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ABSTRACT
Epidemic simulations require the ability to sample contact networks from various random graph
models. Existing methods can simulate city-scale or even country-scale contact networks, but they
are unable to feasibly simulate global-scale contact networks due to high memory consumption.
NiemaGraphGen (NGG) is a memory-efficient graph generation tool that enables the simulation of
global-scale contact networks. NGG avoids storing the entire graph in memory and is instead
intended to be used in a data streaming pipeline, resulting in memory consumption that is
orders of magnitude smaller than existing tools. NGG provides a massively-scalable solution for
simulating social contact networks, enabling global-scale epidemic simulation studies.

Subjects Software and Workflows, Bioinformatics, Statistics and Probability

STATEMENT OF NEED
The ability to simulate epidemics enables the evaluation of the effectiveness of molecular
epidemiological tools [1] as well as the inference of critical public health information, such
as the time of zoonosis of SARS-CoV-2 [2]. Epidemic simulation frameworks such as FAVITES
simulate a random contact network, a random transmission network spread along the
contact network, a viral phylogeny constrained by the transmission network, and a random
viral sequence evolutionary process (e.g. single gene/protein, whole genome) along the
phylogeny [3]. The spread of viral pathogens is driven by social contact networks [4], and
the structure of the underlying contact network across which a virus transmits is heavily
influenced by the mode of disease transmission, necessitating a proper match between
pathogen and network model when designing epidemic simulation experiments [5]. As a
result, epidemic simulation frameworks such as FAVITES require the flexibility to simulate
contact networks under a wide selection of network models.

The two most popular existing tools for simulating networks under various stochastic
models are NetworkX [6], which is available as a Python package, and iGraph [7], which is
available as a C library with R, Python, and Mathematica interfaces. While these tools
support random network generation, they place an emphasis on the analysis and
manipulation of networks, and as a result, they require loading the entire network in
memory. This is feasible for community-level or even city-scale epidemic simulations, but
when simulating global-scale pandemics such as COVID-19, the memory consumption
becomes prohibitively large.

Tools such as EpiSims [8], EpiSimdemics [9], and EpiFast [10] provide efficient solutions
for simulating transmission networks along a given contact network, but they do not
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simulate the contact network itself. For simulating contact networks, cuPPA [11] and
cuPPA-Hash [12] provide GPU-accelerated solutions for massively-parallelized simulation of
ultra-large scale-free networks under the Copy Model [13], but they do not support the
simulation of contact networks under other graph models. Which is a critical feature for
epidemiologists hoping to fine-tune simulations to the contact patterns of a given outbreak
or population of interest.

IMPLEMENTATION
NiemaGraphGen (NGG) is a memory-efficient undirected graph generation tool that enables
the simulation of global-scale contact networks. NGG is intended to be used in
data-streaming epidemic simulation pipelines and thus avoids storing the entire contact
network in memory, resulting in faster runtime as well as memory consumption that is
orders of magnitude smaller than existing tools (Figure 1).

NGG is written in C++ and has no dependencies beyond a modern C++ compiler (and
optionally the command line make tool for convenience). When NGG is compiled, a separate
executable is produced for each model. NGG is also available via a Docker container on
DockerHub (niemasd/niemagraphgen). NGG currently supports the following stochastic and
deterministic models: Barabási–Albert [14], Barbell, Complete, Cycle, Empty,
Erdős–Rényi [15], Newman–Watts–Strogatz [16], Path, and Ring Lattice.

By default, NGG uses 4-byte unsigned integers to represent nodes in the network, which
supports networks with up to 232 − 1 ≈ 4.3 billion nodes, but users can use 2-byte (up to
216 − 1 = 65,535 nodes) or 1-byte (up to 28 − 1 = 255 nodes) unsigned integers to reduce
memory consumption, or they can use 8-byte unsigned integers (up to 264 − 1 ≈ 18
quintillion nodes) to support larger networks at the cost of higher memory consumption.

