
UCLA
UCLA Electronic Theses and Dissertations

Title
A Contact Proxy Splitting Method for Lagrangian Solid-Fluid Coupling

Permalink
https://escholarship.org/uc/item/3jp182wq

Author
Xie, Tianyi

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3jp182wq
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

A Contact Proxy Splitting Method for Lagrangian Solid-Fluid Coupling

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Computer Science

by

Tianyi Xie

2023



© Copyright by

Tianyi Xie

2023



ABSTRACT OF THE THESIS

A Contact Proxy Splitting Method for Lagrangian Solid-Fluid Coupling

by

Tianyi Xie

Master of Science in Computer Science

University of California, Los Angeles, 2023

Professor Demetri Terzopoulos, Chair

Accurate and robust simulation of solid and fluid dynamics with their interactions is

non-trivial in computer graphics. In this thesis, we present a robust and efficient method

for simulating Lagrangian solid-fluid coupling based on a new operator splitting strategy.

We use variational formulations to approximate fluid properties and solid-fluid interactions,

and introduce a unified two-way coupling formulation for SPH fluids and FEM solids using

interior point barrier-based frictional contact. We split the resulting optimization problem

into a fluid phase and a solid-coupling phase using a novel time-splitting approach with

augmented contact proxies, and propose efficient custom linear solvers. Our technique

accounts for fluids interaction with nonlinear hyperelastic objects of different geometries

and codimensions, while maintaining an algorithmically guaranteed non-penetrating

criterion. Comprehensive benchmarks and experiments demonstrate the efficacy of our

method.
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CHAPTER 1

Introduction

The coupling of solids and fluids is common in nature but challenging to simulate. While

solids are typically simulated using Lagrangian meshes, fluids are often discretized using

Eulerian grids to accommodate topology changes. To accurately couple these distinct

discretizations, sophisticated algorithms, such as the cut-cell method (Zarifi and Batty,

2017), are often necessary. Unfortunately, they can be computationally expensive and do

not handle thin shells. Purely Eulerian schemes (Teng et al., 2016; Valkov et al., 2015) or

Smoothed-Particle Hydrodynamics (SPH) (Akinci et al., 2012; Gissler et al., 2019) have

demonstrated successful two-way coupling by same-view discretization, but they do not

easily extend to nonlinear elastodynamics. Hybrid methods like the Material Point Method

(MPM) (Jiang et al., 2016) can simulate mixed materials, but can experience artificial

stickiness unless resolved with more expensive schemes (Fang et al., 2020). Furthermore,

these methods do not ensure non-intersecting trajectories and often require additional

correction procedures to handle accidentally penetrated fluids during advection.

We take the Lagrangian approach and present a new method for coupling Finite

Element Method (FEM) solids and SPH fluids. By approximating solid, fluid, and inter-

action terms with potentials, we formulate two-way coupling as a monolithic optimization

problem. Specifically, we draw inspiration from position-based fluids (Macklin and Müller,

2013) and model weak incompressibility using a quadratic energy and a new updated

Lagrangian update rule to track volume changes. We further symmetrize the discrete

Laplacian-based viscosity and propose a discrete quadratic potential for better accuracy

and robustness. We follow the Incremental Potential Contact (IPC) (Li et al., 2020)

model to enforce guaranteed separable boundary conditions and resolve frictional contacts
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at the interface.

The proposed formulation achieves strong coupling, but can be exceedingly inefficient

when solved with Newton’s method due to the huge and dense Hessian of the fluid

component, which is a result of the need for many particle neighbors to achieve an

accurate SPH discretization. This causes a significant computational bottleneck.

To tackle this issue, we propose a robust proxy contact energy formulation, splitting

the time integration into a fluid phase and a solid-coupling phase. The fluid phase

requires only one Newton iteration per time step, resulting in increased efficiency with

nonlinear optimization occurring only during the solid-coupling phase. One of the key

advantages of our quadratic proxy is its ability to effectively resolve instability caused by

time splitting. This is achieved through its asymptotic approximation to the solid-fluid

contact force. Additionally, the consistency of the time integration is maintained through

the cancellation of the proxy’s contribution in the solid-coupling phase, resulting in only

a small splitting error. Finally, we design a matrix-free conjugate gradient solver and a

domain-decomposed solver to further enhance the computational efficiency.

1.1 Thesis Contributions

The contributions of this thesis include

• a unified penetration-free two-way coupling framework for weakly compressible SPH

fluids and nonlinear elastic FEM solids in arbitrary codimensions;

• consistently modeled incompressibility and viscosity potentials for SPH fluids,

incorporating advantages of Updated Lagrangian (UL) kinematics;

• a robust time splitting scheme with contact proxies that enables separate time

integrations of solids and fluids;

• a matrix-free Conjugate Gradient (CG) solver and a Schur-complement-based

domain-decomposed solver for efficiently solving the linear systems.
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1.2 Thesis Overview

The remainder of this thesis is organized as follows:

• Chapter 2 surveys previous research on simulating solid-fluid coupling.

• Chapter 3 introduces background theory, including time integration, hyperelasticity,

and SPH.

• Chapter 4 presents the mathematical formulation of our solid-fluid coupling system,

from a continuous form to a discrete one. Furthermore, the resulting time integration

is converted into an unconstrained optimization problem.

• Chapter 5 describes our proposed proxy-augmented time splitting scheme with

custom linear system solvers.

• Chapter 6 evaluates our methods across various benchmarks and experiments.

• Chapter 7 concludes by reviewing the key contributions of this thesis and discusses

promising topics for future work.
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CHAPTER 2

Related Work

2.1 Coupling Solids with Eulerian Fluids

Traditional fluid solvers typically use grid discretization to simulate fluid dynamics—aka

Eulerian Fluids. Since the Lagrangian view dominates solid simulation, much existing lit-

erature focuses on coupling Eulerian fluids with Lagrangian solids by resolving interactions

between the grids and irregular mesh boundaries. The ghost fluid method (Fedkiw et al.,

1999; Fedkiw, 2002) was proposed to additionally discretize the Eulerian/Lagrangian

interface. Early efforts considered weak coupling (Guendelman et al., 2005), which ad-

vances the solids and fluids in an alternating manner. On the other hand, strong coupling

(Klingner et al., 2006) solves a monolithic system and is often more robust. The cut-cell

method (Roble et al., 2005) is another widely used solution to accurately model the

interactions between Lagrangian solids and Eulerian fluids, often through the usage of

virtual nodes. This method is first introduced to computer graphics by Roble et al. (2005).

Batty et al. (2007) proposed a variational framework to strongly couple fluids and rigid

bodies by casting the pressure solve as a minimization problem. Subsequent extensions

support deformable objects and thin shells (Robinson-Mosher et al., 2008, 2011), where

the elastic forces are explicitly applied and the solid damping was solved together with

fluid dynamics in an implicit manner. Assuming co-rotated linear elasticity, Zarifi and

Batty (2017) incorporated the implicit solid dynamics into pressure projection, obtaining

a symmetric positive-definite system. Later efforts also explored rigid-rigid (Takahashi

and Batty, 2020) and rigid-fluid (Takahashi and Batty, 2021) frictional contacts.

Apart from Lagrangian solids, also explored was Eulerian discretization (Levin et al.,
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2011), where coupling can be conveniently achieved in a purely Eulerian fashion (Teng

et al., 2016; Valkov et al., 2015). However, such discretization entails increased numerical

dissipation, resulting in artifacts such as volume loss, and the inability to handle structures

thinner than a grid cell. More recently, Brandt et al. (2019) built upon the immersed

boundary method (Peskin, 2002) and proposed a reduced solver to simulate real-time

coupling, focusing on incompressible elastic materials and no-slip boundary conditions.

2.2 Coupling Solids with Lagrangian Fluids

Fluids can also be directly modeled with Lagrangian meshes (Clausen et al., 2013; Klingner

et al., 2006; Wang et al., 2020; Batty et al., 2012), enabling explicit coupling with solids.

However, this inevitably incurs frequent remeshing operations, thus degrading the overall

performance.

