no censoring).

Physiological Interpretation of Machine Learning.

We analyzed trained SVM models to reveal the electrophysiological properties of beats 

predicting each endpoint. We computed: (i) the arithmetic mean of all MAP beats (in a 370 

ms window) that predicted VT/VF versus those predicting no VT/VF, and (ii) the arithmetic 

mean of MAP beats that predicted mortality versus those that predicted survival. MAPs were 

aligned by phase 0 upstrokes.

Biophysical cardiac cell modeling provides a framework to quantitatively link ionic 

pathways (channels, exchangers and pumps) through to action potential morphology. We 

used the O’Hara myocyte model, validated in human ventricles and recommended by the 

Food and Drug Administration for drug testing for SCA,23 to investigate changes in ionic 

pathway density for MAPs measured to predict VT/VF or mortality. A 2-stage process was 

applied. First, we studied the 5 ionic pathway alterations reported to be most important in 

heart failure.24 This includes the hERG channel (IKr), L-Type Ca2+ Channel (ICaL), Na+-

Ca2+ exchanger (NCX), Transient Outward current (Ito) and sarcoplasmic reticulum ATPase 

(SERCA). We discretized these pathways over 21 increments in a range of −80% to +100% 

of default values, providing 215 = 4,084,101 parameter sets. This generated a complete data 

set for all possible action potentials over this range of conductances for these 5 ionic 

pathways. Second, we performed a global sensitivity analysis to identify the pathways that 

produced action potentials that best matched mean recorded MAP durations at 30, 60, and 

90% repolarization for each endpoint.25-27

Detailed modeling methods are provided in Supplemental Methods.

Statistical Analysis.

Normality was evaluated using the Kolmogorov-Smirnov test. Continuous clinical data, 

respiratory rates, and autocorrelation quality indices are represented as mean ± standard 

deviation or as median (quartiles) and compared with t-tests or Mann-Whitney U tests as 

appropriate. Nominal variables are compared with Fisher exact tests. Predictions from SVM 

model test sets are reported as overall accuracy and confusion matrices. We performed 

receiver operating characteristic (ROC) analysis of MAP scores and defined the optimal cut-

point as the point closest to the upper-left corner and calculated the area under the curve 

(AUC). Applying the optimum cut-point to MAP scores allowed us to identify patients at 

low and high risk for each endpoint, and calculate decision statistics (sensitivity, specificity, 

positive and negative predictive values, and accuracy). The binary MAP score groups were 

included in univariate and multivariate logistic regression analyses. Multivariate tests were 

conducted using stepwise selection, setting p-values of 0.05 to enter and 0.10 to remove 

variables. For supplemental confirmation, we performed multivariate testing that included 

covariates with p < 0.10 in univariate testing. Spearman’s correlation was used to evaluate 

the association between VT/VF and mortality MAP scores. A probability of < 0.05 was 
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considered statistically significant. All tests are 2-sided and no adjustments for multiple 

comparisons were employed.

RESULTS

The baseline characteristics of subjects are shown, separated by the primary endpoint of 

VT/VF (Table 1) or mortality (Online Table III) on 3-year follow-up. A total of 5706 MAPs 

were available in this study, and each patient provided 136 ± 92 MAP signals for analysis.

On follow-up of > 3 years, 13 patients had sustained ventricular arrhythmias and 14 patients 

died. Patients with and without events had similar LVEF, age and other demographics for the 

endpoints of VT/VF (Table 1) or mortality (Online Table III). Prevalence of devices in 

follow up (88% overall) did not differ between patients with and without VT/VF (p = 0.30), 

or those who died versus those who survived (p = 1.0). On electrophysiological testing, 

ventricular arrhythmias were inducible in N=14 patients while N=28 patients were non-

inducible. There were no differences in patient demographics separated according to 

inducibility (Online Table IV). There were no differences in time from revascularization in 

patients with/without events for each endpoint.

Mathematical Features of MAPs.

The top 40 features extracted by tsfresh from the entire dataset are shown grouped for the 

endpoints of VT/VF (Online Table V) and mortality (Online Table VI). Features were found 

to represent frequency domain and mathematical indices of action potential shape.

Analysis of Single Beats and Creation of MAP scores.

