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ABSTRACT 

 

Regional Streamflow Response to Wildfire in California Watersheds 

 

by 

 

Ryan Roger Bart 

 

As every watershed and every wildfire event is unique, streamflow response to 

wildfire is only representative of the specific watershed and conditions that produced 

the response.  Most post-fire streamflow change experiments involve single 

watersheds, which limits extrapolation of the results beyond the particular watershed 

examined.  A comprehensive understanding of post-fire streamflow response is 

needed at a regional scale to improve water resources planning and ecosystem 

management in California.  For this dissertation, the regional effect of wildfire was 

examined for two different components of the streamflow hydrograph; annual 

streamflow yield and baseflow recession rates.  Annual streamflow is a key variable 

for streamflow management, but high variability in post-fire annual streamflow 

response at the watershed scale has limited predictions of post-fire annual 

streamflow response at the regional scale.  Baseflow recession rates are an important 

tool for predicting low flows, yet little is known about how baseflow recession rates 
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respond to wildfire at either watershed or regional scales.  A mixed model was 

introduced to regionalize post-fire streamflow change.  Mixed modeling is a 

statistical approach used to synthesize data containing a hierarchical structure, such 

as streamflow data pooled from multiple watersheds experiments.  A parsimonious 

storage-discharge model was used to provide insight into the hydrologic processes 

controlling baseflow recession rates.  Annual streamflow significantly increased 

following wildfire in California at a regional scale.  This response was greatest in 

watersheds with higher percentages of watershed area burnt and during moderately 

wet years.  The first-order control on baseflow recession rates in California was 

found to be inter-seasonal changes in antecedent storage, not wildfire.  Baseflow 

recession rates were observed to decrease by up to an order of magnitude as 

antecedent storage levels increased, indicating a shift in the source of recession flows 

from small, quickly-recharged aquifers at the beginning of the wet season to large, 

seasonal aquifers as the wet season progressed.  Following wildfire, baseflow 

recession rates significantly decreased at a regional scale, suggesting that the 

dominant hydrologic processes affected by fire were related to post-fire reductions in 

above-ground vegetation (e.g. decreased interception, decreased soil 

evapotranspiration, decreased groundwater evapotranspiration). 
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Chapter 1: Introduction 

 

Wildfire is a major source of episodic land-cover change in California 

watersheds, dramatically transforming the landscape and initiating a complex 

recovery process that can take years to decades (Keeley and Keeley, 1981).  Wildfire 

alters numerous hydrologic processes within a watershed, impacting both water 

resources planning and ecosystem management.  The future wildfire regime in 

California is likely to be modified due to both anthropogenic and climate factors 

(Keeley and Fotheringham, 2003; Westerling and Bryant, 2008).  Thus, understanding 

and quantifying the effects of wildfire on streamflow is increasingly critical. 

Streamflow response to wildfire is dependent on the characteristics of a given 

watershed; the extent, severity and location of the wildfire; post-fire meteorological 

conditions; and the rate of post-fire recovery of vegetation and soils.  Unsurprisingly, 

the effect of wildfire on streamflow in California has been shown to be highly 

variable, with some watersheds exhibiting post-fire changes in streamflow (Hoyt and 

Troxell, 1932; Jung et al., 2009; Loáiciga et al., 2001) and others not (Bart and Hope, 

2010).  Most studies of post-fire streamflow response have been examined in single 

watersheds.  However, single-watershed studies cannot capture the range of 

variability in post-fire response that is needed to make robust predictions of post-fire 

streamflow change.  There is a need for the development of regionalization 

approaches that can synthesize multiple watershed experiments to advance our 

understanding of the effects of wildfire on streamflow. 
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The effect of wildfire on streamflow has primarily been investigated via peak 

streamflow and total annual water yield (Shakesby and Doerr, 2006).  Less is 

understood about how wildfire impacts baseflow or baseflow recession rates.  

Baseflow recession rates represent a measure of how baseflow, or the portion of 

streamflow that derives from groundwater, decreases following a recharge event.  

Wildfire affects baseflow recession rates primarily by decreasing post-fire 

transpiration from soils and groundwater through reductions in above-ground 

vegetation.  Few post-fire change studies have addressed this component of the 

streamflow regime, despite baseflow recession rates being a key tool for low flow 

prediction (Tague and Grant, 2009) and hydrologic modeling (Tallaksen, 1995). 

The objective of this dissertation is to investigate the regional effect of 

wildfire on streamflow, with a particular emphasis on baseflow recession rates.  The 

dissertation is divided into three papers that each address a different aspect of this 

objective.  Chapter 2, titled A mixed modeling approach for regionalizing post-fire 

streamflow change, examines the regional effect of wildfire on annual streamflow.  A 

mixed modeling approach is introduced for synthesizing data from 12 paired 

watersheds in California.  Mixed models are useful for modeling data that contains a 

hierarchical structure, such as annual streamflow data organized within watersheds.  

The goal of this paper is to regionalize post-fire annual streamflow response across 

California watersheds and determine how this effect may vary with the percentage of 

watershed area burnt, post-fire year, and annual wetness conditions. 
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Chapter 3, titled Inter-seasonal variability in baseflow recession rates: The 

role of antecedent storage in central California watersheds, examines the relation 

between antecedent storage and baseflow recession rates.  A preliminary investigation 

into the effects of wildfire on baseflow recession rates revealed that baseflow 

recession rates vary inter-seasonally and that antecedent storage was the first-order 

control on this variability.  The relation between antecedent storage and baseflow 

recession rates needs to be understood and accounted for prior to evaluating the 

effects of wildfire on baseflow recession rates.  This analysis is divided into two parts, 

with the first part empirically examining the role of antecedent storage on baseflow 

recession rates in four central California watersheds.  A parsimonious storage-

discharge model is then employed in the second part to provide insights into the 

processes that produce inter-seasonal changes in baseflow recession rates. 

Chapter 4, titled The impact of wildfire on baseflow recession rates in 

California watersheds, uses a mixed model to evaluate the effect of wildfire on 

baseflow recession rates at watershed and regional scales.  The effect of antecedent 

storage and potential evapotranspiration (ET) on baseflow recession rate response to 

wildfire is also examined.  This study represents the first known detailed examination 

of the effects of wildfire on baseflow recession rates. 

The last chapter, Chapter 5, summarizes the finding of the three papers and 

concludes with an examination of future research questions. 
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Chapter 2: A Mixed Modeling Approach for Regionalizing 

Post-Fire Streamflow Change 

 

The effect of fire on annual streamflow has been examined in numerous 

watersheds studies. However, since every watershed and every fire event is unique, 

post-fire streamflow responses are only representative of the specific watershed and 

conditions that produced the response.  There is a need to statistically combine the 

empirical results from multiple watersheds in order to estimate a regional effect of fire 

on streamflow.  Mixed modeling is a statistical approach that is similar to regression 

analysis but includes random effects, which allows inferences to be drawn about a 

hypothetical population of watersheds from which the observed watersheds were 

sampled.  Mixed models are useful for modeling data with a hierarchical organization 

(e.g. annual streamflow nested within watersheds).  This study proposes a mixed-

modeling approach for regionalizing the effect of fire on annual streamflow for 12 

paired-watersheds in California.  At a regional scale, annual streamflow in California 

was increased 145% (86% to 310%) during the first post-fire year in watersheds that 

were completely burnt.  This response decreased with lower percentages of watershed 

area burnt and during subsequent years as vegetation recovered following fire.  

Annual streamflow response to fire was also sensitive to annual wetness conditions, 

with post-fire response being greatest during moderately wet years.   The mixed 



 

 6

modeling approach was shown to be valuable for regionalizing the effects of land-

cover change on streamflow. 

 

2.1. Introduction 

In Mediterranean-Climate Regions (MCRs) such as California, fire is an 

episodic form of land-cover change whose frequency and severity has increased in the 

past century due to the influence of humans (Keeley and Fotheringham, 2003) and 

may increase further with climate change (Lenihan et al., 2003; Westerling and 

Bryant, 2008; Williams et al., 2001).  Fire removes above-ground vegetation cover 

and frequently produces water repellent soils ; initiating a complex recovery sequence 

where water repellency breaks down with successive rainfall events and burnt 

shrubland stands become reestablished after crowding out opportunistic herbaceous 

vegetation (Keeley and Keeley, 1981; Shakesby and Doerr, 2006). 

Fire has been observed to impact many aspects of the streamflow regime, 

including peak flow, baseflow and water yield (Keller et al., 1997; Kinoshita and 

Hogue, 2011; McMichael and Hope, 2007). While there is a basic understanding of 

the individual hydrologic processes affected by fire (e.g. interception, soil infiltration, 

transpiration), predicting how streamflow may respond to fire for a given watershed is 

challenging since the effect of these processes on streamflow varies spatially from 

watershed to watershed and temporally as watershed conditions recover following 

fire.  This variability stems from the uniqueness of watershed physiographic 

properties, meteorological conditions and vegetation types; the extent, location and 
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severity of the fire; and the post-fire recovery rate of vegetation and soils.  

Consequently, post-fire streamflow responses are largely representative of the specific 

watershed and conditions that produced the response. 

Streamflow response to fire in MCR watersheds varies widely across 

watersheds, with many empirical studies observing post-fire increases in streamflow 

(Hoyt and Troxell, 1932; Jung et al., 2009; Lavabre et al., 1993; Loáiciga et al., 2001; 

Scott, 1993) and many others observing no conclusive change in streamflow (Aronica 

et al., 2002; Bart and Hope, 2010; Britton, 1991).  Despite this inherent variability in 

streamflow response, the management of water resources for flood protection, water 

supply, water quality and the environment necessitates an understanding of post-fire 

effects on streamflow at a regional scale.  This knowledge is essential for prediction 

in both gauged and ungauged watersheds. 

A number of statistical models may be used to regionalize streamflow 

response to land-cover change such as fire; including regression, analysis of variance 

(ANOVA) or covariance (ANCOVA), meta-analysis and mixed modeling (Figure 1).  

The selection of the appropriate model depends primarily on data type and the desired 

inference. 

The most frequently used data type is effect sizes obtained from the results of 

previously-conducted empirical studies in the published literature (Andréassian, 2004; 

Bosch and Hewlett, 1982; Brown et al., 2005; Hibbert, 1966; Sahin and Hall, 1996; 

Stednick, 1996).  Effect sizes, such as maximum or average streamflow change, are 

measures of the magnitude of streamflow change and are regularly reported for  



 

 8

 

Figure 1: Flowchart for synthesizing streamflow change across multiple 

watersheds. 

 

individual streamflow change studies; providing access to a broad range of locations 

and conditions for synthesis.  A linear regression model comparing effect sizes to a 

predictor variable such as percentage of land-cover change has commonly been used 

to synthesize effect sizes.  One advantage of using a linear regression model 

incorporating effect sizes is that the assumption of independent regression residuals is 

not violated when a single effect size is included from each contributing watershed 

study.  Nonetheless, the use of a single effect size represents a loss of information 

relative to the original streamflow change data, which may decrease the statistical 

power of regionalization experiment (Hox, 2010). 

An alternative data type for regionalizing streamflow change experiments that 

doesn’t result in a loss of information is the direct combining of raw data from each 

individual experiment investigating changes in streamflow (Farley et al., 2005).  The 

use of raw data theoretically leads to a more statistically powerful approach than with 

effect sizes since more data are available for the model.  However, not all of the 
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additional data is informative since the generated dataset contains an embedded 

hierarchical structure, with streamflow data (e.g. annual streamflow) nested within 

watersheds.  The lower level of this hierarchy (i.e. streamflow-level) is referred to as 

level 1 and the group- or watershed-level is referred to as level 2.  Streamflow data 

from the same watershed are likely to be more similar than streamflow data between 

watersheds.  Consequently, the use of a linear regression model would likely violate 

the assumption of residual independence.  ANOVA-type models can account for 

watershed-level differences in streamflow data, however, implementation of these 

models can become problematic with large numbers of watersheds since an additional 

model parameter must be estimated for each additional watershed (Steele, 2008).  

Further, inference from ANOVA-type models assumes a balanced dataset (i.e. equal 

sample sizes for level-1 data) (Garson, 2012), which may not be obtainable with 

streamflow data. 

One of the implicit goals of synthesizing multiple streamflow change studies 

is to infer how streamflow may respond across a study region (Figure 1).  However, 

linear regression and ANOVA-type models treat the watersheds used in the analysis 

as having fixed effects, or representing all potential watersheds for which inferences 

are to be made.  While variables with fixed effects are important for reducing model 

variability, for inference beyond the sample watersheds it is necessary to treat 

watersheds as representing a random sample of a larger population of watersheds that 

we would like to make inferences about.  This type of variable is referred to as having 

random effects.  Inferences based on models that include random effects in addition to 
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fixed effects are generally more conservative than models that include only fixed 

effects, lessening the likelihood of Type-1 errors, i.e., false-positive inferences of 

streamflow change (Borenstein et al., 2009). 

Mixed modeling is a statistical approach that includes both random and fixed 

effects.  Mixed models are useful for modeling data that is organized at multiple 

levels and can accommodate unbalanced datasets and large numbers of watersheds 

(Raudenbush and Bryk, 2002).  In addition, mixed models can be used to synthesize 

both raw data and effect sizes from the published literature; the latter approach is 

referred to as meta-analysis (Hox, 2010).  While mixed-modeling approaches have 

only recently been applied to hydrology (Chamizo et al., 2013; Clarke, 2001; Lessels 

and Bishop, 2013; Lopez-Moreno and Stähli, 2008; Seo et al., 2008; Webb and 

Kathuria, 2012; Wehrly et al., 2009), the technique is well established in the social 

sciences and used regularly within the ecology community (Bolker et al., 2009; Qian 

et al., 2010; Wagner et al., 2006). 

 

2.2. Research objective 

Despite numerous investigations into the effect of fire on annual streamflow at 

the watershed scale, a regional estimate of post-fire streamflow response for 

California has not been established.  The research objective of this study was to 

combine streamflow data from 12 burnt watersheds and 8 proximal control (unburnt) 

watersheds in California in order to investigate the regional effect of fire on annual 

streamflow.  A mixed-modeling approach was adopted based on the paired-watershed 
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technique, where streamflow from each burnt watershed is paired with streamflow 

from an unburnt watershed to act as a control. 

Many of the watersheds included in this study have previously been analyzed 

on an individual basis for the effect of fire on streamflow (Bart and Hope, 2010; Hoyt 

and Troxell, 1932; Kinoshita and Hogue, 2011).  Hoyt and Troxell (1932) conducted 

one of the first paired-watershed studies in Fish Creek following a fire in 1924 and 

observed a 29% increase in post-fire water yield and an increase in both peak flow 

and baseflow.  Kinoshita and Hogue (2011) conducted a study of City Creek and 

Devil Canyon Creek following a large fire in 2003 and noted that both water yield and 

dry season baseflow increased throughout the post-fire period.  Bart and Hope (2010) 

investigated  the effect of fire on post-fire streamflow in six large (>50km
2
) central 

California watersheds using the paired-watershed technique.  Few instances of 

statistically significant post-fire streamflow change were reported by Bart and Hope 

(2010), with most post-fire streamflow falling within the uncertainty of the pre-fire 

calibrated model.  Bart and Hope (2010) did note that the few instances of  

statistically significant post-fire streamflow change were associated with years of 

normal or above-normal annual streamflow.  A similar relation between post-fire 

streamflow change and annual wetness conditions has also has also been observed by 

Feikema et al. (2013) for Australia watersheds. 

Investigating the regional effect of fire on annual streamflow requires an 

accurate characterization of post-fire watershed conditions.  For this study, four fire 

variables representing different post-fire watershed conditions were tested and 



 

 12

compared to identify the fire variable that best represents post-fire annual streamflow 

change.  The fire variables differed in how they represented the initial change in 

watershed conditions following fire (i.e. burn extent) and the rate of post-fire 

recovery.  To test the potential effect of annual wetness conditions on post-fire 

streamflow response, as highlighted by Bart and Hope (2010) and Feikema et al. 

(2013), an interaction variable was developed for the model to examine how post-fire 

streamflow change may vary with annual streamflow from the control watershed. 

 

2.3. Watershed selection and data 

The watersheds in this study were selected from US Geological Survey 

(USGS) streamflow gauges in southern and central California.  Watersheds were 

evaluated for inclusion based on the absence of major diversions or regulations, lack 

of persistent winter snow cover, little urbanization or agriculture, and data record.  

