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Abstract

Characterizing brain changes in Alzheimer’s disease (AD) is important for patient prognosis, and 

for assessing brain deterioration in clinical trials. In this diffusion tensor imaging study, we used a 

new fiber-tract modeling method to investigate white matter integrity in 50 elderly controls (CTL), 

113 people with mild cognitive impairment (MCI), and 37 AD patients. After clustering 

tractography using an ROI atlas, we used a shortest path graph search through each bundle’s fiber 

density map to derive maximum density paths (MDPs), which we registered across subjects. We 

calculated the fractional anisotropy (FA) and mean diffusivity (MD) along all MDPs and found 

significant MD and FA differences between AD patients and CTL subjects as well as MD 

differences between CTL and late MCI subjects. MD and FA were also associated with widely 

used clinical scores (MMSE). As an MDP is a compact, low-dimensional representation of white 

matter organization, we tested the utility of DTI measures along these MDPs as features for 

support vector machine (SVM) based classification of AD.
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1. Introduction

Alzheimer’s disease (AD) is the most common type of dementia, affecting around 1 in 8 

people aged 65 or older in the U.S. alone (Alzheimer’s Association, 2011). AD is 

characterized by cortical and hippocampal neuronal loss and widespread gray matter 

atrophy, but there is also a progressive disconnection of cortical and subcortical regions due 

to white matter (WM) injury (Delbeuck et al., 2003). Changes in WM neuropathology 

include partial loss of axons and myelin sheaths (Brun and Englund, 1986; Sjobeck et al., 

2005). AD patients s how significant WM atrophy (Hua et al., 2008, 2010; Migliaccio et al., 

2012), as well as a gradual decrease in the integrity of WM commissures such as the corpus 

callosum, and key pathways such as the cingulum and superior longitudinal fasciculus (Rose 

et al., 2000; Medina et al., 2006; Stebbins and Murphy, 2009; Liu et al., 2011).

In addition to the more widely used measures from anatomical MRI, FDG- and amyloid- 

PET, and CSF based measures of pathology, the second phase of the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI-2) includes additional neuroimaging measures including 

diffusion tensor imaging (DTI) in a subset of the imaged population. By tracking the highly 

anisotropic diffusion of water along axons, DTI can be used to evaluate the integrity and 

trajectory of the major white matter (WM) fiber bundles in the brain. DTI is sensitive to 

microscopic WM injury in these bundles, and may identify signs of impairment in 

anatomical connectivity that are not detectable with standard anatomical MRI.

Current methods for DTI analysis, including voxel-wise analysis, region-of-interest (ROI) 

analysis, tract-based spatial statistics (TBSS; Smith et al., 2006), and tractography, are 

limited, to some extent, by how well each method can identify comparable brain regions and 

tracts across subjects. Here, we used a new tract clustering and registration method that 

combines the strengths of voxel-wise and tractography-based methods, yielding a compact 

representation of fiber bundles. Like other cross-subject fiber-based methods (Colby et al., 

2012), it also computes cross-subject correspondences for group comparisons. To compare 

tracts across subjects, tracts are often clustered into anatomical groups. Numerous clustering 

methods have been applied to tractography, including generalized Procrustes analysis 

(Corouge et al., 2006), spectral clustering (O’Donnell et al., 2006), Dirichlet distributions 

(Maddah et al., 2008), and a Gaussian process framework (Wassermann et al., 2010). This 

method uses maximum density paths (MDP) based on whole-brain tractography (Prasad et 

al., 2011a, 2011b, 2013a). Unlike some prior clustering methods, the large collection of 

tractography-generated 3D curves is first organized into bundles using prior anatomical 

landmarks to identify WM tracts based on a probabilistic WM atlas (Hua et al., 2008). These 

bundles are then reduced to a single maximum density path – MDP – by computing a path 

through the points of highest streamline density. The paths are then matched across subjects 

using geodesic curve registration (Joshi et al., 2007a, 2007b) for statistical comparison. This 

method avoids some of the pitfalls of methods that rely on traditional whole-brain non-linear 

