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Abstract 

 

Context: Studies in rodents and humans suggest that high fructose corn syrup (HFCS)-sweetened 

diets promote greater metabolic dysfunction than sucrose-sweetened diets. 

Objective: To compare the effects of consuming sucrose-sweetened beverage (-SB), HFCS-SB, or a 

control beverage sweetened with aspartame on metabolic outcomes in humans. 

Design: A parallel, double-blinded, NIH-funded study. 

Setting: Experimental procedures were conducted during 3.5 days of inpatient residence with 

controlled feeding at a research clinic before (baseline) and after a 12-day outpatient intervention 

period. 

Participants: 75 adults (18-40 years) were assigned to beverage groups matched for sex, BMI (18-

35kg/m2), fasting triglyceride, lipoprotein and insulin concentrations. 

Intervention: 3 servings/day of sucrose- or HFCS-SB providing 25% of energy requirement or 

aspartame-SB, consumed for 16 days. 

Main Outcome Measures: %Hepatic lipid, Matsuda insulin sensitivity index (ISI), and Predicted M ISI. 

Results: Sucrose-SB increased %hepatic lipid (absolute change: 0.6±0.2%) compared with aspartame-

SB (-0.2±0.2%, P<0.05) and compared with baseline (P<0.001). HFCS-SB increased %hepatic lipid 

compared with baseline (0.4±0.2%, P<0.05). Compared with aspartame-SB, Matsuda ISI decreased 

after consumption of HFCS- (P<0.01) and sucrose-SB (P<0.01), and Predicted M ISI decreased after 

consumption of HFCS-SB (P<0.05). Sucrose- and HFCS-SB increased plasma concentrations of lipids, 

lipoproteins, and uric acid compared with aspartame-SB.  No outcomes were differentially affected 

by sucrose- compared with HFCS-SB. Beverage group effects remained significant when analyses 

were adjusted for changes in body weight.  

Conclusions: Consumption of both sucrose- and HFCS-SB induced detrimental changes in hepatic 

lipid, insulin sensitivity, and circulating lipids, lipoproteins and uric acid in 2 weeks. 

Keywords: sugar sweetened beverages, high fructose corn syrup, sucrose, liver fat, insulin sensitivity, 

lipids 
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Abbreviations  
NAFLD – Non-alcoholic fatty liver disease  

T2D – Type 2 diabetes 

CVD – Cardiovascular disease  

SB – Sweetened beverage  

95% CI – 95% confidence interval  

DNL – de novo lipogenesis  

VLDL – low-density lipoprotein 

LDL-C – low-density lipoprotein-cholesterol 

AUC – Area under the curve 

TG – Triglyceride  

HFCS – High fructose corn syrup  

Ereq – Energy requirement  

UC – University of California  

CCRC – The Clinical and Translational Science Center Clinical Research Center  

AST – Aspartate aminotransferase  

ALT – Alanine aminotransferase 

HDL-C – High-density lipoprotein-cholesterol  

DEXA – dual energy x-ray absorptiometry 

MRI – Magnetic Resonance Imaging  

PDFF – proton density fat fraction 

TR – Repetition time  

TE – Echo time 

ROI – Region of interest  

OGTT – Oral glucose tolerance test 

ISI – insulin sensitivity index 

BMI – Body mass index 

ANCOVA – analysis of covariance 

APOB – Apolipoprotein B 

APOCIII – Apolipoprotein CIII 

CV – Coefficient of variation  

LS mean – Least squares mean 

FST – Fasting  

PP – Postprandial  
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Introduction 

Over the past decade the prevalence of both non-alcoholic fatty liver disease (NAFLD) and type 2 

diabetes mellitus (T2D) have dramatically increased worldwide, establishing both as global health 

concerns (1, 2). More than 65-70% of T2D patients have NAFLD and their coexistence leads to a 

greater risk of disease-related complications and development of cardiovascular disease (CVD) (3, 4). 

Among T2D patients, cardiovascular complications are the leading cause of morbidity and mortality 

worldwide (2). While the prevalence of NAFLD and T2D among older adults is well recognized, the 

increasing number of cases among young people is of particular concern as earlier onset increases 

susceptibility to long-term complications (5-7).  

NAFLD may precede and/or promote the development of T2D as increased hepatic lipid synthesis 

and deposition can contribute to altered glucose homeostasis and insulin resistance and/or beta-cell 

dysfunction (8). Diet and other lifestyle habits are among some of the leading factors that modulate 

the development and progression of hepatic steatosis, T2D, and CVD (2, 9). Epidemiological research 

has linked sugar-sweetened beverage (SB) consumption to these adverse health outcomes (10-12). A 

recent meta-analysis of twelve observational studies found that a higher intake of sugar-SBs was 

associated with an increased risk of NAFLD (1.39-fold increase, 95% CI:1.29-1.50, P<0.00001) (13). 

Experimental evidence shows fructose consumption directly alters hepatic lipid metabolism and 

insulin sensitivity in both animals and humans (14-22). Plausible mechanisms related to the increased 

de novo lipogenesis and uric acid production caused by the unregulated uptake of fructose by the liver 

support this evidence (18, 23-25).  

High fructose corn syrup (HFCS) and sucrose are the leading added sugars consumed in the 

U.S. and the main sources of added fructose in the diet. HFCS is the main sweetener in sugar-SBs 

(26). With a self-reported intake of about 144 kcal per day, equivalent to one 12oz can of soda, sugar-

SBs are the primary source of added sugar in the diet among youth and adults (27, 28).  

Evidence from several studies conducted in rodents indicated that compared with diets 

sweetened with sucrose, HFCS increases hepatocellular lipid content and decreases hepatic insulin 
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sensitivity (16, 29-31). Epidemiological evidence suggests that countries utilizing HFCS as a 

sweetener in their food supply have a ~20% higher T2D prevalence than countries not utilizing HFCS 

(32). An acute crossover study found that compared with sucrose, a 24-oz serving of HFCS led to 

greater systemic exposure of fructose and more deleterious metabolic effects in men and women (33). 

However, there is limited clinical evidence from sustained dietary intervention studies comparing the 

metabolic effects of HFCS and sucrose consumption. The main evidence comes from a large industry-

funded study that reported that there were no differences between the metabolic effects of HFCS and 

sucrose when consumed for 10 weeks at low, medium or high doses (~8, 18, and 33% of energy 

requirement (Ereq) with the sugars dissolved in milk) (34, 35). However, the results of these studies 

also led the authors to conclude that there were no significant differences between the effects of high 

versus low doses of sugar on low-density lipoprotein-cholesterol (LDL-C) (34), 24-h TG, or uric acid 

(35). In contrast, we have reported that subjects consuming 0, 10, 17.5 or 25% of Ereq as HFCS for 2 

weeks exhibited dose-dependent increases in all three of outcomes; LDL-C: P < 0.0001, 24-h TG area 

under the curve (AUC): P < 0.05, uric acid AUC: P < 0.0001 (36).  