Fire history for each watershed was obtained from the Fire and Resource Assessment 

Program (FRAP) (http://frap.fire.ca.gov).  Paired watersheds were selected by first 

identifying watersheds that had been subject to a fire of at least 20% of the watershed 

area and also had stable land-cover conditions during the pre- and post-fire periods 

with no additional fires greater than 5% of the watershed area.  All watersheds in the 

vicinity of the candidate burnt watersheds were then evaluated for also having no fires 

greater than 5% of the watershed area during the combined pre and post-fire period to 

act as a control watershed. 
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A total of 12 burnt watersheds were located for inclusion in the study, with 20 

watersheds overall including control watersheds (Table 1).  All burnt watersheds met 

the above selection criteria except San Antonio, Santa Paula and City which had fires 

during the pre-fire period of 7%, 16% and 6% of area burnt, respectively.  The study 

watersheds are located along the Coast Range of central California and the Transverse 

Range of southern California (Figure 2).  This region is characterized by a 

Mediterranean climate regime, with hot dry summer and mild wet winters.  Most 

rainfall is generated by cyclonic frontal systems approaching from the Pacific Ocean.  

Since the mountains in this region are topographically very steep, precipitation totals 

during the wet season are driven by orographic effects. 

Watershed characteristics were obtained from the Geospatial Attributes of 

Gages for Evaluating Streamflow (GAGES-II) database assembled by Falcone (2011) 

(Table 1).  The area of the burnt watersheds ranged from 7 km
2
 to over 600 km

2
, with 

the smaller watersheds concentrated in the southern portion of the region.  Annual 

precipitation totals varied from 385 mm/year to 1163 mm/year, while mean annual 

streamflow ranged from 22 mm/year to 753 mm/year.  The lithology of the 

watersheds in the Transverse Range is dominated by igneous and metamorphic rocks 

while the watersheds in the Coast Range are primarily composed of sedimentary 

rocks.  Soils are relatively shallow (456mm to 947mm), particularly in the steeper 

watersheds.  Shrublands are the dominant vegetation in many of the watersheds, 

although grasslands, coastal sage scrub, chaparral, oak woodlands, and forests are also 

common (Callaway and Davis, 1993). 



 

 14

Table 1: Watershed characteristics 

# Watershed Name USGS ID 

Area 

(km
2
) 

Mean annual 

precipitation 

(mm) 

Mean 

annual 

PET 

(mm) 

Mean 

annual 

streamflow 

(mm) 

Dominant 

geology type 

1 City Creek 11055801 50.5 781 729 226 quarternary 

2 Devil Canyon Creek 11063680 14.4 940 762 165 quarternary 

3 Day Creek 11067000 12.0 1155 648 309 gneiss 

4 Fish Creek 11084500 15.4 841 772 271 gneiss 

5 Little Dalton Creek 11086500 7.2 734 804 92 gneiss 

6 Arroyo Seco (South) 11098000 41.6 788 776 215 granitic 

7 Santa Anita Creek 11100000 25.0 969 762 239 granitic 

8 Sespe Creek 11111500 128.5 850 552 120 sedimentary 

9 Santa Paula Creek 11113500 103.3 678 709 220 sedimentary 

10 Coyote Creek 11117600 33.9 729 736 216 sedimentary 

11 Carpinteria Creek 11119500 34.1 710 725 107 sedimentary 

12 Santa Cruz Creek 11124500 191.5 831 637 96 sedimentary 

13 Lopez Creek 11141280 54.0 717 741 170 sedimentary 

14 Arroyo De La Cruz 11142500 106.8 906 716 460 sedimentary 

15 Big Sur River 11143000 120.6 1163 640 753 granitic 

16 Nacimiento River 11148900 403.5 692 745 409 sedimentary 

17 San Antonio River 11149900 556.4 633 737 174 sedimentary 

18 Arroyo Seco (North) 11152000 625.1 809 664 243 sedimentary 

19 Los Gatos Creek 11224500 247.4 470 792 22 sedimentary 

20 Cantua Creek 11253310 120.4 385 823 25 sedimentary 

# Watershed Name 

Stream 

density 

(km/Km
2
) 

Mean 

slope 

(%) 

Mean soil 

depth (mm) 

Mean 

clay % 

Mean silt 

% 

Shrubland 

percentage 

1 City Creek 1.21 34.4 650 13.2 30.6 77.5 

2 Devil Canyon Creek 1.45 39.0 492 14.5 32.1 76.7 

3 Day Creek 0.92 50.9 518 14.1 32.1 48.3 

4 Fish Creek 1.26 39.2 493 16.5 45.7 70.8 

5 Little Dalton Creek 0.77 35.9 456 18.2 49.7 87.1 

6 Arroyo Seco (South) 1.13 42.8 461 17.7 48.2 70.9 

7 Santa Anita Creek 1.01 44.1 475 17.3 47.6 46.6 

8 Sespe Creek 1.25 26.5 573 22.1 41.3 45.9 

9 Santa Paula Creek 1.18 34.4 621 23.6 44.2 55.6 

10 Coyote Creek 1.10 31.2 603 25.9 44.7 46.8 

11 Carpinteria Creek 1.06 32.6 643 23.8 44.7 36.3 

12 Santa Cruz Creek 1.17 33.5 646 23.9 41.1 47.3 

13 Lopez Creek 0.69 37.1 658 32.6 38.8 27.8 

14 Arroyo De La Cruz 0.92 28.1 714 34.3 40.4 26.3 

15 Big Sur River 0.98 43.6 633 14.1 31.5 33.1 

16 Nacimiento River 0.99 21.3 720 22.9 36.9 40.8 

17 San Antonio River 1.13 19.5 862 24.4 37.8 39.1 

18 Arroyo Seco (North) 1.03 34.7 644 20.2 34.8 42.2 

19 Los Gatos Creek 1.19 26.1 857 35.6 40.3 67.7 

20 Cantua Creek 1.24 24.3 947 36.6 36.7 42.5 
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Figure 2: Location of selected research watersheds in California.  Number 

corresponds to name and description in Table 1. 

 

Each burnt watershed and its corresponding control watershed is listed in 

Table 2.  The percentage of watershed area burnt ranged from 23% to 100% across all 

the watersheds, with higher percentages more commonly observed in smaller 

watersheds.  Some of the control watersheds were located nearly 100 km from the 

burnt watershed.  While differences in precipitation and watershed characteristics 

between the burnt and control watersheds may be expected to increase with distance 

between watershed pairs, Bart and Hope (2010) observed that the correlation of 

annual streamflow for paired watersheds at this distance in California was acceptable 

(R
2
 >0.8).  The average length of the pre-fire period was 16.6 years, ranging from 7 to 

26 years.  The post-fire period was monitored for up to seven years. 
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Table 2: Summary of paired watersheds and fire characteristics 

Burnt 

watershed 

Fire 

year 

Area 

burnt 

(%) 

Control 

watershed 

Distance 

between 

pairs (km) 

Pre-fire 

period 

Post-fire 

period 

Arroyo Seco (N) 1977 63 San Antonio 29 1966-1977 1978-1984 

Big Sur 1977 92 Arroyo de la Cruz 72 1966-1977 1978-1979 

Cantua 1979 23 Los Gatos 14 1967-1979 1980-1986 

Carpinteria 1971 84 Coyote 8 1959-1971 1972-1977 

City 2003 94 Arroyo Seco (S) 89 1985-2003 2004-2010 

Devil Canyon 2003 97 Arroyo Seco (S) 75 1985-2003 2004-2010 

Fish 1924 100 Santa Anita 9 1918-1924 1925-1931 

Little Dalton 1960 100 Day 27 1940-1960 1961-1967 

Lopez 1985 100 Santa Cruz 97 1968-1985 1986-1992 

San Antonio 1985 31 Nacimiento 14 1972-1985 1986-1992 

Santa Paula 1985 71 Santa Cruz 68 1960-1985 1986-1992 

Sespe 1985 40 Santa Cruz 41 1960-1985 1986-1992 

 

 

2.4. Methodology 

2.4.1 Mixed modeling 

For data with a hierarchical structure, dependencies are created between the 

lower level-1 values (hereby denoted with an i subscript) and the higher level-2 values 

(denoted with a j subscript) from which the level-1 values are selected.  Mixed 

modeling, which is referred to by many different names in the literature; multilevel 

modeling, hierarchical modeling, generalized linear mixed modeling (GLMM), 

mixed-effect modeling, and meta-analysis; is a statistical approach that is similar to 

regression analysis but can account for hierarchies within data by partitioning model 

error to each level of the hierarchy using variables containing random effects.  A two-

level mixed model with no predictor variables (i.e. unconditional model) may be 

represented as 
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 . (1) 

where  is the ith observation of the dependent variable (i.e. annual streamflow) 

from the jth group (i.e. watershed),  is the intercept of the model,  is the level-2 

model error for the jth group, and  is the level-1 model (residual) error for the ith 

observation from the jth group.  It is generally assumed that the distribution of the 

model errors are normal with a mean of 0 and a variance of , such that 

 and .  Model error  represents the deviation of the level-

2 groups from the overall mean, and model error  represents the deviation of level-

1 data from the corresponding level-2 group mean.  This can be demonstrated by 

rewriting equation 1 as two equations 

  (2a) 

 . (2b) 

Equation 2a represents the level-1 component of the model and equation 2b represents 

the level-2 component. 

The unconditional model in equations 1 and 2 provides a baseline estimate of 

the variance in the dependent variable.  Predictor variables may be introduced to the 
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model in order to reduce this variance.  A conditional mixed model with a level-1 

predictor variable may be represented by 

  (3) 

where  is the ith observation of the predictor variable for the jth group and  

represents the slope of the relation between the predictor variable and the dependent 

variable.  The fixed component is  and the random component is .  

The parameters for the fixed component are  and  while the parameters for the 

random component are  and . 

The model represented in equations 3 is often referred to as a random intercept 

model because the intercept for each level-2 group varies randomly across groups.  

The random intercept model assumes that the slope of the relation between a predictor 

variable and the dependent variable is constant across groups.  This assumption may 

not always be appropriate.  Random slope models are mixed models where the both 

the intercept and the slope are allowed to vary across watersheds.  A random slope 

model for Equation 3 can be written as 

  (4) 

or in disaggregate form as 

  (5a) 
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  (5b) 

 . (5c) 

The level-2 random effects are now represented by two terms,  for the random 

intercept and  for the random slope.  Note that  interacts with , indicating the 

slope of the relation between the dependent variable and the predictor variable may 

vary by group.  A second variable is also generated from the random slope model, 

, representing the covariance between  and . 

For each of the previously developed models, a single hierarchical structure 

was assumed to be present in the data.  However, more than one hierarchical structure 

may exist when streamflow data is combined from multiple watersheds.  Similar to 

how annual streamflow data from a given watershed will likely be more similar than 

annual streamflow from different watersheds, watersheds with annual streamflow 

produced from the same year will likely be more similar than annual streamflow 

produced from different years, as all watersheds for a given year will be subject to 

comparable precipitation conditions.  To account for this additional hierarchy, annual 

streamflow is more appropriately conceptualized as having two crossed hierarchical 

structures instead of a single hierarchical structure, with annual streamflow being 

nested within both watersheds and years.  This type of mixed model is referred to as 
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having crossed random effects (Baayen et al., 2008).  An unconditional crossed 

random intercept model may be represented as 

  (6) 

where  is the ith observation of the dependent variable within the cross classified 

jth watershed and kth year,   and  are the cross classified level-2 model errors, 

and  is the level-1 residual error for the ith observation of the dependent variable 

from the cross classified jth watershed and kth year (Hox, 2010). 

 

2.4.2 Model calibration 

The standard approach for calibrating mixed models is the maximum 

likelihood method (Hox, 2010), which attempts to maximize a likelihood function for 

the optimal model fit.  The maximum likelihood method is based on large-sample 

theory and maximum likelihood estimates and confidence intervals are considered to 

be very robust when level-2 sample sizes are large (Hox, 2010).  However, the 

method has been shown to be severely biased when the level-2 sample sizes are small 

(Stegmueller, 2013).  For small samples, it is recommended that Bayesian estimation 

procedures be used instead of maximum likelihood (Hox, 2010; Stegmueller, 2013).  

With Bayesian approaches, a prior probability distribution is developed and combined 

with an estimate of the likelihood of the data to produce a posterior probability 
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distribution, which represents the uncertainty of the model.  Although the posterior 

distribution is generally too complicated to compute directly, Markov Chain Monte 

Carlo (MCMC) procedures have been developed to generate random samples from 

the posterior distribution.  These samples, when repeated many times, can provide 

estimates and confidence intervals for mixed model parameters. 

As the level-2 sample size for watersheds in this study was 12, a Bayesian 

estimation procedure was used to calibrate the model.  Mixed modeling was 

conducted in the R programming language (www.r-project.org) using the 

MCMCglmm (Hadfield, 2010) and MuMIn (Bartoń, 2013) packages.  An improper, 

non-informative prior was used to minimize the effect of the prior on the model 

results, although the model was observed to be relatively insensitive to the prior 

distribution.  A Gibbs sampling algorithm was used for the MCMC walk (Hadfield, 

2010) and 1,000,000 iterations with a thinning of 20 were used to calibrate each 

model. 

The test statistic used for model selection was the Deviance Information 

Criterion (DIC) (Hadfield, 2010).  The DIC is a generalization of the Akaike 

information criterion and is defined as 

  (7) 

where  is a measure of model fit and  is a measure of model complexity.   is the 

average deviance D over all MCMC iterations, with deviance is defined as  

 . (8) 
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 is the likelihood function and � is a parameter of the model.   is a measure 

of the effective number of parameters (Spiegelhalter et al., 2002).  Models with 

smaller values of DIC indicate better model fit. 

 

2.4.3 Model development and model variables 

Model development for predicting annual streamflow (mm) from the burnt 

watershed began with a parsimonious base model and proceeded by incrementally 

adding more complexity to the model (Figure 3).  The base model included crossed 

random intercepts for watershed and wateryear (October 1 to September 30), but no 

predictor variables (Model 1).  Following the addition of each model variable, the 

value of the DIC statistic was evaluated to determine if the new variable improved 

model fit. 

Annual streamflow from the control watersheds was expected to be the 

strongest predictor of annual streamflow from the burnt watersheds by controlling for 

inter-annual differences in precipitation and hydrologic behavior (Model 2).  Since the 

relation between annual streamflow from the burnt and control watersheds was 

heteroscedastic and non-normal, streamflow data from both watersheds was log (base 

e) transformed for Model 2 and all subsequent models.  In some cases, the log 

transformation of very small annual streamflow totals (less than 1 mm) produced 

influential points due to the amplification of very small differences in annual 

streamflow.  Influential points were removed following the approach outlined in Bart  
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Figure 3: Steps for model development 

 

and Hope (2010).  Annual streamflow from the control watersheds was group-mean 

centered by subtracting the mean of the level-2 group to which each value was 

associated (Enders and Tofighi, 2007). 

Model 3 tested whether the addition of by-watershed random slopes for annual 

streamflow from the control watershed provide a better model fit than the random 

intercepts of Model 2 (Figure 3). 

Model 4 incorporated a fire variable for characterizing post-fire watershed 

conditions.  As the post-fire recovery of watershed conditions is highly variable, there 

is no established approach for defining post-fire watershed conditions in California.  
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Some studies have treated the post-fire period as having uniform conditions for a 

fixed period of time (Bart and Hope, 2010; Loáiciga et al., 2001).  However, an 

alternative approach is to have the fire variable approximate the post-fire recovery of 

watershed conditions.  This latter approach provides a more realistic representation of 

post-fire watershed conditions.  Further, since the effect of fire lessens with time, the 

subjective designation of post-fire length becomes less critical than under uniform 

conditions. 

For this study, four fire variables representing different metrics of post-fire 

change and post-fire watershed recovery were tested and compared to determine 

which variable most accurately characterized post-fire watershed conditions.  For 

each of the fire variables, watershed conditions during the pre-fire period were 

assumed to be uniform.  For the post-fire period, the first variable assumed that the 

initial post-fire change was equal for all watersheds and that post-fire conditions were 

uniform throughout a 7-year period following fire (Model 4a).  The second fire 

variable accounted for watershed to watershed differences in the initial post-fire 

change by weighting the post-fire period by the percentage of watershed area burnt 

(Model 4b).  While the percentage of area burnt does not account for the severity of 

the fire or spatial differences from burning in hydrologically connected verses 

unconnected areas, it does provides a rough estimate of the differences in initial post-

fire watershed conditions between watersheds.  The third variable assumed that the 

initial post-fire change was equal for all watersheds but accounted for the temporal 

recovery of watershed conditions following fire by weighting the post-fire period by 
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the reverse scaling (i.e. 1 minus value) of a normalized post-fire vegetation recovery 

curve (see next paragraph) (Model 4c).  The post-fire period of the fourth fire variable 

was weighted by both the percentage of watershed area burnt and the normalized 

post-fire vegetation recovery curve (Model 4d). 

The normalized post-fire vegetation recovery curve was derived from two 

remote sensing studies in central California (Hope et al., 2007; McMichael et al., 

2004) (Figure 4).  This curve was used for characterizing the post-fire recovery for 

each individual watershed since the fires in this study date as far back as the 1920s 

and remotely-sensed measures of vegetation recovery cannot be used ubiquitously 

across all fire events.  McMichael et al. (2004) used a chronosequence technique to 

develop a post-fire recovery curve for leaf-area index (LAI) while Hope et al. (2007) 

used a NDVI time-series to directly produce a recovery curve for vegetation stands.  