Another strategy is to use particle-based methods, or meshless methods. SPH (Koschier

et al., 2022) is a meshless approximation strategy based on spatial sampling for continuous

functions, which has shown its ability to produce visually compelling results in physics-

based simulation, especially for the fluid. Pioneering researchers (Monaghan, 1994; Becker

and Teschner, 2007) used the Equation of State (EOS) for weakly compressible fluids, where

the pressure is proportional to the density deviation. However, this explicit formulation

may strictly restrict time step sizes resulting in limited performance. Incompressibility

has also been enforced by solving a Pressure Poisson Equation (PPE) (Solenthaler and

Pajarola, 2009; Ihmsen et al., 2013; Bender and Koschier, 2015). This approach seeks

to cancel out density or velocity divergence deviations caused by non-pressure forces

through the use of pressure accelerations. SPH boundary handling techniques have been

developed to prevent penetrations of fluid particles near solid boundaries (Becker et al.,

2009b; Ihmsen et al., 2010; Becker and Teschner, 2007). One such method, proposed by

Akinci et al. (2012), uses a single layer of boundary samples and has been applied to the

coupling of fluids with both rigid bodies and elastic solids (Akinci et al., 2013). Gissler

et al. (2019) proposed a global formulation that unifies rigid body and fluid dynamics, in
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which the fluid pressure solver is linked to a second artificial pressure solver for rigid body

particles. Koschier and Bender (2017) introduced an alternative method using density

maps to represent dynamic rigid boundaries, eliminating the need for boundary particles.

Bender et al. (2019) proposed using the volume contribution of boundary geometry to

compute boundary forces, which reduces the cost of precomputation. However, this type

of method cannot be applied to deformable bodies due to the expensive cost of computing

maps at run time.

Solenthaler et al. (2007) used SPH to approximate the deformation gradient of linear

elastic materials, but the resulting gradient is not rotation invariant. Becker et al. (2009a)

addressed this issue by using shape matching to determine orientation and calculating

forces in a rotated configuration. Peer et al. (2018) proposed an implicit scheme and

applied kernel gradient correction (Bonet and Lok, 1999) to obtain a first-order consistent

SPH formulation for the deformation gradient. By integrating the solid particles into the

preexisting fluid pressure solver, contact handling can be inherently resolved, but SPH

still faces numerical issues, such as the zero-mode (Kugelstadt et al., 2021; Ganzenmüller,

2015) when simulating elastic objects. Additionally, the pressure solver will treat solid

objects as incompressible under compression, which may not be applicable in all cases.

2.3 Hybrid Methods with Coupled Phases and Contact

The MPM (Sulsky et al., 1995; Jiang et al., 2016) is a hybrid Eulerian-Lagrangian approach

that treats materials as a collection of material points. Stomakhin et al. (2013) first

introduced this method into computer graphics for snow simulation. The MPM has

also been proven successful in capturing solid-fluid coupling (Stomakhin et al., 2014;

Fei et al., 2018; Yan et al., 2018) and mixtures (Tampubolon et al., 2017; Gao et al.,

2018). While one advantage of the MPM is the automatic handling of contacts between

different materials because of its hybrid nature, the separation of continuum and free-slip

interaction among different objects remains challenging. This drawback can be attributed

to the fact that the traditional MPM (Jiang et al., 2016) does not inherently support

6



discontinuous velocities, resulting in sticky boundary conditions. To allow easy material

separation, Hu et al. (2018) introduced a Compatible Particle-In-Cell (CPIC) algorithm to

allow discontinuous velocities. Fang et al. (2020) proposed a free-slip treatment, but did

not consider separation. Recently, a FEM-MPM coupling method based on a variational

barrier formulation (Li et al., 2020) has been proposed for coupling frictional and separable

elastic materials (Li et al., 2022). Our approach for solid-fluid coupling is inspired by this

method and uses a similar purely Lagrangian framework.
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CHAPTER 3

Background

3.1 Time Integration

The simulation of various materials can be performed by time integration, which usually

takes a sequence of discrete time steps, considers the internal and external forces on

objects, and integrates them over time to derive the velocity and position updates.

Taking as an example the most popular time integration scheme, the implicit Euler

method, we stack the velocity and position of every simulated material particle at time

step n into the vectors vn and xn, respectively, and the method proceeds as


xn+1 = xn + hvn+1,

vn+1 = vn + hM−1 (fext + fint(x
n+1)) ,

(3.1)

where h is the time step size, M is the mass matrix, fext is the external force (gravity), and

fint(x
n+1) is the internal force evaluated at xn+1. Solving this time integration equation

yields the velocity and position vectors at the next time step n+ 1. An important feature

of the implicit Euler method is unconditional stability, which means the integration result

will never explode like explicit time integration.

The above implicit equation can usually be reformulated as an equivalent minimization

problem:

xn+1 = argmin
x

E(x),

E(x) =
1

2
∥x− x̃n∥M + h2P (x),

(3.2)

where x̃n = xn+hvn and 1
2
∥x− x̃n∥M is the inertial term, potential energy P (x) accounts
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for both external and internal forces with ∂P (x)
∂x

= −(fext + fint(x)), and E(x) is called the

incremental potential. This minimization problem is equivalent to the implicit equation

of (3.1), since the first-order necessary condition ∇E(x) = 0 is satisfied at any minimal

point. A standard way to solve this minimization problem is to apply a Newton-type

method with line search. Specifically, at iteration i the optimization process proceeds as

xi+1 = xi − αH(xi)−1∇E(xi), (3.3)

where H(xi) is a Symmetric Positive Definite (SPD) matrix containing second-order

information at xi and α is the step size calculated by line search, which ensures the overall

potential is always decreasing.

3.2 Hyperelasticity

Hyperelasticity describes the ability of objects to retain their rest shape under deformation.

To provide a concise mathematical description of deformation that an elastic object has

sustained, a tensor field called the deformation gradient is defined as

F(X) =
∂ϕ(X)

∂X
, (3.4)

where X is the position in material space Ω0 and ϕ(X) is the deformation map that maps

from the position in material space Ω0 to that in world space Ωt. For tetrahedral meshes,

as the deformation map is typically taken to be piecewise linear across tetrahedra, the

deformation gradient is then piecewise constant, which can be easily computed (in 3D) as

F =
[
x2 − x1,x3 − x1,x4 − x1

] [
X2 −X1,X3 −X1,X4 −X1

]−1

, (3.5)

where x1, x2, x3, and x4 are positions of the four nodes of a tetrahedron in world space,

and X1, X2, X3, and X4 are their positions in material space. Intuitively, the deformation

gradient measures the amount of deformation in a local region.
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We can make use of this local information to define constitutive models, i.e., the

elastic energies that penalize deformation. A commonly used constitutive model for

hyperelasticity is Neo-Hookean, whose energy density function is

ψ(F) =
µ

2
(tr(FTF)− 3)− µ ln J +

λ

2
(ln J)2, (3.6)

where J is the volume ratio, which may be calculated as the determinant of F, and µ

and λ are lame parameters, which can be computed using the Young’s modulus E and

Poisson’s ratio ν:

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
. (3.7)

E determines the stiffness of the material and ν its ability to preserve volume under

deformation. Then the overall elastic energy can be obtained by integrating the energy

density over the mesh domain

Ψ(X) =
∑
t

Vtψ(X), (3.8)

where Vt is the volume of tetrahedron t. With this definition of elastic potential energy,

the elasticity force can be derived by taking the derivative

f = −∂Ψ(X)

∂X
. (3.9)

One thing worth noting about the Neo-Hookean model is that J > 0 must always be

satisfied during the simulation, otherwise the ln J term in (3.6) will be undefined. This

means that mesh degeneration or inversion is not permitted. To avoid this issue, we can

employ line search filtering to prevent too large a step size such that J remains positive

for each tetrahedron during the optimization process.

10



3.3 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a spatial discretization technique, which is

commonly used for the numerical simulation of continuum mechanical problems. Recent

works have demonstrated its ability to efficiently simulate various materials, especially

fluids.

Foundation: The foundation of SPH begins with the Dirac function, which is defined

as

δ(r) =


∞, if r = 0,

0, otherwise,

(3.10)

and also satisfies the identity property
∫
δ(r)dV = 1. This can be understood as the

limit of the Gaussian normal distribution as the variance approaches to zero. For any

given continuous compactly supported function A(x), its convolution with the Dirac

distribution is identical to A(x) itself. Formally,

A(x) = (A ∗ δ)(x) =
∫
A(x′)δ(x− x′)dV ′. (3.11)

It is hard to discretize this integration due to the non-smooth Dirac function. We can

instead make a continuous approximation, which we refer to as the kernel functionW (r, ℏ).