Predictive accuracy of the SVM for single beats (beat-level analysis) was 83.2% (CI: 82.6 - 

83.8%) for VT/VF and 75.4% (CI: 74.7-76.0%) for mortality. Online Table VII presents full 

test characteristics. Extensive testing showed that the SVM model outperformed CNN 

models for both endpoints (Online Table I).

MAP scores provide a continuous output for each patient less affected by variability in a 

single MAP waveform (patient-level analysis). The mean VT/VF MAP score was 0.31 ± 

0.33 and the mean mortality MAP score was 0.34 ± 0.31. Across patients, MAP scores for 

both endpoints were uncorrelated (r=0.05, p=0.78), suggesting that separate characteristics 

of MAP shape predicted each endpoint.

MAPs did not differ between patients who did or did not experience events based on artifact 

from respiratory rate (Online Table VIII) or estimates of overall MAP signal quality (Online 

Table IX) for either endpoint.

Patient-Level Prediction of Sustained VT/VF and Mortality.

Of the 42 patients, 13 experienced sustained VT/VF. Figure 3A shows the ROC curve 

generated by varying the cut point for the MAP score for the VT/VF endpoint. The area 

under the curve (AUC) for this metric was 0.90 (95% CI = 0.76-1.00). The optimal cut-point 

yielded an accuracy of 85.7%.
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The causes of mortality in our population were cardiac or unexplained (n=11), renal failure 

(n=1), malignancy (n=1) or sepsis (n=1). Figure 3B shows the ROC curve for the MAP score 

related to the mortality endpoint, for which the AUC was 0.91 (95% CI: 0.83-1.00). The 

optimal cut point yielded an accuracy of 81.0%. Decision statistics (clinical predictive 

indices) for both VT/VF and mortality are summarized in Table 2.

Deriving Pathophysiological Phenotypes from Machine Learning.

Machine learning is often considered to be a ‘black box’. To address this, we set out to 

identify MAP shapes predicting each endpoint. Figure 4A shows average MAP shapes that 

predicted sustained VT/VF versus those that predicted no VT/VF by the trained SVM. MAP 

waveforms that predicted VT/VF had higher plateau height (0.969 ± 1.34 vs. 0.839 ± 1.74 

standardized mV, p < 0.001) and longer phase II duration (176 ± 35 ms vs 163 ± 40 ms, p < 

0.001) compared to MAPs that did not.

Figure 4B shows average MAP shapes that predicted mortality versus those that predicted 

survival by the trained SVM. We quantified phase I as the mean voltage of each MAP from 

the upstroke to phase II, between 10ms to 40ms after phase 0. For MAP beats that predicted 

mortality, the mean Phase I standardized voltage was lower than in those predicting survival 

(2.44 ± 1.31 vs. 3.32 ± 2.47, p < 0.001). This phase I metric predicted mortality with a c-

statistic of 0.816 (CI: 0.676 to 0.957).

Conversely, examining phase 0 upstroke velocity, the maximum dV/dt for MAP recordings 

poorly separated patients with and without endpoints (c-statistic 0.605 for VT/VF, 0.625 for 

mortality). Action potential durations at 90% repolarization (APD90) did not separate 

patients with and without VT/VF (262 ± 31 vs 249 ± 39 ms; p = 0.30) nor mortality (250 ± 

42 vs. 259 ± 24 ms, respectively; p = 0.34).

We next studied potential ionic pathways explaining each MAP phenotype. Biophysical cell 
models showed that all 5 ionic pathways contributed to APD in the FDA-approved O’Hara 

model (Figure 5). Global sensitivity analysis revealed that SERCA had the smallest 

contribution (Figure 5A). We thus considered 2 datasets of ionic pathways made up of IKr, 

Ito and either (a) ICaL or (b) NCX, which both cause a depolarizing current and have similar 

importance to APD (Figure 5A).

We found that higher ICaL (Figure 5B) or enhanced NCX (Figure 5C) resulted in increased 

action potential plateau height and duration in MAPs that predicted VT/VF compared with 

those that did not. To study pro-arrhythmia, we found that APD alternans arose more often 

in models with higher ICaL than those with lower ICaL at slow pacing rates (36.25% vs. 2.5% 

of simulations at cycle lengths ≥ 220 ms), but similar prevalence at faster rates (23.75% vs. 