These studies observed that post-fire recovery of above-ground vegetation ranged 

from 10 to 15 years following fire.  The normalized post-fire vegetation recovery 

curve did not incorporate the post-fire recovery of soils since no large scale estimate 

of soil recovery was available.  As soils may be expected to recover faster than 

vegetation (Shakesby and Doerr, 2006), this omission may cause the model to 

underestimate post-fire streamflow response during years when streamflow is affected 

by post-fire changes in soil hydrophobicity and overestimate post-fire streamflow 

response when streamflow is unaffected. 
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Figure 4: Normalized post-fire vegetation recovery curve.  (Figure adapted from 

Figure 2 in McMichael et al. (2004) and Figure 4 in Hope et al. (2007)). 

 

The final model (Model 5) investigated how the effect of fire varies from 

wateryear to wateryear with changes in annual wetness conditions via an interaction 

variable (Figure 3).  The interaction variable was generated from the product of the 

two interacting variables; the fire variable introduced in Model 4 and annual 

streamflow from the control watershed. 

 

2.5. Results 

Plots of pre- and post-fire annual streamflow totals for each of the twelve 

burnt and control watersheds are displayed in Figure 5.  A linear least-square 

regression model (solid line) fitted to the pre-fire data is plotted for each watershed 

pair.  Linear regression represents the standard approach for modeling individual 



 

 27

paired-watershed relations.  For some of the burnt watersheds, the deviations of the 

post-fire annual streamflow data about the regression line did not exceed the 

variability of the pre-fire data, indicating that post-fire change may not be detectable 

for some paired watersheds on an individual basis (Bart and Hope, 2010).  However, 

across all 12 watershed pairs, 74.7% of post-fire annual streamflow points plotted 

above the pre-fire linear regression line, implying that on a regional scale, post-fire 

annual streamflow may have increased in the burnt watersheds relative to the control 

watersheds. 

Both the intercept and slope of the linear regression models in Figure 5 

differed for each watershed pair.  Thus at the regional scale, a linear regression model 

based on all data points from all watersheds would likely be inappropriate for 

modeling post-fire streamflow response since streamflow from each watershed pair 

would be correlated.  The plots also suggested that a random slope model, as opposed 

to a random intercept model, may be necessary to accurately characterize the 

combined streamflow data. 

Model development was initiated with a parsimonious base model consisting 

of crossed random intercepts for watershed and wateryear with no predictor variables.  

This model was found to be unstable, with the level-2 variance for wateryear not 

converging on a single solution.  This non-convergence may possibly be related to the 

percentage of total model variance explained by wateryear being very small (less than 

5%).  Since incorporating wateryear as a random intercept did not improve model fit  
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Figure 5: Plots of annual streamflow from the burnt watershed (y-axis) against 

annual streamflow from the control watershed (x-axis).  Solid black line 

represents linear regression model fitted to pre-fire annual streamflow.  Dashed 

red line represents predicted pre-fire relation between the control and burnt 

watersheds using Model 4d. 

 

but instead increased model instability, this variable was removed from the base 

model and all subsequent models. 

The values representing the mode and 95% credible (i.e. confidence) intervals 

for each fixed and random parameter in Models 1-3, as well as the model DIC, are 

displayed in Table 3.  The new base model consisting of a random intercept model 

grouped by watershed with no predictor variables is shown as Model 1.  For this 

model, the only fixed effect calculated was the intercept, which represents the 

population mean for logged annual streamflow from the burnt watersheds, adjusted 

for the hierarchical structure of the data.  Two random effects were produced by the 

base model, a level-1 residual variance  and a level-2 intercept variance .  Inter-

watershed differences in the intercept of the mixed model accounted for 31.6% of the 

variance in annual streamflow from the burnt watersheds, while the remainder of the 

variance was attributable to intra-watersheds processes.  The DIC for Model 1 was 

873.7. 

The addition of annual streamflow from the control watersheds as a predictor 

variable to the mixed model is displayed as Model 2 (Table 3).  The predictor variable 

improved model fit, with the DIC decreasing to 455.5.  The inclusion of annual 

streamflow from the control watersheds altered the partitioning of variance within the
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Table 3: Estimate (mode) with 95% credible intervals of parameters for Models 1-3. 

Characteristic Model 1 Model 2 Model 3 

Fixed effects 

Intercept 4.539 (3.868 to 5.067) 4.313 (3.729 to 5.012) 4.349 (3.660 to 5.019) 

Control Q (log, centered at 4.331) 0.814 (0.760 to 0.861) 0.835 (0.666 to 1.014) 

Random effects 

Level-2 variance (Intercept) 0.663 (0.277 to 2.118) 0.897 (0.367 to 2.390) 0.970 (0.378 to 2.850) 

Level-2 variance (Slope) 0.053 (0.020 to 0.182) 

Level-2 covariance (Intercept & slope) -0.139 (-0.555 to 0.006) 

Level-1 variance (Residual) 1.437 (1.204 to 1.704) 0.288 (0.254 to 0.358) 0.216 (0.177 to 0.254) 

Total variance 2.100 1.185 1.186 

Level-2 variance/ Total variance 31.6% 75.7% 81.8% 

DIC 873.7 455.5 372.0 
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model, with over 75% of the model variance now accounted for by inter-watershed 

differences in the intercept.  The residual variance of the model was reduced to 

approximately one-fifth the Model 1 variance. 

In Model 3, the slope of the relation between annual streamflow from the 

control watersheds and annual streamflow from the burnt watersheds was allowed to 

vary in addition to the intercept (Table 3).  This inclusion of the random slope 

improved the fit of Model 3, with DIC decreasing to 372.0.  Variance associated with 

random effects has a slightly different interpretation under a random slope model than 

a random intercept model, as variance is now dependent on the value of annual 

streamflow from the control watershed (Equation 4).  The values displayed in Model 

3 represent the variance at the group mean centered value of annual streamflow from 

the control watershed (76 mm).  At this value, total variance for Model 3 remained 

approximately the same as Model 2, although residual variance decreased. 

The model results from the addition of four different fire predictor variables; 

uniform conditions (Model 4a), area burnt (Model 4b), post-fire recovery (Model 4c), 

and both area burnt and post-fire recovery (Model 4d); are shown in Table 4.  Model 

4a showed a decrease in DIC to 348.1 and had a fire coefficient value of 0.305.  The 

antilog of this coefficient value equates to a 36% (20% to 53%) increase in annual 

streamflow for each post-fire year.  Model 4b showed a slightly improved model fit 

(DIC = 344.1) and an increase in post-fire annual streamflow of 52% (30% to 76%) 

assuming 100% burnt.  For watersheds that burn less than 100%, the corresponding 

post-fire streamflow response would be smaller.  Model 4c further improved model fit
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Table 4: Estimate (mode) with 95% credible intervals of parameters for Models 4-5. 

Characteristic Model 4a Model 4b Model 4c Model 4d Model 5 

Fixed effects 

Intercept 4.368 (3.613 to 4.982) 4.356 (3.606 to 4.934) 4.327 (3.599 to 4.966) 4.325 (3.636 to 4.968) 4.322 (3.630 to 4.993) 

Control Q (log, centered at 4.331) 0.840 (0.660 to 1.018) 0.821 (0.662 to 1.022) 0.826 (0.661 to 1.021) 0.843 (0.658 to 1.017) 0.864 (0.689 to 1.049) 

Fire (Uniform) 0.305 (0.182 to 0.427) 

Fire (Area burnt) 0.419 (0.264 to 0.566) 

Fire (Post-fire recovery) 0.621 (0.432 to 0.840) 

Fire (Area burnt & post-fire recovery) 0.859 (0.608 to 1.126) 0.896 (0.623 to 1.130) 

Fire * Control Q (log, centered at 4.331) -0.258 (-0.476 to -0.074) 

Random effects 

Level-2 variance (Intercept) 0.960 ( 0.405 to 2.936) 0.939 (0.399 to 2.847) 0.891 (0.392 to 2.900) 0.865 (0.379 to 2.807) 0.887 (0.393 to 2.866) 

Level-2 variance (Slope) 0.065 (0.024 to 0.194) 0.057 (0.023 to 0.194) 0.057 (0.023 to 0.194) 0.059 (0.022 to 0.195) 0.064 (0.022 to 0.202) 

Level-2 covariance (Intercept & slope) -0.167 (-0.570 to 0.009) -0.136 (-0.569 to 0.004) -0.150 (-0.584 to 0.001) -0.150 (-0.579 to 0.003) -0.141 (-0.563 to 0.011) 

Level-1 variance (Residual) 0.196 (0.161 to 0.231) 0.190 (0.159 to 0.227) 0.182 (0.154 to 0.221) 0.180 (0.151 to 0.216) 0.174 (0.146 to 0.209) 

Total variance 1.156 1.129 1.073 1.045 1.045 

Level-2 variance/ Total variance 83.0% 83.2% 83.0% 82.8% 82.8% 

DIC 348.1 344.1 335.2 328.6 322.3 
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with a reduction in DIC to 335.2.  The improved fit of Model 4c relative to Model 4b 

suggests that accounting for the post-fire recovery of watershed conditions is more 

important than accounting for watershed differences in the percentage of area burnt.  

Post-fire annual streamflow in Model 4c increased 86% (54% to 132%) during the 

first post-fire wateryear.  Model 4d, which accounted for both area burnt and the post-

fire recovery of watershed conditions, provided the best model fit (DIC = 328.6).  

This model predicted that the regional effect of fire during the first post-fire wateryear 

for a watershed that is 100% burnt would be a 136% (84% to 308%) increase in 

annual streamflow. 

For a given percentage of area burnt and for a given post-fire year, the effect 

of fire on annual streamflow was assumed to be equal under all conditions using 

Model 4d.  An interaction variable between the fire variable from Model 4d and 

antecedent streamflow from the control watershed was included in Model 5 to test 

whether the effect of fire on annual streamflow varies with annual wetness conditions 

(Table 4).  Model 5 provided the best fit in the study, with DIC decreasing to 322.3.  

The fire variable in Model 5 predicted that post-fire annual streamflow would 

increase 145% (86% to 310%) during the first post-fire year assuming 100% area 

burnt.  This value represented the effect of fire on annual streamflow under average 

annual wetness conditions for the region, specifically when annual streamflow from 

the control watershed was at its centered mean value of 76 mm.  The interaction 

variable modified this effect when annual streamflow values for the control watershed 

were above or below the centered value.  On a percent change basis, the effect of fire 
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on annual streamflow decreased by 16% (5% to 28%) for every doubling of annual 

streamflow from the control watershed (Figure 6a).  However, when the percentage 

change in annual streamflow was transformed into a volumetric (mm) change, only 

small increases in post-fire annual streamflow were observed during dry years.  Post-

fire annual streamflow response increased with annual wetness conditions until 

reaching a maximum of 197 mm when annual streamflow from the control watershed 

was 620 mm (Figure 6b).  Following this maximum, post-fire streamflow response 

began to decrease again.  The predicted streamflow response to fires with less than 

100% of the watershed area burnt follows a similar pattern, but response was scaled 

proportionally downward. 

 

 

Figure 6: Predicted change (% and mm) in annual flow during the first post-fire 

year, adjusted for annual wetness conditions. 
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2.6. Discussion 

All four of the fire variables tested in Models 4a-d had 95% credible intervals 

that were positive (Table 4).  These results provide strong evidence that, despite the 

variability observed in post-fire response at a watershed scale, post-fire annual 

streamflow increases relative to pre-fire annual streamflow at a regional scale.  

Nonetheless, there is still large uncertainty in quantifying the regional increase in 

post-fire annual streamflow (e.g. 84% to 308% for Model 4d), reflecting the 

limitation of using only 12 watershed pairs to estimate a regional-level response.  The 

post-fire responses in this study represent a best estimate given the available data.  

The coefficient values increased from Model 4a to Model 4d in line with 

expectations.  The fire variable in Model 4a showed the smallest post-fire increase 

(36%) since post-fire response was distributed equally over all watersheds and the 

entire 7-year post-fire period.  The fire variable in Model 4d, on the other hand, 

showed a much sharper post-fire increase in annual streamflow (136%) since this 

increase was only applicable to the first post-fire year in watersheds that were 100% 

burnt. 

Annual streamflow response to fire was lowest during dry years, greatest 

during moderately wet years, and then slowly decreased for very wet years (Figure 

6b).  A possible physical explanation for these results relates to the interaction 

between soil drainage and rooting depth (Wilcox et al., 2006).  During dry years, the 

storage capacity within the shallow rooting zone of the herbaceous vegetation that 

dominate early post-fire succession may be sufficient to transpire all available soil 
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water, minimizing the transpirational differences between post-fire herbaceous 

vegetation and pre-fire chaparral and trees.  During years with moderate levels of 

wetness, the effect of differences in pre- and post-fire rooting depth on vegetation 

transpiration becomes more pronounced as water that may be available for 

transpiration under pre-fire conditions moves beyond the rooting zone under post-fire 

conditions. These differences in transpiration increase the likelihood that post-fire 

annual streamflow will increase at moderate wetness levels.  A similar effect has been 

noted by Zhang et al. (2001), who observed that the effect of vegetation rooting depth 

on mean annual transpiration was greatest for intermediate wetness conditions.  This 

result also supports observations made by Bart and Hope (2010) and Feikema et al. 

(2013) for the role of annual wetness on post-fire streamflow response.  For very wet 

years, transpiration becomes slightly less sensitive to differences in pre- and post-fire 

rooting depths as precipitation frequency becomes sufficient to sustain transpiration at 

potential levels for both pre- and post-fire vegetation.  Nevertheless, soil moisture 

held beyond the rooting depth of herbaceous vegetation but within the rooting zone of 

pre-fire vegetation at the end of the California wet season may still produce 

differences in transpiration. 

The mixed modeling approach used in this study appears to be a viable 

technique for modeling post-fire changes in annual streamflow at a regional scale.  

The random slope models provided good fit to the paired watershed data.  For 

example, the predicted pre-fire relation between annual streamflow from the burnt 

watershed and annual streamflow from the control watershed using Model 4d was 
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similar to the linear regression models developed from each individual watershed pair 

(Figure 5 - red dashed line).  This demonstrates that the mixed model was able to 

account for watershed to watershed differences in the intercept and slope of the 

paired-watershed relation. 

Still, the findings of this study should be evaluated in the context of the 

assumptions and uncertainty of the modeling approach.  First, a single hierarchical 

structure grouped by watershed was used instead of the crossed random effects 

structure containing both watersheds and wateryear, since the latter model structure 

was observed to be unstable.  While this difference would not be expected to 

appreciably alter the results of this study since the variance explained by wateryear 

was minimal, accounting for this variable may be important in other studies.  Second, 

the mixed modeling approach assumed that the watersheds used in calibration were a 

random sample taken from a larger population of watersheds.  The watersheds in this 

study were instead selected based on available USGS gauged watersheds meeting pre-

established criteria with the assumption that the selected watersheds were 

representative of other watersheds in the region.  The effect of this bias in sampling 

scheme on model inference is unclear.  Third, no attempts were made in this study to 

account for spatial correlation between watersheds, in part due to the difficulty in 

accurately characterizing spatial correlation with only 12 burnt watersheds.  In future 

studies, particularly with larger sample sizes, spatial correlation between watersheds 

may need to be addressed (Banerjee et al., 2003).  Finally, no validation procedure 

was conducted in this study due to the limited sample size.  While the DIC statistic 
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provides an estimate of the calibrated model fit, it has been found to overfit models in 

some cases (Plummer, 2008).  A more robust validation procedure (e.g. cross 

validation) may provide a better estimate of model fit (Hope and Bart, 2012). 

 

2.7. Conclusions 

The mixed modeling approach used in this study was developed to account for 

the hierarchical structure of streamflow data when data from multiple watersheds are 

pooled together.  This approach permitted the regional analysis of post-fire annual 

streamflow change in California watersheds.  The best mixed model for predicting 

post-fire streamflow change was a random slope model with a fire variable that 

accounted for both differences in watershed area burnt and post-fire vegetation 

recovery, as well as an interaction variable describing the influence of annual wetness 

conditions.  At a regional scale, post-fire annual streamflow was predicted to increase 

145% (86% to 310%) during the first post-fire year assuming 100% burnt and average 

annual wetness conditions.  This response varied from year to year based on annual 

wetness conditions, with the effect of fire being smallest during dry years, greatest 

during moderately wet years, and slowly decreasing during very wet years. 

The mixed modeling approach is particularly well suited for exploiting large 

watershed datasets (e.g. MOPEX); however this study has demonstrated that mixed 

models may also be used when the number of the watersheds available for synthesis is 

limited.  While the 12 watersheds used for this study is arguably inadequate for 

establishing a robust estimate of the true regional effect of wildfire on annual 
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streamflow, it is substantially more informative than results based on single watershed 

experiments, as is most commonly used for investigating post-fire streamflow 

response.  Further, future research may wish to extend this modeling approach to the 

effect of other types of land-cover/ climate change on streamflow. 