registration, such as TBSS and voxel-based analysis, that arguably may introduce bias 
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(Tustison et al., 2012; Schwarz et al., 2013). Additionally, many tract clustering methods 

ultimately collapse the DTI metrics along each tract into a single summary mean value for 

statistical analysis. By using along-tract point-wise statistics we can detect localized 

differences within a single tract. The use of point-wise statistics on 3D curves has been quite 

popular in the engineering literature, but papers using other methods (such as TBSS) far 

outnumber them in the neuroimaging literature. The use of point-wise statistics on tract 

curves is also mathematically related to work over the last two decades on the averaging and 

comparison of sulcal curves on the cortex, represented as 3D space curves or as parametric 

surfaces (Thompson et al., 1996a, 1996b; Zhou et al., 1999; Fillard et al., 2006; Shi et al., 

2007).

In our current study, differences in WM microstructure were determined by comparing 

fractional anisotropy (FA) and mean diffusivity (MD) point-wise along each MDP, between 

normal control (CTL) subjects and either MCI or AD patients. We also examined 

associations between FA and MD along these paths with a widely used cognitive rating, the 

Mini-Mental State Exam (MMSE; Folstein et al., 1975). As an MDP is a low-dimensional 

representation of the white matter organization, we further assessed whether the DTI 

measures interpolated along the MDP were useful features for a support vector machine 

(SVM; Cortes and Vapnik, 1995) based classification of Alzheimer’s disease.

2. Methods

2.1 Image acquisition and subject information

Data collection for the ADNI-2 project is still in progress. Here we performed an initial 

analysis of data from 200 participants, of whom 50 were control subjects (CTL), 113 had 

mild cognitive impairment (MCI), and 37 were AD patients (Table 1). We note that in 

ADNI-2, MCI participants include the enrollment of a new early MCI (e-MCI) cohort, with 

milder episodic memory impairment than the MCI group of ADNI-1, now called late MCI 

(l-MCI) in ADNI-2. Each subject underwent a cognitive evaluation using the Mini-Mental 

State Exam (MMSE; scores of less than 24 out of 30 indicate impairment; Folstein et al., 

1975). Detailed inclusion and exclusion criteria are found in the ADNI2 protocol (http://

adni-info.org/Scientists/Pdfs/ADNI2_Protocol_FINAL_20100917.pdf).

All subjects underwent whole-brain MRI scanning on 3-Tesla GE Medical Systems scanners 

at 14 acquisition sites across North America. T1-weighted IR-FSPGR (spoiled gradient 

echo) anatomical scans were collected (256×256 matrix; voxel size = 1.2×1.0×1.0 mm3; TI 

= 400 ms; TR = 6.98 ms; TE = 2.85 ms; flip angle = 11°), as well as diffusion-weighted 

images (DWI; 35 cm field of view, 128×128 acquired matrix, reconstructed to a 256×256 

matrix; voxel size: 2.7×2.7×2.7mm3; scan time = 9 min; more imaging details may be found 

at http://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_GE_3T_22.0_T2.pdf). 46 

separate images were acquired for each DTI scan: 5 T2-weighted images with no dedicated 

diffusion sensitization (b0 images) and 41 diffusion-weighted images (b=1000 s/mm2). This 

ADNI protocol was chosen after conducting a detailed comparison of several different DTI 

protocols, to optimize the signal-to-noise ratio in a fixed scan time (Jahanshad et al., 2010; 

Zhan et al., 2012). All T1-weighted MR and DWI images were visually checked for quality 

assurance to exclude scans with excessive motion and/or artifacts; all scans were included.
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2.2 Image preprocessing

For each subject, all baseline raw DWI volumes were aligned with the FSL eddy-correct tool 

(www.fmrib.ox.ac.uk/fsl) to correct for head motion and eddy current distortions. All extra-

cerebral tissue was subsequently removed from diffusion-weighted images using the Brain 

Extraction Tool (BET) from FSL (Smith, 2002). Non-brain tissue was also removed from 