By default, NGG outputs networks in the tab-delimited edge list format used by
FAVITES [3]. Output files in this format can then be used as input files within FAVITES,
which will then be able to simulate a transmission network, viral phylogeny, and sequences
along the given contact network. However, for ultra-large simulation studies, plain-text
edge list representations of networks may result in extremely large files. To address this
NGG also implements a proprietary compact binary output format that uses exactly 2b|E| +
1 bytes to represent a network with |E| edges in which nodes are represented using b-byte
unsigned integers. Both supported output formats are highly structured and can thus be
compressed reasonably well using standard compression tools (e.g. gzip). FAVITES does not
currently support this compact binary format, so contact networks output in this binary
format will not be usable as input files in the current version of FAVITES (v1.2.8), but
support for this binary format will be implemented into FAVITES in the near future. Code
examples for loading contact networks in NGG’s output formats can be found in the NGG
GitHub Wiki (https://github.com/niemasd/NiemaGraphGen/wiki).

Memory-efficient graph sampling
In this subsection, we discuss the memory-efficient graph sampling algorithms
implemented within NGG. Most models implemented in NGG are sampled in 𝒪(1) memory.

Complete graph
The complete graph, in which every node has an edge to every other node, is trivial to
sample in 𝒪(1) memory (Algorithm 1).
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Path graph
The path graph, in which n nodes are connected in a linear path, is trivial to sample in 𝒪(1)
memory (Algorithm 2).

Barbell graph
The barbell graph, which consists of two complete graphs with n1 nodes (Algorithm 1)
connected by a path graph with n2 nodes (Algorithm 2), can be sampled in 𝒪(1) memory
(Algorithm 3).

Cycle graph
The cycle graph, which consists of a single n-node cycle, is trivial to sample in 𝒪(1) memory:
it is simply a path graph (Algorithm 2) with a single additional edge connecting the start
and end nodes (Algorithm 4).
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Ring lattice graph
The ring lattice graph, in which every node has an edge to each of its k neighbors (where k
must be even), is essentially a generalization of the cycle graph. Specifically, Cycle (n) is
equivalent to RingLattice (n, 2). The ring lattice graph can be sampled in 𝒪(1) memory
(Algorithm 5).

Erdős–Rényi model
The Erdős–Rényi model is a random graph model for generating networks, and it has two
parameters: the total number of nodes in the network (n) and the probability that any of the
(n2) possible edges is included (p). A naive algorithm can be used to sample graphs under the
model in 𝒪(1) memory (Algorithm 6).

However, the time complexity of the naive algorithm is 𝒪(n2), making it unsuitable for
ultra-large large networks. Instead, an alternative algorithm can also be implemented in
𝒪(1) memory (Algorithm 7), which is faster than the naive algorithm when the expected
number of edges (p(n2)) is relatively low (i.e., the network is relatively sparse) [17], as is the
case with social contact networks.

Barabási–Albert model
The Barabási–Albert model is a random graph model for generating scale-free networks,
and it has two parameters: the total number of nodes in the network (n) and the number of
edges to attach from new nodes to existing nodes (m). An algorithm exists to sample graphs
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under the model in 𝒪(nm) memory. Graphs sampled under BarabasiAlbert (n, m) will have
exactly m (n −m) edges, with exactly m targets selected during each iteration of the
sampling algorithm. Thus, when implementing the sampling algorithm, memory for repeat
and targets can be reserved up-front to avoid array resizing operations during the
algorithm (Algorithm 8).

Newman–Watts–Strogatz model
The Newman–Watts–Strogatz model, an extension of the Watts–Strogatz model [18], is a
random graph model for generating connected networks with small-world properties.
Unlike the Watts–Strogatz model, which may yield in disconnected graphs, the
Newman–Watts–Strogatz model is guaranteed to yield connected graphs. The
Newman–Watts–Strogatz model begins by sampling RingLattice (n, k), and for each edge (u,
v) in in the initial ring lattice, a new “shortcut” edge (u, w) is added with probability p. This
motivates a naive sampling algorithm (Algorithm 9).