 

2.8. References 

Andréassian, V., 2004. Waters and forests: from historical controversy to scientific 

debate. Journal of Hydrology 291, 1–27. 

Aronica, G., Candela, A., Santoro, M., 2002. Changes in the hydrological response of 

two Sicilian basins affected by fire, in: van Lanen, H.A.J., Demuth, S. (Eds.), 

FRIEND 2002- Regional Hydrology: Bridging the Gap Between Research and 

Practice, IAHS Publ. 274. IAHS Press, Wallingford, UK, pp. 163–169. 

Baayen, R.H., Davidson, D.J., Bates, D.M., 2008. Mixed-effects modeling with 

crossed random effects for subjects and items. Journal of memory and language 

59, 390–412. 

Banerjee, S., Gelfand, A.E., Carlin, B.P., 2003. Hierarchical modeling and analysis 

for spatial data. CRC Press. 

Bart, R., Hope, A., 2010. Streamflow response to fire in large catchments of a 

Mediterranean-climate region using paired-catchment experiments. Journal of 

Hydrology 388, 370–378. 

Bartoń, K., 2013. MuMIn: multi-model inference. 

Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, 

M.H.H., White, J.-S.S., 2009. Generalized linear mixed models: a practical guide 

for ecology and evolution. Trends in ecology & evolution 24, 127–135. 

Borenstein, M., Hedges, L.V., Higgins, J.P.T., Rothstein, H.R., 2009. Introduction to 

meta-analysis. John Wiley & Sons. 

Bosch, J.M., Hewlett, J.D., 1982. A review of catchment experiments to determine 

the effect of vegetation changes on water yield and evapotranspiration. Journal of 

Hydrology 55, 3–23. 

Britton, D.L., 1991. Fire and the chemistry of a South African mountain stream. 

Hydrobiologia 218, 177–192. 



 

 41

Brown, A.E., Zhang, L., McMahon, T.A., Western, A.W., Vertessy, R.A., 2005. A 

review of paired catchment studies for determining changes in water yield 

resulting from alterations in vegetation. Journal of Hydrology 310, 28–61. 

Callaway, R.M., Davis, F.W., 1993. Vegetation Dynamics, Fire, and the Physical 

Environment in Coastal Central California. Ecology 74, 1567–1578. 

Chamizo, S., Cantón, Y., Lázaro, R., Domingo, F., 2013. The role of biological soil 

crusts in soil moisture dynamics in two semiarid ecosystems with contrasting soil 

textures. Journal of Hydrology 489, 74–84. 

Clarke, R.T., 2001. Separation of year and site effects by generalized linear models in 

regionalization of annual floods. Water resources research 37, 979–986. 

Enders, C.K., Tofighi, D., 2007. Centering predictor variables in cross-sectional 

multilevel models: a new look at an old issue. Psychological methods 12, 121. 

Falcone, J.A., 2011. GAGES-II: geospatial attributes of gages for evaluating 

streamflow. Digital spatial data set. 

Farley, K.A., Jobbágy, E.G., Jackson, R.B., 2005. Effects of afforestation on water 

yield: a global synthesis with implications for policy. Global Change Biology 11, 

1565–1576. 

Feikema, P.M., Sherwin, C.B., Lane, P.N.J., 2013. Influence of climate, fire severity 

and forest mortality on predictions of long term streamflow: Potential effect of the 

2009 wildfire on Melbourne’s water supply catchments. Journal of Hydrology 

488, 1–16. 

Garson, G.D., 2012. Hierarchical linear modeling: Guide and applications. Sage. 

Hadfield, J.D., 2010. MCMC methods for multi-response generalized linear mixed 

models: the MCMCglmm R package. Journal of Statistical Software 33, 1–22. 

Hibbert, A.R., 1966. Forest treatment effects on water yield, in: Proceedings of a 

National Science Foundation Advanced Science Seminar, International 

Symposium on Forest Hydrology. Pergamon Press, USA. pp. 527–543. 

Hope, A., Bart, R., 2012. Synthetic monthly flow duration curves for the Cape 

Floristic Region, South Africa. Water SA 38, 191–200. 

Hope, A., Tague, C., Clark, R., 2007. Characterizing post-fire vegetation recovery of 

California chaparral using TM/ETM+ time-series data. Int. J. of Remote Sensing 

28, 1339–1354. 

Hox, J., 2010. Multilevel analysis: Techniques and applications. Routledge 

Academic. 

Hoyt, W.G., Troxell, H.C., 1932. Forests and stream flow. Proceedings of the 

American Society of Civil Engineers 58, 1037–1066. 

Jung, H.Y., Hogue, T.S., Rademacher, L.K., Meixner, T., 2009. Impact of wildfire on 

source water contributions in Devil Creek, CA: evidence from end-member 

mixing analysis. Hydrol. Process. 23, 183–200. 



 

 42

Keeley, J.E., Fotheringham, C.J., 2003. Impact of past, present, and future fire 

regimes on North American Mediterranean shrublands, in: Veblen, T.T., Baker, 

W.L., Montenegro, G., Swetnam, T.W. (Eds.), Fire and Climatic Change in 

Temperate Ecosystems of the Western Americas. Springer-Verlag, New York, 

USA, pp. 218–262. 

Keeley, J.E., Keeley, S.C., 1981. Post-fire regeneration of southern California 

chaparral. American Journal of Botany 68, 524–530. 

Keller, E.A., Valentine, D.W., Gibbs, D.R., 1997. Hydrological response of small 

watersheds following the Southern California Painted Cave Fire of June 1990. 

Hydrological Processes 11, 401–414. 

Kinoshita, A.M., Hogue, T.S., 2011. Spatial and temporal controls on post-fire 

hydrologic recovery in Southern California watersheds. Catena 87, 240–252. 

Lavabre, J., Torres, S., Cernesson, F., 1993. Changes in the hydrological response of a 

small Mediterranean basin a year after a wildfire. Journal of Hydrology 142, 273–

299. 

Lenihan, J.M., Drapek, R., Bachelet, D., Neilson, R.P., 2003. Climate change effects 

on vegetation distribution, carbon, and fire in California. Ecological Applications 

13, 1667–1681. 

Lessels, J.S., Bishop, T.F.A., 2013. Estimating water quality using linear mixed 

models with stream discharge and turbidity. Journal of Hydrology 498, 13–22. 

Loáiciga, H.A., Pedreros, D., Roberts, D., 2001. Wildfire-streamflow interactions in a 

chaparral watershed. Advances in Environmental Research 5, 295–305. 

Lopez-Moreno, J.I., Stähli, M., 2008. Statistical analysis of the snow cover variability 

in a subalpine watershed: assessing the role of topography and forest interactions. 

Journal of Hydrology 348, 379–394. 

McMichael, C.E., Hope, A.S., 2007. Predicting streamflow response to fire-induced 

landcover change: Implications of parameter uncertainty in the MIKE SHE model. 

Journal of Environmental Management 84, 245–256. 

McMichael, C.E., Hope, A.S., Roberts, D.A., Anaya, M.R., 2004. Post-fire recovery 

of leaf area index in California chaparral: a remote sensing-chronosequence 

approach. International Journal of Remote Sensing 25, 4743–4760. 

Plummer, M., 2008. Penalized loss functions for Bayesian model comparison. 

Biostatistics 9, 523–539. 

Qian, S.S., Cuffney, T.F., Alameddine, I., McMahon, G., Reckhow, K.H., 2010. On 

the application of multilevel modeling in environmental and ecological studies. 

Ecology 91, 355–361. 

Raudenbush, S.W., Bryk, A.S., 2002. Hierarchical linear models: Applications and 

data analysis methods, 2nd ed. Sage, Thousand Oaks, California. 



 

 43

Sahin, V., Hall, M.J., 1996. The effects of afforestation and deforestation on water 

yields. Journal of hydrology 178, 293–309. 

Scott, D.F., 1993. The hydrological effects of fire in South African mountain 

catchments. Journal of Hydrology 150, 409–432. 

Seo, J.I., Nakamura, F., Nakano, D., Ichiyanagi, H., Chun, K.W., 2008. Factors 

controlling the fluvial export of large woody debris, and its contribution to organic 

carbon budgets at watershed scales. Water Resources Research 44. 

Shakesby, R.A., Doerr, S.H., 2006. Wildfire as a hydrological and geomorphological 

agent. Earth Science Reviews 74, 269–307. 

Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Linde, A. van der, 2002. Bayesian 

Measures of Model Complexity and Fit. Journal of the Royal Statistical Society. 

Series B (Statistical Methodology) 64, 583–639. 

Stednick, J.D., 1996. Monitoring the effects of timber harvest on annual water yield. 

Journal of Hydrology 176, 79–95. 

Steele, F.A., 2008. Module 5: Introduction to Multilevel Modelling (Concepts). 

Centre for Multilevel Modelling, University of Bristol. 

Stegmueller, D., 2013. How Many Countries for Multilevel Modeling? A Comparison 

of Frequentist and Bayesian Approaches. American Journal of Political Science. 

Wagner, T., Hayes, D.B., Bremigan, M.T., 2006. Accounting for multilevel data 

structures in fisheries data using mixed models. Fisheries 31, 180–187. 

Webb, A.A., Kathuria, A., 2012. Response of streamflow to afforestation and 

thinning at Red Hill, Murray Darling Basin, Australia. Journal of Hydrology 412–

413, 133–140. 

Wehrly, K.E., Brenden, T.O., Wang, L., 2009. A Comparison of Statistical 

Approaches for Predicting Stream Temperatures Across Heterogeneous 

Landscapes1. Journal of the American Water Resources Association (JAWRA) 

45, 986–997. 

Westerling, A.L., Bryant, B.P., 2008. Climate change and wildfire in California. 

Climatic Change 87, 231–249. 

Wilcox, B.P., Owens, M.K., Dugas, W.A., Ueckert, D.N., Hart, C.R., 2006. Shrubs, 

streamflow, and the paradox of scale. Hydrol. Process. 20, 3245–3259. 

Williams, A.A.J., Karoly, D.J., Tapper, N., 2001. The sensitivity of Australian fire 

danger to climate change. Climatic Change 49, 171–191. 

Zhang, L., Dawes, W.R., Walker, G.R., 2001. Response of mean annual 

evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 

37, 701–708. 

 

 



 

 44

Chapter 3: Inter-Seasonal Variability in Baseflow 

Recession Rates: The Role of Antecedent Storage in Central 

California Watersheds 

 

Baseflow recession rates vary inter-seasonally in many watersheds.  This 

variability is most commonly associated with seasonal changes in evapotranspiration; 

however, an additional and less studied control over inter-seasonal baseflow recession 

rates is the effect of watershed antecedent storage conditions.  Understanding the role 

of antecedent storage on baseflow recession rates is crucial for Mediterranean-climate 

regions, where seasonal asynchronicity of precipitation and energy levels produces 

large inter-seasonal differences in watershed storage conditions.  The primary 

objective of this study was to test the effect of antecedent watershed storage on 

baseflow recession rates in four central California watersheds using antecedent 

streamflow cumulated over the water year as a surrogate for watershed storage 

conditions.   In addition, a parsimonious storage-discharge model consisting of two 

nonlinear stores in parallel was developed as a heuristic tool for examining the 

empirical results and providing insight into the hydrologic processes that govern inter-

seasonal variability in baseflow recession rates.  Baseflow recession rates and 

antecedent storage exhibited a negative power-law relation, with baseflow recession 

rates decreasing by up to an order of magnitude as antecedent storage levels 

increased.  Inference based on the storage-discharge model indicated that the 



 

 45

dominant source of recession flow shifts from small, quickly-recharged aquifers at the 

beginning of the wet season to large, seasonal aquifers as the wet season progresses.  

Antecedent storage was determined to be a key control on baseflow recession rates in 

California watersheds and should be accounted for along with evapotranspiration 

when characterizing or predicting the inter-seasonal variability of baseflow recession 

rates. 

 

3.1. Introduction 

Baseflow recession rates represent a measure of how baseflow, or the portion 

of streamflow that derives from aquifers, decreases following a recharge event.  They 

are a function of the discharge magnitude and the discharge recession rate from each 

watershed aquifer contributing to baseflow.  Baseflow recession rates provide insight 

into the inner workings and storage properties of watershed aquifers (Hall, 1968) and 

may be used for evaluating the effects of land-cover change on baseflow (Federer, 

1973), for quantifying evapotranspiration (ET) rates in a watershed (Szilagyi et al., 

2007), low flow prediction (Tague and Grant, 2009), baseflow separation (Eckhardt, 

2005) and hydrologic modeling (Tallaksen, 1995). 

In many watersheds, the baseflow recession rate for individual recession 

curves varies throughout the year.  This inter-seasonal variability is most commonly 

associated with fluctuations in ET, with a faster baseflow recession rate 

corresponding to higher ET (Aksoy and Wittenberg, 2011; Federer, 1973; Shaw and 

Riha, 2012; Szilagyi et al., 2007; Wang and Cai, 2010; Wittenberg and Sivapalan, 
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1999).  An additional and less studied control over inter-seasonal baseflow recession 

rates is the effect of watershed antecedent storage conditions (Biswal and Kumar, 

2012; Harman et al., 2009; McMillan et al., 2010; Mishra et al., 2003; Shaw et al., 

2013).  Harman et al. (2009) theorized that in watersheds with multiple aquifers, 

differences in discharge recession rates between aquifers may lead to a decrease in 

baseflow recession rate during wet periods, since greater amounts of storage 

accumulate in aquifers with slower discharge recession rates compared to aquifers 

with faster discharge recession rates.  However, the relation between baseflow 

recession rates and storage has not been characterized for many environments, 

including Mediterranean-climate regions (MCRs). 

MCRs are water-limited environments that are uniquely characterized by their 

regime of warm, dry summers and cool, wet winters.  While only occupying small 

parts of Australia, California, Chile, the Mediterranean Basin and South Africa, 

MCRs are noted for being disproportionally impacted by human development and for 

having limited local water resources (Rundel, 2004).  The seasonal asynchronicity of 

precipitation and energy levels in MCRs contributes to the development of two 

different hydrologic regimes within MCR watersheds; an energy-limited winter wet 

season and a water-limited summer dry season.  As storage levels differ between these 

two periods, baseflow recession rates at the beginning of the wet season may not be 

the same as those at the end of the wet season. 

The effect of increases in wet season storage on baseflow recession rates in 

MCRs is not well understood.  Sayama et al. (2011) observed that baseflow recession 
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rates were slower at higher levels of total watershed storage than at lower levels of 

total water storage for two northern California watersheds.  However, the relation 

between baseflow recession rates and antecedent storage has not been quantified and 

the watershed processes that produce this change have not been investigated.  The 

primary objective of this study was to elucidate the relation between baseflow 

recession rates and antecedent storage levels in four central California watersheds.  To 

account for the partial contribution of ET on baseflow recession rates, the analysis 

was limited to periods where actual ET was at a minimum and the expected effect on 

baseflow recession rates was low.  The secondary objective of this study was to 

develop a parsimonious storage-discharge model for use as a heuristic tool to examine 

the empirical results and provide insight into the hydrologic processes that govern 

inter-seasonal variability in baseflow recession rates.  This knowledge is important for 

proper hydrologic modeling of California watersheds. 

 

3.2. Watersheds 

The research watersheds are located within the Santa Lucia Mountains along 

the Central Coast region of California (Figure 7).  The Santa Lucia Mountains are 

characterized by steep topography with peak elevations exceeding 2000m.  The 

mountains are underlain primarily by late-Cenozoic marine sediments with a 

basement of pre-Cenozoic granite rock from the Salinian Block (Ducea et al., 2003).  

Most rainfall is generated by frontal systems and spatial variation in rainfall totals is 
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largely controlled by orographic effects. Vegetation is a mosaic of grasslands, coastal 

sage scrub, chaparral, oak woodlands, and forests (Callaway and Davis, 1993). 

 

Figure 7: Map of study watersheds. 

 

Four watersheds were found to be suitable for investigation; Arroyo Seco, Big 

Sur River, Nacimiento River, and San Antonio River (Table 5).  These watersheds 

were selected from US Geological Survey (USGS) streamflow gauges.  Big Sur is 

located on the windward side of the Santa Lucia Mountains and is smaller and wetter 

than the other three watersheds.  Arroyo Seco, Nacimiento, and San Antonio are each
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Table 5: Summary of watershed characteristics. 

Name USGS ID 

Area 

(km
2
) 

MAP 

(mm) 

MAQ 

(mm) 

Zero Flow 

Days (%) 

Geology (% 

sedimentary) 

Mean soil 

depth (cm) 

Soil 

porosity 

Mean 

slope 

Drainage 

density 

Mean 

LAI 

Record 

Period 

Arroyo Seco 11152000 632.0 708 231 12.3 44.0 56 0.46 24.17 0.36 2.44 1943-2011 

Big Sur 11143000 119.1 1073 763 0 7.9 53 0.31 29.29 0.35 3.54 1952-2011 

Nacimiento 11148900 419.6 568 386 30 85.5 64 0.55 16.97 0.36 2.02 1972-2011 

San Antonio 11149900 562.0 587 170 44.8 76.4 81 0.78 15.55 0.40 1.83 1966-2011 

MAP: mean annual precipitation; MAQ: mean annual streamflow; LAI: leaf-area index
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located on the leeward side of the Santa Lucia Mountains.  Chaparral vegetation 

dominates the higher elevations of these watersheds while woodland and grassland 

are most prevalent in the lowland areas. 

