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ABSTRACT
Allosteric regulation of proteins continues to be an engaging research topic for the scientific community. Models describing allosteric com-
munication have evolved from focusing on conformation-based descriptors of protein structural changes to appreciating the role of internal
protein dynamics as a mediator of allostery. Here, we explain a “violin model” for allostery as a contemporary method for approaching the
Cooper–Dryden model based on redistribution of protein thermal fluctuations. Based on graph theory, the violin model makes use of com-
munity network analysis to functionally cluster correlated protein motions obtained from molecular dynamics simulations. This Review
provides the theory and workflow of the methodology and explains the application of violin model to unravel the workings of protein
kinase A.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0138175

SIGNIFICANCE

Studies on dynamics-based descriptions of protein allostery are
developing as an exciting frontier. Here, graph theory methods are
increasingly being used to understand information flow through
protein residue networks. In past few years, we have detailed the use
of Girvan–Newman-based community map approach to studying
allosteric regulation in protein kinase A. As principles of allostery are
applicable to all proteins, we provide here a detailed explanation of
our approach called the “violin model”. Foundationally rooted in the
Cooper–Dryden model, our approach emphasizes the role of residue
motions in mediating biomolecular allostery.

Protein function, especially in the context of signaling enzymes,
like protein kinases and phosphatases, is dependent on their
“activation” switches.1 Allostery or allosteric regulation presides
over this activation by triggering changes in these proteins through
phosphorylation, small molecule binding, and more.2 Effectors
(including mutations) that enhance a protein’s biological activity
are simply allosteric activators and those that decrease a protein’s

biological activity are allosteric inhibitors.3 In the natural envi-
ronment, most, if not all, signaling proteins are regulated by
allostery, where certain stimuli allow for manipulating key proteins
to elicit a biological response.4,5 While allostery has been called the
“second secret of life”6 and has been studied for more than six
decades,7 the underlying mechanisms of perturbations mediating
allosteric regulation remain largely elusive and available explana-
tions continue to be protein specific. The vantage point of describing
allostery continues to be its very definition: control from a distance,
where the effector site is several angstroms away from the active
site.8

CONFORMATION-BASED DESCRIPTORS
OF ALLOSTERY

The classical view of allostery is cultivated on the seminal
works of Monod, Wyman, and Changeux7,9 and Koshland et al.,10

who provided the two philosophies of cooperative binding of
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O2 to tetrameric hemoglobin (Hb): the concerted/MWC (Monod,
Wyman, and Changeux) and sequential/KNF (Koshland, Némethy,
and Filmer) models, respectively. Proposed in the 1960s, both mod-
els are based on cooperative interaction between the monomers
of multimeric proteins when binding a ligand at their active sites.
Both models describe two distinct conformations (Fig. 1), viz., a low
affinity (tense, T-state) and a high affinity (relaxed, R-state), for the
monomers contained in the multimeric protein. In the MWC model,
the monomers are defined to coexist in both T- and R-states with
an underlying equilibrium that governs their interconversion. The
KNF model describes the existence of an intermediate between the
T- and R-states such that ligand binding induces a conformational
change in the monomers to switch states. In this way, the KNF model

predicates that the conformation changes in the protein are in direct
proportion to the amount of ligand such that the relaxed/“active”
conformation exists only in the presence of the bound ligand.
Over time, the simplicity of these structural models11 has allowed
research to delve deeper into regulation of oxygen affinity by het-
erotopic effectors and evolve these models to explain hemoglobin’s
structure–function relationship.12,13

Both the MWC and KNF models have been employed to
explain allostery (or classic cooperativity6,14) in many proteins15–19

providing a conformation-based description of allostery.18,20 In both
the models, however, cooperativity is defined as an expression
for protein-ligand binding functions as it deviates from a hyper-
bolic curve (Fig. 1). A slow rising sigmoid curve denotes positive