Integral (3.11) is then approximated as

A(x) ≈ (A ∗W )(x) =

∫
A(x′)W (x− x′, ℏ)dV ′, (3.12)

where ℏ denotes the kernel’s smoothing length, which controls how strongly the resulting

value is affected by values in its close proximity. In the SPH literature, commonly used

kernel functions include the cubic spline and spiky functions, among others. In a domain

with sampling points (SPH particles), (3.12) can be discretized as the weighted summation

11



over the sampling points

(A ∗W )(x) =

∫
A(x′)

ρ(x′)
W (x− x′, ℏ)ρ(x′)dV ′,

≈
∑
j∈F

Aj
mj

ρj
W (x− xj, ℏ),

(3.13)

where F is the set of sampling points within the support region of the kernel function, Aj

denotes the value evaluated at the respective position, i.e., Aj = A(xj), and where mj

and ρj are, respectively, the mass and density of sampling point j. A nice and interesting

feature of this formulation is that the particles are not required to carry with the density

field. Specifically, taking A(x) as ρ(x), by (3.13), we can easily reconstruct the density

field as

ρi =
∑
j

mjWij, (3.14)

where Wij is the abbreviation of W (xi − xj, ℏ). Alternatively, the density can be tracked

by numerical integration of the continuity equation, which describes the density evolution

dρ
dt

= −ρ∇ · v. However, this approach is less robust due to the accumulation error of

numerical integration.

Discretization of Differential Operators: Besides the discretization of field quanti-

ties, it is usually necessary to discretize spatial differential operators in order to numerically

solve physical conservation laws. A straightforward way is to directly take the derivative

of (3.13), but the resulting approximation is not first-order accurate. To recover the

accuracy, a difference formula is introduced to estimate the gradient quantities. Formally,

∇Ai =
∑
j

mj

ρj
(Aj − Ai)∇iWij. (3.15)

The same formula can also be straightforwardly applied to higher-dimensional functions.

Another discrete formula for the gradient estimation can be derived, called the symmetric

12



formula:

∇Ai = ρi
∑
j

mj

(
Ai

ρ2i
+
Aj

ρ2j

)
∇iWij. (3.16)

The main advantage of the symmetric formula is that the discrete forces estimated by it

exactly conserve linear and angular momentum, which is essential in certain simulations.

But note that the symmetric formula is not first-order accurate.

Similarly, a improved Laplacian estimation is proposed by Brookshaw (1985):

∇2Ai = −
∑
i

mj

ρj
Aij

2∥ ∇iWij∥
∥xij∥

, (3.17)

where xij = xi − xj. The main idea of this formulation is to use only the first-order

derivative of the kernel function and the second-order derivative is approximated using a

finite-difference-like operation. The second-order derivatives of vectorial field quantities

are realized analogously:

∇2Ai = −
∑
i

mj

ρj
Aij

2∥ ∇iWij∥
∥xij∥

, (3.18)

∇(∇ ·Ai) =
∑
j

mj

ρj
[(d+ 2)(Aij · x̃ij)x̃ij −Aij]

∥∇iWij∥
∥xij∥

, (3.19)

where d denotes the spatial dimension and x̃ij =
xij

∥xij∥ is the normalized distance vector.

Still, the physical forces estimated by the Laplacian operator in (3.18) is not momentum

conserving. This issue can be resolved by combining (3.18) and (3.19), yielding

∑
j

mj

ρj
(Aij · x̃ij)x̃ij

∥∇iWij∥
∥xij∥

=
∇(∇ ·Ai)

d+ 2
− ∇2Ai

2(d+ 2)
. (3.20)

In the context of divergence-free fields, the Laplacian operator can then be discretized as

∇2Ai = 2(d+ 2)
∑
j

mj

ρj
(Aij · x̃ij)x̃ij

∥∇iWij∥
∥xij∥

. (3.21)

Thus, the resulting forces of the Laplacian operator act only along the line between two

13



interacting particles i and j.
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CHAPTER 4

Formulation

In this chapter, we derive a time integrator for a coupled system of solids and fluids by

starting with the governing equations and then performing discretization. Subscripts s

and f will represent solid and fluid quantities, respectively.

4.1 Governing Equations

The governing equations for the coupled system are

ρs
Dvs

Dt
= ∇ · σ + ρsg + fs�s + ff�s, (4.1)

ρf
Dvf

Dt
= −∇p+ µ∇2vf + ρfg − ff�s, (4.2)

∇ · vf = 0, (4.3)

where ρ is density, g is gravity, fs�s is the self-contact force of solids, ff�s is the contact

force exerted by fluids, σ is Cauchy stress, p is pressure, and µ is the dynamic viscosity

(Bridson, 2015).

At the interface between solids and fluids, we enforce the separable boundary condition

0 ≤ (vs − vf ) · nf ⊥ (ff�s · nf ) ≥ 0 (4.4)

to prevent penetration while allowing separation (Batty et al., 2007). This condition helps

determine the normal component of ff�s. For the tangential component (friction), let

u = (I− nf ⊗ nf )(vs − vf ) be the tangential relative velocity. Following the Maximum
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Dissipation Principle (Moreau, 2011), we then have

(I− nf ⊗ nf )ff�s = argmin
β

β · u,

s.t. ∥β∥ ≤ µtff�s · nf and β · nf = 0,

(4.5)

where µt is the friction coefficient. We enforce exact mass conservation by adopting

Lagrangian methods to discretize both domains.

4.2 Solid Domain

We focus on nonlinear hyperelastic solids, where the elastic force is the negative gradient

of an elastic potential. After discretizing the solid domain Ωs into Lagrangian linear finite

elements (triangles in 2D and tetrahedra in 3D), the total elastic potential is a piecewise

constant summation of an elastic energy density function ψs(F) (e.g., neo-Hookean) over

the mesh domain:

Ψs(x) =
∑
e

Veψs(Fe), (4.6)

where Ve is the rest volume of tetrahedron e, and F = ∂x(X,t)
∂X

is the deformation gradient

with X and x denoting the material and world space coordinates, respectively (Sifakis

and Barbic, 2012). For fs�s, we follow the smooth barrier approach of Li et al. (2020)

that guarantees non-penetration. We leave the discussion of ff�s to Section 4.4.

4.3 Fluid Domain

Following the SPH literature (Becker and Teschner, 2007; Macklin and Müller, 2013;

Ihmsen et al., 2013; Bender and Koschier, 2015), we discretize the fluid domain Ωf using

Lagrangian particles. To simulate fluids using optimization-based time integration, we

approximate both the pressure and viscosity forces as conservative forces. We verify that

these two proposed potential energies are both convex and quadratic in Appendix A.
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4.3.1 Incompressibility Potential

Pressure forces help preserve the volume of incompressible fluids. We thus model the

incompressibility via a quadratic energy density function

ψf,I(J) =
kI
2
(J − 1)2, (4.7)

which penalizes the deviation from 1.0 of the volume ratio J = ρ0/ρ, where ρ0 is the initial

density. The use of a large stiffness kI in a convergent solver results in negligible visual

compression, eliminating the need for higher degree polynomials in nearly incompressible

fluids (Hyde et al., 2020). The incompressibility potential is obtained by integrating

ψf,I(J) over the fluid domain Ω0
f in material space:

PI(x) =
∑
i

kI
2
V0(Ji(x)− 1)2, (4.8)

where we assume that all fluid particles have equal rest volume V0 and where Ji denotes

the volume ratio of particle i as a function of x.

Updated Lagrangian: The SPH literature often relates ρ to x through density sum-

mation in the world space. To obtain a linear relation between J and x so that the

incompressibility potential stays quadratic in terms of x, we track J in an updated La-

grangian fashion. Treating Ωn as an intermediate reference space and differentiating the

deformation map between Ωn and Ωn+1 results in an update rule

Jn+1
i = Jn

i (1 + h∇ · vn+1
i ), (4.9)
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the terms of which can be approximated via SPH as

Jn
i =

ρ0∑
j

mjWij

, (4.10)

∇ · vn+1
i =

∑
j

mj

ρnj
(vn+1

j − vn+1
i ) · ∇iWij, (4.11)

and Wij = W (xi − xj) is a kernel function (e.g., Cubic Spline kernel (Monaghan, 1992,

2005) or Spiky kernel (Müller et al., 2003)). Here Jn
i denote the reinitialized volume ratio

of fluid particle i at the start of time step n. Such reinitialization avoids accumulated

density and particle distribution errors commonly seen in other updated Lagrangian

solvers like MPM.

4.3.2 Viscosity Potential

The viscosity of fluids is a measure of their resistance to shearing at a given rate, and it

plays a vital role in producing effects like buckling and coiling. It is possible to model

viscosity via strain rate tensors (Peer et al., 2015; Peer and Teschner, 2016; Takahashi

et al., 2015; Bender and Koschier, 2016), but this may suffer from artifacts at the surface

due to particle deficiencies in the SPH approximation. Following Monaghan (2005), we

use the more robust velocity Laplacian (Weiler et al., 2018) and derive its energy form.

