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Re-parameterized regression models may enable tests of crucial theoretical predictions involving
interactive effects of predictors that cannot be tested directly using standard approaches. First, we
present a re-parameterized regression model for the Linear X Linear interaction of 2 quantitative
predictors that yields point and interval estimates of 1 key parameter—the crossover point of
predicted values—and leaves certain other parameters unchanged. We explain how resulting
parameter estimates provide direct evidence for distinguishing ordinal from disordinal interactions.
We generalize the re-parameterized model to Linear X Qualitative interactions, where the qualitative
variable may have 2 or 3 categories, and then describe how to modify the re-parameterized model
to test moderating effects. To illustrate our new approach, we fit alternate models to social skills data
on 438 participants in the National Institute of Child Health and Human Development Study of Early
Child Care. The re-parameterized regression model had point and interval estimates of the crossover
point that fell near the mean on the continuous environment measure. The disordinal form of the
interaction supported 1 theoretical model—differential-susceptibility—over a competing model that
predicted an ordinal interaction.
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Methods for testing interactive effects of predictors using mul-
tiple regression analysis are widely known and used. Several
excellent texts (e.g., Aiken & West, 1991; Cohen, Cohen, West, &
Aiken, 2003) discuss how to test Quantitative X Quantitative,
Quantitative X Qualitative, or Qualitative X Qualitative interac-
tions. If a significant interaction is detected, follow-up analyses are
typically required to characterize the nature of the interaction, such
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as whether the interaction is ordinal or disordinal. A re-
parameterized regression model that distinguishes clearly between
ordinal and disordinal interactions and obviates the need for in-
volved follow-up calculations to determine point and interval
estimates of key parameters would be a useful adjunct to standard
approaches. Here we propose such an approach and illustrate it
using data for Gene X Environment (GXE) interactions. Although
we selected GXE data for the demonstration, the approach advo-
cated herein is general in nature and thus is applicable to a wide
range of research domains in which statistical interactions are
evaluated using regression analysis.

After discussing briefly why our new approach may be of use,
we show how a linear regression model with a Linear X Linear
interaction of two predictors can be re-parameterized to estimate
parameters that characterize the ordinal or disordinal nature of the
interaction and then adapt this approach to Qualitative X Quanti-
tative interactions. We also apply our approach to a set of relevant
data to demonstrate the unique outcomes obtained using our mod-
eling approach.

Statistical Interactions in Substantive Research

Our efforts here were motivated by the fact that researchers
often formulate interaction hypotheses imprecisely. If interaction
hypotheses are phrased nonspecifically, misfit between theoretical
formulations and trends in data may go unrecognized. If methods
for testing specific interaction hypotheses were developed, re-
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searchers could be challenged to provide more detail regarding the
expected form of interactions. Without clear predictions, no defin-
itive evidence regarding confirmation or disconfirmation of theo-
retical predictions is generated, aside from statistical significance
of the interaction effect. Indeed, researchers often present disordi-
nal interaction plots that appear inconsistent with their theories, but
theory-data mismatch is rarely, if ever, noted. Armed with clearer
predictions, misfit between predictions and results might be more
readily recognized, leading to the need to revise theories to accord
better with data.

One limitation of most research investigating interaction
effects is lack of detail regarding the predicted form of the
interaction. Researchers could specify whether an ordinal or
disordinal interaction is predicted. For example, educational
researchers might want to estimate the age at which one early
intervention treatment becomes more effective than another, so
policy makers can tailor interventions to children of appropriate
ages. Or, Lynn (1999) offered a controversial maturational
theory of intellectual development that holds that earlier mat-
uration in females will lead to higher performance relative to
males on intelligence tests at early ages. But by mid to late
adolescence, males will begin to outperform females due to
their later maturation and larger brain size. Research contexts
such as these suggest that interactions should be disordinal,
with a crossover point at some point on age.

One domain in which specific forms of interaction differentiate
theoretical positions is the study of GXE interactions. Many GXE
studies (e.g., Caspi et al., 2002, 2003) are based on a diathesis-
stress model of environmental action (Belsky et al., 2009). Under
diathesis-stress (Zuckerman, 1999), individuals with a “risk or
vulnerability” gene are affected negatively by poor environments,
whereas individuals with a different version of the same gene are
relatively unaffected by environments. In the best environments,
persons with differing polymorphisms may exhibit similar levels
of behavior, but behavior of the groups diverges with worsening
environmental conditions. Diathesis-stress therefore leads to pre-
diction of a GXE interaction with the ordinal form shown in
Figure 1A.