The wet season in central California generally falls within the period of 

October to April, with large inter-annual variability in precipitation amounts.  Figure 

8 shows mean monthly precipitation totals (wateryears 1976 to 2005) for the four 

watersheds.  These values were derived from the Parameter-elevation Regressions on 

Independent Slopes Model (PRISM) product produced by the Climate Group at 

Oregon State University (http://prism.oregonstate.edu).  Watershed mean monthly 

precipitation totals vary for each of the four watersheds, though seasonal patterns 

show great similarity.  The majority of annual precipitation falls during December, 

January, February and March.  Almost no precipitation occurs during the summer. 

 

Figure 8: Mean monthly precipitation (1976-2005) for each watershed and mean 

monthly potential ET (1994-2011). 
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Potential ET levels from a California Irrigation Management Information 

System (CIMIS) (www.cimis.water.ca.gov) meteorological station located in the 

Salinas Valley to the east of the Santa Lucia Mountains are also displayed in Figure 8.  

Potential ET in central California follows the seasonal energy cycle.  Lowest levels 

occur from November through February and the highest levels in June and July.  

During the dry period, potential ET exceeds precipitation levels.  This extended 

period of seasonal water-deficit in central California creates very low soil moisture 

and storage levels at the end of the dry season (Miller et al., 1983).  During the winter 

wet period, precipitation exceeds potential ET, allowing storages to be recharged. 

 

3.3. Conceptual framework for inter-seasonal variability in baseflow 

recession rates 

The hydrologic controls that are expected to produce variability in inter-

seasonal baseflow recession rates are the physical properties of watershed aquifers, 

fluxes to and from an aquifer, and inter-seasonal differences in storage levels between 

watershed aquifers.  In this section, each of these controls is first examined 

individually and then used collectively to explore how baseflow recession rates may 

vary throughout the wet season in California watersheds. 
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3.3.1. Controls on baseflow recession rates 

The amount of discharge and discharge recession rate from a single aquifer 

will vary as a function of storage level and aquifer physical properties such as aquifer 

size, geometry, porosity, and saturated hydraulic conductivity (Brutsaert and Nieber, 

1977).  Although the properties of a given aquifer are relatively static, they may vary 

greatly from aquifer to aquifer and produce a range of discharge characteristics.  For a 

given storage capacity, high initial aquifer discharge magnitudes generally lead to a 

rapid depletion of storage and a fast aquifer discharge recession rate.  Hence, 

recession rates from small aquifers with high saturated hydraulic conductivities and 

high hydrological connectivity to the stream (e.g. riparian aquifers) are generally 

faster than recession rates from larger aquifers that vary over seasonal time-scales and 

have low saturated hydraulic conductivities and low connectivity to the stream (e.g. 

hillslopes).  In some aquifers, discharge may be threshold-based when connectivity 

between an aquifer and stream is limited for periods of time (Smakhtin, 2001). 

During the recession period, fluxes to and from an aquifer affect storage levels 

in an aquifer, and thus, the aquifer discharge recession rate.  Fluxes to an aquifer 

during the recession period decrease the discharge recession rate and may occur from 

soil recharge or when discharge from one aquifer recharges another aquifer.  Fluxes 

from an aquifer during the recession period, excluding discharge to a stream, include 

ET and losses to other aquifers.  The extent to which ET affects storage levels 

depends on the spatial distribution of vegetation with direct access to aquifers feeding 

baseflow, which in turn depends on the spatial distribution of shallow groundwater 
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and/or deep rooted vegetation within a watershed (Tallaksen, 1995).  Fluxes from an 

aquifer increase the discharge recession rate. 

In watersheds with more than one aquifer, differences in the relative discharge 

magnitude from each aquifer may produce variability in baseflow recession rates 

(Moore, 1997).  The source of these differences largely stems from variability in 

aquifer discharge recession rates, though differences in recharge, aquifer size, and 

discharge-thresholds may also be factors.  Aquifers with fast discharge recession rates 

have the greatest impact on baseflow during initial periods following a recharge 

event, but rapid depletion of storage levels supports little sustained discharge.  

Aquifers with slow discharge recession rates, on the other hand, have a more muted 

response to recharge events.  The slow release of water from these aquifers allows 

storage to accumulate during extended periods of recharge (Harman et al., 2009), 

shifting the dominant control on baseflow from aquifers with faster discharge 

recession rates to aquifers with slower discharge recession rates. 

 

3.3.2. Baseflow recession rates in central California watersheds 

At the beginning of the central California wet season, watersheds are 

characterized by maximum soil moisture and aquifer storage deficits (Miller et al., 

1983).  Following the first precipitation events of the season, baseflow response is 

likely to originate from small, low-threshold aquifers that can be quickly recharged 

and have fast aquifer discharge recession rates.  At the same time, channel losses to 

groundwater may be considerable in many central California watersheds, particularly 
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for intermittent and ephemeral streams where the water table is disconnected from the 

stream (Pilgrim et al., 1988).  As channel losses increase baseflow recession rates 

relative to conditions with no channel losses, baseflow recession rates at the 

beginning of the central California wet season are likely be relatively rapid (Figure 9).  

The effect of ET on baseflow at the onset of the wet season is likely to be minimal 

due to low vegetation leaf area combined with low potential ET rates (Figure 8). 

 

Figure 9: Hypothetical time-series of baseflow recession rates during the central 

California wateryear. 

 

As the wet season progresses, the primary source of baseflow is expected to 

shift from aquifers with faster discharge recession rates to aquifers with slower 

discharge recession rates as the latter aquifers become progressively filled and release 

larger volumes of water (Harman et al., 2009).  These aquifers may also be subject to 

varying amounts of recharge during the recession period from other aquifers.  Channel 

losses at this time are likely to be negligible in all but the most ephemeral watersheds 

and/or driest years.  Since potential ET levels are at an annual minimum during the 
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winter period (Figure 8) (Luo et al., 2007), the cumulative effect of these processes 

should be a continual decrease in baseflow recession rates heading toward the end of 

the wet season (Figure 9). 

Following the wet season, the source of the greatest sustained flows is likely 

to continually shift to aquifers with slower discharge recession rates as aquifers with 

faster discharge recession rates become depleted.  However, this period coincides 

with an increase in potential ET levels (Figure 8) and an increase in vegetation leaf 

area.  Two potential effects of ET on baseflow recession rates are illustrated in Figure 

9.  In the absence of ET from watershed aquifers, the baseflow recession rate would 

be expected to decrease throughout the summer (Figure 9, dotted line).  However, 

with increasing ET from watershed aquifers, a corresponding increase in baseflow 

recession rate may be observed (Figure 9, dashed line).  The actual effect of ET on 

dry-season baseflow in central California watersheds requires future study. 

 

3.4. Approach 

3.4.1 Derivation of baseflow recession rates 

To investigate inter-seasonal changes in baseflow recession rates, baseflow 

recession rates need to be comparable from one baseflow recession curve to another.  

Baseflow recession rates along a single baseflow recession curve often vary with 

baseflow magnitude.  In order to account for baseflow magnitude in analyzing rates of 

baseflow recession, Brutsaert and Nieber (1977) proposed eliminating the time 
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variable from the baseflow recession curve and comparing the change in baseflow 

magnitude dQ/dt to the observed baseflow Q, such that 

 . (9) 

This relationship is referred to as the recession slope curve (Rupp and Selker, 2006a).  

The recession slope curve has often been observed to be approximately linear when 

plotted graphically on a  plot, which implies a power-law 

relation; 

  (10) 

where Q is baseflow discharge in mm, t is time (daily), a is the value of -dQ/dt when 

 and b is the slope of the  relation (Clark et al., 2009).  

When the exponent b is equal to one, the recession slope curve simplifies to a linear 

relation between -dQ/dt and Q, whereas an exponent other than one indicates a 

nonlinear relation, or power-law nonlinearity.  If the recession slope curve is not 

linear on a  plot, the recession slope curve may be 

considered to be concave nonlinear (Wang, 2011).  dQ/dt was computed as the 

difference between two consecutive points on the recession curve, 

 , (11a) 

while Q was computed as the mean of two consecutive recession points; 
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 . (11b) 

Baseflow recession curves were defined as a consecutive decline in the 

streamflow hydrograph for at least four days following the exclusion of the first two 

days after a stormflow peak.  Each individual recession slope curve was analyzed 

visually for anomalous reductions in dQ/dt that were likely associated with 

precipitation events that were large enough to reduce the baseflow recession rate but 

not increase the magnitude of baseflow.  These points were removed from the 

subsequent analysis, though the study results were not sensitive to this criterion. 

To isolate the effect of storage differences on baseflow recession rates, the 

influence of ET on baseflow recession rates must be accounted for or minimized.  

Only recession curves during the period from November to February were included 

for examination of inter-seasonal changes.  Both potential ET rates (Figure 8) and 

actual ET rates (Luo et al., 2007) are at their annual minimum during this period. 

When the magnitude of baseflow change is smaller than the precision of the 

stream gauge, the recession slope curve may display discretization errors on a 

 plot (Rupp and Selker, 2006b).  This problem is 

exacerbated in gauge networks such as USGS, where precision for low flows may be 

very poor (Archfield and Vogel, 2009).  Following a recommendation by Rupp and 

Selker (2006b), the time interval dt in Equation 11a was increased for flows below the 

expected precision of the gauge until the change in baseflow dQ exceeded a critical 
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precision threshold dQcrit.  The value of dQcrit for each watershed was determined 

empirically by visual inspection. 

 

3.4.2. Quantifying antecedent storage 

The watersheds in this study are large, non-research watersheds and direct 

measurements of antecedent storage conditions are not available.  Meanwhile, 

estimates of antecedent storage based on continuous hydrologic models require an a-

priori or calibrated estimate of the baseflow recession rate, making modeling 

approaches unsuitable for estimating antecedent storage in this study.  An alternative 

measure for estimating antecedent storage that does not require a-priori knowledge of 

baseflow recession rates is cumulative antecedent streamflow for a designated period 

prior to the baseflow recession curve of interest.  Cumulative antecedent streamflow 

has previously been used by Mishra (2003) to predict inter-seasonal changes in 

recession rates for the Nile River in Ethiopia.  A similar approach was adopted for 

this study in central California watersheds, with cumulative antecedent streamflow 

calculated from the beginning of the wateryear (October 1) to the start of each 

baseflow recession curve.  Although cumulative antecedent streamflow cannot 

account for storage depletion during inter-storm periods, it was assumed that 

antecedent storage at the beginning of each recession event was a function of 

wateryear-to-date cumulative antecedent streamflow.  The goal with this measure was 

to provide a first-order approximation of inter-seasonal storage levels in the absence 

of direct measurements or a continuous hydrologic model. 



 

59 

 

 

3.5. Effect of antecedent storage on recession slope curves 

All recession curve data between the months of November and February were 

binned by wateryear-to-date cumulative antecedent streamflow and analyzed 

collectively on a  plot (Figure 10).  The six cumulative 

antecedent streamflow bins (0mm - 25mm, 25mm - 50mm, 50mm - 100mm, 100mm - 

200mm, 200mm - 300mm, and 300+mm) were selected to provide an approximately 

equal distribution of recession curve data across the bins.  Despite considerable 

overlap between the binned recession slope curves, baseflow recession rates for a 

given baseflow magnitude decreased with higher cumulative antecedent streamflow.  

This indicates that during periods with low ET, baseflow recession rates in central 

California watersheds decrease with higher storage levels. 

Visual inspection of the recession slope curve for each cumulative antecedent 

streamflow bin in Figure 10 indicated that the binned recession slope curves were 

close to linear.  Consequently, each binned recession slope curve was modeled using a 

power-law function (Equation 10).  While alternative, more complex models (e.g. 

Kirchner 2009) may have provided a better fit for some of the recession slope curves, 

a power law was selected as the most appropriate model for all recession slope curves 

collectively.  A linear least-squares regression on log-transformed values of Q and 

dQ/dt was found to best characterize the recession slope curves (Xiao et al., 2011). 
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Figure 10: Changes in recession slope curves for different levels of cumulative 

antecedent streamflow for the period from November to February. 

 

The parameters and coefficient of determination (R
2
) for each regression 

model, as well as dQcrit values for each watershed, are provided in Table 6.  The 

minimum R
2
 value was 0.699, while over half of the models had R

2
 values greater 

than 0.9.  This suggests that the assumption of a power-law recession slope curve 

model was likely appropriate.  The smallest R
2
 value in each of the watersheds was 
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associated with recession slope curves from the 0 - 25 mm cumulative antecedent 

streamflow bins.  These small R
2
 values may be ascribed to heterogeneity in the 

source of early season baseflow as different combinations of spatially distributed, 

low-threshold aquifers may be active at the beginning of the wet season (Biswal and 

Kumar, 2012). 

Table 6: Fit of linear regression models on log-transformed data for six 

wateryear-to-date (WYTD) cumulative antecedent streamflow bins.  The refitted 

model was calculated with b fixed at the median b value of the original model. 

    
WYTD cumulative 

antecedent 

streamflow (mm) 

  Original model   Recomputed model 

Watershed dQCrit n R
2
 a b   R

2
 a Median b 

Arroyo Seco 0.1 0-25 198 0.712 0.288 1.509 0.693 0.355 1.753 

25-50 169 0.909 0.165 1.808 0.903 0.166 

50-100 269 0.928 0.101 1.777 0.928 0.102 

100-200 242 0.912 0.067 1.765 0.912 0.068 

200-300 79 0.955 0.049 1.741 0.955 0.048 

300+ 45 0.867 0.041 1.633 0.862 0.035 

Big Sur 0.25 0-25 20 0.764 0.208 1.633 0.760 0.210 1.751 

25-50 57 0.775 0.133 1.699 0.762 0.122 

50-100 141 0.780 0.085 1.793 0.779 0.087 

100-200 283 0.852 0.052 1.723 0.851 0.050 

200-300 194 0.932 0.021 1.989 0.919 0.030 

300+ 342 0.935 0.019 1.778 0.934 0.020 

Nacimiento 0.1 0-25 103 0.699 0.322 1.345 0.643 0.448 1.725 

25-50 105 0.958 0.237 1.854 0.953 0.230 

50-100 135 0.885 0.152 1.698 0.885 0.152 

100-200 149 0.951 0.097 1.772 0.950 0.099 

200-300 75 0.939 0.088 1.752 0.938 0.089 

300+ 142 0.901 0.065 1.612 0.897 0.058 

San Antonio 0.12 0-25 136 0.782 0.234 1.259 0.696 0.320 1.677 

25-50 128 0.800 0.134 1.694 0.800 0.134 

50-100 103 0.901 0.100 1.661 0.901 0.099 

100-200 61 0.888 0.103 1.472 0.871 0.089 

200-300 72 0.931 0.058 1.704 0.931 0.059 

    300+ 22 0.933 0.035 2.017   0.907 0.048   
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The regression model b parameters ranged from 1.259 to 2.017, but most were 

centered between 1.60 and 1.80 (Table 6).  These b values fell within the range of 

values reported in the literature (Harman et al., 2009).  For each watershed, the values 

of the a parameter generally decreased with increasing cumulative antecedent 

streamflow levels (Table 6).  However, the precise relation between a and cumulative 

antecedent streamflow was difficult to isolate since both a and b were free 

parameters.  To test the sensitivity of a to changes in cumulative antecedent 

streamflow, the regression model was refitted with b fixed at the median value of the 

six cumulative antecedent streamflow bins in each watershed (Table 6).  A linear 

regression line was then recalculated using log-transformed values of Q and dQ/dt.  

Despite using a non-optimal slope for each regression model, the R
2
 values decreased 

by less than 0.01 for the majority of the regression models and less than 0.03 for all 

but two models.  This shows that the regression model was relatively insensitive to b 

and that most inter-seasonal variability in recession slope curves was reflected in a.  

This finding is consistent with observations made by Shaw et al. (2013). 

The refitted a values were plotted against the mean cumulative antecedent 

streamflow of each cumulative antecedent streamflow bin (Figure 11).  Baseflow 

recession rates and antecedent storage exhibited a negative power-law relation.  To 

characterize this relation, a linear least-squares regression on log-transformed values 

of a and mean cumulative antecedent streamflow was computed and plotted in Figure 

11, with the model equations displayed in the legend.  The a parameter decreased by 

up to an order of magnitude following initial baseflow events and stabilized when 
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cumulative antecedent streamflow was greater than 250 mm.  This stabilization 

implied that storages within the watershed were reaching capacity (Sayama et al., 

2011).  The similarity in the negative power-law relation between cumulative 

antecedent streamflow and a for all four watersheds suggests similar controls over 

inter-seasonal baseflow recession rates. 