Therefore, the objective of this study was to compare the metabolic effects of consuming 

sucrose- or HFCS-SB at 25% Ereq with an aspartame-SB as a control in young, healthy male and 

female adults. We hypothesized that hepatic lipid content, lipid/lipoproteins and uric acid levels 

would be increased, and insulin sensitivity decreased in subjects consuming either HFCS- or sucrose-

SB compared with those consuming aspartame-SB.  
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Materials and Methods 

 

Participants 

 This paper reports the results of a subgroup of 75 participants from an NIH-funded investigation in 

which a total of 187 participants assigned to 8 experimental groups were studied. The 75 adults were 

assigned to consume 3 sweetened beverages/day containing either aspartame (n=23) or 25% of their 

Ereq as HFCS (n=28) or sucrose (n=24) for 2 weeks.  

This study protocol was approved by the University of California (UC), Davis Institutional 

Review Board and is registered with Clinical Trials.gov: NCT01103921. Participants provided written 

informed consent. Recruitment was through an Internet listing (craigslist.com) and local flyer 

postings. To assess eligibility potential participants underwent telephone and in-person interviews for 

medical history, a complete blood count and serum biochemistry panel. Inclusion criteria included age 

18–40 years and BMI 18–35 kg/m
2
 with a self-report of stable body weight during the prior 6 months. 

Exclusion criteria included diabetes (fasting glucose >125 mg/dL), evidence of renal or hepatic 

disease according to aspartate aminotransferase (AST) and alanine aminotransferase (ALT) 1.5 

normal limits ratio, fasting plasma TG >400 mg/dL, hypertension (>140/90 mm Hg), hemoglobin 

<8.5 g/dL, and surgery for weight loss. Individuals who reported that they smoked, regularly ingested 

>2 alcoholic beverages or sugar-SB/day, exercised >3.5 hours/week at a level more vigorous than 

walking, or used thyroid, lipid-lowering, glucose-lowering, antihypertensive, antidepressant, or 

weight loss medications were also excluded. By design, assignment to the experimental groups was 

not randomized; the experimental groups were matched for sex, BMI, and concentrations of fasting 

TG, LDL-C, high-density lipoprotein-cholesterol (HDL-C), and insulin measured in serum collected 

during the in-person interviews. Subjects who were scheduled for participation were asked to limit 

daily consumption of sweet beverages to no more than one 8-oz serving of 100% fruit juice and to 

discontinue consumption of any vitamin, mineral, dietary, or herbal supplements 5 weeks before the 

start of study.  
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Study Protocol 

This was a parallel-arm, double-blinded diet intervention study with 3 phases (Figure 1): 1) a 3.5-day 

inpatient baseline period during which subjects resided at the University of California Davis Clinical 

and Translational Science Center Clinical Research Center (CCRC), consumed a standardized 

baseline diet, and participated in experimental procedures (baseline); 2) a 12-day outpatient 

intervention period during which subjects consumed their assigned sweetened beverages containing 

aspartame or 25% Ereq as sucrose or HFCS along with their usual ad libitum diets; and 3) a 3.5-day 

inpatient intervention period during which subjects resided at the CCRC and consumed standardized 

diets that included the sweetened beverages and all experimental procedures were repeated 

(intervention) (Figure 1). All participants were asked to maintain their usual exercise habits 

throughout the study.  

 

Inpatient Meals 

 Identical low sugar ad libitum meals were served to all subjects on Day 1 and Day 17 (Figure 1). On 

Days 2 and 3 all subjects consumed standardized eucaloric meals containing 55% Ereq as complex 

carbohydrate, 30% fat, 15% protein. Ereq was calculated using the Mifflin equation (37) with a 1.5 

adjustment for activity level during Day 2 and a 1.3 adjustment on Day 3 when activity was 

minimized by the 24-h serial blood collection. The meals consumed during the intervention testing 

period included the assigned study beverages. The Day 18 and 19 eucaloric meals were as identical as 

possible to baseline meals, except for the isocaloric substitution of the sugar-SB for complex 

carbohydrate.  The timing and energy distribution of the meals were: Breakfast 9:00-h, 25% Ereq; 

Lunch 13:00-h, 35% Ereq; Dinner 18:00-h, 40% Ereq.  
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Beverages 

Beverages were prepared by a designated staff member at the UC Davis Department of Nutrition 

Ragle Clinical Research Center. HFCS-containing beverages were sweetened with HFCS-55 

(ISOSWEET 5500, 55% fructose, 45% glucose; Tate &Lyle). Sucrose-containing beverages were 

sweetened with C&H cane sugar (Domino Foods Inc). The sugar-SBs were flavored with 

unsweetened Kool-Aid drink mix and formulated as 15% sugar in water (w/w). Aspartame-

containing beverages were prepared using fruit flavored Market Pantry drink mix. Beverages were 

provided as 3 servings/day with amounts standardized among the 3 groups and based on Ereq (Mifflin 

equation with a 1.5 adjustment for activity level (37)). During the 12-d outpatient phase, participants 

were instructed to consume their usual diet, to drink one serving of the assigned study beverage with 

each meal, and to not consume any other sugar-containing beverages including 100% fruit juice. 

Participants were blinded to their beverage assignments, as were all CCRC staff and study personnel 

who interacted with participants or analyzed samples. Beverages contained a biomarker (riboflavin) 

that was measured fluorometrically in urine samples collected twice weekly to index compliance of 

beverage consumption. Subjects were informed that they were being monitored for beverage 

consumption but were not briefed about the method. Riboflavin was assessed in fasting urine samples 

collected during baseline, on the 8
th
 and 12

th
 days of outpatient intervention, and during inpatient 

intervention. Urinary riboflavin concentrations did not differ among groups and concentrations during 

outpatient beverage consumption were not different from those during the inpatient period when 

beverage consumption was monitored (36, 38). 
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Body Composition and Body Weight 

Percent body fat at baseline was determined by dual energy x-ray absorptiometry (DEXA) on Day 1. 

Subjects were weighed in the fasting state with standardized attire on Day 1 and Day 17.  