Recently, two research teams advanced a different theoretical
model, differential-susceptibility (Belsky, 1997, 2005; Boyce &
Ellis, 2005; Ellis, Boyce, Belsky, Bakermans-Kranenburg & Van
[Jzendoorn, 2011). Differential-susceptibility also leads to predic-
tion of a GXE interaction but one disordinal in form. Under
differential-susceptibility, persons carrying a so-called risk allele
may simply be more malleable. From this perspective (and in
accord with diathesis-stress), persons with a putative high-risk
allele should exhibit poorer outcomes in poor environments and
similar outcomes to persons with a low-risk allele in average
environments. However, the model suggests that, in very good
environments, persons with a putative high-risk allele will show
outcomes that are superior to persons with the low-risk allele. This
theoretical conceptualization leads to prediction of the disordinal,
or crossover, interaction in Figure 1B. Thus, diathesis-stress and
differential-susceptibility theories make identical predictions about
the differing slopes for the two gene allele groups; what distin-
guishes predictions under the two models is the location of the
crossover point (cf. Figure 1).

Methods for testing interactions reflecting differential-
susceptibility have been proposed (e.g., Belsky, Bakermans-
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Figure 1. Predicted outcomes of Gene X Environment interaction under

diathesis-stress (A) and differential-susceptibility (B).

Kranenburg, & van IJzendoorn, 2007; Belsky & Pluess, 2009; Ellis
et al., 2011) and applied to GXE data (e.g., Bakermans-
Kranenburg, Van IlJzendoorn, Pijlman, Mesman, & Juffer, 2008).
Our goal is to develop a more direct test of competing predictions
regarding the ordinal versus disordinal nature of an interaction that
is widely applicable across research domains, including GXE
studies.

Regression Equations With a Linear X Linear
Interaction

Standard Parameterizations

A linear regression model with a Linear X Linear interaction
can be written as

Y; =By + B\ X); + B,Xy; + B3(X,;- Xy;) + E, (1)

where Y; is the score of person i (i = 1, ..., N) on the dependent
variable; By is the intercept; the B; (j = 1, 2, 3) are regression
weights for the three predictors; X;; and X,; are scores of person i
on predictors X; and X,, respectively; and E; is a stochastic error
score. The third predictor in Equation 1 is the product of
X,;and X,; and carries the interactive effect of X;; and X,; if the
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two lower order effects (i.e., Xj; and X,;) are included in the
equation (cf. Cohen, 1978).!

Equation 1 can be fit using raw scores on X; and X,, but
regression coefficients and standard errors for X; and X, can be
rather volatile if the product term is in the equation. To reduce
these problems, many experts (e.g., Cohen et al., 2003) recom-
mend centering X; and X, at their respective means, leading to:

Y =By + B\X| + BX; + By(X] - X;) + E, 2)

where XT and X; are sample-mean-centered versions of X; and X,,
respectively; asterisks on B; through B; indicate weights for mean-
centered predictors; and other symbols were defined above.
Sample-mean-centering often reduces correlations among predic-
tors and leads to many interpretive advantages (see, e.g., Aiken &
West, 1991; Cleary & Kessler, 1982).

A Linear X Linear interaction effect of X; and X, on a quanti-
tative outcome variable Y can assume various forms. But one
feature of all Linear X Linear interactions is that predicted values
from the fitted equation for different values of X, converge to a
single crossover point at some point on X, if predicted values are
projected onto the (Y, X,) plane. Of course, predicted values for X,
converge to a single crossover point at some value of X, if
predicted values are projected onto the (Y, X,) plane.

Placement of the crossover point has led researchers to distin-
guish between ordinal and disordinal interactions. In brief, an
ordinal interaction has the crossover of predicted values at the
boundary (e.g., Figure 1A) or outside the range of observed values
on X, in the study (e.g., Figure 2A), whereas a disordinal inter-
action contains a crossover of predicted values within the ob-
served range of values on X, as in Figures 1B and 2B. Therefore,
the location of the crossover point is central to differentiating the
two forms of linear interaction.