30.25% at cycle lengths < 220 ms). APD alternans had similar prevalence in cell models 

with enhanced or non-enhanced NCX at both rates (50.0% vs 52.5%, and 25% vs 32.0%, 

respectively). Differences in IKr were also found, consistent with the small non-significant 

differences in measured APD.
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Patients who died, compared to those who survived, showed action potentials with increased 

IKr conductance or minor reduction in NCX that fit to measured differences in APD90 

(Figure 5B and 5C). These cellular investigations are detailed in Supplementary results.

Prediction of Endpoints by Logistic Regression Analyses.

Table 3 shows the results of univariate and multivariate logistic regression analyses. For the 

VT/VF endpoint, the MAP score yielded a univariate odds ratio of 26.4 (CI: 4.4-157.9, p < 

0.001) and was the predominant predictor in the multivariate model. No potential covariate 

met the criterion of p < 0.10 for inclusion in the multivariate model. Neither testing for 

induction of VT/VF, nor the presence of ICD within 14 days of testing, nor coronary artery 

disease distributions from angiography predicted VT/VF. For the mortality endpoint, the 

MAP score yielded a univariate odds ratio of 22.0 (CI: 3.8-126.4, p = 0.001). This result 

remained significant in the stepwise test where the odds ratio was 31.0 (CI: 3.2-299.0, 

p=0.003) and when age, pre-procedural beta blocker use, and log BNP were forced into the 

model the odds ratio was 30.8 (CI: 2.6-361.5, p=0.006).

DISCUSSION

Our study supports the hypothesis that patients with ischemic cardiomyopathy exhibit tissue 

and cellular phenotypes that predict outcome. Machine learning of ventricular action 

potentials recorded in patients with ischemic cardiomyopathy, combined with extensive in 
silico analysis of ionic pathways, revealed electrophysiological phenotypes that predicted 

long-term vulnerability to VT/VF or mortality. These computational phenotypes improved 

upon the predictive value of traditional clinical risk markers in independent test cohorts. 

Future studies could extend our results to body surface ECGs or device-acquired signals for 

wider screening. By linking cellular physiology with clinical outcomes, this computational 

phenotyping approach may have promise for mechanism-guided management of other 

conditions.

Using Electrophysiologic Remodeling to Predict SCA.

Although LVEF < 35% is a guideline for ICD implantation, this index of mechanical 

remodeling has suboptimal sensitivity and specificity for SCA.3 This is particularly true for 

patients with LVEF 35-40%, who we included in our study and in whom risk stratification is 

difficult even including electrophysiologic testing.

Our study reveals that MAPs with a more depolarized and prolonged phase II predicted risk 

for sustained VT/VF, and outperformed LVEF and other clinical predictors. Although the 

magnitude of MAP changes were small, relatively small changes in action potential plateau 

have been shown to produce large changes in ICaL and large increases in contractility.28

Our action potential simulations revealed that increased ICaL or enhanced NCX can explain 

this augmented height and prolonged Phase II plateau, with APD alternans in ICaL models 

supporting a pro-arrhythmic role. Modulation of the L-type Ca2+ current has not previously 

been reported to convey risk for VT/VF in patients with ischemic cardiomyopathy. However, 

increased ICaL is an established mechanism for ventricular arrhythmias in heart failure 

related to increased beta-adrenergic tone,29 and in patients with LQTS,6 BrS,30 and early 
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repolarization syndromes.31 The effect of enhanced NCX is consistent with increased 

intracellular calcium from elevated ICaL. Direct tissue biopsy could further dissect these 

mechanisms for VT/VF, as well as potential contributions of fibrosis or ultrastructural 

connexin abnormalities.32

Clinical recordings showed that MAPs from patients who died showed enhanced early 

repolarization (phase I) compared to those who survived, and no significant differences in 

APD. Whether our observed changes in phase I reflect altered Ito requires further study. Our 

computational models, while used by the FDA to screen risk for sudden death23, emphasize 