FIG. 1. Conformation-based description of allostery (a) canonical descriptors of allostery is based on cooperativity seen in multimeric proteins (like hemoglobin) when they
bind their ligands. If the active sites of the monomers are independent, ligand binding curves have a hyperbolic shape like those of Michaelis Menten plots (curve 1). In
positive cooperativity, the plot flattens at first and then quickly increases to attain maximal signal (curve 2). The MWC formula is an expression for this S-shaped binding
function. Negative cooperativity is seen as a steep rise in binding with early flattening of the curve before optimal binding saturation (curve 3). (b) MWC and KNF models of
allostery are based on descriptors of two distinct protein conformations that occupy distinct basins in the free energy landscape. Conformation that has low affinity for the
ligand is called the tense state (T-state) and the conformation with high affinity for the ligand is the relaxed state (R-state). (c) The MWC model postulates that the two protein
conformations coexist in an equilibrium while the KNF model postulates that ligand binding induces conformational switching and converts one conformation to another. (d)
The population shift theory postulates that a protein’s free energy landscape includes an ensemble of varying populations of all probable conformations. Allosteric signals
(like ligand binding) choose compatible populations to shift the ensemble to a new averaged conformation.
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cooperativity, while a steeply rising sigmoid curve flattening into a
lower saturation value denotes negative cooperativity. Importantly,
the shape of the binding function does not provide a view into the
free energy landscape of the protein to explain how an averaged
conformation is reflected in the Hill coefficient.21 Moreover, the
coefficient is unable to distinguish competitive, noncompetitive
ortho-, iso-, or allosteric mechanisms that may be central to
establishing cooperativity. In other words, both MWC and KNF
models are phenomenological and attempt to annotate cooperativity
emerging from the averaged behavior of protein conformations.
Nonetheless, support for the structural view comes from mutation
studies,22 evidence of extreme protein conformational changes on
ligand binding,23 and even predictability of protein conformational
change from pure structural analysis of unbound or ligand-bound
protein forms.24,25

Since the 1960s, emergence of various biophysical techniques
including molecular dynamics simulations and nuclear magnetic
resonance (NMR) methods for characterizing protein dynam-
ics changed the way allostery was perceived.26,27 Relaxing the
requirement for symmetric oligomerization coupled to analysis of
varied conformations of the protein allowed for a simplified
application of the structural view to monomeric proteins.20,28 This
“population shift” model29–31 recognized that all proteins exist as
an ensemble32,33 of all functional conformations averaged around
their native state as defined by their free energy landscape. This
ensemble includes all preexisting allowed conformations for the
protein (including both ligand-unbound and ligand-bound confor-
mations) as major or minor populations. Allosteric effectors choose
and bind their compatible conformations and shift the populations
of the ensemble to allow for protein conformation switching (Fig. 1).
Consequently, destabilization of the low-populated conformations
without affecting the protein’s native structure was used to explain
allosteric inhibition.34,35

However, does the conformation-based view of allostery
explain it all? The main limitation of the structural view stems from
its vantage point of being tied to the conformation or structure
of the protein. However, do structurally similar proteins have
similar allosteric footprints? While the view describes distinct
unbound–bound protein conformations, it does not define how
these conformations are adopted. How do similar proteins that bind
a common ligand adopt different conformations?36,37 The view fails
to explain allostery in the absence of conformational change,38,39

effect of mutations that do not disturb structure but alter protein
function,3,40 role of disordered protein segments,41 and the most
perplexing: agonistic and antagonistic effects mediated from the
same effector site.42,43 Experimental limitations do not allow for
exploring all allowed protein conformations as expected from the
population shift paradigm, and explanations continue to be specific
to the majorly populated one or two conformations in the free
energy landscape. Overall, the structural view is so example-specific
that it offers no universal understanding to studying proteins or
allosteric systems in general.

DYNAMICS-BASED DESCRIPTORS OF ALLOSTERY

In a thermodynamic paradigm, allostery can be thought of
as energy transfer or energetic coupling between the effector and
active site.19 This inherently means that energy transfer will be a

long-range communication dependent on both enthalpic (struc-
tural) and entropic (dynamic fluctuations) components.44 In the
absence of a change in structure, allosteric communications could, in
theory, proceed solely through the entropic component. This defines
dynamics-based allostery, as postulated by Cooper and Dryden in
the 1980s,45 that dispenses with the idea of an overall conforma-
tional change. According to the Cooper–Dryden model, binding of
an allosteric modulator alters a protein’s conformational entropy
through dynamic modulation of the protein’s side chain motions.
Hence, an allosteric modulator can affect the properties of the
protein’s active site irrespective of its location on the protein surface
or ability to change the shape of the protein (Fig. 2).