Consistent with Aiken and West (1991), we derived a point
estimator for the crossover point as follows: Select two values for
X, (e.g., 0 and 1), insert one value for X, into the right side of
Equation 1, insert the other value for X, into the right side of
Equation 1, set the two equations to equality, and solve for X;:

By + B X| + By(0) + B5(X,-0) = By + B\ X, + By(1) + B3(X; - 1),

(3)
which, after a little algebra, yields
B,

X, =——7 = C, )
B

where C is a symbol for the crossover point, and other symbols
were defined above.

An analog of Equation 4 can be obtained using mean-centered
predictors. This solution is

X=-= = C, s)

which yields the crossover point C* in a mean-centered metric. To
calculate the crossover point in the raw metric of X, one must add

}1 to each side of Equation 5, leading to
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Figure 2. Plots of Linear X Linear interaction of two quantitative pre-
dictors X; and X,: ordinal interaction (A) and disordinal interaction (B).

X=—— + X, = C, (6)

where symbols in Equations 3—-6 were defined previously (see
Aiken & West, 1991, for details).

Re-Parameterized Equation

Derivation of re-parameterized model. Centering a predic-
tor at its sample mean is a choice, with many advantages (Aiken &
West, 1991; Cleary & Kessler, 1982), but not the only choice. We
decided to center X, at C, the crossover point on X;. This involved
substituting (X, — C) in place of X, in Equation 1. To determine
the expected value of Y (or ¥) when X 1 1s at the crossover point, we
solved the following equation:

E(YXI: C) =By + B,(C) + By(0) + B3(C-0), %)

where E() is the expected value operator, 6 is any random value of
X5, and other symbols were defined above. Substituting Equation
4 into Equation 7 yields

' We used the i subscript for persons in Equation 1 for precision. In the
remainder of the article, we typically drop the i subscript to simplify our
notation and presentation but retain the subscript if context demands.
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B B
E(Yy,- ) =Bo+ Bl(—l?2> + B,(6) + B3<—B—2 : e), ®)

3 3

which simplifies to

BB,
E(Yy=c) =By — B Ao, )
3

where A, represents the expected value of Y for X; = C, and other
symbols were defined above.

Predicted values for varying values of X, are identical when
X, = C, because predicted values fall at a single point for any
value of X,. We altered Equation 1 by replacing X; with (X; —
C) and placing the new intercept (Equation 9) in the equation. In
this model, B, becomes inestimable, because X, has no relation to
Y at the crossover point on X;. The re-parameterized equation thus
becomes

Y;=Ao+ Bi(X,;,— C) + Bs((X;;— C) - X)) + E;,  (10)

where all symbols were defined previously. Equation 10 is a
four-parameter equation, because C is now a parameter to be
estimated, with the same number of free parameters as Equations
1 and 2. Symbols for B| and B; remain the same as in Equation 1,
because these coefficients are unchanged by re-centering X; at C.
Equation 10 is a re-parameterization of Equation 1 (as shown in
supplemental material®) and thus leads to identical predicted val-
ues when plotting interactions. We also note that, because of its
form, Equation 10 must be estimated using a nonlinear regression
program, rather than a standard linear regression program.>

As shown above, a point estimate of the crossover point € is
simple to compute using Equations 1 and 4 or Equations 2 and 6,
but an interval estimate is more difficult to compute. Using Equa-
tion 10, the SE of € can be used to calculate an interval estimate
(e.g., a 95% confidence interval [CI]); estimation of SEs of pa-
rameters in Equations 1, 2, and 10 is discussed in supplemental
material.?

Regression Equations With Linear X Qualitative
Interaction

The foregoing results hold for a Linear X Linear interaction of
two quantitative predictors, but must be modified if one of the
predictors is qualitative in nature. Here, we consider parameter-
izations with two-group and three-group qualitative variables.

Standard Parameterizations

Dichotomous grouping. If only two groups are used (e.g.,
low-risk vs. high-risk), the regression model is similar to Equation
1. Let X, represent the quantitative predictor, and D, a dummy
variable (0 = group 1, and 1 = group 2). The standard regression
model is

Y; = By + B\ X); + B,Dy; + B3(X,;- Dy;) + E;, (11)

where D,; is the score of person i on dummy variable D,, the
subscript 2 on D,; is a reminder that group 2 has the unit value on
the dummy variable, and other symbols were defined above.