Combining SPH first-order derivatives and finite differences, the viscosity force can be

computed as

fi(x) = νmi∇2vn+1
i

= 2ν(d+ 2)
∑
j

mimj

ρj

∇iWij(x
n
ij)

T

∥xn
ij∥2 + 0.01ℏ2

vn+1
ij ,

(4.12)

where xn
ij = xn

i − xn
j and vn+1

ij = vn+1
i − vn+1

j , and where ℏ is the support radius of the

kernel, ν is the kinematic viscosity, and d ∈ {2, 3} denotes the spatial dimensionality.

Directly applying this force violates momentum conservation as the mutual interaction
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forces are unequal. To solve this problem, we perform a further approximation:

fi(x) ≈ 4ν(d+ 2)
∑
j

mimj

ρi + ρj

∇iWij(x
n
ij)

T

∥xn
ij∥2 + 0.01ℏ2

vn+1
ij , (4.13)

and also make the force integrable. Letting Vij = 4(d + 2)
mimj

ρi+ρj

(−∇iWij)(x
n
ij)

T

∥xn
ij∥2+0.01ℏ2 , we can

gather and integrate all the viscosity forces and obtain a quadratic viscosity potential

PV (x) =
1

4
νĥ
∑
i

∑
j

∥vn+1
ij ∥2Vij

, (4.14)

where ĥ is a constant scalar related to the time integration scheme. For example, ĥ = h

for the implicit Euler method as vn+1 = (xn+1 − xn)/h.

4.4 Coupling

4.4.1 Barrier Potential for Non-penetration

To couple the solid domain Ωs with the fluid domain Ωf , we use the separable bound-

ary condition (4.4), which enforces non-interpenetration constraints between these two

domains. To model these constraints, we first define a function

d(∂Ωt
s,xf ) = min

xs

∥xs − xf∥, xs ∈ ∂Ωt
s, xf ∈ Ωt

f , (4.15)

which measures the distance between xf , a point in the fluid domain, and the surface of

the solid domain. Then the primal component of the constraints can be expressed as

d(∂Ωt
s,xf ) ≥ 0, ∀t ≥ 0, ∀xf ∈ Ωt

f . (4.16)
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We then adopt the barrier formulation from Li et al. (2020) to model all the constraints

in (4.4) between solids and fluids, and obtain a barrier potential

∫
∂Ωt

f

b(d(∂Ωt
s,xf ), d̂)dxf , (4.17)

where the barrier energy density b(d, d̂) is piecewise smooth and is only activated when

d < d̂, improving efficiency and approximately satisfying the complimentarity slackness

condition. As d approaches 0, the value of b(d, d̂) monotonically increases to infinity,

providing arbitrarily large repulsion to avoid interpenetration.

Since our solid and fluid domains are respectively discretized as meshes and particles,

the barrier potential (4.17) in 3D can be numerically integrated as

Bsf(xs,xf ) =
∑
q∈Qf

sqb(min
e∈Bs

dPT (xq, e), d̂)

=
∑
q∈Qf

sq max
e∈Bs

b(dPT (xq, e), d̂),
(4.18)

where Qf is the set of all SPH fluid particles, Bs is the set of all the boundary triangles of

the solids, sq = π(3JnV0

4π
)
2
3 is the integration weight (boundary area) of each fluid particle,

and dPT (xq, e) measures the distance between particle xq and triangle e. Here, the

min-max transformation is based on the non-ascending property of the barrier function.

However, the max operator makes the barrier potential challenging to be efficiently

optimized by gradient-based methods. Fortunately, due to the local support of the barrier

function b(d, d̂) as d̂ is small, we can simply approximate the barrier potential as

Bsf(xs,xf ) =
∑
q∈Qf

∑
e∈Bs

sqb(d
PT (xq, e), d̂), (4.19)

which may result in overestimated contact forces near the edges and nodes on the mesh

boundary, but we have not observed any artifacts in our experiments.
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4.4.2 Friction Potential

Following Li et al. (2020), we model the local friction forces fk for every active solid-fluid

contact pair k. Formally, the friction force is defined as

fk(xs,xf ) = −µtλkTk(xs,xf )f1(∥uk∥)
uk

∥uk∥
, (4.20)

where λk is the contact force magnitude, Tk(xs,xf) ∈ R3n×2 is the consistently oriented

sliding basis, and uk is the relative sliding displacement, which can be computed as

uk = Tk(xs,xf)
T ([xT

s ,x
T
f ]

T − [(xn
s )

T , (xn
f )

T ]T ). Here, f1 is a smoothly approximated

function designed for a smooth transition between the sticking and sliding modes. To

make this friction formulation fit into optimization time integration, Li et al. (2020)

further approximated the sliding basis T (xs,xf) and contact force λk(xs,xf) explicitly

as T (xn
s ,x

n
f ) and λk(x

n
s ,x

n
f ). Then the semi-implicit friction force is integrable with the

friction potential computed as

Dsf(xs,xf ) =
∑
k∈An

µtλ
n
kf0(∥uk∥), (4.21)

where f0 is defined by the relation f ′
0 = f1 and An is the set containing all activate

particle-triangle contact pairs at the previous time step n.

4.5 Optimization Time Integrator

With the above potential energies modeling all the solid and fluid forces, now we can build

a unified two-way solid-fluid coupling framework. By stacking all the nodal positions and

velocities of the SPH particles and FEM nodes as x = [xT
f ,x

T
s ]

T and v = [vT
f ,v

T
s ]

T , we

define Ψ(x) = Ψs(xs), P (x) = PI(xf) + PV (xf), and Csf(x) = Bsf(xs,xf) +Dsf(xs,xf).

Combined with the solid-solid contact potential Css(x) from IPC, our solid-fluid coupling
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problem can be solved in a monolithic manner by applying implicit Euler time integration


vn+1 = vn + hM−1(fext −∇P (xn+1)−∇Ψ(xn+1)−∇C(xn+1)),

xn+1 = xn + hvn+1,

(4.22)

which is equivalent to

xn+1 = argmin
x

1

2
∥x− x̂n∥2M + h2(P (x) + Ψ(x) + C(x)) (4.23)

with the mass matrix M, time step size h, predictive position x̂n = xn + hvn + h2M−1fext,

and total contact potential C(x) = Csf(x) + Css(x).
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CHAPTER 5

Efficient Solver

A straightforward way to robustly solve the time-stepping optimization problem (4.23)

is to apply the projected Newton’s method with line search (Li et al., 2020). At every

iteration, the search direction p can be computed by solving the linear system

Hf G

GT Hs

p =

gf

gs

 , (5.1)

where Hf and Hs are the (projected) Hessian matrices with respect to the position of fluids

and solids, respectively, and G = ∂2E
∂xf∂xs

denotes the coupling submatrix. Unfortunately,

solving this linear system can be a severe bottleneck in practice. One reason is that SPH

techniques need sufficiently many neighbors to accurately approximate physical quantities,

which results in a much larger and denser fluid Hessian matrix Hf compared to the solid

one. In addition, the optimization may require many iterations to converge due to the

sharpness of barrier energy, especially in contact-rich cases.

Since our fluid energies are all quadratic, we separate them from the highly nonlinear

solids and contact energies via a robust time splitting scheme (Section 5.1) so that the

fluid part can be solved within a single Newton iteration per time step. We then propose

efficient methods to solve the domain-decomposed linear systems (Section 5.2).
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5.1 Time Splitting

5.1.1 Baseline Time Splitting

Intuitively, we can split the original time integration into a fluid phase


v
n+1/2
f = vn

f + hM−1
f

(
−∇fP

(
[(x

n+1/2
f )T , (xn

s )
T ]T
)
+ ff

)
,

x
n+1/2
f = xn

f + hv
n+1/2
f ,

(5.2)

and a solid-coupling phase


vn+1 =

vn+1/2
f

vn
s

+ hM−1

−∇Ψ(xn+1)−∇C(xn+1) +

0
fs


 ,

xn+1 = xn + hvn+1,

(5.3)

where ff and fs are the external forces on the fluids and the solids, respectively. In the fluid

phase, we solve for an intermediate state for the fluid particles in a single Newton iteration,

ignoring contact. Then the highly nonlinear barrier force is resolved in the solid-coupling

phase along with elasticity, where the fluid Hessian Hf reduces to a block-diagonal matrix

∂2C(x)

∂x2
f

. In this setting, nonlinear optimization only happens for fluid boundaries and solid

DOFs in the solid-coupling phase. The details of this Baseline Time Splitting Scheme

can be found in Appendix B.1.

