Variation in Rapa Nui (Easter Island) land use indicates production and population peaks prior to European contact.

Permalink
https://escholarship.org/uc/item/3jr3k63j

Journal
Proceedings of the National Academy of Sciences of the United States of America, 112(4)

ISSN
0027-8424

Authors
Stevenson, Christopher M
Puleston, Cedric O
Vitousek, Peter M
et al.

Publication Date
2015-01-05

DOI
10.1073/pnas.1420712112

Peer reviewed
Variation in Rapa Nui (Easter Island) land use indicates production and population peaks prior to European contact

Christopher M. Stevenson, Cedric O. Puleston, Peter M. Vitousek, Oliver A. Chadwick, Sonia Haoa, and Thegn N. Ladefoged

Many researchers believe that prehistoric Rapa Nui society collapsed because of centuries of unchecked population growth within a fragile environment. Recently, the notion of societal collapse has been questioned with the suggestion that extreme societal and demographic change occurred only after European contact in AD 1722. Establishing the veracity of demographic dynamics has been hindered by the lack of empirical evidence and the inability to establish a precise chronological framework. We use chronometric dates from hydrated obsidian artifacts recovered from habitation sites in regional study areas to evaluate regional land-use within Rapa Nui. The analysis suggests region-specific dynamics including precontact land use decline in some near-coastal and upland areas and postcontact increases and subsequent declines in other coastal locations. These temporal land-use patterns correlate with rainfall variation and soil quality, with poorer environmental locations declining earlier. This analysis confirms that the intensity of land use decreased substantially in some areas of the island before European contact.

Here we identify spatial and temporal variation in the intensity of land use across portions of Rapa Nui and relate these observations to European contact.

To whom correspondence should be addressed. Email: cmstevenson@vcu.edu.

Author contributions: C.M.S., P.M.V., O.A.C., S.H., and T.N.L. designed research; C.M.S., P.M.V., O.A.C., S.H., and T.N.L. performed research; C.O.P. contributed new reagents/analytic tools; C.M.S., C.O.P., P.M.V., O.A.C., and T.N.L. analyzed data; and C.M.S., C.O.P., P.M.V., O.A.C., and T.N.L. wrote the paper. The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Empirical evidence for societal collapse, extensive environmental degradation (other than deforestation), or warfare that could have caused such a collapse before European contact is minimal (20). A recent analysis of radiocarbon dates from throughout Rapa Nui noted the inherent (and severe) ambiguities in radiocarbon calibrations in the time period of interest but concluded that there was demographic continuity into the postcontact era as opposed to population decline during the late precontact period (19). Additional analysis of 14C and obsidian hydration dates from a smaller study region in Hanga Ho’onu on the northeast coast also reported continuity of settlement and agricultural activity into the period of European contact (18). For environmental degradation, there is substantial evidence for deforestation (26–30) but its timing and causes have been debated (2, 31–34). Soil erosion occurred in limited areas (i.e., on the older Poike peninsula (35–37), along a small section of the northwest coast, and on the slopes of some of the smaller volcanic cones); however, there is no evidence of widespread soil erosion that could have interfered with agricultural production (38). The assertion that the proliferation of obsidian spear points is an indicator of endemic violence is challenged by lithic use-wear analysis that shows the artifacts to be used extensively in processing vegetation (39, 40).

Here we identify spatial and temporal variation in the intensity of land use across portions of Rapa Nui and relate these observations to European contact.

Significance

Our paper evaluates a long-standing debate and examines whether the prehistoric population of Rapa Nui experienced a significant demographic collapse prior to European contact in AD 1722. We have used dates from hydrated obsidian artifacts recovered from habitation sites as a proxy for land use over time. The analysis suggests region-specific dynamics that include the abandonment of leeward and interior locations. These temporal land-use patterns correlate with rainfall variation and soil quality. This analysis demonstrates that the concept of “collapse” is a misleading characterization of prehistoric human population dynamics. As a result, we see our approach as useful in the study of other prehistoric societies for which a sudden demographic collapse has been proposed in prehistory.