A mean-centered version of Equationl1 can also be formulated
as

Y =B, + B\X, + B,D, + B(X - D,) + E, 12)

where asterisks on regression weights indicate they are for mean-
centered predictors, and other symbols were defined above. Only
the quantitative predictor X; was mean-centered; centering the
dummy variable D, would lead to a less interpretable set of
regression weights.

Ternary grouping. The standard parameterization of a re-
gression model with a Linear X Qualitative interaction involving
three groups on the latter variable is

Y=B,+BX, +B,D,+B,Dy+B,(X,-D,) + B(X,-Ds) + E,
(13)

where D, and D5 are dummy variables with unit values for persons
in Groups 2 and 3, respectively, and other symbols were defined
above. In Equation 13, Group 1 is the reference group, and D, and
D5 allow one to determine whether Groups 2 and 3 differ from
Group 1 in mean level (or intercept) or in moderation with X;. A
mean-centered version of Equation 13 is

Y = By + B\X| + B,D, + BiD; + By(X, - D,) + B5(X, - D3) + E,
(14)

where all symbols were defined above. Again, only the quantita-
tive predictor was mean-centered, to retain interpretive advantages
of regression coefficients for the dummy variables.

Model comparisons to test lower level and interactive effects
using Equations 13 or 14 are well known (cf. Cohen et al., 2003,
pp. 308-316) so are not detailed here. But Equations 11-14 are
only as informative about the ordinal or disordinal nature of the
interaction as was true of Equations 1 and 2. Modified versions of
Equations 4 and 6 could be developed to estimate crossover points
for different groups, but SEs or CIs would still be unavailable for
these estimates.

Re-Parameterized Equation

Dichotomous grouping. A more directly informative under-
standing of a Linear X Qualitative interaction is obtained using the
re-parameterized equation:

Y=Ap+B(X,—C)+Bs((X,— C)-D,) +E,  (15)

where all symbols were defined above. The following equation is
an equivalent formulation:

roup=1 Y=A,+B{(X,—C)+E
‘{g p 0 1(1 ) (16)

“laroup =2 Y=A;+By(X,—C) +E’

where B, and B, are slopes on X, for Groups 1 and 2, respectively,

2 Technical details demonstrating the equivalence of the standard and
re-parameterized regression models are contained in the online supplemen-
tal materials. The supplemental materials also include syntax for carrying
out these analyses in nonlinear regression programs in SAS, R, and SPSS.

3 Given constraints of space, examples of fitting Equations 1, 2, and 10
to data with Linear X Linear interaction of two quantitative predictors—
both ordinal and disordinal interactions shown in Figures 2A and 2B,
respectively—could not be included in the present article. The online
supplemental materials demonstrate the fitting of models and interpretation
of results for data with ordinal and disordinal interactions. The supplemen-
tal material also provides details regarding estimation of SEs of parameter
estimates in the alternative models considered in this article.
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and other symbols were defined above. Equations 15 and 16 lead
to exactly the same R” as Equations 11 and 12. Thus, Equations 11,
12, 15, and 16 are equivalent regression models, with the same
number of free parameters and the same R*. But Equations 15 and
16 have a unique advantage over Equations 11 or 12: the direct
estimate for the crossover point C and its SE. The difference
between Equations 15 and 16 is the way in which the slope on X,
for Group 2 is represented. In Equation 15, B; is the difference
between slopes on X; for Groups 1 and 2, so the slope for Group
2 must be calculated as B; + Bs; in Equation 16, B, is a direct
estimate of the slope on X; for Group 2.