However, the naive algorithm requires all edges of the graph to be stored in memory,
which results in prohibitively large memory requirements for ultra-large networks. An
alternative memory-efficient algorithm can be devised. There are n nodes, and in the
original ring lattice, each node has k edges. Therefore, the initial ring lattice graph has nk∕2
undirected edges, meaning we sample from Bernoulli (p) exactly nk∕2. The total number of
successful Bernoulli trials is thus a single sampling from Binomial (nk∕2, p). Further, each
node has n − k −1 possible new edges that can be added during the “shortcut”-adding step;
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these edges can be represented by a matrix with n rows (representing u) and n − k −1
columns (representing w):

0 ∶
1 ∶
2 ∶
…
i ∶
…

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k/2 + 1 k/2 + 2 … (n − k/2 − 1)mod n

k/2 + 2 k/2 + 3 … (n − k/2 − 0)mod n

k/2 + 3 k/2 + 4 … (n − k/2 + 1)mod n

… … … …
k/2 + i … … (n − k/2 + i − 1)mod n

… … … …

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)

If (u, v) is selected, then (v, u) cannot be selected because the graph is undirected. Thus,
we can disregard the bottom-right portion of the matrix. We can then represent each cell of
the matrix with its corresponding index in an array representation. For example, for n = 7
and k = 2 (X denotes “disregarded”):

0 ∶
1 ∶
2 ∶
3 ∶
4 ∶
5 ∶
6 ∶

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 3 4 5
3 4 5 6
4 5 6 0
5 6 0 1
6 0 1 2
0 1 2 3
1 2 3 4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

0 ∶
1 ∶
2 ∶
3 ∶
4 ∶
5 ∶
6 ∶

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 3 4 5
3 4 5 6
4 5 6 X

5 6 X X

6 X X X

X X X X

X X X X

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 2 3
4 5 6 7
8 9 10 X

11 12 X X

13 X X X

X X X X

X X X X

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

With this representation, sampling “shortcut” edges can be reduced to an efficient
algorithm: randomly select a collection of Binomial (nk∕2, p) integers from
Uniform(0, n(n−k−1)

2 − 1) without replacement, then map from the selected integers to their
corresponding cells in the matrix, and finally map from cells in the matrix to edges (u, w).

Define a “full” row to be a row without any X symbols (i.e., no disregarded cells), and
define an “empty” row to be a row that only contains X symbols (i.e., all cells were
disregarded). The last column in the first row contains node n − k∕2 −1, and the last column
in the last full row has node n −1, so there are (n − 1) − (n − k∕2 + 1) + 1 = k∕2 + 1 non-empty
rows: 0 through k∕2. Thus, for rows 0 through k∕2 (i.e., the full rows of the matrix), we can
imagine the following representation in which cells are filled with the corresponding index
of the array representation of the matrix:

0 ∶
1 ∶
2 ∶
…
i ∶
…

k/2 ∶

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 … n − k − 2
n − k − 1 n − k … 2(n − k − 1) − 1

2(n − k − 1) 2(n − k − 1) + 1 … 3(n − k − 1) − 1
… … … …

i(n − k − 1) i(n − k − 1) + 1 … (i + 1)(n − k − 1) − 1
… … … …

k
2 (n − k − 1) k

2 (n − k − 1) + 1 … ( k
2 + 1)(n − k − 1) − 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3)

Row k∕2 + 1 has exactly 1 empty cell, row k∕2 + 2 has exactly 2 empty cells, etc.
Thus, the first row that is completely empty (i.e., n − k − 1 empty cells) is row
k∕2 + (n − k − 1) = n − k∕2 − 1. Thus, the remaining portion of the matrix from which
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“shortcuts” can be sampled can be represented as follows (X denotes “disregarded”, and Y
denotes “not disregarded”):

k/2 + 1 ∶
k/2 + 2 ∶

…
n − k/2 − 2 ∶

⎡
⎢
⎢
⎢
⎣

Y Y Y … Y X

Y Y Y … X X

… … … … … …
Y X X … X X

⎤
⎥
⎥
⎥
⎦

(4)

This is simply a (n − k − 2)-dimensional square matrix with a triangle in the upper-left.
We can now use these findings to define an efficient algorithm that only has to keep the
“shortcut” edges in memory, rather than all edges (Algorithm 10).