Although this baseline splitting strategy indeed brings a significant performance

gain, severe instabilities can occur at the solid-fluid interface if the time step size is not

sufficiently small, especially when simulating viscous fluids (Figure 6.3). For example,

fluid particles may stick to the solid boundaries. This artifact is also evident in existing

SPH fluid solvers, and it is typically addressed by sampling particles at solid boundaries

to exert boundary pressures (Becker et al., 2009b; Ihmsen et al., 2010; Akinci et al., 2012).

In light of this, we consistently augment the fluid phase with proxy forces for solid-fluid

contact to improve stability while avoiding any particle-sampling overhead.
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5.1.2 Time Splitting with Contact Proxy

We introduce a solid-fluid contact proxy energy Ĉsf(x) into the fluid phase to efficiently

exert approximated interaction forces between the boundaries of solids and fluids. In the

ensuing discussion, we will also write contact energy C(x) as the sum of the solid-fluid

part Csf(x) and the solid-solid part Css(x) for clarity. To ensure consistency with the

original PDE, we cancel the contribution of this contact proxy in the solid-coupling phase.

The resulting time integration becomes


vn+1/2 = vn + hM−1(−∇P (xn+1/2) + fext −∇Ĉsf(x

n+1/2)),

xn+1/2 = xn + hvn+1/2;

,


vn+1 = vn+1/2 + hM−1(−∇Ψ(xn+1)−∇C(xn+1) +∇Ĉsf(x

n+1)),

xn+1 = xn + hvn+1,

(5.4)

where the fluid phase now also implicitly updates the solid boundary nodes near the fluids

to an intermediate state.

For Ĉsf(x), a straightforward choice is Ĉsf(x) =
1
2
Csf(x). But to ensure our fluid phase

only contains linear forces, we apply the second-order Taylor expansion of 1
2
Csf(x) at x

n

for the approximation in the fluid phase; i.e.,

Ĉsf(x) =
1

2

(
Csf(x

n) +∇Csf(x
n)(x− xn) +

1

2
∥x− xn∥2∇2Csf(xn)

)
, (5.5)

while in the solid-coupling phase, we simply use Ĉsf(x) =
1
2
Csf(x). In Appendix B.2, we

prove that our time splitting scheme with contact proxy only has an O(h4) mismatch

compared to the implicit Euler solution. Reformulating both phases (5.4) as optimization

problems, we obtain

xn+1/2 = argmin
x

1

2
∥x− x̂n∥2M + h2(P (x) + Ĉsf(x)),

xn+1 = argmin
x

1

2
∥x− xn+1/2∥2M + h2(Ψ(x) +

1

2
Csf(x) + Css(x)),

(5.6)
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Algorithm 1: Time Splitting with Contact Proxy

1: x← xn, x̂n ← xn + hvn + h2M−1fext
2: SPH Neighbor Search & Density Update
3: Ĉsf(x)← 2nd Taylor Expansion of 1

2
Csf(x) at x = xn

4: // Fluid Phase

5: H← h2
(
∇2P (x) +∇2Ĉsf(x)

)
+M

6: p← −H−1
(
h2(∇P (x) +∇Ĉsf(x)) +M(x− x̂n)

)
7: x← x+ p
8: xn+1/2 ← x
9: // Solid-Coupling Phase
10: do
11: H← h2

(
∇2Ψ(x) + 1

2
∇2Csf(x) +∇2Css(x)

)
+M

12: g← h2
(
∇Ψ(x) + 1

2
∇Csf(x) +∇Css(x)

)
+M(x− xn+1/2)

13: p← −H−1g
14: α← Backtracking Line Search with CCD
15: x← x+ αp
16: while 1

h
∥p∥ > ϵ

17: xn+1 ← x, vn+1 ← (x− xn)/h
18: return xn+1,vn+1

where x̂n = xn + hvn + h2M−1fext with fext = [fTf , f
T
s ]

T .

In addition to avoiding fluid particle sticking issues without extra computationally

expensive costs, another benefit of our method is that it helps reduce the number of

Newton iterations needed to solve the problem. Typically, the barrier method takes many

Newton iterations to resolve high-speed impacts. With our scheme, when high-speed fluid

particles are colliding with a deformable object, their speed will be significantly reduced

after the fluid phase due to the contact proxy. The reduced speed will then be taken

into the solid-coupling phase, which makes the nonlinear optimization easier to solve

(by having fewer contact constraint set changes). The details of our proxy-based time

splitting scheme are found in Algorithm 1.

Similarly, one can also separate elasticity from contact energy using the contact proxy.

In this fashion, we would have a three-phase (fluid, solid, and contact) time splitting
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scheme

xn+1/3 = argmin
x

1

2
∥x− x̂n∥2M + h2(P (x) + Ĉsf(x)),

xn+2/3 = argmin
x

1

2
∥x− xn+1/3∥2M + h2(Ψ(x) + Ĉsf(x) + Ĉss(x)),

xn+1 = argmin
x

1

2
∥x− xn+2/3∥2M + h2(

1

3
Csf(x) +

1

2
Css(x)),

(5.7)

where Ĉsf(x) and Ĉss(x) are the second-order Taylor expansions of 1
3
Csf(x) and

1
2
Css(x),

respectively. However, this aggressive splitting scheme only applies to inversion-robust

constitutive models; e.g., the fixed corotated model (Stomakhin et al., 2012). While

inversion may be guaranteed to be prevented at the solid phase where the elasticity

energy is considered, this may not hold in the contact phase. Despite this limitation,

the three-phase splitting scheme can still work properly for inversion-robust constitutive

models in practice to further accelerate the simulation.

5.2 Solving Linear Systems

In our time splitting scheme, solving large sparse linear systems dominates both the

computational and memory costs of each phase. We thus devise matrix-free and Schur-

complement-based strategies to solve them efficiently.

5.2.1 Fluid Phase

Since 2-ring neighbors of SPH particles need to be considered in our formulation, both

constructing and directly factorizing the Hessian matrix can cost a significant amount of

time and memory. Therefore, we devise a matrix-free conjugate gradient (CG) solver to

efficiently solve for the intermediate state of fluids.

As all energy potentials are quadratic in this phase, the energy gradient g(x) is merely

a linear function of x with constant coefficient matrix H(x). Thus, the product between

H(x) and an arbitrary vector p can be expressed as

H(x)p = g(p)− g(0). (5.8)
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This allows us to compute gradients to evaluate the matrix-vector product, and we only

need to acquire the 3× 3 diagonal blocks of the Hessian for block-Jacobi preconditioning

in our CG solver.

5.2.2 Solid-Coupling Phase

As the fluid energy potential is not included in this phase, the components of the Hessian

matrix become

Hf =
∂2C(x)

∂x2
f

, G =
∂2C(x)

∂xs∂xf

, Hs =
∂2C(x)

∂x2
s

+
∂2Ψ(x)

∂x2
s

. (5.9)

Although this linear system is no longer that intractable, it is not optimal to directly

factorize the whole system given the considerable amount of nonzeros in Hf and G when

fluid resolution is high.

Thus, we design a domain decomposed linear solver that treats Hf and Hs separately.

Based on the Schur complement (Zhang, 2006), the inverse of our Hessian matrix can be

expressed as

H−1 =

H−1
f +H−1

f G(H/Hf )
−1GTHf −H−1

f G(H/Hf )
−1

−(H/Hf )
−1GTHf (H/Hf )

−1

 , (5.10)

where H/Hf = Hs −GTH−1
f G is the Schur complement of block Hf . Since the nonzeros

of Hf exist only in the diagonal blocks, it is trivial to obtain the inverse matrix H−1
f . We

can then apply the CHOLMOD (Chen et al., 2008) LLT solver to factorize H/Hf , the

dimensionality of which is on the order of the number of solid DOFs, and then the search

direction can be computed via matrix-vector products and back-solves. When there is

no solid-fluid interaction, the sparsity pattern of H/Hf remains identical to that of Hs.

Only when two solid nodes i and j are interacting with the same fluid particle will, in 3D,

the 3× 3 block (H/Hf )i,j become non-zero. Typically, this happens only for neighboring

mesh primitives, and thus the sparsity pattern of H/Hf is mostly nice.
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Note that when the three-phase time splitting scheme (5.7) is used, our domain

decomposed solver can also be applied to the solid and contact phases, since their systems

share a similar structure with the solid-coupling phase.