Ternary grouping. If the qualitative variable represents the
presence of three groups, one modified version of Equation 13 can
be written as

group=1 Y=A,+B|(X,—C)+E
Y:{group=2 Y=A,+By(X,—C)+E 17)
group =3 Y =A,+ By(X, — C) +E,

where B, through B; are regression slopes on X; for Groups 1
through 3, respectively, and other terms were defined above.
Equation 17 contains a single crossover or convergence point C, so
is a restricted re-parameterization of Equation 13. That is, Equa-
tion 17 has 5 free parameters, whereas Equation 13 has 6 free
parameters. Several alterations could be made to Equation 17 to
introduce an additional parameter; for example, one could fit the
following model:

group =1 Y=A,+B(X,—C) +E
Y:{group =2 Y=A;+By(X,—Cp) +E
group =3 Y = (Ag+ B|(C;5— C)y)) + B3(X, — C3) + E,

(13)

where C;, (labeled simply C in Equation 17) and C,5 are the points
at which regression lines for Groups 2 and 3, respectively, cross
the line for Group 1, and other symbols were defined above. With
the additional parameter, Equation 18 has the same number of free
parameters and R* as Equation 13. Thus, a nested-model test of
the difference in R for Equations 17 and 18 provides a 1 df test
of the hypothesis that a single crossover point holds for Groups
1, 2, and 3.

Considerations Regarding Re-Parameterized Models

Assumptions Underlying Estimation of the
Crossover Point

Using re-parameterized models to obtain interpretable point and
interval estimates of C rests on standard assumptions for linear
regression. Three important assumptions are (a) linearity of rela-
tions among variables, (b) equal measurement precision and equal
intervals across the range of each variable, and (c) the observed
range of X, corresponding closely to its population range. First,
regarding linearity, the crossover point might be estimated in
biased fashion if a linear model were fit to data with a quadratic
relation between X; and Y. Screening for nonlinearities in relations
among variables would allow a researcher to evaluate the serious-
ness of this issue for data under consideration.

Second, the assumption about measurement precision and inter-
vals at all points on a dimension is also of key importance. If this
assumption were incorrect, point and interval estimates of the
crossover point could be biased. This concern is difficult to eval-
uate empirically, but must be borne in mind. Third, drawing firm
conclusions about the ordinal or disordinal nature of the interaction
presumes that the full population range on X is observed in a study
or at least considered. If range restriction on a predictor occurs, the
range of values observed in a study is narrower than in the
population. A crossover point that falls outside the range of X
values observed in a study but still falls within the population
range of X, values may require special care when characterizing
the interaction as ordinal or disordinal.

Finally, we note that none of the three assumptions is unique to
our re-parameterized equations, but all apply with equal force to
the standard parameterizations of regression models when they are
used to obtain point estimates of C.

Strengths and Weaknesses of Re-Parameterized
Equations

Some strengths and weaknesses of our re-parameterized models
deserve mention. One strength, already noted, is the ready calcu-
lation of an interval estimate for the crossover point. The SE that
accompanies the point estimate of C allows one to calculate an
interval estimate of C‘, enabling a more nuanced evaluation of the
form of the interaction.

This strength leads, however, to a potential complication when
interpreting results. Four outcomes of point and interval estimates
might be considered: (a) disordinal interaction (i.e., C falling
within the range of X,), with the entire CI for C falling within the
observed (or potential) range of X;; (b) disordinal interaction but
with the CI for C falling partly outside the range of X;; (c) ordinal
interaction (i.e., C falling outside the range of X;) but with the CI
for C falling partly within the range of X;; and (d) ordinal inter-
action, with the CI for C falling completely outside the range of X.
Scenarios (a) and (d) allow clear interpretation: Under (a), both
point and interval estimates of C are consistent with the interaction
being characterized as disordinal; under (d), both point and interval
estimates of C are consistent with the interaction being character-
ized as ordinal. Scenarios (b) and (c) are more problematic for
interpretation. Under (b), one might conclude that the interaction is
disordinal in the sample, but an ordinal interaction in the popula-
tion cannot be rejected. In turn, (c) might be rendered as an ordinal
interaction in the sample, but a disordinal interaction in the pop-
ulation cannot be rejected. Note that these complications arise only
with consideration of the CI of C. If a researcher used Equation 1
or 2 and calculated only the point estimate of C, the result would
be an overly simplified interpretation of the ordinal or disordinal
nature of the interaction.