APD and mechanisms of repolarization reserve and under-emphasize phase I repolarization 

which is of short duration.33 Increased Ito has a plausible mechanistic role in patients with 

ischemic cardiomyopathy, and is linked with adverse outcomes in patients with Brugada 

syndrome,30 J wave syndromes,31 and as a cause of early afterdepolarizations in animal 

models.34 Ito current is higher in right than left ventricle, at the apex versus the base,35 and 

interacts with ICaL to cause a repolarization notch in MAP tracings.36

Potentially differing mechanisms for VT/VF and mortality are consistent with the opposite 

APD effects observed, albeit small in magnitude, for patients with or without VT/VF 

compared to patients with or without mortality. Hypothetically, APD lengthening could 

explain VT/VF by reentry, particularly if spatially heterogeneous. APD shortening could 

explain mortality by factors such as inflammation or frailty, and patients who died were 

indeed older at recruitment, with higher BNP and a trend for lower potassium (Online Table 

III). Changes in APD must be considered in the context of the other observed waveform 

alterations.

Whether our tissue recording patterns in individual patients reflect changes in net 

repolarizing current at the myocyte level requires confirmation in biopsy specimens; or 

perhaps through the use of induced pluripotential stem cells,37 or gene therapy,32 guided by 

established principles of all-or-none repolarization.5

Using Machine Learning to Predict SCA.

ML has not previously been applied to identify cellular phenotypes for arrhythmias. Ramirez 

et al. applied SVM to the rate response of repolarization on the ECG 0T0Tto identify 

patients who may suffer SCA versus death from heart failure.38 Lee et al. trained neural 

networks using heart rate variability from 52 0T0TECG tracings prior to arrhythmia and 52 

control tracings. Their approach 0T0Tpredicted imminent sustained VT (within 1 

hour)0T0T390T0T but did not predict long-term outcomes0T0T. Aro et al. used ML to 

identify 14 ECG parameters that predicted SCA in large cohorts40 and Lyon et al.41 

identified novel ECG and structural clusters which may predict SCA in patients with 

hypertrophic cardiomyopathy.

In developing ML to partition action potential shapes to predict SCA, we compared several 

model architectures and found that SVM performed better than CNN-based models. CNNs 

perform optimally by linking features in time-series data, which are high dimensional, and 

may be considered data hungry. Conversely, SVM can operate on features of lower 

dimensionality,22 which may explain their performance here. Studies to define optimal ML 
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and statistical approaches to classify tissue-level and whole heart electrophysiologic data are 

ongoing in our laboratory.

Comparison with Traditional Predictors of Long-term Outcomes.

Our predictive model outperformed traditional clinical predictors. Prior studies confirm that 

inducible arrhythmias at programmed stimulation modestly predict long-term outcomes in 

patients with ischemic cardiomyopathy.42 LVEF alone is a poor predictor of sudden cardiac 

death with a c-statistic of 0.57 that may improve little (to 0.64) by adding other clinical data.
43 Comorbidities such as worse NYHA class, atrial fibrillation, and non-sustained VT confer 

higher risk,42 yet also increase the proportion of non-arrhythmic deaths. Oscillations of 

intracardiac electrograms or the ECG T-wave9-11,44 prolonged ECG QRS duration or clinical 

comorbidities are insufficiently predictive to guide therapy.2 As with all predictive models, 

the use of our MAP-based model requires consideration of other clinical indicators.

Clinical Implications.

Computational phenotyping which links cellular and tissue-level data with clinical outcomes 

could provide a basis for mechanism-based personalized management. This 

multidisciplinary approach could be broadened using non-invasive ECG imaging of 

epicardial unipolar electrograms45 or device-acquired unipolar ventricular electrograms, 

which show similarities in shape and rate response to MAPs.46 Cellular phenotypes could be 

refined using tissue biopsy samples, or potentially induced pluripotential stem cells, from 

patients in low and high-risk groups. The utility and reliability of machine learning could be 

enhanced by incorporating well-labeled biomarker, genomic and clinical data to the models. 

With further development, cellular phenotypes may form the basis to identify high- and low- 

risk clinical groups, to guide patient-level therapy, for drug discovery, or to repurpose 

existing medications.

Limitations.

Our patient cohort was relatively small. On the other hand, this dataset of 5706 MAPs in 42 

patients (with long term follow-up) is also among the largest that has been reported. Ideally, 

we would have confirmed cellular phenotypes by tissue biopsy, but there was no clinical 

indication for cardiac biopsy in these patients.

