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Abstract: A long-standing desire in biological and biomedical sciences is to be able to probe cellular 

chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fou-

rier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical 

technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a 

specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR 

imaging of living biological systems remains challenging because of the demanding requirements on 

environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged 

as a method to control the water thickness while providing a hospitable environment to measure cellular processes and re-

sponses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR 

imaging of living biological systems, provide contrast between the various techniques including closed and open-channel 

designs, and discuss future directions of development within this area. Even as the fundamental science and technological 

demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental 

requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of develop-

ment. These will require imagination, ingenuity and collaboration.  
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1. INTRODUCTION 

 Research within the life sciences is at a defining moment. 
With an extraordinarily detailed genome-based understand-
ing of cells, many researchers now seek to understand and 
define the principles guiding translation of the genetic code 
into the metabolic and regulatory networks underlying cellu-
lar function. The recent revolutions in single-cell genomic 
[1-4], proteomic [5-8], and transcriptomic [9-12] analysis 
have provided biomolecular details underscoring key proc-
esses in biological systems. Modern imaging techniques 
combining antibody staining or fluorescent markers with 
computation analysis have allowed researchers to study the 
spatiotemporal behavior of specific gene products in fixed 
cells, fixed tissue sections or living cells [13-15]. Comple-
mentary to these methods, Fourier transform infrared (FTIR) 
spectral microscopy (spectromicroscopy or microspectro-
scopy), a label-free and non-destructive technique, enables 
real-time acquisition of broadband information on the cellu-
lar chemistry [16]. 

 FTIR spectral microscopy uses a combination of visible 
light microscopy to examine the morphology of a biological 
specimen and infrared light illumination and interferometer 
to identify molecular composition. Illumination with infrared 
light promotes energy exchange between the inherent  
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vibrational modes of molecular bonds and incident photons. 
These exchanges result in distinct, fingerprint-like spectral 
bands that appear in absorption spectrum measured as a 
function of wavelength of incident light (typically expressed 
in units of wavenumber, cm-1). Figure 1 highlights the origin 
of different stretching or bending vibrational bands com-
monly encountered in biological samples. The precise posi-
tion, line shape, and intensity of these absorption bands de-
pend on the molecular structure and conformation as well as 
intra- and inter- molecular interactions.  

 The first experimental demonstration of infrared spec-
troscopy of biological samples was performed in 1949 using 
a thermal infrared light source and a dispersive infrared spec-
trometer approach [17]. In the 1950s, similar approaches 
were applied for the identification of different species and 
strains of bacteria [18], to study living muscle cells from 
insects and animals [19], and for the comparison of spectral 
features of normal and neoplastic tissues and the chemical 
constituents (e.g., nucleic acids, carbohydrates, fats and pro-
teins) [20]. Because the measurement process was slow and 
data analysis was time-consuming, infrared spectral micros-
copy did not become a widely used tool for studying cellular 
or tissue systems until the 1990s as a result of three techno-
logical breakthroughs: (i) the application of the fast Fourier 
transform algorithm, (ii) the availability of inexpensive, fast 
digital computers which enabled the replacement of disper-
sive spectrometers with FTIR interferometers, and (iii) the 
introduction of fast-response, high-sensitivity photoconduc-
tive single-element mercury cadmium telluride (MCT) detec-
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tors. Chemical mapping could be performed by raster scan-
ning the focused beam over the sample and collecting the 
data using a single point detector. In 1995, Lewis and Levin 
introduced focal plane array (FPA) detectors with a large 
number of small photovoltaic MCT detector elements [21] 
that could be used to image a larger sample region simulta-
neously. By the 2000s, most FTIR infrared microscopes 
were capable of using either a single-element detector for 
mapping or a FPA for imaging. 

 FTIR spectromicroscopy has emerged as a powerful tool 
for non-destructive, label-free chemical analysis of the struc-
ture and function of macromolecules in complex biological 
specimens such as cells and tissues. For example, FTIR 
spectral microscopy has been routinely applied to semi-
quantitatively evaluate the relative abundance of carbonate, 
phosphate and collagen in mineralized bone and cartilage 
tissues [22], characterize the spatial distribution of main 
components (i.e., collagen and proteoglycans) in articular 
cartilage [23-26] and identify age-related structural changes 
in the DNA of prostate tissues and predict the metastatic 
state of tumors [27]. It has also been utilized for the detec-
tion of microcrystalline deposits of creatine in the brain tis-
sues of post-mortem Alzheimer diseased humans as well as 
amyloid precursor protein (APP) transgenic mice [28] and 
for studying the effects of age and diet on the atherosclerotic 
lesion composition in rabbit aorta [29]. 