Author contributions: C.M.S., P.M.V., O.A.C., S.H., and T.N.L. designed research; C.M.S., P.M.V., O.A.C., S.H., and T.N.L. performed research; C.O.P. contributed new reagents/analytic tools; C.M.S., C.O.P., P.M.V., O.A.C., and T.N.L. analyzed data; and C.M.S., C.O.P., P.M.V., O.A.C., and T.N.L. wrote the paper. The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence should be addressed. Email: cmstevenson@vcu.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1420712112/-/DCSupplemental.
to new data on spatial variation in climate and soil fertility. We base our analysis of land use on obsidian hydration dating (OHD) of tools and flakes, using 428 obsidian hydration dates developed under revised calibrations and protocols (SI Appendix, Table S1) (41, 42). Obsidian nodules were fashioned into everyday working tools and are plentiful at many archaeological sites. We use the quantity of hydration dates as a measure of the amount of discarded material over time and as a proxy for land-use intensity.

The Rapa Nui Environment and Study Areas

The island of Rapa Nui was created by multiple volcanic events (43). Early eruptions formed the spatially separate Poike (0.78–0.36 Mya), Rano Kau (0.78–0.34 Mya), and Maunga Terevaka (0.77–0.30 Mya) volcanos. Between 0.24–0.11 Mya additional eruptions from M. Terevaka joined the three land masses and formed the land surface upon which ancient agriculture was later practiced. M. Terevaka reaches a height of 505 m, with annual rainfall increasing with elevation. However, there is a well-defined rain shadow on the northwest coast in the area known as Te Niu (Fig. 1). Our recent recording and analysis of climatic data (Table 1 and see SI Appendix, Table S3) suggest that rainfall ranges from ca. 2,100 mm/y at the top of M. Terevaka to a low of ca. 630 mm/y along the coast in the rain shadow. Analysis of modern rainfall data from 1958–1997 shows considerable year-to-year variation, with droughts occurring (17). Our climatic data show that near-surface annual soil temperatures also are elevation dependent and average 22–24 °C on the coastal plain and 19 °C just below the summit of M. Terevaka (SI Appendix, Fig. S1 and Table S2).

Soil properties related to soil fertility vary substantially across Rapa Nui, reflecting variation in climate, age of the volcanic substrate, and topography (44, 45). Differential rainfall has caused substantial variation in Rapa Nui soil nutrients, as it does in volcanic substrates of similar age in Hawai‘i (46, 47), and older substrates generally are depleted in soil nutrients compared with younger ones. Although soils of the lowland areas with moderate rainfall are richer in biologically available nutrients than are wetter, higher elevation soils (45), all but the richest Rapa Nui soils are nutrient depleted in comparison with the soils where precontact Hawaiian farmers intensified agricultural production (48). On Rapa Nui, the primary cultigens were sweet potato (Ipomoea batatas), dryland taro (Colocasia esculenta), yam (Dioscorea spp.), and ti (Cordyline) (49), of which sweet potato was perhaps a secondary introduction (50). Within several centuries after settlement, beginning about AD 1400, these crops became intensively cultivated in lithic mulch gardens (49, 51). Recent analysis of modern rainfall data documents periodic droughts, and if similar conditions existed earlier in time (52), such climatic events would have affected crop production, with taro being
most vulnerable and sweet potato being more resilient to the parameters of the island’s fluctuating rainfall (17).

We evaluated region-specific land-use patterns in six study areas on Rapa Nui, focusing on three for which we have information on climate, soils, and land-use trends derived from numerous obsidian hydration dates (Fig. 1 and Table 1). The three intensive study areas were situated to sample diverse environmental settings. Study Area 1 (SA1) is located near the northwest coast at a low-rainfall site in the rain shadow of M. Terevaka. SA2 is located in the interior on the slopes of M. Terevaka at a distance of more than 4 km from the southern coast and is a higher-elevation, high-rainfall location. SA3 is located just inland on the northeast coast, west of Anakena beach. SA1 has relatively high soil nutrient availability as indexed by plant-available phosphorus, calcium, and base saturation but low rainfall; SA2 has the lowest nutrient supply and highest rainfall; and SA3 is characterized by intermediate amounts of rainfall and relatively high soil nutrient levels (Table 1). The other three regions that we sampled on Rapa Nui are located in Fig. 1, and their properties are summarized in SI Appendix, Table S3.