 

Figure 11: Plot of a against wateryear-to-date (WYTD) cumulative antecedent 

streamflow (Qant).  The power-law regression equation is displayed in the legend. 

 

3.6. Evaluating inter-seasonal variability in baseflow recession rates 

using a storage-discharge model 

The empirical results outlined above indicated that with increasing cumulative 

antecedent streamflow, baseflow recession rates decreased and recession slope curves 

maintained characteristics of a power-law function.  In order to explore the processes 

that may have produced these results, a parsimonious storage-discharge model was 
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developed as a heuristic tool to replicate inter-seasonal variability in baseflow 

recession rates. 

 

3.6.1. Storage-discharge model 

Simple storage-discharge models conceptualize recession flows as originating 

from a single homogeneous store.  A relation linking storage and baseflow can be 

represented as a power-law function: 

 , (12) 

where Qs is discharge from storage, S is aquifer storage in mm, and c ( ) 

and d (-) are defined in terms of a and b from equation 10 (Clark et al., 2009): 

  (13a) 

 . (13b) 

The storage-discharge relation in equation 12 reduces to a linear reservoir when d is 

equal to one.  The continuity equation for a single store during a recession period may 

be represented as 

 , (14) 

with the assumption that fluxes to storage (e.g. recharge) and from storage (e.g. ET, 

discharge to other stores) are negligible during the recession period. 
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The behavior of a single store model with no additional fluxes besides 

discharge to a stream is invariant, and consequently, inadequate for replicating inter-

seasonality of baseflow recession rates (McMillan et al., 2010; Sloan, 2000).  Inter-

seasonality implies different controls on recession flows at different times of the year.  

The effect of multiple stores configured in parallel may be represented by 

  (15) 

where Q is baseflow at the streamflow gauge,  is discharge to the stream from the 

jth store, and J is the total number of stores. 

For this study, a parsimonious storage-discharge model consisting of two 

nonlinear stores in parallel was selected to isolate the role of storage on baseflow 

recession rates.  Conceptually, the faster of the two stores was considered to represent 

low-threshold aquifers that were responsive throughout the wet season and had high 

hydrological connectivity to the stream and fast discharge recession rates (e.g. shallow 

riparian aquifers).  The slower of the two stores was considered to represent seasonal 

aquifers located further up hillslopes with lower saturated hydraulic conductivity and 

slower discharge recession rates.  It was assumed that only the fast store was active at 

the beginning of the wet season since the contribution from aquifers with slow 

discharge recession rates is likely to be negligible due to low storage levels.  By the 

end of the wet season, both the fast and slow stores were assumed to contribute to 

recession flows.  The details of the steps used to calibrate parameters c, d, and the 
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maximum size of active storage (herein referred to as Smax) for both model stores are 

provided in Appendix A. 

 

3.6.2 Model results 

The fit of the modeled recession slope curve to the observed recession slope 

curve for the lowest and highest cumulative antecedent streamflow bins is shown in 

Figure 12.  Under low cumulative antecedent streamflow conditions when only a 

single power-law store was active, the modeled recession slope curve plotted as a 

linear line on a  plot and closely matched the observed 

recession slope curve.  Similarly, at high cumulative antecedent streamflow levels, 

when both power-law stores were active, the modeled recession slope curve also 

maintained characteristics of a power-law function, but at a slower rate of recession.  

Power-law behavior was maintained in the latter case, even though both stores were 

active, because discharge from the slow store was much larger than discharge from 

the fast store, such that the modeled recession slope curve approximated the power-

law behavior of the slow store.  At high cumulative antecedent streamflow levels, the 

influence of the fast store, if observable, was small and short-lived.  An example of 

this influence was observed in Arroyo Seco, where the modeled recession slope curve 

becomes concave upwards for high magnitude flows, reflecting the brief influence of 

fast-store discharge on baseflow when storage levels were high. 
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Figure 12: Fit of the storage-discharge model with two stores in parallel to 

recession slope curves of the lowest and highest cumulative antecedent 

streamflow bins. Under low cumulative antecedent streamflow conditions, the 

fast store was assumed to be initially full and the slow store initially empty. 

Under high cumulative antecedent streamflow conditions, both stores were 

assumed to be initially full. 

 

The modeled store characteristics are displayed in Table 7.  To facilitate direct 

comparisons of baseflow recession rates between the fast and slow store, the baseflow 

recession rate dQ/dt was calculated at two fixed baseflow magnitudes Q, 2 mm and 
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0.5 mm (Table 7).  The baseflow recession rate of the slow store ranged from 3.4 to 

9.7 times slower than the fast store at 2 mm of baseflow and from 6.0 to 11.2 times 

slower than the fast store at 0.5 mm of baseflow.  In all watersheds, the difference in 

baseflow recession rate between the fast and slow store increased with decreasing 

baseflow magnitude.  Baseflow recession rates for the slow stores mirrored the 

percentage of zero flow days in a watershed, with the slowest rate occurring in the 

perennial watershed Big Sur and the fastest rates occurring in Nacimiento and San 

Antonio, which are dry for 30% and 44.8% of the year, respectively (Tables 5 and 7).  

The maximum active storage size Smax ranged from 8 to 21 mm for the fast stores and 

from 134 to 521 mm for the slow stores (Table 7).  This corresponded to a slow store 

capacity that is 6.4 to 24.8 times larger than the fast store.  These storage values 

appear physically plausible, as the aquifers in these watersheds are likely localized in 

small areas (e.g. riparian zones) and actual aquifer depths are likely much deeper. 

 

Table 7: Simulated store characteristics. 

Name Store 

WYTD cumulative 

antecedent 

streamflow (mm) c d 

Smax 

(mm) 

dQ/dt at 

Q=2mm 

dQ/dt at 

Q=0.5mm 

Arroyo Seco Fast 0-25 1.86E-02 2.04 12 0.824 0.102 

Slow 300+ 9.81E-06 2.73 159 0.124 0.013 

Big Sur Fast 0-25 9.13E-04 2.72 21 0.643 0.067 

Slow 300+ 2.00E-11 4.51 521 0.066 0.006 

Nacimiento Fast 0-25 9.29E-02 1.53 8 0.823 0.127 

Slow 300+ 6.88E-05 2.58 145 0.192 0.021 

San Antonio Fast 0-25 9.37E-02 1.35 21 0.559 0.098 

  Slow 200+ 1.56E-08 4.07 134 0.166 0.015 

WYTD: Wateryear-to-date 
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The storage-discharge model with two stores in parallel replicated both the 

power-law characteristics of the recession slope curve under low cumulative 

antecedent streamflow conditions when the fast store was the dominant control on 

baseflow and under high cumulative antecedent streamflow conditions when the slow 

store was the dominant control on baseflow (Figure 12).  However, as the wet season 

progressed, the controls on the recession slope curve could be expected to transition 

between these two end-member conditions.  The simulated transition of the recession 

slope curve from a dominant fast store to a dominant slow store is demonstrated for 

the Arroyo Seco watershed (Figure 13).  The initial storage value (herein referred to 

as So) of the fast store was assumed to equal Smax (12 mm) for each of the curves 

generated, while So of the slow store was varied from empty (0 mm) to Smax (159 

mm).  While the recession slope curve displayed power-law characteristics when the 

slow store was either empty or full, the transition between these two levels introduced 

concave nonlinearity in the recession slope curve.  This concave nonlinearity occurred 

when discharge from the fast and slow stores were similar in magnitude.  The 

recession slope curves observed in Figure 10 had suggested that the recession slope 

curve maintains power-law behavior at all levels of cumulative antecedent 

streamflow.  This discrepancy between the empirical results and the modeled results 

may be due to inadequacies in the storage-discharge model structure.  However, it 

may also reflect imprecision in empirically characterizing the recession slope curves.  

The degree of concave nonlinearity in the theoretical recession slope curves of Figure 

13 is small compared to the observed scatter in the recession slope curves of Figure 
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10.  Further, over short domains, the recession slope curve may appear as a power law 

(e.g. slow store S0 = 40 mm). 

 

 

Figure 13: Simulation of the recession slope curve transition from a dominant 

fast store to a dominant slow store for Arroyo Seco using a storage-discharge 

model with two stores in parallel.  Initial storage So of the fast store was fixed at 

Smax, while So of the slow store was varied between 0 mm (empty) and 159 mm 

(full). 

 

In addition to concave nonlinearity, recession slope curves transitioning from 

a dominant fast store to a dominant slow store have a steeper slope (i.e. larger b 

value) than either of the two end-member recession slope curves (Figure 13).  A 

reexamination of the calculated b parameters in Table 6 showed that in two 
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watersheds, Arroyo Seco and Nacimiento, b is higher for the intermediate cumulative 

antecedent streamflow bins compared to the lowest and highest bins.  This behavior is 

not observed in Big Sur or San Antonio.  This suggests that in some watersheds, a 

model structure with two stores in parallel may provide a good representation of inter-

seasonal recession slope curve variability under all wetness conditions, not just the 

extremes. 

 

3.7. Synthesis 

This study investigated the effects of inter-seasonal changes in antecedent 

storage on baseflow recession rates in four central California watersheds.  Using 

wateryear-to-date cumulative antecedent streamflow as a surrogate measure of storage 

conditions, baseflow recession rates were observed to decrease by up to an order of 

magnitude with increasing levels of cumulative antecedent streamflow.  Baseflow 

recession rates and cumulative antecedent streamflow displayed a negative power-law 

relation, with a rapid decrease in baseflow recession rate following initial baseflow-

producing events and subsequent stabilization as watershed storages became full. 

Inter-seasonal decreases in baseflow recession rates were well-represented by 

a storage-discharge model with two nonlinear stores in parallel.  The model showed 

that at the beginning of the central California wet season, the baseflow recession 

curve could be replicated by a small, fast store.  Physically, this store likely 

corresponds to shallow, quickly-recharged riparian aquifers with high hydrological 

connectivity to the stream, allowing for rapid responses following precipitation 
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events.  As the wet season progresses, a much larger and much slower store, which is 

initially empty at the onset of the wet season, is recharged.  This slow store, which 

represents seasonal aquifers within the watershed, becomes the dominant control on 

baseflow as discharge from the slow store eventually overwhelms discharge from the 

fast store. 

The results of this study have clearly shown that accounting for inter-seasonal 

differences in storage conditions is important for properly characterizing baseflow 

recession rates, particularly in MCRs that are typified by large inter-seasonal 

differences in watershed storage levels.  Previous studies of inter-seasonal baseflow 

recession rate changes in MCRs have focused solely on the role of ET on baseflow 

recession rates (Aksoy and Wittenberg, 2011; Wittenberg and Sivapalan, 1999).  

Future work on inter-seasonal variability in MCRs needs to address the relative role 

of both storage and ET on baseflow recession rates.  Further, the effect of other 

storage-discharge related processes such as channel losses and storage losses also 

need to be examined. 

Finally, there has been recognition in recent years that the controls on 

recession flows in many watersheds are dynamic (Biswal and Kumar, 2012; 

McMillan et al., 2010; Mishra et al., 2003; Shaw et al., 2013; Wang and Cai, 2009).  

This study adds to this understanding by demonstrating how changes in storage can be 

used to explain inter-seasonality of baseflow recession rates in central California 

watersheds.  This study also demonstrates that the frequent assumption of a single 

storage-discharge relation for representing baseflow may not be appropriate in some 
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watersheds, which has implications for hydrologic applications ranging from baseflow 

separation (Eckhardt, 2005) to rainfall-runoff modeling (Jakeman and Hornberger, 

1993). 

 

3.8. Appendix 

To evaluate inter-seasonal changes in baseflow recession rates using a storage-

discharge model with two stores in parallel, parameters c, d, and the maximum size of 

active storage Smax needed to be calibrated for both the fast and slow model store 

(Equation 12).  The parameters of the fast store were identified by fitting a power-law 

function to the recession slope curve of the lowest cumulative antecedent streamflow 

bin (0 - 25mm) in each watershed and using equations 13a and 13b to derive c and d, 

respectively.  Smax for the fast store was calculated by inverting equation 12 and 

assuming that the maximum observed baseflow value (herein referred to as Qmax) for 

the lowest cumulative antecedent streamflow bin corresponded to discharge from the 

maximum active storage size, Smax. 

During periods of high cumulative antecedent streamflow, both the fast and 

slow stores were assumed to be active.  Discharge from the slow store was simulated 

simultaneously with discharge from the fast store and the combined flow was 

evaluated against the regression-derived recession slope curve of the highest 

cumulative antecedent streamflow bin using the root mean square error (RMSE) on 

logged variables.  A slow store value of c was selected via a grid search of the 

probable parameter space.  The d parameter of the slow store was then derived from 
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the b parameter of the modeled recession slope curve from the highest cumulative 

antecedent streamflow bin.  Smax for the slow store was calculated by deriving Qmax for 

the slow store, which was assumed to be the difference between the maximum 

observed recession flow value produced in the watershed and Qmax of the fast store.  

This value, along with the c and d parameters, were used to derive Smax of the slow 

store using equation 12.  The recession slope curve for the highest cumulative 

antecedent streamflow bin was then simulated with the two-store model under the 

assumption that initial storage for both the fast and slow store was at Smax. 

The highest cumulative antecedent streamflow bin was used to establish slow-

store parameters for all watersheds except San Antonio, which had a b value of 2.017 

for the highest cumulative antecedent streamflow bin (Table 6).  Values greater than 2 

translate into negative d values, producing a store where discharge magnitude 

increases with decreasing storage levels.  As this parameter value is not physically 

sound and is inconsistent with b values from the other bins, the value was assumed to 

be an outlier, possibly due to too few data points (N=22) in the development of the 

regression model.  The model parameters for San Antonio were instead obtained from 

a regression line fitted to all recession data with more than 200mm of wateryear-to-

date cumulative antecedent streamflow. 
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Chapter 4: The Impact of Wildfire on Baseflow Recession 

Rates in California Watersheds 

 

The effect of wildfire on peak streamflow and annual water yield has been 

investigated empirically in numerous studies.  The effect of wildfire on baseflow 

recession rates, in contrast, is not well documented.  The primary objective of this 

paper was to examine the effect of wildfire on baseflow recession rates in California 

at both watershed and regional scales.  In addition, inter-seasonal differences in two 

additional variables, antecedent storage and potential evapotranspiration (ET), were 

also investigated for their effect on baseflow recession rates and post-fire baseflow 

recession rate response.  A mixed model, which allows for the analysis of data 

containing an embedded hierarchical structure, was used to statistically model the 

differences between pre- and post-fire baseflow recession rates.  At the regional scale, 

antecedent storage, potential ET and wildfire were each found to be significant 

controls on baseflow recession rates.  Following fire, baseflow recession rates 

decreased 52.5% (37.6% to 66.0%), implying that the dominant hydrologic control on 

post-fire baseflow recession rates are related to post-fire reductions in above-ground 

vegetation (e.g. decreased interception, decreased soil ET, decreased groundwater 

ET).  Baseflow recession rate response to fire was not sensitive to inter-seasonal 

differences in antecedent storage or potential ET; however more data will be needed 
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to conclusively assess this latter result due to weak statistical power for evaluating the 

interaction variables. 

 

4.1. Introduction 

Mediterranean-climate regions (MCRs) are water-limited environments whose 

water resources are heavily exploited for urban and agricultural uses (Rundel, 2004).  

Located in parts of Australia, California, Chile, the Mediterranean Basin and South 

Africa, these regions are distinguished by their climate regime of warm, dry summers 

and cool, wet winters.  The signature vegetation type of MCRs is sclerophyllous 

shrublands that are subject to regular transformation by wildfire (Rundel, 2004).  

Wildfire may alter the landscape through the elimination of above-ground vegetation 

and an increase in hydrophobicity in the soil.  These modifications, in turn, may affect 

watershed hydrology through a reduction in watershed transpirational capacity and a 

decrease in soil infiltration, respectively. 

Post-fire changes in soil hydrophobicity and above-ground vegetation in 

MCRs have been shown to increase peak flows that produce flooding and debris 

flows (Cannon et al., 2008; Keller et al., 1997; Wells, 1987) and increase annual 

flows that that are important for local water supplies (McMichael and Hope, 2007).  

The effect of wildfire on baseflow, however, is not as well documented.  Baseflow 

represents the portion of streamflow that discharges from groundwater and sustains 

streamflow between precipitation events.  Baseflow is commonly characterized in two 

ways, by baseflow volume or by baseflow recession rate.  Baseflow recession rates 
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represent the rate of decrease in baseflow volume following a recharge event and are a 

key tool for low flow prediction (Tague and Grant, 2009) and hydrologic modeling 

(Tallaksen, 1995). 