 The introduction of synchrotron radiation as a brilliant 
and broadband infrared source (from far-IR to near-IR) made 
a significant contribution to modern FTIR spectral 
microscopy. According to the Rayleigh criterion, the theo-
retical spatial resolution limit of FTIR microscopes is ~�, 
with microscope objectives having a typical numerical aper-
ture (NA) of ~0.5 [30,31]. However, weak signal-to-noise 
ratio (S/N) provided by conventional thermal IR sources 
often limits the practical spatial resolution of FTIR micro-
scopes to be ~20-50 �m. In contrast, the infrared light from 
synchrotron sources is 100-1000 times brighter than that 
from thermal sources [32], and allows for truly diffraction-
limited spatial resolution with excellent S/N when used with 

a single point MCT detector. The diffraction-limited spot 
size of 2-10 �m allows mapping the composition and spatial 
variation of single (or clusters of) cells including microbial 
[33-36], fungal [37-41], algal [42-44], mammalian [45-51], 
and even subcellular components of certain mammalian cells 
[52-54]. Although SR-IR (or S-IR) is a tightly focused 
source, the low photon energy and low power (compared to 
IR laser sources) do not introduce detectable biochemical 
changes within a sample [55]. This non-invasive, label-free 
approach is greatly beneficial to experimenters that hope to 
perform further examination of the same sample using com-
plementary methods such as staining [56], proteomic [57], 
genomic [58], or other –omics based analyses. 

 With the introduction of synchrotron illumination, inter-
est in imaging live single cells and clusters of cells has in-
creased dramatically. Imaging live cells can reduce some of 
the artifacts of fixation [59] and real-time FTIR measure-
ments on living biological systems (Figure 2) are crucial to 
unravel how their chemical composition evolves with time 
[43]. This can give insights into many problems of biological 
or medical interest including metabolic processes [60,61], 
development [51], and real-time responses to treatment or 
changing environmental conditions [62,63]. Jamin et al. [46] 
performed the first synchrotron-based FTIR measurements 
of live cells in 1998. They measured the variation in lipid 
and protein distributions in mouse hybridoma B cells during 
cell division and necrosis using a humidified chamber. The 
use of humidified chambers has continued in a variety of 
applications including mammalian cell response to poly-
chlorinated aromatic compounds [64], bacterial detoxifica-
tion of chromium(VI) compounds [65], bacterial degradation 
of environmental carcinogens [60], oxygen-stress adaptive 
response in obligate anaerobes [35], and tracking differentia-
tion process in neuron model cells [51]. These chambers, 
however, do not provide any way to replenish the media and 
only allow continuous measurement for a few hours before 
the biological system starts to degrade. Longer-term 
experiments require either repeated measurements of multi-
ple samples at varying time points, sacrificing both temporal 
resolution and cell-cell variations within a population, or 

 

Figure 1. Vibrational modes of common biomolecular bonds - Inherent vibrational motion of molecules gives rise to distinct, fingerprint-

like absorption bands in the mid-infrared region. Schematic shows different stretching or bending vibrational bands commonly encountered 

in biological samples. Infrared spectroscopy is sensitive to the presence of many chemical functional groups (structural fragments) in mole-

cules, and taken together the set of vibration modes are unique for every molecular configuration.  
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alternatively, the use of a microfluidic platform to maintain 
the biological system viability.  

 The primary challenge in imaging living biological sys-
tems with SR-FTIR illumination is maintaining environ-
mental conditions optimal for cell viability while minimizing 
the absorption signal from water. Strong IR absorption from 
the –OH stretching and HOH bending bands can quickly 
saturate the signal for transmission measurements with water 
thickness greater than about 10 micrometers [66]. Live cells, 
meanwhile, consume surrounding nutrients from the media 
and produce waste that must be exchanged periodically to 
maintain cell viability.  