Temporal Dynamics of Land Use: Statistical Methods

OHD produces results that consist of a mean date with an SE of 30 y for each datable object. (These dating outcomes, the details of their calculation, and the sampling procedures are described in the SI Appendix and refs. 41 and 42) The normally distributed individual-object probability distributions were combined to generate summed probability distributions (SPDs) for each study area, a method used by archaeologists to analyze radiocarbon dates from Rapa Nui (19) and elsewhere (see refs. 53 and 54 for reviews). Given a series of mean OHD dates with SEs, we derived a distribution by summing the fractions of date probability in any given year to get a measure of the equivalent number of dates, or density, assigned to that year. The summed probability fractions that form the curve indicate the periods when the obsidian artifacts most likely were created and, by proxy, the intensity of land use in different regions of the island from the first occupation until after European contact. Fig. 2 shows the OHD SPD curves for the three primary study areas.

The SPD curves cannot pinpoint events in history because a single flake in the dataset represents a range of probabilities for its exposure date, so its effect on the SPD curve is felt both before and after its true date of creation. Therefore, an environmental or social change that alters flake production in a given year will affect the SPD on either side of that year, with diminishing intensity in years farther away from (much earlier or later than) the true year of the event. This uncertainty tends to blur the relationship between changes in actual rates of tool production and the characteristics of an SPD curve.

To determine the point at which OHD samples actually began to decline, we used a curve-fitting method and compared the observed OHD SPDs with hypothetical distributions derived from land-use intensities and determined the best fits. These hypothetical trajectories were created by varying four parameters describing patterns of land-use change across a range of possibilities: (i) the rate of exponential growth in the production of datable obsidian before a decline (from 0.002 to 0.01 in increments of 0.002), (ii) the length of the plateau at which their production remains at its maximum (using 0, 25, 50, and 200 y), (iii) the year in which the creation of datable obsidian begins to decline from its maximum (from AD 1600–1850 in 5-y increments), and (iv) the constant exponential rate at which the creation of datable obsidian declines (from 0.002–0.1 in 0.002 increments and from 0.15–0.5 in 0.05 increments). These 59,160 hypothetical trajectories that depict a range of scenarios of obsidian discard were converted to OHD SPDs. We scaled these hypothetical SPDs to the maximum (after AD 1600) of each of the observed SPDs and found the best fit between models and observations using a least-squares method.

Table 1. Location of study areas with corresponding distance to coast, elevation, rainfall values (measurements taken at the center of a 500 × 500 m quadrant), and soil nutrient properties

<table>
<thead>
<tr>
<th>Study area</th>
<th>Distance to coast, m</th>
<th>Elevation, m</th>
<th>Rainfall*, mm</th>
<th>Resin phosphorus, mean (SD), mg/kg</th>
<th>Exchangeable calcium, mean (SD), cmol(+)/kg</th>
<th>Base saturation, mean (SD), %</th>
<th>n*</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA1</td>
<td>860</td>
<td>120</td>
<td>805</td>
<td>4.26 (8.28)</td>
<td>6.03 (3.56)</td>
<td>16.26 (10.60)</td>
<td>58</td>
</tr>
<tr>
<td>SA2</td>
<td>4,340</td>
<td>260</td>
<td>1,690</td>
<td>0.49 (0.62)</td>
<td>0.82 (0.57)</td>
<td>2.89 (1.89)</td>
<td>31</td>
</tr>
<tr>
<td>SA3</td>
<td>792</td>
<td>170</td>
<td>1,460</td>
<td>14.6 (24.88)</td>
<td>4.42 (3.09)</td>
<td>17.64 (6.73)</td>
<td>71</td>
</tr>
</tbody>
</table>

*Rainfall estimated based on an orographic and wind direction rainfall model by Puleston (SI Appendix, Text).

Pulmonary phosphorus measured with an anion exchange resin to identify plant-available phosphorus.

‡Calcium extracted from the soil cation exchange complex to identify plant-available Ca

§The percentage of Ca, Mg, Na, and K on the soil cation exchange complex is used as a measure of soil fertility because calcium, magnesium, and potassium are plant nutrients.