A second strength of the re-parameterized equation is the po-
tential for modifying an equation to test additional, specific hy-
potheses regarding parameters describing the interaction. For ex-
ample, consider a dichotomous variable S (i.e., a dummy variable
for sex, coded 1 = male, 0 = female). Equation 10 could be
modified in the following fashion:

Y = (Ag+AyS) + (B, + B,S)(X; — (C+ CS)) + (B3

+B3S) X (X, — (C+CS))-X,) +E, (19)
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where A, is the intercept for females, A, the intercept difference
for males, B is the slope of X, for females, B, the difference in X
slope for males, C is the crossover point for females, C, the
difference in crossover points for males, Bj is the slope coefficient
for the product term for females, and Bj; the difference in product
term slope for males. One could test lower-order and interactive
effects of sex by altering Equations 1 or 2 (see Cohen et al., 2003,
for details). The resulting equation would have eight free param-
eters, just as Equation 19 does, and sex differences in the interac-
tion would be embodied in coefficients. But point estimates of the
crossover points for males and females still would not have SEs. In
contrast, Equation 19 allows one to test specific hypotheses about
sex differences in particular parameters, providing point and in-
terval estimates of group differences on parameters that character-
ize the form of the interaction.

One possible weakness of re-parameterized models is the em-
pirical identification of parameters for interactions with nil or
small effect sizes. In the limit, if the interaction were completely
absent, iterative fitting of model estimates would not converge and
the estimate of the crossover point € would be empirically un-
identified and inestimable; if the interaction coefficient were a
very small positive or negative value, the crossover point € would
be difficult to estimate and might tend to *=o with extremely large
SE. Although some might view lack of convergence as a problem,
it might be seen as a strength of the procedure, indicating that the
interaction effect may be small or nonexistent. Or, if a test of an
interaction were significant using a standard model, lack of con-
vergence of a re-parameterized model may not be due to an
extremely small interaction effect (e.g., one or more outliers may
lead to nonconvergence), and the researcher should explore the
data more fully to isolate the problem.

Empirical Example Using Data From the NICHD
Child Care Study

To demonstrate the utility of the re-parameterized equation, we
analyzed data from the National Institute of Child Health and
Human Development (NICHD) Study of Early Child Care
(NICHD-SECC). The NICHD-SECC was a 10-site study, with
research sites across the United States (NICHD Early Child Care
Research Network, 2005). A minimum of 100 participants was to
be obtained at each site, and participating children and their
mothers were enrolled in the study when children were 1 month of
age.

Variables

We utilized data on child gene polymorphism, child sex, the
quantitative variable of childcare quality, and the child outcome
variable of social skills. The two-group gene categorization for this
analysis was based on exon-3 VNTR in the dopamine D4 receptor
gene (DRD4). Prior research (e.g., Bakermans-Kranenburg & van
[Jzendoorn, 2006; Belsky & Pluess, 2009) suggested that presence
of a 7-repeat on DRD4 is a risk factor for many developmental
outcomes. The dummy variable for DRD4 was coded as D, = 0 or
1 for absence or presence, respectively, of a 7-repeat. Of 438
participants with genotype data, 95 (22%) had the 7-repeat on
DRD4, so constituted the high-risk/malleability group. The re-
maining 343 participants (78%) did not have the 7-repeat, so

constituted the low-risk/malleability group. Child sex was coded as
0 = female, 1 = male; the sample was almost equally divided on
sex (51.8% female).

The quantitative predictor was childcare quality, assessing more
attentive, stimulating, and affectionate care and was derived from
observational coding done at five times between child ages of 6
and 54 months. Sample statistics on childcare quality were M =
2.83, SD = 0.24, Mdn = 2.82, and range 2.10-3.38. Children with
a DRD4 7-repeat (M = 2.87, SD = 0.24) did not differ signifi-
cantly on childcare quality from children without a 7-repeat (M =
2.82, SD = 0.24), in either mean level, #(439) = 1.74, p =.08, or
variability, F(345, 94) = 1.03, p =.87.

The outcome variable was teacher-reported social skills of chil-
dren in Grade 1, assessed with the Social Skills Rating System
(Gresham & Elliott, 1990). Standardized scores revealed sample
mean and standard deviation (M = 104.30, SD = 13.19) that were
near population values, indicating that children in the sample were
fairly representative of the population. Greater detail on all mea-
sures is available in NICHD Early Child Care Research Network
(2005).

GXE Results

As discussed earlier, a nonlinear relation between X, and Y can
lead to bias in estimating the crossover point. As a preliminary
analysis, we regressed Y on the linear, quadratic, and cubic trends
of X, for each of the two groups. Using hierarchical testing, the
quadratic and cubic trends had F-ratios of 0.13 and 0.02, respec-
tively, for the DRD4 low-risk group, and F-ratios of 0.83 and 0.01,
respectively, for the DRD4 high-risk group. These results suggest
the absence of nonlinearities that might bias estimation of the
crossover point under a linear specification.