 

 

Hepatic Lipid Imaging 

Magnetic resonance imaging (MRI) for hepatic lipid content was conducted on Day 2 (baseline) and 

Day 17 (intervention). While the baseline and intervention scans were always conducted at the same 

time for each subject, scheduling logistics required that some scans were scheduled in the morning 

and some in the afternoon. Subjects were transported from the CCRC to the UC Davis Medical 

Center, Ambulatory Care Center and were scanned using a confounder-corrected chemical shift-

encoded liver fat quantification MRI technique on a 1.5T system (General Electric HDxt, with an 8-

channel body coil). To estimate liver proton density fat fraction (PDFF), a quantitative image 

biomarker of liver fat content, axial 2D, T1-independent, T2*-corrected, six-echo gradient-recalled-

echo images were acquired (repetition time (TR) = 125ms, echo time (TE) = 2.3, 4.6, 6.9, 9.2, 11.5, 

13.8ms, 8mm slice thickness, 256x192 matrix size) (39).  
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Hepatic Lipid Content Quantification 

66 of the 75 subjects had quantifiable baseline and intervention scans that were included in the 

analyses of hepatic lipid content. Of the nine sets of missing scans, seven were due to scanner 

unavailability (HFCS-SB: 5; Sucrose-SB: 1; Aspartame-SB: 1), one was due to subject discomfort 

with the procedure (aspartame-SB), and one was due to corrupt file format (aspartame-SB). Thus, the 

sample sizes of the groups analyzed for hepatic lipid content were 20, 23, and 23 for the aspartame, 

sucrose, and HFCS groups, respectively. MRI-PDFF was measured with Osirix software (OsiriX MD 

versions 10 & 11; Pixmeo, Geneva, Switzerland) and the LIPO-Quant (Liver Imaging of Phase-

interference related signal Oscillation and Quantification) plugin (40), which computed liver PDFF 

parametric maps pixel-by-pixel from source images. PDFF values were obtained by placing regions of 

interest (ROIs) in representative portions of the liver on those maps to ensure adequate sampling of 

the liver. PDFF values of all ROIs were averaged to provide whole-liver estimates of PDFF. The MR 

technologists performing the scans and the image analyst placing the ROIs on the liver PDFF 

parametric maps were blinded to any subject data including assigned beverage group. To ensure 

consistency of PDFF methodology, 31 scans were randomly selected and analyzed by two additional 

blinded image analysts. Intraclass correlation coefficient for the three analyses of PDFF was 0.99.   

Insulin Sensitivity 

3-h Oral Glucose Tolerance Tests (OGTT) were performed on Day 4 (baseline) and Day 20 

(intervention) following a 14-h overnight fast at the CCRC. A fasting blood sample was collected at 

8:00-h through intravenous catheter.  Following a 75g oral glucose load, blood samples were collected 

30, 60, 90, 120, and 180 minutes later. Plasma samples were analyzed for glucose concentrations 

using an YSI glucose analyzer and for insulin concentrations using radioimmunoassay (Millipore Inc., 

St. Charles, MO). Insulin sensitivity was calculated using the 2-h OGTT data with both the Matsuda 

insulin sensitivity index (ISI) (41) and the Predicted M ISI (42). The more recently-developed 

Predicted M ISI utilizes the oral glucose insulin sensitivity index (43) and includes an adjustment for 
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BMI (42). The baseline and intervention Predicted M ISI for this report were calculated utilizing the 

BMIs specific to each time-point, therefore the ΔPredicted M ISI includes adjustment for Δbody 

weight.  

 

24-h Serial Blood Collections 

24-h serial blood samples were collected on the Day 3 (baseline) and Day 19 (intervention) via 

intravenous catheter. Starting at 8:00-h, three fasting samples followed by 29 postprandial blood 

samples were collected at 30- to 60-minute intervals until 8:00-h the following morning. An 

additional 6mL of blood were collected at fasting time points (8:00-, 8:30-, 9:00-h) and at late evening 

time points (22:00-, 23:00-, 24:00-h). The additional plasma from the 3 fasting draws was pooled as 

was that from the late-evening postprandial draws, and each pool was aliquoted and frozen as 24 

identical samples. The timing of the late evening postprandial draws was based on the late-evening 

peak postprandial TG concentrations observed in our previous study (20). The plasma concentrations 

of TG and uric acid were measured at all time points and were calculated for total 24-h AUC by the 

trapezoidal method. The concentrations of cholesterol, LDL-C, HDL-C, apolipoprotein B (apoB) and 

apolipoprotein CIII (apoCIII) were measured during the fasting and late evening postprandial periods. 

Lipid and lipoprotein and uric acid concentrations were measured with a Polychem Chemistry 

Analyzer (PolyMedCo Inc.) with reagents from MedTest DX. The intra- and inter-assay CVs for all 

assays were as follow: glucose: 3.6%, 4.5%; insulin: 6.5%, 7.6%; TG: 2.2%, 7.2%; total cholesterol: 

1.4%, 4.2%; LDL-C: 2.7%, 5.7%; HDL-C: 2.7%, 5.7%; uric acid: 1.9%, 14.5%; apoB: 2.4%, 5.7%; 

apoCIII: 0.9%, 5.5%.   
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Statistical Analyses 

The primary sample size calculation included in the funded NIH grant application was based on the 

effect sizes for fasting apoB and small dense LDL-C (1.23 and 0.96 respectively) obtained from our 

previous study comparing the effects of consuming fructose- or glucose-sweetened beverages at 25% 

Ereq (20). The results indicated that 25 subjects per group would allow detection of a difference in 

apoB or small dense LDL-C between subjects consuming aspartame or 25% Ereq as fructose-SB at p 

< 0.05 and 80% power in the 7-group analysis proposed in the application. Due to funding limitations 

this sample size was not achieved in all groups. In order to accomplish the aims of an NIH-funded 

ancillary project (1R01HL107256) the sample size was exceeded in the 25% Ereq fructose-, glucose-, 

and HFCS-SB groups. 

Baseline and intervention outcomes were log transformed when the baseline or absolute change 

values were not normally distributed. The absolute change (∆) at intervention compared to baseline 

for each outcome was analyzed using a general linear 2-factor (sweetened beverage (SB)-group, sex) 

analysis of covariance (ANCOVA) adjusted for sugar*sex, outcome at baseline, and BMI at baseline 

(SAS 9.4, SAS, Cary, NC). The interaction term and/or covariates that did not improve the sensitivity 

of the models were removed. Significant differences between groups were identified using Tukey’s 

multiple-comparisons test. Significant within-group changes (intervention value compared with 

baseline value) were identified as least squares mean (LS mean) of the change significantly different 

than zero. Secondary ANCOVAs were conducted that included adjustment for Δbody weight (except 

Predicted M ISI) or substituted %body fat at baseline for BMI at baseline. Statistical significance was 

considered at P < 0.05. Data are reported as mean ± standard error of the mean unless otherwise 

specified.  
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Results 

There were no significant differences among the three SB-groups in the baseline 

characteristics shown in Table 1. The absolute values of body weight, hepatic lipid content and 

indices of insulin sensitivity at baseline and intervention are presented in Table 2, along with the P-

values for the effect of SB-group in the primary ANCOVA and the effect of SB-group and Δbody 

weight in the secondary ANCOVA. Each outcome is designated by a numerical superscript in order to 

detail the covariates included in the ANCOVA model in the legend for Table 2.  

 

 

Body Weight 

While subjects consuming HFCS-SB gained body weight during the 2-week intervention (0.8 ± 0.3 

kg; P = 0.0015 vs baseline, LS mean of Δ different than zero), the changes in body weight (sucrose-

SB: 0.5 ± 0.3 kg, P = 0.079; aspartame-SB: -0.05 ± 0.2 kg, P = 0.90 vs baseline) were not 

significantly different (P = 0.080, effect of SB-group). Males, however, gained more body weight (0.8 

± 0.2 kg, P = 0.0004 vs baseline) than females (0.1 ± 0.2 kg, P = 0.017, effect of sex).      