Number of discrete samples taken at 20- to 25- or 0- to 30-cm depth increments inside and outside garden areas with identifiable garden features.
The best fit was determined using three windows of comparison by minimizing the sum of the squared error across the spans of ±25, 50, and 75 y around the peak of the observed SPD. We focus on the ±50-y analytical window; the data for the other analytical windows are presented in SI Appendix, Fig. S2 and Table S4. This process yields a single estimate of the most likely date of the initiation of land-use decline in each study area. To assess the robustness of the findings, we bootstrapped (resampled with replacement) the distributions of mean OHD dates in each study area 2,500 times. By repeating the best-fit methodology using the resampled observed OHD SPDs, we determined distributions of dates of commencement of significant declines in the production of datable obsidian in each study area. Fig. 3 displays the histograms of the most likely year of decline commencement from the 2,500 bootstrap-and-fit iterations.

Our approach provides a robust means of determining when regions of the island were occupied and used and when the initial period of decline after AD 1600 began, including quantification of the uncertainty associated with these results. The degree of dispersion of best-fit years is a function of OHD sample size. Greater sample size would be expected to reduce the variability across the bootstrapped datasets and thus provide a more precise estimate of the actual point at which land-use decline begins by reducing the risk of small-pool sampling errors. This information on land-use change is related directly to regional food production, although differential behavioral strategies (e.g., horticultural, residential, and religious activities) in different study areas would influence the strength of the correlation. Changes in land use also should be connected to regional population, although that connection could be modulated further by differential behaviors.

Spatial Variation in the Dynamics of Land Use

The OHD SPD curve for SA1 near the coast on the northwest of the island indicates a steady increase in the intensity of land use from ca. AD 1220 to AD 1650 (Fig. 2A). The curve suggests land use peaked around AD 1650 and dropped rapidly thereafter. The best-fit curve methodology indicates that the most likely date for the initiation of land-use decline was ca. AD 1660, well before European contact in AD 1722 (Fig. 3A). Only 0.64% of iterations resulted in the decline beginning after AD 1720.

In the interior study area (SA2), land use initiated after AD 1200 with a rapid increase through the AD 1300s and a lower rate of increase until ca. AD 1480 (Fig. 2B). From that time land use remained relatively constant at a high level until the end of the AD 1600s. The best-fit curve methodology suggests that the most likely date of initial decline in the region was ca. AD 1705.

![Fig. 3. The most likely date for the initiation of land-use decline in SA1 (A), SA2 (B), and SA3 (C). These normalized results are based on 2,500 bootstrap iterations of the OHD data at each study area. The red line identifies the year AD 1722, the date of first European contact.](image-url)
or 1710 (Fig. 3B), indicating reduced intensity of use of upland regions just before European arrival on Rapa Nui. Of 2,500 iterations, 5.00% resulted in the decline beginning after AD 1720.

In contrast to SA1 and SA2, in the near coastal northeastern study area (SA3) land use increased at a relatively slower rate from ca. AD 1240 to ca. AD 1500, with a steeper increase during the AD 1600s to an initial peak around AD 1690 (Fig. 2C). From that time on there seems to be relatively constant land use until ca. AD 1800. The best-fit curve methodology suggests the most likely date for the initiation of land-use decline was ca. AD 1850 or later, well after European contact (Fig. 3C). We found 67.2% of iterations with a best-fit year of decline commencement after AD 1720.

Discussion

There is strong evidence for a decrease in the intensity of land use before European contact in two of the three primary study areas—the dry area of SA1 and the wet and infertile area of SA2. By the time of European contact, land use in both areas had declined by almost half. SA1 was at 53.7% of its AD 1618 maximum, and SA2 was at 60% of the post-AD 1600 maximum, which occurred in AD 1667. In the dry area of SA1 annual rainfall (ca. 805 mm) is close to the annual rainfall of 750 mm/y that has been identified as the lower boundary at which Hawaiian cultivators developed intensive dryland systems (46). We suggest that this area would have been highly vulnerable to periodic droughts and therefore would have been one of the earliest areas to be abandoned. In contrast, the central upland portion of Rapa Nui (SA2 and surrounds) is wet but strikingly low in soil fertility in comparison with the lowlands of Rapa Nui (43). We suggest that cultivation of these poor soils could be sustained only through long-fallow shifting cultivation, and that attempting to farm the area with a shorter fallow cycle would have degraded the already very low fertility of this area. In contrast, SA3 represents a region with adequate rainfall and relatively fertile soils (Table 1). In this area, land use was relatively high during the late AD 1600s until after AD 1800. The individual OHD SPD curves of the three secondary study areas (SA4–6) yield less definitive temporal patterning (SI Appendix, Fig. S3) with lower confidence because of less intensive OHD sampling.

