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ABSTRACT OF THE DISSERTATION

Data-Driven Optimization to Learn Structural Models

by

Sema Nur Kaynar Keles

Doctor of Philosophy in Management

University of California, Los Angeles, 2022

Professor Auyon Adnan Siddiq, Chair

The rapid accumulation of high-dimensional data has opened new opportunities to make in-

formed decisions. In this thesis, we focus on estimation of structural models from observational

data using optimization and statistics to understand the effects of strategic decisions. We develop

efficient procedures that blend techniques from economic modeling and machine learning to uncover

underlying models efficiently and accurately.

In Chapter 2, we focus on understanding the effect of performance-based incentives on worker

performance using historical contract data. The design of performance-based incentives can be

naturally posed as a moral hazard principal-agent problem. In this setting, a key input to the

principal’s optimal contracting problem is the agent’s production function – the dependence of

agent output on effort. While agent production is classically assumed to be known to the principal,

this is unlikely to be the case in practice. Motivated by the design of performance-based incen-

tives, we present a method for estimating a principal-agent model from data on incentive contracts

and associated outcomes, with a focus on estimating agent production. The proposed estimator is

statistically consistent and can be expressed as a mathematical program. To circumvent compu-

tational challenges with solving the estimation problem exactly, we approximate it as an integer
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program, which we solve through a column generation algorithm that uses hypothesis tests to se-

lect variables. We show that our approximation scheme and solution technique both preserve the

estimator’s consistency and combine to dramatically reduce the computational time required to

obtain sound estimates. To demonstrate our method, we conducted an experiment on a crowdwork

platform (Amazon Mechanical Turk) by randomly assigning incentive contracts with varying pay

rates among a pool of workers completing the same task. We present numerical results illustrating

how our estimator combined with experimentation can shed light on the efficacy of performance-

based incentives.

In Chapter 3, we focus on learning causal structures from observational data, a process known as

causal discovery. We propose a new optimization-based method for causal discovery. Our method

takes as input observational data over a set of variables and returns a graph in which causal relations

are specified by directed edges. We consider a highly general search space that accommodates latent

confounders and feedback cycles, which few extant methods do. We formulate the discovery problem

as an integer program, and propose a solution technique that leverages the conditional independence

structure in the data to identify promising edges for inclusion in the output graph. Our method

is among the very first to bring integer programming to general causal discovery, which we believe

is one of our main contributions. In the large-sample limit, our method recovers a graph that is

equivalent to the true data-generating graph. Computationally, our method is competitive with

the state-of-the-art, and can solve in minutes instances that are intractable for alternative causal

discovery methods. We then extend our framework to a priori identify a subset of variables that

collectively carry all useful information about the variable of interest. This way, we can sidestep

the computational burden of learning causal relations among variables of secondary importance.

In Chapter 4, we focus on investigating the validity of instrumental variables, which are widely

used to estimate causal effects in the presence of unmeasured confounding. In particular, we
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apply our method developed in Chapter 3 to US Census data from the seminal paper on the

returns to education by (Angrist and Krueger, 1991), which contains a pioneering application of an

instrumental variable, but one whose validity has been contested. We find that the causal structures

uncovered by our method are consistent with the literature on the instrument from (Angrist and

Krueger, 1991), and that our method pinpoints some of the sources of debate. Our results suggest

that our graphical approach can be a useful complement to well-established empirical methods.
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Chapter 1

Introduction

Understanding effects of strategic decisions is at the core of operations research and management

science. In this thesis, we develop new methodologies that combine optimization with economic

modeling and statistics to uncover the mechanisms that govern the effects of decisions. The chapters

are unified around the central motive of learning these mechanisms, but the methodologies used

within them are diverse. In Chapter 2, we use an agent-based modeling to understand the effects of

performance-based incentives on worker production. Whereas in Chapter 3, we built on a recently

emerged framework that provides a theoretical foundation to uncover underlying causal relations

from probability distributions without needing to specify a model. In Chapter 4, we discuss how

these newly emerged automated ways of inferring causation from data can be used to gain more

insights for validity of instrumental variables, which are widely used to estimate causal effects in

the presence of unmeasured confounding.

Next, we provide a high-level overview of the main ideas contained within each chapter, including

their main contributions to the literature.

1



1.1 Estimating Effects of Incentive Contracts in Online Labor

Platforms

Chapter 2 of this thesis focuses on analysis of incentive contracts in online labor platforms. Principal-

agent models are widely used to study contracting problems. In a typical setting, the principal

delegates work or decision-making authority to an agent that acts in their own best interest, and

whose incentives are misaligned with the principal’s. Further, there usually exists some form of

information asymmetry between the two parties, where the principal cannot observe either the

agent’s actions or other private information. The agent is compensated by the principal based

on an observable outcome, which depends on the action taken by the agent. The principal has

preferences over the outcomes, but wields little direct influence over them. As a consequence, the

contracting problem faced by the principal is to design a compensation scheme for the agent that

induces desirable outcomes.

Despite their prominence in the operations literature, the estimation of principal-agent models

– that is, extracting an agent’s decision-making model from observational data – has received little

attention to date. Our key contribution is to propose an intuitive estimator for a general class of

principal-agent models where agent actions are hidden. Our agent model is non-parametric, and

imposes minimal structural assumptions on the agent’s utility function. We present a mild condition

under which the model is identifiable, and show the estimator to be statistically consistent. We

show that the estimation problem with hidden actions is NP-hard, contrary to the case where

actions are observable.

We then show that, with a slight modification, the estimator can be formulated exactly as a

mixed-integer linear program. However, solving the exact estimator using off-the-shelf optimization

solvers is non-viable for larger instances. To overcome this deficiency, we propose an approximation
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scheme based on minimizing the loss function over a discrete subset of the original parameter space.

To solve the restricted estimator, we propose an iterative solution algorithm in the spirit of column

generation that exploits statistical properties of the integer programming formulation. The defining

feature of our algorithm is the use of two-sample, non-parametric hypothesis tests to select variables

to introduce into the model. Critically, we show that the proposed solution algorithm preserves the

statistical consistency of the exact estimator. We further show that the expected iteration count of

the algorithm can be bounded by a function of the chosen significance level used in the hypothesis

testing step. To the best of our knowledge, this algorithm is the first to incorporate hypothesis

tests into a solution technique for integer programs.

We showcase the efficacy of the estimator in two sets of numerical experiments. First, we use

synthetic instances to show that the statistical column generation algorithm produces solutions

that are competitive with the exact estimator in a fraction of the computational time. To demon-

strate our method, we conducted an experiment on a crowd-work platform (Amazon Mechanical

Turk) by randomly assigning incentive contracts with varying pay rates among a pool of workers

completing the same task. We present numerical results illustrating how our estimator combined

with experimentation can shed light on the efficacy of performance-based incentives in such online

labor platforms.

1.2 Discovering Causal Models with Optimization

In Chapter 3, we consider how to learn causal relations from observational data. This inference is

known as causal (structure) discovery. While randomized experiments are often considered the gold

standard for identifying causal relations, they come with substantial limitations: The experimenter

has to be able to fully control the treatment, or adjust for the failure to do so. This often implies

that the experiments have to be conducted in artificial environments with small sample sizes,
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undermining their validity. Further, some interventions are very costly to perform, and some are

unethical. Consequently, it is often desirable to learn as much as possible about underlying causal

structures from observational data alone, without performing experiments.

Our main contribution is a new optimization-based method for causal discovery that allows for

both unmeasured confounders and feedback cycles. Our method takes as input observational data

over a set of variables, and returns a graph in which causal relations are specified by directed edges.

There are very few extant discovery methods that consider this extremely general search space,

and those that do, do not scale well. To achieve better scalability, we propose a solution approach

that exploits the conditional (in)dependence structure in the data to detect “promising” candidate

edges in the underlying graph, which are then assembled into a causal graph by an optimization

model. We computationally show that our approach allows us to solve in minutes instances that are

outright intractable for recently proposed methods. Our main theoretical result is to show that this

technique asymptotically recovers a graph that is equivalent to the true, data-generating graph.

The proposed methodology constructs a complete causal graph over a set of observed variables,

in which all causal relations are deemed equally important. In empirical applications, however, there

may be a target variable whose causes are of particular interest to the researcher (e.g., income or

health outcomes). We then extend our framework to a priori identify a subset of variables that

collectively carry all useful information about the variable of interest using optimization. This way,

we can sidestep the computational burden of learning causal relations among variables of secondary

importance.

1.3 Graphical Validation of Instrumental Variables

In Chapter 4, we focus on investigating the validity of an instrumental variable using the method

developed in Chapter 3. Instrumental variables are widely used to estimate causal effects primarily
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to overcome bias in regression estimates of causal effects that stem from unmeasured confounding.

The use of instrumental variables comes with its own challenges, namely, identifying an appropriate

instrument in the first place. Even though the conditions for a variable to be a valid instrument

are well established (e.g., Angrist et al. (1996)), testing its validity from data remains a challenge

as these conditions are largely believed to be untestable from data. For the most part, instruments

are selected subjectively based on domain knowledge and verbal justifications.

Previous work (Pearl, 2000) discusses that these conditions can be expressed in a graphical

framework in terms of presence or absence of particular edges and paths. Building on this corre-

spondence, we demonstrate how the method proposed in Chapter 3 can be used to shed light on the

validity of a proposed instrument in an objective, automated, and intuitive manner. Specifically,

within our graphical framework, checking instrument validity amounts to learning causal struc-

tures over the relevant data and checking the extent to which the output graph abides by graphical

criteria on instrumental validity.

We apply our method to the well-known dataset on educational attainment and income from

Angrist and Krueger (1991), which contains one of the most influential applications of an instru-

mental variable, but one whose validity has been the subject of debate. In that work, the authors

propose quarter-of-birth as an instrument for educational attainment. To the best of our knowledge,

our work is the first to examine the quarter-of-birth instrument from a causal discovery perspective.

Although the graphical framework we use here is quite different from previous investigations of the

instrument from Angrist and Krueger (1991), our main finding is remarkably consistent with the

literature – that the quarter-of-birth instrument is plausible, but weak.
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Chapter 2

Estimating Effects of Incentive Contracts in

Online Labor Platforms

2.1 Introduction

The extent to which financial incentives increase worker performance is of interest in many employ-

ment settings. This question has taken on renewed relevance due to the emergence of online labor

platforms, which are used for on-demand jobs like ride-hailing (e.g., Uber, Lyft), delivery (Post-

mates), freelance work (Upwork), and short, discrete tasks (Amazon Mechanical Turk). Although

these platforms support different types of work, they also have common features: workers are hired

and compensated on a per-task basis, work is done remotely with limited supervision, and workers

may be offered performance-based incentives.1

The design of performance-based incentives can be naturally posed as a moral-hazard principal-

agent problem, in which an agent’s (worker’s) effort is hidden from the principal (employer), and the

agent’s output depends stochastically on their effort (Holmstrom, 1979; Grossman and Hart, 1983;

1For example, Lyft offers drivers bonuses for fulfilling a target number of rides within a predefined time frame
(Lyft, 2021), and Postmates offers a similar incentive (Postmates, 2021). Similarly, freelance platforms Upwork and
Amazon Mechanical Turk allow clients to provide workers with bonuses at their own discretion.
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Sappington, 1991). In this setting, the relationship between worker output and effort corresponds to

a set of parameters that define agent production. If these parameters are known, then the principal’s

problem of optimally designing incentives is well-defined and potentially convex (Grossman and

Hart, 1983).

In practice, however, the relationship between worker effort and output is unlikely to be known

a priori. Given data on incentives and associated output, this dependence can be inferred by

specifying an appropriate agent model and estimating the parameters that govern agent production.

Despite the importance of principal-agent models to the analysis of incentive contracts, estimation

problems of this nature are scarce in the literature, even for simple agent models. Estimating an

agent model from observational or experimental data can be a useful step toward the design of

incentive contracts in practice, and can also play a role in estimating agent welfare under a given

contract.

Our main contribution is to present an estimator for a principal-agent model with hidden ac-

tions, along with an algorithm for solving the estimation problem. Our focus is on estimating model

parameters that encode agent production, namely, the conditional distribution over output for each

effort level. To reflect a moral-hazard setting, we assume no data is available on agent effort, which

makes the estimation problem computationally non-trivial. We make two methodological contri-

butions in particular: (1) we provide an estimator that is statistically consistent under appropriate

conditions, meaning it uncovers the true model parameters as the sample size goes to infinity, and

(2) we develop an accompanying solution technique that is computationally efficient and preserves

consistency.

The agent model we consider is non-parametric, in that we do not assume functional forms

for the dependence of agent output on effort, and we assume both output and effort levels are

discrete. This specification has two important consequences. First, it admits a simple and tractable
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formulation of a general optimal contracting problem, which allows us to readily solve for an optimal

contract under the estimated agent model. Second, estimating agent models is well-known to be

challenging due to a need to embed the agent’s problem – itself an optimization problem – within

the estimator (Bajari et al., 2007). Our modeling approach allows us to express the estimator as an

integer program, which admits a structure that supports obtaining estimates quickly using a novel

solution technique. In addition to these computational advantages, our non-parametric model

naturally handles threshold-based incentives, which commonly arise in practice, and is flexible

enough to have strong predictive performance on a variety of datasets without overfitting.

In an empirical study, we show how our estimator can be combined with experimentation to

characterize worker output over a class of incentive contracts, which in turn allows us to solve

for an optimal contract from the given class. In a randomized experiment, we recruited a pool of

500 workers from a crowdwork platform (Amazon Mechanical Turk), each of whom was asked to

complete an identical proofreading task, with output measured by the number of typos identified.

We created exogenous variation in payments by randomly generating the parameters of an incentive

contract for each worker. We then applied our estimator to the experimental data to investigate the

effect of performance-based incentives on worker output. Our results complement existing findings

that incentives do increase output in crowdwork, although we observe diminishing returns to output

beginning at relatively low payments.

Our model has limitations. The agent model does not include common features of principal-

agent problems; in particular, we do not address risk aversion or unobserved agent heterogeneity

in this work. This abstraction arises from our focus on obtaining consistent estimates (potentially

for a large number of parameters) while maintaining computational tractability. Generalizing our

estimation procedure to accommodate a richer class of agent models may expand its applicability in

practice. Further, our non-parametric approach may be unsuitable for settings with limited data,
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because it may require estimating many parameters if the action or outcome space is large.

The remainder of this chapter is organized as follows. §2.2 defines the agent model, presents the

associated estimator, and establishes consistency. §2.3 presents an exact formulation of the estima-

tor as an integer program and discusses the computational challenges of the exact representation.

§2.4 develops an approximate estimator and an accompanying solution technique, which dramat-

ically improve tractability while preserving consistency of the exact estimator. §2.5 describes the

randomized experiment and demonstrates the application of our estimator to experimental data.

§2.6 concludes. All proofs are contained in Appendix A.

2.1.1 Related literature

Existing work on estimating principal-agent models is relatively limited. Several papers have fo-

cused on employee compensation. Ferrall and Shearer (1999) use payroll records of copper mine

workers to estimate the cost of employee risk aversion. Paarsch and Shearer (2000) use a tree-

planting firm’s records to estimate the impact of providing piece-rate compensation over fixed

wages, and Shearer (2004) addresses the same question through a field experiment. Duflo et al.

(2012) estimate an agent model to assess the impact of financial incentives for schoolteachers and

use the model to estimate cost reductions associated with a counterfactual payment scheme. Misra

et al. (2005) and Misra and Nair (2011) both estimate agent models based on salesforce compen-

sation and empirically validate the models on out-of-sample data. Gayle and Miller (2015) focus

on identifying a general principal-agent model motivated by managerial compensation. Georgiadis

and Powell (2021) provide conditions under which a single A/B test can estimate the impact of

marginal changes to an incentive contract, using the classical principal-agent model from Holm-

strom (1979). Applications beyond employee compensation include agriculture (de Zegher et al.,

2017) and healthcare (Vera-Hernandez, 2003; Lee and Zenios, 2012; Aswani et al., 2019).
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Previous work on estimating principal-agent models have used a variety of methods, including

least squares (Lee and Zenios, 2012), simulated method of moments (Paarsch and Shearer, 2000;

Misra et al., 2005; Misra and Nair, 2011; Duflo et al., 2012), simulation-based maximum likelihood

estimation (Ferrall and Shearer, 1999; Vera-Hernandez, 2003; Aswani et al., 2019), and numerical

minimization of a sum-of-squares criterion (Gayle and Miller, 2015). Our approach differs in that we

formulate the estimation problem as an integer program, which is made possible by our specification

of the agent model, in particular by assuming agent actions and outputs are discrete.

We solve the estimation problem using a column generation algorithm that exploits statisti-

cal properties of the formulation. Column generation methods have been successfully applied to

solve large-scale linear and integer programs in which an extremely large number of variables is the

main obstacle to obtaining optimal solutions (Vanderbeck and Wolsey, 1996; Barnhart et al., 1998;

Lubbecke and Desrosiers, 2005). These methods typically involve solving a tractable master prob-

lem that restricts attention to a subset of decision variables, and selectively introducing variables

into the formulation until a certificate of optimality or alternative termination criterion is met. In

contrast to existing column generation methods that select columns using dual information, our

algorithm uses a series of non-parametric hypothesis tests to identify variables to introduce into the

master problem. This approach is viable in our setting because the decision variables are mapped

to empirical probability distributions constructed from the data, giving them a clear statistical

interpretation. By comparison, existing column generation methods have typically been applied

to deterministic settings where the model parameters may not have any statistical meaning (see

Lubbecke and Desrosiers (2005) for a review).

The estimation problem we consider is also closely related to a recent line of research on in-

verse optimization, in which optimization model parameters are inferred from (potentially noisy)

solution data. Existing approaches to inverse optimization have focused on estimating parameters
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of linear programs (Chan et al., 2018) or general convex optimization problems (Keshavarz et al.,

2011; Bertsimas et al., 2015; Aswani et al., 2018). Similar to our work, the literature on inverse

optimization is often motivated by an interest in estimating a model of agent decision-making from

data (Aswani et al., 2018; Esfahani et al., 2018). Our approach differs in that instead of assuming

the agent solves a convex optimization problem, we assume they select a utility-maximizing action

from a discrete set, which calls for a different solution approach.

2.1.2 Notation

For convenience, we describe notational conventions here. Sets are denoted by upper case letters,

scalars by lower case letters, and vectors and matrices by lower case, boldfaced letters. For a m×d

matrix x, let xa be the ath row, and let xaj be the entry in the ath row and jth column. For vectors

x and y, let ∥x∥1 =
∑m

a=1

∑d
j=1 |xaj | denote the ℓ1-norm, and let x ◦ y =

∑m
a=1

∑d
j=1 xajyaj

be the elementwise product. For a matrix of random variables xn, we use both xn −→ x0 and

plimn→∞xn = x0 to mean xn converges elementwise in probability to x0 as n −→ ∞, unless

otherwise specified. Define the indicator variable I{·} = 1 if the statement {·} is true, and 0

otherwise. For simplicity, we use E(·) for all expectations and Pr(·) for all probabilities throughout

the chapter.

2.2 Estimator

In this section, we define the principal-agent model (§2.2.1), formulate the estimator (§2.2.2), and

prove its statistically consistency (§2.2.3).
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2.2.1 Principal-agent model and contract data

Our principal-agent model is a discrete analogue to the canonical model introduced by Grossman

and Hart (1983). We choose this model for both its simplicity and generality. The interaction

between the principal and agent proceeds as follows. The principal selects a contract to offer

the agent, which is a mapping of payments to outcomes (i.e., agent output). Outcomes depend

stochastically on a costly action (i.e., effort) taken by the agent. Outcomes are observed by both

parties, while actions are observed only by the agent.

Let A and J index the set of possible actions and outcomes, respectively, where |A| = m and

|J | = d. Let ξ be a discrete random variable denoting the outcome, where ξ ∈ J . We denote a

contract by r ∈ Rd
+, where rj is the payment to the agent if outcome j is realized. Let c ∈ Rm

+ denote

action costs, where ca is the cost to the agent of taking action a. The dependence of outcomes

on actions is governed by a parameter matrix π ∈ Rm×d
+ , where πaj denotes the probability that

action a leads to outcome j. We use πa ∈ Rd to denote the probability mass function over outcomes

associated with action a.

Given a contract r, the agent selects an action to maximize their expected utility by solving

max
a∈A

∑
j∈J

πajrj − ca

 . (2.1)

We assume that there exists at least one action that yields non-negative expected utility for the

agent. If for each a ∈ A the distribution πa is known, the principal’s problem of selecting a utility-

maximizing contract can be formulated as a convex optimization problem (Grossman and Hart,

1983). We take an inverted perspective in this work, by instead supposing that the distributions

πa, a ∈ A are unknown, but may be estimated given appropriate data. In particular, suppose we
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have data from n identical agents,2

(ri, ξi), i ∈ I, (2.2)

where I indexes pairs of incentive contracts and outcomes, and |I| = n. Let R ⊆ Rd be the set of

all possible values of ri. Further, we assume the contract set R is bounded, in that there exists a

constant r̄ such that r̄ = supr∈R ∥r∥0 < ∞. The assumption that R is bounded ensures that the

contracts ri remain bounded as n −→∞.

Next, suppose we have no observations of past agent actions, and only know the agent’s action

set A and associated costs, c. A natural question in this setting is to predict the distribution of the

outcome ξn+1 under a new contract rn+1. Note that if π is known, then this prediction task reduces

to solving the agent’s problem (2.1) under rn+1, identifying the optimal action a, and taking πa to

be the distribution of ξn+1. Therefore, the matrix π is the key model primitive for predicting the

outcome associated with rn+1. Our goal is to estimate the parameter π from data that takes the

form given in (2.2).

The assumption that agent costs are unknown is relatively mild in our setting, given that agent

actions are also hidden. From a model-fitting perspective, it suffices to select c to cover a range of

possible costs to the agent. In our numerical study in §2.5, we take a machine learning perspective

by treating the number of agent actions m and the set of costs c as hyperparameters that are tuned

prior to fitting the model.

2.2.2 Estimator formulation

Next, we formalize the estimator for π.3 Let

2We extend our model to accommodate heterogeneous agents in §A.3 of Appendix.
3Throughout this chapter, we shall use estimator to refer to an optimization problem or algorithm, and estimate

to refer to its solutions.
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A(r,π) = argmax
a∈A

∑
j∈J

πajrj − ca

 (2.3)

denote the set of optimal actions under the contract r and the model π. Let y ∈ {0, 1}n×d be a

binary matrix that encodes historical outcomes, where yij = 1 if ξi = j and yij = 0 if ξi ̸= j. For

each i ∈ I, let xi be a decision variable representing the agent action under contract ri, and let

ω ∈ Rm×d
+ be a set of auxiliary variables, which will be used to model empirical probabilities. For

fixed π, the loss function Ln(π) is then given by

Ln(π) = minimize
x,ω

∑
a∈A

∑
j∈J
|πaj − ωaj | (2.4a)

subject to xi ∈ A(ri,π), i ∈ I, (2.4b)

ωaj =
1

|{i|xi = a}|
∑

i∈{i|xi=a}

yij , a ∈ A, j ∈ J. (2.4c)

In the formulation above, (2.4b) restricts each xi to be an optimal action under ri and π, and

(2.4c) defines ωaj to be the empirical probability that action a leads to outcome j. Note that the

empirical probability ωaj depends on the cardinality of the set {i|xi = a}, which is the implied

number of data points for which the action a is optimal for the agent under π. The objective

(2.4a) then simply measures the error between the model probabilities π and the implied empirical

probabilities ω.

Next, let Π be a compact set representing the parameter set for π. The estimate is then attained

at a minimizer of the loss function over Π:

(PA) π̂n ∈ argmin
π∈Π

Ln(π).

It will be convenient to interpret the parameter set Π as the Cartesian product of m probability
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simplices – one for each action a ∈ A.

2.2.3 Statistical consistency

Let us now suppose there exists a “true” model parameter π0 that is responsible for generating

the data (ri, ξi), i ∈ I. We say an estimator is statistically consistent if it produces a sequence

of estimates π̂n such that π̂n −→ π0 as n −→ ∞. This raises a natural question: Under what

conditions, if any, is PA a consistent estimator? In general, whether an estimator is consistent

depends on the specification of the loss function. Our main result in this section, Theorem 1,

shows that minimizing the loss function Ln(π) defined in (4) produces an estimate that is indeed

consistent.

Before addressing the consistency of PA, we first formalize the statistical model that generates

the data. First, we define an important set that is used throughout our analysis:

Ra(π) =

r ∈ R
∣∣∣∣a ∈ argmax

a∈A

∑
j∈J

πajrj − ca

 , (2.5)

Here, Ra(π) represents the subset of the contract set R where action a ∈ A is optimal for the agent,

given the model π. Next, we impose two assumptions. The first assumption formalizes the data

generation process.

Assumption 1 (Data). The data (ri, ξi), i ∈ I, are independent samples of random variables

(r, ξ), where (i) (r, ξ) are jointly distributed with support R × J , (ii) r has continuous marginal

density function f(r), (iii) Pr(r ∈ Ra(π)) > 0 for all a ∈ A and π ∈ Π, and (iv) ξ has conditional

mass function π0aj = Pr(ξ = j|r ∈ Ra(π
0)), where π0 ∈ Π.

Assumption 1(iv) states that there exists a “true” parameter – denoted π0 – that is responsible

for generating the outcomes ξi, based on the agent model (2.1). The statements in (ii) and (iii)
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are regularity conditions that we use to prove convergence of π̂n to π0.4 Our assumption that the

data are independent and identically distributed (i.i.d.) is commonly used in the statistical learning

literature to obtain similar consistency results.5

Next, we consider an additional condition that is important for our main result in Theorem 1.

Assumption 2 (Identifiability). For every π ∈ Π such that π ̸= π0, there exists an (a, j) such

that

πaj ̸=
∑
b∈A

π0bj · Pr(r ∈ Rb(π
0)|r ∈ Ra(π)).

Assumption 2 is an identifiability condition, which ensures that the unknown parameter π0 can

be learned from the data. This assumption implies a one-to-one mapping between the parameter set

Π and the joint distribution of the random variables (r, ξ). In other words, Assumption 2 guarantees

that the distribution of (r, ξ) is unique for each π ∈ Π. In the absence of model identifiability, there

may exist multiple parameters values in Π that generate the same distribution in the observed data;

in this case, it is impossible for any estimation procedure to pinpoint the true π0. Identifiability

conditions like Assumption 2 are commonly imposed to prove consistency of an estimator (Van der

Vaart, 2000).

We can now present the main result of §2.2, which shows that the estimator PA uncovers the

true model parameter π0 under Assumptions 1 and 2.

Theorem 1. Let Assumption 1 hold. Then π̂n −→ π0 for any π0 ∈ Π if and only if Assumption

4The assumption that the contract data ri, i ∈ I is generated by a continuous density function f(r) is important
for our technical results. Intuitively, because the ri are input data, assuming this continuity provides the estimator
with more information, which makes precise inference of π0 possible under the identifiability condition in Assumption
2. If the contract data is instead generated by a discrete distribution supported on a subset of R, then a stronger
identifiability than Assumption 2 is needed to compensate for the loss of information. We consider such a case in
§A.4 of the electronic companion.

5Because we assume the data is generated by n independent agents making decisions simultaneously, which is
plausible in online labor platforms, the i.i.d. assumption is not particularly restrictive for our setting. Moreover, this
assumption is not strictly necessary to achieve consistency, depending on the problem setup. In §A.4 of the electronic
companion, we consider a variation of the model where π0 can be estimated by dynamically selecting the contracts
to offer the agent. This breaks the independence assumption on the contracts ri, but allows for consistent estimation
of π0 under a different set of assumptions.
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2 holds.

Theorem 1 states that the estimator PA is statistically consistent, which is defined as the convergence

of estimates to the true model parameters (Van der Vaart, 2000; Casella and Berger, 2002; Bickel and

Doksum, 2015). Despite being an asymptotic property, consistency is valuable in practice, because

it guarantees that parameter estimates will generally improve with additional data. Conversely, an

inconsistent estimator may produce inaccurate estimates of the unknown parameters, even if data

is abundant. In pathological cases, the accuracy of an inconsistent estimator may even decrease

with additional data. Therefore, a proof of consistency provides some assurance that parameter

estimates will be “reasonable” under moderate sample sizes, and that the accuracy of the estimates

will continue to improve with additional data.

Having established that the estimate π̂n behaves desirably, we now shift our attention to solving

the estimator PA. Note that in a setting where agent actions are observable, a consistent estimate

of π0 can be obtained by simply counting the relative frequency of outcomes associated with each

action. In contrast, when agent actions are hidden, the estimation problem is non-trivial. At a

high level, our approach for solving PA will be to leverage integer programming within a broader

solution algorithm. The key challenge we face in solving PA is to develop a solution method that

satisfies two criteria: (1) is computationally efficient, and (2) preserves the statistical consistency of

PA. We note here that an alternative solution approach might be to formulate and solve a convex

approximation to PA, although doing so is may result in an inconsistent estimator. We will therefore

focus on obtaining solutions to PA directly.

17



2.3 Exact Integer Programming Formulation

In this section, we present an approach for solving PA exactly using integer programming. We will

assume throughout that the parameter set Π is of the form

Π =

π ∈ Qπ

∣∣∣∣∣π ≥ 0,
∑
j∈J

πaj = 1 for a ∈ A

 , (2.6)

where Qπ is a polyhedron defined by a set of linear inequalities in π. Assuming that π ∈ Qπ

permits the formulation of the estimator as a mixed-integer linear program, while also allowing Π

to capture various shape constraints on the parameter π. For example, if

Qπ =

π
∣∣∣∣∣

d∑
k=j

πak ≤
d∑

k=j

π(a+1)k, a ∈ {1, 2, . . . ,m− 1}, j ∈ J

 , (2.7)

then for any a ∈ {1, 2, . . . ,m− 1}, Π forces the distribution πa+1 to stochastically dominate πa in

the first order, meaning costlier actions taken by the agent are more likely to generate high output.

Alternatively, if Qπ = Rm×d, then Π permits each πa to be any valid probability mass function

over the outcomes J . We will assume throughout that Π satisfies (2.6) unless otherwise stated.

Although PA is based on an intuitive loss function, a naive formulation of PA as a mathematical

program yields non-linear terms in the objective, due to how the variable ω enters the loss expression

(2.4a). However, the estimation problem is amenable to mathematical programming approaches

under a slight modification. Consider the proxy loss function

Zn(π) = minimize
x,η,ω

1

n

∑
a∈A

∑
j∈J

ηaj |πaj − ωaj | (2.8)

ηaj = |{i|xi = a}|, a ∈ A, j ∈ J,

(2.4b)− (2.4c).
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Here, ηaj is the number of observations for which action a is implied to be optimal for the agent

under π. The loss function Zn(π) can be interpreted as a scaled version of Ln(π), where the (a, j)

component of Ln(π) is scaled by ηaj/n. The proxy estimator is then given by

π∗
n = argmin

π∈Π
Zn(π). (2.9)

Next, we show that (2.9) can be formulated exactly as a mixed-integer linear program. With a

slight abuse of notation, let x ∈ {0, 1}m×n be binary variables, where xia = 1 if a ∈ A(ri,π), and

xia = 0 if a /∈ A(ri,π). Introducing the auxiliary variables zaj to linearize the absolute values in

the objective of (2.8) (Bertsimas and Tsitsiklis, 1997) yields the following formulation:

minimize
π,x,z

∑
a∈A

∑
j∈J

zaj (2.10a)

subject to zaj ≥
1

n

∑
i∈I

(yij − πaj)xia a ∈ A, j ∈ J, (2.10b)

zaj ≥
1

n

∑
i∈I

(πaj − yij)xia a ∈ A, j ∈ J, (2.10c)∑
j∈J

πajr
i
j − ca

xia ≥

∑
j∈J

πbjr
i
j − cb

xia, i ∈ I, a ∈ A, b ∈ A, (2.10d)

(PA-C)
∑
j∈J

πaj = 1, a ∈ A, (2.10e)

∑
a∈A

xia = 1, i ∈ I, (2.10f)

xia ∈ {0, 1}, a ∈ A, (2.10g)

πaj ≥ 0, a ∈ A, j ∈ J, (2.10h)

π ∈ Qπ. (2.10i)

The objective (2.10a) and constraints (2.10b)–(2.10c) represent the error function 1
n∥η ◦ (π−ω)∥1
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given in (2.8). Constraint (2.10d) ensures that xia = 1 only if a ∈ A(ri,π), that is, only if action a

is optimal under contract ri and the parameter π. Constraint (2.10e) ensures that the probability

vector πa sums to 1 for each a ∈ A, and constraint (2.10f) forces exactly one action to be selected

as optimal for each contract i ∈ I. Next, we establish an equivalence between the proxy estimator

PA-C and the original estimator PA.