 

 

Hepatic Lipid Content (MRI-PDFF) 

As shown in Table 2, the absolute change in %hepatic lipid (MRI-PDFF) was significantly affected 

by SB-group (P = 0.020). Subjects consuming sucrose-SB had increased hepatic lipid compared with 

subjects consuming aspartame-SB (P = 0.016, Tukey’s multiple-comparisons test), and consumption 

of both sucrose- (P = 0.0008) and HFCS-SB (P = 0.041) increased hepatic lipid content compared 

with levels at baseline (Figure 2).   

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article/doi/10.1210/clinem
/dgab508/6321747 by U

niversity of C
alifornia, D

avis user on 23 August 2021



Acc
ep

ted
 M

an
us

cri
pt

 

 

15 

 

Insulin Sensitivity 

SB-group significantly affected insulin sensitivity, as assessed by the Matsuda ISI (P = 0.0022) and 

the Predicted M ISI (P = 0.045) (Table 2). Consumption of both HFCS- and sucrose-SB decreased 

Matsuda ISI compared with aspartame-SB (HFCS: P = 0.029; sucrose: P = 0.0020), but only subjects 

consuming sucrose-SB exhibited decreases compared with baseline (HFCS: P = 0.091; sucrose: P = 

0.0031) (Figure 3A).  Predicted M ISI was decreased by HFCS-SB compared with aspartame-SB 

(HFCS: P = 0.049; sucrose: P = 0.12) and decreased by both sugars compared with baseline (HFCS: 

P = 0.009; sucrose: P = 0.047) (Figure 3B). Compared with aspartame-SB, both HFCS- and sucrose-

SB increased the 3-h glucose (Figure 4A-D HFCS: P = 0.0063; sucrose: P = 0.043) and insulin AUC 

(Figure 5A-D HFCS: P = 0.0014; sucrose: P = 0.0011). In contrast, the consumption of HFCS- and 

sucrose-SB for 2 weeks did not significantly affect fasting glucose and insulin concentrations, nor 

HOMA-IR (Table 2). 

 

Circulating Lipid & Lipoprotein  

Table 3 presents the absolute values of plasma lipids, lipoproteins and uric acid 

concentrations at baseline and intervention using the same format as Table 2. The data from 

subjects consuming sucrose-SB have not been previously reported, however the data from the HFCS- 

and aspartame-SB groups were included in a publication reporting the dose response effects of 

consuming 0, 10, 17.5 and 25% Ereq as HFCS-SB (36), and in a more recent publication comparing 

consumption of HFCS-SB with glucose- and fructose-SB  (38). 

 

Sucrose- and HFCS-SB significantly increased fasting TG compared with baseline (sucrose: 18.6 ± 

5.9 mg/dl, P = 0.011; HFCS: 12.7 ± 4.4 mg/dl, P = 0.009), but not compared with aspartame-SB (0.5 

± 3.7 mg/dl, P = 0.07 vs both sucrose and HFCS-SB). In contrast, both sucrose- and HFCS-SB 

increased 24-h TG AUC (Sucrose: P = 0.0028; HFCS: P = 0.011) and postprandial TG concentrations 

(Sucrose & HFCS: P < 0.0001) compared with aspartame-SB (Figure 6A & B). Sucrose-SB 
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significantly increased fasting apoCIII (Sucrose: P = 0.0003; HFCS: P = 0.065 versus aspartame-SB), 

and both sucrose- (P < 0.0001) and HFCS-SB (P = 0.0006) increased postprandial apoCIII compared 

with aspartame (Figure 6C & D). As presented in Figure 7, fasting and postprandial LDL-C, non-

HDL-C, and postprandial apoB concentrations were all significantly increased in subjects consuming 

HFCS- and sucrose-SB compared with aspartame (all P < 0.01) and compared with baseline 

concentrations (all P < 0.001). Fasting apoB was significantly increased by HFCS-SB compared with 

aspartame-SB (HFCS: P = 0.0006; Sucrose: P = 0.056) and increased by both HFCS- (P < 0.0001) 

and sucrose-SB compared with baseline (P = 0.0008).  

 

 

 

Uric Acid 

As shown in Figure 8, both fasting and total 24-h uric acid AUC significantly increased in subjects 

consuming HFCS- (fasting & AUC: P < 0.0001) and sucrose-SB (fasting: P = 0.0083; AUC:  P < 

0.0001) compared with subjects consuming aspartame-SB.  

 

Sucrose- versus HFCS-SB 

There were no significant effects of sucrose- compared with HFCS-SB on any of the outcomes. The 

most differential effects were observed for postprandial apoCIII, which tended to be more increased in 

subjects consuming sucrose-SB (P=0.13, sucrose- vs HFCS-SB, Tukey’s); and for 24-h uric acid 

AUC, which tended to be more increased in subjects consuming HFCS-SB (P=0.17, sucrose- vs 

HFCS-SB, Tukey’s). P-values for the effects of sucrose- versus HFCS-SB on the changes of indices 

of insulin sensitivity (Matsuda ISI, Predicted M ISI, glucose OGTT AUC, insulin OGTT AUC) were 

all > 0.9 (Tukey’s).   
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Secondary ANCOVAs with Adjustment for Body Weight 

All outcomes that showed significant effects of SB-group retained significance when the statistical 

models were adjusted for Δbody weight (Table 2). The Δbody weight was a significant contributor to 

the change of hepatic lipid content (P = 0.041) and fasting apoCIII (P = 0.0042). In simple regression 

analyses, Δbody weight was positively associated with both outcomes (hepatic lipid R
2 
= 0.10, P = 

0.009; fasting apoCIII: R
2 
= 0.13, P = 0.002.) All other outcomes were not affected by Δbody weight.   

 

Effect of Sex 

In response to sucrose- or HFCS-SB consumption, males tended to have larger increases in the lipid 

and lipoprotein outcomes than females, and the sex differences were significant for TG (fasting, AUC, 

and late-night postprandial), nonHDL-C (fasting and postprandial), and postprandial LDL-C. The sex 

differences remained significant for TG (fasting, AUC, and late-night postprandial) and postprandial 

nonHDL-C in the secondary ANCOVA that included adjustment for Δbody weight.  

 

Sex did not significantly affect the changes in hepatic lipid content in the primary ANCOVA model 

that included adjustment for BMI at baseline (Table 4). However, in a secondary ANCOVA, in which 

adjustment for BMI was replaced with adjustment for %body fat at baseline, both %body fat and male 

sex were significant positive contributors to the changes of hepatic lipid content. ANCOVA 3 

confirms that adjustment with %body fat is required to show a significant effect of sex and ANCOVA 

4 demonstrates that the reverse is true; adjustment of sex is required to show a significant effect of 

%body fat (Table 4). Substituting BMI with %body fat in secondary ANCOVAs of the changes of 

postprandial apoCIII, TG, and 24-h TG AUC also revealed significant or more significant effects of 

sex (Table 5).   
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Discussion  

These findings demonstrate that compared with aspartame-SB, the consumption of HFCS- or 

sucrose-SB at 25% Ereq for 2 weeks increased hepatic lipid content and decreased insulin sensitivity 

in healthy young adults, but there were no differences between effects of the two different sugars.  