 Despite great progress, SR-FTIR imaging of living bio-
logical systems remains challenging because of the demand-
ing requirements on environmental control [16]. To meet this 
challenge, microfluidic systems have emerged in the last 
decade as a method to control the water thickness while pro-
viding a hospitable environment in order to measure cellular 
processes and responses over many hours or days. They can 
be broadly categorized by whether the channel used to con-
fine the cells is closed, where upper and lower IR transparent 
windows are sandwiched between a spacer, or open, where 
surface effects are harnessed to maintain a thin water layer at 
an air-liquid interface. To date, the vast majority of papers 
on this topic have employed various iterations of closed 

channel devices while open-channel devices have emerged 
recently as a viable competitor, albeit with some limitations. 
This paper will provide an overview of microfluidic device 
development for FTIR imaging of living biological systems, 
provide contrast between the various techniques, and discuss 
future directions of development within this area.  

2. CLOSED-CHANNEL METHODS 

 Liquid flow cells (Figure 3) represent the foundation of 
the microfluidic closed-channel devices that comprise the 
majority of devices in use at various synchrotron facilities 
today. First employed by Wieliczka et al. [67] in 1989 to 
measure the absorption coefficients of water, their basic 
structure is a micron-scale thick gasket pressed between two 
infrared crystals and mechanically assembled as a stack in an 
external manifold that may also allow for sample injection 
and temperature control. This configuration is generally used 
for transmission experiments and allows for a sample to be 
maintained in relatively uniform, thin layer of water with 
absorption signal below saturation so that the water back-
ground can be subtracted later to obtain the sample spectra 
[66, 68-70]. This scheme is versatile in that a variety of dif-
ferent windows may be used and it is typically demountable, 
so that flow cells can be disassembled for cleaning and reuse. 
The main drawback of demountable flow cells is that the 

 

Figure 2. Synchrotron-radiation FTIR of live cells – A) Spatiotemporal chemical composition of live cells can be measured in microflu-

idic devices with an infrared microscope (adapted from Holman et al. [16]). Synchrotron infrared light is focused onto the sample by reflec-

tive optics and the reflected or transmitted light from the sample is directed to an infrared detector. Environmental conditions are maintained 

in the device through external fluidic connections. B) Infrared spectrum of a single human cell with color bands highlighting absorption 

peaks associated with constituent macromolecules. C) Repeated measurements of the same cells allow cellular processes to be recorded in 

real-time. Plot shows metabolite formation in single living Chlamydomonas reinhardtii (adapted from Goff et al. [43]). D) Chemical map-

ping shows how spatial distribution of chemical changes in several cells over time. Upper panels show visible images while lower panels 

show the lipid distribution in MCF-7 cells at time 0, 3, and 6 hours (adapted from Grenci et al. [87]). 
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path length, which relies on mechanical pressure, is not eas-
ily reproducible between measurements, increasing bias 
when comparing data from different experiments. Poor seal-
ing, leakage, and limited experimental complexity are two 
additional shortcomings when it is compared to approaches 
that use microfabrication.  

 In 2005, Moss et al. [71] were the first to apply flow cell 
techniques to SR-FTIR imaging of single living cells. Hu-
man colorectal cancer cell lines (HT29, SW-480, WIDR, 
CaCO2), human fibroblasts (primary culture) and human 
umbilical vein endothelial cells from healthy controls, in 
both confluent and exponential cultures were plated onto one 
CaF2 window. The window was mounted in a standard liquid 
cell (SpectraTech EZ-Fill) with a 15 �m Teflon spacer and 
closed with another window to limit the water film thickness. 
Around the same time, Miljkovic et al. [72] also reported 
imaging live HeLa cells suspended in growth medium, ac-
quired in both reflection and transmission modes, on differ-
ent substrates (low-e slides and CaF2) and with spacers of 
different thicknesses using benchtop FTIR equipment. 
Heraud et al. [42] then built an in-house liquid cell based on 
the SpectraTech cell and demonstrated SR-FTIR mapping of 
the metabolite distribution in living algae Micrasterias 

hardyi. These proofs-of-principle experiments demonstrated 
the viability of microfluidic devices for SR-FTIR measure-
ment of living cells.  

 The work that followed received significant interest from 
the IR community, particularly the IR synchrotron facilities 
[73-78]. Closed-channel configurations became a focal point 
and evolved into two main branches: One with demountable 
flow cell using plastic spacers and another micro-fabricated 
flow cells (both demountable and permanently sealed). 