T1- weighted anatomical scans using both ROBEX, a robust automated brain extraction 

program trained on manually “skull-stripped” MRI data (Iglesias et al., 2011) and 

FreeSurfer (Fischl et al., 2004). Skull-stripped volumes were visually inspected, and the best 

extraction selected, including both cerebellum and brain stem. Images were then further 

manually delineated by a trained anatomist to further remove any scalp, meninges, or neck 

not automatically removed. Anatomical scans subsequently underwent intensity 

inhomogeneity normalization using the MNI nu_correct tool (www.bic.mni.mcgill.ca/

software/). To align data from different subjects into the same 3D coordinate space, each 

anatomical image was linearly aligned to a standard brain template (the downsampled 

Colin27: 110×110×110, with 2mm isotropic voxels; Holmes et al., 1998) using FSL flirt 

(Jenkinson et al., 2002) with 6 degrees of freedom to allow only translations and rotations in 

3D.

To correct for echo-planar imaging (EPI) induced susceptibility artifacts, which can cause 

distortions at tissue-fluid interfaces, skull-stripped b0 (non-diffusion-weighted) images were 

linearly aligned and then elastically registered to their respective T1-weighted structural 

scans (in the Colin27 110×110×110 space) using an inverse-consistent registration algorithm 

with a mutual information cost function (Leow et al., 2007). The resulting linear 3D 

transformation matrices and 3D deformation fields were then applied to the remaining 41 

DWI volumes, so that the DWIs and respective T1 images were in the same space.

A single diffusion tensor was fitted at each voxel in the brain from the eddy- and EPI- 

corrected DWI scans using FSL, and scalar anisotropy maps were obtained (Basser et al., 

1994) from the resulting diffusion tensor eigenvalues (λ1, λ2, λ3). Fractional anisotropy 

(FA), a measure of the degree of diffusion anisotropy, was defined in the standard way as:

-where <λ> is equal to the mean diffusivity (MD) or average rate of diffusion in all 

directions. The resulting images were smoothed with a Gaussian kernel (5mm FWHM) to 

improve the signal to noise ratio and ensure a Gaussian distribution of the maps. Clearly, 

other smoothing filters could be used, or, at the expense of added complexity, the full 

diffusion image data could be filtered to preserve maximal information (Kim et al., 2009; 

Tong et al., 2012; Centigul et al., 2013).

2.3 Fiber tractography

At each voxel, constant solid angle orientation distribution functions (CSA-ODFs) were 

computed using the normalized and dimensionless ODF estimator, derived for Q-ball 
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imaging (QBI) as in (Aganj et al., 2010). Tractography was performed on the linearly 

aligned sets of DWI volumes (in the Colin27 110×110×110 space) by probabilistically 

seeding voxels with a prior probability based on the FA value. Curves through a seed point 

receive a score estimating the probability of their following an axonal pathway, computed 

from the CSA-ODFs. We used a voting process provided by the Hough transform to 

determine the best fitting curves through each point, based on using a constant solid angle 

orientation density function to model the local diffusion propagator (Aganj et al., 2011); the 

resulting tractography is illustrated in Figure 1a. Elastic deformations obtained from EPI 

distortion correction, mapping the average b0 image to the T1-weighted image, were then 

applied to the resulting tracts’ 3D coordinates. Each subject’s dataset contained about 

10,000 non-duplicated fibers (3D curves). In prior work, we have determined that this is a 

sufficient number of fibers to determine most of the common network topology measures 

accurately (Prasad et al., 2013b). We removed any erroneous fibers traced on the edge of the 

brain due to high intensity noise. To limit small noisy tracts, we filtered out fibers with less 

than 10 points.

The angular resolution of the ADNI data is deliberately limited to avoid long scan times that 

increase patient attrition, but the use of an ODF model makes best use of the available 

angular resolution. The ODF-CSA model ensures high-quality tractography, which is the 

crux of the MDP methodology, but other validated methods could be used. Methods that can 

resolve more than one intravoxel dominant diffusion direction (ODFs, FODs, DSI) tend to 

perform better than DTI when used to reconstruct tracts and they may better reflect the 

underlying anatomy when more than one tract is present (Tuch, 2004; Daducci et al., 2013). 