During the outpatient intervention period, the current study utilized an ad libitum feeding 

protocol in which subjects were required to consume the experimental beverages, but were free to 

consume as much or as little of their usual diet as they wished. This is in contrast to hypercaloric 

feeding protocols in which subjects are required to consume experimental beverages or sugar 

supplements in addition to diets containing their usual caloric requirement. The majority of the studies 

reporting fructose, sucrose, or candy and soda consumption increased liver fat utilized these types of 

hypercaloric feeding protocols (44-47). Therefore, a 2014 meta-analysis reporting on the effects of 

sugar consumption on liver fat concluded that results were confounded by excess energy intake, and 

there was insufficient evidence to draw a conclusion for the effects of HFCS or sucrose on NAFLD 

(48).   

However, during a 6-month intervention trial, overweight adults consuming one liter/day of 

sucrose-SB had a greater increase in liver fat compared with control groups consuming aspartame-SB, 

semi-skim milk or water even though the increases of body weight were comparable in the groups 

consuming sucrose-SB (+1.25 kg) and milk (+1.29 kg) (49).  For the current study, while the effects 

of SB-group on body weight were not significant, subjects consuming HFCS-SB gained weight 

compared with baseline. Secondary analyses that included adjustment for change of body weight 

showed that this increase of body weight was a significant contributor to the changes in liver fat, 

while not eliminating the significant effect of sugar and improving the R
2
 of the statistical model from 

0.19 to 0.27. This suggests that both body weight gain and consumption of sucrose- and/or HFCS-SB 

are independent risk factors for NAFLD. The independent role of sucrose-SB and HFCS-SB will need 

to be confirmed in additional dietary intervention studies in which sucrose- and/or HFCS-SB are 

consumed with eucaloric diets that prevent body weight gain. Importantly, in an 8-day eucaloric 

crossover study, healthy young adult males exhibited increased DNL, reduced fat oxidation, and 
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increased liver fat while consuming 25% Ereq as fructose-SB compared with isocaloric complex 

carbohydrate despite the absence of body weight change (15). Also, 4 dietary intervention studies 

revealed marked decreases in liver fat following restriction of SSB (50), fructose (51, 52) or added 

sugar (53) consumption for periods ranging from 9 days to 12 weeks. In 2 of these studies, the 

decreases in liver fat were accompanied by significant decreases in body weight (52, 53), and in the 

other 2 studies, they were not (50, 51). 

Our findings that the consumption of HFCS- and sucrose-SB decreased the Matsuda ISI and 

Predicted M ISI are novel. An extensive meta-analysis revealed no effects of fructose consumption on 

fasting glucose, fasting insulin or HOMA-IR and our results agree with this (54). Indeed, our 

discordant findings for HOMA-IR versus the Matsuda ISI and Predicted M ISI support the conclusion 

of Shaibi and colleagues (55), and our own recent results (56), that HOMA-IR lacks the sensitivity to 

detect changes of whole-body insulin sensitivity that are detected by more sophisticated methods 

employing OGTTs and frequently sampled intravenous glucose tolerance tests. The meta-analysis 

(54) also concluded that fructose consumption does not affect peripheral or muscle insulin sensitivity 

index based on 3 studies (14, 15, 57) that assessed whole body glucose disposal under euglycemic 

hyperinsulinemic clamp conditions. The reductions of insulin sensitivity that we observed, based on 

both the Matsuda ISI and Predicted M ISI, are not in agreement with this conclusion. Both Matsuda 

ISI (41) and Predicted M ISI (42) and are indices derived by modeling OGTT results on clamp results 

generated in the same subjects, and both methods have been shown to be well correlated with glucose 

disposal during clamps in follow-up studies (58-60). Additionally, the recently developed Predicted M 

ISI was modeled to predict the clamp-derived M value and thus allow comparisons between studies 

conducting clamps and those conducting OGTT (42).   

Older (61-64) and more recent studies (56) have also shown that high sucrose diets increased 

glucose and insulin response during OGTT. The discrepancy between the results generated during 

OGTT and those generated during clamp (53) could be due to the type of sugar consumed (fructose 

versus sucrose) or may be due to the sensitivity, repeatability and reproducibility of euglycemic 

hyperinsulinemic clamps compared to OGTTs. The euglycemic hyperinsulinemic clamp has long 

been considered the gold standard for assessing insulin sensitivity, however it has also been described 
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as labor-intensive, operator dependent, and non-physiological (65). With regard to the latter, the oral 

route of glucose delivery during OGTT is more physiological than the intravenous glucose infusion 

utilized during euglycemic hyperinsulinemic clamps. Sustained sugar-SB consumption could mediate 

changes in incretin responses or gastric emptying that affect insulin sensitivity and secretion, and 

these effects would not be apparent during the intravenous glucose infusion. More studies testing the 

effects of sugar consumption utilizing both OGTT and clamps within the same subjects would be 

value.  

While we have previously published the results showing that consumption of HFCS-SB at 

25% Ereq increases fasting and postprandial plasma concentrations of TG, lipoproteins, and uric acid 

compared with aspartame-SB, these results are included in this report to allow direct comparisons 

with sucrose-SB (36). The effects of sucrose-SB on these outcomes, and on all of the other reported 

outcomes, did not differ from the effects of HFCS-SB. However, compared with aspartame-SB, 

sucrose-SB significantly increased postprandial TG, fasting and postprandial apoCIII, LDL-C, 

nonHDL-C, uric acid and postprandial apoB. These results support previous dietary intervention 

studies that showed increases in TG, lipoproteins and uric acid in subjects consuming sucrose (14, 49, 

61-63).  

Our observation that males had or tended to have higher increases in lipid and lipoprotein risk 

factors than females in response to sugar-SB consumption is in agreement with the findings of 

previous studies (36, 64, 65). Both male sex and %body fat at baseline contributed to the increases in 

hepatic lipid content and postprandial apoCIII. Importantly, adjusting the statistical model for BMI 

rather than %body fat attenuated the significant contributions of sex on these outcomes. Since females 

have higher %body fat than males of comparable BMI, adjustment for BMI did not separate the larger 

increases of hepatic fat that occurred in females due to higher body fat from the larger increases that 

occurred in males due to sex. The common practice of relying on BMI to adjust for body adiposity 

status may obscure significant effects of male sex and %body fat on outcomes that are sensitive to 

these variables.    

