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QUANTIFYING CODING PERFORMANCE FOR PRE-PROCESSED IMAGES

V. Ralph Algazi*, Niranjan Avadhanam and Robert R. Estes, Jr.
CIPIC, Center for Image Processing and Integrated Computing,
University of California, Davis, CA 95616

ABSTRACT

Typical objective methods for quantifying image quality, as part of evaluating coder performance, are obtained
by computing a single or several numbers as a function of the difference image between the original and coded
images. Pre-processing images prior to encoding can remove noise, or unimportant detail, and thus improve the
overall performance of the coder. However, the error image obtained with the pre-processed image as a reference
is substantially different than the one obtained if the original image is used. In particular, adaptive noise removal,
that generally improves the image quality, could be interpreted as introducing noise with respect to the original.
This paper addresses the issue of combining the changes in the image due to pre-processing and the degradation due
to encoding. The objective is to obtain global quality measures that quantify the value of pre-processing for image
coding.

Keywords : image quality, perceived distortions, objective quality, vision models, coding performance, pre-
processing.

1. Introduction

In image coding, the artifacts introduced by standard coders are uncontrolled or unpredictable in detail. If high
image quality 1s to be maintained, this characteristic may allow a very small compression, or often only error free
compression, in order to maintain acceptable image quality. One option, that we have examined in previous work,
is to pre-process the image in an adaptive fashion so as to introduce imperceptible or controlled degradations to the
image.'? Such pre-processing, when combined with a standard coder, either lossy or error free, can result in an
improvement in overall coding performance.! Measuring this performance improvement is the subject of this paper.

Traditionally, objective measures of image quality are numerical valued functions of the difference between the
original and encoded image. Preserving the numerical integrity of the original image is thus the implicit goal of
the coder. If the original image is processed prior to encoding, the changes introduced by such processing will lead,
for instance, to a mean square error that is considered objectively a loss of image quality. As an alternative, the
performance of the coder could be measured with respect to the pre-processed image. In such a case, no weight
is given to perceptible degradations introduced by pre-processing. Thus both alternatives are unsatisfactory. To
correctly address this issue, we need to assess perceptually, image changes due to processing or coding.

We have developed two methods which are applicable to the problem. Both these methods are based on the
Visible Differences Predictor (VDP)? developed by Scott Daly. The objective quality metrics we use are variations
of the Peak Signal to Noise Ratio (PSNR) and a Picture Quality Scale (PQS).

This paper 1s organized as follows: after an introduction to the paper in section 1, we describe the problem
statement in section 2. The VDP and the PQS algorithms on which the objective quality metrics are based, are
briefly outlined in sections 3 and 4. In section 5, we explain the methodology used to quantify coder performance.
Section 6 describes the simulation results using the two metrics. Finally, in section 7, we discuss some of the results
and present conclusions.

2. Problem Statement

The main objective is to evaluate the merits of pre-processing prior to using a standard coder. We expect that the
pre-processing not only does noise removal but also simplifies the data in such a way that it is easier for the coder
the encode the data. At low quality levels, the coder by itself does noise removal by quantizing coarsely the high
frequency components. The benefit from pre-processing 1s expected to be more apparent at higher levels of quality.

The Corner Preserving Filter (CPF)? is used as the pre-processor with the number of iterations controlling the
degree of pre-processing. The CPF is based on a mean curvature diffusion algorithm that adaptively filters the image.



It has been shown previously that this filter preserves important structure in images while removing noise effec-
tively.!? A standard JPEG coder using the Independent JPEG Group software* is used for the coding purposes.

We break up the analysis into two parts:

1. Comparison of the coder performance on the original image and on a perceptually transparent pre-processed
image. The pre-processing can be verified to be perceptually transparent on a calibrated monitor. The reduction
in noise allows the coder to encode the pre-processed image more effectively. Visual inspection of the coded
image at the same bitrate with and without pre-processing shows the merit of pre-processing. This gain in
visual quality should be reflected by the quality metric.