Once the 3D geometry of the tracts has been extracted, any number of features can be 

interpolated onto the tract-derived MDPs.

2.4 Probabilistic white matter ROI atlas registration and fiber clustering

Fibers were clustered into 18 ROIs using the Johns Hopkins University (JHU) probabilistic 

WM tract atlas (Hua et al., 2008). A trained anatomist created up to 3 pairs of seed points 

(each pair consists of one start and one end seed; Figure 1c) for each ROI tract based on the 

anatomy and the highest probability at the extremities of each tract (Table 2). We linearly 

aligned (Jenkinson et al., 2002) and then elastically registered (Leow et al., 2007) the FA 

image from the JHU DTI atlas to each subject’s FA map. We then applied that deformation 

to both the WM atlas labels and the respective seed points, using nearest neighbor 

interpolation to avoid intermixing of labels. This placed the atlas ROIs and seeds in the same 

coordinate space as each subject’s tractography (all in the Colin27 110×110×110 space). 

The ROIs were then smoothed with a Gaussian kernel (2mm FWHM) to ensure the 

registered ROIs were contiguous. We were then able to select all fibers that intersected each 

ROI, forming an ROI fiber bundle (Figure 1c).

2.5 Maximum density path computation

As described in (Prasad et al., 2011a, 2011b, 2013a), each ROI fiber bundle for each subject 

was reduced to a compact, low-dimensional representation based on the maximum density 

path (MDP). Using each subject’s tractography, we generated a respective scalar fiber 

density map, where each voxel in the volume represents the total number of fibers that pass 
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through it (Figure 1b). From this density map, we created a graph, where each density map 

voxel greater than 0 was represented as a node that is connected to its surrounding 26 

neighbors by weighted undirected edges. To make the cost of traveling from one node to 

another inversely proportional to their density, each edge was weighted by taking the 

negative of the sum of the density values from the two voxels it connected, as follows:

Here di and dj denote node i and j’s corresponding voxel density. em is the maximum 

absolute value of the edge costs, added to ensure that the edges are positive.

Using each set of registered ROI seeds delineating a start and end location, we did a graph 

search using Dijkstra’s algorithm (1959) to find the shortest path (i.e., the maximum density 

path). However, in cases where the seeds did not correspond to a node (i.e., at a non-zero 

density voxel), we found the closest voxel to the ROI seeds as determined by the Euclidean 

distance. In situations where there was a ‘hole’ in the density map within an ROI due to the 

partial volume effect or the assignment of tracts into individual voxels, the algorithm could 

not create a connection between two nodes. We therefore added both nodes and edges, 

weighted with the smallest value possible, to the graph so all voxels within our ROI were 

fully connected (Jahanshad et al., 2012). This allowed gaps to be filled in, without biasing 

the resulting shortest path.

2.6 Maximum density path geodesic curve registration

As subjects were registered to the Colin27 template with a 6 parameter affine transform, the 

three-dimensional MDP curves of each subject are confounded by nuisance variables such 

as translation and orientation. However, to assess cross subject correspondences for group 

comparisons of the compact MDP representations, the MDPs must be registered to a 

common space, while maintaining, as much as possible, the particular characteristics of each 

subject’s anatomy. As in Joshi et al. (2007a, 2007b), we analyzed their geometry 

intrinsically, and represented the MDP curve β(s): [0,1] → ℜ3 by its invariant shape given 

by the square-root velocity function as

The q function is a parameterized function, and is invariant to translation and rotation. We 

also make it scale-invariant by dividing it by its magnitude. The set of MDPs are represented 

by their q function representations in an invariant shape space, given by an infinite-

dimensional Hilbert sphere of functions. This shape space is equipped with an invariant 