Proposition 1. The estimate π∗
n attained at a solution to PA-C is (i) a minimizer of the proxy loss

function Zn(π), (ii) an asymptotic minimizer of the loss function Ln(π), |Ln(π
∗
n)− Ln(π̂n)|−→0,

and (iii) consistent, π∗
n−→π0.

In Proposition 1, (i) establishes that the mathematical program PA-C is equivalent to the proxy

estimator (2.9), (ii) establishes that solving PA-C asymptotically produces an optimal solution to

PA, and (iii) confirms that PA-C is also a consistent estimator for π0. Based on the equivalence in

Proposition 1, we will refer to PA-C as the exact estimator in the remainder of the chapter.

The intuition behind Proposition 1 is as follows. Note that Zn(π) can be interpreted as a re-

weighted version of Ln(π), where for each (a, j), the term |πaj − ωaj | is multiplied by the weight

ηaj/n. As n −→ ∞, the minimal possible loss for both estimators occurs when πaj = ωaj for all

(a, j). Therefore, minimizing Zn(π) also minimizes Ln(π), in the limit.

Next, note that (2.10a)–(2.10d) contains bilinear terms due to the product of the decision vari-

ables x and π. Because x and π are binary and continuous variables, respectively, these product

terms can be linearized exactly using well-known reformulation techniques (Glover, 1975; Adams

et al., 2004), leading to a mixed-integer linear program. However, a drawback of this approach

is that linearizing products of variables is known to yield weak linear programming relaxations

(Adams et al., 2004; Luedtke et al., 2012), which can make solving PA-C using off-the-shelf opti-

mization solvers challenging, even for moderately-sized data sets. In the next section, we propose

an approximation to PA-C that bypasses the linearization step while remaining statistically well-
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behaved.

2.4 Restricted Estimator and Statistical Column Generation

We begin this section by proposing an approximation of PA-C – which we call PA-D – based on

replacing the parameter set Π with a discrete subset Π̃ (§2.4.1). We then present a data-driven

procedure for constructing the parameter set Π̃, and investigate the behavior of the resulting

estimates (§2.4.2). Then, to solve PA-D, we present a column generation algorithm based on

hypothesis testing, and show that the algorithm preserves statistical consistency (§2.4.3). We

conclude the section by comparing the numerical performance of the statistical column generation

algorithm with off-the-shelf optimization solvers (§2.4.4).

2.4.1 Restricted estimator

Our approach to approximately solving PA-C will be to minimize the proxy loss Zn(π) over a

restricted parameter set Π̃ ⊆ Π instead of Π. The advantage of this “restricted estimator” is

that the agent optimality conditions (2.10d) can be enforced without introducing bilinear terms

into the formulation, which allows us to avoid the computational challenges that often accompany

linearization techniques.

Next, we define a set that plays a critical role in our estimation procedure: Let V = {v1,v2, . . . ,v|S|} ⊆

Rd
+ be a set of vectors indexed by S, where

∑
j∈J vsj = 1 and vs ≥ 0 for all s ∈ S. We refer to

each vs as a candidate distribution. Next, let the restricted parameter set be defined as

Π̃ =
{
π ∈ Π

∣∣∣πa ∈ V for a ∈ A
}
, (2.11)

and let
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π̃n = argmin
π∈Π̃

Zn(π) (2.12)

be the associated estimate. For each action a ∈ A, the parameter set Π̃ restricts the probability

distribution πa to lie in the set of candidate distributions V . We assume throughout that Π̃ is

non-empty.6

Similar to the exact estimator (2.9), the restricted estimator (2.12) can also be formulated as

a mixed-integer linear program. The intuition behind this formulation is to construct the estimate

π in a row-wise manner by assigning a candidate distribution in V to each row of π. To that

end, let w ∈ {0, 1}m×S , x ∈ {0, 1}n×S and ϕ ∈ {0, 1}n×m×S be binary variables with the following

interpretations: was = 1 if the candidate distribution vs is assigned to be the distribution πa, x
i
s = 1

if the action assigned to candidate distribution vs is optimal under contract ri, and ϕias = 1 if the

candidate distribution vs is assigned to distribution πa and action a is optimal under ri and π.

Similar to PA-C, let z ∈ Rd×S
+ be auxiliary variables used to linearize the absolute values in the loss

function Zn(π). Then the restricted estimator (2.12) is equivalent to the following mixed-integer

6The parameter set Π̃ may be empty if the requirement that πa ∈ V for a ∈ A conflicts with the requirement that
π ∈ Qπ from (2.6). In this case, non-emptiness of Π̃ can be guaranteed by projecting the candidate distributions
contained in V onto the polyhedron Qπ.
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linear program:

minimize
π,w,x,z,ϕ

∑
s∈S

∑
j∈J

zsj (2.13a)

subject to zsj ≥
1

n

∑
i∈I

(yij − vsj)xis, s ∈ S, j ∈ J, (2.13b)

zsj ≥
1

n

∑
i∈I

(vsj − yij)xis, s ∈ S, j ∈ J, (2.13c)

∑
b∈A

∑
s∈S

∑
j∈J

vsjr
i
j − cb

ϕibs ≥

∑
j∈J

vs′jr
i
j − ca

wat, i ∈ I, a ∈ A, s′ ∈ S, (2.13d)

(PA-D)
∑
s∈S

was = 1, a ∈ A, (2.13e)

∑
a∈A

∑
s∈S

ϕias = 1, i ∈ I, (2.13f)

xis =
∑
a∈A

ϕias, i ∈ I, s ∈ S, (2.13g)

ϕias ≤ was, i ∈ I, a ∈ A, s ∈ S, (2.13h)

πaj =
∑
s∈S

wasvsj , a ∈ A, j ∈ J, (2.13i)

xis ∈ {0, 1}, i ∈ I, s ∈ S, (2.13j)

was ∈ {0, 1}, a ∈ A, s ∈ S, (2.13k)

ϕias ∈ {0, 1}, i ∈ I, a ∈ A, s ∈ S, (2.13l)

π ∈ Qπ. (2.13m)

The objective (2.13a) and constraints (2.13b)–(2.13c) together represent the loss function Zn(π).

Constraint (2.13d) enforces the agent’s optimality conditions by ensuring that ϕias = 1 only if

candidate distribution vs is mapped to πa, and if action a is optimal for the agent under ri and π.

Constraint (2.13e) forces exactly one candidate distribution in V to be mapped to each distribution

πa. Constraint (2.13f) ensures that only one candidate distribution in V and action a ∈ A is selected
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for contract ri. Constraint (2.13g) forces xis = 1 if candidate distribution vs is mapped to πa and

if action a is optimal under ri and π. Constraint (2.13h) ensures ϕias = 1 only if vs is mapped to

πa. Constraint (2.13i) defines πa as the candidate distribution from V that is assigned by w, and

constraint (2.13m) represents additional shape constraints imposed by the polyhedron Qπ. The

key distinction between PA-D and PA-C is that the discrete nature of the parameter set allows the

key decision variables (w,x,ϕ) to be binary, which allows us to represent the agent’s optimality

conditions in a way that circumvents the need for product terms.

Note that Zn(π̃n) − Zn(π
∗
n) represents the error in the loss function that arises from solving

the restricted estimator PA-D instead of the exact estimator PA-C. Next, we present a random

clustering procedure for constructing the set of candidate distributions V , and provide a finite-

sample characterization of the error Zn(π̃n)− Zn(π
∗
n) under the proposed procedure.

2.4.2 Construction of candidate distributions and finite-sample error

Because PA-C is a consistent estimator of π0 (by Proposition 1), we might expect PA-D to also

produce a reasonable estimate of π0 if the loss function error Zn(π̃n) − Zn(π
∗
n) is sufficiently

small. Additionally, note that Zn(π̃n) is the minimal loss when the restricted parameter set Π̃ is

substituted for Π. As a result, the magnitude of the gap Zn(π̃n)−Zn(π
∗
n) depends on the restricted

parameter set Π̃, and by extension, the set of candidate distributions V . Here, we present a method

for constructing Π̃, based on leveraging the observed data (ri, ξi), i ∈ I to guide the construction

of V . Our approach to constructing the candidate distributions V is summarized in Algorithm 1.

Algorithm 1 involves selecting subsets of the contract data, computing the empirical mass

function over outcomes for each subset, and designating each of these empirical mass functions as a

candidate distribution, vs. Note that the s
th candidate distribution is based on the outcomes of all

contracts ri that fall within a ball Bs ⊆ R; accordingly, we shall refer to the collection of data points
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Algorithm 1: Sample-based construction of candidate distributions

Input: Data (ri, ξi), i ∈ I, parameter ρ > 0.
1. Randomly sample a subset S from I.
2. for each s ∈ S:

Bs = {r ∈ R|∥rs − r∥2 ≤ ρ},
Is = {i ∈ I|ri ∈ Bs}.
for each j ∈ J :

vsj =
1
ns

∑
i∈Is y

i
j .

Output: Candidate distributions V = {vs for s ∈ S}.

indexed by Is as the s
th cluster. The intuition for constructing the candidate distributions V in this

manner is simple: Based on the agent model (1), contracts that are within a small distance of each

other are likely to induce the same action from the agent. Therefore, the empirical distribution of

outcomes for all contracts that lie within the ball Bs can be assumed to approximate one of the

rows of the true parameter matrix π0 (although which row it approximates remains unknown).

Next, we show that the error Zn(π̃n)−Zn(π
∗
n) is well behaved if V is constructed using Algorithm

1. We first impose the following assumption.

Assumption 3 (Clustering condition). For each a ∈ A, there exists s ∈ S such that Bs ⊆

Ra(π
0) and Is ̸= ∅.

Assumption 3 states that for every action a, Algorithm 1 produces a ball Bs that is entirely

inside the subset of the contract set R that induces action a from the agent, Ra(π
0). Note that if

Bs ⊆ Ra(π
0) then every contract in cluster s induces action a from the agent. This implies that vs

is an empirical distribution sampled from π0
a. Therefore, Assumption 3 implies that for each row

of π0, there exists at least one candidate distribution in V that is constructed by sampling from

that row. Note that Assumption 3 is more likely to hold when S in Algorithm 1 is large (because

we construct many balls Bs) and ρ is small (because each ball is smaller).

Our next result shows that if Assumption 3 and an additional condition on Π holds, we can
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bound the approximation error Zn(π̃n)− Zn(π
∗
n).

Theorem 2. Let Assumption 3 hold, and let V be constructed using Algorithm 1. Further, suppose

Π = {π ≥ 0|
∑

j∈J πaj = 1, a ∈ A}. Then there exists κ ∈ (0, 1) such that for any ε ∈ (0, 1),

Pr(|Zn(π
∗
n)− Zn(π̃n)| > ε) ≤ O(n2κn). (2.14)

We offer a few remarks on Theorem 2. First, observe that the bound is not monotonic due to the

n2 term, which implies that the bound can become looser in n for small n. This occurs because our

proof approach depends on constructing a feasible solution π̄, and bounding the absolute number

of observations where the hidden agent action is “misclassified” by π̄. Thus, the n2 term reflects

the possibility that the number of misclassified actions may increase with the sample size. Further,

note that if κ is close to 1 and n is of moderate size, the bound in Theorem 2 may be vacuous.

However, because it is guaranteed that κ ∈ (0, 1), it is straightforward to verify that n2κn −→ 0,

which implies that the error Zn(π̃n)− Zn(π
∗
n) eventually vanishes in n.

Second, note that the rate depends on the constant κ, with lower values of κ leading to faster

convergence. While κ is not particularly interpretable, it can be shown to decrease in ρ and increase

in the number of clusters |S|. Note from Algorithm 1 that ρ is the radius of the ball Bs, for each

cluster s ∈ S. Intuitively, for fixed n, larger values of ρ makes each ball Bs contain a larger

number of observations, which leads to faster convergence. Conversely, larger values of |S| will slow

convergence, for the following reason: Because the bound depends in part on the cluster that has

the fewest observations, large values of |S| will increase the probability that at least one of the

clusters has very few data points, which weakens the bound. Therefore, the rate n2κn is fastest

when ρ is large and |S| is small. However, note that Assumption 3 is more likely to hold in the

opposite case: when ρ is small and |S| is large. Therefore, selecting ρ and |S| requires balancing
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their effects on κ with ensuring that Assumption 3 holds.

Third, observe that the bound expression is invariant to ε provided ε ∈ (0, 1). Intuitively, this

occurs because the key object of interest in the proof is a sequence of Bernoulli variables (which

contribute to the loss function error in a binary manner) that we use to bound the number of times

the hidden action is misclassified by a constructed solution π̄. However, we note that ε does indeed

appear in the non-dominant terms of the bound, as we would expect (see (A.38) in the proof of

Theorem 2).

Note that Theorem 2 is only valid for the case where each πa is permitted to be any valid

probability vector (i.e., Qπ = Rm×d). This additional condition is imposed on Π because the

randomness of the set V can render the solution constructed by our proof approach infeasible for

a more general parameter set Π. However, this additional assumption on Π is only needed for

the finite-sample characterization of the error in Theorem 2; Proposition 2 below shows that the

solution from the restricted estimator, π̃n, is asymptotically optimal with respect to the exact

estimator PA-C for any Π that satisfies (2.6).

Proposition 2. Let Assumption 3 hold. Then PA-D is asymptotically optimal with respect to PA-C:

|Zn(π
∗
n)− Zn(π̃n)| −→ 0.

The asymptotic optimality established in Proposition 2 provides assurance that PA-D is a reasonable

approximation to PA-C when n is large, which is precisely the regime where PA-C is likely to be

intractable. As a consequence, we should also expect the restricted estimator to produce “good”

estimates of π0 for larger sample sizes. Having established that PA-D reasonably approximates

PA-C, we now focus on developing a solution technique for tackling the mixed-integer program

PA-D.
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2.4.3 Statistical column generation

Observe that the size of the optimization problem PA-D grows with the number of candidate

distributions in V , which can make PA-D computationally intractable if V is large. In this section,

we propose a solution algorithm that involves solving PA-D over a subset of V – which we shall call

V + – which dramatically improves the tractability of the estimator PA-D, with minimal degradation

in estimation error. Because each candidate distribution in V is mapped to a set of decision variables

in PA-D (where the set S indexes the distributions in V ), our solution technique can be interpreted

as a column generation algorithm.

The key step of our approach is a series of non-parametric hypothesis tests, which identifies a

subset V + by performing pairwise comparisons of candidate distributions in V . The intuition is

as follows. Consider any candidate distribution vs ∈ V , and recall from Algorithm 1 that vs is

the empirical mass function over outcomes associated with the contracts in the sth cluster. If there

exists another cluster s′ such that all contracts in clusters s and s′ induce the same action from

the agent, then vs and vs′ can be interpreted as two empirical mass functions that were generated

by the same probability distribution (i.e., one of the rows of π0). Therefore, our goal will be to

apply non-parametric hypothesis tests to identify whether any pairs in V are generated by the same

distribution, and to discard those that are effectively “duplicates”.

Hypothesis test function.

A hypothesis test typically consists of four main steps: (1) a null hypothesis is specified that we

wish to test, (2) a significance level α (i.e. Type I error rate) is specified for the test, (3) a test

statistic is computed based on the sample data, and (4) the null hypothesis is rejected if and only

if the magnitude of the test statistic exceeds a threshold τα, where τα depends on α. In the context

of our column generation algorithm, the null hypothesis we will test is whether two candidate
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distributions vs and vs′ are generated from the same probability distribution (i.e., the same π0
a),

for many pairs (s, s′).

We first introduce some additional definitions that are required by our algorithm. For each

s ∈ S, define a vector ψs ∈ Zd
+, where the jth entry is the frequency of outcome j in the sth

cluster of Algorithm 1. The vector ψs is simply a convenient form for representing the candidate

distribution vs within our hypothesis tests. Let ns = |Is| be the number of observations in cluster s,

and note ns =
∑

j∈J ψsj for s ∈ S. Next, note that for each s ∈ S, by the weak law of large numbers

there exists νs ∈ Rd
+ such that ∥νs−vs∥ −→ 0 as ns −→∞. We now define the main ingredient of

the algorithm, which is a test function that declares whether ψs and ψs′ are statistically different

at a significance level α.

Definition 1. Hα(ψs,ψs′) : Zd
+×Zd

+ 7→ R is a test function if Pr(Hα(ψs,ψs′) > 0|νs ̸= νs′) −→ 1

as ns −→∞ and ns′ −→∞ and Pr (Hα(ψs,ψs′) > 0|νs = νs′) ≤ α.

Definition 1 states that the hypothesis test function returns a positive value if and only if the

null hypothesis – that the candidate distributions vs and vs′ are generated by the same probability

distribution – is rejected. This definition subsumes many two-sample, non-parametric hypothesis

tests. One example is the Kolmogorov–Smirnov hypothesis test (Massey, 1951; Stephens, 1974),

which is widely used for its ease of implementation. In particular, the test function is given by

Hα(ψs,ψs′) = sup
j∈J

∣∣∣∣ψsj

ns
−
ψs′j

ns′

∣∣∣∣− τα√ns + ns′

nsns′
,

where τKS
α is the critical value associated with a significance level of α (Smirnov, 1948). We

note here that the Kolmogorov-Smirnov test is known to be conservative for discrete distributions

(Slakter (1965); Conover (1972)). As a result, selecting τα based on Kolmogorov–Smirnov critical

values for continuous distributions makes α an upper bound on the true Type I error rate in
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our setting, but otherwise does not affect the validity of our algorithm. Other examples of non-

parametric tests that fit within our framework are the Anderson-Darling (Anderson et al., 1952;

Scholz and Stephens, 1987), Chi-squared (Cochran, 1952) and the Cramér–von Mises (Anderson,

1962) tests.

Algorithm overview.

Let S+ index the candidate distributions in V +. We let PA-D(S+) denote formulation PA-D where

S is replaced with the subset S+, and we let PA-D(S) denote the original formulation with the full

set V . Let V − = V \V + and S− = S \S+ denote the omitted distributions and the accompanying

index set, respectively. Given a significance level α, we shall say two candidate distributions vs and

vs′ are statistically different if and only if Hα(ψs,ψs′) > 0; that is, the null hypothesis that vs and

vs′ were generated from a common probability distribution is rejected. In each iteration of the main

loop of the algorithm, we perform a series of hypothesis tests identify a new candidate distribution

to be introduced to V +, and solve PA-D(S+) once there does not exist any distribution in V − that

is statistically different from every distribution in V + at a significance level of α. Specifically, in

each iteration we compute

s∗ = argmax
s∈S−

inf
s′∈S+

Hα(ψs,ψs′).

Intuitively, vs∗ is the distribution in V − that is the “most” different from all distributions in V +,

based on the selected test function Hα. The distribution vs∗ is then added to V + if and only if

inf
s′∈S+

Hα(ψs∗ ,ψs′) > 0. (2.15)
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If (2.15) holds, then vs∗ is statistically different from every distribution in V +, and is thus added

to V +. If (2.15) does not hold, then there are no remaining distributions in V − that are statis-

tically different from all distributions in V +. In this case, we solve PA-D(S+), and the algorithm

terminates. A summary is given in Algorithm 2.

Algorithm 2: Statistical column generation (PA-D+)

Input: Data (ri, ξi), i ∈ I, candidate distributions V produced by Algorithm 1,
significance level α > 0.

Initialize: Set t = 0. Select any s ∈ S. Set S+ = {s} and S− = S \ {s}.
1. Let s∗ = argmaxs∈S− infs′∈S+ Hα(ψs,ψs′).

if infs′∈S+ Hα(ψs∗ ,ψs′) ≤ 0 or S− = ∅,
Solve PA-D(S+) and obtain solution π+

n , set T = t, and terminate.
else Update t← t+ 1, S+ ← {S+, s∗}, and S− ← S− \ {s∗}. Return to Step 1.

Output: Parameter estimate π+
n , iteration count T .

We will use “PA-D+” to denote the estimator represented by Algorithm 2. There are two main

differences between existing column generation methods for large-scale integer programs and the

one we propose in Algorithm 2. First, the column generation process in Algorithm 2 involves

performing several hypothesis tests, which are fast to compute. By comparison, existing methods

for integer programs typically generate columns by solving an auxiliary optimization problem (often

called the pricing problem due to its use of dual information), which is often an integer program

itself and may be difficult to solve (Lubbecke and Desrosiers, 2005). Second, Algorithm 2 is not

guaranteed to produce an optimal solution to PA-D; in contrast, the purpose of existing column

generation methods is to solve the “original” optimization problem exactly. Therefore, Algorithm

2 effectively sacrifices optimality for computational efficiency. However, although Algorithm 2 does

not produce optimal solutions to PA-D, it can be shown to produce a consistent estimate of π0,

which is our main objective in this work.
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Consistency and iteration bound.

Next, we present the main result of §2.4: Theorem 3 shows that the approximate solution obtained

by Algorithm 2 preserves the consistency of the exact estimator PA-C.

Theorem 3. Let π+
n be the estimate obtained by PA-D+ (Algorithm 2). Then

π+
n −→ π0.

As a consequence of Theorem 3, we should expect π+
n to provide a reasonable estimate of the

unknown parameter π0. However, note that Theorem 3 is an asymptotic result only, and that for

small n the estimate from PA-D+ may be less accurate than the exact estimate obtained by solving

PA-C. We compare the performance of these two approaches numerically in §2.4.4.

Note that because the termination condition in Algorithm 2 depends on the outcome of a series

of hypothesis tests, the total number of iterations, denoted by T , is a random variable. In Theorem

4 below, we show that E[T ] is bounded by a function of the problem parameters, including the

significance level α used in the hypothesis testing step of Algorithm 2.

Theorem 4. Let Assumption 3 hold. Further, assume that for each s ∈ S, there exists a ∈ A such

that Bs ⊆ Ra(π
0). Then

E[T ] ≤ m[1 + α · |S| · (|S| −m)].

The proof of Theorem 4 relies on upper bounding Pr(T > m) – the probability that the number

of iterations in Algorithm 2 exceeds the number of agent actions. In particular, we show in the

proof of Theorem 4 that Pr(T > m) ≤ αmS. The intuition for the preceding inequality is as

follows. Observe that by construction, the candidate distribution vs is the empirical distribution

over outcomes associated with all contracts ri such that ri ∈ Bs. Because for each s ∈ S, Bs ⊂
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Ra(π
0) for some a ∈ A (by assumption), there are at most m unique distributions from which the

empirical distributions vs are generated, which are π0
a, a ∈ A. Next, note that in Algorithm 2,

a candidate distribution is only added to the set V + if the hypothesis testing step finds it to be

statistically different from every distribution in V +. Therefore, the event {T > m} implies that a

Type I error has occurred at some point during Algorithm 2; that is, a candidate distribution was

added to V+ despite the underlying distribution π0
a already being “represented” in V+ by another

candidate distribution.

Because α bounds the probability of making a Type I error, smaller values of α will make

Algorithm 2 more conservative in adding new distributions to V +, thus increasing the probability

of the event {T > m}. Conversely, if α is large, then it becomes more likely that a given distribution

vs is determined to be statistically different from those in V +, which leads to more distributions

being added to V +, and thus a greater number of iterations. The dependence on S arises for a

similar reason; as S increases, so does the number of omitted distributions V −, which increases the

likelihood that there exists a distribution in V − that satisfies the inclusion criterion in Step 2 of

Algorithm 2.

Additionally, note that the bound E[T ] ≤ |S| holds trivially, because T = |S| implies S−
T = ∅

by Algorithm 2. As a result, the bound in Theorem 4 may be vacuous if α is large, but is made

meaningful for an appropriate selection of S and α. It is also straightforward to verify that the

assumption in the statement of Theorem 4 implies that |S| ≥ m, which confirms that the bound

on E[T ] is strictly positive for all α > 0.

2.4.4 Numerical performance

In this section, we compare the performance of three estimation methods using synthetic data. The

first two are solving the exact estimator (PA-C) and the restricted estimator (PA-D) directly with
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optimization software. The third is solving the restricted estimator using the column generation

technique outlined in Algorithm 2 (PA-D+). We focus our comparison on the solution times and

estimation errors from the three approaches.

Setup.

Recall that m and d denote the number of actions and outcomes, respectively. We consider five

problem sizes, given by (m, d) ∈ {(2, 2), (4, 5), (5, 10), (10, 20), (20, 40)}. For each of the five problem

sizes, we consider three sample sizes, given by n ∈ {100, 500, 1000}. Then for each combination

(m, d, n), we randomly generate π0 from the appropriately-sized parameter set Π given by (2.6),

where Qπ is given by (2.7). For each (m, d, n), we randomly generate contract data by sampling ri

uniformly from [1, 10]d for each i = 1, . . . , n, and sampling c uniformly from [0, 1]m. The outcome

associated with each ri is obtained by solving the agent’s problem (2.1) under the corresponding

π0. We repeat this procedure for a total of 10 trials for each (m, d, n). To parameterize PA-D, we

set S = 50 and ρ = 10×d. For the hypothesis testing step for PA-D+, we use the discrete analogue

of the two-sample Anderson–Darling test (Scholz and Stephens, 1987), and set S = 50, ρ = 10× d

and α = 0.05. We use the optimization solver Gurobi 8.0 to solve PA-C, PA-D and PA-D+.

Results.

Table 2.1 summarizes the average solution time and estimation errors over 10 trials for the three

estimators. In each trial, the error associated with PA-C, PA-D and PA-D+ is given by 1
md∥π

0−π∗
n∥,

1
md∥π

0−π̃n∥, and 1
md∥π

0−π+
n ∥, respectively. In all trials, we set a time limit of 3600 CPU seconds.

Dashes in the table indicate instances where an optimal solution was not found within 3600 CPU

seconds for any of the 10 trials. In many of these trials, no feasible solution was found within 3600

CPU seconds; we therefore only include errors obtained at optimal solutions to PA-C or PA-D when
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reporting the average estimation error.

We offer a few observations regarding Table 2.1. First, note that for each problem size, the

estimation error generally decreases in n, which corroborates our consistency results (Proposition 1

and Theorem 3, respectively). Second, for smaller problem instances (e.g., m = 4, d = 5, n = 1000),

PA-C is less computationally expensive than PA-D+, which we posit is a consequence of requiring

fewer binary decision variables. However, PA-D+ generally scales more efficiently in the problem

and sample size than PA-C and PA-D, with the most notable performance improvement occurring at

larger problem instances (e.g., m = 10, d = 20, n = 1000). Third, solving the restricted estimator

PA-D directly with Gurobi is less tractable than solving the exact estimator PA-C with Gurobi.

This is again likely attributable to PA-D requiring many more binary variables than PA-C, due to

how the restricted parameter set is represented in the formulation PA-D. Nonetheless, the results

indicate that this intractability can be overcome by (approximately) solving the restricted estimator

using the statistical column generation technique, without significantly compromising estimation

error. Fourth, observe that larger problem sizes are not necessarily more computationally expensive

– for example, the average solution time of the instances (2, 2, 1000) and (5, 10, 1000) for PA-C was

245 and 12 seconds, respectively. We conjecture that this is because the larger problem sizes

offer the estimator additional degrees of freedom in fitting the agent model to the data (due to

containing a larger number of unknown parameters), which allows the optimization problem to

more quickly attain the minimal objective function value. Lastly, the favorable performance of

PA-D+ in the larger instances (e.g., m = 20, d = 40) suggests that our estimator and algorithm can

also be used to tractably approximate contracting problems with continuous actions and outcomes

through discretization.

Note that the purpose of Algorithm 2 is not to generate a provably optimal solution to PA-D,

which is typically the case with similar column generation methods. Instead, our primary goal is
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PA-C PA-D PA-D+
m d n Time Error Time Error Time Error

2 2 100 2 0.07 20 0.06 2 0.09
2 2 500 19 0.06 3432 0.06 4 0.06
2 2 1000 245 0.06 – – 15 0.06

4 5 100 0 0.05 – – 4 0.09
4 5 500 2 0.05 – – 18 0.06
4 5 1000 3 0.05 – – 66 0.06

5 10 100 1 0.04 – – 4 0.06
5 10 500 6 0.03 – – 14 0.04
5 10 1000 12 0.03 – – 47 0.03

10 20 100 2404 0.02 – – 3 0.02
10 20 500 – – – – 15 0.01
10 20 1000 – – – – 26 0.01

20 40 100 – – – – 2 0.01
20 40 500 – – – – 84 0.01
20 40 1000 – – – – 211 0.01

Table 2.1: Solution time (CPU seconds) and normalized estimation error of three formulations averaged over 10 trials.
Instances that did not solve to optimality under 3600 CPU seconds are omitted when calculating average estimation
error. Dashes indicate no instance solved to optimality within 3600 CPU seconds in any trial.

to generate an estimate of the true parameter π0 that is statistically consistent, competitive with

solutions from solving the exact estimator, and attainable in a computationally efficient manner.

Theorem 3 and the numerical results in Table 2.1 suggest that Algorithm 2 meets each of these

criteria.

2.5 Empirical Study: Randomizing Incentives in a Crowdwork

Platform

In this section, we demonstrate our method by using it to investigate the effect of financial incentives

on work quality in an online labor platform. First, we conducted an experiment on a crowdwork

platform (Amazon Mechanical Turk) by randomly assigning incentive contracts to a pool of workers

completing the same task. We then estimate an agent model from the experimental data, which
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allows us to characterize the link between incentives and quality and solve for an optimal incentive

contract.

2.5.1 Background: Incentives and quality on Amazon Mechanical Turk

Crowdwork platforms are used by businesses that require temporary labor to complete tasks that are

typically difficult for computers but simple for humans. Common tasks include audio transcription,

classification of images, and data entry. The largest and most well-known crowdwork platform is

Amazon’s Mechanical Turk (“mTurk”), which has been estimated to have 100,000 unique workers,

with 2,000 active at any given time (Difallah et al., 2018).

The mTurk platform allows “requesters” to post tasks, along with a reward to be paid to the

worker upon successful completion. Workers can select the tasks they want to complete, typically

on a first-come, first-served basis. Requesters have discretion over whether to pay workers for

their submissions, and can deny payment if the worker’s submission is incomplete or low quality.

Requesters can also provide bonuses to workers. Workers can be informed of the structure of the

bonus payment within the instructions for a task, which offers the requester considerable flexibility

in designing incentives.

The question of whether financial incentives improve quality of work in crowdwork platforms

has been addressed in multiple studies, with differing conclusions. Mason and Watts (2009) find

that incentives improve the quantity, but not quality of work; similarly, Yin et al. (2013) find that

the magnitude of the bonus does not affect quality. In contrast, Horton and Chilton (2010) and

Harris (2011) both find that quality can improve with worker pay. An important study in this line

of research is by Ho et al. (2015), who suggest that for tasks where quality plausibly depends on

worker effort (e.g., proofreading), incentives can improve quality.

With respect to experimental design, we underline two differences between our study and the
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work cited above. First, instead of assigning workers to a finite number of treatments (e.g., bonus

or no bonus), we vary incentives in a continuous manner, meaning the parameters of the incentive

contract are randomly drawn for each worker. This design significantly complicates the implemen-

tation of the experiment on mTurk, but introduces useful variation for estimating our agent model.

Second, we examine how incentives affect the distribution of work quality, instead of average quality.

2.5.2 Experimental setup

Task design.

A major source of observable heterogeneity in the mTurk worker population is location. Approxi-

mately 91% of workers are located in two countries: the US (75%) and India (16%) (Difallah et al.,

2018). We collected and analyzed data from both countries separately.