29



CHAPTER 6

Experiments

Our code is implemented in C++ with Eigen for basic linear algebra operations and Intel’s

TBB for multi-threading. The time step size of all our simulations is adaptively chosen by

the SPH CFL condition and a user-defined upper bound. We set the support radius of our

SPH kernel function to 2d, where d is the particle diameter. In our implementation, we use

the cubic Spline kernel for density estimation and the Spiky kernel for gradient calculation.

For the results shown in Figures 6.10, 6.8, 6.5, and 6.2, we employ our three-phase time

splitting scheme, demonstrating its efficacy when the constitutive models are compatible

with mesh inversion. For the remaining simulations, we stick with our two-phase time

splitting scheme. Most experiments were performed on a 24-core 3.50GHz Intel i9-10920X

workstation, except for the comparative study with ElastoMonolith (Takahashi and Batty,

2022). We demonstrate that our method achieves efficient and robust solid-fluid coupling.

The parameters and timing breakdown of our simulations are specified in Table 6.1 and

Figure 6.1, respectively.

6.1 Ablation Study

6.1.1 Time Splitting Evaluation

Three simulations (Figure 6.2 and Figure 6.3) are performed to demonstrate the efficiency

of time splitting and the efficacy of our contact proxy in maintaining stability.

To begin, we must choose a proper time step h. First, it must be restricted by the CFL

condition, otherwise severe volume loss may be observed due to the SPH approximation

error. Additionally, in contrast to the joint optimization (4.23), the time splitting scheme
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Scene Nfluid Nsolid kI νf d ρf E νs ρs T

Fig. 6.2 97K 2.3K 2× 105 0 15 1000 1× 105 0.3 500 0.3
Fig. 6.3a 238K 0 1× 105 100 10 1200 - - - 0.4
Fig. 6.5 103K 16K 1× 105 0 10 1000 1× 105 0.3 200 1.3
Fig. 6.6 280K 0 2× 105 0.005 25 1000 - - - 0.4
Fig. 6.7a 52K 3.7K 1× 105 0 10 1000 4× 103 0.49 200 0.4
Fig. 6.7b 101K 4.5K 6× 104 0 6.4 1000 1× 103 0.49 200 1.0
Fig. 6.8 787K 66K 2× 105 1 10 1000 1× 105 0.4 200/700/1200 5.9
Fig. 6.10* 486K 12K 4× 104 0 5 1000 - - 500 7.9
Fig. 6.11 159K 9K 3× 104 25 3 1000 5× 108 0.49 1000 1.8
Fig. 6.12* 789K 13K 1× 105 0.2 10 1000 1× 105 0.45 100/700 4.9
Fig. 6.13* 1M 43K 2.5× 105 0.1 25 1000 - - 500 37.9

Table 6.1: Simulation statistics including the number of fluid particles Nfluid, number of
solid vertices Nsolid, incompressibility coefficient kI , [Pa], dynamic viscosity νf , [Pa·s], fluid
particle diameter d, [mm], fluid density ρf , [kg/m

3], Young’s modulus E, [Pa], Possion’s
ratio νs, solid density ρs, [kg/m

3], and the average simulation time T, [min] for each frame.
Timing statistics are measured on a 24-core 3.50GHz Intel i9-10920X machine, except
for Figure 6.7, which is tested on the “e2-standard-8” (8 cores with 32GB RAM) Google
Compute Engine. Note that examples marked * contain codimensional materials whose
parameter settings are not covered here.

Figure 6.1: Timing breakdown. We show the timing profile of different simulation phases
and plot the proportions of the major routines. Examples marked with * are simulated
using our three-phase time splitting scheme. Other examples are generated with the
two-phase scheme. In particular, SPH update (including neighborhood search and density
update) only occurs in the fluid phase, line search happens in the solid and contact phases
for non-linear optimization, and continuous collision detection (CCD) is counted when
IPC contact energy is considered.
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Scene Scheme Sec/Frame # Newton Iter./Frame

Fig. 6.2 Joint/TS/TSCP 66.1 / 38.0 / 22.5 63.5 / 117.3 / 37.1
Fig. 6.3a Joint/TS/TSCP 41.3 / 32.3 / 25.5 16.5 / 29.0 / 10.5

Table 6.2: Statistics of different time stepping schemes. Joint Optimization (Joint),
Baseline Time Splitting (TS), and Time Splitting with Contact Proxy (TSCP). Our TSCP
is much faster than both the Joint and TS schemes.

(A) (B) (C)

Figure 6.2: Bob simulated with (A) Joint Optimization, (B) Time Splitting with Contact
Proxy, and (C) Baseline Time Splitting. For this example, baseline time splitting can
also produce visually plausible results, and our proxy-assisted scheme is 3× faster than
joint optimization.

usually requires smaller time steps to remain stable, which imposes a second time step

constraint. However, we observed that, in practice, even using the largest CFL time step,

our proxy-assisted time splitting can still work properly and produce stable simulation

results. Hence, for comparison, we use the largest CFL time step for both schemes to

maximize their performance, as smaller h typically takes more Newton iterations in total

to simulate a frame. For the joint optimization, since direct factorization is intractable,

we solve (5.1) using the block-Jacobi preconditioned conjugate gradient solver with the

fluid part of the matrix free.

As shown in Table 6.2, even in these simple examples, our time splitting scheme

is significantly, up to 3× faster than joint optimization, especially for cases involving

contacts between fluids and deformable solids (e.g., Figure 6.2). This improvement stems

from no longer having to solve for the incompressibility of fluids repeatedly within a time

step. Moreover, one can also find that much fewer Newton iterations are needed with our

proxy-assisted time splitting scheme. As discussed in Section 5.1.2, this is because the

challenging high-speed impacts are already partially resolved in the fluid phase. Another

benefit of time splitting is the support of different error tolerances for the two phases.
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Initial (A) (B) (C)

(a) A viscous armadillo is dropped onto the ground.

(A) (B) (C)

(b) Cube on cloth. An elastic cube is dropped onto a square cloth with four corners fixed.

Figure 6.3: Simulation results of (A) Joint Optimization, (B) Time Splitting with Contact
Proxy, and (C) Baseline Time Splitting. While directly applying time splitting results in
instability at the boundaries, our results with the contact proxy are consistent with joint
optimization.

Errors in the fluid phase are sourced from the solution deviation of the CG solver, while

in the solid phase they are directly controlled by the tolerance of Newton’s method.

Typically, setting a slightly higher tolerance for fluids yields better performance while

still producing visually convincing results.

Aside from its efficiency, our proposed contact proxy also improves the stability of the

time splitting scheme. Alhough the simulation results of the baseline time splitting scheme

look fine in the case of inviscid fluids, matters get worse when it is applied to viscous

fluids. In Figure 6.3a, a viscous armadillo is dropped to the ground. In this example,

the baseline time splitting scheme produces severe sticky artifacts at the boundary, and

the fluid surface cannot eventually calm down. By consistently applying our contact

proxy to exert boundary pressure in the fluid phase, the artifacts can be well resolved, as
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𝑘! = 1e4 𝑘! = 1e5

𝑘! = 1e6

Figure 6.4: Statistics of simulations with different values of stiffness parameter kI . A
larger kI preserves volume better, but necessitates more CG iterations. In this case, a
proper kI = 105 Pa can be set to balance the computational cost and visual artifacts.

demonstrated in Figure 6.3a. Similarly, our idea of contact proxy is also applicable to

further separate elasticity from IPC contact while maintaining stability, leading to our

three-phase scheme (Figure 6.3b).

6.1.2 Linear Solver Evaluation

For the fluid phase, we designed a matrix-free conjugate gradient (CG) solver that

calculates the matrix-vector product via a gradient computation to avoid the expensive

computational and memory costs of direct factorization (Section 5.2.1). However, the

performance improvement from this approach is less significant if the number of CG

iterations required for convergence is too large, making the cost of computing gradients

higher than constructing the Hessian once. In our fluid phase, the number of CG iterations

is proportional to the stiffness kI of the incompressibility energy. A larger kI can better

preserve the volume of the fluids, but also results in a worse-conditioned system, demanding
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Figure 6.5: Shooting an armadillo with a high-speed water jet.