Unlike protein conformational switching that occurs on the
μs-ms time scale, the Cooper–Dryden model emphasizes changes
in frequencies and amplitudes of amino acid thermal fluctuations
or the redistribution of ps-ns motions in the protein’s interior as
the mediator for allostery.46 Moreover, as self-organization and
dynamics-based folding of a protein are its intrinsic properties,47

these correlated ps-ns motions in the interior of the protein would
also show distinct patterns in the ligand-unbound states. Here, the
structure of the protein would dictate a spatial distribution of amino
acid densities and constrain the correlations in their movements
to certain regions. This means that while the entropic contribution
to allostery is dependent on side chain motions, these motions are
nonrandom and are constrained by the inter-residue interactions
imposed by the structure of the protein.48 This dynamics-based view
of allostery is supported by the increased complementary evidence

FIG. 2. Dynamics-based description of allostery (a) The Cooper–Dryden model
postulates that reorganization of internal protein motions allows for allosteric com-
munications in proteins in the absence of any major conformational change. (b)
The Elastic Network Model reduces a protein into an elastic mass-and-spring net-
work. Allosteric stimuli (like mutations and ligand binding) alter the mass density
and moduli of connecting springs.
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derived from molecular dynamics simulations and protein NMR
methods.49–52

THE “VIOLIN MODEL” OF DYNAMICS-BASED
ALLOSTERY

When working on the catalytic domain of protein kinase A
(PKA),3,44,51,53–57 we explored its dynamics-based allostery based on
the Cooper–Dryden model and called it the “violin model.” This
was for two reasons: First, the shape of the kinase catalytic domain
is a bi-lobal structure that resembles the body of a violin. Second,
the physics of a violin based on normal modes and wave-functional
approaches58–61 closely matches the Cooper–Dryden model of
allostery in proteins. Acoustics of a violin are determined by the
anisotropic elastic properties of its two plates. When the bow is used
to excite the strings, a harmonic note is generated as a wave func-
tion that disperses through the two plates of the violin.60 Depending
on the shape, grain of wood, and filing of the plates (parameters
that determine its elastic properties), modes played on the violin
register a particular resonance pattern on its plates. Named after
the physicist who described them, these resonance patterns are
called “Chladni patterns”60–62 and are essentially used as a guide to
manufacturing violins. Physically, the presence of Chladni patterns
means that certain parts of the violin vibrate together while others
synchronously vibrate away from each other at every note (Fig. 3).
If a protein (like protein kinase A) is thought to be a violin, it will

mean that in every conformational state (note played), there are
amino acids in is interior that synchronously either move together
or away from each other. Much like the shape and grain of wood
for a violin, the elastic properties of the protein will be defined by
its amino acid composition and folded structure. Changes in the
elasticity of the protein (by mutation or allosteric cues) will change
the “Chladni pattern” of the protein without changing its shape.
In this way, the violin model will define the founding argument of
the Cooper–Dryden model where vibrations/fluctuations/motions
in the interior of the protein will define its allosteric communi-
cation.45 Computationally, the violin model can be approached in
two ways: elastic network models63–66 and community network
analysis.67,68 While both these approaches are explained below,
we have used the community network analysis to explore protein
kinase A.44,51,3,53,55,56,57

ELASTIC NETWORK MODELS

In a simplified, low-resolution view of the violin model, a large
protein can be thought to be made of several semirigid bodies
connected by springs69 (Fig. 2). This forms the Elastic Network
Model (ENM)64 that describes every amino acid as an atomic
particle placed in 3D-space in accordance with the structural fold
of the protein. These particles in turn are connected to each other by
linear Hookean springs in patterns decided by certain rules.63,70–72

For example, in coarse-grained ENMs, patterns emerge with the

FIG. 3. Violin model of allostery. (a) Harmonic nodes create a vibrational resonance pattern on the plates of a violin called “Chladni patterns.” At different node frequencies,
different parts of the plates are synchronized to vibrate together or against each other. Elastic properties of the plate affect Chladni patterns. Chladni pattern pictures
obtained from Ref. 62. (b) If the kinase bi-lobal structure is thought of as a violin, Chladni patterns are reflective of the resonance patterns of internal vibrations/amino acid
motions of the protein. Different effectors (like binding of PKI and PKS) generate distinct “community maps” when analyzing dynamics-based amino acid networks.
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use of a distance-based interaction cutoff of ∼10 Å.72 If all atomic
fluctuations around a reference structure are considered isotropic
(independent of the direction of the fluctuation), the overall dynam-
ics of a protein with Nparticles can be described by N-dimensions
(only the amplitude of fluctuation and no direction). This forms the
Gaussian Network model (GNM) that forms the basis of Normal
Mode Analysis (NMA)71,73–75 used for investigating fluctuations or
protein structural transitions. In NMA, protein motion is linearly
approximated around an averaged steady state to be decomposed
into orthogonal normal modes. Mathematically, this is achieved by
solving the eigen problem to linearize the Hessian matrix of the
elastic potential energy64 such that each eigenvalue points to the
frequency of motion in the direction of the corresponding eigen-
vector. Smaller eigenvalues represent slower, very-low-frequency
modes that represent large amplitude motions contributing
significantly to protein entropy.74,76 In the anisotropic model of
NMA, atomic functions around the reference structure are consid-
ered in three-dimensional space such that the descriptions of protein
conformational dynamics are in 3N-dimensions.65,77