Our information demonstrates that some regions of Rapa Nui experienced declines in the intensity of land use before European contact. If that decrease in land use and associated food production was not offset by increased food production elsewhere on the island, then the results are consistent with a decrease in overall food supply before European contact. Information on population and soil fertility from more regions of Rapa Nui would be valuable, of course, but regional total food production could have declined (and influenced the dynamics of precontact society) with sustained production through European contact in some areas of the island.

Conclusion

New chromometric evidence from three study areas reveals spatial and temporal variation in Rapa Nui land use. Initial settlement and expansion occurred from ca. AD 1200, with the rapid development of the interior for agricultural activities beginning in the early AD 1300s. Reductions in the intensity of land use before European contact in the dry northwest section of Rapa Nui and the region of nutrient-leached soils in upland areas would have contributed to increasing land pressure in other parts of the island and may have led to periods of conflict as land use was renegotiated.

This temporal reconstruction of land-use history associated with food production argues against the notion of an island-wide precontact collapse as a useful explanatory concept for Rapa Nui—although it does support the reality of a precontact decline in land use that probably was associated with declines in food production. These results indicate that island-wide landscape use was modulated by an underlying climatic and biogeochemical matrix as well as by response to dynamic variations in climatic and biogeochemical factors. We propose that precontact declines in the intensity of land use (and presumably population) in dry and infertile regions of Rapa Nui better reflect a framework of environmental constraint than of environmental degradation—although constraint and degradation can intergrade, as in the case of infertile soils that are suitable for shifting cultivation being degraded through overuse.

Acknowledgments. We thank the Consejo de Monumentos, Rapa Nui, and the Consejo de Monumentos Nacionales de Chile for permission to work on Easter Island; our island collaborators Ninoska Cuadros and the Corporación Nacional Forestal for assistance and support; Rod Wallace and Jen Huebert, University of Auckland, for the species identification of our carbon samples; Simon Bickler for sharing the Excel template he developed that calculates the summed probability distributions; and Mark Grote, University of California, Davis, for information on interpreting summed probability distributions. This work was funded by National Science Foundation Award BCS-0911056 with additional support from the National Geographic Society, the Earthwatch Institute, and the University of Auckland.

Supplemental Information

Obsidian Hydration Dating Protocols

The obsidian samples used in this analysis were recovered from six systematically surveyed 500 x 500 m areas located throughout Rapa Nui (Fig. 1). These areas were selected to capture variation in prehistoric settlement patterns and agricultural field systems that may have been responsive to differences in rainfall, temperature, topography, and social processes. Close interval (5-10 m) pedestrian surface survey was used to record stone surface features (e.g., house patios, chicken houses, stacked-stone enclosures) and the distribution of prehistoric rock gardens within each study area. These features were surveyed with differential correction capable Trimble GPS hand-held units with sub-meter accuracy. Subsurface testing in gardens and adjacent to surface features was conducted by the excavation of 50 x 50 cm shovel tests. Each shovel test was excavated into the B-horizon and in many instances bedrock or decomposing bedrock was encountered at a depth of 50cm or less. The maximum depth excavation was 70cm. Obsidian debitage and carbon fragments were recovered during screening of the shovel test matrix and no samples were taken within 10 cm of the surface. Table S1 itemizes the number of dated obsidian artifacts by study area. This sample size reflects the use of all suitable materials that were recovered through excavation and the elimination of highly irregular items and artifacts with cracks and surface voids. Imperfections such these may trap moisture and lead to in inaccurate age determination.