The experiment involved posting two types of tasks on mTurk. First, we posted a recruitment

task in which workers were paid $1.00 for agreeing to be notified of future tasks by email. We

recruited 250 workers from both the US and India using this task, for a total worker pool of 500.

The recruitment task in each country was made available for one day, and reached its maximum

number of submissions (250 for each location) within 3 hours of posting. Second, inspired by Ho

et al. (2015), we created a proofreading task by inserting 10 typos into a one-page, 500-word excerpt

from a newspaper article. The proofreading task required workers to report the line number and

correct spelling for each misspelled word in the article (e.g., “5:automobile”). We use a proof

reading task because it allows us to objectively measure the quality of each submission (percentage

of typos identified). After constructing the worker pool, we posted the proofreading task on mTurk

and notified each worker by email of the task’s availability. The task was available for 24 hours.
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Incentive structure and randomization.

We next describe how we randomized incentives among workers. The mTurk platform allows re-

questers to assign “qualification” criteria to tasks, which only allows workers with the required

qualifications to view and complete the task. For example, a requester might assign a location or

age-based qualification to a task if they wish to target a specific worker population. Requesters

can also create and assign custom qualifications to workers. When conducting a randomized exper-

iment, creating and randomly assigning qualifications to workers effectively allows the requester to

construct multiple treatment groups, where each qualification represents one treatment.

We use the qualification feature in mTurk to create exogenous variation in worker incentives.

We first created 500 unique qualifications, and assigned each qualification to a single worker in the

pool. We then created 500 tasks where each task was randomly assigned to a qualification. As a

result, for each of the 500 tasks, only a single worker in our pool was able to view and complete it.

The payment for the proofreading task consisted of two components: a base payment for finding

at least 25% of the typos in the document, and an additional bonus payment for finding at least

75% of typos. For each task (i.e., each worker in the pool), we drew base and bonus uniformly from

the interval [$0.10, $1.00], rounded to the nearest $0.01. We provided the details of the payment

structure upfront in the task instructions. Because workers were only able to view the task assigned

to them, workers could not observe the payment offered to others, and had no knowledge that

payments were randomized. Note that in the context of the proofreading task, worker output

corresponds to the fraction of typos corrected, which we also refer to as the task quality.

Submissions.

We collected a total of 346 submissions, each from a unique mTurk worker. Of these, 215 submis-

sions were from US-based workers, and 131 were from India-based workers. We analyze the data
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from US and India workers separately throughout our study. Figure 2.1 depicts the distribution

of quality scores for workers in each location. Note that a large number of submissions achieve a

quality score of 0. Low-quality submissions are a well-known feature of mTurk; because verifying

responses manually for a large number of submissions is difficult, workers may submit blank or low-

quality responses in the hope of nevertheless receiving a payment (Ipeirotis et al., 2010). Scores of

0 may also be due to submissions not being in the correct format, which we specified as a condition

for payment in the task instructions.

The mTurk platform provides timestamps for when a worker accepted and submitted a task.

The mean completion time (i.e., time between acceptance and submission) was 9.7 minutes, and

95% of workers submitted the task between 1 and 29 minutes after accepting it. Because mTurk

allows workers to accept tasks into a queue before working on them, the recorded completion time

is an upward-biased measurement of the actual time the worker spent on the task. As a result,

completion time may be a poor proxy for true worker effort, because the requester cannot observe

how much time the task spent in the worker’s queue. We therefore treat effort as fully hidden, and

do not use completion time data in our study.

Based on each worker’s completion time, we estimated the average wage to be $14.50/hr for

our task (including the guaranteed $1.00 payment at recruitment). This is likely a conservative

estimate of the true average wage due to the queueing behavior described above.

2.5.3 Estimation and validation

Next, we describe the application of our estimation procedure to the experimental data. Putting

the results of the experiment in the format required by our estimator is straightforward. Recall

that each worker was eligible for three possible payments based on their submission quality: no

payment (if they found 0-25% of typos), a base payment (25%-75%), or both a base and bonus
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Figure 2.1: Distribution of quality scores for submissions made by workers in the US and India.

payment (75-100%). In our framework, this corresponds to d = 3 possible performance levels for

the worker’s outcome ξi. Accordingly, the ith worker’s incentive contract ri has the components

ri1 = 0, ri2 = basei, and ri3 = basei + bonusi, where basei and bonusi are the randomly generated

parameters for that worker. For the PA-D+ algorithm, we set ρ = 0.5, S = 10 and α = 0.0001

throughout all experiments.

Measuring goodness of fit.

We require a goodness of fit metric for fitting and validating the model. Recall that our estimation

procedure generates a prediction of the outcome distribution: Given an estimate π̂, a contract r,

and action costs c, the model’s prediction of the outcome distribution under r is π̂a(r), where a(r)

is the agent’s optimal action under contract r. For ease of interpretation, we measure goodness

of fit as the absolute error between the empirical and predicted probability of a given outcome,

averaged over all outcomes. Specifically, let (ri, ξi), i = 1, . . . , n be the data we wish to measure

our model fit against. As before, for each i, let yij = 1 if ξi = j (if outcome j is observed). Then
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the mean absolute error (MAE) is given by

MAE =
1

d

d∑
j=1

∣∣∣∣∣ 1n
n∑

i=1

(
π̂a(ri),j − yij

)∣∣∣∣∣ . (2.16)

Setting cost parameters.

Two hyperparameters in our model are the number of actions, m, and the action costs, c1, . . . , cm.

We selected these parameters using a standard 10-fold cross-validation procedure, using MAE to

measure cross-validation errors. To avoid performing an extremely large number of cross-validation

iterations, we imposed additional structure by assuming action costs were of the form ca = (a−1)·δ,

for a = 1, . . . ,m. We used cross-validation to jointly select m and δ from the sets {2, 3, 4} and

{0.02, 0.05, 0.1, 0.2, 0.5}, respectively (units of the latter set are dollars). Results are presented in

Table 2.2. Note that errors are relatively stable for all values of δ when m = 2 or m = 3, whereas

the model appears to overfit for m = 4. We select (m, δ) = (3, 0.1) for both the US and India

datasets, resulting in the cost vector c = [0, 0.1, 0.2]. Lastly, for Algorithms 1 and 2, we set

ρ = 0.5, S = 50, and α = 0.01, and use a Chi-squared test for the hypothesis test step of Algorithm

2.

We note that our handling of action costs is fairly stylized, because they are treated as hyper-

parameters to be tuned prior to model fitting. Horton and Chilton (2010) estimates the median

reservation wage of mTurk workers to be $1.38/hr. Given that the median completion time for our

task was 8 minutes, $0.00–$0.20 appears to be a reasonable approximation for the range of effort

costs of an mTurk worker.

42



δ
m 0.02 0.05 0.1 0.2 0.5

2 0.06 0.06 0.07 0.06 0.06
US 3 0.04 0.06 0.04 0.06 0.05

4 0.18 0.11 0.12 0.12 0.08

2 0.07 0.08 0.06 0.06 0.08
IN 3 0.07 0.05 0.06 0.06 0.08

4 0.15 0.08 0.06 0.11 0.09

Table 2.2: 10-fold cross-validation errors (MAE) for US and India groups, with varying number of actions (m) and
cost spacing (δ).

Bootstrapping.

Given our moderately-sized data set (n = 215 and n = 131), we validated our estimation procedure

by bootstrapping. For each of 100 repetitions, we sampled n observations with replacement, and

estimated the model parameters from the sample using Algorithm 2. For each repetition, we

assessed model fit using two hypothesis tests: a Chi-squared (χ2) test, which is appropriate in our

setting because outcomes are discrete, and an exact test using MAE as the test-statistic, where

the sampling distribution is obtained through Monte Carlo simulation. In both hypothesis tests,

the null hypothesis is that the empirical distribution of quality outcomes in the out-of-bootstrap

data is generated by the fitted model. Accordingly, we interpret large p-values as indicating a good

model fit.

Table 2.3 shows the distribution of test statistics and associated p-values over the 100 bootstrap

repetitions. Both tests produced comparable p-values within each worker group. Note that the

median p-value was above 0.1 for both groups, which suggests the model reasonably fits the joint

distribution over (r, ξ) in the majority of bootstrap iterations.

Table 2.4 presents the estimated values of π and standard errors for both worker groups. Each

3 × 3 section in the center of Table 2.4 corresponds to the estimated π matrix for the labelled

worker group, averaged over 100 bootstrap repetitions. For convenience, we refer to the outcome
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5th 25th Median 75th 95th

US
χ2 (p-value) 0.20 (0.90) 1.70 (0.43) 3.42 (0.18) 7.36 (0.03) 23.58 (0.00)
MAE (p-value) 0.02 (0.89) 0.04 (0.42) 0.07 (0.14) 0.10 (0.02) 0.15 (0.00)

IN
χ2 (p-value) 0.18 (0.91) 0.99 (0.61) 2.13 (0.34) 5.23 (0.07) 14.33 (0.00)
MAE (p-value) 0.02 (0.93) 0.05 (0.65) 0.09 (0.35) 0.14 (0.09) 0.19 (0.00)

Table 2.3: Percentiles of Chi-squared (ξ2) and MAE test statistics with associated p-values over 100 bootstrap
repetitions.

Outcomes (j)
# Obs.

Actions (a) 1 2 3

1 0.46 (0.18) 0.34 (0.18) 0.20 (0.09) 19
US 2 0.30 (0.10) 0.42 (0.12) 0.28 (0.08) 27

3 0.20 (0.07) 0.43 (0.07) 0.37 (0.06) 169

1 0.57 (0.12) 0.34 (0.12) 0.09 (0.07) 36
IN 2 0.45 (0.09) 0.38 (0.11) 0.17 (0.06) 36

3 0.35 (0.07) 0.42 (0.07) 0.23 (0.06) 59

Table 2.4: Estimated values of π for both groups, with standard errors in parentheses. The final column reports the
number of in-bootstrap observations mapped to each action, averaged over 100 bootstrap repetitions.

in which the worker earns the bonus (ξi = 3) as the “bonus outcome”, and the probability that

this outcome is realized as the “bonus probability”. Note that the highest cost action (a = 3) has

the highest bonus probability in both worker groups, and that the bonus probability is lower in the

India worker group compared to the US group, for all actions.

Our estimation procedure treats each action a as a latent variable. The solution to the estima-

tion problem produces a clustering where each outcome is assumed to have been generated by one

of the m distributions (i.e., agent actions). As a result, for each bootstrap repetition, we can count

the number of observations that are assigned to each action by the estimator. The average number

of observations mapped to each action are reported in the final column of Table 2.4.
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Predictive performance.

Next, we evaluate the predictive performance of the estimator. For each of the 100 bootstrap

models, we compute the prediction error (given in (2.16)) attained by the fitted model on the

out-of-bootstrap observations. We set S = 10, ρ = 0.5, and α = 0.0001. To serve as performance

benchmarks, we repeat the bootstrap procedure for standard implementations of multinomial lo-

gistic regression (MLR) and classification trees (CT), both of which also generate predictions of

the outcome distribution for a given set of contracts.7 Figure 2.2 depicts the distribution over

prediction errors for the three methods over the 100 bootstrap repetitions. For the US data, the

average MAE for PA-D+, MLR and CT is 0.059, 0.070 and 0.093, respectively; for the India data,

the average errors are 0.072, 0.086, and 0.112. In summary, Figure 2.2 confirms that the PA-D+

estimator produces sound predictions on the experimental mTurk data, and is competitive with

well-known benchmark methods. In §A.2 of the electronic companion, we further compare all three

methods on several synthetic instances, and find that our estimator continues to perform well.
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Figure 2.2: Comparison of out-of-bootstrap prediction errors for PA-D+, multinomial logistic regression (MLR) and
classification trees (CT) on mTurk data (100 repetitions).

7Both benchmark methods are implemented using MATLAB’s Statistics and Machine Learning Toolbox using
default settings.
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2.5.4 Impact of bonuses on quality

We now use the estimated model to examine the effect of varying the bonus payment on quality. For

a given incentive contract, we form a prediction of the outcome distribution by averaging over the

100 bootstrapped models, which improves stability and reduces overfitting (Breiman, 1996). Let

π̂1, . . . , π̂K be the estimates obtained from K bootstrap repetitions. The probability of observing

outcome j under the incentive contract r is then given by 1
K

∑K
k=1 π̂

k
ak(r),j

, where ak(r) is the

optimal action for contract r in the kth agent model. To isolate the influence of the bonus payment,

we fix the base payment to $0.10, vary the bonus payment between $0.10 and $1.00, and compute

the probability of each quality outcome under each bonus amount. We repeat for a base payment

of $1.00.

Figure 2.3 shows the results for both the US and India groups of workers. For a base payment

of $0.10 (Figure 2.3a and 2.3b), the bonus probability (i.e., probability that submission quality is

above 75%) increases moderately for both groups as the bonus is increased from $0.10 to 1.00 (from

0.21 to 0.36 for the US group; from 0.09 to 0.17 for the India group). However, with a base payment

of $1.00 (Figure 2.3c and 2.3d), the effect of increasing the bonus payment from $0.10 to $1.00 is

dampened (bonus probability increases from 0.34 to 0.37 for the US group; 0.18 to 0.22 for the

India group). These results suggest that increasing the bonus payment can indeed increase quality,

but the effect is significantly diminished when the base payment is already high. A qualitatively

similar result can be obtained by fixing the bonus payment and varying the base payment (results

not shown).

We shed some light on the mechanics behind Figure 2.3. Because our predictions are based on

the average of 100 different agent models, for a fixed incentive contract, we can count the number of

models in which each action is taken. Further, note that if the bonus payment increases, an agent

may find it optimal to “switch” from a low-cost action to a high-cost action, thus increasing the
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(b) India, base = $0.10.
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(c) US, base = $1.00.
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(d) India, base = $1.00.

Figure 2.3: Effect of varying bonus payment on probability of each quality outcome (0-25%, 25-75%, 75-100%) for
US and India workers.
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probability of realizing the high-quality outcome. The change in probabilities depicted in Figure 2.3

is the result of the underlying agent models jumping from one action to the next as the parameters

of the contract change.

Figure 2.4 shows the fraction of agent models that take each of the three actions as the bonus

is increased from $0.10 to $1.00. Note that the four panels in Figure 2.4 map to the four panels

in Figure 2.3. As expected, when the base payment is $0.10, increasing the bonus amount from

$0.10 to $1.00 is associated with agents switching away from the lowest cost action (a = 1) toward

the higher cost actions (a = 2 and a = 3). Moreover, the shift toward higher cost actions is more

pronounced for the US worker group, where the fraction of agents taking the highest cost action

(a = 3) increases from 0 to 0.69; for the India group, this fraction increases from 0 to 0.17. In

parallel with Figure 2.3, when the base payment is $1.00, the fraction of agents taking the highest

cost action (a = 3) is higher overall, but the shift toward higher cost actions as the bonus is

increased is muted. In other words, the stability in selected actions shown in Figures 2.4c and 2.4d

explains the stability in outcome probabilities seen in Figures 2.3c and 2.3d. We emphasize here

that Figure 2.4 is intended to illustrate the mechanics behind the predictions in Figure 2.3, and is

not necessarily a depiction of worker behavior.

2.5.5 Solving for an optimal incentive contract

An advantage of our model specification is that it leads to an optimal contracting problem that is

highly tractable (see §A.1 of the electronic companion for details). To illustrate this in the context

of our mTurk study, we consider the simple problem of maximizing the bonus probability (i.e.,
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Figure 2.4: Effect of bonus payment on optimal agent actions in 100 bootstrapped models.

outcome {ξ = 3}) subject to a budget constraint on the expected payment:

maximize
r

π̂â(r),3 (2.17a)

subject to â(r) = argmax
a∈A

r⊤π̂a − ca, (2.17b)

r⊤π̂â(r) ≤ Γ, (2.17c)

r ≥ 0. (2.17d)

The formulation above is a special case of the general optimal contracting problem presented in

§A.1 of the electronic companion, and can be solved exactly by solving |A| linear programs. An

important consequence of the tractability of the optimal contracting problem (2.17) is that we can

easily characterize the performance of the optimal contracts as the budget parameter Γ varies. To
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Figure 2.5: Frontier of optimal bonus probabilities under varying budget parameter Γ.

do so, we solve (2.17) for each Γ ∈ {0.05, 0.1, . . . , 1} (for each of the 100 bootstrap estimates), and

compute the average bonus probability under each value of Γ.

Figure 2.5 shows the resulting frontiers for both the US and India worker data. Because the

curves are obtained by solving the optimal contracting problem (2.17), they represent estimates

of the maximum attainable performance for both worker groups over the entire class of contracts

used in the experiment. The value of the budget parameter Γ can be interpreted as the expected

payment to the agent under the corresponding optimal contract. Our main finding is that higher

payments increase quality modestly: increasing the expected payment from $0.10 to $1.00 increases

the bonus probability under the optimal contract by 0.08–0.12, depending on the worker group.

However, the most striking observation is that returns to quality diminish at fairly low payment

levels, with quality improvements leveling off around $0.30 and $0.60 for the US and India groups,

respectively.

Figure 2.5 also clearly depicts the difference in the performance of optimal contracts between

the US and India worker groups. For example, for the US group, attaining a bonus probability

of 0.30 requires an expected payment of at least $0.20; for the India group, a bonus probability

of 0.30 is not attainable through higher payments alone. It can also be observed that the bonus

probability is approximately 0.10–0.15 higher among US workers across all payment levels.
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2.5.6 Experimental validation of contract performance

To validate the predicted performance of the optimal contracts shown in Figure 2.5, we conducted

six follow-up experiments on mTurk. First, for each of the 100 bootstrap estimates π̂1, . . . , π̂K , we

solved the optimal contracting problem (2.17) for Γ ∈ {0.25, 0.50, 0.75}, which corresponds to three

different points on the frontiers in Figure 2.5. We then computed the optimal contract by taking

the component-wise average of the 100 solutions to (2.17). This produced six different testable

contracts (i.e., combinations of the base and bonus parameters), which are shown in Table 2.5. We

implemented each contract on mTurk by recruiting a new pool of 600 unique workers (using the

same approach described in §2.5.2), and assigning 100 workers to each of the six contracts. Table

2.5 summarizes the results from these experiments, including the empirical bonus probability for

each contract (i.e., the fraction of submissions with quality above 75%). In Figure 2.6, we plot the

empirical bonus probabilities along with the 95% prediction intervals obtained from the bootstrap.

Figure 2.6 shows that for each of the six experimentally tested contracts, the empirical bonus

probability sits comfortably inside its corresponding prediction interval, and is often close to the

midpoint of the interval. In general, the prediction intervals are wide, which is unsurprising given

that many other factors likely influence submission quality beyond the payment amount, including

unobserved worker attributes. Further, validating the predictions from any model through experi-

ments is challenging in general; because the worker population on mTurk is not temporally static

(Difallah et al., 2018), the worker population in the validation experiments may be different from

the initial experiments used to estimate the model. Nevertheless, our results in Figure 2.6 suggest

that the estimator can reasonably predict experimental outcomes under a given incentive contract.
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Figure 2.6: Empirical bonus probabilities and 95% prediction intervals of six contracts implemented on mTurk.

Budget (Γ) Base Bonus Submissions > 75% Empirical Bonus Probability

US
0.25 0.16 0.42 20 5 0.20
0.50 0.23 0.47 52 17 0.33
0.75 0.41 0.78 39 14 0.36

IN
0.25 0.11 0.31 73 9 0.12
0.50 0.25 0.42 79 10 0.13
0.75 0.58 0.77 71 8 0.11

Table 2.5: Optimal incentive contracts under three different values of Γ and associated results from mTurk experi-
ments.

2.5.7 Discussion

Our results suggest larger incentives can increase quality on crowdwork platforms, corroborating

the results of Ho et al. (2015). While similar results are reported in the literature, we have taken a

complementary approach by characterizing worker performance over a class of incentive contracts.

Further, the tractability of the optimal contracting problem under our agent model allows us to

estimate performance under an optimal contract. In particular, as summarized in Figure 2.5, we find

that increasing the expected worker payment by about $1 increases the probability that a worker

crosses the bonus threshold by 0.08–0.12, depending on the worker’s location. Most notably, we

find diminishing returns to quality at relatively low payments in both worker groups, which may

help explain why requesters tend to set low wages on mTurk (Hara et al., 2018).
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We also observe that quality can depend strongly on the worker’s location. In particular, as seen

in Figure 2.5, the bonus probability for the India group at an expected payment $1.00 is comparable

to the US group at $0.10. This result aligns with a finding by Shaw et al. (2011), who observe that

quality on mTurk is much more strongly associated with worker location than financial incentives.

While we have only focused on worker location in this study, our approach can be readily extended

to other worker attributes, provided sufficient data is available.

We highlight some limitations of our study and note directions for future work. First, we

have treated agent costs as hyperparameters by tuning them through cross-validation. This makes

the costs used in our model a rough approximation of actual worker costs, and may limit the

interpretability of the resulting agent model. Our agent model also does not capture many of

the worker dynamics present in crowdwork platforms. Horton and Chilton (2010) point out that

mTurk worker output appears to deviate from what would be predicted by simple, rational agent

models, which applies to our model as well. Lastly, an important aspect of crowdwork not addressed

here is worker welfare. In particular, mTurk has been widely criticized for low worker pay, which

is often far below the US minimum wage (Hara et al., 2018). While we did not address worker

welfare in this work, our modeling framework can also be used to characterize welfare over a class

of incentive contracts, and allows for welfare considerations to be explicitly incorporated into the

optimal contracting problem (e.g., by imposing constraints on agent utility). Investigating the

trade-off between worker welfare and quality in crowdwork may be a fruitful direction for future

work.

2.6 Conclusion

We proposed an approach for estimating parameters that govern agent production in a moral-

hazard principal-agent model. First, we presented an estimator for a non-parametric agent model,
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and showed it to be statistically consistent. To avoid computational drawbacks of solving the

estimator exactly, we proposed an approximate estimator based on a restricted parameter set, and

characterized the approximation error both asymptotically and in a finite-sample setting. To solve

the restricted estimator, we developed a novel column generation technique that uses hypothesis

testing to select variables, which we showed preserves consistency. Numerical results show that

the approximation scheme and solution technique produce accurate estimates in a computationally

efficient manner. Lastly, we applied our estimator to data from a randomized experiment on a

crowdwork platform to demonstrate how our method can be used to characterize performance over

a class of incentive contracts and identify optimal incentives from the estimated model.

We conclude by noting some possible directions for future work. Our estimation procedure is

built upon a general but simple moral-hazard agent model; it may be useful to extend our approach

to accommodate other common features of principal-agent models, such as unobserved heterogeneity

and risk aversion. There may also be fertile ground in generalizing our statistical column generation

algorithm to other integer programming problems. In particular, our approach may be relevant to

other estimation problems where the parameter space is a very large set of discrete distributions.

Lastly, estimating an agent model from data may be valuable for investigating questions related to

worker welfare, which is an issue of increasing prominence in online labor platforms.
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Chapter 3

Discovering Causal Models with Optimization

3.1 Introduction

The availability of high quality data has made integrating predictive and prescriptive models in-

creasingly promising. These models often consist of two components: a statistical procedure for

learning parameters of interest from observational data, and a prescriptive model that takes the es-

timated parameters as input. This combination of methodologies has been successful in improving

decision-making in a variety of contexts, including supply chain management, revenue management,

and healthcare (Giesecke et al., 2018; Mǐsić and Perakis, 2020).

An implicit assumption of the paradigm described above is that the decision maker has knowl-

edge of the causal relationship between observed variables – that is, that the fitted statistical model

alone is sufficient for predicting the effects of a hypothetical decision. However, if the underlying

causal assumptions are incorrect, then the model can yield misleading or even harmful prescriptions

(Kallus and Zhou, 2020). In recognition of the importance of causality, there is a recent but limited

body of work that explicitly incorporates causal inference into prescriptive models (Bertsimas and

Kallus, 2016; Alley et al., 2019; Kallus and Zhou, 2020; Baardman et al., 2020; Gupta et al., 2020).

While these approaches address the challenge of estimating causal effects when the variables are
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subject to confounding, they primarily focus on narrowly circumscribed causal structures over the

variables of interest.

In this chapter, we take a step back and consider how to learn causal relations from data in

the first place using the framework of graphical causal models. The framework of graphical causal

models (Spirtes et al., 2000; Pearl, 2000), discussed in more detail in §3.2, enables this sort of

inference by providing a precise mathematical representation of the causal structure of a system (in

terms of a directed graph) and the observed data (in terms of a probability distribution associated

with the graph). Using this framework, a variety of causal discovery methods have been developed

to infer underlying causal structures from observational data. With a few important exceptions,

these methods have relied on two restrictive assumptions, which limit their practical relevance.

The first is the absence of latent confounders – referred to as causal sufficiency – which means that

there are no unmeasured common causes of the measured variables. The second is that there is

no feedback, meaning the causal structures can be represented by directed acyclic graphs (DAGs).

Both of these assumptions can only rarely be justified in practice.

Our main contribution is a new optimization-based method for causal discovery that allows

for both unmeasured confounders and feedback cycles. To address the scalability issues resulted

from considering this general search space, we propose an iterative solution technique that exploits

the conditional (in)dependence structure in the data to detect “promising” candidate edges in the

underlying graph, which are then assembled into a causal graph by an optimization model. The

generality of our method combined with its computational efficiency greatly expands the practical

relevance of causal discovery to empirical research.

The remainder of the chapter is organized as follows. §3.2 reviews foundational concepts in

causal discovery, which a familiar reader may skip. §3.3 presents an optimization model for causal

discovery with latent confounders and feedback cycles. §3.4 develops a solution technique for the
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model. §3.5 extends our framework to address the challenge of feature selection. §3.6 concludes

with a brief discussion of further developments.

3.2 Causal Graphical Models

In the framework of causal graphical models (Pearl, 2000; Spirtes et al., 2000), causal relations are

represented by a directed graph G = (V,E) over a set of nodes V , where the edge set E contains

directed edges, representing a direct (relative to V ) causal effect of one node on another. We will

first introduce the theory and notation using directed acyclic graphs (DAGs), as they permit the

most intuitive explanation and the simplest causal interpretation (§3.2.1). We then extend these

concepts to include graphs that contain cycles and unobserved confounding variables (§3.2.2).

3.2.1 Acyclic Models Without Unmeasured Confounding

In acyclic causal models without unmeasured confounding, the graph G = (V,E) over a set of nodes

V contains at most one directed edge between any pair of nodes. We define an edge e ∈ E as a

triple (i, t, j) with i, j ∈ V , i ̸= j, and t ∈ {→,←}. Central to our algorithm is the notion of a path

between two variables:

Definition 2 (Path). Given a node set V , a set of edge-types T = {→,←,↔} and an edge set

E of triples (v1, t, v2) with v1, v2 ∈ V and t ∈ T , we define a path pij from node i to node j with

i, j ∈ V, i ̸= j, as a sequence of edges pij = (e1, . . . , eℓ) such that ek ∈ E for all 1 ≤ k ≤ ℓ, e1 starts

with node i, eℓ ends with node j, consecutive edges are connected, and nodes on the path do not

repeat (other than as start- and endpoint of consecutive edges). See Appendix B.1 for formalization.

A directed path from i to j is then a path where all edges point towards j. Any node connected

by a directed path from i is a descendant of i, any node connected by a directed path to i is an

ancestor of i. Parents and children of a node i are the direct causes and effects, respectively, of i
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Figure 3.1: Example directed acyclic graph (DAG).

in G. A DAG is a directed graph in which there is no pair of distinct nodes (i, j) such that there

is a directed path from i to j and an edge j → i. We say that a node i is a collider on a path if its

adjacent edges point into i (→ i←). A non-collider on a path is a node i that is either a mediator

(→ i→) or a common cause (← i→). For example, in Figure 3.1, node j is a collider on the path

i → j ← k and a mediator on the path i → j → l, and node i is a common cause on the path

l← i→ j.

In causal modeling, a DAG G is associated with a probability distribution PG(V ), which describes

causal relations over the set of nodes V .1 A standard assumption is that the distribution is generated

by the graph structure such that it factorizes: PG(V ) =
∏

i∈V PG(i|Pa(i)), where Pa(i) are the

parents of node i in G (Spirtes and Zhang, 2016; Eberhardt, 2017). Based on the connection

between the causal structure and the resulting data distribution, many causal discovery algorithms,

including the one we present here, exploit the independence structure seen in the data to infer the

underlying causal relations. One of the central concepts required for this inference is the notion

of d-separation (Geiger et al., 1990), which can be thought of as the graphical counterpart to

probabilistic independence. It is based on the notion of a blocked path:

Definition 3 (Blocked paths). A path between nodes i and j is unblocked with respect to a set of

nodes C if every collider k on the path is in C or has a descendant in C, and no other nodes on

1Given the correspondence between graphical structure and probability distribution, we will use the terms “node”
and “variable” interchangeably.
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the path are in C. Otherwise the path is blocked with respect to C (Pearl, 2000).

Definition 4 (d-separation). Two nodes i and j are d-separated with respect to a conditioning set

C (denoted by i ⊥ j|C) if all paths between them are blocked, otherwise they are d-connected given

C (denoted by i ̸⊥ j|C) (Pearl, 2000).

To illustrate the definitions above, note that there are two paths between m and l in Figure 3.1:

m → i → l and m → i → j → l. By Definition 3, both of these paths are unblocked with respect

to the empty conditioning set C = {}, which by Definition 4 implies that m and l are d-connected

with respect to C = {}. Now consider the conditioning set C = {i}. By Definition 4, conditioning

on node i blocks these paths because node i is a noncollider on both of these paths. Since there does

not exist an unblocked path between nodes m and l with respect to the conditioning set C = {i},

it follows that m and l are d-separated with respect to the conditioning set C = {i}.

With this definition in hand, we can now put (conditional) d-separation in correspondence

with (conditional) independence. Following convention, we use the single turnstile (⊥) to denote

d-separation and the double turnstile (⊥⊥) to denote probabilistic independence. There are two

standard assumptions that are used to achieve this correspondence: the causal Markov condition

and the faithfulness condition.

Assumption 4 (Causal Markov). If node i is d-separated from node j given conditioning set C in

graph G = (V,E) with i, j ∈ V and C ⊆ V \ {i, j}, then i is probabilistically independent of j given

C in the distribution over the graph PG(V ):

i ⊥ j|C in G =⇒ i ⊥⊥ j|C in PG(V ). (3.1)

Assumption 5 (Faithfulness). If variable i is probabilistically independent of variable j given

conditioning set C in the distribution over the graph PG(V ), then i is d-separated from j given C
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in graph G = (V,E):

i ⊥⊥ j|C in PG(V ) =⇒ i ⊥ j|C in G. (3.2)

The (global) causal Markov condition, as we have stated it here, follows from how we have

defined the probability distribution in terms of the causal structure (Pearl, 2000). In contrast,

the faithfulness condition, which is the converse to the Markov condition, represents an additional

assumption, as it ensures that an independence in the data is actually due to a d-separation (rather

than, for example, two causal pathways cancelling each other out (Spirtes et al., 2000; Uhler et al.,

2013)). Together, the causal Markov and faithfulness conditions provide a tight correspondence

between (conditional) probabilistic independence and (conditional) d-separation.

Remark 1. Under the causal Markov and faithfulness conditions, a (conditional) independence in

PG(V ) is present if and only if there is a corresponding (conditional) d-separation in DAG G.

This correspondence is the basis for many causal discovery methods, as one can now use the

independence structure in the data to constrain the graph structure.

3.2.2 Extension to Cyclic Models with Latent Confounding

We introduced the key concepts in the context of directed acyclic graphs (DAGs). In the remainder

of this chapter, we focus on a more general class of graphs that permit cycles and can represent

confounding due to unobserved variables. For such graphs, many of the key ideas above can be

generalized, but they require much more book-keeping and are much less intuitive. We briefly

outline the required adjustments here.