The changes we report in hepatic lipid content and insulin sensitivity, as well as the changes 

of fasting and postprandial lipids, lipoproteins and uric acid, all support the conclusion that 
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consumption of both HFCS- and sucrose-SB increase risk factors for cardiometabolic disease 

compared with aspartame-SB, and that the effects of the two sugars are comparable. A study funded 

by the Corn Refiners Association also detected no differences between the effects of HFCS- or 

sucrose-SB on all of the reported outcomes (34, 35). However, contrary to our findings, this study 

also detected no within-group changes  in hepatic fat content, 24-h TG and uric acid AUC, or fasting 

LDL-C concentrations in subjects who consumed 30% Ereq as either HFCS- and sucrose-sweetened 

milk for 10 weeks (34, 35). Explanations for these discordant results have been previously reviewed 

(23), Also, the industry-funded study, which utilized computed tomography imaging rather than MRI  

(39, 66), may have lacked the sensitivity and the power to detect changes of hepatic lipid content. The 

effect size for the significant changes in hepatic lipid content between the subjects consuming 

sucrose-SB (n=23) and those consuming aspartame-SB (n=20) in the current study was 0.94. To 

detect a 0.94 effect size in a 6-group comparison requires n>31 participants per group. The number of 

subjects in the 6 groups assessed for hepatic lipid content in the industry-funded study ranged from 8 

to 13 per group (34).  

 

Study Strengths 

A strength of this study was the use of an advanced MRI techniques, validated against magnetic 

resonance spectroscopy and considered as a surrogate to liver biopsy, for the quantification of hepatic 

lipid content (67). MRI for assessment of the hepatic fat fraction has been demonstrated to be superior 

to ultrasound and computed tomography (39, 66). Another strength of the study was the use of a 

biomarker in the beverages to assess compliance in comparison to the use of self-reported checklists 

or the return of empty beverage containers (34). Also, the 3.5-day inpatient baseline and intervention 

testing periods with standardized diets and activity monitoring minimized variation inherent in data 

collected under outpatient conditions. 
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Study Limitations 

The 25% Ereq dose of sugar utilized for this study does not represent average added sugar intake for 

the U.S. population. However, the prevalence of excessive sugar-SB consumption (≥500 kcals/day or 

≥25% of Ereq for a typical 2,000 kcal diet) was reported to be 5% in children, 16% in adolescents, 

and 12% in adults in the U.S (68). Furthermore, individuals from racial minorities and low-

socioeconomic status, who are more susceptible to the development of metabolic disease, are more 

likely to consume excess sugar-SB than non-minority or higher socioeconomic groups (69). 

Understanding the health effects of sugar-SB at high levels of consumption is particularly important 

for populations experiencing health disparities. A potential study limitation is that the 2-week 

intervention was relatively short. However, it illustrates how quickly excess sugar consumption can 

lead to metabolic dysregulation in young adults who are normal weight, overweight, or obese. During 

the 12-d outpatient period, the subjects consumed their usual ad libitum diets, thus the exact level of 

sugar consumed by each subject during this period is unknown.  

Finally, it is important to note that the beverages consumed by the participants in this study 

were prepared by study staff, and the HFCS utilized contained 55% fructose. While it is assumed that 

commercially available SSB is made with HFCS that also contains 55% fructose, an analysis of 23 

HFCS-containing sodas, purchased from the grocery store, showed that the fructose constituted an 

average of 59% of the sugar content with a range of 47-65% (70, 71). Therefore, a study comparing 

the metabolic effects of commercially available HFCS-SB with sucrose-SB could yield different results 

and would be warranted.  
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Conclusion  

In conclusion, the results of this study demonstrate that consumption of either HFCS- or 

sucrose-SB provided at 25% Ereq for 2 weeks increased hepatic lipid content, decreased insulin 

sensitivity, and increased circulating lipids, lipoproteins and uric acid concentrations compared with 

aspartame-SB in young adults. While these results do not indicate that consuming 25% Ereq as 

HFCS- and sucrose-SB for 2 weeks causes clinically relevant increases in disease risk, they are 

indicative of the pattern of early phase metabolic dysfunction that underlies the epidemics of 

metabolic syndrome, CVD, T2D, and NAFLD (16). These results, in which both the consumption of 

HFCS- and sucrose-SB significantly increased risk factors for NAFLD, T2D, and CVD when 

compared with aspartame-SB consumption, do not support the data from some studies in rodent 

models and humans suggesting that consumption of HFCS results in greater metabolic dysregulation 

than sucrose. These results are important for shaping public health policy and consumer choices, in 

part because it has been reported that many consumers believe that HFCS and aspartame are more 

detrimental to human health than sucrose (72).   
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Tables:  
 

Table 1. Participant characteristics at baseline 

Parameter Aspartame HFCS Sucrose 

Age (year) 25.4 ± 6.2
1 

26.8 ± 6.6 25.9 ± 6.3 

Sex (M/F) 11/12 15/13 12/12 

Weight (kg) 71.8 ± 10.6 72.9 ± 14.5 71.9 ± 12.1 

BMI (kg/ m2) 24.8 ± 3.3 24.9 ± 4.0 25.3 ± 3.4 

Waist circumference (cm) 75.2 ± 6.4 77.0 ± 10.1 75.4 ± 7.2 

Body fat (%) 27.1 ± 9.6 26.0 ± 9.7 29.1 ± 11.5 

Energy requirement (kcal/d) 2354 ± 322 2390 ± 350 2351 ± 335 

Systolic blood pressure (mm Hg) 112.3 ± 11.5 117.1 ± 10.0 114.3 ± 8.4 

Diastolic blood pressure (mm Hg) 69.2 ± 8.6 72.7 ± 7.2 72.2± 5.5 

Total cholesterol (mg/dl) 148.9 ± 25.5 157.6 ± 34.3 159.1 ± 23.1 

Fasting HDL cholesterol (mg/dl) 39.4 ± 7.4 45.6 ± 13.7 42.9 ± 6.6 

Fasting AST (mg/dl)  23.1 ± 8.4 22.1 ± 5.6 24.1 ± 7.6 

Fasting ALT (mg/dl) 23.4 ± 20.1 21.5 ± 8.9 24.1 ± 15.8 

1
Values are mean ± standard deviation 

 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article/doi/10.1210/clinem
/dgab508/6321747 by U

niversity of C
alifornia, D

avis user on 23 August 2021



Acc
ep

ted
 M

an
us

cri
pt

 

 

30 

 

 

Table 2. Body weight, hepatic lipid content and indices of insulin sensitivity (mean ± SEM) at baseline 

and intervention 

Outcome Aspartame  

(n = 23) 

HFCS  

(n = 28) 

Sucrose  

(n = 24) 