2. Comparison of the coder performance for different levels of pre-processing. As the number of pre-processing
iterations are increased, perceptual transparency is no longer preserved. The adaptive filtering still preserves
the integrity of visually significant areas of the image. The purpose of the pre-processing here, is to control the
distribution of errors, so that they are less perceptible after coding, or to simplify the image structure so that
fewer bits are needed to encode 1t. Eventually, though, more pre-processing introduces clearly visible artifacts
which degrade the overall coder performance. Again, the quality metric should reflect these observations.

For the analysis, we use two objective quality metrics:

1. PSNR based on the VDP
2. PQS based on factor images obtained using the VDP

3. Visible Differences Predictor

The VDP algorithm proposed by Scott Daly is a multichannel human vision model which takes an image processing
approach to quality prediction. The inputs to the algorithm are the original and distorted images and the viewing
conditions. The output is a map showing the probabilities of detection of the errors. The original model describes
threshold perception only; all suprathreshold errors are mapped to a probability of 1.

The overall model 1s implemented as a cascade of submodels to incorporate the known properties of the visual
system. The main components of the model are:

1. retinal nonlinearity

2. contrast sensitivity function

3. orientation and frequency selective cortex bands
4. masking properties

5. psychometric function and probability summation.

Figure 1 gives an overall view of the algorithm. Complete details are given in references.®® A number of psychophys-
ical tests have been performed to test the validity of this algorithm.® A shift invariant nonlinearity models the light
adaptive property of the retina. A display calibration model is needed to map the gray levels into luminance values
on the monitor.

The CSF quantifies the visual response as a function of the spatial frequency. The spatial frequency and orientation
selectivity which reflects the properties of simple cells in the cortex.The decomposition into multiple spatial frequency
and orientation tuned channels is achieved by a cascade of frequency selective filters (denoted as difference of mesa
(dom) filters®) and orientation selective fan filters based on the cortex transform.” This selectivity yields specific
frequency and orientation tuned bands called cortex bands.

The dom filters have octave bandwidths and are symmetric on a log frequency axis. The fan filters have a tuning
bandwidth of 30 degrees. The present implementation has 5 doms and 6 fans yielding a total of 31 cortex bands
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Figure 1. VDP construction

including the baseband. Making use of results from sinusoidal masking and noise experiments, Daly proposed a

masking function of the form
T, = (1 + (ka(kama)))F (1)

where the masking effect due to the image activity i1s evaluated for each cortex band and results in a threshold
elevation due to masking calculated as a nonlinear function of the normalized mask contrast m,. Here s is the

learning effect slope and takes values between 0.7 and 1, k1:6_T7, ky=63 and b=4. The choice of these parameter

values is explained in the reference.?

The contrast difference of the errors for each location in a band is mapped through a psychometric function of
the form i

Ple)=1—¢" () (2)

where ¢ 1s the contrast of the error, « the contrast threshold, and 3 the slope of the psychometric function. This

yields a probability of detection map for each band. Since the channels are assumed to be independent, an error

above threshold in any of the cortex bands would be perceivable. Hence the probability maps for all the 31 bands
are combined as below to give a single map of the probability of detection of the errors as a function of location in

the image.
P(mn)=1- J[ (= Pei(m,n)) (3)

k=0..5/I=1..6

where k& = 0 corresponds to the baseband.
For the present work, we ignore the sign of the error. We obtain a binary map where all suprathreshold errors

are mapped to a value of 1.

4. Picture Quality Scale

The PQS for the evaluation of coded images is obtained by considering perceptual properties and the errors that
can be observed in the coding of images.®° First, the image signal is transformed into one which is proportional to
the visual perception of luminance according to a power law and then the frequency weighted errors ey, (m, n) are
obtained by filtering with a CSF like function. Perceived image disturbances are identified and the corresponding
objective quality factors which quantify each image degradation are computed as functions of ey, (m, n). The perceived
disturbances are D; and the defined numerical measures of them are the corresponding distortion factors F;. At
the first stage, factor images f;(m, n) are obtained by performing local computations on e, (m, n). Next, distortion
factors F; are obtained as summations on the corresponding factor images. The PQS makes use of five factors, the
first two factors accounting for random errors and the third for blocking artifacts. The last two factors, dominant at
high quality, correspond to structured errors and errors near edges. It is assumed that the mean opinion of scores
(MOS) is approximated by a linear combination of the distortion factors. Reference® gives a detailed description of
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Figure 2. PQS construction