In the most basic application of ENM to study allostery,66

mutations in protein are modeled by changing the moduli of the
Hookean springs connecting the Cα nodes of the protein. Similarly,
allosteric effector binding is modeled with the addition of nodes
and local harmonic potentials to the system (Fig. 2). ENM has also
been used in combination with other strategies to uncover specifics
of allostery in various systems.78,79 ENM combined with Dynamics
Perturbation Analysis (DPA)80 and Perturbation Response
Scanning (PRS)81 can detect key residues whose perturbations
are coupled to dynamic changes at distal sites. Adaptations of
GNM have been used to identify pathways of correlated residues
in protein interiors82,83 and identify allosteric sites on the protein
surface.84 ENM is now being used in combination with network
analysis83,85 where NMA has been shown to recapitulate linear
correlated motions in protein obtained from all-atom molecular
dynamics.86

COMMUNITY NETWORK ANALYSIS

While ENM provides a compelling global view of protein
dynamics, it lacks in its descriptions of amino acid mobility, entropy,
or contribution to allostery. Here, graph theory87,88 based concepts
are useful in exploring allosteric communications within the
interior of proteins. Sub-microsecond protein motion trajectories
as obtained by molecular dynamics simulations are used to assess
pairwise amino acid interactions by Dynamic Cross Correlation89 or
Mutual information.90

Dynamic cross correlation is defined by the covariance89,91

between the motions of two amino acids as denoted by their Cα or
side chain atoms. Covariance c(i,j) is calculated as

c(i, j) = ⟨Δri ⋅ Δrj⟩,

where angled brackets denote the average over a trajectory ensem-
ble and Δri is the displacement vector of atom i. A Dynamic Cross
Correlation Matrix (DCCM) can be generated by calculating the
cross-correlation coefficient (or normalized covariance) as

C(i, j) = c(i, j)/[c(i, i)c(j, j)]1/2,

C(i, j) = ⟨Δri ⋅ Δrj⟩/⟨Δr2
i ⟩

1/2⟨Δr2
j ⟩

1/2
.

Residue pairs with uncorrelated motions intuitively have a cross-
correlation coefficient at zero [C(i,j) = 0]. Completely correlated
[C(i,j) = 1] or anticorrelated [C(i,j) = −1] motions denote that
the motions have the same phase and period. Positive values of
[C(i,j) > 0] imply atoms moving in the same direction, while negative
values of [C(i,j) > 0] imply atoms moving in opposite directions.
When residue pairs move in the same phase and period but their dis-
placements are perpendicular to each other, their cross-correlation
coefficient nears zero. This is a limitation of DCCM, where all
orthogonal motions disappear as if they were not correlated.92

Mutual information (MI) (though computationally expensive)
accounts for pairwise motions in all directions by correlating protein
backbone and side chain torsion angles.93 Mutual information
simply describes correlations between two observables of a system
such that one can measure how much information about observable
is gained from the knowledge of another.94 Mathematically mutual
information I(X;Y) between observables X and Y is defined as
difference between sum of the self-entropies of X and Y and the joint
entropy of the system comprising X and Y as follows:95

I(X;Y) = Σx ∈XP(X) ln[P(X)] + Σy∈Y P(y) ln[P(y)] − Σx∈XΣy
∈Y P(x, y) ln[P(x, y)], where P is the probability function. For a pro-
tein, these observables are the torsion angles of amino acids such
that its conformational (Shannon) entropy can be defined by the
equation3

Sconf =
n

∑
i

2π

∫
0

p(φ) In p(φ)dφ−
n

∑
i

n

∑
j

2π

∫
0

2π

∫
0

p(φ1,φ2) In

× p(φ1,φ2)
p(φ1)p(φ2)

dφ1φ2 + ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ,

where i and j denote the amino acid’s torsions summated
over n, the total number of torsion angles (φ, ψ, and χ) summated
over all the residues of the protein. This equation is an expansion
of the protein’s configurational entropy into terms including single,
pairwise torsions, etc. to directly use correlated torsions as a mea-
sure of thermodynamics. The second-order term in the equation
describes the sum of mutual information over each pair of torsion
angles. As the fold/packing of a protein determines the degrees of
torsions allowed for all amino acid residues, mutual information
provides a robust way to measure its correlation and directly
compares how the movement in one residue affects the movement
in another. One can then calculate a Pearson correlation coefficient
rMI as96