Benchmarking experiment
To benchmark network generation runtime and memory consumption, we used NetworkX,
iGraph, and NGG to simulate 10 replicate networks of various sizes, and we used the GNU
time command line tool to measure total runtime and peak memory usage. We chose to
explore Complete, Erdős–Rényi, Barabási–Albert, and Newman–Watts–Strogatz graphs in
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this benchmarking experiment due to their popularity in modeling social contact networks
in epidemiological studies.

In addition to the number of nodes in the network (n), the Erdős–Rényi, Barabási–Albert,
and Newman–Watts–Strogatz models have additional parameters that controls the
expected degree (Ed) of the network; the choice of Ed = 40 was made arbitrarily, and the
same trend was observed for Ed = 10 and Ed = 20. All tools are single-threaded,
and all runs were executed sequentially on an 8-core 2.0 GHz Intel Xeon CPU with 8 GB of
memory.

The results of the benchmarking experiment can be found in Figure 1. iGraph was
excluded from the Newman–Watts–Strogatz simulations because iGraph does not support
sampling from the Newman–Watts–Strogatz model. Furthermore, NetworkX was unable to
run to completion on larger network sizes due to memory requirements that exceeded the 8
GB memory of the benchmarking machine. In all scenarios, NGG was the fastest and least
memory-intensive of the three tools. With respect to Complete graphs, NGG is marginally
faster than NetworkX and iGraph, and the peak memory usage of NGG is orders of
magnitude smaller than both NetworkX and iGraph, with the gap widening as network size
grows. With respect to Erdős–Rényi graphs, NGG is ∼4× faster than NetworkX and ∼1.5×
faster than iGraph, and its peak memory usage is orders of magnitude smaller than both
tools, with the gap again widening as network size grows. With respect to Barabási–Albert
graphs, NGG is ∼4× faster than NetworkX and ∼1.5× faster than iGraph, and its peak
memory usage is consistently ∼20× smaller than NetworkX and ∼3× smaller than iGraph.
With respect to Newman–Watts–Strogatz graphs, NGG is ∼3× faster than NetworkX, and its
peak memory usage is ∼100× smaller than NetworkX, with the gap widening as network
size grows. Importantly, aside from the Barabási–Albert and Newman–Watts-Strogatz
models, all network models implemented in NGG have constant memory usage regardless
of network size.

CONCLUSIONS
We introduce NiemaGraphGen (NGG), a memory-efficient graph generation tool that
enables the simulation of global-scale contact networks. We benchmarked NGG against the
two most popular network simulation tools, NetworkX and iGraph, and we showed that
NGG was consistently fastest and had orders of magnitude lower memory consumption
than the other tools (typically constant with respect to network size).

AVAILABILITY OF SOURCE CODE AND REQUIREMENTS
• Project name: NiemaGraphGen (NGG)
• Project home page: https://github.com/niemasd/NiemaGraphGen
• Docker Hub page: https://hub.docker.com/r/niemasd/niemagraphgen
• Operating system(s): Platform independent
• Programming language: C++
• Other requirements: C++11 or higher
• License: GNU GPL v3.0
• RRID: SCR_021936
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Figure 1. Benchmarking results. Total runtime (left) and peak memory usage (right) for NetworkX, iGraph, and
NGG for various network models and sizes. Each point is the average of 10 replicates, and error bars (which are
smaller than the marker sizes) represent 95% confidence intervals. All tools are single-threaded, and all runs were
executed sequentially on an 8-core 2.0 GHz Intel Xeon CPU with 8 GB of memory.
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Figure 2. An executable Code Ocean compute capsule for NiemaGraphGen that can be launched on a cloud
workstation. https://doi.org/10.24433/CO.4009211.v1

DATA AVAILABILITY
The data sets supporting the results of this article, along with all relevant scripts and
commands, are available in the following GitHub repository:
https://github.com/niemasd/NiemaGraphGen-Paper.

The same data and scripts can be found in the following portable Code Ocean
environment (Figure 2) [19]. Snapshots of the code is also available in the GigaScience
GigaDB repository [20].
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