Riemannian metric that allows us to compute distances between shapes via shortest paths, or 

geodesics between them. The geodesic framework also allows us to compute invariant, 

intrinsic statistics (Joshi et al., 2007a, 2007b; Prasad et al., 2011a) on the space of MDP 

paths. Importantly, we align the MDP representations elastically by a diffeomorphic 
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matching of their shapes. The elastic MDP shape registration uses an efficient path-

straightening method (Joshi et al., 2007b) that computes geodesics between two tract 

representations in a few milliseconds. For our data, we calculated mean MDPs across all 200 

subjects and elastically registered all the respective MDPs to the mean. We can then 

calculate group statistics for cross subject comparisons of any number of scalar attributes 

along these paths. We chose to interpolate corresponding features from more traditional 

scalar FA and MD maps at each point in the registered paths, as these indices are perhaps 

most likely to be used in standardized multi-site DTI analyses. However, in future work we 

intend to also interpolate ODF based metrics, such as the TDF-derived FA (Leow et al., 

2009; Zhan et al., 2009).

For each subject, their respective FA and MD values were interpolated at each point along 

the MDP via the linear interpolation function implemented in Matlab (http://

www.mathworks.com/help/matlab/ref/interp3.html#bt2rbzl-2_1). We opted not to use cubic 

or spline interpolation that can sometimes result in negative values, as this would not make 

sense as FA values range from 0 to 1. Some other works that treat diffusion functions or 

diffusion tensors as elements of Riemannian manifolds, so many more elaborate 

interpolation choices are possible (Kim et al., 2009; Tong et al., 2012; Centigul et al., 2013).

2.8 Statistical analyses

We performed point-wise linear regressions along each MDP, adjusting for sex and age, to 

test for differences in FA and MD between CTL and MCI subjects (e-MCI and l-MCI 

separately and as a whole), and between CTL and AD patients. We additionally tested for 

associations between FA and MD along each MDP and MMSE scores in the entire 

population (n=200), again adjusting for sex and age. Computing multiple association tests 

along each (floating point) voxel of an MDP path can introduce a high false positive error 

rate. To control the expected rate of these errors across all points within all paths, we used 

the standard method for false discovery rate correction with the conventional q-value of 0.05 

(FDR; Benjamini and Hochberg,1995).

2.6 Post-hoc classification

We used support vector machines (SVMs; Cortes and Vapnik, 1995), a supervised machine 

learning algorithm, to classify the DTI measures along the points of the mean MDPs to 

differentiate between diagnosis groups. SVMs classify two-class data by learning to find the 

best hyperplane to separate the two classes by maximizing the distance between the 

hyperplane and the closest data point. Each subject is represented as a d-dimensional vector, 

xi, and its category as yi = ±1, to find the hyperplane

such that w and b minimize ||w|| for all xi and yi. In addition, we used nonlinear SVM 

classification by applying a nonlinear transformation using Gaussian radial basis functions 

(RBF).
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Using accuracy, sensitivity, and specificity, we tested the utility of different subsets of 

features to distinguish between the two pairs of diagnostic groups where significant group 

differences were detected: CTL and AD, CTL and l-MCI. In each fold of a 10 × 10-fold 

cross- validation, we randomly selected an equal number of subjects from each class to 

avoid the “unequal training class size bias” (Chew et al., 2001). We determined the subsets 

of features for each class-pair based on the DTI measures (FA and/or MD) that showed 

significant differences between the groups. To distinguish between CTL and AD groups, we 

tested the FA values and MD values along all the mean MDP points (1080 points; Table 3). 

We further tested only the subset of significant FA points (FAFDR CvA=214 points) and the 

subset of significant MD points (MDFDR CvA=641 points). To distinguish between CTL and 

l-MCI we tested all the MD values along all the MDP points (1080 points), as well the 

subset of significant MD points (MDFDR CvL=12 points).