MAPs were not sampled spatially within the ventricles, although our study design ensures 

that recordings were standardized in anatomical location to increase reproducibility. The 

relationship of MAP recordings to ventricular scar was not defined, although relatively large 

and stable MAP amplitudes ruled out substantial scar or border zone effect.47 While 

successive MAPs within a patient may vary, we quantified this using our MAP score 

approach. Future work should address regional MAP variation across each ventricle, 

compared between right and left ventricles, and studied in relation to MRI-determined scar. 

This could also be attempted using MAP surrogates from body surface ECG imaging, or 

ultimately by in vivo optical imaging.48

Patients in this study were predominantly male, and future work should address gender-

specific effects and differences. Patients underwent electrophysiologic study, but there was 
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no detected statistical bias introduced by the presence of implanted devices, since 88% 

received ICDs in follow-up (most within 2 weeks of EPS).

Conclusions.

Machine learning of ventricular monophasic action potential recordings combined with 

cellular biophysical analyses revealed electrophysiologic phenotypes that predicted long-

term outcomes in patients with ischemic cardiomyopathy. This computational phenotyping 

approach outperformed established clinical predictors and, with further development, could 

facilitate mechanism-guided management of other diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Nonstandard Abbreviations and Acronyms:

MAP Monophasic action potential

ML Machine learning

ICD Implantable cardioverter defibrillator

SVM Support vector machines

CNN Convolutional neural network

IKr hERG channel current

ICaL L-Type Ca2+ Channel current

Ito Transient outward potassium current
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NCX Na+-Ca2+ exchanger

SERCA Sarcoplasmic reticulum ATPase

APD[XX] Action potential duration at (XX%) repolarization
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NOVELTY AND SIGNIFICANCE

What Is Known?

• Patients with ischemic cardiomyopathy are at increased risk for sudden 

cardiac arrest

• Structural and electrophysiological remodeling occur at the cellular level in 

these patients, but it is unclear which aspects of cellular electrophysiology 

contribute to clinical events.

What New Information Does This Article Contribute?

• Machine learning of ventricular action potential shape in patients with 

ischemic cardiomyopathy revealed cellular electrophysiologic phenotypes 

which predicted future sudden death.

• Long term arrhythmic risk was predicted by prolonged phase II 

repolarization, reflecting abnormal calcium handling in computational 

models, while long term mortality was predicted by enhanced early 

repolarization in ventricular myocardium.

• Machine learning to classify complex physiological data, then probing 

machines to reveal novel disease phenotypes, represents a novel pipeline that 

bridges cellular mechanisms to clinical outcomes

Patients with ischemic cardiomyopathy are at elevated risk for sudden cardiac arrest, but 

further risk stratification has remained challenging. A link from basic electrophysiology 

phenotypes to clinical outcomes exists for certain inherited cardiomyopathies, but not yet 

for more general populations with heart disease. Using physiologic recordings from 

patient’s hearts, we trained a machine learning model to predict clinical outcomes in 

patients with ischemic cardiomyopathy. By careful interrogation of the trained machines, 

we found cellular phenotypes linked with elevated risk of ventricular arrhythmias and 

death. Abnormal calcium handling and a prolonged phase II repolarization lead to 

increased ventricular arrhythmias. Enhanced early repolarization pattern portended risk 

for mortality. This pipeline of machine learning, interrogation of trained machines, and 

discovery of new physiology with clinical impact may bridge basic scientific 

understanding to other important clinical entities.
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Figure 1. 
Ventricular monophasic action potentials (MAPs) in patients with ischemic LV 
dysfunction with (top row) or without (bottom row) events on long-term follow-up. Panels 

show (A) 79-year-old male, LVEF 29% with appropriate ICD therapy at 400 days; (B) 55-

year-old male, LVEF 35% with ICD therapy at 598 days; (C) 70-year-old male, LVEF 25% 

who died from congestive heart failure at 95 days. Bottom panels show (D) 45-year-old 

female, LVEF 26%, (E) 63-year-old male, LVEF 40%, (F) 59-year-old male, LVEF 21%, 

each of whom had no event at > 3 years of follow-up. (G) Expanded MAP upstroke from 

patient in (F) (black) with dV/dt (red) illustrating signal fidelity.
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Figure 2. 
Data flow in study.
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Figure 3. 
Receiver operating characteristics of patient-level MAP scores for (A) sustained VT/VF 

and (B) all-cause mortality on 3-year follow-up.
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Figure 4. MAP Morphologies identified by Machine Learning to predict endpoints of (a) VT/VF 
and (b) overall mortality.
a. Average computed from all single beats that predicted VT/VF (red) or no VT/VF (blue). 

b. Average computed from all single beats that predicted mortality (red) or survival (blue). 