Obsidian hydration dating was conducted by the senior author using infrared photoacoustic spectroscopy. The infrared response values were used to estimate diffused surface water (H₂O) concentrations which had accumulated since the creation of the artifact (i.e., the hydration layer). Age estimates were based upon laboratory developed calibrations that relate glass structural water (hydroxyl) to the rate of water diffusion at a specified temperature (1). This set of dating procedures was evaluated with two previously dated contexts; the early 13th century deposits at Ahu Nau Nau on the north coast and a 19th century planting pit from the west coast of the island. In each case the convergence between the Class 1 AMS dates and the obsidian hydration dates was strong as exhibited by numerous overlapping age ranges (2 S.D.) occurring within each context (2). This supports our current application of obsidian dating.

Obsidian hydration dating rate calibrations are temperature sensitive and the thermal history of the artifact is central to a reliable age determination. While many events and thermal contexts associated with the use-life of an obsidian artifact cannot be reconstructed, it is assumed that this period is very short prior to entry into the archaeological record. Once discarded and buried, it is possible to monitor the temperature history over the course of an annual cycle to estimate an effective hydration temperature.

Columns of ground temperature sensors were buried at nine locations around Rapa Nui at coastal and inland elevations. HOBO digital loggers were buried at 10 cm, 25 cm, and 50 cm in open stone-free areas and within the boundaries of adjacent rock gardens (Table
S2). The purpose of this dual placement was to see how surface rock cover impacted the below-ground temperatures. Ground temperature was recorded each 1.5 hours over the course of one year. Upon recovery, the data were downloaded and a mean annual temperature was calculated. These data were converted to an effective hydration temperature suitable to an exponential process such as water diffusion in glass using the procedures outlined in Stevenson et al. (2).

Effective hydration temperatures ranged between 21-23°C for each of the columns and no patterned temperature differences were found between open areas and rock gardens. Three exceptions to this general range were noted. The coolest ground temperatures (19-20°C) occurred at Rano Oroi which is located near the summit of Rapa Nui at an elevation of 450 m above sea level. High wind and rainfall levels are coupled to lower air temperatures. At the other end of the continuum, the warmest ground temperatures (24-25°C) were registered by the sensor at ‘Anakena. We attribute this to the high level of calcareous sand in the sediment that raise overall thermal diffusivity. Cool ground temperatures near 20°C were also recorded in a small cave formed from a collapsed lava tube. In our dating of obsidian artifacts from all locations, we applied the effective hydration temperature for the 25 cm depth within each study area to the artifacts recovered from that study area.

Table S1: Processed obsidian hydration dating samples by study area.

<table>
<thead>
<tr>
<th>Study Area</th>
<th>No. of Sites</th>
<th>No. of Test Units</th>
<th>No. of Obsidian Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA 1 (Te Niu)</td>
<td>8</td>
<td>10</td>
<td>127</td>
</tr>
<tr>
<td>SA 2 (Maunga O’koro)</td>
<td>12</td>
<td>12</td>
<td>79</td>
</tr>
<tr>
<td>SA 3 (‘Anakena West)</td>
<td>11</td>
<td>11</td>
<td>80</td>
</tr>
<tr>
<td>SA 4 (Hiva Hiva-coastal)</td>
<td>8</td>
<td>8</td>
<td>33</td>
</tr>
<tr>
<td>SA 5 (Hiva Hiva-inland)</td>
<td>15</td>
<td>15</td>
<td>53</td>
</tr>
<tr>
<td>SA 6 (Maunga Pui)</td>
<td>5</td>
<td>6</td>
<td>56</td>
</tr>
<tr>
<td>Total</td>
<td>428</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S2: Soil temperatures and computed effective hydration temperatures for Rapa Nui. See Fig. 1, Appendix 1 for sensor locations 1-8.