3. Results

3.1 MDP analyses

AD patients showed significantly lower FA (Figure 2a; critical p<0.01) and higher MD 

(Figure 2b; critical p<0.03) compared to cognitively healthy elderly CTL subjects, 

throughout the commissural and long association fibers (Table 3). We found significantly 

higher MD in l- MCI subjects compared to CTL subjects (Figure 2c; critical p<0.001) in 

posterior and temporal lobe tracts. We did not detect differences between e-MCI (or the full 

MCI group) relative to the group of CTL subjects. These results are in the expected 

direction, as deteriorations in fiber integrity are generally accompanied by higher values for 

diffusivity measures.

We further found a significant positive association between FA and MMSE (Figure 2d; 

critical p<0.003) and negative association between MMSE and MD (Figure 2e; critical 

p<0.029). That is, lower FA and higher diffusivity, which typically indicate greater WM 

deficits, were associated with lower MMSE scores, which are indicative of greater 

impairment.

3.2 SVM results

Table 4 shows the percent accuracy, sensitivity, and specificity of the two classifications 

using different subsets of features. Due to this randomized training, results could differ on 

each SVM run. We therefore report an average of 10 different runs. Overall, MD features 

performed better than FA features. Further reducing dimensionality - by only choosing the 

mean MDP points that passed FDR - increased the accuracy.

4. Discussion

In this paper, we apply a novel tract clustering and compact fiber representation method that 

may be a useful tool for understanding the effects of Alzheimer’s disease on the brain’s WM 

circuitry. It combines some of the benefits of tractography-based methods with those of 

voxel- based analyses, by providing spatial detail in defining statistical associations. It does 

not rely exclusively on global registration of the images into the same space, but it explicitly 

models white matter tracts based on anatomical prior information. We were able to compute 
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tract- specific, mean shapes in a space that is invariant to scaling, translation and rotation. 

On the other hand, other methods for DTI analysis, such as TBSS (Smith et al., 2006), do 

not compute correspondences between explicit models of tracts, but rely on extrema in the 

FA maps to identify features across subjects, which may differ in their homology. In 

addition to this, unlike other WM tract clustering analyses registration methods that either 

use Procrustes fitting and mean shape (Corouge et al., 2006), not taking shape into account, 

or a linear matching (Colby et al., 2012), where the points in each curve may not 

correspond, our registration method optimally resamples each subject’s tract geometry by 

taking into account its geodesics when registering to the corresponding computed mean 

tract. This reduces the bias, and increases the accuracy. Each tract’s mean representation 

offers an efficient method to reduce the white matter map’s high voxel-wise dimensionality 

to a set of points that can capture relevant macro-anatomical and microstructural 

information.

In this method, we assess DTI metrics along tracts (Table 3; Figure 2), taking into account 

with-in tract variability to tease apart whole tract and more focal abnormalities. In many 

tractography analyses, the microstructural metrics (e.g., FA, MD, etc.) along one tract are 

collapsed down to a single mean scalar value for statistics, resulting in a loss of information 

and perhaps power to detect group differences if they are in fact more localized (of course, 

the tract mean may also be valuable and can be computed from our method). Using the MDP 

method, we detected significant WM deficits in AD patients and l-MCI subjects relative to 

cognitively healthy CTL subjects as might be expected from the DTI literature on AD 

(Braskie and Thompson, 2013; Nir et al., 2013). We found higher MD and lower FA along 

the MDPs of many WM tracts previously implicated in AD (Fellgiebel et al., 2008; Stebbins 

and Murphy, 2009), implying disrupted WM microstructure. More subtle l-MCI deficits 

were found in temporal (right cingulum of the hippocampus and the left uncinate fasciculus 

and inferior longitudinal fasciculus) and posterior (lingual gyrus and precuneus corpus 

callosum) tracts of the brain, corroborating a pattern of degeneration in the temporal lobe 

and posterior temporo-parietal circuitry found in many other DTI studies of MCI and AD 

(Head et al., 2004; Stahl et al., 2007; Chua et al., 2008; Stebbins and Murphy, 2009). These 

regions are consistent with regions showing earliest pathological changes (Braak and Braak, 