Means were computed from SVM results for all 10 folds in learn and test sets combined. 

Voltages are standardized within each curve and adjusted for small offsets at time zero.
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Figure 5. Cellular Biophysical Simulations Probe How Machine Learning of MAPs Predicted 
Clinical Outcomes.
A) Global sensitivity analysis of the contribution of Ikr (Kr), ICaL (CaL), NCX, Ito (TO) and 

SERCA, which are altered in heart failure24. The vertical scale is the normalized sensitivity 

(%) of action potential durations at 30% (APD30), 60% (APD60) and 90% (APD90) 

repolarization to each pathway (log scale). B) Ionic pathway densities for dataset 1, in which 

TO, Kr and CaL were each varied within 91 increments (913 = 753,571 permutations) were 

fitted to clinically measured MAP durations predicting VT/VF or mortality. C) Ionic 

pathway densities for dataset 2, in which 753,571 permutations of TO, Kr and CaL were 

fitted to measured MAP durations predicting VT/VF or mortality. Action potentials from 
patients with VT/VF exhibited lower Kr, higher CaL or enhanced NCX (explaining higher 

phase II plateau) than those without events. Action potentials from patients who died 
exhibited elevated Kr or reductions in NCX compared to those who survived.
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Table 1.

Baseline Characteristics of Population Split by Endpoint of VT or VF at 3-years

All Subjects VT/VF
at 3 years

No VT/VF
at 3 years

(n=42) (n=13) (n=29) p

Age, y 64.7 ± 13.0 65.5 ± 12.4 64.3 ± 12.0 0.781

Gender, M/F 41/1 13/0 28/1 1

LVEF, % 27.0 ± 7.6 27.2 ± 8.1 26.9 ± 7.4 0.896

QRS Duration, ms 126 ± 33 128 ± 37 125 ± 32 0.766

 LBBB, % (n) 28.6 (12) 23.1 (3) 31.0 (9) 0.725

 RBBB, % (n) 14.3 (6) 23.1 (3) 10.3 (3) 0.341

 IVCD, % (n) 21.4 (9) 53.8 (7) 6.9 (2) 0.697

 Any IVCD, % (n) 64.3 (27) 61.5 (8) 65.5 (19) 1

Myocardial Infarct, % (n) 88.1 (37) 92.3 (12) 86.6 (25) 1

 Days from MI to EPS (IQR) 3036 (1319-7015) 6681 (2627-7771) 2914 (943-6771) 0.205

 Days from revasc. to EPS (IQR) 2495 (1260-4714) 2221 (292-4861) 2529 (1379-4714) 0.418

CAD Vessels, % (n)

 LAD 59.5 (25) 46.2 (6) 65.5 (19) 0.237

 LCx 54.8 (23) 38.5 (5) 62.1 (18) 0.296

 RCA 61.9 (26) 61.5 (8) 62.1 (18) 1

Hypertension, % (n) 19.0 (8) 23.1 (3) 17.2 (5) 0.686

Diabetes, % (n) 14.3 (6) 15.4 (2) 13.8 (4) 1

Laboratory values

 BNP, pg/ml (median, IQR) 341 (157–999) 389 (124–1120) 299 (162–908) 0.806

 Sodium, mmol/L 139 ± 3.6 139 ± 3.5 138 ± 3.6 0.48

 Potassium, mmol/L 4.3 ± 0.4 4.4 ± 0.3 4.4 ± 0.5 0.922

 Magnesium, mmol/L 2.0 ± 0.4 2.1 ± 0.2 2.0 ± 0.4 0.142

Prior Medications, % (n)