rMI[X, Y] = [1 − exp(−2I[X, Y]/d)]},

where I is the mutual information between the observables X and Y
and d is their dimensionality. The Pearson correlation coefficient rMI
assumes the value of zero for fully uncorrelated motions to reach
a value of 1 for fully correlated motions. Hence, unlike the simple
covariance measure C(i,j), the Pearson correlation coefficient rMI
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does not become zero with the orthogonal movement of pair-
wise amino acids and efficiently accounts for nonlinear correlated
residue-pair motions.

Both the Pearson correlation coefficient rMI and cross-
correlation coefficient C(i,j) can be used to draw the weighted
adjacency matrix (Aij) of proteins to obtain a network graph87 of
its correlated dynamics (Fig. 4). Simply, a protein of N residues
is used to create a graph with N nodes connected by edges that
have a certain weight. For any graph weighted by coefficients (edge
weights) wij, the adjacency matrix is denoted by Aij = wij, if an
edge for nodes i and j exists and otherwise by Aij = 0. The simplest
adjacency matrices (A) is a contact map97 (as derived from static
crystal structures), where two nodes are connected by an edge of
weight of 1 when they lie within a set distance cutoff of one another.
For analyzing dynamics-based information, two cutoffs are used to
provide a robust and maximally converged outcome: distance and
percentage.3,92 A distance cutoff of 3.5–5.5 Å ensures long-range
correlation communications are filtered out and only chemically
relevant correlations are analyzed. A percentage cutoff is a statistical
measure that ensures that measured correlations are present in
majority of the simulation frames (75%–85%) and denote effective

communications. Edge weights wij are obtained from the Pearson
correlation coefficient rMI or cross-correlation coefficient C(i,j) by
converting them into communication distances dij by a simple
negative log transformation. Furthermore, a Laplacian matrix (Lij)
can be derived by taking the difference between the diagonal
matrix of degree (Dij)98 and the adjacency matrix (Aij) of the
nodes. This Laplacian matrix (Lij) when multiplied by a spring con-
stant coincides with the Hessian matrix70 of the Gaussian Network
model (GNM) of the Elastic Network Models (ENMs) mentioned
above.

A dynamic weighted network as obtained from the adja-
cency matrix provides a digestible visual to the communications
in the interior of proteins. Here, residue pairs that are physically
associated with each other (within a chemical distance and being
present for a major fraction of simulation time) and exchange
dynamic information are closer together in the graph when com-
pared to residues that may be physically associated but do not
share dynamic information. To reveal the “Chladni” pattern for the
protein dynamics, Girvan–Newman algorithm88 is used to partition
the dynamic weighted networks into “communities” (Fig. 4). Here,
a community is defined as a local substructure involving a group

FIG. 4. Schematic workflow of community map analysis. Amino acid dynamics is obtained by microsecond MD simulations and is assessed for entropic correlations by
computing DCCM, MI, or LSP matrices. These matrices, in turn, are used to create an adjacency matrix to reveal a residue network. Girvan–Newman algorithm is used
to hierarchically cluster the network into communities based on the property of Edge-Betweenness. Deduced communities are mapped onto the structure to gain a visual
assessment of amino acid dynamics.
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of nodes that are densely connected within but sparsely connected
to others in the network. Communities are identified on the
criterion of Edge-Betweenness (EB) that measures the number of
shortest paths through a given edge. Edges with a high EB value
have higher information flow through them compared to others.
The Girvan–Newman algorithm88 iteratively calculates and removes
edges in descending order of their betweenness values to reveal a
pattern of nonoverlapping subgraphs/community network such that
a given node can only be a part of one community. Connections
between communities are weighted by the sum of EB values of the
pairs of residues connecting any two communities. When defining
protein nodes by both amino acid main chain (Cα) and side chain
(Cβ) atoms, it is common to get a set of residues wherein their
Cα-node is a part of one community and Cβ-node of another.3,53

These are called “Bridging residues” that physically connect two
communities. Optimal partitioning of the network into com-
munities is assessed by calculating the “modularity”99,100 of the
community map. Modularity is a multiplicative constant that defines
the number of edges present within a community to the number
of edges present in the entire network. Mathematically, modularity
Q is defined as68

Q =∑i(eij − a2
i ),

where ai = ∑j(eij) is the fraction of edges that connect nodes
within community i and eij is the fraction of edges connecting
nodes between two given communities i and j. Values of Q range
between 0 (entire protein is a single community) and 1 (number
of communities is equal to the number of residues), where a higher
number is indicative of a better quality of partitioning.99 Modularity
of community maps obtained from proteins is typically >0.4.55,99

Optimized community maps when imposed back on the 3D struc-
ture of proteins allow for visualizing the protein’s “Chladni pattern”
and are a direct reflection of its underlying Cooper–Dryden model
of dynamics-based allostery.