1996; Thompson et al., 2007). Only MD measures were sensitive enough to detect l-MCI 

differences and revealed more profuse associations than FA in all analyses (Table 3). This is 

in line with many prior studies. A recent AD DTI review found that MD values have more 

discriminative power than FA values and higher effect sizes for detecting disease related 

effects - derived from 55 different studies - in the frontal, parietal, occipital and temporal 

lobes (Clerx et al., 2012; Nir et al., 2013). We also found significant associations between 

FA and MD MDP measures and cognitive deficits, as measured by MMSE scores, across all 

subjects. Overall, both FA and MD showed significant associations. While MD showed 

widespread significance (Figure 2), disease effects on FA were detected only in localized 

regions of tracts; these local could be lost with whole tract averages.

The detection of a disease effect in one part of a tract does not mean that the disease 

selectively affects that part of the tract – the biology of degenerative brain diseases such as 

Alzheimer’s disease suggests a relentless spread in which all parts of all fibers in the brain 

are progressively affected. However some neuroanatomical and technical factors may make 
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disease effects (or any effects) harder to detect in some parts of tracts than others. For 

instance, some parts of the tracts have low SNR for the measures examined here, either due 

to imaging signal-to-noise or due to anatomical complexity such as fanning or fiber 

crossing. Some parts of the tracts may have fiber crossings, which can affect the SNR and 

mean values for the measures we examined. The power of localized analysis includes the 

ability to detect effects where there is greatest power to detect them, but does not necessarily 

mean the scope of pathology has been fully mapped or that it is as anatomically selective as 

the maps might imply.

As with any clinical data set, we must take into account the potential for increased noise and 

processing difficulties in pathological scans. In AD, reconstruction of the local intra-voxel 

fiber structure is more susceptible to error due to altered WM microstructure (demyelination, 

axonal injury, and cerebrovascular microinfarcts). This method relies on accurate 

tractography best achieved by using ODF based methods to reconstruct the diffusion signal 

in regions where WM morphology is highly altered. Additionally, the quality of registration 

between the JHU atlas and images with atrophied tissue (e.g., larger ventricles and sulci) 

may not be optimal.

A range of MRI modalities have been used in conjunction with machine learning techniques 

to track MCI and AD progression. Volumetric approaches, including hippocampal volume, 

gray matter volume from voxel based morphometry, and cortical thickness (Klöppel et al., 

2008; Lerch et al., 2008; Desikan et al., 2009; Magnin et al., 2009) have effectively 

classified AD patients. Few studies have used DTI derived biomarkers for SVM 

classification purposes. In a sample of 27 subjects, tractography based connectivity metrics 

based on fiber count, anisotropy and diffusivity measures were used to classify AD with an 

accuracy of 88% (Wee et al., 2011). Some studies have also used features derived from full 

DTI maps and TBSS skeletons, employing methods like Pearson’s correlation and ReliefF 

(Robnik-Šikonja and Kononenko, 2003) to reduce the number of features (Haller at al., 

2010; O’Dwyer et al., 2011; Graña et al., 2011), yielding accuracies of more than 90%. In 

this study, we evaluated 200 subjects and were able to reach relatively high accuracy despite 

the heterogeneity of our sample (more than 14 scanners across the country) and using the 

full set of features from the compact mean MDP representation. The features interpolated 

along our full mean MDPs are robust enough to reach high classification accuracies (~80%), 

so that reducing dimensionality by including only statistically significant MDP points did 

not dramatically increase classification accuracy (~85%).

Ultimately, this novel method may reduce bias and increase accuracy using optimal tract 

geometry resampling. It allows us to project and compare any number of novel measures on 

the MDPs. Furthermore, we were able train and classify SVMs successfully, based on 

features mapped onto these anatomically correct white matter tract representations. In the 

future, mapping other biomarkers, such as fiber density and novel HARDI-ODF derived 

biomarkers such as the TDF measures (Leow et al., 2009; Zhan et al., 2009) along the MDPs 

may further our ability to distinguish patients from controls based on diffusion-weighted 

imaging data. Furthermore, ADNI2 is a longitudinal study and, as it progresses, we will be 

able to investigate which subjects develop AD, and if these early WM aberrations help 
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predict future deficits and conversion to AD. This study offers initial evidence that DTI-

based measures along MDPs may be a novel biomarker of AD.
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Figure 1. 
(a) Whole-brain tractography fibers derived using the Hough transform method, based on 