 Beta-Blocker 73.8 (31) 69.2 (9) 75.9 (22) 0.713

 ACE inhibitors/ARB 92.9 (39) 100 (13) 89.7 (26) 0.54

 Spironolactone 19.0 (8) 30.8 (4) 13.8 (4) 0.226

 CCB 14.3 (6) 7.7 (1) 17.2 (5) 0.647

 Digoxin 38.1 (16) 30.8 (4) 41.4 (12) 0.733

 Amiodarone 9.5 (4) 15.4 (2) 6.9 (2) 0.576

 Statins 71.4 (30) 69.2 (9) 72.4 (21) 1

Implantable Device at EPS* 85.7 (36) 100.0 (13) 79.3 (23) 0.153

*
within 14 days

Key: Values are n, mean ± standard deviation, or median (interquartile range). Categorical variables are compared using Fisher’s exact test; 
continuous variables using the t-test (except BNP: Mann-Whitney U test performed because data is not normally distributed). ACE, angiotensin 
converting enzyme; ARB, angiotensin receptor blockers; BNP, B-type natriuretic peptide concentration; CCB, calcium channel blockers; CAD, 
coronary artery disease; EPS, electrophysiology study; IVCD, intraventricular conduction delay; LAD, left anterior descending artery; LBBB, left 
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bundle branch block; LCx, left circumflex artery; MI, myocardial infarction; RBBB, right bundle branch block; RCA, right coronary artery; 
Revasc., coronary revascularization; Statins, HMG-CoA reductase inhibitors.
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Table 2.

Patient-level Decision Statistics of MAP Scores for Sustained VT/VF (%) and All-Cause Mortality (%)

Sustained VT/VF All-Cause Mortality

95% Confidence Limits 95% Confidence Limits

Percent Lower Upper Percent Lower Upper

Sensitivity 84.6 54.6 98.1 85.7 57.2 98.2

Specificity 86.2 68.3 96.1 78.6 59 91.7

Positive Predictive Value (PPV) 73.3 44.9 92.2 66.7 41 86.7

Negative Predictive Value (NPV) 92.6 75.7 99.1 91.7 73 99

Accuracy 85.7 71.5 94.6 81 65.9 91.4
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Table 3.

Univariate and Multivariate Predictors of Sustained VT/VF and Mortality

Sustained VT/VF Endpoint All-Cause Mortality Endpoint

Predictor
Univariate
p

Multivariate
p

OR
(95% CI)

Univariate
p-value

Multivariate
p

OR
(95% CI)

Age (years) 0.695 0.011

LVEF (%) 0.8 0.664

Heart Rate (bpm) 0.45 0.622

QRS Duration (ms) 0.759 0.486

 LBBB 0.651 0.507

 RBBB 0.246 0.246

 IVCD 0.563 0.385

 Any IVCD 0.941 0.871

CAD Vessels

 LAD 0.285 0.542

 LCx 0.185 0.720

 RCA 0.885 0.750

Time of Event to EPS

 Days from MI to EPS 0.199 0.076

 Days from revasc. To EPS 0.589 0.389

HTN 0.321 0.307

Diabetes 0.702 0.452

Log 10 BNP (pg/mL) 0.829 0.012

Prior Beta-blocker use 0.748 0.002 0.018 0.058 (0.006-0.618)

Prior CCB use 0.369 0.403

Prior amiodarone use 0.431 0.507

Prior ACEi/ARB use 0.211 0.232

Prior digoxin use 0.542 0.123

Prior spironolactone use 0.125 0.695

Prior statin use 0.748 0.528

Inducible Arrhythmias 0.750 0.445

Implantable Device at EPS 0.999 0.999

MAP Score Group <0.001 <0.001 24.20 (4.03-145.30) <0.001 0.003 31.0 (3.2-299.0)

Notes: ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; BNP, B-type natriuretic peptide; CAD, coronary artery 
disease; CCB, calcium channel blocker; statin, HMG-CoA reductase inhibitors; HTN, hypertension; IVCD, intraventricular conduction delay; 
LAD, left anterior descending artery; LBBB, left bundle branch block; LCx, left circumflex artery; LVEF, left ventricular ejection fraction; MAP 
Score Group indicates patients above the ROC cut point for the MAP Score for VT/VF or mortality, respectively. RBBB, right bundle branch block; 
RCA, right coronary artery, Statins, QRS duration in milliseconds.
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