Figure 3. “Lena”. (a) left CPF50 (d) right VDP mask

PQS and its performance for the full range of quality. Figure 2 summarizes the steps used in the construction of

PQS.
The global value for PQS is given by the linear combination of the factors FJ as

J
PQS =b,+y bj - Fj (4)

ji=1

where bg is a fixed parameter and bj are the partial regression coefficients which are computed by Multiple Regression

Analysis (MRA)!® between the factors and the MOS values of observers obtained by experimental quality assessment
tests. The correlation coefficient R between PQS and MOS is 0.92, which is a great improvement when compared to
the correlation of R=0.47 of the conventional WMSE scale which is calculated by using F; only.

5. Methodology

The VDP allows the prediction of areas of an image where distortions will be perceived. This suggests that the
0-1 mask produced by the VDP be integrated into the quality evaluation methodology of encoders for pre-processed
images. We apply the VDP to the difference between the original and the pre-processed images. The VDP mask
will thus indicate portions of the image where the processing has introduced perceptible changes from the original.
Figure 3 shows the “Lena” image after 50 iterations (lossy pre-processing) of the CPF have been performed and the
VDP mask obtained for 50 iterations. The areas where the pre-processing introduces suprathreshold errors (mask
values of 1) are mapped to a gray level of 255 in this figure. These areas have been overlayed on the original image
for comparison.



Figure 4. Images used. (a) top left “Building” (b) top right “Lena” (c¢) bottom left “Wheel” (d) bottom right
“Smile”

5.1. Use of VDP with PSNR (VDP+PSNR)

Let M(m,n) be the 0-1, mask produced by the VDP, where 1 is assigned to areas of the image where the errors are
perceptible. Let I,(m, n) be the original image, I,(m, n) be the pre-processed image, and I.,(m, n) be the encoded
image. We can now compute two error images

Iy (m,n) = M(m,n)[Ien(m,n) — I,(m,n)] (5)
and
lLaz(m,n) = [1 = M(m,n)|[Len(m, n) — I (m,n)] (6)
where [1- M (m, n)] is the complementary set to the M(m, n) mask.

I41(m,n) only includes errors in areas where the VDP indicates pre-processing has introduced perceptible changes.
In such areas, the encoding distortions should be evaluated with respect to the original image as indicated. On the
other hand, Iz2(m,n), evaluated in areas where pre-processing does not introduce perceptible errors, uses the pre-
processed image as a reference.

We can now evaluate the performance of the coders by adding the contributions due to Iz (m, n) and Iga(m,n).
Thus, a modified mean-square error can be evaluated as :

MSE = Y0 3 (15 (m,m) + Iy(m, n)) (7

and the corresponding computation of the PSNR follows.
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Figure 5. Coder Performance using the two metrics for “Lena”. (a) left VDP+PSNR for CPF5 and PSNR for
CPFO (b) right VDP+PQS for CPF5 and PQS for CPF0

5.2. Use of VDP with PQS (VDP+4+PQS)

Using an approach similar to the previous sub-section, we compute the PQS value based on the two domains M (m, n)
and [I-M(m,n)]. As described in section 4, five factor images are to be obtained by performing local computations
on the error image. We first compute the two error images [ I.,,(m, n) - I,(m,n)] and [ I, (m, n) - I,(m, n)]. Next, we
obtain two factor images fg1;(m, n) and fg2;(m, n) for each distinct factor F; by performing identical computations
on the two error images. The two factor images are then combined as :

far,(m,n) = M(m,n)fai(m,n) + [1 — M(m,n)]fa2:(m, n) (8)

These factor images are then integrated into global values for the factors which are in turn, combined to give the

global PQS value.