To ascertain the residue-wise contribution to the allosteric
communications, weighted dynamic networks can be studied
for their residue centralities.57,101,102 The most popular mea-
sures of centrality103,104 include Degree Centrality (DC), Closeness
Centrality (CC), Betweenness Centrality (BC), and Eigenvector
Centrality (EC). DC assigns a score to a node based on the number
of direct physical edges connecting it to other nodes in the network.
CC scores nodes based on their closeness with other nodes. Here,
shortest paths between all the nodes are calculated using the
Floyd–Warshall algorithm105 and CC score is based on the sum of
the shortest paths. Nodes with a higher CC influence the network
quicker than nodes with lower CC values. BC is scored based on the
presence of a node between the shortest path connecting other nodes
and reveals “bridges” of information flow through the network.
Finally, EC calculates the extended connections of node and
measures a node’s influence on the network. A node connected
to other highly connected nodes has a higher EC score and exerts
authority over the network. For various protein networks, EC is
quickly evolving as a sensitive measure for attributing residue
contribution to allostery.106–108 From the violin model point of
view, the central point of communities in protein structures is their
behavior as semirigid bodies. It is, thus, logical to suggest that

tracking the rotation of residue side chains during molecular dynam-
ics simulation along with their C-α atom displacements can be
beneficial for the analysis. Indeed, in our recent work, we demon-
strated that Local Spatial Pattern (LSP) alignment (that represents
residues as Cα-Cβ vectors) can be efficiently used to weight edges
in protein networks.57 In the LSP-generated networks, the DC and
BC have been significantly more informative in comparison with
traditional methods.57 Although the LSP-alignment is computation-
ally more expensive, it provides highly convergent results and can
be reliably used on trajectories as short as 10 ns. Improving the
computational efficiency of the method can open a new oppor-
tunity to analyze longer trajectories and large protein complexes.
In this review, we summarize our work on protein kinase A and
how the violin model has been crucial in explaining its allosteric
mechanics.

VIOLIN MODEL EXPLAINS DYNAMICS-BASED
ALLOSTERY IN PROTEIN KINASE A (PKA)

Protein kinase A (PKA) was the first eukaryotic kinase to
be purified and explored for its biochemical function.109 In cells,
PKA exists as a holoenzyme of two regulatory and two catalytic
subunits110 that conceal the activity of the catalytic subunit until a
stimuli is received for its function. As signaling events trigger the
activation of G-proteins, released 3′,5′-cyclic adenosine monophos-
phate (cAMP) molecules bind the regulatory subunits of PKA to
disrupt the holoenzyme. The catalytic subunit hence freed from
holoenzymes becomes available for downstream signaling where
it phosphorylates Ser/Thr in the sequence R-R-X-S/T-Y (X is any
residue and Y is a hydrophobic residue) in hundreds of cellular
substrates.111,112 This catalytic subunit of PKA serves as the proto-
type of the Eukaryotic Kinase superfamily of enzymes. It is the first
kinase domain to be purified,113 crystallized,114,115 and inspected for
its structural details.54

Briefly, the kinase domain is a bean-shaped bi-lobal structure
presenting a unique ATP binding pocket sandwiched between the
two lobes (Fig. 5). The smaller, N-lobe harbors a glycine-rich loop
(G-loop) that assists ATP binding by interacting with its adenine
ring,116 the β-strand 3 with the conserved K72,117 and the C-helix
with the conserved E91.117,118 The larger, C-lobe contains elements
for binding substrates119 and the regulatory subunits.110 The kinase
active site cleft includes the catalytic loop, activation loop, ATP bind-
ing pocket, the DFG and HRD (amino acid codes) motifs, all of
which are contained in crucial for mediating phosphoryl transfer
from ATP to substrate.119 Two divalent metal ions (usually Mg2+)

stabilize charges in the active site and regulate ADP release through
a “lynch pin” mechanism.120,121 Phosphorylation of the activation
loop at T197 is critical for orienting the kinase active site.122