The effect of wildfire on baseflow in MCRs has primarily been examined 

during the summer dry period when potential evapotranspiration (ET) is high and 

recharge to storage is negligible.  Baseflow volumes during this period have been 

shown to increase following wildfire (Colman, 1951; Crouse, 1961; Kinoshita and 

Hogue, 2011) while post-fire baseflow recession rates have been shown to decrease 

following the last storms of the wet season (Crouse, 1961; Meixner and Wohlgemuth, 

2003).  Less is understood about how wildfire affects baseflow during the wet season, 

when potential ET is lower and storage conditions are more variable.  Jung et al. 

(2009) found that baseflow response to wildfire during the wet season was variable in 

two adjacent southern California watersheds, with post-fire baseflow volume 

increasing in one watershed but not the other.  No known studies have examined the 

impact of wildfire on baseflow recession rates during the MCR wet season. 

Baseflow recession rates in MCRs have been shown to vary inter-seasonally 

with changes in antecedent storage and potential ET.  In Chapter 3, slower baseflow 

recession rates were associated with higher levels of antecedent storage in California 

watersheds.  Meanwhile, Wittenberg and Sivapalan (1999) and Aksoy and Wittenberg 

(2011) reported that slower baseflow recession rates were associated with lower 

potential ET levels for MCR watersheds in Australia and Turkey.  The effect of these 

inter-seasonal controls on baseflow recession rate response to wildfire is unclear. 
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The primary objective of this study was to examine the effect of wildfire on 

baseflow recession rates in California at both watershed and regional scales.  

Differences between pre- and post-fire baseflow recession rates were modeled 

statistically using a mixed model (Hox, 2010; Raudenbush and Bryk, 2002).  Mixed 

modeling is a technique that is similar to multiple regression but allows for the 

analysis of data containing a hierarchical structure (Bickel, 2007).  Hierarchical 

structures occur when data are organized at more than one level, such as when 

baseflow recession rates are grouped by year.  The secondary objective of this study 

was to investigate how antecedent storage and potential evapotranspiration may both 

affect baseflow recession rates and affect baseflow recession rate response to wildfire. 

 

4.2. The effect of wildfire on groundwater fluxes 

Groundwater discharge to a stream  varies as a function of groundwater 

storage ; 

 . (16) 

When discharge is the only flux from groundwater storage, the rate at which  

decreases over time, or the groundwater discharge recession rate, depends primarily 

on static physical properties of groundwater storage such as size, geometry, porosity, 

and saturated hydraulic conductivity (Brutsaert and Nieber, 1977).  Groundwater 
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storage is frequently affected by additional fluxes besides  (Figure 14).  These 

fluxes may include ET directly from groundwater  and recharge to groundwater 

, such that 

 . (17) 

Fluxes operating concurrently (i.e. during the recession period) with  alter the 

rate of groundwater storage depletion and thus, the groundwater discharge recession 

rate.  Baseflow recession rates are a function of the groundwater discharge recession 

rate from each groundwater aquifer contributing to baseflow.  For watersheds with a 

single groundwater aquifer, the groundwater discharge recession rate is equal to the 

baseflow recession rate. 

 

Figure 14: Diagrammatic representation of fluxes to and from groundwater. 
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Wildfire directly decreases ET from groundwater by reducing above-ground 

vegetation with access to the watertable and/or the capillary fringe (i.e. phreatophytes) 

(Figure 14).  Phreatophytes are located predominately in and around riparian zones 

where the watertable is shallow.  Changes in ET from groundwater are likely to be 

most sensitive to burning within this zone.  Riparian zones, however, may have lower 

burn severities and longer fire-return intervals than adjacent upland areas (Luce et al., 

2012).  Consequently, the effect of decreases in post-fire groundwater ET on baseflow 

recession rates may vary from event to event depending of the location and severity of 

the fire.  This effect may also vary seasonally; increasing when potential ET levels are 

highest.  The duration of changes in post-fire groundwater ET may range from years 

to decades depending on the rate of post-fire vegetation recovery. 

Wildfire affects recharge to groundwater during the recession period by 

increasing or decreasing soil moisture levels in the rooting zone above the water table 

(Figure 14).  Elevated soil moisture may occur when post-fire reductions in above-

ground vegetation decrease transpiration from the soil matrix (Silberstein et al., 

2013).  Elevated soil moisture levels may also occur when decreased interception 

causes an increase in soil infiltration during storm events.  Soil hydrophobicity, in 

contrast, may lower post-fire soil moisture levels by decreasing recharge to 

groundwater during storm events.  Hydrophobicity forms from the heating of soil 

organic matter during a wildfire and at the plot scale, decreases soil infiltration (Doerr 

et al., 2000).  However at larger scales, spatial heterogeneity in post-fire 

hydrophobicity may diminish its effect on infiltration (DeBano, 2000; Imeson et al., 
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1992).  The temporal effects of hydrophobicity may range from months to years, 

depending on levels of hydrophobicity in the watershed, time elapsed since the fire 

and post-fire meteorological conditions (Shakesby and Doerr, 2006). 

The overall effect of wildfire on baseflow recession rates depends on the net 

change in post-fire water flux to and from groundwater during the recession period.  

An increase in net flux to groundwater during the recession period (i.e. slower 

groundwater depletion rate) decreases baseflow recession rates and implies that 

processes related to post-fire reductions in above-ground vegetation (e.g. decreased 

interception, decreased soil ET, decreased groundwater ET) are the dominant 

hydrologic control on baseflow recession rates.  Alternatively, a decrease in net flux 

to groundwater during the recession period (i.e. faster groundwater depletion rate) 

increases baseflow recession rates and implies that processes related to 

hydrophobicity are the dominant hydrologic control on baseflow recession rates. 

 

4.3. Watersheds and data 

Watersheds in this study were selected from US Geological Survey (USGS) 

streamflow network gauges in southern and central California.  Watersheds were 

evaluated for inclusion based on absence of major diversions or regulations (e.g. 

dams), lack of persistent winter snow cover, limited (less than 5%) urbanization or 

agriculture, data quality, and having no additional large fires (greater than 5% of 

watershed area) during the pre- and post-fire periods.  Wildfire history for each 

watershed was obtained from the Fire and Resource Assessment Program (FRAP) 
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(http://frap.fire.ca.gov).  Daily streamflow data were acquired from the USGS 

(waterdata.usgs.gov).  Daily precipitation totals were generated by merging two 

gridded precipitation data products; the monthly, 2.5 arcminute Precipitation-

Elevation Regressions on Independent Slopes Model (PRISM) produced at Oregon 

State University (http://prism.oregonstate.edu) and the daily, 15 arcminute US 

Unified Precipitation dataset provided by the National Oceanic and Atmospheric 

Administration (NOAA) Climate Prediction Center (http://www.esrl.noaa.gov/psd) 

(Hope et al., 2008).  Daily gridded temperature data was obtained from the NOAA 

Climate Prediction Center (ftp://ftp.cpc.ncep.noaa.gov/precip/daily_grids).  

Watershed characteristics were attained from the Geospatial Attributes of Gages for 

Evaluating Streamflow (GAGES-II) database (Falcone, 2011). 

Eight watersheds were selected for analysis.  A map and description of the 

watersheds is given in Figure 15 and Table 8, respectively.  The watersheds are 

located along the Coast Range of central California and the Transverse Range of 

southern California.  The watersheds are characterized by steep topography with peak 

elevations near 2000m asl.  The wet season extends from late fall (November) to early 

spring (April) and is dominated by cyclonic frontal systems approaching from the 

Pacific Ocean.  Annual precipitation in the watersheds ranges from a little more than 

600mm to over 1100mm.  Annual streamflow is more variable, ranging from 120mm 

to over 750mm.  During the summer dry season, flow ceases in many of the 

watersheds.  The primary vegetation in most of the watersheds is chaparral, with 
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grasslands, coastal sage scrub, oak woodlands, and forests also being common 

(Callaway and Davis, 1993). 

 

Figure 15: Location of study watersheds in California. 

 

Wildfire characteristics for each watershed are provided in Table 9.  The 

percentage of area burned varied from 20% to 100% of the watershed area.  The 

average length of the pre-fire period was 16.5 years, ranging from 11 to 19 years.  A 

post-fire length of seven years was used for all watersheds except Nacimiento, which 

had only three years of post-fire data available. 
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Table 8: Summary of watershed characteristics 

Watershed Name USGS ID 

Area 

(km
2
) 

Mean annual 

precipitation 

(mm) 

Mean 

annual PET 

(mm) 

Mean annual 

streamflow 

(mm) 

Dominant 

geology type 

Arroyo Seco 11152000 625.1 809 664 243 Sedimentary 

Big Sur River 11143000 120.6 1163 640 753 Granitic 

City Creek 11055801 50.5 781 729 226 Quarternary 

Lopez Creek 11141280 54.0 717 741 170 Sedimentary 

Nacimiento River 11148900 403.5 692 745 409 Sedimentary 

San Antonio River 11149900 556.4 633 737 174 Sedimentary 

Santa Paula Creek 11113500 103.3 678 709 220 Sedimentary 

Sespe Creek 11111500 128.5 850 552 120 Sedimentary 

Watershed Name 

Stream 

density 

(km/Km
2
) 

Mean 

slope 

(%) 

Mean soil 

depth (mm) 

Mean clay 

percentage 

Mean silt 

percentage 

Shrubland 

percentage 

Arroyo Seco 1.03 34.7 644 20.2 34.8 42.2 

Big Sur River 0.98 43.6 633 14.1 31.5 33.1 

City Creek 1.21 34.4 650 13.2 30.6 77.5 

Lopez Creek 0.69 37.1 658 32.6 38.8 27.8 

Nacimiento River 0.99 21.3 720 22.9 36.9 40.8 

San Antonio River 1.13 19.5 862 24.4 37.8 39.1 

Santa Paula Creek 1.18 34.4 621 23.6 44.2 55.6 

Sespe Creek 1.25 26.5 573 22.1 41.3 45.9 

 

 

Table 9: Fire characteristics, analysis periods and calibration variables 

Catchment 

Fire 

Year 

Fire 

Size (%) 

Pre-fire 

Period 

Post-fire 

Period 

Pre-fire 

events 

Post-fire 

events 

Median 

b value ∆QCrit 

Arroyo Seco 1977 63 1967-1977 1978-1984 42 45 2.058 0.1 

Big Sur 1977 92 1967-1977 1978-1984 41 38 1.985 0.25 

City 2003 94 1986-2003 2004-2010 27 11 1.872 0.4 

Lopez 1985 100 1968-1985 1986-1992 26 4 1.716 0.4 

Nacimiento 1996 20 1980-1996 1997-1999 95 17 1.954 0.1 

San Antonio 1985 31 1967-1985 1986-1992 73 17 1.658 0.12 

Santa Paula 1985 71 1967-1985 1986-1992 41 10 1.782 0.2 

Sespe 1985 40 1967-1985 1986-1992 30 8 1.884 0.2 
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4.4. Methodology 

4.4.1. Derivation of baseflow recession rates 

Baseflow recession curves were defined as a consecutive decline in the 

streamflow hydrograph for five or more days following the exclusion of the first two 

days after a hydrograph stormflow peak.   A daily precipitation threshold of 5mm 

during the recession period was also included to account for precipitation events that 

may have decreased baseflow recession rates but not increased baseflow volumes. 

While baseflow recession curves may be analyzed directly from the recession 

limb of a streamflow hydrograph using an exponential or non-linear model 

(Chapman, 1999; Wittenberg, 1999), Brutsaert and Nieber (1977) proposed 

comparing the rate of baseflow change dQ/dt to baseflow magnitude Q on a 

 plot.  This relation is represented as 

 . (18) 

The time variable is eliminated using this approach, allowing baseflow recession rates 

for a given baseflow magnitude to be comparable between baseflow recession curves.  

This relation is referred to as the recession slope curve (Rupp and Selker, 2006a) and 

frequently follows a power-law function 

  (19) 
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where Q is baseflow discharge in mm, t is time (daily), a is the value of  

when  and b is the slope of the  relation (Clark et al., 

2009).   was computed as the difference between two consecutive points on a 

baseflow recession curve, 

 , (20a) 

and  was computed as the mean of two consecutive recession points, 

 . (20b) 

Low precision in the gauging of low flows may hinder investigations of the 

recession slope curve due to scatter and discretization associated with low magnitude 

recession flows on a  plot.  These errors were accounted for 

by increasing the time interval ∆t for flows below the precision of the gauge until the 

change in baseflow ∆Q over the time-period exceeded a critical threshold ∆Qcrit 

(Rupp and Selker, 2006b).  The critical threshold was determined visually for each 

watershed (Table 9). 

Previous studies have demonstrated that values of b in the power-law relation 

of Equation 19 are less variable than values of a (Shaw et al., 2013).  In this study, the 

exponent b was fixed at a common value for each watershed, leaving a single free 

parameter a for representing baseflow recession rates.  The fixed value of b was 
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derived by fitting a linear regression model with log-transformed data (Xiao et al., 

2011) to each individual recession slope curve in a watershed and selecting the 

median b value from among all the curves (Table 9).  a was then recomputed for all 

values along the recession slope curve using Equation 19 with the fixed b.  The 

median value of a from each individual recession slope curve was used to represent 

the baseflow recession rate for that recession slope curve. 

 

4.4.2. Mixed model 

A model is often used to isolate the effect of wildfire on baseflow recession 

rates from other potential sources of variability.  Linear regression is the most 

commonly used statistical model for this purpose.  However, baseflow recession 

curve data contains a hierarchical structure that violates the assumption of 

independence that is required for linear regression models (Watson et al., 2001).  At 

the watershed scale, baseflow recession rates within a given year are likely to be more 

similar than between years.  This multiple-level organization within the data produces 

the hierarchical structure.  Baseflow recession rates represent the lower level of the 

hierarchy (i.e. level 1) and are considered to be nested within years, which represent 

the higher level of the hierarchy (i.e. level 2) (Figure 16).  At the regional scale, the 

hierarchical structure becomes more complex, with baseflow recession rates nested 

within years which are then nested within watersheds (Figure 16).  This type of 

hierarchical structure is referred to as having three levels.  Baseflow recession rates at 

the regional scale may alternatively be considered to be nested by precipitation event 
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(Figure 16).  Watersheds with baseflow recession rates produced from the same 

precipitation event will likely be more similar than baseflow recession rates produced 

from different precipitation events due to similarities in antecedent storage across a 

region.  Data with two hierarchical structures is commonly referred to as having 

crossed-random effects (Baayen et al., 2008). 

 

Figure 16: Hierarchical structure for watershed-scale and regional-scale mixed 

models. 

 

Mixed modeling is a technique used to examine data containing a hierarchical 

structure.  Mixed models may be referred to as multilevel models, hierarchical 

models, generalized linear mixed models (GLMM), mixed-effects models and meta-

analysis (Hox, 2010).  Mixed models account for hierarchies within data by 

partitioning model error to each level of the hierarchy using variables containing 

random effects.  Random effects represent the stochastic portion of the model, as 

opposed to the fixed effects which represent the deterministic portion of the model 

(Hox, 2010).  A mixed model for representing the watershed-scale hierarchy in Figure 

16 may be described as 
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  (21) 

where  is the ith observation of baseflow recession rates (a) for the jth year,  is 

the intercept of the model,  is the level-2 model error for the the jth year and  is 

the level-1 model error for the ith observation from the jth year.  Including level-1 

predictor variables, the mixed model may be described as 

  (22) 

where N is the total number of predictor variables,  is the slope of the relation 

between the nth predictor variable and baseflow recession rates, and  is the ith 

observation of the nth predictor variable for the jth year. 

Model errors in mixed models are generally assumed to be independent and 

normally distributed with a mean of 0 and a variance of .  However, autocorrelation 

of level-1 model errors may occur with longitudinal data such as baseflow recession 

rates if memory from one baseflow recession event affects subsequent events.  In 

some cases, this autocorrelation may be explicitly modeled through the error 

covariance matrix (Hox, 2010).  However, when the available data at the lowest 

hierarchical level is small, quantifying the autocorrelation can be challenging.  

Fortunately, the effect of autocorrelation on mixed modeling results, and particularly 

the fixed effects, has been shown to be negligible when level-1 sample sizes are small 
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(Hox, 2010; Raudenbush and Bryk, 2002).  The median number of baseflow recession 

events within a given year for this study was 3, ranging from 1 to 11.  Since the 

primary objective was to understand how a fixed-effect variable, fire, affects baseflow 

recession rates, level-1 autocorrelation was not explicitly accounted for in this study. 