 Demountable, stack-assembled cells inherited the basic 
layout of flow cells but added versatility for window selec-
tion and high-resolution imaging. The most common win-
dow material is CaF2 since it has good IR transparency, is 
relatively insoluble in water, and is cheap and robust com-
pared to other materials such as BaF2 or ZnSe. In order to 
use high magnification objectives with small working dis-
tance, Nasse et al. [74] developed a demountable liquid cell 
with the viewports made of 0.4-0.8 �m diamond films grown 
by chemical vapor deposition on a silicon wafer. The total 
device thickness including the holder was only a few milli-
meters to take advantage of the high resolution imaging ca-
pabilities at the IRENI beamline and conform to the spatial 
constraints therein. Stack-assembled devices have been used 
to measure protein expression in live cells [79,80], DNA 
conformational changes [81], and monitor progression of the 
cell cycle [82]. This technique does not require microfabrica-
tion, and can mostly be implemented with off-the-shelf com-
ponents outside of the custom manifold and machining 
through-holes in one of the windows. The drawback of this 

 
Figure 3. Closed-channel devices – A) Demountable stack-assembled flow cell (adapted from Nasse et al. [74]) to measure biological 

specimens with high spatial resolution. Cells are visualized through diamond films grown on silicon wafer and seals are maintained by me-

chanical pressure from assembled manifold. The flow cell can be disassembled after measurement to reuse parts or access cells. B) De-

mountable stack-assembled flow cell (adapted from Tobin et al. [73]) with machined features on separate layers. Based on a modified Biop-

techs FCS3 cell, the channel and chamber layers are pressed between two CaF2 crystals for transmission measurement on a Bruker Hyperion 

microscope. C) Microfabrication allows more complex structures to be integrated into the flow cell and very precise control of water film 

thickness to be maintained uniformly over the entire measurement area. Device shown from Grenci et al. [87] has channels defined in a pho-

tosensitive polymer that covers the CaF2 window. The device is permanently sealed by thermomechanical bonding.  
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approach is the difficulty to implement sophisticated struc-
tures within the spacer and the path length reproducibility 
issues related to the mechanical clamping of the stack, giving 
variable compression of the spacer.  

 To cope with some of the limitations of stack-assembled 
cells, microfabrication has emerged as a method to imple-
ment more complex spacer designs and to build completely 
sealed, FTIR-compatible devices for live cell measurement. 
Hinsmann [83] performed the first use of microfluidic de-
vices with infrared spectroscopy in 2001. With a mixer mi-
crostructure made between two calcium fluoride crystals, 
they were able to observe the real-time saponification of 
methyl monochloroacetate with sodium hydroxide. This ap-
proach was translated to living biological system imaging in 
2010 by Birarda et al. [75] and Tobin et al. [73], where spac-
ers were directly fabricated on top of IR-transparent win-
dows using optical lithography or direct printing methods 
[84]. This method allowed microstructures like channels and 
reservoirs to be added to the cell chamber [85,86] or to 
change the material surface properties [87,88] while giving 
more precise control of the spacer thickness. The fabrication 
approach further allowed development of devices that were 
either thermo-mechanically or chemically sealed [59, 63] 
instead of being clamped together.  

 A few examples of the application of microfabricated 
devices include assessment of the effect of different fixatives 
and fixation protocols on living human monocytes [59], 
identification of the spectral markers of apoptotic and pre-
apoptotic cells [89], monitoring the progression of cell cycle 
[90], and evaluating the chemical response of leukemia cells 
to drug treatments [91]. 

 Some concerns have been raised with closed-channel 
devices in terms of the effects of both confinement and con-
tact with non-conventional materials on the viability of cells 
over extended measurement periods. The use of deuterated 
water D2O [43,92] has been attempted to loosen the spatial 
constraint in the liquid film thickness to about 20 �m. How-
ever, it introduced other problems because cell viability can-
not be sustained for long periods in D2O and isotopic ex-
change caused difficulties in water compensation during 
analysis. Birarda et al. [93] evaluated the effect of confine-
ment on a circulating cell line. Monocyte cells (U937) were 
confined in devices having different thicknesses ranging 
from 9 (i.e. similar size of the cells) to 3 micrometers. Ob-
servation of the time evolution of DNA, protein and lipid 
bands showed that no cellular response was detectable for 
deformations lower than 60% for 100 minutes upon entering 
the device. This is an important consideration when working 
with large cells that may experience significant deformation 
to fit within 9-10 �m thick devices necessary for measure-
ment.  