Structural data as obtained from crystallography,119,123

NMR,51,124,125 and fluorescence126 indicate that the kinase domain
toggles between open, intermediate, and closed conformations as
the kinase circles through its catalytic cycle. Inter-lobal flexibility
is important for nucleotide exchange at the active site127,128 and is
mediated by two hydrophobic motifs (called “Spines”) that span
the two lobes while resting on the αF-helix of the C-lobe.129,130 The
spine associated with activation of the kinase domain (phosphory-
lation of T197) is referred to as the regulatory or R-spine, while the
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FIG. 5. The conserved kinase domain. The catalytic domain of protein kinase A (PKA) includes a kinase core flanked by two tails: the N-terminal tail and the C-terminal
tail. The kinase core is a signature of the eukaryotic kinase superfamily and has a characteristic bi-lobal structure. ATP binds in the cleft between the two lobes while the
substrate peptide binding region is localized to the C-lobe. Two lobes of the kinase core are connected by a network of hydrophobic residues assembled into two “spines.”

spine completed upon ATP binding and committing the kinase to
catalysis is called the catalytic or C-spine.131

Enzyme function, in general, is dependent on its motion
in the ps-μs time scales132–134 and understanding PKA turnover
and catalysis requires an in-depth appreciation for its dynamics-
based features.135 What role does dynamics play in helping PKA
activation,136 forming a transition state complex,137 or stabilizing the
product complex?138 Here, the violin model allows us to interpo-
late the role of dynamics-based allostery in the catalytic workings
of PKA. A typical community map of PKA includes about eight
communities with 40–60 amino acid residues.53,55 An expansive
repertoire of structural and biochemical data allows for attributing
functional features to each community (Figs. 6 and 7).55 Community
A (and A1) is localized to the N-lobe and includes residues that allow
for optimal nucleotide binding. Community B includes residues
surrounding the αC helix and the conserved K72-E91 salt bridge
that allows for maintaining a folded N-lobe. This includes the
FxxF motif of the C-tail of PKA that packs against the tip of the
β-sheet of the N-lobe. Community C (and C1) provides support
to the assembly of the R-spine and maintains the active confor-
mation of PKA. This includes the cation-π stack provided by W30
in the αA helix to the αC helix. Community D (and D1) and
community E (and E1) include residues from the catalytic loop
and the C-spine. These stabilize and support substrate cycling at
the PKA active site. Community F (and F1) spans majority of
the C-lobe including residues from αF helix and the conserved
F209-R280 salt bridge. Community F supports substrate binding and
its synchronization with ATP for optimal phosphotransferase at the
PKA active site. Community G supports protein–protein interac-
tions between the catalytic subunit and regulatory subunits of PKA.
Community H and community I form hotspot for small molecule
binding.

As PKA progresses through its catalytic cycle, community maps
dissect the dynamic network employed to support its function.
Comparison of community maps of the Apo and nucleotide-bound
forms55 of PKA details the role of core communities required
for initial steps of the kinase catalytic cycle. Here, community
maps are sensitive to capturing the catalytic differences imposed
by the presence of a single or two divalent metal ions.3,55 In
the absence of a peptide, major reorganization of communities
is limited to the C-lobe with communities A, B, and C on the
N-lobe unchanged. Communities D and E that show maximal inter-
action with metal ions regroup to accommodate the change in
active site charges. Community maps of the ternary complexes of
PKA:ATP(Mg2+):peptide53 demonstrate the PKA’s ability to distin-
guish between substrate and inhibitor peptides at a dynamics level
(Figs. 6 and 7). Allosterically important residues change commu-
nities when PKA binds substrate peptides derived from PKS and
PLN, product peptides including pPKS and pPLN or inhibitory
peptides derived from RIα, RIIβ, and PKI. For example, R133 in the
αD helix is a part of community F and is strongly coupled to the
bridging residues of community F and the active site. Its neighbor
R134 is a critical bridging residue that couples Com F to other
communities; R134 connects community F and community E1 in
PKA:ATP(Mg2+):PKI complex but community F and community D
in the PKA:ATP(Mg2+):RIα and PKA:ATP(Mg2+):RIIβ complexes.
In PKA:ATP(Mg2+):PKI and PKA:ATP(Mg2+):RIIβ complexes,
binding of peptides stabilizes R133 such that community F is
stabilized. This stabilization is propagated to communities D and E
at the active site. However, in the PKA:ATP(Mg2+):RIα com-
plex, increase in the distribution of conformations for R133 is
associated directly with increased destabilization of community F.
These changes in the dynamics-based associations of R133 explain
biochemical measurements where the R133A mutation decreases
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FIG. 6. Community map analysis explains the dynamics-based role of inactivating mutations and substrate recognition in PKA. (a) Functional roles assigned to PKA
communities based on biochemical/biophysical experiments. (b) Distinct community networks obtained for the Y204A mutation when compared with WT PKA reveals the
changing of communities in the C-lobe. Specifically, changes in community E and F explain the loss of synchronization of ATP and peptide at the PKA active site. (b)
Community-based segregation of dynamics in the active site of PKA is distinct for an inhibitor peptide (PKI) when compared with a substrate (PKS). PKI tightly binds
the kinase (as known by experiments) by engaging with its D and F communities. PKS only engages with community F with all catalytic residues including in the same
community. Figure adapted from our earlier manuscripts.3,53