Solver
Fluid Phase Solid Phase Contact Phase

Mem.
hess solve solve solve

CG + LLT 14.9 0.49 1.45 0.43 12375
Ours 0.15 0.59 1.11 0.25 1469

Table 6.3: Time and memory cost of different solvers in example 6.5. The costs are
measured per time step in units [s] and [MB], respectively. The baseline method uses
the Conjugate Gradient (CG) method for the fluid phase and CHOLMOD LLT for the
solid and contact phases. Instead, our method employs a matrix-free CG solver for the
fluid phase and a domain-decomposed solver for the solid and contact phases, thereby
improving efficiency and saving memory.

more iterations to converge (Figure 6.4). In practice, by setting kI to a proper value, we

can efficiently solve the systems within 50 CG iterations without obvious fluid volume

losses.

We test the performance of our matrix-free CG solver together with the domain-

decomposed solver that we designed for the solid-coupling phase using an armadillo

shooting example (Figure 6.5), and present our results in Table 6.3. Our matrix-free CG

solver significantly boosts efficiency (20× faster) and reduces memory costs by avoiding

the construction of the Hessian matrix. On the other hand, our domain decomposed

solver is 40% faster than directly factorizing the solid and contact systems.
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Initial Ours

IISPH DFSPH

Figure 6.6: Dam break with 280K SPH particles. Our weakly compressible formulation
produces stable fluid dynamics without visually evident volume loss. Compared to
incompressible SPH solvers IISPH (Ihmsen et al., 2013) and DFSPH (Bender and Koschier,
2015), our simulation results demonstrate more smooth particle distribution.

6.2 Comparisons

In this section, we compare our method with several popular SPH fluid solvers and

a state-of-the-art solid-fluid coupling method, ElastoMonolith (Takahashi and Batty,

2022). We leveraged the open-source library SPlisHSPlasH1 to implement the SPH fluid

simulators. To compare our method with ElastoMonolith, we set up two scenes from

the aforecited publication with identical parameters and ran all the simulations using an

“e2-standard-8” (8 cores with 32GB RAM) Google Compute Engine for fairness.

6.2.1 Fluid Dynamics

While most existing SPH fluid solvers focus on incompressible fluids, our formulation

treats fluids as weakly compressible, allowing us to couple fluids with deformable solids

1https://github.com/InteractiveComputerGraphics/SPlisHSPlasH
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in a unified framework. We ran a dam break simulation to compare our method with

two SPH fluid solvers, IISPH (Ihmsen et al., 2013) and DFSPH (Bender and Koschier,

2015). These methods typically use particle resampling (Akinci et al., 2012, 2013) or

implicit representation (Koschier and Bender, 2017; Bender et al., 2019) to exert boundary

counter-forces. Our method instead employs IPC (Li et al., 2020) for more robust solid-

fluid coupling, with a penetration-free guarantee. We uniformly enforce the same CFL

condition for all methods along with an upperbound at 5ms, and use the volume map

(Bender et al., 2019) for their boundary handling. As shown in Figure 6.6, although our

formulation does not strictly enforce incompressibility, it produces natural fluid dynamics

without visually observable volume loss. On the other hand, our method (0.45 min/frame)

is slower than IISPH (0.31 min/frame) and DFSPH (0.15 min/frame) due to the more

sophisticated boundary handling strategy. However, our approach can couple SPH fluids

and elastic solids with arbitrary constitutive models, while most existing SPH methods

(Peer et al., 2018; Kugelstadt et al., 2021) treat elastic solids as incompressible, which is

not generally applicable.

6.2.2 Solid-Fluid Coupling

We now compare our method with ElastoMonolith (Takahashi and Batty, 2022), which

couples Eulerian fluids with Lagrangian solids in a monolithic manner. Following their

experiment setting, we ran two solid-fluid coupling simulations with identical parameters

using our method (Figure 6.7). The timings of our method for these two scenes are

24.1 sec/frame and 62.8 sec/frame, respectively, both of which are over 5× faster than

ElastoMonolith according to their reported timings (253.2 sec/frame and 352.0 sec/frame).

Coupling Eulerian fluids with Lagrangian solids requires dealing with geometric differences

and SPD reformulation is often needed to make the linear system tractable. As stated in

the publication on ElastoMonolith, this SPD reformulation can introduce many additional

non-zeros into the system, especially when contacts are rich and solids are intricately

shaped. By contrast, our method treats solids and fluids from a unified Lagrangian

viewpoint, where solid-solid and solid-fluid contacts are resolved in a unified manner.
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(a) A liquid bunny dropped into a bowl.

(b) A liquid bunny and an elastic bowl dropped onto a static torus.

Figure 6.7: Liquid Bunnies. Compared to ElastoMonolith (Takahashi and Batty, 2022),
our method achives an over 5× speedup for both of these examples with exactly the same
scene setups.

6.3 Complex Scenarios

We next evaluate the efficiency and robustness of our method in more complicated

scenarios.

Buoyancy: We drop three elastic elephants with varying densities into water (1000

kg/m3) (Figure 6.8). The light grey elephant (200 kg/m3) floats on the surface, the blue

elephant (700 kg/m3) is about half immersed in the water, and the red elephant (1200

kg/m3) sinks to the bottom. This demonstrates that our method correctly captures

buoyancy behavior.
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Figure 6.8: Buoyancy. Three elastic elephants with different densities (left to right: 200,
700, and 1200 kg/m3) fall into the water, demonstrating buoyancy.

Figure 6.9: Varying friction. Three viscous bunnies are dropped onto the ramp with
different coefficients of friction µ (left to right: 0.5, 0.03, 0.0). Our method supports
adjustable solid-fluid boundary friction.

Figure 6.10: Twist cylinder. A cylindrical cloth with four holes is twisted, squeezing out
water from the interior.

Varying Friction: We drop three viscous bunnies onto the slope with different coeffi-

cients of friction (orange bunny: 0.5, green bunny: 0.03, blue bunny: 0) (Figure 6.9). All

three bunnies share the same dynamic viscosity coefficients 100 kg/m3 and the angle of

slope is 30◦.

Twist Cylinder: Coupling fluids with thin shells is challenging since, without careful

treatment, penetration can easily occur. As stated in (Zarifi and Batty, 2017), Eulerian

fluids may flow through solids if their thickness is less than the grid cell size. Conversely,

our approach adopts a unified Lagrangian view and IPC guarantees penetration-free
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Figure 6.11: Cream is stirred, causing the deformation of the spoon.

results. In the example shown in Figure 6.10, we simulate the twisting of a cylinder full of

water. The cylinder is modeled as a thin shell with a 2mm thickness, and there are two

holes in the front and back sides of this cylinder, respectively. The left side and right side

are rotated at 72◦/s and are slowly moved towards each other at 2 cm/s. As we twist the

cylinder, the water gets squeezed out through the holes. This simulation demonstrates

our method produces stable simulation results with a penetration-free guarantee.

Cream: The example of Figure 6.11 exhibits the coupling behaviors of viscous fluids

and elastic solids. We use an elastic spoon to stir the cream in a porcelain bowl. The

spoon handle rotates around y-axis at 360◦/s (0.2m/s) while the bowl is fixed on the

table. As shown in our simulation results, the spoon deforms due to the resistance forces

subjected upon it by the viscous cream while stirring.
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Figure 6.12: Angry cow. We show that our method can simulate the coupling of materials
in arbitrary codimensions, including fluid particles, rods (rubber bands), thin shells
(leather pad), deformable solids (cow), and rigid bodies (cubes). We launch an angry cow
with a slingshot, and the cow penetrates through the wall and then falls into the water.
All the interactions between the various materials are captured accurately.

Angry Cow: We next show that our framework can simulate natural physical behaviors

of geometries in arbitrary codimensions (0, 1, 2, and 3) as well as their interactions. In

the scene scene shown in Figure 6.12, the codimensional-0,1,2 objects respectively refer to

fluid particles, rubber bands, and the leather pad. A deformable cow is launched by the

slingshot, hitting the wall consisting of rigid cubes, and then falling into the water pool,

producing interesting physical behaviors. The density of the rigid cubes and the cow are

100 kg/m3 and 700 kg/m3, respectively.

Figure 6.13: Kicking water. Our method accurately captures the complex interactions
between the water, the multi-layer skirt, and the mannequin body without any interpene-
tration as the skirted mannequin kicks in a swimming pool and splashes water.