6. Experiments and Results

In this paper, we consider the four images, “Building”, “Lena”, “Wheel” and “Smile” shown in figure 4. After
careful verification on a calibrated monitor, it was determined that 5 iterations of CPF (CPF5) preserves the detail
in the images while cleaning up the noise. Hence we consider CPF5 to be a noise free image which is perceptually
equivalent to the original noisy image (CPF0). We also consider 10, 20, 30 and 50 iterations of the CPF for lossy
pre-processing of the four images. That will allow a study of lossy pre-processing on overall coder performance. In
all the experiments, the JPEG coder is used at quality settings of 5 to 90 in steps of 5. We can characterize roughly
the range for quality settings 5 to 40 as low quality and 45 to 90 as high quality.

6.1. Perceptually Transparent Pre-Processing

We have verified that the conventional PSNR and PQS based on the original image as a reference show an increase
in distortion, and thus do not show the benefits of pre-processing. However, it has been verified visually that CPF5
cleans up the image while preserving perceptual transparency. Although we cannot assess reliably the improvement
directly from the graphs, figure 5 shows, for the “Lena” image, the comparison for the metrics VDP+PSNR for
CPF5 and PSNR for CPFO0 as the bit-rate varies. The comparison for the metrics VDP+PQS for CPF5 and PQS for
CPFO0 with respect to the bit rate for the same image in figure 5 indicates also the benefit of pre-processing. Figure
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Figure 6. Coder Performance using the two metrics for “Wheel”. (a) left VDP4+PSNR for CPF5 and PSNR for
CPFO (b) right VDP+PQS for CPF5 and PQS for CPF0

6 shows similar plots for the “Wheel” image. It is apparent from the graphs that pre-processing is beneficial at a
quality corresponding to perceptual transparency, which is achieved at bit rates of approximately 1 bpp. If a PSNR
of 44 dB is used as quality indicator, then pre-processing would decrease needed bit rate from 1 bpp to .65 bpp. PQS
is more pertinent and at a PQS of 5 indicates a decrease from 1 bpp to .85 bpp.

6.2. Comparison for different degrees of Pre-Processing

Here, we investigate whether pre-processing beyond perceptual transparency provides an improvement in coder
performance. We expect that, as we increase the number of iterations beyond a certain value, pre-processing will
degrade the image quality as it introduces visually significant artifacts without a commensurate gain in bitrate.

6.2.1. VDP4+PSNR

We observe that the effect of pre-processing depends on both the number of iterations of inhomogeneous diffusion
and on the target bit rate. Note in particular that in Figure 7, for the “Lena” image, that the graphs for different
number of iterations intersect. As a general rule, for the four images used, CPF 20 gives the best overall performance.
This can be considered to be the best compromise between the pre-processing simplifying the data prior to encoding
while introducing only visually insignificant errors. Table 1 gives a summary of the results obtained using the best
CPF filter. The performance improvement is over CPF5. The first four rows correspond roughly to lower quality
levels and the bottom four rows to higher quality levels. Table 2 shows the highest percentage improvement in the
bitrate (fourth column) for a fixed value of VDP+PSNR using the best CPF filter. The results show that the gain
is dependent on the image, with significant gain seen for the “Lena”, “Wheel” and “Smile” images at higher quality
levels.. This metric correctly shows the benefit of pre-processing for the “Lena” and the “Wheel” images, and the
slight improvement of performance for the “Building” image.

It also verifies correctly that more pre-processing beyond perceptual transparency is not beneficial for the “Smile”
image as clearly visible artifacts are produced beyond 10 iterations. For the “Smile” image, the performance for
larger pre-processing steps deteriorates rapidly after 0.2 bpp as seen in the figure 8. CPF10 gives the best overall
performance, verifying that for this image, more pre-processing is not desirable. It also indicates that for the
“Building” image, CPF30 is detrimental to the performance. This metric, though, seems to overestimate the value
of pre-processing.
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Image | Bit-rate | SNR Improvement | Best CPF |

bldg 0.6 0.4dB 20
lena, 0.4 1dB 30
wheel 0.4 0.5dB 20
smile 0.25 0.55dB 10
bldg 1.2 0.5dB 20
lena, 1 2dB 20
wheel 1 1.4dB 20
smile 0.5 1dB 10