the binding affinity of PKA:ATP(Mg2+) binary complex for PKI
and RIIβ without affecting its interactions with RIα.139 Unique
dynamic associations in the PKA:ATP(Mg2+):RIα complex is also
highlighted by the FDDY motif associating completely with the
active site community D (Fig. 7). In contrast, F327 and D328
combine with communities E1 and D in the PKA:ATP(Mg2+):PKI
and PKA:ATP(Mg2+):RIIβ complexes, respectively.

Community analysis can also be used to assess the role of distal
mutations on protein catalytic activity. For example, Y204A muta-
tion was identified from a peptide mobility screen and was shown to
abolish kinase activity in PKA despite being 8 Å away from the active
site.140 Crystal structure of the Y204A mutant showed no change
in the active conformation of PKA.141 Traditional biophysical
measurements failed to explain the cause of Y204A inactivity
when comparison of community maps of WT PKA and Y204A
showed important differences. Specifically, community F (substrate
interaction) split into F and F1 while communities C (supporting
activation), D, and E (active site) are also affected in Y20A (Fig. 6).
Communities responsible for binding the nucleotide (communities
A and B in the N-lobe) remain unaltered in Y204A, supporting
observations that the mutant binds ATP efficiently. Biochemical
assays designed based on information from community maps
showed that Y204A had comparable ATP hydrolysis activity to

WT PKA and in fact could do a phosphotransfer to water.3
ATP and AMP-PNP binding assays showed that Y204A bound
nucleotides almost twice as efficiently compared to the WT
protein. Y204A also bound the substrate peptide efficiently such
that the Y204A:ATP(Mg2+):IP20 complex was thermally more
stable than the PKA:ATP(Mg2+):IP20 complex in differential scan-
ning fluorimetry assays.3 Finally, we designed a fluorescence
polarization-based substrate cooperativity assay to assess if we
could biochemically detect uncoupling of nucleotide and substrate
peptide at the PKA active site as seen by community map analysis in
the Y204A mutation. We showed that while the WT PKA exhibited
“positive cooperativity” in binding nucleotide and FAM-IP20, all
cooperativity was lost in the Y204A mutation as predicated by the
community map analysis.3 PKA bound AMP-PNP with a KD of
∼40.0 μM in the apo form but showed a three orders enhanced
affinity at a KD of ∼65.0 nM for AMP-PNP binding to the
kinase:peptide binary complex. Reciprocally, peptide binding to
PKA was enhanced by three orders in the kinase:nucleotide complex
as compared to the apo protein. In contrast, Y204A bound
AMP-PNP with a KD of ∼20.0 μM in the apo form, which
became slightly worse at KD of ∼44.0 μM for AMP-PNP binding
to the mutant:peptide complex. In conclusion, where traditional
approaches failed to provide insights, the violin model was efficient
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FIG. 7. Community map analysis of
the ternary complex of PKA:ATP(Mg2+):
Inhibitor peptide reveals distinct dynamic
footprints. Peptides derived from the
inhibitory segments of three PKA inter-
acting proteins (PKI, Riα, and RIIβ)
break connections between the catalytic
residue supporting communities D and
E. Community H is strengthened by infor-
mation flow from associated commu-
nity C. Figure adapted from our earlier
manuscript.53

in providing leads to understanding changes in Y204A dynamics
that resulted in the loss of its kinase activity.

CONCLUSIONS

Dynamics-based descriptions of protein allostery are crucial
in highlighting the workings of signaling proteins, including that
of proteins kinases that regulate critical cell functions of growth
and division. Often, conformation-based descriptors of allostery are
limited in their explanations of protein activation/inhibition and
role of mutations and protein–protein interactions. Our violin
model-based community map analysis provides an exhaustive
method for measuring the role of internal protein motions toward
its function.
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