41



Kicking Water: In the example of Figure 6.13, we show a scene in which a mannequin

dressed in a multilayer skirt kicks in a large pool of water involving complex interactions

between fluid particles and garments. As the mannequin kicks vigorously in and above the

water, our method simulates the natural deformations of the skirt caused by the contact

with the water, and the resulting water splashing is also correctly captured. Our method

resolves the contacts among the fluids particles, the thin garments, and the comples,

rapidly moving boundaries accurately and with penetration-free guarantees.
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CHAPTER 7

Conclusions and Future Work

We have presented a unified two-way strong coupling framework for weakly-compressible

SPH fluids and nonlinear elastic FEM solids. To achieve this, we modeled solid-fluid

interactions as contact forces between SPH particles and FEM boundary elements, applying

the IPC method for guaranteed non-penetration and stability. As we track the volume

change of SPH particles in an updated Lagrangian fashion, the incompressibility energy

stays quadratic and nice particle distributions are maintained. Utilizing a symmetric

approximation of discrete viscosity forces, we proposed a viscosity potential compatible

with optimization time integration. We then proposed a time splitting scheme with a

contact proxy to efficiently solve the time integration optimization while maintaining

robustness. Performance is further boosted by our matrix-free conjugate gradient method

and a domain-decomposed solver based on the Schur complement.

Compared to existing works (Zarifi and Batty, 2017; Takahashi and Batty, 2022)

coupling Eulerian fluids with Lagrangian elastic solids, our method treats both fluids

and solids in a Langrangian manner, avoiding the need to deal with different spatial

discretizations. Under such a unified view, our method achieves more convenient and

robust two-way coupling, even between fluids and codimensional solids. Likewise, unlike

existing SPH methods (Kugelstadt et al., 2021; Peer et al., 2018) that treat all materials

as SPH particles, our formulation enjoys both the efficiency of SPH fluids and the accuracy

of FEM solids.

There are many worthwhile future research directions. First, when fluid DOFs

dominate, building and querying the spatial hash for each fluid particle can manifest a

considerable cost. In fact, since there is no solid-fluid contact among interior particles,
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for better efficiency we can construct the spatial data structure only in the intersection

between the extended bounding boxes of the fluids and each solid. Additionally, the

adhesion between solids and fluids is also an interesting behavior to model. Similar to

the barrier energy, adhesion forces can be exerted on close solid-fluid primitive pairs but

in the opposite direction. Modeling adhesion by resolving the surface tension of fluids is

also an interesting avenue for future work.
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APPENDIX A

Derivatives of Fluid Potentials

The gradient and Hessian of the incompressibility potential with respect to the fluid

particle position are

∂PI(x)

∂x
=
∑
i

kIV0(Ji − 1)Jn
i h
∂(∇ · vn+1

i )

∂x
,

∂2PI(x)

∂x2
=
∑
i

kIV0(J
n
i )

2h2
∂(∇ · vn+1

i )

∂x

(
∂(∇ · vn+1

i )

∂x

)T

,

(A.1)

where

∂(∇ · vn+1
i )

∂xk

=


∑
j

− mj

hρnj
∇Wij +

∑
b−

mb

hρnb
∇iWib for k = i,

mj

hρnj
∇Wij for k = j,

0 otherwise,

(A.2)

where xk denotes the position of particle k, and
∂(∇·vn+1

i )

∂xk
can be nonzero if particle k

is a neighbor of particle i or k = i. According to (A.1), the constant Hessian matrix is

obviously positive semi-definite (PSD) since it is simply the sum of the outer product of

a vector with positive coefficients.

Similarly, the gradient and Hessian of the viscosity potential with respect to the fluid

particle position are
∂PV (x)

∂xi

= ν
∑
j

Vijv
n+1
ij ,

∂2PV (x)

∂xi∂xk

=


ν

ĥ

∑
j Vij for k = i,

− ν

ĥ
Vij for k = j,

0 otherwise,

(A.3)
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where xi and xk denote the positions of particle i and k, respectively. Since Vij =

−4(d + 2)
mimj

ρi+ρj

∇iWij(x
n
ij)

T

∥xn
ij∥2+0.01ℏ2 ∝ xn

ij(x
n
ij)

T is a 3 × 3 constant PSD matrix for any particle

pair within a time step, the Hessian of the viscosity potential is a constant PSD matrix

as well.
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APPENDIX B

Time Splitting

B.1 Baseline Time Splitting

Applying time splitting, we can split the original time integration into a fluid phase


v
n+1/2
f = vn

f + hM−1
f

(
−∇fP

(
[(x

n+1/2
f )T , (xn

s )
T ]T
)
+ ff

)
,

x
n+1/2
f = xn

f + hv
n+1/2
f ,

(B.1)

and a solid-coupling phase


vn+1 =

vn+1/2
f

vn
s

+ hM−1

−∇Ψ(xn+1)−∇C(xn+1) +

0
fs


 ,

xn+1 = xn + hvn+1,

(B.2)

where ff and fs are the external forces on the fluids and the solids, respectively. The two

phases of this baseline time splitting scheme have equivalent optimization forms

x
n+1/2
f = argmin

xf

1

2
∥xf − x̂n

f∥2Mf
+ h2P ([xT

f , (x
n
s )

T ]T ),

xn+1 = argmin
x

1

2
∥x− x̂n+1/2∥2M + h2(Ψ(x) + C(x)),

(B.3)

where x̂n
f = xn

f +hv
n
f +h

2M−1
f ff and x̂n+1/2 = xn+h[(v

n+1/2
f )T , (vn

s )
T ]T +h2M−1[0T , fTs ]

T

with v
n+1/2
f = (x

n+1/2
f − xn

f )/h. The details of the optimization algorithm can be found

in Algorithm 2.
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Algorithm 2: Baseline Time Splitting

1: x← xn, x̂n
f ← xn

f + hvn
f + h2M−1

f ff
2: SPH Neighbor Search & Density Update
3: // Fluid Phase
4: Hf ← h2∇2

fP ([x
T
f , (x

n
s )

T ]) +Mf

5: pf ← −H−1
f

(
h2∇fP ([x

T
f , (x

n
s )

T ]T ) +Mf (xf − x̂n
f )
)

6: xf ← xf + pf

7: x
n+1/2
f ← xf ,v

n+1/2
f = (xf − xn

f )/h
8: // Solid Coupling Phase

9: x̂n+1/2 ← xn + h[(v
n+1/2
f )T , (vn

s )
T ]T + h2M−1[0T , fTs ]

T

10: do
11: H← h2 (∇2Ψ(x) +∇2C(x)) +M
12: p← −H−1

(
h2(∇Ψ(x) +∇C(x)) +M(x− x̂n+1/2)

)
13: α← Backtracking Line Search with CCD
14: x← x+ αp
15: while 1

h
∥p∥ > ϵ

16: xn+1 ← x,vn+1 ← (x− xn)/h
17: return xn+1,vn+1

B.2 Error Analysis

The position update of the implicit Euler step and our proxy-enhanced time splitting

scheme can be respectively expressed as

xn+1
IE = xn + hvn + h2M−1

(
−∇P (xn+1

IE )

−∇Ψ(xn+1
IE )−∇Csf(x

n+1
IE )−∇Css(x

n+1
IE ) + fext

)
,

xn+1 = xn + hvn + h2M−1
(
−∇P (xn+1/2)−∇Ψ(xn+1)

−∇Ĉsf(x
n+1/2)− 1

2
∇Csf(x

n+1)−∇Css(x
n+1) + fext

)
.

(B.4)

If we define

e(x) =
∥∥∥xn + hvn + h2M−1

(
−∇P (x)−∇Ψ(x)−∇Csf(x)−∇Css(x) + fext

)
− x

∥∥∥,
(B.5)
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xn+1
IE given by implicit Euler satisfies e(xn+1

IE ) = 0, while for xn+1 in our scheme, we have

e(xn+1) = O(h4). Specifically,

e(xn+1) = h2
∥∥∥M−1(∇P (xn+1/2)−∇P (xn+1) +∇Ĉsf(x

n+1/2)− 1

2
∇Csf(x

n+1))
∥∥∥

= O

(
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1

2
∇2Csf(x
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)∥∥∥)

= O
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2
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(
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2
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n) +∇Css(x
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)∥∥∥)

= O(h4).
(B.6)

Here we assume that, in our discretized domain, the distance between any pair of primitives

(particle-particle pair, particle-triangle pair, and triangle-triangle pair) has a lower bound

ϵ. Thus, ∇2P (xn), ∇2Csf(x
n), ∇Ψ(xn), ∇Csf(x

n), and ∇Css(x
n) are all bounded, and

this indicates that our method has an O(h4) difference compared to the implicit Euler

solution. Since implicit Euler has an O(h2) error compared to the PDE solution, our

proposed time splitting scheme shares the same order of accuracy with implicit Euler

when it is stable.
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