A cyclic model, as its name suggests, permits feedback cycles in the causal structure. In this

setting, the edge set E in G = (V,E) may contain an edge in each direction between a pair of nodes.2

2In principle there can also be edges from a node to itself, but such self-loops are redundant for linear Gaussian

60



These cycles do not represent backwards-in-time causation, but should instead be understood as

shorthand notation for causal feedback that is unravelled over time; for example, it → jt+1 → it+2.

One of the simplest and most well-studied cyclic causal models is the linear Gaussian cyclic model

given by x(t) = Bx(t − 1) + ϵ, where x is a vector representation of the variables in V , ϵ is a

vector of independent errors, and B is a square matrix representing the (possibly cyclic) causal

effects among the variables (Hyttinen et al., 2012). Under appropriate conditions, the model

converges to an equilibrium, which allows cycles such as it → jt+1 → it+2 to be represented more

simply without time indices as i
→
← j.3 For this type of linear Gaussian cyclic model, the Markov

and faithfulness conditions still imply the correspondence between (conditional) d-separation and

(conditional) independence (Remark 1). However, unlike the acyclic case, the correspondence

between d-separation and probabilistic independence does not hold in general in cyclic models.

Remark 2. In the cyclic case, the correspondence between d-separation and probabilistic indepen-

dence holds for linear Gaussian causal models, but not in general (Spirtes, 1995).

We will restrict consideration of cyclic models to the linear Gaussian case in order to utilize

the correspondence described in Remark 1.4 In the acyclic case, our results are not restricted to a

particular parameterization.

To represent confounding between a pair of variables (i, j) due to an unobserved common cause

c, the graphical framework is extended to include the bi-directed edge i↔ j (see Figure 3.2(b) and

(c)). Here, i ↔ j is shorthand for i ← c → j, where c is an unobserved variable (c /∈ V ). The

graph G = (V,E) then consists of a set of variables V and edges E such that every pair (i, j) is

permitted to contain directed edges (→,←), possibly in both directions, and a bi-directed edge

cyclic models that we consider here (Hyttinen et al., 2012).
3In the general case with arbitrary initial conditions, a sufficient and necessary condition for convergence to an

equilibrium is for all eigenvalues of B to be less than 1 (Hyttinen et al., 2012).
4An extension to more general parameterizations for cyclic models is beyond the scope of this work – see the

notion of σ-separation in Forré and Mooij (2018) for a thorough treatment.
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Figure 3.2: Example graphs: (a) A directed acyclic graph (DAG). (b) The more general acyclic directed mixed graph
(ADMG), which does not contain cycles, but contains bi-directed edges to represent unmeasured confounding. (c) A
directed mixed graphs (DMG) that allows for both cycles and confounding.

(↔) to represent unmeasured confounding.5 Colliders remain defined as before, but now they can

also arise from bi-directed edges incident on the “colliding” variable.

The model class that includes bi-directed edges but disallows cycles is often referred to as acyclic

directed mixed graphs (ADMGs) (Figure 3.2(b)). Our focus will be on the general model class of

directed mixed graphs (DMGs), where both bi-directed edges and cycles are allowed (Figure 3.2(c)).

D-separation can be naturally extended to DMGs, one just has to keep track of a larger set of

possible edges, since any pair of variables can now be connected by three different edge types. In

the cyclic linear Gaussian model described above, confounding can be represented using a non-

diagonal covariance matrix for the error terms, resulting in correlated errors. For such linear

Gaussian models with correlated errors the correspondence between d-separation and probabilistic

independence (Remark 2) still holds (Spirtes, 1995).

3.2.3 Constraint-Based Causal Discovery

Our proposed method belongs to a class of causal discovery algorithms known as constraint-based

methods (see Maathuis et al. (2010), Spirtes and Zhang (2016) and Eberhardt (2017) for reviews).

These methods involve performing conditional independence tests on the data to construct condi-

tional (in)dependence “constraints”, that are used to search for a causal graph that satisfies these

5Only one bi-directed edge is used to represent all possible confounders between a pair of variables. A confounder
of n observed variables is represented by

(
n
2

)
bi-directed edges among the n variables.
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constraints to the extent possible. Here, each input constraint is the statement i ⊥⊥ j|C or i ̸⊥⊥ j|C

for some i, j ∈ V and C ⊂ V \ {i, j}, which implies a d-separation or d-connection that the output

graph must satisfy (by Remark 1).

One of the first and most well-known constraint-based methods is the PC-algorithm by Spirtes

et al. (2000), which is restricted to searching for the equivalence classes of DAGs. Alternative meth-

ods generalize the search space to acyclic graphs with unmeasured common causes (Spirtes et al.,

2000) and cyclic causal models (albeit without unmeasured confounding) (Richardson, 1996). A

number of variants of these methods have been developed in the literature with the aim of improving

computational efficiency or reliability (Colombo et al., 2012; Teramoto et al., 2014). Constraint-

based methods have been shown to be asymptotically correct for their respective background as-

sumptions, meaning in the large-sample limit they discover the true data-generating graph up to

an equivalence class (see §3.3.2 for details) (Spirtes et al., 2000; Zhang and Spirtes, 2002; Solus

et al., 2017).

An advantage of constraint-based causal discovery is that it allows the user to completely

separate the statistical challenge of establishing the (conditional) independence constraints from

the combinatorial inference of finding graphs that are consistent with them. Thus, one can choose

independence tests that are suitable for the particular domain and adopt their preferred correction

method for multiple hypothesis testing. Such decisions will be informed by the sample size, the

number and dimensionality of the variables, whether the variables are categorical or continuous, or

what assumptions one is willing to make about the parametric form of the causal relations.

Our work is most closely related to constraint-based methods that allow for both cycles and

unmeasured confounders. These methods encode d-separation constraints obtained from indepen-

dence tests in a logical representation, and either use Boolean satisfiability solvers (Hyttinen et al.,

2013), answer set solvers (Hyttinen et al., 2014, 2017) or custom branch-and-bound algorithms
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(Rantanen et al., 2018, 2020) to identify a graph that minimizes the (weighted) sum of violated

d-separation constraints. Because focusing on DMGs dramatically expands the search space of

possible graphs, the discovery task can be computationally challenging for all of these methods,

even when the number of variables is modest (i.e., fewer than 10).

To overcome limited scalability, other causal discovery methods have considered simplifica-

tions such as (i) only searching for causal ancestry relations, rather than direct causal connections

(Magliacane et al., 2016)), (ii) only allowing unmeasured confounders, but no cycles (Triantafillou

and Tsamardinos, 2015), or (iii) by weakening the faithfulness assumption (Zhalama et al., 2017).

Instead of imposing restrictive assumptions, our approach maintains tractability by iteratively ex-

panding the search space of possible graphs, and optimizing the solution using two alternating

integer programs.

There are a small number of existing methods for causal discovery that are explicitly based on

integer optimization (Jaakkola et al., 2010; Cussens, 2012; Bartlett and Cussens, 2017; Park and

Klabjan, 2017; Kucukyavuz et al., 2020; Manzour et al., 2021). These methods all focus on DAGs,

and thus do not accommodate feedback cycles or unobserved confounders. A second distinction is

in the formulation of the problem – ours is a constraint-based approach, and accordingly searches

for a graph that satisfies conditional (in)dependencies seen in the data. In contrast, the papers

cited above present score-based methods, which typically involves maximizing the likelihood of the

data under a given DAG. Such a formulation of the search problem is not easily generalized to

handle cyclic and confounded models.

3.3 Path-Based Model for Causal Discovery

Our model takes as input a set of (conditional) independence and dependence relations over the

variables V . Assuming the Markov and faithfulness conditions (and for the cyclic case, that the
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parameterization is linear Gaussian), these relations imply a corresponding set of d-separation and

d-connection relations that must be satisfied by the output graph (Remarks 1 and 2). At a high

level, our model conceptualizes the search space of DMGs as combinations of paths, and aims to

select a set of paths such that the resulting graph minimizes violations of the input d-separation

and d-connection constraints.

3.3.1 Model Formulation

Given a data set over a set of variables V , we denote by C ⊂ V a generic set of conditioning

variables. We then define Aij = {C | C ⊆ V \ {i, j}} to be the set of all possible conditioning

sets C for the pair (i, j). We refer to the nth such conditioning set in Aij as Cn
ij ∈ Aij . Then,

let Dij = {C ∈ Aij | i̸⊥⊥j|C} be the set of all conditioning sets such that i and j are statistically

dependent conditional on C; and similarly, Iij = {C ∈ Aij | i⊥⊥j|C} to be the set of all conditioning

sets such that i and j are statistically independent conditional on C. We assume that each pair of

variables (i, j) is either dependent or independent given a particular conditioning set C. Thus, for

all pairs (i, j) we have Dij ∪ Iij = Aij and Dij ∩ Iij = ∅. We use Nij , N
D
ij and N I

ij as index sets for

Aij , Dij and Iij , respectively, where Nij = ND
ij ∪N I

ij .

Based on the equivalence established in Remark 1, the sets Dij and Iij encode the d-separation

and d-connection relations found in the data. A graph G satisfies the d-connection implied by

C ∈ Dij if i ̸⊥G j|C; similarly, G satisfies the d-separation implied by C ∈ Iij if i ⊥G j|C. Our

objective is to find a directed mixed graph G that minimizes the number of d-separation and d-

connection constraints found in the data that are not satisfied in G; that is, we want to find a graph

G ∈ O where

O =

G
∣∣∣∣G ∈ argmin

G

∑
i,j∈V

∑
C∈Dij

1(i ⊥G j|C) +
∑
i,j∈V

∑
C∈Iij

1(i ̸⊥G j|C)

 . (3.3)
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We formulate the problem of searching for a graph in O as an integer program (IP). Our model

constructs a graph by selecting paths that best fit the discovered d-connection and d-separation

conditions. Despite the possible cycles in DMGs, we show in Appendix B.1 that checking only a

finite number of finite length paths is sufficient to determine all d-connection relations. 6

Let P−
ij (Ẽ) be the set of all paths between nodes i and j over a given edge set Ẽ as defined by

Definition 2. Let colp be the set of colliders on path p. We then define an appendage of p, to capture

possible d-connections obtained by conditioning on descendants of colliders, to be an (acyclic)

directed path that one can construct with edges in Ẽ that has as root a collider in colp and does

not pass through i or j. For each path p we can then generate a set of extended paths P+
pij(Ẽ) that

contains p and all combinations of p with its appendages. (See Appendix B.1 for details) Finally, we

define the set of all extended paths between i and j given an edge set Ẽ as Pij(Ẽ) =
⋃

p∈P−
ij
P+
pij(Ẽ)

and the set of all extended paths given an edge set Ẽ as P(Ẽ) =
⋃

{(i,j)∈V :i ̸=j} Pij(Ẽ).

We define a path’s length ℓp as the unique number of edges in the sequence. For each p ∈ P(Ẽ)

and e ∈ Ẽ, let ϕpe be a parameter where ϕpe = 1 if and only if edge e belongs to path p, and let

αn
ijp be a parameter where αn

ijp = 1 if and only if the path p ∈ Pij(Ẽ) is unblocked with respect to

the conditioning set Cn
ij ∈ Aij .

Next, we define three types of binary decision variables. Let x ∈ {0, 1}|Ẽ| determine edges in the

graph G = (V,E) with E ⊆ Ẽ, where xe = 1 if and only if edge e ∈ E. Similarly, let y ∈ {0, 1}|P(Ẽ)|

determine paths in the graph G, where yp = 1 if and only if path p ∈ P(E). Lastly, for each pair

i, j ∈ V , we define the error variables zij ∈ {0, 1}|Nij |, where znij = 1 if and only if the d-separation

relation in G does not correspond to the independence relation found in the data (that is, i ⊥ j|Cn
ij

in G but Cn
ij ∈ Dij , or i ̸⊥ j|Cn

ij in G but Cn
ij ∈ Iij).

6A DMG may technically contain paths with repeating nodes, due to cycles. However, as we show in Appendix
B.1, all d-separation relations can be accurately captured by paths that conform to Definition 2. While this is a fairly
technical result, it has important consequences for the correctness of our method, because it allows us to restrict
attention to paths with non-repeating nodes without loss of inferential power.
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We can now define the constraints and objective function of the model. First, we require two

constraints that enforce coherence between the edge and path variables x and y:

yp ≥
∑
e∈Ẽ

ϕpexe − (ℓp − 1), p ∈ P(Ẽ), (3.4a)

ℓpyp ≤
∑
e∈Ẽ

ϕpexe, p ∈ P(Ẽ). (3.4b)

The first constraint ensures that if all the edges on a path p are selected, then path p is present in

the graph. The second constraint ensures that path p can only be present in the graph if all the

edges on path p are selected. Next, note that a path p is blocked with respect to a set Cn
ij if and

only if αn
ijp = 0. Thus, to satisfy all d-separation relations, we would ideally like to construct a

graph such that for any i, j ∈ V , αn
ijpyp = 0 holds for all n ∈ N I

ij and p ∈ Pij(Ẽ). However, because

the set of input d-separation and d-connection relations may not be jointly satisfiable, we allow for

possible violations by introducing the error variable znij :

αn
ijpyp ≤ znij , n ∈ N I

ij , p ∈ Pij(Ẽ), i, j ∈ V. (3.5)

For each conditioning set Cn
ij ∈ Iij , constraint (3.5) forces znij = 1 if i and j are not d-separated

with respect to Cn
ij . Similarly, i and j are d-connected with respect to Cn

ij ∈ Dij if and only if

there is at least one unblocked path, or equivalently,
∑

p∈Pij(Ẽ) α
n
ijpyp ≥ 1. By again allowing for

violations by introducing the error variable znij , we obtain the constraint

∑
p∈Pij(Ẽ)

αn
ijpyp ≥ 1− znij , n ∈ ND

ij , i, j ∈ V, (3.6)

which forces znij = 1 if i and j are not d-connected with respect to Cn
ij ∈ Dij . Note that constraint

(3.5) and (3.6) are defined over N I
ij and ND

ij , respectively, so that each znij variable appears in one
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constraint only. It follows from (3.5) and (3.6) that the total number of violated d-connection

and d-separation relations is given by
∑

i,j∈V
∑

n∈Nij
znij . Minimizing these violations over the

constraints (3.4)–(3.6) yields the optimization problem:

minimize
x,y,z

∑
i,j∈V

∑
n∈Nij

znij

subject to (3.4)− (3.6),

CausalIP(Ẽ) : yp ∈ {0, 1}, p ∈ P(Ẽ),

znij ∈ {0, 1}, n ∈ Nij , i, j ∈ V,

xe ∈ {0, 1}, e ∈ Ẽ.

We refer to the formulation above as CausalIP(Ẽ), where Ẽ is the set of edges the model has

access to. If (x,y, z) is a solution to CausalIP(Ẽ), then the graph returned by the model is given

G(x) = (V,E) where E = {e|e ∈ Ẽ and xe = 1}. In Appendix B.2, we show how our approach

can also be restricted to DAG- or ADMG-search (although more scalable methods exist for those

spaces). Next, we address the theoretical performance of CausalIP(Ẽ).

3.3.2 Discovery Guarantee

In general, the independence structure seen in observational data does not uniquely identify the

underlying causal graph. Two graphs that have the same independence structure (and thus the

same d-separation relations) are said to be Markov equivalent.

Definition 5 (Markov equivalence). DMG G1 = (V,E) is Markov equivalent to

DMG G2 = (V,E′) if and only if G1 and G2 have identical d-separation relations:

G1 ∼ G2 if and only if i ⊥G1 j|C ⇐⇒ i ⊥G2 j|C ∀i, j ∈ V and C ⊆ V \ {i, j}. (3.8)
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Two graphs that are Markov equivalent cannot be distinguished by their d-separation relations

alone.7 In the context of causal discovery, the Markov equivalence class of the true, data-generating

graph is the limit of what can be learned about the causal structure from the independence structure

in the data (Geiger and Pearl, 1988; Meek, 1995).8

We now show that, under appropriate conditions, CausalIP correctly uncovers a graph in the

Markov equivalence class of the true causal graph. We assume that we have access to the results

of all possible independence tests over a given set of variables, and that the test results correctly

describe an underlying ground truth DMG GT :

Assumption 6 (Complete oracle). Let GT be the true data-generating graph. For all i, j ∈ V and

C ⊆ V \{i, j}: (i) C ∈ Dij if and only if i ̸⊥⊥ j|C in PGT
(V ), and (ii) C ∈ Iij if and only if i ⊥⊥ j|C

in PGT
(V ).

Assumption 6 allows us to separate the discovery task, handled by CausalIP, from the sta-

tistical inference of the conditional independence tests. The assumption also describes the model

inputs (i.e., Iij and Dij) that would be obtained in the large-sample limit, which we use to prove

the asymptotic correctness of our model. Next, let

Ec = {i← j, i→ j, i↔ j, ∀i, j ∈ V : i ̸= j} (3.9)

be the set of all possible directed and bi-directed edges in a complete graph over V . We can now

state the main result of this section:

Proposition 3. Let Gc be the graph returned by CausalIP(Ec) given Assumption 6. Then (i)

7In the acyclic, causally sufficient case (i.e., for DAGs), the features shared by Markov equivalent DAGs can
be easily characterized: two DAGs are Markov equivalent if and only if they share the same skeleton (unoriented
adjacency structure) and the same unshielded colliders (Verma and Pearl (1991)). For the general class of DMGs
that we are considering here, no such compact characterization of Markov equivalent graphs exists.

8To further distinguish Markov equivalent graphs requires experimental intervention, stronger background as-
sumptions, or that one can make assumptions about the data distribution that go beyond its independence structure
(e.g., about particular parameterizations; see e.g. Eberhardt (2017) for an overview).
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Gc ∈ O (i.e., Gc minimizes the objective in (3.3)) and (ii) Gc ∼ GT (i.e., Gc and GT are Markov

equivalent).

Proposition 3 confirms the asymptotic correctness of CausalIP (all proofs are contained in

Appendix B.4). When V is small, it is possible to solve CausalIP over the complete set of edges

Ec using off-the-shelf integer programming solvers. However, this approach is not viable even for

moderately sized graphs (|V | > 6), because CausalIP(Ec) searches over all possible paths induced

by the set Ec, which explodes combinatorially in |V |. For larger graphs, a more efficient way of

selecting paths is required.

3.4 Edge Generation Algorithm

Rather than attempt to solve CausalIP(Ec) over the complete set of edges Ec, we build an iterative

procedure that efficiently constructs a set of candidate edges Ẽ ⊂ Ec. The selection of new edges is

based on the observation that every path p (with ℓp ≥ 2) can be represented as a concatenation of

node triples (i, j, k) that either form a collider at j or a non-collider at j. We refer to such a triple

as a collider chain or a non-collider chain, respectively (see Figure 3.3). Next, we present necessary

conditions for the presence of collider and non-collider chains in the underlying causal graph:

Lemma 1 (Necessary conditions for chains). Suppose Assumption 6 holds and consider a triple of

nodes (i, j, k) in a graph G ∼ GT . Then

(i) If there exists a collider chain over (i, j, k) in G, then Iij = Ijk = ∅ and j ̸∈ C for all C ∈ Iik.

(ii) If there exists a non-collider chain over (i, j, k) in G, then Iij = Ijk = ∅ and j ∈ C for all

C ∈ Iik.

Lemma 1 formalizes the intuition that every triple along every path of the underlying causal

graph will leave its corresponding signature in the independence structure of the data. These
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Figure 3.3: Collider chains (a) and non-collider chains (b).

signatures serve as indicators of the potential presence of the corresponding chains in the graph.

The conditions in Lemma 1 do not guarantee that the underlying graph contains the corresponding

chain, because they can also be generated by other causal structures (see Figure 3.4). In other

words, if a triple (i, j, k) satisfies the conditions in Lemma 1(i) or (ii), we interpret this as strong

(but not conclusive) evidence of the corresponding chain’s presence in the underlying causal graph.

Using this characterization of chains, we construct the following two sets:

S = {(i, j, k)|Iij = Ijk = ∅ and j ̸∈ C for all C ∈ Iik}, (3.10)

S̄ = {(i, j, k)|Iij = Ijk = ∅ and j ∈ C for all C ∈ Iik}. (3.11)

Here, S and S̄ contain all triples (i, j, k) whose independence structure is indicative of a collider

and non-collider chain, respectively. These sets are not disjoint in general: A triple (i, j, k) where

(i, k) are never conditionally independent (i.e., Iik = ∅) will be included in both S and S̄.

The sets S and S̄ contain triples that plausibly form chains in the underlying graph, and thus

indicate plausible edges as well. We therefore focus on edges represented by the sets S and S̄ when

constructing the set of candidate edges Ẽ.

We further refine our search for edges by also considering d-connection or d-separation relations
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Figure 3.4: (a) The triple (i, j, k) satisfies all conditions in Lemma 1(i) but does not form a collider chain. (b) The
triple (i, j, k) satisfies all conditions in Lemma 1(ii) but does not form a non-collider chain.

that are unsatisfied by an incumbent solution. For an initial set of candidate edges Ẽ, let (x,y, z)

be the solution to CausalIP(Ẽ) with the corresponding graph G(x). The error variable z tracks

those d-separations and d-connections that are inconsistent with the independence and dependence

findings in the data. Since our method will incrementally add edges to Ẽ, we focus on those errors

where a conditional dependence found in the data is not yet matched by a d-connection in the

graph G(x). Specifically, we are interested in the pairs (i, k) where we have Cn
ik ∈ Dik based on

the test results, but the d-connection i ̸⊥ k|Cn
ik is not satisfied in G(x), and consequently znik = 1.

Accordingly, for each pair (i, k), we can define the set

ND
ik (z) = {n ∈ ND

ik |znik = 1} (3.12)

to represent the d-connection relations for (i, k) that are implied by the conditional independence

tests but violated by the current graph G(x). Since our goal is to select new edges to add to Ẽ, we

have to identify edges that are not already in Ẽ. To that end, let Eijk and Ēijk be the sets of all

possible edges in a chain over (i, j, k), in which j is a collider or non-collider, respectively:

Eijk =
{
i→ j, i↔ j, j ← k, j ↔ k

}
, (3.13a)

Ēijk =
{
i← j, i→ j, i↔ j, j ← k, j → k, j ↔ k

}
(3.13b)

Here, Eijk is the set of edges that define the collider chains in Figure 3.3(a), and Ēijk is the set of
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edges that define the non-collider chains in Figure 3.3(b). We can now identify triples that satisfy

two criteria: (i) some of their edges have not yet been considered (i.e., Eijk ̸⊂ Ẽ or Ēijk ̸⊂ Ẽ), and

(ii) in the incumbent graph G(x), i and k are d-separated for some conditioning set Cn
ik (i ⊥ k|Cn

ik),

even though test results indicate that i and k are dependent for that conditioning set (i ̸⊥⊥ k|Cn
ik).

We now define two sets that contain triples that satisfy these two criteria:

Ψ(z) = {(i, j, k) | there exists n ∈ ND
ik (z) such that j ∈ Cn

ik and Eijk ̸⊂ Ẽ}, (3.14a)

Ψ̄(z) = {(i, j, k) | there exists n ∈ ND
ik (z) such that j /∈ Cn

ik and Ēijk ̸⊂ Ẽ}. (3.14b)

The sets Ψ(z) and Ψ̄(z) need not be disjoint. They only differ in their check of whether j belongs

to a conditioning set Cn
ik that shows i and k to be dependent in the data. This specific check on

the role of j ensures that if we now combine the Ψ-sets with the S-sets, the collider/non-collider

chains associated with the triples of the respective sets are candidates to address the inconsistencies

identified by z. We can finally define the sets that are the focal points of our search for new edges:

S(z) = S ∩Ψ(z), (3.15a)

S̄(z) = S̄ ∩ Ψ̄(z), (3.15b)

Intuitively, S(z) and S̄(z) represent chains that we have good reason to think exist in the graph

(because of S and S̄) and correspond to edges useful for satisfying a required d-connection that is

violated by G(x) (because of Ψ(z) and Ψ̄(z)).

We have thus far established that edges among the triples in S(z) and S̄(z) are strong candidates

for inclusion in the candidate set Ẽ to send to CausalIP(Ẽ). We now address the problem of how

to actually select edges from these sets to pass to CausalIP(Ẽ).
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3.4.1 Generating Candidate Edges

Since the tractability of CausalIP(Ẽ) suffers if the edge set Ẽ is too large, we would ideally like to

select edges that can reconcile unsatisfied d-connections, without needlessly introducing redundant

edges. To that end, our approach will be to select the smallest number of edges such that at least

one edge from each triple in S(z) and S̄(z) is selected. This minimal edge selection problem is itself

a combinatorial optimization problem, because the chains in S(z) and S̄(z) may share common

edges. Accordingly, we formulate it as an integer program, which we call NewEdgesIP.

There are three types of edges that may exist between every pair of nodes (i, j): i → j, i ← j

and i ↔ j. We index these three edge types by t ∈ {1, 2, 3}, respectively. Let wt
ij be a binary

decision variable where wt
ij = 1 if a type t edge between nodes i and j is selected to be included

in Ẽ, and wt
ij = 0 otherwise. Let λtij be a parameter where λtij = 1 if Ẽ contains a type t edge

between nodes i and j, and λtij = 0 otherwise.

We now define the constraints and objective of NewEdgesIP. To select edges from S(z), we

include the following constraints:

∑
t∈{1,3}

(wt
ij + λtij) ≥ 1, (i, j, k) ∈ S(z), (3.16a)

∑
t∈{2,3}

(wt
jk + λtjk) ≥ 1, (i, j, k) ∈ S(z), (3.16b)

∑
t∈{1,3}

wt
ij +

∑
t∈{2,3}

wt
jk ≥ 1, (i, j, k) ∈ S(z). (3.16c)

The first two constraints construct a collider chain over (i, j, k): the first ensures that there is either

a new or existing edge between i and j with an arrowhead at j, and the second ensures there is

either a new or existing edge between k and j with an arrowhead at j. Then, the third constraint

forces at least one new edge to be selected from the candidate collider chain. Similarly, to select
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edges from S̄(z), we include:

∑
t∈{1,2,3}

(wt
ij + λtij) ≥ 1, (i, j, k) ∈ S̄(z), (3.17a)

∑
t∈{1,2,3}

(wt
jk + λtjk) ≥ 1, (i, j, k) ∈ S̄(z), (3.17b)

w2
ij + λ2ij + w1

jk + λ1jk ≥ 1, (i, j, k) ∈ S̄(z), (3.17c)∑
t∈{1,2,3}

(wt
ij + wt

jk) ≥ 1, (i, j, k) ∈ S̄(z). (3.17d)

Analogous to (3.16a) and (3.16b), the first three constraints above construct a non-collider chain

over (i, j, k), using either existing or new edges: The first two constraints ensure an edge exists

between both (i, j) and (j, k), and the third constraint ensures that j is a non-collider. Then,

the fourth constraint forces at least one new edge to be selected from the constructed non-collider

chain.

The final group of constraints we include are:

wt
ij + λtij ≤ 1, i, j ∈ V, t ∈ {1, 2, 3}, (3.18a)

w1
ij = w2

ji, i, j ∈ V, (3.18b)

w3
ij = w3

ji, i, j ∈ V. (3.18c)

The first constraint ensures we do not select an edge that is already included in Ẽ. The second

constraint enforces that i→ j and j ← i are the same edge, and the third constraint enforces that

i↔ j and j ↔ i are the same edge.

Our objective is to minimize the total number of new edges added to the set of candidate edges

Ẽ. Combining this objective with the constraints (3.16)–(3.18) and forcing each wt
ij to be binary

yields the following formulation:
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minimize
w

∑
i,j∈V

∑
t∈{1,2,3}

wt
ij

NewEdgesIP(S(z), S̄(z)): subject to (3.16)− (3.18)

wt
ij ∈ {0, 1}, i, j ∈ V, t ∈ {1, 2, 3}.

The output of this formulation is a set of new edges Enew to be added to Ẽ, where Enew contains a

type t edge between nodes i and j if and only if wt
ij = 1 at an optimal solution to NewEdgesIP. In

summary, NewEdgesIP generates edges efficiently by searching for edges that satisfy the following

criteria:

(i) the edges belong to collider or non-collider chains for which we have strong evidence of their

presence in the true graph based on the observed independence and dependence relations (i.e.,

the chains belong to S or S̄), and

(ii) The edges belong to collider or non-collider chains whose inclusion in the graph would satisfy

a d-connection relation violated by the incumbent solution (i.e., the chains belong to Ψ(z) or

Ψ̄(z)).

Having defined the key components of our method, we now present a summary of the algorithm

and prove its correctness.

3.4.2 Algorithm Summary and Main Result

Algorithm 3 provides an overview of the main steps. In the main loop, the algorithm iterates

between calling the sub-algorithm UpdateEdges to generate new edges to add to Ẽ, and solving

CausalIP(Ẽ) to identify unsatisfied d-separation and d-connection relations. The algorithm ter-

minates and returns the graph G∗ when all d-connection and d-separation relations are satisfied,

or a generic alternate termination criterion (represented by Term in Algorithm 3) is satisfied.
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Algorithm 4 describes the UpdateEdges sub-algorithm that is used to generate new edges,

which primarily involves solving NewEdgesIP. In the case where S(z) = S̄(z) = ∅, UpdateEdges

randomly picks triples from S and S̄ to pass toNewEdgesIP. To capture edges that may not belong

to any chain in the true graph (i.e., those that do not correspond to any member of S or S̄), we

initialize the set of candidate edges as Ẽ0:

Ẽ0 = {i→ j, i← j, i↔ j | Iij = ∅, Dik = Djk = ∅ for all k ∈ V \ {i, j}}.

Algorithm 3: EdgeGen.

Input: V , S, S̄.
Output: G∗.
Initialize: Ẽ = Ẽ0,

1. Solve CausalIP(Ẽ) to obtain solution (x,y, z).
2. while

∑
i,j∈V

∑
n∈Nij

znij > 0 and Term=false:

Call UpdateEdges to update Ẽ.

Solve CausalIP(Ẽ) to obtain solution (x,y, z).

3. Set E∗ = {e ∈ Ẽ|xe = 1} and return G∗ = (V,E∗).

Algorithm 4: UpdateEdges sub-algorithm.

Input: S(z), S̄(z), S, S̄, Ẽ.

Output: Updated candidate edges Ẽ.
1. if S(z) ∪ S̄(z) ̸= ∅ :

Solve NewEdgesIP(S(z), S̄(z)) to obtain Enew.
else:

Pick any (i, j, k) ∈ S ∩ S̄ such that Eijk ̸⊂ Ẽ. Set R(z) = (i, j, k).

Pick any (i, j, k) ∈ S ∩ S̄ such that Ēijk ̸⊂ Ẽ. Set R̄(z) = (i, j, k).
if R(z) = ∅ and R̄(z) = ∅ :
Pick any (i, j, k) ∈ S such that Eijk ̸⊂ Ẽ. Set R(z) = (i, j, k).

Pick any (i, j, k) ∈ S̄ such that Ēijk ̸⊂ Ẽ. Set R̄(z) = (i, j, k).
Solve NewEdgesIP(R(z), R̄(z)) to obtain Enew.

2. Update Ẽ ← Ẽ ∪ Enew.

In the setting where there exists a directed mixed graph that can satisfy all input constraints,

EdgeGen is guaranteed to terminate with such a graph.
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Proposition 4. Under Assumption 6, EdgeGen terminates with
∑

i,j∈V
∑

n∈Nij
znij = 0.

When the input relations are not jointly satisfiable, we require an alternate termination con-

dition. A straightforward approach, which we use in our numerical experiments, is to terminate

EdgeGen after a fixed number of iterations with no improvement in the number of unsatisfied

input constraints (i.e., the optimal objective of CausalIP(Ẽ)). We can now formally state our

main theoretical result, which builds on Proposition 4:

Theorem 5. Let G∗ be the graph returned by EdgeGen given Assumption 6. Then (i) G∗ ∈ O

(i.e., G∗ minimizes the objective in (3.3) and (ii) G∗ ∼ GT where GT is true underlying graph (i.e.,

G∗ and GT are Markov equivalent).

Theorem 5 states that EdgeGen, which is far more scalable than a brute-force solution of

CausalIP(Ec), preserves the same discovery guarantees given in Proposition 3.