Testing effect of: P-

value 

Body Weight (kg)
1
  SB-group

*
 0.080 

baseline  71.8 ± 2.2 72.9 ± 2.7 71.9 ± 2.5 - - 

intervention  71.7 ± 2.2 73.7 ± 2.8 72.4 ± 2.6 - - 

Hepatic Lipid (MRI-PDFF, %)
2 

SB-group 0.020 

baseline 1.6 ± 0.8 2.3 ± 0.8 1.9 ± 0.4 SB-group w/ΔBW
a
 0.027 

intervention 1.4 ± 0.7 2.8 ± 0.9 2.6 ± 0.5 ΔBW
b
 0.041 

Matsuda ISI (arbitrary units)
3
 SB-group 0.0022 

baseline 3.6 ± 0.3 3.3 ± 0.2 3.6 ± 0.3 SB-group w/ΔBW 0.0011 

intervention 3.9 ± 0.3 3.0 ± 0.3 3.1 ± 0.3 ΔBW 0.19 

Predicted M ISI (arbitrary units)
4 

 SB-group 0.045 

baseline 1.5 ± 0.14 1.5 ± 0.16 1.5 ± 0.18 - - 

intervention 1.6 ± 0.055 1.5 ± 0.065 1.4 ± 0.058 - - 

OGTT Glucose AUC (mg/dlx3h)
5
 SB-group 0.0063 

baseline 27893 ± 926 27719 ± 755 27572 ± 834 SB-group w/ΔBW 0.0048 

intervention 26788 ± 810 29246 ± 1137 28605 ± 661 ΔBW 0.42 

OGTT Insulin AUC (µU/mlx3h)
6
  SB-group 0.0003 

baseline 15943 ± 2205 14631 ± 1156 15541 ± 2359 SB-group w/ΔBW 0.0003 

intervention 13882 ± 1666 17916 ± 1761 17311 ± 1757 ΔBW 0.53 

FST Glucose (mg/dl)
7
 SB-group 0.38 

baseline 91.1 ± 1.4 90.5 ± 1.3 93.4 ± 1.2 SB-group w/ΔBW 0.32 

intervention 88.6 ± 1.4 89.3 ± 1.2 92.0 ± 1.1 ΔBW 0.36 

FST Insulin (µU/ml)
8
 SB-group 0.40 
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baseline 13.2 ± 1.0 13.2 ± 0.9 13.3 ± 1.0 SB-group w/ΔBW 0.33 

intervention 13.1 ± 1.1 14.5 ± 1.3 14.4 ± 1.1 ΔBW 0.45 

HOMA-IR (arbitrary units)
9
 SB-group 0.48 

baseline 3.0 ± 0.2 3.0 ± 0.2 3.1 ± 0.2 SB-group w/ΔBW 0.41 

intervention 2.9 ± 0.2 3.2 ± 0.3 3.3 ± 0.3 ΔBW 0.46 

*
Effect of SB-group on the absolute change of outcome in the primary 2-factor (SB-group, sex) ANCOVA 

model that included adjustment for BMI
1,2,4,7,8,9

, outcome at baseline
3,5,6,7,9

, and/or SB-group*sex
6,8,9

; log-

transformed values used 
2,3,5,6,9

; 
a 
effect of SB-group in the ANCOVA that included adjustment for the ΔBW; 

b 

effect of ΔBW in the secondary ANCOVA; Δ, absolute change; ISI, insulin sensitivity index; FST, fasting.  
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Table 3. Circulating lipid, lipoproteins and uric acid concentrations (mean ± SEM) at baseline and 

intervention  

Outcome Aspartame  

(n = 23) 

HFCS  

(n = 28) 

Sucrose  

(n = 24) 

Testing effect of: P-value 

FST TG (mg/dL)
1
 SB-group

*
 0.045 

baseline 101 ± 11
1
 108 ± 9 114 ± 10 SB-group w/ΔBW

a
 0.11 

intervention 98 ± 10 119 ± 10 132 ± 13 ΔBW
b
 0.13 

24-h TG AUC (mg/dLx24h)
2
 SB-group 0.0020 

baseline 2605 ± 331 2847 ± 246 3125 ± 314 SB-group w/ΔBW 0.0039 

intervention 2486 ± 287 3170 ± 284 3599 ± 384 ΔBW 0.53 

PP TG (mg/dL)
3
 SB-group <0.0001 

baseline 94 ± 14 108 ± 11 115 ± 13 SB-group w/ΔBW <0.0001 

intervention 94 ± 13 145 ± 14 170 ± 19 ΔBW 0.88 

FST apoCIII (mg/dL)
4
 SB-group 0.0006 

baseline 7.3 ± 0.5 8.2 ± 0.5 7.1 ± 0.4 SB-group w/ΔBW 0.0012 

intervention 7.3 ± 0.5 8.8 ± 0.5 8.2 ± 0.5 ΔBW 0.0042 

PP apoCIII (mg/dL)
5
 SB-group <0.0001 

baseline 6.7 ± 0.6 7.4 ± 0.5 6.7 ± 0.4 SB-group w/ΔBW <0.0001 

intervention 6.5 ± 0.5 8.5 0.5 8.4 ± 0.6 ΔBW 0.14 

FST LDL-C (mg/dL)
6
 SB-group <0.0001 

baseline 84 ± 5 91 ± 5 95 ± 5 SB-group w/ΔBW 0.0003 

intervention 83 ± 5 107 ± 6 106 ± 5 ΔBW 0.17 

PP LDL-C (mg/dL)
7
 SB-group <0.0001 

baseline 80 ± 5 86 ± 5 93 ± 4 SB-group w/ΔBW 0.001 

intervention 81 ± 4 105 ± 6 106 ± 4 ΔBW 0.51 

FST non-HDL cholesterol (mg/dL)
8
 SB-group 0.0002 

baseline 110 ± 5 112 ± 6 116 ± 5 SB-group w/ΔBW 0.0007 
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intervention 107 ± 5 128 ± 6 128 ± 6 ΔBW 0.18 

PP non-HDL-C cholesterol (mg/dL)
9
 SB-group <0.0001 

baseline 101 ± 5 103 ± 5 111 ± 5 SB-group w/ΔBW <0.0001 

intervention 99 ± 5 124 ± 6 128 ± 6 ΔBW 0.27 

FST apoB (mg/dL)
10

 SB-group 0.0010 

baseline 64.8 ± 3.6 69.6 ± 3.5 73.6 ± 3.3 SB-group w/ΔBW 0.0048 

intervention 65.1 ± 3.0 80.0 ± 4.1 79.3 ± 3.6 ΔBW 0.10 

PP apoB (mg/dL)
11

 SB-group <0.0001 

baseline 62.0 ± 3.6 65.3 ± 3.4 71.4 ± 3.0 SB-group w/ΔBW 0.0002 

intervention 61.3 ± 3.0 77.4 ± 4.2 78.3 ± 3.2 ΔBW 0.27 

FST uric acid (mg/dL)
12

 SB-group <0.0001 

baseline 4.6 ± 0.2 4.5 ± 0.2 4.6 ± 0.2 SB-group w/ΔBW 0.0004 

intervention 4.5 ± 0.2 5.0 ± 0.2 4.9 ± 0.2 ΔBW 0.19 

24-h uric acid AUC (mg/dLx24h)
13

 SB-group <0.0001 

baseline 104.2 ± 5.0 102.3 ± 5.1 106.6 ± 4.1 SB-group w/ΔBW <0.0001 

intervention 101.0 ± 4.6 116.4 ± 5.8 115.4 ± 4.6 ΔBW 0.16 

*
Effect of SB-group on the absolute change of outcome in the primary 2-factor (SB-group, sex) ANCOVA that 

included adjustment for BMI
3,5-11

, outcome at baseline
2,3,5-13

, and/or SB-group*sex
4,6-13

; log-transformed values 

used 
1-3,5,10,11

; 
a
effect of SB-group in the secondary ANCOVA that also included adjustment for the ΔBW; 

b
effect of ΔBW in the secondary ANCOVA; Δ, absolute change; AUC, area under the curve; FST, fasting; PP, 

postprandial.  
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Table 4. The effect of sex on hepatic lipid content with and without adjustment for BMI or % body 

fat (%BF)  