DWI data from one individual in the study. (b) Whole-brain tractography was converted into 

a fiber density map, where each voxel in the volume represents the total number of 

streamlines that pass through it. (c) Probabilistic ROI (blue; right inferior fronto-occipital 

fasciculus) overlaid on the fiber density map (red/yellow). The MDP algorithm finds the 

shortest path through the fiber density map within the boundaries of the ROI from a start 

seed (yellow) to an end seed (red).
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Figure 2. 
Statistical maps show MDPs where (a) FA is significantly lower (critical p<0.01) and (b) 
MD is significantly higher (critical p<0.03) in AD patients compared to CTL subjects. (c) 
depicts the MDPs with significantly higher MD in l-MCI compared to CTL subjects (critical 

p<0.001). (d) MMSE was significantly positively associated with FA (critical p<0.003) and 

(e) significantly negatively associated with MD (critical p<0.029) in the entire population 

(n=200). In this figure color-bar upper value (i.e. blue FDR corrected p-value) corresponds 

to a different FDR critical p-value for each analysis (a–d). CGH=cingulum at the 

hippocampus, CGC=cingulum at the cingulate gyrus, UNC=uncinate fasciculus, CC=corpus 

callosum, IFO=inferior fronto-occipital fasciculus, ILF=inferior longitudinal fasciculus.
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Table 2

Index of ROIs from the probabilistic tract atlas (Hua et al., 2008) used for analysis, followed by their 

abbreviations, and the number of sets of seeds.

Corpus Callosum through:

Cingulum CC_Cing 2

Cuneus CC_Cu 1

Lingual Gyrus CC_LG 1

Middle Frontal Gyrus CC_MFG 1

Middle Occipital Gyrus CC_MOG 1

Postcentral Gyrus CC_PoCG 1

Precentral Gyrus CC_PrCG 1

Precuneus CC_PrCu 1

Rectal Gyrus CC_RG 1

Superior Frontal Gyrus CC_SFG 3

Superior Occipital Gyrus CC_SOG 1

Superior Parietal Gyrus CC_SPG 1

Bilateral:

Cingulum at the Cingulate Gyrus CGC 1

Cingulum at the Hippocampus CGH 1

Inferior Fronto-Occipital Fasciculus IFO 1

Inferior Longitudinal Fasciculus ILF 1

Superior Longitudinal Fasciculus SLF 1

Uncinate Fasciculus UNC 1
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Table 4

Average results from 10 runs of an SVM, 10×10-fold cross-validated classification, with different sets of 

features. Average accuracy, sensitivity, and specificity are shown as percentages followed by the maximum 

from the 10 runs.

Classification Features %Accuracy (max.) %Sensitivity (max.) %Specificity (max.)

CTL/AD

FA (n=1080) 74.5 +/− 1.3 (77.0) 75.0 +/− 1.4 (78.0) 73.9 +/− 2.2 (75.7)

MD (n=1080) 80.6 +/− 2.3 (85.1) 79.2 +/− 3.2 (86.0) 82.4 +/− 3.4 (89.2)

FAFDR CvA (n=214) 77.8 +/− 1.3 (79.3) 78.2 +/− 2.0 (80.0) 77.3 +/− 1.4 (78.4)

MDFDR CvA(n=641) 84.9 +/− 0.8 (86.2) 84.4 +/− 2.1 (88.0) 85.7 +/− 1.8 (89.2)

CTL/l-MCI
MD (n=1080) 68.3 +/− 2.6 (70.8) 69.8 +/− 3.8 (76.0) 66.4 +/− 4.1 (74.4)

MDFDR CvL (n=12) 79.0 +/− 1.3 (82.0) 76.9 +/− 1.8 (80.0) 81.5 +/− 2.9 (84.6)
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