Similar to Proposition 3, Theorem 5 is an asymptotic guarantee, due to its dependence on

Assumption 6. In the more realistic finite-sample setting where Assumption 6 does not hold, the

input relations may not be jointly satisfiable. In this setting, most constraint-based methods that

also allow for cycles and confounders aim to find a graph that minimizes (weighted) violations of

the input constraints (Hyttinen et al., 2013, 2014, 2017; Rantanen et al., 2020). However, exactly

minimizing such violations requires searching over the entire space of DMGs, which, in the pursuit of

improved scalability, we deliberately avoid (by only considering a subset of possible edges Ẽ instead

of the complete edge set Ec). As a consequence, in the finite-sample setting where Assumption 3

does not hold, our approach can be viewed as a heuristic for minimizing the number of unsatisfied

dependence and independence relations. As demonstrated in the numerical results below, the

advantage of this heuristic approach is that it scales to instances that are intractable for provably

optimal methods from the literature, while maintaining reasonable accuracy. Further, in the setting
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where Assumption 6 does hold, our method outperforms appropriate benchmark algorithms by an

order of magnitude with respect to solution time, without sacrificing optimality.

3.4.3 Computational Performance

In this section we examine the computational performance of EdgeGen using synthetic data. To

serve as performance benchmarks, we also implemented the causal discovery methods described in

Hyttinen et al. (2013) and Hyttinen et al. (2014), both of which also allow for feedback loops and

latent confounders.9 Hyttinen et al. (2013) solve the discovery problem using a Boolean satisfiability

solver, and Hyttinen et al. (2014) propose a solution method based on answer set programming; for

conciseness, we will refer to these two approaches as SAT and ASP, respectively. We also created

an additional benchmark by combining the logical encoding developed in Hyttinen et al. (2013)

and the solver used in Hyttinen et al. (2014), which we refer to as SAT+ASP.

Setup.

We conducted two sets of numerical experiments. First, we considered a conflict-free setting in which

there are no conflicts among the input d-separation and d-connection relations (i.e., Assumption

6 holds). Because all four methods are guaranteed to return a graph that is Markov equivalent to

the ground truth graph GT in this setting, we focus our comparison exclusively on solution times.

Second, we considered a conflicted setting where the input constraints are not jointly satisfiable

(i.e., Assumption 6 does not hold). In this setting, the SAT algorithm does not apply, so we

compare EdgeGen with ASP with respect to solution time and accuracy.

For the conflict-free case, we generated 50 random directed graphs for |V | = 5, 6, . . . , 15. These

graphs were generated to have an average degree of 3, and were permitted to have cycles and

9Hyttinen et al. (2017) and Rantanen et al. (2020) are also relevant benchmarks here, but we do not compare
against them because implementable code is not publicly available for those methods.
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unobserved confounders. For each graph, we computed all d-separation and d-connection relations,

which are the required inputs for all four methods. Note that in the conflict-free setting, the

data generation procedure is irrelevant, because we have direct knowledge of the d-separation and

d-connection relations of the ground-truth graphs.

For the conflicted case, we set up the experiment using the code from Hyttinen et al. (2014).

We generated 50 linear Gaussian models with |V | = 4, 5, . . . , 9. In this setup, the independence and

dependence relations for each model are computed using correlation based t-tests over 500 samples,

with a significance level of 0.01. We ran all experiments on an Intel Xeon E5-2680 machine with

3.0GHz×24 processors and 20 GB of memory, and used Gurobi v8.0 to solve CausalIP and

NewEdgesIP. We terminated EdgeGen if no improvement in the objective was observed after

three consecutive iterations. Because all methods require the same pre-computation of d-separation

and d-connection relations (either from a ground truth graph or through conditional independence

tests), we isolate the performance of each of the four methods by reporting the solution times of

the discovery task only.

Results.

Table 3.1 summarizes the median solution times over 50 instances for EdgeGen, SAT, ASP and

SAT+ASP, and demonstrates how the solution times increase in |V | for all four methods. The

impact of the instance size on solution time is most pronounced for SAT and ASP, which are unable

to scale past |V | = 11 and |V | = 13 nodes, respectively, consistent with the results reported in those

papers. The SAT+ASP procedure is superior to both of its constituent methods with respect to

solution time, although it cannot scale past |V | = 14 variables, also due to insufficient memory.

By comparison, EdgeGen significantly reduces solution times (and memory usage), allowing it to

solve instances with |V | = 15 nodes in 30 seconds on average. We note here that a brute-force
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solution of CausalIP(Ec) is unable to scale past |V | = 6 nodes (results not shown). This suggests

that the efficiency of EdgeGen is due to the edge generation procedure, and not a consequence of

formulating the discovery problem as an integer program.

An important observation in Table 3.1 is that the main computational bottleneck in SAT, ASP

and SAT+ASP is the discovery task itself. For these three benchmark methods, one could argue

that the time required to compute all d-separation and d-connection relations is irrelevant, because

they encounter memory issues during the discovery phase for larger instances. In contrast, Table

3.1 shows that EdgeGen scales gracefully with respect to solution time on the discovery task. We

did not test instances larger than |V | = 15 because the time required to compute the (exponential

number of) d-separation and d-connection relations becomes a bottleneck for all four methods (e.g.,

for |V | = 16, they cannot be computed in under two hours).

|V | EdgeGen SAT ASP SAT+ASP

5 0 0 0 0
6 0 1 0 0
7 0 4 0 0
8 0 15 2 1
9 0 64 6 2
10 1 158 21 6
11 1 615 61 16
12 3 - 197 36
13 8 - 619 98
14 27 - - 260
15 101 - - -

Table 3.1: Median solution times (nearest CPU second) over 50 random instances in conflict-free setting. Dashes
indicate instance could not solve due to insufficient memory (20GB).

Table 3.2 summarizes the results for the case with conflicted independence relations. Because

SAT and SAT+ASP are not designed to handle conflicts, we report the median solution time

and accuracy of EdgeGen and ASP only. We report the accuracy of each algorithm using two

performance metrics. Loss refers to the fraction of independence relations that are unsatisfied by
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the returned graph (for EdgeGen, Loss is the value of the CausalIP objective at termination.)

Error refers to the fraction of d-separation and d-connection relations from the true graph that are

unsatisfied. This distinction arises because the independence relations obtained from data may not

reflect the d-separation relations of the true graph due to errors in statistical testing.

Table 3.2 shows that (the provably optimal)ASP algorithm outperforms EdgeGen with respect

to accuracy for small graphs, but cannot scale beyond |V | = 6. The EdgeGen algorithm scales

up to |V | = 9, and reaches the termination criterion in under 1 minute for a majority of instances,

although the solutions are not optimal. For |V | = 10, EdgeGen frequently reached the 1 hour

time limit, so we did not conduct comprehensive tests for graphs of that size. Note that ASP

outperforms EdgeGen with respect to both accuracy measures for small graphs. This gap related

to tractability is due to our choice to to terminate EdgeGen before exhausting all possible edges,

which restricts the search space of possible graphs. More comprehensive experiments may reveal

the extent to which each of these factors contribute to the accuracy gap between EdgeGen and

ASP. Regardless, for larger instances (|V | ≥ 6), the iterative approach of EdgeGen allows it to

produce graphs with reasonable accuracy for problem sizes where ASP is unable to return any

graph at all.

In summary, Tables 3.1 and 3.2 suggest that EdgeGen offers substantial advantages over the

benchmarks with respect to both solution time and memory usage. The efficiency of our approach is

most apparent in the conflict-free setting (Table 3.1), where all methods produce optimal solutions,

but EdgeGen dramatically outperforms all three benchmarks. In the conflicted setting (Table

3.2), the trade-off is clear – EdgeGen is less computationally demanding with respect to memory,

allowing it to handle larger instances, but unlike ASP, the output graphs are not provably optimal.
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EdgeGen ASP

|V | Time Loss Error Time Loss Error

5 0 0.12 0.17 0.08 0.08 0.12
6 0 0.16 0.18 37.05 0.11 0.12
7 1 0.17 0.23 - - -
8 13 0.21 0.26 - - -
9 31 0.22 0.27 - - -

10 87 0.27 0.33 - - -

Table 3.2: Median solution times (rounded to nearest CPU second), loss, and error over 50 random instances in
conflicted setting. Dashes indicate instance could not solve due to insufficient memory (20GB).

3.5 Feature Selection Using Markov Blankets

Thus far, our focus has been on constructing a complete causal graph over a set of observed

variables, in which all causal relations are deemed equally important. In empirical applications,

however, there may be a target variable whose causes are of particular interest to the researcher

(e.g., income or health outcomes). An intuitive approach to investigating causality with respect to

a target variable is to simply construct the graph over all observed variables, which then reveals

causal pathways related to the target variable. However, if the number of variables is large, this

naive approach may be computationally inefficient or intractable. Instead, if we can a priori identify

a subset of variables that collectively carry all useful information about the target variable, then we

can sidestep the computational burden of learning causal relations among variables of secondary

importance. The concept of a Markov blanket is a formalization of this idea:

Definition 6 (Markov blankets). The Markov blanket of a target variable T , MB(T ), is a minimal

set of variables in V \ {T} such that

i ⊥⊥ T |MB(T ) for all i ∈ V \ {MB(T ), T}. (3.20)

Given a target variable T , a Markov blanketMB(T ) is the smallest set of variables such that all

83



other variables are probabilistically independent of T conditional on MB(T ). In machine learning

contexts where T is the variable to be predicted (e.g., a class label), the Markov blanket of T is the

smallest subset of features that has the same predictivity as the full set of features. Accordingly,

identifying a Markov blanket based on causal structures is often referred to as causal feature selection

(Aliferis et al., 2010). Further, under the usual correspondence between independence and d-

separation (Remark 1), the Markov blanket of a target variable T contains the direct causes and

effects of T (in addition to other nodes). To that end, learning Markov blankets can be viewed

as a step toward discovering the local causal structures around a target variable T , which is the

perspective we adopt here.

In this section, we present an optimization model for returning a Markov blanket of an input

target variable T based purely on the independence structure of the data. This approach can

then be used as a pre-processing step to be run before the EdgeGen algorithm, with the aim of

eliminating potentially redundant variables from the discovery task before searching for the local

DMG structure around T .

3.5.1 Related Literature

There are two general approaches to finding Markov blankets. Aliferis et al. (2010) denote them as

causal vs. non-causal methods, to distinguish whether the search for the Markov blanket requires

the identification of the (local) causal structure of the target variable prior to identification of the

Markov blanket, or not. Since our motivation is to use the Markov blanket as an aid to focus the

local causal discovery, our approach to searching for the Markov blanket itself has to be non-causal.

This approach also sidesteps one of the challenges of extant causal methods to find the Markov

blanket that have to make assumptions about the nature of the underlying causal structure. Most

of these methods assume acyclicity and causal sufficiency, making them inapplicable to the more
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general setting we are considering in this work.

In the causally sufficient setting, the first provably correct algorithm in discovering the Markov

blanket of a target variable is introduced by Margaritis and Thrun (2000). Several other methods

have aimed to improve the efficiency and scalability of Markov blanket discovery under various

assumptions on the underlying class of graphs and available data (Tsamardinos et al. (2003),

Yaramakala and Margaritis (2005), Tsamardinos et al. (2006), Pena et al. (2007), Aliferis et al.

(2010), Gao and Ji (2015), Wu et al. (2019), Yu et al. (2019)).

Previous work on Markov blankets in causally insufficient settings is limited. Richardson (2003)

and Pellet and Elisseeff (2008) provide characterizations of Markov blankets for classes of graphs

that permit unobserved confounders. Two recently proposed approaches for learning Markov blan-

kets in the presence of confounding are by Yu et al. (2018) and Triantafillou et al. (2021), although

both focus on acyclic graphs.

3.5.2 Learning Markov Blankets with Optimization

Given that we assume the results of all possible conditional independence tests are available, iden-

tifying the Markov blanket is equivalent to searching for the minimal conditioning set that satisfies

(3.20), which can be done by simply sorting all possible conditional sets. However, we formulate

the search for a Markov blanket as an optimization problem, which allows us to easily include

additional considerations, namely, balancing the number of selected variables with the number of

violations of the Markov blanket condition (3.20).

Let mi be a binary decision variable where mi = 1 if and only if node i is selected to be included

in the Markov blanket. For convenience, we will write V (T ) = {i ∈ V |mi = 1} to denote the set

of nodes selected by the model. For each i ∈ V and n ∈ N I
T i, let v

n
i be a binary decision variable

where vni = 1 if and only if V (T ) is equal to the nth conditioning set in AT i, i.e. V (T ) = Cn
Ti, and
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define a parameter θnij where θ
n
ij = 1 if and only if j ∈ Cn

Ti. We define the following two constraints

to enforce the correspondence between m and v:

vni ≤ mj , j ∈ Cn
Ti, n ∈ N I

T i, i ∈ V \ {T}, (3.21a)

mj + vni ≤ θnij + 1, n ∈ N I
T i, i, j ∈ V \ {T}. (3.21b)

The first constraint ensures that if vni = 1 (equivalently, if V (T ) = Cn
Ti), then all nodes j ∈ Cn

Ti are

selected. The second constraint ensures that if V (T ) = Cn
Ti, then the nodes not in Cn

Ti cannot be

in V (T ). Note that constraint (3.21b) is active only when vni = 1 and θnij = 0, which forces mj to

be zero. Definition 6 for the Markov blanket is then satisfied if we minimize the number of selected

variables – given by
∑

i∈V \{T}mi – subject to (3.21) and the following constraint:

mi +
∑

n∈NI
Ti

vni ≥ 1. (3.22)

This would simply implement the search over conditioning sets to find the exact Markov blanket.

However, doing so would neglect the practical challenges a user often faces, such as trading-off

between the number of variables selected, and their predictivity with respect to the target T

compared to the full set of variables V . In particular, while Markov blankets in a DAG consist

just of the parents, children and spouses (other parents of the children) of the target variable T

(Pearl, 2000), in DMGs so-called collider paths (see Appendix B.3) can result in variables with an

arbitrary distance to T in the graph being part of the Markov blanket of T . This can lead to an

explosion in the size of the Markov blanket, which a user may want to control.

To that end, instead of enforcing (3.22), we allow for possible violations of the Markov blanket
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condition (3.20) by introducing the error variables ξi, i ∈ V \ {T}, which yields the constraint:

mi +
∑

n∈NI
Ti

vni ≥ 1− ξi, i ∈ V \ {T}. (3.23)

Constraint (3.23) forces ξi = 1 for every i /∈ V (T ) such that i ̸⊥⊥ T |V (T ); equivalently, ξi = 1

for each i ̸∈ V (T ) that violates (3.20) in Definition 6. Our objective is to minimize violations of

(3.20) while also controlling the total number of variables selected. We introduce a penalty constant

λ ∈ (0, 1) to modulate this trade-off, resulting in the following optimization problem:

minimize
m,v,ξ

∑
i∈V \{T}

((1− λ) · ξi + λ ·mi)

BlanketIP: subject to (3.21)− (3.23),

vni ∈ {0, 1}, n ∈ N I
T i, i ∈ V \ {T},

mi, ξi ∈ {0, 1}, i ∈ V \ {T}.

Let (m∗,v∗, ξ∗) be an optimal solution to BlanketIP, and let V ∗(T ) = {i ∈ V |m∗
i = 1} be the

corresponding set of variables. When λ is close to 1, BlanketIP emphasizes selecting a small

number of variables; when λ is close to 0, the model emphasizes satisfaction of (3.20). Next, we

present the main result of this section, which is that BlanketIP correctly retrieves the Markov

blanket in the idealized setting where the independence tests are error-free.

Theorem 6. Let Assumption 6 hold. If λ ∈ (0, 1/|V |), then V ∗(T ) = MB(T ), i.e., the optimal

solution to BlanketIP corresponds to the Markov blanket of T .

Similar to Theorem 5, Theorem 6 can be interpreted as an asymptotic result, due to its depen-

dence on Assumption 6. The intuition behind the small threshold of 1/|V | is that Theorem 6 also

invokes Assumption 6, which corresponds to a setting where the independence tests have power
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1 (due to an infinite sample size). In this high-powered setting, the trade-off between the size of

V ∗(T ) and satisfaction of (3.20) is non-existent, and so larger values of λ will needlessly penalize

the size of the set of selected variables V ∗(T ), resulting in inaccurate inference of the Markov blan-

ket. However, in lower-powered settings, the trade-off between the size of V ∗(T ) and satisfaction

of (3.20) is non-trivial, making it possible for the most effective values of λ to be larger than 1/|V |.

There are many variations of BlanketIP one could consider. For example, it may be fruitful

to weight the nodes in the output blanket by the marginal or conditional dependence they have

with T (as a measure of their predictivity), or introduce a constraint on the total number of nodes

that the output may contain, especially if the causal discovery algorithm they are subsequently fed

into is limited in its scalability. BlanketIP is intended to illustrate the utility of taking an integer

optimization approach to Markov blanket-based feature selection.

3.5.3 Numerical Results

Our discussion of Markov blankets, including Definition 6 and the formulation of BlanketIP, has

thus far been primarily in probabilistic terms. However, given the correspondence in Remark 1, we

can naturally define the Markov blanket of a target node T within a causal graph as well (i.e., by

replacing the independence condition in (3.20) with d-separation). This graphical interpretation of

a Markov blanket allows us to numerically evaluate the performance of BlanketIP, namely, by

checking how accurately it recovers the Markov blanket of a node in a ground-truth causal graph

from observational data generated by the graph.

We conducted numerical experiments to examine the accuracy of BlanketIP, with a focus

on the sensitivity of the output to the penalty λ. First, we generated 50 linear Gaussian models

with |V | = 10 using three different sample sizes: n ∈ {250, 500, 1000}. Similar to §3.4.3, we set

up this experiment using the code from Hyttinen et al. (2014). For each of the 50 instances, we
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first found the true Markov blanket MB(T ) of a randomly selected target variable in the ground-

truth graph (see Appendix B.3 for a characterization of Markov blankets for DMGs). Because

Markov blanket discovery is akin to a binary classification problem (i.e., for each variable, determine

whether it belongs to MB(T )), we measure the accuracy of the selected variables V ∗(T ) returned

by BlanketIP using precision and recall (Buckland and Gey, 1994). In our context, precision is

the fraction of variables that are in both V ∗(T ) and MB(T ) among the variables in V ∗(T ), and

recall is fraction of variables that are in both V ∗(T ) and MB(T ) among the variables in MB(T ).

Both performance metrics take on values between 0 and 1, with 1 representing perfect accuracy.

Table 3.3 reports the number of variables returned by BlanketIP, and the corresponding

precision and recall for varying penalty constant λ and sample size n, averaged over 50 instances.

As expected, Table 3.3 shows that the number of selected variables decreases with the penalty

λ. Accordingly, precision and recall increase and decreases with λ, respectively. Further, Tables

3.3 shows that both performance metrics generally improve with the sample size n due to the

increased power of the t-tests, although the effect of increasing the sample size from 250 to 1, 000

is subtle. These results demonstrate how the penalty term λ can be used to control the behavior

of BlanketIP in a finite-sample setting with potential errors in the test results.

n/λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

250 5.52 5.33 4.51 3.41 2.58 1.78 1.44 1.00 1.00
500 6.02 5.64 4.82 3.56 2.60 2.22 1.76 1.18 1.00
1000 6.22 5.14 5.11 4.48 2.54 2.26 1.68 1.12 1.00

250 0.66 0.70 0.71 0.72 0.78 0.81 0.94 0.99 1.00
500 0.69 0.70 0.71 0.76 0.83 0.86 0.92 0.98 1.00
1000 0.73 0.74 0.77 0.78 0.86 0.88 0.94 0.99 1.00

250 0.93 0.92 0.84 0.67 0.60 0.50 0.38 0.32 0.30
500 0.89 0.89 0.83 0.71 0.62 0.53 0.44 0.35 0.33
1000 0.95 0.92 0.89 0.75 0.69 0.60 0.48 0.36 0.33

Table 3.3: Average number of selected variables |V ∗(T )| (top), precision (middle), and recall (bottom) for varying
penalty λ and sample size n.
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3.6 Conclusion

It is now well recognized that a sound understanding of causal relations is essential for effective

decision-making and counterfactual prediction. In this chapter, we presented a new optimization-

based method for causal discovery: the problem of learning causal relations from observational data.

The key to our method is an iterative solution algorithm that makes use of conditional independence

structure in the data to identify promising edges and paths to include in the output graph. Our

method is one of the few in the literature that allows for both feedback cycles and unmeasured

confounding, and performs favorably compared with those that do. Further, the computational

tractability of our approach makes it a promising complement to existing empirical methods used

for causal inference. Natural extensions to our approach include adding weights to the input

conditions, relaxing the linear Gaussian assumption in the cyclic case, or evaluating our method’s

performance when we do not have access to the results of all possible conditional independence

tests.
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Chapter 4

Graphical Validation of Instrumental

Variables

4.1 Introduction

Instrumental variables (Bowden and Turkington, 1990; Angrist et al., 1996; Angrist and Krueger,

2001) are one of the most widely used techniques for causal inference. Their primary use is in

overcoming bias in estimates of causal effects that arise from unmeasured confounding. For ex-

ample, consider the problem of estimating the causal effect of one variable, X, on another, Y .

The correlation between X and Y may provide a misleading picture of the causal effect due to

unmeasured confounders that influence both variables. Intuitively, a third variable, I, is called an

instrument for X if it is correlated with X, and any effect I has on Y is exclusively via X. Under

these conditions, any correlation between I and Y is then taken as evidence that X is a cause of

Y .

A major challenge in using an instrumental variable is identifying an appropriate one in the first

place. For the most part, instruments are selected subjectively based on domain knowledge. Angrist

and Krueger (2001) write “good instruments often come from detailed knowledge of the economic
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mechanism and institutions”, and Imbens and Rosenbaum (2005) write “finding instruments is

an art rather than a science”. Although there is a recent line of work on developing tests for

instrument validity under various assumptions (e.g., Kitagawa (2015); Mourifié and Wan (2017);

Kédagni and Mourifié (2020)), the necessary conditions for valid instruments are often said to be

unverifiable from data (Stock, 2002). This is because verifying whether a proposed instrument

satisfies the critical exclusion criterion is generally difficult (Angrist et al., 1996; Stock, 2002). As

a consequence, the use of an instrumental variable is typically accompanied by context-specific

arguments in favor of its validity. The subjective nature of instrumental variables has also led to

extensive work on the potential pitfalls of using weak instruments, and how to detect or overcome

them (Bound et al. (1995); Staiger and Stock (1997); Stock et al. (2002); Murray (2006)).

In this chapter, we demonstrates how the methodology developed in Chapter 3 can be used to

gain more insights on the validity of instrumental variables. We apply our method to US Census

data used in the landmark study on the returns to education by Angrist and Krueger (1991)

(hereafter, AK-91). We focus on AK-91 because it presents one of the pioneering applications of an

instrumental variable and existing work on the instrument from AK-91 is extensive. Our goal is to

show how our method can be used to investigate the validity of an instrumental variable within the

framework of causal graphical models and causal discovery. Our findings are consistent with the

literature on AK-91’s instrument – that it is plausible, but potentially undermined by confounding.

4.2 Instrumental Variables and Graphical Criteria

Instrumental variable methods provide a powerful tool to address many issues that arise while

inferring causation from observational data. Their main power is to enable causal inference even in

settings where the treatment assignment is non-random. Even though the underlying assumptions

for instrumental validity vary in the literature, three general assumptions can be identified for i to
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be a valid instrument for the effect of j on k (Lousdal, 2018).

1. The relevance assumption: The instrument i has a causal effect on j.

2. The exclusion restriction: The instrument i affects the outcome k only through j.

3. The exchangeability assumption: The instrument i does not share common causes with the

outcome k.

The following definition formalizes instrumental variables in a graphical setting:

Definition 7 (Instrumental variables). A node i is an instrument for the effect of j on k if (i)

i ̸⊥ k|C for C ⊆ V \ k and (ii) every unblocked path from i to k contains an arrow pointing into j

(Pearl, 2000).

Note that while Definition 7(i) directly corresponds to the relevance assumption, the exclusion

and exchangeability assumptions are captured through Definition 7(ii). Figure 4.1 provides exam-

ples of valid and invalid instruments given various true causal structures. In Figures 4.1(a) and (b),

i is a valid instrument for estimating the effect of j on k because the causal relationship between

i and k is always mediated by j. In Figure 4.1(c), i is an invalid instrument because the path

i↔ l→ k violates Definition 7(ii).

Next, we show how our method can be used to intuitively examine the validity of an instrumental

variable. Specifically, within our graphical framework, checking instrument validity amounts to

learning causal structures over the relevant data and checking the extent to which the output

graph abides by Definition 7.

4.3 Quarter-of-Birth Instrument from Angrist and Krueger (1991)

The causal effect of education on income is a classical question in economics with significant policy

implications, but one that is challenging to measure due to unobserved confounders (Card, 1999).
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Figure 4.1: Node i is a valid instrument for the effect of j on k in (a) and (b), but an invalid instrument in (c) because
the path i ↔ l → k violates Definition 7(ii).

The remedy for confounding proposed by AK-91 is to use quarter-of-birth as an instrument for

years of education completed. The argument for this instrument is as follows: Because students are

born year-round, the age at which students start school varies. Further, compulsory schooling laws

in many states prohibit students from dropping out before they reach a certain age (e.g., their 16th

birthday). The combination of variability in starting ages and compulsory schooling laws effectively

forces some students to complete more schooling than others, making quarter-of-birth correlated

with education. Further, AK-91 argues that there is little reason to think quarter-of-birth would

be correlated with income beyond its effect on education, and conclude it to be a valid instrument

for estimating the effect of education on income.

AK-91’s pioneering use of quarter-of-birth as an instrument for education has led to its adop-

tion in numerous other studies (Buckles and Hungerman (2013)). Meanwhile, the validity of this

instrument has been the subject of extensive debate and discussion (e.g., Bound et al. (1995), Card

(1999), Staiger and Stock (1997), Angrist and Krueger (2001), Imbens and Rosenbaum (2005),

Buckles and Hungerman (2013)). For quarter-of-birth to be a valid instrument for education, Def-

inition 7 implies that it must be related to education (condition (i)), and that there cannot exist

a path from quarter-of-birth to income that does not pass through education (condition (ii)). To

that end, our approach will be to apply our method to the data from AK-91, and to check whether

the quarter-of-birth variable indeed satisfies these two criteria.
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4.4 Data and Experimental Setup

We focus on a subset of the data used in AK-91 containing information about 329,509 individuals

taken from the 1980 US Census. Angrist and Krueger (1991) repeat their analysis for three cohorts

separately – those born in the 1920s, 1930s, and 1940s – obtaining similar results across all three

cohorts. For conciseness in our presentation, we use data from just the middle cohort. There are

six available variables: QOB (quarter-of-birth, an integer value between 1 and 4), EDU (years of

education completed), WAGE (weekly wage), RACE (race, 1 = Black) MAR (marital status, 1 =

married), and SMSA (location of residence, 1 = Metropolitan Statistical Area). The data is publicly

available (Angrist, 1991). To remove the effect of year-of-birth, we de-trended the data following

the steps described in AK-91.

As discussed in Chapter 3, an important modeling decision in all constraint-based causal dis-

covery methods, including ours, is the choice of the conditional independence test used to generate

the input d-separation constraints. We use correlation-based t-tests for their simplicity and com-

putational efficiency. Because the outcomes of the conditional independence tests depend critically

on the significance level α used in the t-tests, we repeat our analysis for four different values:

α ∈ {0.05, 0.01, 0.001, 0.0001}.

Similar to other constraint-based methods, our algorithm does not assign confidence to the

causal relations it uncovers – that is, an edge is either present or absent in the output. To introduce

a notion of confidence in the discovered edges, we used a simple bootstrapping procedure. First,

we re-sampled the data with replacement to construct 50 datasets, each having the same sample

size as the original dataset. For each of the 50 repetitions, we apply the t-tests to generate the

independence relations, which are input to EdgeGen to construct a causal graph. We terminate

the algorithm if no improvement in the number of unsatisfied input constraints is found after three

consecutive iterations. As a consequence of the bootstrap, our results take the form of relative edge
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frequencies over the 50 graphs, where higher frequencies denote greater confidence in the causal

relation implied by the edge.

4.5 Results

Figure 4.2 shows the four graphs obtained under each value of the significance level α, where

the frequency of an edge is denoted by its thickness. The eight tables below correspond to the

four graphs in Figure 4.2, separated into directed and bi-directed edges. All edge frequencies are

normalized, where 1 indicates that the edge appeared in the output graph of all 50 bootstrap

repetitions.

Note that edge frequencies generally increase in the significance level α, which is expected. Intu-

itively, this occurs because a rejection of the null hypothesis in each of the conditional independence

tests implies that the variables in question are conditionally dependent (and thus conditionally d-

connected), and satisfying each d-connection relation requires a path in the output graph. As a

result, smaller values of α generate fewer d-connection relations for the input of our algorithm,

yielding sparser graphs.

We use our results to address three questions that determine the validity of quarter-of-birth as

an instrument for education:

(Q1) Is there a relationship between QOB and EDU?

(Q2) Is there a (potentially latent) confounder between QOB and WAGE?

(Q3) Is QOB a direct cause of WAGE?

If the answer to the first question is yes, then condition (i) in Definition 7 is satisfied. If the answer

to either the second or third question is yes, then condition (ii) is violated. Note that QOB need
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((a)) α = 0.05.

((b)) α = 0.01. ((c)) α = 0.001.

((d)) α = 0.0001.

Figure 4.2: Edge frequencies over 50 bootstrap repetitions of EdgeGen applied to US Census data from Angrist and
Krueger (1991).
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EDU WAGE MAR QOB RACE SMSA

EDU - 0.76 0.14 0 0 0.18

WAGE 0.16 - 0.38 0.20 0 0.20

MAR 0.08 0.06 - 0 0 0.92

QOB 0.42 0 0 - 0 0

RACE 0.30 0.66 0.04 0 - 0.42

SMSA 0.10 0.08 0.82 0 0 -

Table 4.1: Directed edge frequency for α = 0.05.

EDU WAGE MAR QOB RACE SMSA

EDU - 0.64 0.08 0 0 0.36

WAGE 0.10 - 0.46 0.04 0 0.08

MAR 0.02 0.06 - 0 0 0.94

QOB 0.56 0.04 0.02 - 0 0

RACE 0.16 0.82 0.08 0 - 0.60

SMSA 0.04 0.14 0.66 0 0 -

Table 4.2: Directed edge frequency for α = 0.01.

EDU WAGE MAR QOB RACE SMSA

EDU - 0.82 0.06 0 0 0.38

WAGE 0.12 - 0.74 0.02 0 0.06

MAR 0.04 0.10 - 0 0 0.98

QOB 0.40 0 0 0 - 0

RACE 0.08 0.80 0.08 0 - 0.50

SMSA 0.04 0.10 0.86 0 0 -

Table 4.3: Directed edge frequency for α = 0.001.

EDU WAGE MAR QOB RACE SMSA

EDU - 0.70 0 0 0 0.60

WAGE 0.26 - 0.68 0 0 0

MAR 0.02 0.28 - 0 0 1.00

QOB 0.12 0 0 - 0 0

RACE 0.04 0.96 0.24 0 - 0.26

SMSA 0 0.30 0.90 0 0 -

Table 4.4: Directed edge frequency for α = 0.0001.
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EDU WAGE MAR QOB RACE SMSA

EDU - 0.12 0.04 0.08 0.64 0.06

WAGE 0.12 - 0.10 0.06 0.48 0.18

MAR 0.04 0.10 - 0 0.64 0.06

QOB 0.08 0.06 0 - 0.44 0

RACE 0.64 0.48 0.64 0.44 - 0.16

SMSA 0.06 0.18 0.06 0 0.16 -

Table 4.5: Bi-directed edge frequency for α = 0.05.

EDU WAGE MAR QOB RACE SMSA

EDU - 0.14 0.06 0.02 0.46 0.02

WAGE 0.14 - 0.12 0.04 0.22 0.22

MAR 0.06 0.12 - 0.02 0.58 0.02

QOB 0.02 0.04 0.02 - 0.16 0.02

RACE 0.46 0.22 0.58 0.16 - 0.12

SMSA 0.02 0.22 0.02 0.02 0.12 -

Table 4.6: Bi-directed edge frequency for α = 0.01.