A mixed model for representing the regional-scale hierarchy in Figure 16 may 

be represented by 

  (23) 

where  is the ith observation of baseflow recession rate from the cross-

classified jth year and kth watershed with the lth precipitation event,  is the level-2 

model error for the lth precipitation event,  is the level-3 model error for the kth 

watershed,  is the level-2 model error for jth year in the kth watershed, and  

is the level-1 model error for the ith observation of baseflow recession rate from the 

cross-classified jth year and kth watershed with the lth precipitation event (Hox, 

2010).  The model including level-1 predictor variables is 

  (24) 

where  is the ith observation for the nth predictor variable from the cross-

classified jth year and kth watershed with the lth precipitation event. 
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A Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) 

techniques was used to calibrate the mixed model (Stegmueller, 2013).  A Gibbs 

sampling algorithm with an improper, non-informative prior was applied for each 

MCMC walk (Hadfield, 2010).  A total of 1,000,000 iterations with a thinning of 100 

were conducted following a burn-in period of 20,000.  All modeling was implemented 

in the R programming language (www.r-project.org) using the MCMCglmm package 

(Hadfield, 2010).  Model fit was evaluated using the Deviance Information Criterion 

(DIC) (Hadfield, 2010).  DIC is obtained from 

 . (25) 

 is the average deviance D over all MCMC iterations, with deviance is defined as  

 . (26) 

 is the likelihood function and � is a parameter of the model.   is a measure 

of the effective number of parameters (Spiegelhalter et al., 2002).  Models with 

smaller values of DIC indicate better model fit. 

 

4.4.3. Model development 

To examine the effect of wildfire on baseflow recession rates, watershed-

specific (Equation 22) and region-specific (Equation 24) models were developed to 

predict a (logged base e) from three watershed variables; antecedent storage (logged 

base e), potential ET and fire.  These variables were selected a-priori based on the 
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hydrological processes that were expected to be important controls on baseflow 

recession rates, with antecedent storage and potential ET being key controls on inter-

seasonal baseflow recession rates and fire being the primary variable of interest. 

The seasonality of rainfall in California produces two different hydrologic 

regimes; a water-limited summer dry season and an energy-limited winter wet season.  

In Chapter 3 it was shown that baseflow recession rates in central California 

watersheds decrease as watershed storages are filled during the transition from the dry 

season to the wet season.  To account for inter-seasonal differences in antecedent 

storage for this study, an estimate of antecedent storage for each baseflow recession 

event was developed using precipitation cumulated from the beginning of the 

wateryear (October 1) to the start of each baseflow recession curve.  This proxy for 

antecedent storage is similar to that used in Chapter 3, but with precipitation 

substituted for streamflow since streamflow is a component of the dependent variable 

in the mixed model.  While cumulative antecedent precipitation cannot account for 

decreases in watershed storage between precipitation events, it was assumed that 

cumulative antecedent precipitation would provide a first-order approximation of 

antecedent storage for each recession event. 

Potential ET was derived from daily temperature data using the Blaney-

Criddle transformation; 

  (27) 
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where PET is the estimated potential ET (mm/day), T is the mean daily temperature 

(°C) and p is the mean daily percentage of total annual daytime hours at 35 degrees 

latitude (Blaney and Criddle, 1962). 

The effect of wildfire on baseflow recession rates was incorporated into the 

model via a fire variable representing watershed conditions before and after wildfire.  

Watershed conditions during the pre-fire period were assumed to be stable and 

uniform.  For the first post-fire year, the change in watershed conditions was assumed 

to be equivalent to the percentage of watershed area burnt.  For subsequent post-fire 

years, the level of change in watershed conditions was based on the reverse scaling 

(i.e. 1 minus value) of the normalized post-fire vegetation recovery curve introduced 

in Chapter 2 and developed from two remote sensing studies of chaparral recovery in 

central California (Hope et al., 2007; McMichael et al., 2004).  The normalized post-

fire vegetation recovery curve was computed as {0.00, 0.37, 0.50, 0.60, 0.68, 0.75, 

0.81} for the first seven years following fire, with the interval between 0 and 1 

representing post-fire vegetation decrease during the first post-fire year and pre-fire 

conditions, respectively.  This fire variable was found to be the best predictor of post-

fire annual streamflow in California watersheds from several fire variables tested in 

Chapter 2. 

To examine how antecedent storage and potential ET modify baseflow 

recession rate response to wildfire, two interaction variables were separately 

incorporated into the model.  An interaction variable between fire and antecedent 

storage was as generated from the product of the fire variable with the cumulative 
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antecedent precipitation variable.  An interaction variable between fire and potential 

ET was generated from the product of the fire variable with the potential ET variable. 

For mixed models, predictor variables are often rescaled to contain a zero 

point in order to aid in the interpretation of model results (Enders and Tofighi, 2007).  

To establish a zero point, predictor variables are centered by subtracting the mean 

value of the predictor variable.  Two types of centering may be implemented based on 

the strategy for selecting the mean value of the predictor variable.  Grand mean 

centering centers a variable about its grand mean, while group mean centering centers 

a variable about the mean of the group to which each value is associated (Enders and 

Tofighi, 2007).  The two forms of centering may produce different model 

interpretations (Aguinis et al., 2013).  Following the recommendation of Enders and 

Tofighi (2007), for models directly investigating the effect of wildfire on baseflow 

recession rates (i.e. primary objective), cumulative antecedent precipitation and 

potential ET were grand-mean centered for the watershed-scale models and group-

mean centered by watershed for the regional-scale models.  For all models 

investigating how interaction variables may modify the effect of wildfire on baseflow 

recession rates, cumulative antecedent precipitation and potential ET were group-

mean centered by wateryear. 

 

4.5. Results and discussion 

The relation between baseflow recession rates (a) and cumulative antecedent 

precipitation for each of the eight watersheds is displayed in Figure 17.  Baseflow 
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Figure 17: Plots of a from Equation 19 against cumulative antecedent 

precipitation, separated by pre- and post-fire baseflow.  Larger symbols 

correspond to higher potential ET (Range 1.7 to 6.1 mm/day). 
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recession rates were separated by pre- and post-fire with symbol size corresponding to 

potential ET levels during the recession event.  Baseflow recession rates decreased 

with higher cumulative antecedent precipitation and the relation between the two 

variables generally followed a power-law function.  Potential ET was also slightly 

correlated with cumulative antecedent precipitation (Pearson’s r = 0.61).  For a given 

level of cumulative antecedent precipitation, higher potential ET generally 

corresponded to a higher value of a, although this effect was not ubiquitous.  Post-fire 

baseflow recession rates decreased relative to pre-fire baseflow recession rates in 

three watersheds; Arroyo Seco, Big Sur and City.  Post-fire baseflow recession rates 

in the five other watersheds did not exceed the variability of the pre-fire baseflow 

recession rates. 

The values representing the mode and 95% credible (i.e. confidence) intervals 

for each of the four fixed parameters in the watershed and regional-scale models were 

grouped by parameter and are presented in Figure 18.  Two of the parameters, the 

intercept and cumulative antecedent precipitation, were highly significant in each of 

the watersheds and at the regional scale.  This reinforces the visual evidence in Figure 

17 that baseflow recession rates decrease with higher levels of antecedent storage.  

For every doubling of cumulative antecedent precipitation, the value of a decreased 

by 64.6% (62.4% to 67.5%) at the regional scale.  The similarity of coefficient values 

amongst the watersheds suggests that similar controls on inter-seasonal baseflow 

recession rates operate throughout the study region.  These findings mirror those of 

Chapter 3. 
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Figure 18: Coefficient (β) values and 95% credible intervals for watershed-scale 

and regional-scale mixed models.  (Regional = Crossed random effects model). 

 

The effect of potential ET on baseflow recession rates was more variable than 

cumulative antecedent precipitation, with four watersheds showing significant 

increases in baseflow recession rates with higher levels of potential ET (Figure 18).  

These four watersheds were clustered in the Santa Lucia Mountains in the northern 

portion of the study region, suggesting that phreatophytes in this area may have 

greater contact with groundwater than in the southern watersheds.  The lack of 

significant change observed in the four southern watersheds is supported by a study 

from Tschinkel (1963) who found the effect of ET on baseflow recession rates to be 

negligible in a small southern California watershed located to the west of City 

(Zecharias and Brutsaert, 1988).  As the four northern watersheds corresponded to the 

four watersheds with the most available data (Table 9), the regional effect of potential 
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ET on baseflow recession rates was found to be statistically significant.  The regional 

model predicted that for every millimeter increase in daily potential ET, the value of a 

would increase by 33.5% (23.2% to 49.1%). 

At the watershed scale, baseflow recession rates showed a significant decrease 

following wildfire in two watersheds, Arroyo Seco and City (Figure 18).  Five 

additional watersheds showed a non-significant decrease in baseflow recession rates.  

Combined, these results produced a significant regional decrease in post-fire baseflow 

recession rate, with the regional-scale model predicting that baseflow recession rates 

would decrease 52.5% (37.6% to 66.0%) during the first post-fire year assuming 

100% burnt.  This decrease in baseflow recession rate implies that an increase in net 

flux to groundwater during the recession period occurs following fire; either through 

decreased groundwater ET, decreased soil ET, and/or decreased interception.  The 

primary process operating in City may have been increased groundwater recharge 

resulting from decreased interception since baseflow recession rates showed a large 

decrease following fire but no response to changes in potential ET.  Baseflow 

recession rates in Arroyo Seco, on the other hand, were very responsive to changes in 

potential ET, suggesting that decreased groundwater ET and/or decreased soil ET 

following fire may have been an important control on baseflow recession rates in that 

watershed. 

An interaction variable testing the effect of inter-seasonal differences in 

cumulative antecedent precipitation on post-fire baseflow recession rate change is 

shown in Figure 19.  For two watersheds, Arroyo Seco and Big Sur, greater post-fire  
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Figure 19: Coefficient (β) values and 95% credible intervals for interaction 

variables. 

 

baseflow recession rate change was observed with lower cumulative antecedent 

precipitation than with higher cumulative antecedent precipitation.  This effect may 

be the result of inter-seasonal differences in the dominant controls on baseflow 

recession rates.  In Chapter 3, the primary control on baseflow recession rates in 

California watersheds was found to shift from small, quickly-recharged groundwater 

stores early in the wet season to larger, seasonal groundwater stores later in the wet 

season.  For a given ET flux from groundwater, the effect on storage depletion will be 

proportionally larger for a small store than a large store.  Therefore, the effect of 

wildfire on baseflow recession rates could be expected to be greatest early in the wet 

season for California watersheds containing phreatophyte vegetation.  None of the 

watershed-scale models besides Arroyo Seco and Big Sur, or the regional-scale 

model, showed significant changes in post-fire baseflow recession rate response with 

cumulative antecedent precipitation (no value was obtained for Lopez).  The large 

credible intervals associated with many of the watershed-scale models suggests that 

the statistical power for evaluating these models may have been weak, possibly due to 
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an insufficient amount of available post-fire data.  As a result, the overall effect of 

antecedent storage on post-fire baseflow recession rate change remains inconclusive. 

The effect of potential ET on post-fire baseflow recession rate change was 

small and insignificant at both watershed and regional scales (Figure 19).  

Collectively, many of the coefficient values point to a decrease in baseflow recession 

rate response to wildfire with increasing potential ET.  However, this effect is 

opposite of what would be expected based on the physical processes operating in a 

watershed.  These results once again suggest that the available data in this study may 

not support the complexity of the mixed model when an interaction term is included. 

 

4.6. Conclusions 

The purpose of this paper was to examine the impact of fire on baseflow 

recession rates.  The first-order control on baseflow recession rates was found to be 

inter-seasonal differences in antecedent storage, with baseflow recession rates 

decreasing with increasing cumulative antecedent precipitation.  Baseflow recession 

rates also increased with higher levels of potential ET, although this effect was highly 

variable at the watershed scale.  At a regional scale, wildfire decreased baseflow 

recession rates 52.5% (37.6% to 66.0%) during the first post-fire year assuming 100% 

burnt.  This decrease implies that processes associated with post-fire reductions in 

above-ground vegetation (e.g. decreased interception, decreased soil ET, decreased 

groundwater ET) were the dominant hydrologic controls on baseflow recession rates.  

The effect of wildfire on baseflow recession rates was not sensitive to inter-seasonal 
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differences in post-fire antecedent storage or potential ET.  However, more data will 

be needed to conclusively assess this latter result due to weak statistical power for 

evaluating the interaction variables. 

The results of this study indicate that baseflow recession rates decrease 

following wildfire at a regional scale; at a watershed scale, the level of decrease was 

more variable.  To better predict watershed to watershed differences in baseflow 

recession rate response to fire in the future, it will be necessary to 1) identify areas 

within a watershed that contain phreatophytes vegetation and 2) quantify burn severity 

in these areas.  In the current study, area burnt was evaluated relative to the entire 

watershed and all burnt areas were assumed to have equal burn severity.  By 

identifying locations within the watershed containing phreatophyte vegetation and 

using satellite data such as the Moderate Resolution Imaging Spectroradiometer 

(MODIS) to estimate burn severity, uncertainty in the prediction of baseflow 

recession rates response to fire may be reduced. 
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Chapter 5: Conclusions 

This dissertation provided the first regional examination of post-fire 

streamflow change in California watersheds.  In the first paper, Chapter 2, the 

regional effect of fire on annual streamflow was investigated using a mixed model.  

At a regional scale, annual streamflow increased significantly following fire.  In 

addition, post-fire annual streamflow response was greatest with higher percentages 

of watershed area burnt and then decreased as vegetation recovered following fire.  

The effect of fire on annual streamflow was also sensitive to post-fire annual wetness 

conditions, with the greatest post-fire increase in annual streamflow occurring during 

moderately wet years.  Methodologically, the mixed modeling approach was found to 

be a valuable tool for regionalizing post-fire streamflow change from multiple 

watersheds. 

The second and third papers of this dissertation (Chapters 3 and 4) 

investigated the effect of wildfire on baseflow recession rates.  In Chapter 3, the first 

known study to characterize the relation between inter-seasonal differences in 

antecedent storage and baseflow recession rates in California was conducted.  It was 

necessary to quantify this relation prior to evaluating the effect of wildfire effect on 

baseflow recession rates since antecedent storage were observed to be the first-order 

control on baseflow recession rates.  A negative power-law relation was identified 

between antecedent storage and baseflow recession rates, with baseflow recession 

rates decreasing by up to an order of magnitude as antecedent storage levels 
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increased.  Simulations using a parsimonious storage-discharge model indicated that 

this relation may be the product of inter-seasonal differences in the source of 

recession flows; as the small, quickly-recharged aquifers that dominate baseflow 

recession response at the beginning of the wet season shift to large, seasonal aquifers 

as the wet season progresses. 

In the third paper (Chapter 4), the effect of wildfire on baseflow recession 

rates was examined at both watershed and regional scales using the mixed model.  

This study represented the first comprehensive investigation of the impact of wildfire 

on baseflow recession rates.  As expected, antecedent storage was the most 

significant control on baseflow recession rates at both scales.  The effect of potential 

ET and wildfire on baseflow recession rates was highly variable at the watershed 

scale, but both variables were found to be significant controls on baseflow recession 

rates at the regional scale.  For wildfire, post-fire baseflow recession rates decreased 

by approximately one-half during the first post-fire year assuming 100% area burnt.  

This decrease implies that the dominant hydrologic control on post-fire baseflow 

recession rates are related to post-fire reductions in above-ground vegetation in 

California watersheds (e.g. decreased interception, decreased soil ET, decreased 

groundwater ET). 

 

5.1. Future research 

One of the weaknesses of the regional analyses conducted in this dissertation 

was the inability to examine the relation between watershed characteristics and post-
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fire streamflow change.  The number of burnt watersheds available for analysis, 

twelve and eight for Chapters 2 and 4 respectively, was insufficient to statistically 

evaluate the impact of watershed characteristics on streamflow response to wildfire.  

The inclusion of more watersheds would likely improve the analysis.  Unfortunately, 

Bart (2010) has noted that the large number of wildfires in California limits the 

availability of suitable watersheds with pre- and post-fire periods free of additional 

wildfires.  One potential solution to this limitation may be to include watersheds 

from other Mediterranean Climate Regions (e.g. South Africa, Australia).  This inter-

regional approach would increase sample size and could easily be integrated into the 

mixed modeling framework, with region acting as an additional level of the 

hierarchy.  It may also permit the exploration of inter-regional differences in 

streamflow response to wildfire. 

A further shortcoming of the research in this dissertation was the inability to 

characterize burn severity for phreatophyte vegetation.  Post-fire reductions in 

phreatophytes are likely to be a better predictor of post-fire baseflow recession rates 

than percentage of watershed area burnt, as used in this study.  Identifying both the 

location of phreatophytes within a watershed and their burn severity may help to 

reduce uncertainty in baseflow recession rate change experiments.  Sensors such as 

the Moderate Resolution Imaging Spectroradiometer (MODIS) can provide measures 

of post-fire burn severity for wildfires during the satellite era.  Identifying areas 

within the watershed with phreatophyte vegetation is less straightforward.  

Nevertheless, riparian zones may provide a satisfactory approximation of 
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phreatophyte spatial extent and future research may want to investigate the relation 

between riparian zone burn severity and baseflow recession rate response. 

Finally, the regional analyses in this dissertation demonstrated the 

applicability of the mixed modeling approach for synthesizing empirical data from 

multiple streamflow change events.  Future research on streamflow may wish to 

extend this modeling approach to other forms of land-cover change and/or climate 

change.  The mixed model is particularly well suited for exploiting large watershed 

datasets (e.g. MOPEX). 
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