Standard equations. First, we fit Equation 11 with raw-
scored predictors (see left part of Table 1). The X; X Group
interaction was significant, E3 = 17.51 (SE = 6.23), p < .006. The
crossover point was estimated as C = —(—47.95)/17.51 = 2.74,
using Equation 4.

Then, we fit the mean-centered version of this equation, Equa-
tion 12, to the data (see middle section Table 1). The mean-
centered equation gave the same estimate of the interaction effect
and an identical estimate of crossover point, C = (—(1.56)/
17.51) + 2.83 = 2.74, using Equation 6, as with raw-scored
predictors. Thus, both raw-scored and mean-centered equations
provided evidence that the interaction was disordinal, with a point
estimate of C close to the sample mean on X, although lack of a
SE for the crossover point hinders full interpretation.

Re-parameterized equation. Next, we fit the re-
parameterized Equation 16 to the data. Parameter estimates and
their SEs and Cls are shown in the right side of Table 1. The point
estimate of the crossover point, C =274 (SE = 0.09), 95% CI
[2.55, 2.92], fell just below the sample mean on X; (M = 2.83).
The lower limit of the CI for C fell 1.17 SD units below the sample
mean of childcare quality and the upper limit fell 0.38 SD units
above the sample mean, so the CI covers values in the middle of
the range of X, in the sample. Thus, both point and interval
estimates of the crossover point support a conclusion that the
interaction was disordinal, providing stronger support for
differential-susceptibility model than for diathesis-stress.
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Table 1

Results for Standard and Re-Parameterized Regression Models for Social Skills: Data From the NICHD Study

Standard parameterization

Re-parameterized model

Parameter Raw score Parameter Mean-centered Parameter Crossover-centered 95% CI
B, 94.92 (8.11) B, 104.57 (0.68) A, 104.30 (0.91) [102.5, 106.0]
B, 3.41 (2.87) B, 3.41 (2.87) B, 3.41(2.87) [—2.22,9.05]
B, —47.95 (17.9) B, 1.56 (1.48) C 2.74 (0.09) [2.55,2.92]
B, 17.51 (6.23) B; 17.51(6.23) B, 20.92 (5.53) [10.05, 31.80]

Note. NICHD = National Institute of Child Health and Human Development; CI = confidence interval. Unless otherwise noted, tabled values are
parameter estimates, with standard errors in parentheses. B, through B; are the intercept and three regression weights, respectively, using raw scored
predictors; BS through B; are the intercept and three regression weights, respectively, using mean-centered predictors; and, for the re-parameterized equation
(i.e., Equation 16), A is the intercept; B, and B, are the slope coefficients for the effects of the crossover centered X; for Groups 1 and 2, respectively; and

C is the crossover point.

A plot of predicted values of social skills for the two groups of
children is shown in Figure 3. As predicted, childcare quality was
nonsignificantly related to social skills for the low-malleability
group, Bl = 3.41 (SE = 2.87). In contrast, childcare quality was
relatively strongly and significantly related to social skills for the
high-malleability group, B, = 20.92 (SE = 5.53). Thus, at high
levels of childcare quality, the high-malleability group had pre-
dicted levels of social skills that were higher than those for the
low-malleability group; but, at low levels of childcare quality, the
high-malleability group had lower predicted levels of social skills.

In supplemental analyses, we also tested whether child sex
moderated results shown in Table 1. That is, we modified Equation
16 to include the effect of sex in a fashion analogous to that for
Equation 19. Relative to females, males had a slightly lower
estimated crossover point, €, = —0.12 (SE = 0.24), and a some-
what lower level of social skills at the crossover point, Ay, =
—0.17 (SE = 1.84). Also, males were slightly less affected than
females by child care in both the low-malleability, B,, = —2.37
(SE = 5.77), and high-malleability groups, B,, = —13.27 (SE =
11.10). But, none of these effects was statistically significant, as
t-values ranged between 10.411 and 11.20I (all ps >.20). Although
accepting the null hypothesis can be a risky gambit, the present
data provide no evidence that results differed significantly by child
sex.
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110 = s

=
105 =4 Low-malleability A
”~
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100 = <

Predicted Levels of
Social Skills

95 — e

90

Childcare Quality

Figure 3. Predicted levels of social skills for the low-malleability and
high-malleability groups as a function of childcare quality.