EDU WAGE MAR QOB RACE SMSA

EDU - 0.02 0.12 0.02 0.50 0.06

WAGE 0.02 - 0.04 0 0.24 0.38

MAR 0.12 0.04 - 0 0.80 0.04

QOB 0.02 0 0 - 0.06 0

RACE 0.50 0.24 0.80 0.06 - 0.10

SMSA 0.06 0.38 0.04 0 0.10 -

Table 4.7: Bi-directed edge frequency for α = 0.001.

EDU WAGE MAR QOB RACE SMSA

EDU - 0.04 0.22 0.02 0.58 0.10

WAGE 0.04 - 0 0 0.06 0.14

MAR 0.22 0 - 0 0.72 0.08

QOB 0.02 0 0 - 0.02 0

RACE 0.58 0.06 0.72 0.02 - 0

SMSA 0.10 0.14 0.08 0 0 -

Table 4.8: Bi-directed edge frequency for α = 0.0001.
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not be a cause of EDU for condition (i) of Definition 7 to hold, and that any association between

the variables is sufficient (Angrist et al., 1996; Pearl, 2000).

Q1 is straightforward to answer even without investigating causal structures – one can simply

check the linear correlation between QOB and EDU, which reveals a weak association. Still, it is

instructive to consider how the relationship between QOB and EDU is captured by our graphical

framework. Our results show that the edge QOB → EDU appears with a frequency of 0.40–0.56

for α ∈ {0.05, 0.01, 0.001}, indicating that condition (i) in Definition 7 is not satisfied in half of the

output graphs. For α = 0.0001, the frequency of QOB → EDU drops to 0.12. The fragility of this

edge, even at larger values of α and despite the large sample size, speaks to the weakness of QOB

as an instrument for EDU.

The weak association between quarter-of-birth and education is, on its own, not problematic

with respect to quarter-of-birth’s validity as an instrument. The concern here is that because

the relationship between QOB and EDU is weak, then even a weak relationship between QOB

and WAGE that bypasses EDU can lead to a large bias in the estimates of the causal effect of

education on income (Bound et al., 1995). This brings us to Q2. Notably, our results provide

evidence of confounding between QOB and RACE: The bi-directed edge QOB ↔ RACE appears

with a frequency of 0.44 for α = 0.05, although it vanishes at smaller values of α. While QOB

↔ RACE only appears at larger values of α, the presence of this edge threatens the validity of

quarter-of-birth as an instrument for education. Because the edge RACE → WAGE is quite robust

(appearing with frequency 0.66-0.96 depending on α), the edge QOB ↔ RACE violates condition

(ii) in Definition 7 by creating a causal path from QOB to WAGE that does not pass through EDU.

With respect to Q3, our results show that the frequency of an edge (either directed or bi-

directed) between QOB and WAGE is at most 0.06 (under α = 0.05), and precisely 0 for α ∈

{0.001, 0.0001}. These low frequencies suggest that the instrument does not materially suffer from
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QOB being a direct cause of WAGE, or from latent confounding between QOB and WAGE.

Lastly, although our focus has been on quarter-of-birth, our results suggest that education is

indeed a cause of income: The edge EDU → WAGE persists across all four values of α, and appears

with frequency 0.7 for α = 0.0001. At this significance level, only four other edges appear with

greater frequency: MAR→ SMSA (1.00), RACE → WAGE (0.96), SMSA → MAR (0.90), and RACE

↔ MAR (0.72).

4.5.1 Comparison with Bound et al. (1995) and Buckles and Hungerman (2013)

Two of the most well-known critiques of the quarter-of-birth instrument from AK-91 are presented

by Bound et al. (1995) (hereafter BJB-95) and Buckles and Hungerman (2013) (BH-13). As a point

of reference, we discuss how our results compare to statements made in BJB-95 and BH-13.

The main criticism in BJB-95, which is related to our Q1 above, is that quarter-of-birth’s

association with education is so weak that even minimal confounding may lead to biased estimates,

despite the large sample sizes in AK-91. As noted above, this weak association between quarter-of-

birth and education is reflected in our results by the edge QOB→ EDU vanishing at smaller values

of α, while other edges persist.

More interestingly, BJB-95 also suggest that quarter-of-birth may be associated with family

characteristics that are predictive of an individual’s income (Q2). In particular, they argue that

race may be associated with quarter-of-birth, and also point to research that finds families with

high incomes are less likely to have children in the winter months (Kestenbaum, 1987). These

conjectures about potential confounding due to family background are rigorously examined by BH-

13, who propose that maternal characteristics can explain a significant share of the association

between quarter-of-birth and income. Using birth certificate and US Census data, BH-13 find that

children born in the winter are more likely to have mothers that are non-white, teenagers, and
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lacking a high school diploma. BH-13 state that because quarter-of-birth is associated with family

background (which is itself related to income), the quarter-of-birth instrument violates the critical

exclusion criterion. Notably, our detection of a causal relationship between RACE and QOB is well-

aligned with both BJB-95 and BH-13’s claims of potential confounding between quarter-of-birth

and income due to race.

Beyond the effect of race, BJB-95 also argue that it is plausible that quarter-of-birth has a

direct effect on income, and point to research in psychology and education for possible mechanisms

(Q3). Our results do not support this claim, because we do not find quarter-of-birth to be a direct

cause of income, nor do we detect any confounding between those variables other than race. This

is perhaps not surprising, given that the BJB-95 simply argue for the plausibility of quarter-of-

birth having a direct effect on income, but also state that they are not aware of any “indisputable

evidence” that such an effect exists. Our results suggest that any confounding between QOB and

WAGE is for the most part already captured by the variable RACE.

We highlight a few limitations of our study. As discussed above, the output graphs are sensitive

to the choice of conditional independence test and the significance level used. We tested sensitivity

to α, but not to the choice of independence test; the use of other tests may alter our results.

Further, there may exist multiple graphs within the Markov equivalence class of graphs implied by

the input independence relations, although our method seeks to return only one of them. Lastly,

we terminate the algorithm after three consecutive iterations with no improvement in the number

of satisfied input constraints, and adjusting this criterion may also affect our results.

4.6 Conclusion

In this chapter, we demonstrate how the method proposed in Chapter 3 can be used to investigate

validity of instrumental variables. We apply our method to US Census data used in the landmark
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study on the returns to education by Angrist and Krueger (1991) (hereafter, AK-91) as it presents

one of the pioneering applications of an instrumental variable. The agreement between the literature

and the causal structures uncovered by our algorithm suggests that a causal discovery approach can

be a useful complement to existing empirical methods. Further, the computationally efficiency of

our proposed method makes it more implementable in practice compared to extant causal discovery

techniques. Although our focus in this section was to examine the validity of an instrumental

variable, our method can also be used more generally to uncover causal structure in data – for

example, identifying new causal relations in observational data can help point us toward potentially

fruitful directions for further research.

Our analysis is not necessarily unique to our proposed method. In principle, one could repeat

the validation exercise presented here using other causal discovery techniques, including those that

restrict the search space to DAGs, which are extremely efficient. However, because our approach

allows us to detect latent confounding, it can provide additional insight into the causal relations

among variables of interest that DAG-based approaches cannot.
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Chapter 5

Conclusions

In this thesis, we have developed methodologies to uncover the underlying mechanisms that are

governing the effects of strategic decisions using optimization, economic modeling, and statistics.

We briefly summarize the key contributions of each chapter here.

In Chapter 2, we developed an integer programming formulation that is based on principal-

agent models to analyse the effects of incentive contracts in online labor platforms. We proposed

an intuitive estimator for a general class of principal-agent models where agent actions are hidden.

Our agent model is non-parametric, and imposes minimal structural assumptions on the agent’s

utility function. We showed that the estimator is identifiable and statistically consistent under

some mild assumptions. Since solving the exact estimator using off-the-shelf optimization solvers

is non-viable for larger instances, we propose an approximation scheme based on discretizing the

original parameter space. We then developed an iterative solution algorithm in the spirit of col-

umn generation that exploits statistical properties of the integer programming formulation. We

showcase the efficacy of the estimator in two sets of numerical experiments. First, we use synthetic

instances to show that the proposed algorithm produces solutions that are competitive with the

exact estimator in a fraction of the computational time. To demonstrate our method’s applicability

104



in real world, we conducted an experiment on a crowd-work platform.

In Chapter 3, we considered how to learn causal relations from observational data using op-

timization. Our main contribution is a new optimization-based method for causal discovery. We

consider an extremely general search space where feedback cycles and unobserved confounders are

allowed. To achieve better scalability over this large search space, we proposed an iterative solution

approach that exploits the conditional (in)dependence structure in the data to detect “promising”

candidate edges in the underlying graph, which are then assembled into a causal graph by an

optimization model. We computationally showed that our approach performs better in terms of

scalability compared to state-of-the-art methods.

In Chapter 4, we focused on investigating the validity of an instrumental variable using the

method developed in Chapter 3. We applied our method to the well-known dataset on educational

attainment and income from Angrist and Krueger (1991), which contains one of the most influential

applications of an instrumental variable, but one whose validity has been the subject of debate. The

agreement between the existing literature and the causal structures uncovered by our algorithm

suggests that causal discovery can be a useful complement to existing empirical methods.
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Appendix A

Estimating Effects of Incentive Contracts in

Online Labor Platforms

A.1 Identifying an Optimal Incentive Contract

A natural question is whether it is possible to use our estimated model to identify an optimal

incentive contract from the set R. Here, we establish an important property of our model: our

agent-based method for estimating the mapping from contracts to outcomes yields an optimal

contracting formulation that is simple and tractable. This tractability is a direct consequence of

our specification of the agent model, and is not guaranteed if alternative methods are used to

estimate the mapping from contracts to outcomes.

Let ζj(r) be the utility (e.g., of a principal) under outcome {ξ = j} and contract r, and

suppose we are interested in identifying a contract r ∈ R that maximizes expected utility: U(r) =∑
j∈J Pr(ξ = j|r)ζj(r). As we have assumed throughout, the distribution Pr(ξ = j|r) may be

unknown in practice, which implies the utility function U(r) is also unknown. However, given data

on past contracts and outcomes, a reasonable approximation is to first estimate P̂r(ξ = j|r) for all
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r ∈ R, which produces an estimate of U :

Û(r) =
∑
j∈J

P̂r(ξ = j|r)ζj(r).

Then, a sensible approximation is to find a contract in R that maximizes the estimated expected

utility:

(OC) maximize
r∈R

Û(r).

Next, suppose ζj(r) is convex in r, and let R be a convex set. Then, the tractability of the optimal

contracting problem (OC) depends critically on the expression for P̂r(ξ = j|r), which in turn is

determined by the method used to estimate it.

A useful structural property of our approach is that the expression for P̂r(ξ = j|r) makes

problem OC quite straightforward. Specifically, within our modeling framework, we have P̂r(ξ =

j|r) = π̂â(r),j , where â(r) ∈ argmaxa∈A

{∑
j∈J π̂ajrj − ca

}
. Then, for a given estimate π̂, we can

write the optimal contracting problem as:

maximize
r

π̂â(r),jζj(r) (A.1a)

(OC(π̂)) subject to â(r) ∈ argmaxa∈A
∑
j∈J

π̂ajrj − ca, (A.1b)

r ∈ R. (A.1c)

This formulation leads to the following result, which we present without proof:

Lemma 2. If R is a convex set and ζj(r) is convex in r, then an optimal solution to OC(π̂) can

be obtained by solving |A| convex problems.
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To see why the lemma holds, consider the following formulation for a fixed action a:

maximize
r

∑
j∈J

π̂ajζj(r) (A.2a)

subject to
∑
j∈J

rj π̂aj − ca ≥
∑
j∈J

rj π̂bj − cb, b ∈ A, (A.2b)

r ∈ R. (A.2c)

The subproblem (A.2) finds a utility-maximizing contract from Ra(π̂) – the subset of R such that

action a is optimal for the agent under π̂. Specifically, the objective (A.2a) gives the expected

payoff under contract r and action a, the constraint (A.2b) restricts the contracts r to those that

make action a optimal for the agent, and constraint (A.2c) restricts r to the set R. The subproblem

(A.2) is clearly convex if R is a convex set and ζj(r) is convex in r. Therefore, OC(π̂) can be easily

solved by solving the subproblem (A.2) once for each action a ∈ A, and selecting the action and

corresponding contract that maximizes (A.2a). Note that (A.2) may be infeasible if Ra(π̂) is empty

(i.e., there exists an action such that no contract makes it optimal), but that at least one Ra(π̂)

must be non-empty, so it is always possible to solve OC(π̂). In summary, once equipped with an

estimate π̂, our model allows us to easily optimize over the set R to identify an optimal contract.

As a point of comparison, note that the general form optimal contracting problem OC may not

be straightforward to solve if an alternative method is used to estimate P̂r(ξ = j|r). For example,

in the context of multinomial logistic regression (where the contract vector r are the independent

variables and the outcomes j ∈ J are classes), P̂r(ξ = j|r) is given by the logit function, which is

non-convex in r, making OC non-trivial to solve. Similarly, in non-parametric classification meth-

ods such as classification trees, there may not exist a closed form expression for P̂r(ξ = j|r), in

which case solving OC is far from straightforward.
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A.2 Additional Computational Results

A.2.1 Prediction Error Comparison with Multinomial Logistic Regression and

Classification Trees

In this section, we further examine the predictive performance of the estimator using synthetic data.

In particular, we assess the predictive performance of PA-D+ and the benchmark methods under

different specifications of the underlying data generation process. The setup is as follows: For each

observation i ∈ I, we construct ri by drawing d values from the standard uniform distribution and

sorting them in ascending order, so that rij ≤ rij+1 for j = 1, . . . , d − 1, which reflects the notion

that higher outcomes should correspond to higher payments. For PA-D+, action costs are given by

ca = a/m for a = 1, . . . ,m. We then simulate the outcome data from discrete distributions of the

form

Pr(ξ = j|r) = gj(r)∑d
k=1 gk(r)

,

where gj(r), j ∈ J are functions that determine the outcome distribution under a contract r.

We test different underlying models by considering gj(r) = rj , gj(r) =
√
rj and gj(r) = (1 + r2j )

(a natural interpretation is that we are testing predictive performance under different “ground-

truth” models). For each of these three models, we consider six problem sizes: (m, d, n) ∈

{(2, 2, 100), (2, 2, 1000), (4, 5, 100), (4, 5, 1000), (5, 10, 100), (5, 10, 1000)}. For each of these six in-

stances, we again fit all three models to a bootstrap sample of size n, and measure predictive

performance on the out-of-bootstrap sample, for 100 repetitions. The prediction error is measured

using the mean absolute error (MAE) given in (2.16). In a second set of experiments, we add a

noise term ϵ to gj(r), where ϵ is drawn independently from the standard uniform distribution for

each observation i ∈ I.

Tables A.1 and A.2 show the average prediction errors over 100 bootstrap repetitions with and
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without the additional noise term, respectively. Minimum prediction errors are shown in bold.

Table A.1 shows that all three methods have comparable performance when there is no noise term.

In contrast, Table A.2 shows that when the noise term is included to generate the outcome data,

the predictive performance of MLR degrades considerably, whereas PA-D+ performs well across all

instances. Intuitively, this difference in performance is due to the non-parametric nature of PA-

D+, which makes predictions based on empirical distributions found within each bootstrap sample,

allowing it to fit the data well. We also find that classification trees are competitive in several

instances in Table A.2, which is unsurprising given their flexibility.

Interestingly, PA-D+ shows little evidence of overfitting. This may be because the estimator

searches over the restricted parameter set Π̃, which is constructed from the data, instead of the full

space of possible distributions Π. While this restriction on the parameter space is motivated by

computational tractability, it may also help the model avoid overfitting by forcing the estimator to

only choose among a finite set of empirical distributions that appear in the data (see Algorithm 2).

Lastly, it is worth noting that all three methods may be tuned further; for example, one can adjust

the maximum number of splits in the classification trees, or adjust the parameters ρ, α and S in

PA-D+; doing so may produce different results. Nonetheless, given that we do not exhaustively

tune PA-D+ to the data, Tables A.1 and A.2 suggest that PA-D+ performs favorably compared to

well-known prediction methods, and is robust to the underlying data generation process.

A.2.2 Solution Time Comparison with Maximum Likelihood Estimation

Naturally, one might ask whether π0 can also be estimated through a maximum likelihood esti-

mation (MLE) approach. Here, we present numerical examples to show that an MLE approach

may not be tractable for the non-parametric agent model that we study in this paper, due to the

potentially large search space represented by the parameter set Π and the nonconvexity of the
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gj(r) m d n PA-D+ MLR CT

rj

2 2 100 0.08 0.09 0.09
2 2 1000 0.03 0.03 0.02
4 5 100 0.07 0.08 0.07
4 5 1000 0.02 0.03 0.02
5 10 100 0.04 0.06 0.05
5 10 1000 0.02 0.02 0.02

√
rj

2 2 100 0.09 0.03 0.11
2 2 1000 0.03 0.03 0.03
4 5 100 0.06 0.06 0.06
4 5 1000 0.02 0.02 0.02
5 10 100 0.04 0.05 0.05
5 10 1000 0.02 0.02 0.01

(1 + rj)
2

2 2 100 0.08 0.09 0.09
2 2 1000 0.03 0.02 0.03
4 5 100 0.07 0.08 0.07
4 5 1000 0.02 0.03 0.02
5 10 100 0.05 0.05 0.06
5 10 1000 0.02 0.02 0.02

Table A.1: Out-of-bootstrap prediction errors of PA-D+, multinomial logistic regression (MLR) and classification trees
(CT) under varying data generation processes (without noise), averaged over 100 bootstrap repetitions. Minimum
errors are bolded.
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gj(r) m d n PA-D+ MLR CT

rj + ϵ

2 2 100 0.07 0.20 0.25
2 2 1000 0.02 0.34 0.22
4 5 100 0.06 0.28 0.10
4 5 1000 0.02 0.22 0.02
5 10 100 0.04 0.16 0.05
5 10 1000 0.02 0.13 0.02

√
rj + ϵ

2 2 100 0.11 0.33 0.32
2 2 1000 0.03 0.35 0.20
4 5 100 0.07 0.27 0.08
4 5 1000 0.02 0.22 0.02
5 10 100 0.05 0.15 0.06
5 10 1000 0.02 0.13 0.02

(1 + rj)
2 + ϵ

2 2 100 0.10 0.19 0.31
2 2 1000 0.03 0.23 0.20
4 5 100 0.06 0.30 0.11
4 5 1000 0.02 0.25 0.03
5 10 100 0.05 0.15 0.05
5 10 1000 0.02 0.13 0.02

Table A.2: Out-of-bootstrap prediction errors of PA-D+, multinomial logistic regression (MLR) and classification
trees (CT) under varying data generation processes (with noise), averaged over 100 bootstrap repetitions. Minimum
errors are bolded.
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likelihood function.

Note that for each i ∈ I, ξi is the outcome in J that was observed under ri. Then, based on

the agent model (2.1), the log-likelihood of seeing the data (ri, ξi), i ∈ I under the parameter π is

L̃(π) =
∑
i∈I

log(πa,ξi), where a = argmax
a∈A

∑
j∈J

πajr
i
j − ca

 . (A.3)

One challenge with maximizing the log-likelihood function L̃(π) is that it is discontinuous at values

of π where two or more actions are optimal. Intuitively, this is because for these values of π, a

small change in the parameter π can make the agent’s optimal action “jump” from one action

to another, which leads to a discontinuity in L̃(π). Therefore, non-linear optimization techniques

that require the likelihood function to be continuous and differentiable cannot be used to maximize

L̃(π).

An intuitive approach to optimizing L̃(π) that does not require differentiability of L̃(π) is to

perform an exhaustive grid search over the parameter set Π. We set up the following numerical

experiment to test the viability of this method. First, we randomly generate problem data using

the process described in §2.4.4, where (m, d) ∈ {(2, 2), (2, 3), (2, 4), (2, 5), (3, 2), (3, 3), (3, 4)}, and

n ∈ {100, 500, 1000}. We then discretize the parameter set Π in increments of 0.1 for each element

(a, j) in the matrix π. For example, in the instances where d = 2, we search over the set
∏

a∈A Pgrid,

where Pgrid = {(0, 1), (0.1, 0.9), (0.2, 0.8), . . . , (0.9, 0.1), (1, 0)}. We then evaluate the log-likelihood

function L̃(π) for each value of π in the grid, and set the estimate as the solution that yields the

largest value of L̃(π). We set a time limit of 3600 CPU seconds for each instance.

Table A.3 summarizes the results of this search procedure, averaged over 10 repetitions per

problem size. The results indicate that for even small instances, an exhaustive search may require up

to one CPU hour, making this method impractical for larger problem sizes. This is an unsurprising
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MLE
m d n Time Error

2 2 100 0 0.11
2 2 500 0 0.05
2 2 1000 1 0.04

2 3 100 8 0.07
2 3 500 14 0.05
2 3 1000 22 0.04

2 4 100 144 0.07
2 4 500 264 0.05
2 4 1000 424 0.05

2 5 100 1751 0.08
2 5 500 3301 0.05
2 5 1000 - -

3 2 100 3 0.09
3 2 500 5 0.08
3 2 1000 7 0.08

3 3 100 488 0.08
3 3 500 931 0.07
3 3 1000 1471 0.07

3 4 100 - -
3 4 500 - -
3 4 1000 - -

Table A.3: Solution time (CPU seconds) and normalized estimation error of MLE via grid search, averaged over 10
trials. Number of actions, outcomes and sample size are denoted by m, d, and n, respectively. Instances that did not
solve to optimality under 3600 CPU seconds are omitted when calculating average estimation error. Dashes indicate
no instance solved to optimality within 3600 CPU seconds in any trial.

result, given that the number of solutions to be evaluated grows exponentially in the number of

actions, m, and the number of outcomes, d. It can be observed from the results in Table A.3 that

our estimation procedure obtains comparable estimation errors in approximately 1 CPU minute

for similar problem sizes. We note here that other heuristics for searching over Π (e.g. genetic

algorithms) may be more fruitful than a simple grid search, although they will also be subject to

a search space where the number of grid points grows exponentially in m and d.
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A.3 Agent Heterogeneity

The estimation procedure developed in Chapter 2 can be naturally extended to accommodate

heterogeneous agents. We model heterogeneity non-parametrically by assuming each agent has a

categorical type that is observable from the data, and allow an agent’s action costs and outcome

distributions to depend on the agent’s type.

In this section, we show that our main estimator PA can be modified to incorporate agent

heterogeneity, and that consistent estimation remains possible in the heterogeneous setting. In

particular, we present an analogous result to Theorem 1 for an estimator that accounts for agent

heterogeneity. Note that similar results to Proposition 2 and Theorem 3 can also be obtained under

agent heterogeneity, by applying similar arguments. For conciseness, we will only formally present

an analogue to Theorem 1 under agent heterogeneity.

We also show how a priori information about the relative efficiency of different agent types

can be incorporated into our estimator. Note that because agent types are observable, an intuitive

procedure is to simply segment the data according to agent type, and then apply the base esti-

mator PA-D+ to each segment separately. However, if additional information about the relative

performance of different agent types is available, then one might expect an estimator that pools the

data across all agent types to outperform a naive application of PA-D+ to each type separately.

We present numerical results that show that incorporating this additional efficiency information

can indeed improve estimation accuracy when data is limited, but can degrade accuracy when data

is abundant, due to our approximation scheme.

The extension of our model to heterogeneous agents is intuitive; therefore, the development in

this section will closely follow §2.2 and §2.3. In §A.3.1, we present the estimator formulation in the

presence of agent heterogeneity, and discuss how a priori information about the relative efficiency

of different agent types can be embedded in the parameter set Π. In §A.3.2, we present a corollary
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to Theorem 1 that shows consistent estimation is possible under agent heterogeneity. In §A.3.3, we

present the optimization model and column generation algorithm used to produce an analogue to

the base estimator PA-D+, and provide numerical examples.

A.3.1 Estimator

Suppose that in addition to observing the contract ri and outcome ξi, we also observe the agent’s

type, θi. Agent types are categorical and indexed by the set K. Thus, each historical observation

consists of the triple (ri, ξi, θi). With a slight abuse of notation, we define the agent model using

the parameter π ∈ Rm×d×|K|
+ , where πkaj is the probability that action a leads to outcome j when

taken by a type k agent. As before, we let π0 denote the true model parameter to be estimated,

where Π ⊆ Rm×d×|K|
+ is the parameter set and π0 ∈ Π. Next, let cka be the cost of taking action

a for a type k agent, and let ck denote a type k agent’s cost vector. We assume all agents have

the same outcome set, A.1 Let Ak(r
i,π) = argmax

a∈A
{
∑

j∈J π
k
ajr

i
j − cka} denote the set of optimal

actions for a type k agent under the contract ri, and define Ik = {i ∈ I|θi = k} as the subset of

observations where the agent is type k. The loss function Lk
n(π) for a type k agent is then

Lk
n(π) = minimize

x,η,ω
∥π − ω∥1 (A.4a)

subject to xi ∈ Ak(r
i,π), i ∈ Ik, (A.4b)

ωaj =
1

|{i ∈ Ik|xi = a}|
∑

i∈{i∈Ik|xi=a}

yij , a ∈ A, j ∈ J. (A.4c)

Note that the loss function (A.4) is similar to the loss function provided for a single agent type in

§2.2.2, but is defined over the subset of observations Ik instead of I. The estimate of π0 is then

attained at a minimizer of the sum of loss functions over Π:

1The assumption that all agent types share the same set of actions is without loss of generality; an action a for
agent k, we may assume cka = ∞.
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(PA-H) π̂n = argmin
π∈Π

∑
k∈K

Lk
n(π).

Note that PA-H is not necessarily equivalent to solving PA for each agent type separately, because

the parameter set Π may link estimation problem across agent types based on a priori information.

In particular, if we have additional information about the relative performance of different agent

types, then pooling the data and solving PA-H effectively allows us to use data generated by one

agent type to estimate the parameters for another. Next, we provide two examples of how a priori

information can be incorporated into the model.

Outcome efficiency.

It is common in incentive problems for agents to be heterogeneous with respect to some notion

of efficiency (Laffont and Martimort, 2009). Here we illustrate how different definitions of agent

efficiency can be captured within our framework. Without loss of generality, assume outcomes are

ordered based on the preferences of the principal, so that outcome j + 1 is preferred to outcome j,

for j = 1, . . . , d− 1. Suppose also that all agents share the same action costs (c1 = c2 = . . . , c|K|).

Now suppose that the outcome distributions πk
a are unknown, except for the following (strict) first-

order stochastic dominance relation: For any action a and outcome j, a type k + 1 agent is more

likely to obtain an outcome at least as good as j when taking action a as a type k agent. Here,

agent k + 1 can be said to be more efficient than agent k, in the sense that agent k + 1 is more

productive under each possible action. This ordering between agent types can be captured by the

following parameter set:

Π =

π ∈ Qπ

∣∣∣∣∣π ≥ 0,
∑
j∈J

πkaj = 1 for a ∈ A, k ∈ K

 , (A.5)
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where

Qπ =

π
∣∣∣∣∣

d∑
h=j

πkah + ϵ ≤
d∑

h=j

πk+1
ah , for a ∈ {1, 2, . . . ,m− 1}, j ∈ J, k ∈ {1, 2, . . . , |K| − 1}

 ,

(A.6)

where ϵ > 0 is a small constant. The inequalities given in (A.6) restrict the parameter set so

that the outcome distribution is stochastically dominated when taken by a higher type (i.e., more

efficient) agent. For an example where this kind of ordering may arise, consider an employee bonus

program where the action set A corresponds to employee effort levels, and employees are one of two

types: inexperienced (k = 1) or experienced (k = 2). Here, the outcome distribution πk
a may be

interpreted as a type k agent’s productivity under action a. If the productivity of both agent types

is unknown, but there is other evidence to suggest that experienced agents are more productive

than inexperienced agents (all else equal), then we might use a parameter set like the one given in

(A.5) to simultaneously estimate π1 and π2, which can be interpreted as the agents’ production

functions.

Cost efficiency.

Agents may also be heterogeneous with respect to action costs. Naturally, we can model hetero-

geneity in agent costs by assuming all agents have the same outcome distributions (π1 = π2 =

. . . = π|K|), and assuming that action costs decrease in agent type: c1a ≥ c2a ≥ . . . ≥ c
|K|
a , for all

a ∈ A. A more general and richer model for heterogeneity in action costs is the following:

Qπ =

π
∣∣∣∣∣

d∑
h=j

πk+1
ah ≤

d∑
h=j

πkbh only if ck+1
b ≥ cka

 . (A.7)
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The parameter set in (A.7) implies that high-type agents are more cost efficient than low-type

agents in the following sense: an action b taken by a low-type agent can only (weakly) stochastically

dominate (i.e. be more productive than) an action a of a high-type agent if it is more costly for

the low-type agent. In other words, for the low-type agent, there exists no action that is both less

costly and more productive than any action of a high-type agent.

Limiting model complexity.

One potential challenge associated with our approach to incorporating agent heterogeneity is that

it increases the number of parameters to be estimated; for instance, in the two examples above, the

number of free parameters in the model is on the order of m · d · |K|. As with any model fitting

problems, if the amount of available data is limited relative to the number of free parameters,

there is a risk of the model overfitting the data, which leads to poor out-of-sample performance.

A typical approach to preventing overfitting is to limit or penalize model complexity (i.e., through

regularization). Within our framework, model complexity can be limited by imposing additional

constraints on the parameter set Π. In particular, consider the following parameter set:

Πreg =

π ∈ Π

∣∣∣∣∣ ∑
(a,b)∈A×A

∑
(k,k′)∈K×K

1{πk
a ̸= πk′

b } ≤ ℓ

 , (A.8)

where ℓ is an integer and ℓ ≤ m · |K|. The set Πreg may be interpreted as a regularized counterpart

to Π. In words, Πreg permits at most ℓ unique distributions to be used by the estimator PA-H in the

construction of the matrices π1,π2, . . . ,π|K|. Note that this regularization constraint can easily be

imposed in the optimization formulation for PA-H (given in A.3.3 below) through constraints on

the binary assignment variables w.
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A.3.2 Statistical consistency

Next, we show that the consistent estimation is possible under agent heterogeneity as well. Similar

to (2.5), it will be helpful to define

Rk
a(π) =

r ∈ R
∣∣∣∣a ∈ argmax

a∈A

∑
j∈J

πkajrj − cka

 .

Next, we present two assumptions that parallel Assumptions 1 and 2.

Assumption 7 (Data). The data (ri, ξi, θi) are independent samples of random variables (r, ξ, θ),

where (i) (r, ξ, θ) is jointly distributed with support R × J × K, (ii) r has continuous marginal

density function f(r), (iii) ξ has conditional mass function π0kaj = Pr(ξ = j|r ∈ Rk
a(π)), and (iv)

for any π ∈ Π, Pr(r ∈ Rk
a(π)) > 0 for all a ∈ A, j ∈ J , and k ∈ K.

Assumption 8 (Identifiability). For every π ∈ Π such that π ̸= π0, there exists an (a, j, k) such

that

πkaj ̸=
∑
b∈A

π0kbj · Pr(r ∈ Rb(π
0k)|r ∈ Ra(π

k)).

We can now present a corollary to Theorem 1, which establishes that PA-H provides consistent

estimates.

Corollary 1. Let Assumption 7 hold. Then π̂n −→ π0 if and only if Assumption 8 holds.

Corollary 1 confirms that the estimates produced by PA-H converge to the true model parameters.

Next, we show how the integer programming formulation PA-D and the statistical column generation

algorithm given in §2.4.3 can be extended to incorporate agent heterogeneity.
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A.3.3 Optimization, solution algorithm, and numerical examples

Similar to the single type estimator PA, we can formulate a proxy estimator for PA-H, represent

this proxy estimator exactly as a mixed-integer formulation, and then obtain an integer program-

ming formulation of a restricted estimator that limits each distribution πk
a to a set of candidate

distributions V . Because this development follows in a parallel manner to §2.3, we skip directly to

the formulation of the restricted estimator.