<table>
<thead>
<tr>
<th>Location</th>
<th>Context</th>
<th>Date</th>
<th>10cm</th>
<th>25cm</th>
<th>50cm</th>
<th>10cm</th>
<th>25cm</th>
<th>50cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A. Te Niu (SA1)</td>
<td>Set 1</td>
<td>4/7/09-4/7/10</td>
<td>20.74</td>
<td>20.71</td>
<td>20.70</td>
<td>21.27</td>
<td>21.10</td>
<td>21.07</td>
</tr>
<tr>
<td>1B. Te Niu (SA1)</td>
<td>Set 2</td>
<td>4/7/09-4/7/10</td>
<td>22.15</td>
<td>22.17</td>
<td>22.05</td>
<td>22.84</td>
<td>22.62</td>
<td>22.31</td>
</tr>
<tr>
<td>1B. Te Niu (SA1)</td>
<td>Set 3</td>
<td>4/7/09-4/7/10</td>
<td>21.93</td>
<td>22.07</td>
<td>22.01</td>
<td>22.45</td>
<td>22.45</td>
<td>22.30</td>
</tr>
<tr>
<td>2.'Anakena (SA3)</td>
<td>Set 1</td>
<td>8/10/10-8/10/11</td>
<td>24.27</td>
<td>24.09</td>
<td>23.80</td>
<td>25.18</td>
<td>24.81</td>
<td>24.27</td>
</tr>
<tr>
<td>5.South Coast</td>
<td>Set 1</td>
<td>8/7/10-8/7/11</td>
<td>22.66</td>
<td>22.46</td>
<td>------</td>
<td>23.69</td>
<td>23.26</td>
<td>------</td>
</tr>
<tr>
<td>5.South Coast</td>
<td>Set 2</td>
<td>8/7/10-8/7/11</td>
<td>22.77</td>
<td>22.62</td>
<td>22.21</td>
<td>23.68</td>
<td>23.35</td>
<td>22.72</td>
</tr>
<tr>
<td>6.Anamarama</td>
<td>Set 4</td>
<td>5/6/10-5/6/11</td>
<td>22.38</td>
<td>22.44</td>
<td>22.31</td>
<td>23.33</td>
<td>23.13</td>
<td>22.78</td>
</tr>
<tr>
<td></td>
<td>Set 6</td>
<td>5/5/10-5/5/11</td>
<td>22.36</td>
<td>22.22</td>
<td>22.17</td>
<td>23.27</td>
<td>22.93</td>
<td>22.71</td>
</tr>
<tr>
<td>7.Hiva Hiva (SA4)</td>
<td>Set 1</td>
<td>9/25/07-9/24/08</td>
<td>22.63</td>
<td>22.21</td>
<td>22.21</td>
<td>22.47</td>
<td>22.47</td>
<td>22.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15cm)</td>
<td>(40cm)</td>
<td>(40cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.Cave, Hiva Hiva</td>
<td>Set 2</td>
<td>10/10/07-10/24/08</td>
<td>19.85</td>
<td>20.1</td>
<td>20.1</td>
<td>20.1</td>
<td>20.1</td>
<td>20.1</td>
</tr>
</tbody>
</table>

(15cm) | (40cm)
Projecting Spatial Variation of Rainfall

We derived spatial projections of mean annual rainfall using a combination of data from six high-resolution HOBO weather stations placed across the island and long-run data from Mataveri Airport near the town of Hanga Roa. The relatively short series of rainfall data (spanning less than three years) from the HOBO stations was compared to the daily records at the airport. We derived a function to describe the relationship between daily rainfall at each HOBO location and the airport series where data for both points were available. We then used this relationship to generate a 62-year sequence at each HOBO site, projecting from the airport series. These six series were used to estimate a “precipitation lapse rate,” or the linear relationship between precipitation amounts and elevation, for the island. In the absence of data in the drier areas in the lee of the strong easterly winds we estimated a rain shadow effect as a function of topography, working from the pattern observed at the Kohala Peninsula on the Island of Hawai‘i.
Table S3: Secondary study areas with corresponding distance to coast, elevation and rainfall values (measurements taken at center of 500 x 500 m quadrant).

<table>
<thead>
<tr>
<th>Survey Area</th>
<th>Distance to coast (m)</th>
<th>Elevation (m)</th>
<th>Rainfall (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SA4) coastal Hiva</td>
<td>329</td>
<td>51</td>
<td>1330</td>
</tr>
<tr>
<td>Hiva</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SA5) inland Hiva</td>
<td>1874</td>
<td>129</td>
<td>1465</td>
</tr>
<tr>
<td>Hiva</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SA6) Maunga Pui</td>
<td>3208</td>
<td>126</td>
<td>1461</td>
</tr>
</tbody>
</table>
Table S4: Best-fit land usage trajectories to observed (not resampled) OHD data.