Primary 

ANCOVA 
P-value 

Secondary 

ANCOVA 
P-value ANCOVA 3 P-value ANCOVA 4 P-value 

BMI 0.10 %BF 0.0497 - - %BF 0.58 

Sex 0.32 Sex 0.044 Sex 0.47 - - 

SB-group 0.02 SB-group 0.027 SB-group 0.013 SB-group 0.014 
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Table 5. The effect of sex on postprandial apolipoproteinCIII (apoCIII) and triglyceride (TG) with 

adjustment for BMI or % body fat (%BF) 

Outcome  Postprandial apoCIII Postprandial TG 24-h TG AUC 

Primary  
ANCOVA 

BMI Sex 
SB-

group 
BMI Sex 

SB-
group 

BMI Sex 
SB-

group 
P-value  0.19 0.27 <0.0001 0.22 0.030 <0.0001 0.66 0.015 0.002 

Secondary ANCOVA %BF Sex 
SB-

group 
%BF Sex 

SB-
group 

%BF Sex 
SB-

group 
P-value  0.038 0.028 <0.0001 0.021 0.003 <0.0001 0.085 0.005 0.002 
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Figures:  

 
Figure 1. Study design, experimental testing days, and dietary protocol. Asp (Aspartame). SB (sweetened 

beverage). Dual energy x-ray absorptiometry (DEXA). *<2% added sugar. % = % of energy requirement.  
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Figure 2. Changes of hepatic lipid content: the mean ± SEM of the absolute change (intervention – baseline) of 

hepatic lipid content in subjects consuming aspartame- (n=20), HFCS- (n=23), or sucrose-sweetened beverages 

(n=23), or for 2 weeks. *P < 0.05, effect of SB-group, 2-factor (SB-group, sex) ANCOVA with adjustment for 

BMI. 
+
P < 0.05, 

+++
P < 0.001, LS mean different from zero; a different from b, Tukey’s.  
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Figure 3. Changes of Matsuda ISI and Predicted M ISI: the mean ± SEM of the absolute changes (intervention – 

baseline) of Matsuda (A) and Predicted M (B) ISI in subjects consuming HFCS-, sucrose, or aspartame-

sweetened beverages for 2 weeks. *P < 0.05, **P < 0.01, effect of SB-group, 2-factor (SB-group, sex) ANCOVA 

with adjustment for outcome at baseline or BMI. 
+
P < 0.05, 

++
P < 0.01, LS mean different from zero; a different 

from b, Tukey’s. Predict M ISI: aspartame- (n=22), HFCS- (n=27), or sucrose-sweetened beverages (n=23). 
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Figure 4. Plasma glucose excursions during OGTT: glucose concentrations during OGTT at baseline and after 

consuming aspartame- (n=23) (A), HFCS- (n=28) (B), or sucrose-sweetened beverages (n=24) (C) for 2 weeks 

(intervention). Δ 3-h Glucose AUC (intervention – baseline) during OGTT in subjects consuming either 

aspartame, HFCS-, or sucrose- sweetened beverages for 2 weeks (D). **P < 0.01, effect of SB-group, 2-factor 

(SB-group, sex) ANCOVA with adjustment for outcome at baseline. 
+
P < 0.05, LS mean different from zero; a 

different from b, Tukey’s.  
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Figure 5. Plasma insulin excursions during OGTT: insulin concentrations during OGTT at baseline and after 

consuming aspartame- (n=23) (A), HFCS- (n=28) (B), or sucrose-sweetened beverages (n=24) (C) for 2 weeks. 

Δ3-h insulin AUC (intervention – baseline) during OGTT in subjects consuming aspartame, HFCS-, or sucrose-SB 

for 2 weeks (D). ***P < 0.001, effect of SB-group, 2-factor (SB-group, sex) ANCOVA with adjustment for 

sugar*sex. 
++

P < 0.01, LS mean different from zero; a different from b, Tukey’s.  
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Figure 6. Changes of plasma TG and apoCIII concentrations: the mean ± SEM of the absolute change 

(intervention – baseline) of 24-h TG AUC (5A), postprandial TG (5B), fasting (5C) and postprandial (5D) apoCIII 

concentrations in subjects consuming aspartame- (n=23) (A), HFCS- (n=28) (B), or sucrose-sweetened 

beverages (n=24) (C) for 2 weeks, ***P < 0.001, ****P < 0.0001, 2-factor (SB-group, sex) ANCOVA with 

adjustment for outcome at baseline, BMI and/or SB-group*sex. 
++

P < 0.01, 
++++

P < 0.0001, LS mean different 

from zero; a different from b, Tukey’s.  
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Figure 7. Change of plasma LDL-C, nonHDL-C, and ApoB concentrations: the mean ± SEM of the absolute 

change (intervention – baseline) in fasting (FST) and postprandial (PP) LDL-C, nonHDL-C, and apoB 

concentrations in subjects consuming aspartame- (n=23), HFCS- (n=28), or sucrose-sweetened beverages 

(n=24) for 2 weeks. **P < 0.001, ***P < 0.001, ****P < 0.0001, effect of SB-group, 2-factor (SB-group, sex) 

ANCOVA with adjustment for outcome at baseline, BMI and SB-group*sex. 
+++

P < 0.001, 
++++

P < 0.0001, LS mean 

different from zero; a different from b, Tukey’s; FST, fasting; PP, postprandial.  
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Figure 8. Change in circulating uric acid concentrations: the mean ± SEM of the absolute change (intervention 

– baseline) of fasting uric acid (7A) and 24-h uric acid AUC (7B) in subjects consuming aspartame- (n=23), HFCS- 

(n=28), or sucrose-sweetened beverages (n=24) for 2 weeks. ****P < 0.0001, effect of SB-group, 2-factor (SB-

group, sex) ANCOVA with adjustment for outcome at baseline, BMI and SB-group*sex. 
++

P < 0.01, 
++++

P < 

0.0001, LS mean different from zero; a different from b, Tukey’s.  
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Consort Diagram.  

LTF – lost to follow-up; Discon. – discontinued participation; SB – sweetened beverage 
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