Let w, x and ϕ be binary variables with the following interpretations, parallel to §2.4.1: wk
as = 1

if the candidate distribution vs is assigned to distribution πk
a , x

i
s = 1 if the action that candidate

distribution vs is assigned to is optimal under contract ri, and ϕias = 1 if vs is assigned to distri-

bution πk
a and action a is optimal under ri and πk. Let zk ∈ Rd×S

+ be auxiliary variables. Then,

analogous to PA-D, we can formulate the restricted estimator as the following optimization problem:
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minimize
π,w,x,z,ϕ

∑
k∈K

∑
s∈S

∑
j∈J

zksj (A.9a)

subject to zksj ≥
1

n

∑
i∈Ik

(ξij − vsj)xis, j ∈ J, s ∈ S, k ∈ K, (A.9b)

zksj ≥
1

n

∑
i∈Ik

(vsj − ξij)xis, j ∈ J, s ∈ S, k ∈ K, (A.9c)

∑
b∈A

∑
s∈S

∑
j∈J

vsjr
i
j − ckb

ϕibs ≥

∑
j∈J

vs′jr
i
j − cka

wk
as′ , i ∈ Ik, a ∈ A, s′ ∈ S, k ∈ K,

(A.9d)

(PA-DH)
∑
s∈S

wk
as = 1, a ∈ A, k ∈ K, (A.9e)

∑
a∈A

∑
s∈S

ϕias = 1, i ∈ I, (A.9f)

xis =
∑
a∈A

ϕias, i ∈ I, s ∈ S, (A.9g)

ϕias ≤ wk
as, i ∈ Ik, a ∈ A, s ∈ S, k ∈ K, (A.9h)

πkaj =
∑
s∈S

wk
asvsj , a ∈ A, j ∈ J, k ∈ K, (A.9i)

xis ∈ {0, 1}, i ∈ I, s ∈ S, (A.9j)

wk
as ∈ {0, 1}, a ∈ A, s ∈ S, k ∈ K, (A.9k)

ϕias ∈ {0, 1}, i ∈ I, a ∈ A, s ∈ S, (A.9l)

π ∈ Qπ. (A.9m)

The candidate distributions in the formulation above can be constructed in an analogous way

to Algorithm 1. The main difference is that we first segment the data according to agent type,

which is the key step in obtaining “good” candidate distributions. Recall that the intuition behind
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the sample-based construction of candidate distributions (given in Algorithm 1) is to use the data

to approximate the true outcome distributions, π0
a, a ∈ A. Because each cluster in Algorithm 1

is constructed to contain similar contracts, we anticipate that for some clusters, all contracts that

are contained within it induce the same (hidden) action from the agent. If, for a given cluster, all

contracts lead to the same hidden action, then the empirical mass function over outcomes (i.e. the

candidate distribution) should be informative about the outcome distribution π0
a for some unknown

a ∈ A. In the case where agents are heterogeneous, segmenting the data by agent types before

constructing the candidate distributions helps to preserve this information. A summary is given in

Algorithm 5.

Algorithm 5: Construction of candidate distributions with agent heterogeneity

Input: Data (ri, ξi, θi), i ∈ I, parameter, ρ > 0.
1. For each k ∈ K, randomly sample a subset Sk from Ik.
2. for s ∈ Sk, k ∈ K:

Bs = {r ∈ R|∥rs − r∥2 ≤ ρ},
Is = {i ∈ Ik|ri ∈ Bs}.
for j ∈ J :

vsj =
1

|Is|
∑

i∈Is y
i
j .

Output: Candidate distributions V = {vs for s ∈ Sk, k ∈ K}.

Next, we discuss how to use the statistical column generation algorithm to return a sufficiently

“representative” subset of the candidate distributions in the presence of agent heterogeneity. Recall

that the statistical column generation algorithm terminates when there is no candidate distribution

in the set of omitted distributions V − that is statistically different from every distribution in

V +. We use the same argument to build the corresponding algorithm in the presence of agent

heterogeneity. We first define a vector ψk
s ∈ Zd

+, where the jth entry is the frequency of outcome j

in the candidate distribution vs for s ∈ Sk, obtained in Algorithm 5. Then using the test functions

introduced in §2.4.3, we identify a subset of candidate distributions V + and solve PA-HD over V +
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instead of V . Algorithm 6 provides an overview. Note that when there is no additional structure

that links the agent types, then Algorithm 5 and 4 is equivalent to running Algorithm 1 and 2 for

each agent type separately.

Algorithm 6: Statistical column generation (PA-DH+)

Input: Data (ri, ξi, θi), i ∈ I, candidate distributions V produced by Algorithm 5,
significance level α > 0.

Initialize: Set t = 0. Select any s ∈ Sk, k ∈ K. Set S+ = {(s, k)} and S− = S \ {(s, k)}.
1. Let (s∗, k∗) = argmax(s,k)∈S− inf(s′,k′)∈S+{Hα(ψ

k
s ,ψ

k′
s′ )}.

if inf(s′,k′)∈S+

{
Hα(ψ

k∗
s∗ ,ψ

k′
s′ )
}
≤ 0 or S− = ∅,

Solve PA-HD(S+) and obtain solution π+
n , set T = t, and terminate.

else Update t← t+ 1, S+ ← {S+, (s∗, k∗)}, and S− ← S− \ {(s∗, k∗)}. Return to Step 1.
Output: Parameter estimate π+

n , iteration count T .

We conclude this section by providing a simple numerical example to investigate how incorpo-

rating a priori information about the relative efficiency of agents affects estimation error, compared

to naively applying our base estimator to each agent type separately. We consider two agent types,

L and H, which have true parameters π0L and π0H , respectively. Suppose a type H agent is known

to be more outcome-efficient than a type L agent (§A.3.1). Then the unknown parameters π0L and

π0H must satisfy the following inequalities, where ϵ > 0 is a small constant:

d∑
h=j

π0Lah + ϵ ≤
d∑

h=j

π0Hah , for a ∈ {1, 2, . . . ,m− 1}, j ∈ J. (A.10)

Recall that m and d denote the number of actions and outcomes, respectively. We consider two

problem sizes, given by (m, d) ∈ {(2, 2), (4, 5)}. For each of the two problem sizes, we consider three

sample sizes, given by n ∈ {100, 500, 1000}. Then for each combination (m, d, n), we randomly

generate π0L and π0H from Π given by (A.5), where Qπ is given by (A.6). We use the same data

generation procedure described in §2.4.4.
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Without outcome efficiency With outcome efficiency
m d n Type L Type H Mean Type L Type H Mean

2 2 100 0.135 0.112 0.123 0.104 0.080 0.092
2 2 500 0.094 0.095 0.095 0.069 0.091 0.080
2 2 1000 0.077 0.060 0.069 0.084 0.085 0.084

4 5 100 0.058 0.052 0.055 0.054 0.043 0.049
4 5 500 0.054 0.053 0.054 0.043 0.040 0.041
4 5 1000 0.042 0.044 0.043 0.052 0.041 0.046

Table A.4: Normalized estimation error with and without outcome efficiency constraints, averaged over 10 trials.

Table A.4 summarizes the estimation errors over 10 trials for both agent types, with and with-

out including (A.10) in the parameter set Qπ during estimation. Observe that the mean estimation

error tends to decrease when the outcome efficiency information represented by the inequalities

(A.10) is included, when n = 100 and n = 500. Conversely, for n = 1000, the estimation error

increases when the outcome efficiency information is incorporated. The intuition for this result

is as follows. Note that including the constraint (A.10) in Qπ can be interpreted as restricting

the search space for the estimator LPA-DH. When n is small, the candidate distributions are poor

approximations of the rows of π0L and π0H , and this restriction of the search space steers the

estimator LPA-DH toward candidate distributions that approximate π0L and π0H well. However,

when the sample size is large, the candidate distributions are good approximations of the rows

of π0L and π0H , and the constraint (A.10) restricts the search space for the estimator without

providing additional information, which has the net effect of causing errors to increase.

A.4 A Dynamic Principal-Agent Model with Hidden Actions

Our focus in this paper has been on estimating the agent model in an offline setting, where all

data on historical contracts and outcomes is available at the outset, and the contract data ri, i ∈ I
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is given exogenously. In this section, we consider an online counterpart to our model, where the

principal can select the contracts to be offered to the agent in a dynamic manner. We note here

that while extending our principal-agent framework to a dynamic setting raises new and important

theoretical questions, a complete treatment of the dynamic setting is beyond the scope of this paper.

Therefore, our focus will be to present results that parallel the offline setting, namely, presenting a

complete solution algorithm for the dynamic contracting problem, and proving consistency of the

corresponding estimates.

The remainder of this section is organized as follows. In §A.4.1, we briefly discuss related

literature. In §A.4.2, we formulate a dynamic variant of our principal-agent model. In §A.4.3, we

present an “ϵ-greedy” algorithm for the dynamic contracting problem, which involves iteratively

solving an integer program and a sequence of linear programs. In §A.4.4, we present two consistency

results related to the ϵ-greedy algorithm, and illustrate its performance with a simple numerical

example. Proofs are contained in §A.5.4.

A.4.1 Related literature

There is an extensive literature on dynamic principal-agent models with hidden actions; for exam-

ples of foundational work, see Radner (1981), Rogerson (1985), Spear and Srivastava (1987), and

Abreu et al. (1990). This line of research has typically focused on characterizing the principal’s

optimal decisions in an environment where parameters of the agent model are known, including the

stochastic dependence of outcomes on agent actions.

The dynamic setting we consider is closer to the multi-armed bandit problem, which is a broad

modeling framework for dynamic decision-making problems (see Slivkins (2019) for a recent review

of bandit algorithms). A general setup for the multi-armed bandit problem with stochastic rewards

is as follows. In each of T rounds, a utility-maximizing decision maker chooses from a set of actions
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(“arms”). The chosen arm generates a reward for the decision-maker, where the reward is an i.i.d.

sample from an unknown distribution that depends on the arm. Because the reward distribution

for each arm is unknown, the decision-maker faces what is often called an exploration-exploitation

trade-off: they must balance exploiting “good” arms (which have been observed to produce high

rewards in previous rounds) with exploring the full set of arms (which will improve knowledge

about each arm’s reward distribution).

Note that our paper focuses on estimating the distribution over outcomes induced by each

possible agent action. For this reason, it is natural to use the multi-armed bandit framework to

formulate a dynamic variant of our principal-agent model, where each arm represents a contract,

and the selected contract generates a random reward for the principal (via the agent’s hidden

action). Further, unlike the offline setting, here we assume that the principal has preferences over

the outcome set J . This setting is similar to work by Ho et al. (2016), who also address a dynamic

principal-agent problem within a multi-armed bandit framework. Similar to our paper, the authors

consider a principal-agent problem where a contract is a mapping of agent payments to outcomes,

and outcomes depend on an unobservable agent action. A key distinction between Ho et al. (2016)

and our work is that they assume the distribution over agent types is unknown, whereas we assume

the dependence of outcomes on agent actions is the unknown parameter.

A.4.2 Model

The principal-agent interaction proceeds over T time periods. In period t, the principal selects and

offers to the agent a contract rt ∈ R. As in the offline setting, the agent selects the action that

maximizes their expected utility under the selected contract. As before, the agent’s action remains

hidden to the principal, who instead observes an outcome ξt ∈ J in each period. If the agent takes

action a, then ξt = j with probability π0aj , where π
0 is unknown to the principal. Upon observing
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the outcome ξt, the principal selects a new contract rt+1, which initiates the next period.

Note that principal’s preferences over the outcomes J are irrelevant for estimation in the offline

setting, because the contract data is already fixed. However, because in the dynamic setting the

principal now chooses the contracts rt, they must also balance estimation of π0 with maximizing

their own utility over the T rounds. Let ζj(r) be the principal’s utility under outcome {ξt = j},

which may include the payment rj to the agent. Recall that a(r) is the optimal action of the agent

under r and π0; the principal’s expected payoff under a contract r is then

U(r) =
∑
j∈J

π0a(r),jζj(r). (A.11)

The principal’s dynamic contracting problem is to select the sequence of contracts r1, r2, . . . , rT

that maximizes their expected payoff over T periods:

max
rt∈R

T∑
t=1

U(rt). (A.12)

We shall call any r∗ that satisfies r∗ ∈ argmaxr∈RU(r) an optimal contract. Note that the optimal

solution to (A.12) is to simply let rt = r∗ for all t ≥ 1. However, solving (A.12) is challenging

because the principal’s utility function U(r) – and therefore the optimal contract r∗ – depends on

the unknown parameter π0. Therefore, the principal must trade-off learning U(r) (by estimating

π0) with maximizing U(r) (by selecting high-utility contracts).

A.4.3 Algorithm overview

We now present a solution algorithm for the principal’s dynamic contracting problem (A.12). Our

approach is similar to ϵ-greedy algorithms found in the multi-armed bandit literature, which are

intuitively simple and have been observed to perform well empirically (Kuleshov and Precup, 2014).
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Within an ϵ-greedy framework, the decision-maker chooses an exploratory action in period t with

probability ϵt, and chooses a utility-maximizing action with probability 1− ϵt. Here, “greediness”

refers to naively maximizing the decision maker’s utility using the incumbent parameter estimates.

In our setting, exploration means exploring the contract set R, which is necessary for learning

the parameter π0; exploitation means selecting the contract in R that maximizes the principal’s

expected single-period utility U(r), based on the current estimate of π0.

Before presenting the steps of our ϵ-greedy algorithm, we first define two new optimization

problems: one for each of the exploration and exploitation steps of the algorithm.

Exploration step.

Note that the decision set to be explored is the continuous set R. To make exploration of R

tractable, we first randomly sample a set of contracts rs, s ∈ S from the contract set R, which

remain fixed for the entire algorithm. Here, each rs, s ∈ S is analogous to one “arm” in the multi-

armed bandit setting. Let nts be the number of times rs has been selected after the tth round. Then

we can construct the candidate distribution associated with rs as

vt
s =

1

nts

t∑
i=1

1{ξi = j}.

We assume that the agent’s true optimal action a(rs) is unique under each rs (note that this

is almost surely the case if the initial arms rs, s ∈ S are selected by randomly sampling from R

according to a continuous distribution). Each vt
s can then be interpreted as an empirical distribution

constructed by sampling nts times from the distribution π0a(rs).

Next, define a set of error variables ε1, ε2, . . . , ε|S|, and let was be a binary variable equal to 1
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if vs is assigned to a ∈ A. We now define the following optimization problem:

minimize
w,ε

∑
s∈S
|εs| (A.13a)

subject to
∑
a∈A

∑
j∈J

vtsjrsj − ca

was + εs ≥
∑
a∈A

∑
j∈J

vts′jrsj − ca

was′ , s ∈ S, s′ ∈ S,

(A.13b)

∑
a∈A

was = 1, s ∈ S, (A.13c)

(PA-T)
∑
s∈S

was ≥ 1, a ∈ A, (A.13d)

was ∈ {0, 1}, a ∈ A, s ∈ S. (A.13e)

εs ≥ 0, s ∈ S. (A.13f)

Intuitively, formulation PA-T assigns each contract rs to the action a ∈ A that is believed to be

optimal under rs and the true model π0. Constraint (A.13c) ensures every contract rs is assigned

to exactly one action, and (A.13d) ensures every action has at least one contract assigned to it. The

key constraint of this formulation is (A.13b): Given a contract rs, constraint (A.13b) forces the

action associated with rs to yield at least as large of a utility for the agent as the action associated

with rs
′
, for every s′ ∈ S. Note that because vt

s is an approximation of π0
a for some a ∈ A, constraint

(A.13b) may not hold when εs = 0, even if the binary decision variable w correctly assigns each

rs to the agent’s true optimal action. Therefore, εs is required to serve as a slack variable that

maintains feasibility of PA-T. Intuitively, εs can be interpreted as measuring the sub-optimality of

the assignment encoded by w.

Let (w̄t, ε̄t) be the optimal solution to PA-T in round t. Then we construct the estimate π̂t as
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follows:

π̂taj =

∑
s∈S v

t
sjn

t
sw̄

t
as∑

s∈S n
t
sw̄

t
as

, for a ∈ A, j ∈ J.

Intuitively, π̂t
a is the average of all candidate distributions assigned to action a, weighted by their

sample sizes nts.

Exploitation step.

The exploitation step consists of solving the optimal contracting problem OC(π̂t), described in §A.1

of the electronic companion, under the incumbent estimate π̂t.

Algorithm summary.

Having defined the optimization models PA-C and OC, we can now summarize the steps of the

ϵ-greedy algorithm (Algorithm 7). At each iteration, an exploration action is taken with proba-

bility ϵt, by randomly selecting one of the contracts from {r1, r2, . . . , r|S|} and updating the set of

candidate distributions accordingly, and an exploitation action is taken with probability 1− ϵt, by

selecting the optimal contract based on the current estimate, π̂.

Algorithm 7: ϵ-greedy algorithm for dynamic contracting

Input: Exploration parameters ϵ1, ϵ2, . . . , ϵT .
1. Initialize: Randomly sample S contracts r1, r2, . . . , rS from set R.
Initialize nts = 1 for s ∈ S and t = 1.

2. for t = 1, 2, . . . , T :
with probability ϵt:

Set r̂t = r̂t−1.
Randomly select s̄ ∈ S. Select contract rs̄ and observe outcome ξ̄.
Set st = s̄ and ξt = ξ̄.

Update nts̄ ← nts̄ + 1 and vts̄j =
1
nt
s̄

∑t
i=1 1{ξi = j, si = s̄} for j ∈ J .

with probability 1− ϵt:
Solve PA-T and obtain w̄t. For each a ∈ A, j ∈ J , set π̂taj =

∑
s∈S vtsjn

t
sw̄

t
as∑

s∈S nt
sw̄

t
as

.

Solve OC(π̂t) and obtain r̂t.
Output: Estimates π̂T and r̂T .
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A.4.4 Consistency, numerical examples, and discussion

We now present the main theoretical result of this section. First, consider the following assumption:

Assumption 9. For each s ∈ S, there exists s′ ∈ S such that

∑
j∈J

(π0
a(rs′ ),j

− π0a(rs),j)r
s
j > c̄− c, (A.14)

where c̄ = supa∈A{ca} and c = infa∈A{ca}.

Assumption 9 is an identifiability condition that ensures precise inference of π0, similar to As-

sumption 2 in the offline setting. Loosely speaking, this condition ensures that if there exists a

solution w̄ to PA-T that assigns a candidate distribution vs to the wrong action, then the assign-

ments encoded in w̄ will eventually (as more data is collected) violate the optimality conditions in

(A.13b). This has the effect of guaranteeing that the solution to PA-T identifies the correct action

for each candidate distribution vs in the limit. Next, Proposition 5 states that the condition in 9

is sufficient for Algorithm 7 to uncover the true values of π0.

Proposition 5. Let Assumption 9 hold. Then the estimate π̂T produced by Algorithm 7 is consis-

tent:

π̂T −→ π0.

Note that Assumption 9 is stronger than the analogous condition in the offline setting, Assump-

tion 8). The reason for this difference is as follows: In the online setting, we restrict attention to the

subset of contracts {r1, r2, . . . , r|S|} when estimating π̂. While focusing on this discrete subset of

R improves tractability, it also reduces variation in the data compared to the offline setting, which

reduces the information available to the estimator. Because the online setting has less variation

in contract data, a stronger identifiability condition is required to ensure that learning the precise
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values of the parameter π0 remains possible.

Corollary 2. Let Assumption 9 hold. Then the contract r̂T produced by Algorithm 7 converges to

a minimizer of the principal’s per-period regret:

∣∣∣∣ 1T
T∑
t=1

U(r̂T )− 1

T

T∑
t=1

U(r∗)

∣∣∣∣ −→ 0.

The intuition behind Corollary 2 is straightforward – because π̂T is a consistent estimate of π0,

then solving OC(π̂T ) will eventually produce an optimal contract for the principal, as T −→∞.

We now illustrate Algorithm 7 through numerical examples. We consider two problem sizes,

given by (m, d) ∈ {(2, 2), (5, 10)}. For each problem size, we construct the contract set asR = [1, 2]d,

the agent cost vector c as a random sample from [0, 1]m. We specify the principal’s utility as

ζj(r) = ζ̄j − rj , where ζ̄j is a random sample from [1, 10]d. We construct the true parameter π0

by letting π0
a for each a ∈ A be randomly generated from the (d− 1)-dimension simplex. We test

six parameterizations of the exploration probability ϵt. We first consider three “fixed” exploration

schemes, where ϵt = ϵ, for each ϵ ∈ {0.5, 0.9, 0.99}. We then consider three “variable” exploration

schemes, where ϵt = exp(−λ · t), for each λ ∈ {10−2, 10−3, 10−4}. For each problem size and

parameterization of ϵt, we run 10 trials of Algorithm 7 with T = 1000, where π0, ζ̄, and c are

randomly constructed in each trial.

A summary of results is provided in Table A.5 (m = 2, d = 2) and Table A.6 (m = 5, d = 10).

For each of the six exploration schemes, we report the average estimation error and average per-

period regret at t = 100, t = 500 and t = 1000. Among the fixed exploration schemes, aggressive

exploitation (ϵt = 0.5) attains the lowest regret and highest estimation error, and aggressive explo-

ration (ϵt = 0.99) attain the highest regret and lowest estimation error. These results demonstrate

the exploration-exploitation trade-off in our dynamic contracting problem. Comparing all six ex-
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ϵt = ϵ ϵt = exp(−λ · t)
m d T ϵ = 0.5 ϵ = 0.9 ϵ = 0.99 λ = 10−2 λ = 10−3 λ = 10−4

2 2 50 0.21 0.11 0.07 0.06 0.06 0.06
2 2 100 0.20 0.11 0.07 0.06 0.06 0.06
2 2 500 0.16 0.08 0.07 0.05 0.06 0.06
2 2 1000 0.13 0.08 0.07 0.06 0.06 0.06

2 2 50 0.12 0.16 0.14 0.10 0.14 0.16
2 2 100 0.09 0.16 0.15 0.09 0.14 0.16
2 2 500 0.08 0.14 0.16 0.03 0.11 0.16
2 2 1000 0.08 0.14 0.16 0.02 0.09 0.16

Table A.5: Estimation errors (top) and per-period regret (bottom) for six exploration schemes, averaged over 10
trials (m = 2, d = 2).

ϵt = ϵ ϵt = exp(−λ · t)
m d T ϵ = 0.5 ϵ = 0.9 ϵ = 0.99 λ = 10−2 λ = 10−3 λ = 10−4

5 10 50 0.05 0.06 0.06 0.05 0.05 0.05
5 10 100 0.06 0.06 0.06 0.05 0.05 0.05
5 10 500 0.06 0.06 0.05 0.05 0.05 0.05
5 10 1000 0.06 0.06 0.05 0.05 0.05 0.05

5 10 50 0.78 0.82 0.87 0.78 0.84 0.85
5 10 100 0.77 0.83 0.87 0.74 0.83 0.84
5 10 500 0.78 0.82 0.85 0.58 0.79 0.83
5 10 1000 0.79 0.82 0.85 0.56 0.73 0.83

Table A.6: Estimation errors (top) and per-period regret (bottom) for six exploration schemes, averaged over 10
trials (m = 5, d = 10).

ploration schemes, the variable scheme with λ = 10−2 appears to weakly dominate, by producing

similar estimation errors as the other approaches, but with significantly lower regret. This suggests

that λ = 10−2 handles the exploration-exploitation trade-off the most efficiently. We also observe

that the decrease in regret is significantly more pronounced for the variable scheme with λ = 10−2

compared to the other approaches, because it exploits the most aggressively as t increases (e.g., by

t = 500, this scheme exploits with probability 0.99.)

We conclude by highlighting directions for future work. First, the algorithm we presented in

this section is based on ϵ-greedy approaches found in the multi-armed bandit literature. Other
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well-known bandit algorithms may also be applicable in our setting, such as those based on upper

confidence bounds or Thompson sampling (Slivkins, 2019). Second, while we have focused our

analysis in this section on asymptotic results, the standard performance measure of a dynamic

decision-making algorithm is a finite-sample bound on regret. It may be possible to obtain similar

bounds in our dynamic contracting setting. However, doing so will require addressing two technical

challenges of our setting that are not present in classical bandit problems: the continuous nature of

the decision space R (instead of a discrete set of arms), and discontinuity in the principal’s payoff

in r (due to jumps in the agent’s optimal action as r changes). Third, we have assumed throughout

that the agent behaves myopically by optimizing their single-period payoff. It may also be the case

that agents behave strategically, which would introduce new and challenging dynamics into the

problem.

Note also that the performance of Algorithm 7 is sensitive to how R is specified. Because R is

the exploration space, if the values in R are large compared to the principal’s utility, then the al-

gorithm may spend a large number of iterations exploring regions of R that are inefficient from the

principal’s perspective. This sensitivity to the contract set R occurs because the Algorithm 7 does

not consider regret when selecting a contract to explore, which is common in ϵ-greedy approaches.

A.5 Proofs

Because the proof for Theorem 2 is long, we group all proofs into four subsections for ease of

navigation: §A.5.1 contains the proofs for Theorem 1 and Proposition 1; §A.5.2 contains the proof

of Theorem 2; §A.5.3 contains the proofs of Proposition 2, Theorem 3, and Theorem 4; and §A.5.4

contains the proofs for Sections A.3 and A.4.
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A.5.1 Proofs of Theorem 1 and Proposition 1

Before proving Theorem 1, we prove two supporting results, given in Lemmas 3 and 4. Lemma 3

shows that the loss function Ln(π) is lower semicontinuous. Lemma 4 shows that as n −→∞, the

loss function Ln(π) converges point-wise to a function L(π), where L(π) is uniquely minimized by

the true parameter π0 if and only if Assumption 2 holds. Both of these results are used to prove

the consistency result in Theorem 1.

Lemma 3. Ln(π) is lower semicontinuous in π on Π for all n ≥ 1.

Proof. Define N(δ) = {π ∈ Π|∥π − π̄∥1 < δ}. To show that Ln(π) is lower semicontinuous at all

π̄ ∈ Π and n ≥ 1, it suffices to prove the following statement (Rockafellar and Wets, 2009): For

every ε > 0, there exists δ > 0 such that Ln(π̄)− Ln(π) < ε for all π ∈ N(δ). The proof proceeds

in two steps. First, we show that there exists δ̄ > 0 such that for all δ ∈ (0, δ̄) and π ∈ N(δ),

A(ri,π) ⊆ A(ri, π̄) for all i ∈ I. Second, we show lower semicontinuity of Ln(π) at π̄. Step 1. Fix

π̄ and n. By way of contradiction, suppose that for all δ > 0, there exists π̌ ∈ N(δ), a ∈ A(ri, π̌)

and i ∈ I such that a /∈ A(ri, π̄). Note that a /∈ A(ri, π̄) and a ∈ A(ri, π̌) implies there exists a

b ∈ A \ a such that the following two inequalities hold:

∑
j∈J

π̄ajr
i
j − ca <

∑
j∈J

π̄bjr
i
j − cb (A.15)

∑
j∈J

π̌ajr
i
j − ca ≥

∑
j∈J

π̌bjr
i
j − cb. (A.16)

Combining (A.15) and (A.16) yields

∑
j∈J

(π̌aj − π̄aj)rij − ca >
∑
j∈J

(π̌bj − π̄bj)rij − cb.

Letting δ −→ 0 implies ∥π̌− π̄∥1 −→ 0 and thus 0 > 0, a contradiction. It follows that there exists
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δ̄ > 0 such that for all δ ∈ (0, δ̄) and π ∈ N(δ), A(ri,π) ⊆ A(ri, π̄) for all i ∈ I. Step 2. Fix ε > 0.

By way of contradiction, suppose Ln(π) is not lower semicontinuous; that is, for every δ > 0, there

exists π̌δ ∈ N(δ) such that Ln(π̄) − Ln(π̌δ) > ε. Next, let (x(π),ω(π)) be an optimal solution

to (2.4) under π = π̌δ. By Step 1, if δ ∈ (0, δ̄), then A(ri, π̌δ) ⊆ A(ri, π̄) for all i ∈ I. Because

A(ri, π̌δ) ⊆ A(ri, π̄) for all i ∈ I, it is feasible to set π = π̄ and (x,ω) = (x(π̌δ),ω(π̌δ)) in (2.4).

It follows that Ln(π̄) = ∥π̄ − ω(π̄)∥1 ≤ ∥π̄ − ω(π̌δ)∥1. Therefore,

ε < Ln(π̄)− Ln(π̌δ) ≤ ∥π̄ − ω(π̌δ)∥1 − Ln(π̌δ) = ∥π̄ − ω(π̌δ)∥1 − ∥π̌ − ω(π̌δ)∥1.

Further, it is straightforward to verify that

∥π̄ − ω(π̌δ)∥1 − ∥π̌δ − ω(π̌δ)∥1 ≤ ∥π̄ − π̌δ∥1.

Thus, ε ≤ ∥π̄ − π̌δ∥1. Letting δ −→ 0 implies ∥π̄ − π̌δ∥1 −→ 0, which yields a contradiction. We

conclude that for every ε > 0, there exists δ > 0 such that Ln(π̄) − Ln(π) < ε for all π ∈ N(δ),

and thus Ln(π) is lower semicontinuous. □

Lemma 4. There exists L(π) : Π −→ R such that (i) L(π) <∞ and |Ln(π)− L(π)| −→ 0 for all

π ∈ Π, (ii) L(π0) = 0, and (iii) L(π0) < L(π) for every π ∈ Π such that π ̸= π0 if and only if

Assumption 2 holds.

Proof. The proof proceeds in two steps. In Step 1, we show the following supporting result: For

any (a, j),

limn→∞ωaj(π) =
1

Pr(r ∈ Ra(π))

∑
b∈A

π0bj · Pr(r ∈ Ra(π), r ∈ Rb(π
0)), (A.17)

where Ra(π) is defined in (2.5). In Step 2, we prove there exists a function L(π) such that
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statements (i), (ii) and (iii) hold. Step 1. Pick any (a, j). Note that xi = a holds in (2.4) holds if

and only if ri ∈ Ra(π). For each (a, j), we can then write ωaj as

ωaj(π) = n · 1
n
· ωaj(π) =

n∑n
i=1 I{ri ∈ Ra(π)}

 1

n

∑
i∈{i|ri∈Ra(π)}

yij

 . (A.18)

Consider the first term on the right-hand side of (A.18). By Assumption 1, letting n −→∞ yields

n∑n
i=1 I{ri ∈ Ra(π)}

=
1

Pr(r ∈ Ra(π))
. (A.19)

For the second term on the right-hand side of (A.18), we have

lim
n→∞

1

n

∑
i∈{i|ri∈Ra(π)}

yij = lim
n→∞

1

n

n∑
i=1

I{ξi = j, ri ∈ Ra(π)},

= Pr(ξ = j, r ∈ Ra(π)),

=
∑
b∈A

Pr(ξ = j, r ∈ Ra(π)|r ∈ Rb(π
0)) · Pr(r ∈ Rb(π

0)).

The first equality above follows because yij = I{ξi = j}, by definition. The second equality follows

from the strong law of large numbers. The third equality follows from the law of total probability.

Next, note that by Assumption 1, the events {ξ = j} and {r ∈ Ra(π)} are conditionally independent

given {r ∈ Rb(π
0)}. Therefore,

Pr(ξ = j, r ∈ Ra(π)|r ∈ Rb(π
0)) = Pr(ξ = j|r ∈ Rb(π

0)) · Pr(r ∈ Ra(π)|r ∈ Rb(π
0)),

= π0bj · Pr(r ∈ Ra(π)|r ∈ Rb(π
0)),
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where the second equality follows by definition of π0. It follows that

lim
n→∞

1

n

∑
i∈{i|ri∈Ra(π)}

yij =
∑
b∈A

π0bj · Pr(r ∈ Ra(π)|r ∈ Rb(π
0)) · Pr(r ∈ Rb(π

0)),

=
∑
b∈A

π0bj · Pr(r ∈ Ra(π), r ∈ Rb(π
0)). (A.20)

Next, combining (A.18), (A.19), and (A.20) yields

lim
n→∞

ωaj(π) =
1

Pr(r ∈ Ra(π))

∑
b∈A

π0bj · Pr(r ∈ Ra(π), r ∈ Rb(π
0)),

as desired. Step 2. Define L(π) =
∑

a∈A
∑

j∈J |πaj − limn→∞ ωaj(π)|. We prove (i), (ii) and (iii)

in order. (i). Note by continuity of the absolute value function, limn→∞ |πaj − ωaj(π)| = |πaj −

limn→∞ ωaj(π)| for all (a, j) and π ∈ Π. It follows by definition of L(π) that |Ln(π)−L(π)| −→ 0.