 Deformation is less of a concern for adherent cells but 
their interaction with the surface of infrared transparent 
materials may cause cytotoxicity problems. Wehbe et al. 
[94] found the infrared transparent Si, ZnS, and CaF2 did not 
impact the viability of adherent mammalian cell lines, but 
BaF2 and ZnSe did Mitri et al. [88] then demonstrated a 
nanometric layer of silicon dioxide can be used to protect 
cells from BaF2 and enable its exploitation of better transpar-
ency at lower frequencies. It remains an issue that prolonged 

exposure to shear stress during perfusion in closed-channel 
devices can damage cell viability [95] and has a limited 
measurement period of approximately 48 hours [87].  

3. OPEN-CHANNEL METHODS 

 A relatively new approach in microfluidic devices for 
live cell imaging is the application of open-channel devices 
(Figure 4). These are characterized by having one surface of 
the fluid exposed to atmosphere and the liquid thickness con-
trolled by surface effects. In 2009, Holman et al. [96] used 
continuous flow of fluid through a microchannel etched in 
silicon, supplied by a combination of hydrostatic pressure 
and capillary forces. Hydrophobic treatment to other surfaces 
ensures water flows exclusively within the channel and 
forces were carefully balanced between the hydrostatic pres-
sure of a feeder droplet, and capillary pull into a cleanroom 
tissue to maintain constant fluid thickness. This method was 
used to track the development and growth of an E. Coli 
biofilm over the course of two days using transmission 
measurement.  

 Loutherback et al. [97] recently demonstrated a second 
approach using an IR-reflective porous membrane to meas-
ure adherent mammalian cells for up to a week. Mammalian 
cells plated on top of the membrane were maintained in a 
thin layer of fluid above a larger flow channel from which 
they can draw fluid by capillary action. A thin (15 nm) gold 
layer deposited on top of the membrane allows FTIR meas-
urement to be performed in a transflection mode. This device 
has allowed continuous measurements of live cells for up to 
seven days. The primary chemical observation showed an 
increase in carbohydrates associated with surfactants to man-
age evaporative stress by the cells, which suggests that a 
porous membrane-based approach is best suited for cells that 
naturally grow at air-liquid interfaces such as epithelial tis-
sues of the skin, lung, eyes or microbial biofilms.  

 The advantage of the open-channel approach is that the 
fluid thickness can be maintained much thinner than that 
allowable by closed-channel devices, potentially reducing or 
removing the need to perform water background subtraction. 
These devices also reduce or avoid entirely the fringing ef-
fect from interference of multiple reflections at the infrared 
window surfaces by allowing the upper window to be placed 
much further from the lower window. A disadvantage of this 
approach is that environmental conditions must be main-
tained at high humidity to ensure that evaporation does not 
remove the media covering cell surface and the biological 
system must be chosen carefully to suit the environmental 
conditions.  

4. FUTURE DIRECTIONS 

 Figure 5 highlights future directions. Closed-channel 
devices using microfabrication can gain significant addi-
tional features with the incorporation of various well-
developed microfluidic modalities [98]. The incorporation of 
cell traps [99,100] may be beneficial to place cells in well-
registered locations for time-course measurements. Such 
structures may also help hold motile cells in place during 
measurement [43]. Water-in-oil droplets further may provide 
an alternative opportunity to encapsulate single cells [101] 
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and monitor metabolic activity in well-characterized and 
isolated environments [102].  

 One development that may prove particularly valuable is 
the ability to deposit smooth, IR-reflective layers of gold on 
polydimethylsiloxane (PDMS) [103]. While there remains 
concerns about electric field standing wave effects during 
transflection measurement [104], this material would allow 
cheap, rapid device fabrication and the inclusion of multi-

layer structures with a large suite of features including valves 
and mixers [105]. Mating through-holes in closed-channel 
devices to a PDMS-based, multiplexed in/out manifold may 
provide similar benefits while still allowing transmission 
measurements [106].  

 In addition to the open- and closed-channel devices, a 
third group of devices that are prominent in conventional 
FTIR imaging but have yet to see much use with synchrotron 

 
Figure 4. Open-channel devices – A) Open-channel device to study live bacteria in aqueous environments (adapted from Holman et al. 

[96]). The device is composed of channels etched into a silicon wafer. Flow of media is maintained in channels by hydrophobic treatment to 

non-channel surfaces and liquid flow is controlled by hydrostatic pressure in a feeder droplet. B) Membrane device to study cells that grow at 

the liquid air interface (adapted from Loutherback et al. [97]). The cells are maintained in a thin layer of water on top of a gold-coated porous 

membrane. Constant flow of media underneath the membrane allows for nutrients to be replenished by capillary action.  