Table 1. The performance improvement over CPF5 measured by VDP+PSNR,

| Image | VDP+PSNR | Bit-rate | Rate decrease % |

bldg 42dB 1.52bpp 3.95
lena 44dB 1.96bpp 27.55
wheel 48dB 1.17bpp 19.47
smile 50dB 0.74bpp 16.21

Table 2. The performance improvement over CPF5 measured by VDP+PSNR,

| Image | VDP+PQS | Bit-rate | Rate decrease % |

bldg 4.6 1.32bpp 4.82
lena 4.8 1.07bpp 11.5
wheel 4.8 0.73bpp 17.27
smile 4.6 0.6bpp 10.41

Table 3. The performance improvement over CPF5 measured by VDP+PQS

6.2.2. VDP+PQS

The results show the performance improvement due to pre-processing. In general, this metric indicates that the gain
1s more modest, as shown in table 3, as compared to the predictions by the VDP+PSNR, metric. The table shows the
highest percentage improvement (fourth column) in the bitrate for a fixed value of VDP4+PQS using the best CPF
filter. The results confirm a significant gain for the “Lena”, “Wheel” and “Smile” images at higher quality levels.
Figure 9 shows the performance for the “Lena” image. The problem is that the VDP+PQS metric underestimates
in some cases the adverse effect of pre-processing (for example, for CPF30 and CPF50). This is likely to be due to
the regression weights and the distortion factor normalization used in the computation of the global value of PQS.

Because of their small regression weights, the factors quantifying random errors, F1 and F2 are essentially
overcome by the other factors, hence they do not play a major role in the final PQS value at all quality levels. The
factor quantifying blocking, F3 is reasonably significant at very low quality (this being a JPEG coder, it introduces
a lot of blocking errors at low quality) but the regression weights again underestimate this effect. Correlated errors
quantified by F4 and errors at high transition regions quantified by F5 determine to a large extent, the PQS values
(especially at higher quality ranges). This becomes clearer when we consider figure 10 which shows the variations
of the raw values of factor 3 for the “Building” image. Although the raw values show correctly that CPF30, for
instance, degrades the performance, this loss is not reflected well in the weighted values and hence in the global PQS
value.
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7. Discussion and Conclusions

The use of a indicator mask for perceivable errors provides, to the first order, the proper methodology for the
evaluation of the effect of pre-processing on the performance of coders. Both the PSNR and the PQS metrics, when
combined with the VDP mask, are successful in predicting the performance improvement due to pre-processing.
However both metrics have specific limitations. The VDP+PSNR metric in general, is less robust, and overestimates
the improvement due to noise removal, specially at high quality. This can be associated with the difficulty commonly



seen when using the PSNR as a quality metric; since it is a pixel wise distance metric, which ignores the perceptual
properties of the human visual system (HVS).11® The HVS is more sensitive to disturbances in areas of structure in
the image. The PSNR metric, however, gives importance to the magnitude of the error and ignores the information
about its location in the image.

The PQS metric is based on the perceptual properties of human vision and on extensive engineering experience
with the observation of image disturbances due to image coding. The PQS identifies five important coding distortions
and combines them to give a global value for quality based on weights obtained from the MRA. The applicability
of the MRA weights depend on the suitability of the dataset used in the regression. In the present version of PQS,
the dataset consists of five different images which were distorted using JPEG and standard Wavelet and Subband
coders.® These regression weights are not fully suitable to the present problem, where significant removal of random
noise occurs.

Even though we have discussed the problems associated with specific objective quality metrics, this paper not
only gives a methodology for quantifying coding performance for pre-processed images but shows that pre-processing
prior to using a standard coder gives considerable improvement in coding performance. In future work, improvements
will be made to the two objective quality metrics; in particular, the normalizations for the individual factors and the
regression for the combining weights will be recomputed for the PQS to give better performance.
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