<table>
<thead>
<tr>
<th>Span</th>
<th>SA1</th>
<th>SA2</th>
<th>SA3</th>
<th>SA4</th>
<th>SA5</th>
<th>SA6</th>
<th>SA7</th>
<th>SA8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash year</td>
<td>1665</td>
<td>1710</td>
<td>1825</td>
<td>1825</td>
<td>1650</td>
<td>1840</td>
<td>1645</td>
<td>1705</td>
</tr>
<tr>
<td>Decline rate</td>
<td>0.018</td>
<td>0.006</td>
<td>0.014</td>
<td>0.028</td>
<td>0.008</td>
<td>0.01</td>
<td>0.022</td>
<td>0.016</td>
</tr>
<tr>
<td>Sum squared error</td>
<td>4.40E-08</td>
<td>7.28E-08</td>
<td>1.97E-08</td>
<td>2.09E-07</td>
<td>4.30E-07</td>
<td>1.07E-06</td>
<td>4.32E-06</td>
<td>1.02E-05</td>
</tr>
<tr>
<td>Avg annual SSE</td>
<td>6.10E-10</td>
<td>1.44E-09</td>
<td>3.94E-10</td>
<td>2.89E-09</td>
<td>7.11E-09</td>
<td>6.72E-08</td>
<td>2.16E-08</td>
<td>1.42E-07</td>
</tr>
</tbody>
</table>

Parameter ranges tested:
- Crash year: every 5 years from 1600 to 1850
- Decline rate: 0 to 0.1 in 0.002 increments and 0.15 to 0.5 in 0.05 increments
- Span: 25, 50, 75, 100, 150 years before and after the crash date being tested

Best fit when crash date is constrained to 1722 and only decline rate is being altered to maximize fit

<table>
<thead>
<tr>
<th>Span</th>
<th>SA1</th>
<th>SA2</th>
<th>SA3</th>
<th>SA4</th>
<th>SA5</th>
<th>SA6</th>
<th>SA7</th>
<th>SA8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash year</td>
<td>1722</td>
<td>1722</td>
<td>1722</td>
<td>1722</td>
<td>1722</td>
<td>1722</td>
<td>1722</td>
<td>1722</td>
</tr>
<tr>
<td>Decline rate</td>
<td>0.15</td>
<td>0.088</td>
<td>0.044</td>
<td>0.078</td>
<td>0.03</td>
<td>0.04</td>
<td>0.028</td>
<td>0.026</td>
</tr>
<tr>
<td>Sum squared error</td>
<td>2.18E-07</td>
<td>3.76E-07</td>
<td>5.48E-07</td>
<td>3.57E-07</td>
<td>2.20E-06</td>
<td>4.46E-06</td>
<td>5.46E-06</td>
<td>8.06E-06</td>
</tr>
<tr>
<td>Avg annual SSE</td>
<td>2.10E-07</td>
<td>7.50E-08</td>
<td>1.08E-08</td>
<td>3.57E-07</td>
<td>2.20E-06</td>
<td>3.05E-06</td>
<td>2.94E-07</td>
<td>3.97E-08</td>
</tr>
</tbody>
</table>

Parameter ranges tested:
- Crash year: every 5 years from 1600 to 1850
- Decline rate: 0 to 0.1 in 0.002 increments and 0.15 to 0.5 in 0.05 increments
- Span: 25, 50, 75, 100, 150 years before and after the crash date being tested

Best fit when crash date is constrained to 1722 and only decline rate is being altered to maximize fit
Figure S2: One of the 2,500 bootstrapped summed probability distribution curves (shown in black). Overlaid are 4 of the 59,160 hypothetical trajectories, with the best-fit curve (shown in blue) and three alternatives (shown in gray). The best fit parameters are AD 1695 (begin decline), rise rate of 0.004, plateau of 50 years, decline rate of 0.01. The peak of black line (bootstrapped SPD) is AD 1663. The red lines indicate the extremes of the ±50 year window of comparison, or span over which the fit is determined.
Figure S3: OHD summed probability distribution (SPD) curves for A) SA1; B) SA2; C) SA3, D) SA4; E) SA5; and F) SA6. The curves are normalized so that the area beneath each sums to 1. The red line identifies the year AD 1722, the date of European contact.
References