Discussion

Our primary aim was to re-parameterize the standard linear regres-
sion model to allow clearer distinctions between ordinal and disordi-
nal interactions. Researchers often hypothesize interactive effects of
predictors in fairly nonspecific terms. In our opinion, researchers
should be challenged to make stronger predictions about the form of
an interaction, such as whether the interaction is ordinal or disordinal.
If such a prediction were warranted, then a re-parameterized regres-
sion model that estimates explicitly the crossover point of predicted
values and its CI would enable stronger tests of the match between
theoretical predictions and trends in data.

After presenting standard ways of parameterizing regression mod-
els with interaction effects, we derived a re-parameterized regression
model for Linear X Linear interaction of two quantitative predictors.
The most important benefit of a re-parameterized equation is the SE
and associated CI of the estimated crossover point C. Further, as
stressed throughout, the CI of € allows a more informed evaluation of
the ordinal versus disordinal form of the interaction.

Our procedures apply to any theoretically guided testing of inter-
actions using regression analysis where the crossover point is at issue.
In the context of GXE interactions, some have argued that negative
emotionality, a quantitative temperament factor, is a diathesis,
whereas others see it as a more general malleability marker (Belsky,
1997, 2005; Belsky & Pluess, 2009; Boyce & Ellis, 2005; Ellis et al.,
2011). Thus, a researcher could use quantitative measures of both the
environment (X, = childcare quality) and a genetically related factor
(e.g., X, = negative emotionality) to test competing trends in Lin-
ear X Linear GXE interactions.

We extended the re-parameterization of the regression model to
scenarios in which one of the interacting predictors is a categorical,
or grouping, variable. If just two groups are present (e.g., low-risk
vs. high-risk), only a single crossover point is possible. If a ternary,
or three-class, categorization into groups is used, alternate models
can test whether a single crossover point holds for all three groups
or whether such a restriction should be rejected.

When we applied the standard and re-parameterized models to data
on interactive effects of child-care quality and genotype (i.e., DRD4)
on social skills, we found a significant GXE interaction. The disor-
dinal form of the interaction was confirmed more strongly after fitting
the re-parameterized model to the data by showing that both the point
and interval estimates of the crossover point € were clearly within the
range of values observed on the environmental variable. Further, the
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slope for the high-malleability group (i.e., DRD4—7R) was significant
and the slope for the low-malleability group was nonsignificant, and
both of these results proved consistent with tenets of the differential-
susceptibility model.

Our proposed re-parameterized regression approach rests on
critical assumptions and has some potential weaknesses that ac-
company its clear strengths. The assumptions are not unique to the
new methods we proposed here but apply equally to use of stan-
dard approaches used to estimate the crossover point in interac-
tions. Moreover, assumptions should always be evaluated to the
extent possible. Threats to the validity of conclusions using any
statistical procedures, our re-parameterized models included,
should always be investigated, and conclusions should be qualified
if assumptions are not fully met. In our opinion, the benefits of our
re-parameterized equations outweigh any potential drawbacks to
their use and supplement in informative ways traditional ap-
proaches to testing interactions using regression methods.

Our major goal was to develop a re-parameterized regression
model that captures one essential aspect of an interaction more
informatively than do standard analytic approaches. If the ordinal
versus disordinal form of an interaction is crucial for distinguish-
ing theoretical positions, our re-parameterized regression model
yields more detailed information for evaluating the fit of data with
theoretical predictions. With more useful tools for asking key
questions, researchers can be challenged to provide more explicit
hypotheses regarding predicted patterns in data. Confirming pre-
dicted patterns in data yields inductive support for the validity of
a theory, but disconfirming predicted patterns points to the need to
reconsider theory, measurements, or conditions to ferret out rea-
sons for disconfirmation. Clearer predictions tested against data
using more focused and definitive statistical models will provide
clearer evidence regarding whether theoretical conjectures driving
the research were confirmed or disconfirmed. We trust our re-
parameterized equation will be yet one more tool for testing
theoretical conjectures directly and strongly.
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