 

 
Figure 5. Future directions in microfluidic FTIR devices - A) Advanced microfluidic structures such as droplet generators and cell traps 

could be used for sample confinement and entrapment in an array format for measurement with SR-FTIR (adapted from Huebner et al.). B) 

Plasmonic microstructures can be used to increase the sensitivity of IR spectromicroscopy to extremely dilute analytes in solution (adapted 

from Adato et al. [112]). C) SR-FTIR in open-channel devices can be hyphenated with mass spectrometry for more detailed molecular iden-

tification as demonstrated by O’Brien et al. [57]. D) The coupling of SR illumination with large area focal plane array (FPA) imaging detec-

tors can be used to employ SR for ATR imaging and fluidic micro incubators can be used for experiments on live cells (adapted from Chan et 

al. [108]). 



Microfluidic Devices for SR-FTIR of Living Biosystems Protein & Peptide Letters, 2016, Vol. 23, No. 3    279 

illumination sources are attenuated total reflection (ATR) 
cells or chambers. These ATR-based devices are functionally 
closer to environmental chambers than flow cells or micro-
fluidic devices. ATR probes only a few microns at best at the 
crystal-liquid/cell interface, so the thickness of the total layer 
of water is not important, and it is possible to achieve petri 
dish-like condition for cell growth [107-111]. 

 Another exciting area of future development is the inte-
gration of live-cell imaging with plasmonic nanoantennas for 
ultra-sensitive surface enhanced IR absorption spectroscopy. 
This could enable trace detection of physiologically signifi-
cant yet elusive molecular species such as metabolites, cyto-
kines, growth factors and antibodies. Towards this end, 
Adato et al. [112] have demonstrated an ultra-sensitive plas-
monic internal reflection chip able to monitor monolayer 
protein binding events in real time with 10-fold signal en-
hancement over ATR.  

 Multimodal imaging in combination with mass spec-
trometry is also a promising area of future development. In-
frared spectral data lacks sufficient chemical specificity for 
unique molecular identification. High-resolution mass spec-
trometry (MS) can make possible more complete identifica-
tion of the full range of molecules involved in functional 
metabolism, including elemental composition obtained by 
accurate mass measurements and structural information 
gained from fragmentation products formed in tandem mass 
spectrometry measurements [113]. Combining these two 
techniques, using a demountable flow cell or open-channel 
device of certain kind, will allow the non-destructive, ambi-
ent chemical monitoring capabilities of SIR spectromicro-
scopy to be paired with efficient, spatially-resolved analysis 
by mass spectrometry. 

5. CONCLUSION 

 Synchrotron-radiation Fourier transform infrared spectral 
microscopy has progressed rapidly in the last decade. Real-
time measurements of biological processes in living cells 
have been and will continue to be one of the most exciting 
developments within this area. Various microfluidic devices 
have emerged as a platform for meeting the challenging re-
quirement of providing both a hospitable environment where 
cellular processes and responses can be probed over many 
hours or days while maintaining water films thin enough to 
obtain high quality spectral information. Although it is in its 
infancy, and more work is needed before its full potential can 
be realized. The foundations of the field are already quite 
strong. The device development in this area is expected to 
proceed to improve environmental control and enable addi-
tional capabilities such as sequential chemical treatments, 
advanced microfluidic structures, and multimodal imaging. 
Other paradigms such as ATR or plasmonic antennas may 
allow circumvention of water thickness requirements and 
open whole new areas of application. Across all device de-
signs, careful thought must be put into experimental pre-
considerations for the biological system of interest, as each 
design has distinct strengths and weaknesses.  

 From infrared absorption data, spatially- and temporally-
resolved chemical information, including the distributions 
and relative abundances of the classes of chemicals such as 
proteins, lipids, carbohydrates, or metabolites,

 is obtained. 

However, infrared data lack sufficient molecular or chemical 
specificity for unique identifications. The advent of geneti-
cally encoded labels enables the non-destructive fluores-
cence microscopy techniques [114,115] to provide highly 
selective and specific spatio-temporal information on the 
targeted cellular components or signalling molecules. Mean-
while, the destructive but high-chemical-resolution mass 
spectrometry (MS) can make possible more complete 
identification of the full range of molecules involved in func-
tional metabolism, including elemental composition obtained 
by accurate mass measurements and structural information 
gained from fragmentation products formed in tandem mass 
spectrometry measurements [116-119]. Together, they will 
offer great, perhaps even revolutionary new capabilities for 
the future of SR-FTIR imaging of living biosystems.  
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