Further, L(π0) <∞ follows by definition of L(π) and because limn→∞ ωaj(π) <∞ by Step 1. (ii).

By definition of L(π), to show that L(π0) = 0, it suffices to show that π0aj = limn→∞ ωaj(π
0) for

all (a, j). Pick any (a, j), and note

π0aj =
1

Pr(r ∈ Ra(π0))
· π0aj · Pr(r ∈ Ra(π

0)),

=
1

Pr(r ∈ Ra(π0))

∑
b∈A

π0bj · Pr(r ∈ Ra(π
0), r ∈ Rb(π

0)),

= lim
n→∞

ωaj(π
0),

where the first equality follows by multiplying and dividing by Pr(r ∈ Ra(π
0)), the second equality

follows because Pr(r ∈ Ra(π
0), r ∈ Rb(π

0)) = 0 for all b ̸= a by continuity of f(r), and the third

equality follows from Step 1. Therefore, L(π0) = 0. (iii). Next, we establish that L(π) > 0 for all

π ̸= π0 if and only if Assumption 2 holds. First, let Assumption 2 hold. Pick any π̄ ̸= π0, and
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suppose by way of contradiction that L(π̄) = 0. It follows that for all (a, j),

π̄aj = lim
n→∞

ωaj(π̄),

=
1

Pr(r ∈ Ra(π̄))

∑
b∈A

π0bj · Pr(r ∈ Ra(π̄), r ∈ Rb(π
0)),

=
∑
b∈A

π0bj · Pr(r ∈ Rb(π
0)|r ∈ Ra(π̄)),

where the first line follows because L(π̄) = 0, the second line follows from Step 1, and the third

line follows by the probability chain rule. However, by Assumption 2, there exists an (a, j) such

that π̄aj ̸=
∑

b∈A π
0
bj ·Pr(r ∈ Rb(π

0)|r ∈ Ra(π̄)), which yields a contradiction. Therefore, L(π) > 0

for all π ̸= π0. Conversely, if Assumption 2 does not hold, then by parallel argument to the above,

there exists π̌ ∈ Π where π̌ ̸= π0 such that π̌aj = limn→∞(π̌) for all (a, j). By definition of L(π),

it follows that L(π0) = L(π̌) = 0. □

Proof of Theorem 1. The proof proceeds in two steps. First, we show |Ln(π̂n)−Ln(π
0)| −→ 0.

Second, we show plimn→∞π̂n = π0 if and only if Assumption 2 holds. Step 1. Because Ln(π
0) −→

L(π0) by Lemma 4(i) and L(π0) = 0 by Lemma 4(ii), we have Ln(π
0) −→ 0. Next, note

0 ≤ Ln(π̂n) ≤ Ln(π
0),

where the first and second inequalities follow by definition of Ln(π) and π̂n, respectively. It fol-

lows that Ln(π̂n) −→ 0. Therefore, |Ln(π̂n) − Ln(π
0)| −→ 0. Step 2. Because Ln(π) is lower

semicontinuous by Lemma 3, |Ln(π̂n) − Ln(π
0)| −→ 0 by Step 1, and Π is compact, by Theorem

5.14 of Van der Vaart (2000), plimn→∞π̂n ∈ argminπ∈ΠL(π). Next, suppose Assumption 2 holds.

Then by Lemma 4, argminπ∈ΠL(π) = π0, which implies plimn→∞π̂n = π0. If Assumption 2 does
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not hold, then by Lemma 4(iii), there exists π̃ ̸= π0 such that L(π̃) = L(π0) = 0, in which case

plimn→∞π̂n ̸= π0. □

Proof of Proposition 1. We prove statements (i), (ii) and (iii) in order. Part (i). To show

that the minimizer of PA-C also minimizes the proxy loss function Zn(π), it suffices to show that

solving PA-C and minimizing Zn(π) are equivalent problems in the following sense: (a) For any

(π,x, z) that is feasible for PA-C, π ∈ Π; (b) For any π ∈ Π, there exists (x, z) such that (π,x, z) is

feasible to PA-C; and (c) for any (π,x, z) feasible for PA-C, Zn(π) = ZC
n (π,x, z), where ZC

n (π,x, z)

is the objective of PA-C. Statements (a) and (b) follow immediately by the construction of PA-C

and the proxy loss problem (2.8); it remains to prove (c). Let π be fixed in PA-C, and let (x, z) be

a solution to the resulting subproblem. Next, note

∑
i∈I

(πaj − yij)xia =
∑

i∈{i|xi=a}

(πaj − yij),

= (πaj − ωaj)|{i|xi = a}|,

= (πaj − ωaj)ηaj , (A.21)

where the first equality follows because xia = 1 if and only if i ∈ {i|xi = a}, the second equality

follows from the definition of ω, and the third equality follows by definition of η. Then we have

ZC
n (π,x, z) =

∑
a∈A

∑
j∈J

∣∣∣ 1
n

∑
i∈I

(πaj − yij)xia
∣∣∣,

=
1

n

∑
a∈A

∑
j∈J

∣∣∣(πaj − ωaj)ηaj

∣∣∣,
= Zn(π),
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where the first equality follows from (2.10a)−(2.10c), the second equality follows from (A.21), the

third equality follows by definition of the element-wise norm ∥ · ∥1, and the final equality follows by

definition of Zn(π). Therefore, Zn(π) = ZC
n (π,x, z) for any (π,x, z) feasible for PA-C. It follows

that π∗
n ∈ argminπ∈ΠZn(π). Part (ii). The proof of Theorem 1 establishes that Ln(π̂n) −→ 0.

Note Ln(π̂n) ≤ Ln(π̄n), because π̂n is a minimizer of Ln(π) by definition. Therefore, by definition

of Ln(π), it suffices to show that for all (a, j) and ε > 0,

Pr

 1

|Ia(π̄n)|
∑

i∈Ia(π̄n)

yij − (π̄aj)n >
ε

md

 −→ 0, (A.22)

where Ia(π) = {i ∈ I|ri ∈ Ra(π)}. In the remainder of the proof, we suppress dependence of π̄n

on n for conciseness. Next,

Pr

 1

|Ia(π̄)|
∑

i∈Ia(π̄)

yij − π̄aj >
ε

md

 = Pr

 ∑
i∈Ia(π̄)

yij − π̄aj |Ia(π̄)| >
ε|Ia(π̄)|
md

 ,

≤ Pr

∑
b∈A

∑
j∈J

∣∣∣ ∑
i∈Ia(π̄)

yij − π̄aj |Ia(π̄)|
∣∣∣ > ε|Ia(π̄)|

md

 ,

= Pr

(
nZn(π̄) >

ε|Ia(π̄)|
md

)
,

≤ Pr

(
nZn(π

0) >
ε|Ia(π̄)|
md

)
,

where the first line follows by multiplying both sides of the inequality by |Ia(π̄)|, the second line

follows by non-negativity of the absolute value and summing over b ∈ A and j ∈ J , the third

line follows by definition of Zn(π), and the fourth line follows because π̄ ∈ argminπ∈Π̄Zn(π), by
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definition. We can now write

Pr

(
nZn(π

0) >
ε|Ia(π̄)|
md

)
= Pr

∑
b∈A

∑
j∈J

∣∣∣ ∑
i∈Ib(π0)

yij − π0bj |Ib(π0)|
∣∣∣ > ε|Ia(π̄)|

md


≤
∑
b∈A

∑
j∈J

Pr

∣∣∣ ∑
i∈Ib(π0)

yij − π0bj |Ib(π0)|
∣∣∣ > ε|Ia(π̄)|

m2d2


≤
∑
b∈A

∑
j∈J

n∑
k=0

Pr

∣∣∣ ∑
i∈Ib(π0)

yij − π0bj |Ib(π0)|
∣∣∣ > εk

m2d2

∣∣∣∣∣|Ia(π̄)| = k


× Pr(|Ia(π̄)| = k)

≤ 2
∑
b∈A

∑
j∈J

n∑
k=0

exp

(
−
(

εk

m2d2

)2

· 1

|Ib(π0)|

)
Pr(|Ia(π̄)| = k)

≤ 2d
∑
b∈A

n∑
k=0

exp

(
−
(

εk

m2d2

)2

· 1
n

)
Pr(|Ia(π̄)| = k),

where the first line follows by definition of Zn(π), the second line follows from the union bound,

the third line follows by conditioning on |Ia(π̄)|, the fourth line follows by Hoeffding’s inequality,

and the fifth line follows by summing over j ∈ J and because n ≥ |Ib(π0)| for all b ∈ A. Thus, to

prove that (A.22) holds, it remains to show that for each a ∈ A,

n∑
k=0

exp

(
−
(

εk

m2d2

)2

· 1
n

)
Pr(Ia(π̄) = k) −→ 0.

Next, using the fact that Pr(|Ia(π̄)| = k), k = 1, . . . , n are binomial probabilities with parameter

Pr(r ∈ Ra(π̄)), and Pr(r ∈ Ra(π)) > 0 for all a ∈ A and π ∈ Π (Assumption 1), it can be

shown with some effort that for any δ ∈ (0, 1), there exists n > 0 and K ∈ [0, n] such that

Pr(|Ia(π)| ≤ K) ≤ δ for any π ∈ Π and exp(−( εk
m2d2

)2 · 1n) < δ for all k ≥ K. It follows that

K∑
k=0

Pr(|Ia(π̄)| = k) = Pr(|Ia(π̄)| ≤ K) ≤ δ (A.23)
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and

n∑
k=K

δ · Pr(|Ia(π̄)| = k) = δ
n∑

k=K

Pr(|Ia(π̄)| = k) ≤ δ. (A.24)

Then we can write

n∑
k=0

exp

(
−
(

εk

m2d2

)2

· 1
n

)
Pr(|Ia(π̄)| = k) ≤

K−1∑
k=0

Pr(|Ia(π̄)| = k) +

n∑
k=K

δ · Pr(|Ia(π̄)| = k)

≤ 2δ,

where the first term after the first inequality follows because exp(−( εk
m2d2

)2 · 1n) ≤ 1 for all k ∈

[0,K − 1] and n ≥ 0, and the second term follows because exp(−( εk
m2d2

)2 · 1n) ≤ δ for all k ≥ K.

Letting δ −→ 0 yields the result. Part (iii). Because |Ln(π
∗
n)− Ln(π̂n)| −→ 0 by part (ii) above,

and |Ln(π̂n)−Ln(π
0)| −→ 0 by Theorem 1, |Ln(π

∗
n)−Ln(π

0)| −→ 0. The remainder of the proof

follows by parallel argument to the proof of Theorem 1, with π∗
n in place of π̂n. □

A.5.2 Proof of Theorem 2

We first present two helpful supporting results in Lemmas 5 and 6. Lemma 5 is a concentration

inequality that bounds the distance between an empirical mass function obtained from sampling

from a discrete distribution and the discrete distribution itself. In Lemma 6, we define a Bernoulli

random variable ea(π
0,π), whose value depends on the realization of r, and is equal to 1 if the

agent’s optimal action is a under the true parameter π0 but not under an alternative model π.

Intuitively, the event {ea(π0,π) = 1} represents a “mis-classification” of the agent action by the

model π. Lemma 6 develops a bound on the probability that ea(π
0,π) is positive (i.e., equal to

1), which is the key result that we use to obtain the bound in Theorem 2.
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Lemma 5. Let ξ1, ξ2, . . ., ξn be i.i.d. discrete random variables with support J = {1, 2, . . . , d}

and mass function λj = Pr(ξ = j) for j ∈ J . Define fj = 1
n

∑n
i=1 I{ξi = j} to be the empirical

probability. Then

Pr

(
sup
j∈J
|fj − λj | > ε

)
≤ 2 exp(−nε2).

Proof. For convenience, let Λj =
∑j

k=1 λk be the cumulative distribution and let Fj =
∑j

k=1 fk

be the empirical cumulative distribution. With some effort, it can be shown that supj∈J |fj−λj | ≤

2 supj∈J |Fj − Λj |. It follows that for any ε > 0,

Pr

(
sup
j∈J
|fj − λj | > ε

)
≤ Pr

(
2 sup

j∈J
|Fj − Λj | > ε

)
= Pr

(
sup
j∈J
|Fj − Λj | > ε/2

)
≤ 2 exp(−nε2),

where the final inequality is the Dvoretzky−Kiefer−Wolfowitz inequality (Massart, 1990). □

Lemma 6. Let Assumption 3 hold. Let ea(π
0,π) be a Bernoulli random variable equal to 1 if

the events {r ∈ Ra(π
0)} and {r /∈ Ra(π)} both occur. Then there exists π̄ ∈ Π, and constants

δ1 ∈ (0, 1) and δ2 ∈ (0, 1) such that

Pr(ea(π
0,π) > 0) ≤ 4m(1− δ1(1− δ2))n (A.25)

for all a ∈ A.

Proof. The proof proceeds in four steps. In the first step, we construct π̄. In the second and

third steps, we prove two useful inequalities. In the fourth step, we prove the inequality (A.25) in

the lemma statement. Step 1. By Assumption 3, for each a ∈ A, there exists a cluster s(a) ∈ S

such that Bs(a) ∈ Ra(π
0). Pick s(a) accordingly for each a ∈ A, and set was = 1 for s = s(a)

and was = 0 for s ∈ S \ s(a). Then let π̄a =
∑

s∈S vswas, for a ∈ A. Note that by construction,

π̄a = vs(a) for a ∈ A. Step 2. First, we define the following useful quantity, which will be used
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throughout the proof of Theorem 2:

ua(r,π) = inf
b∈A\a

∑
j∈J

(πaj − πbj)rj + cb − ca

 .

Intuitively, ua(r,π) represents the difference in agent utility between action a and the highest-

utility action other than a. Based on this definition, note that an action a is optimal if and only

if ua(r,π) ≥ 0. In this step, we show that there exists δ1 ∈ (0, 1) and δ2 ∈ (0, 1) such that

Pr(r ∈ Bs) ≥ δ1 for all s ∈ S, and

∫
Ra(π0)

exp

(
−k
(
ua(r,π

0)

2r̄d

)2
)
f(r)dr ≤ δ2 (A.26)

for all k ≥ 0 and a ∈ A. Recall that r̄ = supr∈R ∥r∥0 < ∞; that is, r̄ is an upperbound on the

largest agent payment rj . First, for the existence of δ1 ∈ (0, 1), it follows from the continuity of f(r)

on R (Assumption 1) and Bs ⊆ R that Pr(r ∈ Bs) > 0 for all s ∈ S. Letting δ1 = infs∈S Pr(r ∈ Bs)

implies Pr(r ∈ Bs) ≥ δ1 for all s ∈ S, as desired. Next, for the existence of δ2 ∈ (0, 1) such that

(A.26) holds, first consider the case where k = 0. Then

∫
Ra(π0)

exp

(
−0
(
ua(r,π

0)

2r̄d

)2
)
f(r)dr =

∫
Ra(π0)

f(r)dr < 1,

for all a ∈ A, where the final inequality follows because Ra(π
0) ⊂ R for all a ∈ A (Assumption 1).

It follows there exists δ̃ ∈ (0, 1) such that (A.26) holds for k = 0 and all a ∈ A. Now consider the

case where k ≥ 1. Observe that for all r such that ua(r,π
0) > 0, exp(−(ua(r,π0)/(2r̄d))2) <

1. Therefore, for each a ∈ A there exists δ̃a ∈ (0, 1) such that if ua(r,π
0) > 0, then 0 <

exp(−(ua(r,π0)/(2r̄d))2) ≤ δ̃a < 1. Next, exponentiating and integrating both sides of the preced-
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ing inequality yields

∫
Ra(π0)

exp

(
−k
(
ua(r,π

0)

2r̄d

)2
)
f(r)dr ≤

∫
Ra(π0)

(δ̃a)
kf(r)dr ≤ (δ̃a)

k.

The result follows from setting δ2 = sup{δ̃, supa∈A δ̃a}. Step 3. In this step, we show that for π̄ as

constructed in step 1 and any a ∈ A,

Pr

(
sup
j∈J
|π̄bj − π0bj | >

ua(r,π
0)

2r̄d

)
≤ 2(1− δ1(1− δ2))n

for all b ∈ A. For convenience, let Is = {i ∈ I|ri ∈ Bs}. Then for each b ∈ A,

Pr

(
sup
j∈J
|π̄bj − π0bj | >

ua(r,π
0)

2r̄d

)
= Pr

sup
j∈J

∣∣∣∣ 1

|Is(a)|
∑

i∈Is(a)

yij − π0bj
∣∣∣∣ > ua(r,π

0)

2r̄d


=

n∑
k=0

Pr

sup
j∈J

∣∣∣∣ 1

|Is(a)|
∑

i∈Is(a)

yij − π0bj
∣∣∣∣ > ua(r,π

0)

2r̄d

∣∣∣∣|Is(a)| = k

Pr(|Is(a)| = k)

=

n∑
k=0

∫
R
Pr

sup
j∈J

∣∣∣∣1k ∑
i∈Is(a)

yij − π0bj
∣∣∣∣ > ua(r,π

0)

2r̄d

∣∣∣∣|Is(a)| = k

 f(r)dr

Pr(|Is(a)| = k)

≤ 2
n∑

k=0

[∫
Ra(π0)

exp

(
−k
(
ua(r,π

0)

2r̄d

)2
)
f(r)dr

]
Pr(|Is(a)| = k)

≤ 2
n∑

k=0

δ̃kPr(|Is(a)| = k),

The first line follows because π̄aj = vs(a),j = (1/|Is(a)|)
∑

i∈Is(a) y
i
j for all (a, j), by construction of

vs (Algorithm 1) and π̄ (Step 1). The second line follows from the total probability rule, because

|Is(a)| is a binomial random variable. The third line follows from conditioning on r and integrating

over R, and because yij for i ∈ |Is(a)| are independent of r. The fourth line follows from Lemma 5,

and because Ra(π
0) ⊆ R. The fifth line follows from Step 2 of the proof. Next, note that |Is| is

the number of observations that are contained in the ball Bs. Therefore, |Is| is a binomial random
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variable with parameter λs = Pr(r ∈ Bs). We can now write

2
n∑

k=0

δk2 · Pr(|Is(a)| = k) = 2
n∑

k=0

(δ2 · λs(a))k
n!

k!(n− k)!
(1− λs(a))n−k

= 2(1− λs(a)(1− δ2))n

≤ 2(1− δ1(1− δ2))n,

where the first equality follows from writing the binomial probabilities Pr(|Is(a)| = k) explicitly and

grouping terms raised to the kth power, the second equality follows immediately from the binomial

theorem, and the third inequality follows from Step 2. The result follows. Step 4. We now prove

inequality (A.25). Note that by definition, ea(π
0, π̄) > 0 implies r /∈ Ra(π̄), which implies there

exists b ∈ A such that
∑

j∈J(π̄bj − π̄aj)rj > cb − ca. Therefore, by the union bound,

Pr(ea(π
0, π̄) > 0) ≤

∑
b∈A\a

Pr

∑
j∈J

(π̄bj − π̄aj)rj > cb − ca

 .

In the remainder of the proof, we bound Pr
(∑

j∈J(π̄bj − π̄aj)rj > cb − ca
)
for each b ∈ A \ a. For

each b ∈ A \ a, we have

Pr

∑
j∈J

(π̄bj − π̄aj)rj > cb − ca

 ,

≤ Pr

∑
j∈J

(π̄bj − π0bj)rj −
∑
j∈J

(π̄aj − π̄0aj)rj > ua(r,π
0)

 ,

≤ Pr

∑
j∈J

(π̄bj − π0bj)rj >
ua(r,π

0)

2

 ∪
∑

j∈J
(π̄0aj − π̄aj)rj >

ua(r,π
0)

2


 ,

149



≤ Pr

({
sup
j∈J
|π̄bj − π0bj | >

ua(r,π
0)

2r̄d

}
∪

{
sup
j∈J
|π0aj − π̄aj | >

ua(r,π
0)

2r̄d

})
,

≤ Pr

(
sup
j∈J
|π̄bj − π0bj | >

ua(r,π
0)

2r̄d

)
+ Pr

(
sup
j∈J
|π0aj − π̄aj | >

ua(r,π
0)

2r̄d

)
,

≤ 4(1− δ1(1− δ2))n.

The first inequality follows because ua(r,π
0) ≤

∑
j∈J(π

0
aj −π0bj)rj + cb− ca for all b ∈ A, by defini-

tion of ua(r,π
0). The second inequality follows because

∑
j∈J(πbj − π0bj)rj −

∑
j∈J(π̄aj − π0aj)rj >

ua(r,π
0) implies at least one of

∑
j∈J(π̄bj−π0bj)rj > ua(r,π

0)/2 or
∑

j∈J(π
0
aj−π̄aj)rj > ua(r,π

0)/2

holds. The third inequality follows because |J | supj∈J{(π0
aj− π̄aj)rj} ≥

∑
j∈J(π

0
aj− π̄aj)rj , |J | = d,

and r̄ ≥ rj for all j ∈ J . The fourth inequality follows from the union bound. The fifth inequality

follows from Step 3. The result follows by summing the final inequality over b ∈ A. □

Proof of Theorem 2. We prove the result by constructing a sequence of feasible solutions π̄n

to PA-D, and bounding the objective function under π̄n. For conciseness we suppress dependence

of π̄n and π̃n on n. By Assumption 3, for each a ∈ A, there exists a cluster s(a) ∈ S such that

Bs(a) ∈ Ra(π
0). Pick s(a) accordingly for each a ∈ A. Set w̄as = 1 for s = s(a) and w̄as = 0 for

all s ∈ S \ s(a). Fix w = w̄ in PA-D and let (z̄, x̄, ϕ̄) be the solution of the resulting subproblem.

Then (w̄, z̄, x̄, ϕ̄) is a feasible solution to PA-D, and the associated estimate is given by

π̄a =
∑
s∈S

vsw̄as = vs(a), a ∈ A.
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Because π̄ is attained at a feasible solution to PA-D, Zn(π̃) ≤ Zn(π̄). It follows that

Pr(|Zn(π̂)− Zn(π̃)| > ε) ≤ Pr(Zn(π̃) > ε) ≤ Pr(Zn(π̄) > ε),

for any ε > 0. Therefore, it suffices to show that Pr(Zn(π̄) > ε) = O(n2κn) for some κ ∈ (0, 1).

Because Zn(π) =
∑

a∈A
∑

j∈J
|Ia(π)|

n |πaj−ωaj(π̄)| by definition, we shall bound Zn(π̄) by bounding

|Ia(π)|
n |π̄aj − ωaj(π̄)| for each (a, j). Next, pick any (a, j). Then

|Ia(π̄)|
n

|π̄aj − ωaj(π̄)| =
|Ia(π̄)|
n

∣∣π̄aj − π0aj + π0aj − ωaj(π
0) + ωaj(π

0)− ωaj(π̄)
∣∣ ,

≤ |Ia(π̄)|
n

(∣∣π̄aj − π0aj∣∣+ ∣∣π0aj − ωaj(π
0)
∣∣+ ∣∣ωaj(π

0)− ωaj(π̄)
∣∣) ,

≤ |π̄aj − π0aj |+ |π0aj − ωaj(π
0)|+ |ωaj(π

0)− ωaj(π̄)|, (A.27)

where the second line follows by the triangle inequality, and the third line follows because |Ia(π)| ≤

n for any π ∈ Π. The remainder of the proof proceeds in three steps. In each step, we bound one of

the terms in the right-hand side of (A.27), from left to right. Step 1. For the first term, |π̄aj −π0aj |,

note

Pr(|π̄aj − π0aj | > ε) =
n∑

k=0

Pr(|π̄aj − π0aj | > ε||Is(a)| = k)Pr(|Is(a)| = k)

=
n∑

k=0

Pr

∣∣∣∣ 1

|Is(a)|
∑

i∈Is(a)

yij − π0aj
∣∣∣∣ > ε

∣∣∣∣∣|Is(a)| = k

Pr(|Is(a)| = k)

≤
n∑

k=0

2 exp(−ε2k)Pr(|Is(a)| = k).

The first line follows by conditioning on |Is(a)| = k. The second line follows because π̄aj = vs(a),j =

(1/|Is(a)|)
∑

i∈Is(a) y
i
j by the construction of π̄aj above and the definition of vs(a) (Algorithm 1). For

the third line, note that (1/|Is(a)|)
∑

i∈Is(a) y
i
j is the empirical mass function for the independent
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variables ξi for all i ∈ Is(a), generated by π0. The inequality, therefore, follows by an application

of Lemma 5. Next, because the ri are i.i.d. (Assumption 1), |Is(a)| is a binomial random variable

with parameter Pr(r ∈ Bs(a)). For conciseness, define λs(a) = Pr(r ∈ Bs(a)). We now have

n∑
k=0

(
2 exp(−ε2k)

)
Pr(|Is(a)| = k) =

n∑
k=0

(
2 exp(−ε2k)

) n!

k!(n− k)!
λks(a)(1− λs(a))

n−k

= 2

n∑
k=0

(
λs(a) exp(−ε2)

)k n!

k!(n− k)!
(1− λs(a))n−k,

where the first equality follows from writing the binomial probabilities Pr(|Is(a)| = k) explicitly,

and the second equality follows from grouping terms raised to the kth power. Finally, we have

2

n∑
k=0

(
λs(a) exp(−ε2)

)k n!

k!(n− k)!
(1− λs(a))n−k = 2(1− λs(a)(1− exp(−ε2)))n

≤ 2(1− δ1(1− exp(−ε2)))n,

for some δ1 ∈ (0, 1), where the equality follows by applying the binomial theorem, and the inequality

follows by letting δ1 = infs∈S λs(a). Therefore,

Pr(|(π̄aj − π0aj | > ε) ≤ 2(1− δ1(1− exp(−ε2)))n. (A.28)

Step 2. Next, we bound the second term |π0aj − ωaj(π
0)| in (A.27). Because

ωaj(π
0) = (1/|Ia(π0)|)

∑
i∈Ia(π0)

yij ,

it follows immediately from Lemma 5 that

Pr(|π0aj − ωaj(π
0)| > ε) ≤ 2 exp(−nε2). (A.29)
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Step 3. Next, we bound the third term |ωaj(π
0)−ωaj(π̄)| in (A.27). For convenience, let βaj(π) be

a Bernoulli random variable equal to 1 if the events {i ∈ Ia(π)} and {yj = 1} both occur, and let

βiaj(π) be the realized value of βaj(π) in the ith observation. Using the definition of βiaj , it follows

that

|ωaj(π
0)− ωaj(π̄)| =

∣∣∣∣ 1

|Ia(π0)|
∑

i∈Ia(π0)

yij −
1

|Ia(π̄)|
∑

i∈Ia(π̄)

yij

∣∣∣∣
=

∣∣∣∣ 1

|Ia(π0)|
∑
i∈I

βiaj(π
0)− 1

|Ia(π̄)|
∑
i∈I

βiaj(π̄)

∣∣∣∣.
Next, we have

∣∣∣∣ 1

|Ia(π0)|
∑
i∈I

βiaj(π
0)− 1

|Ia(π̄)|
∑
i∈I

βiaj(π̄)

∣∣∣∣ (A.30)

≤
∣∣∣∣max

{
1

|Ia(π0)|
,

1

|Ia(π̄)|

}∑
i∈I

βiaj(π
0)− 1

|Ia(π̄)|
∑
i∈I

βiaj(π̄)

∣∣∣∣
≤
∣∣∣∣ 1

|Ia(π̄)|
∑
i∈I

(βiaj(π
0)− βiaj(π̄)) +

∣∣∣∣ 1

|Ia(π̄)|
− 1

|Ia(π0)|

∣∣∣∣∑
i∈I

βiaj(π̄)

∣∣∣∣
≤
∣∣∣∣ 1

|Ia(π̄)|
∑
i∈I

(βiaj(π
0)− βiaj(π̄))

∣∣∣∣+ ∣∣∣∣ 1

|Ia(π̄)|
− 1

|Ia(π0)|

∣∣∣∣∑
i∈I

βiaj(π̄), (A.31)

where the first two lines are consequences of the max{·} operator, and the third line follows from

the triangle inequality. We shall bound each of the two terms on the right-hand side of (A.30)

separately. For the first term on the right-hand side of (A.30), observe that by definition of

βiaj(π),
∑

j∈J β
i
aj(π) = 1 if and only if i ∈ Ia(π). Recall from Lemma 6 that ea(π

0, π̄) is a

Bernoulli variable equal to 1 if the events {r ∈ Ra(π
0)} and {r /∈ Ra(π̄)} both occur. Further,

note βiaj(π
0)− βiaj(π̄) > 0 implies ri /∈ Ra(π̄), which implies eia(π

0, π̄) = 1. Therefore,

∣∣∣∣ 1

|Ia(π̄)|
∑
i∈I

(βiaj(π
0)− βiaj(π̄))

∣∣∣∣ ≤ 1

|Ia(π̄)|
∑
i∈I

eia(π
0, π̄).

153



Next, for any ε ∈ (0, 1),

Pr

(
1

|Ia(π̄)|
∑
i∈I

eia(π
0, π̄) > ε

)
≤ Pr

(∑
i∈I

eia(π
0, π̄) > ε

)

≤
∑
i∈I

Pr
(
eia(π

0, π̄) > ε
)

≤ nPr
(
ea(π

0, π̄) > ε
)
,

where the first inequality follows because |Ia(π̄)| ≥ 1 by Assumption 3 and the construction of π̄, the

second inequality follows from applying the union bound, and the third inequality follows because

the eia are i.i.d. (Assumption 1). Next, by Lemma 6, Pr
(
ea(π

0, π̄) > ε
)
≤ 4m(1 − δ1(1 − δ2))n.

Therefore, for any ε ∈ (0, 1),

Pr

(∣∣∣∣ 1

|Ia(π̄)|
∑
i∈I

(βiaj(π
0)− βiaj(π̄))

∣∣∣∣ > ε

)
≤ 4mn(1− δ1(1− δ2))n. (A.32)

Next, we bound the second term in (A.30). For any ε ∈ (0, 1), note

Pr

(∣∣∣∣ 1

|Ia(π̄)|
− 1

|Ia(π0)|

∣∣∣∣∑
i∈I

βiaj(π̄) > ε

)
≤ nPr

(∣∣∣∣ 1

|Ia(π̄)|
− 1

|Ia(π0)|

∣∣∣∣ > ε

)
,

which follows from the union bound and because βiaj(π̄) ≤ 1 for all i ∈ I. Next, note that

∣∣∣∣ 1

|Ia(π̄)|
− 1

|Ia(π0)|

∣∣∣∣ ≤ ||Ia(π0)| − |Ia(π̄)||,

which follows because |Ia(π0)| ≥ 1 and |Ia(π̄)| ≥ 1 by Assumption 3 and by construction of π̄.
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Therefore,

n · Pr
(∣∣∣∣ 1

|Ia(π̄)|
− 1

|Ia(π0)|

∣∣∣∣ > ε

)
≤ n · Pr

(
||Ia(π0)| − |Ia(π̄)|| > ε

)
= n · Pr

∣∣∣∣∑
i∈I

∑
j∈J

(
βiaj(π

0)− βiaj(π̄)
) ∣∣∣∣ > ε


≤ n · Pr

(∑
i∈I

eia(π
0, π̄) > ε

)

≤ n2 · Pr
(
ea(π

0, π̄) > ε
)

≤ 4mn2(1− δ1(1− δ2))n, (A.33)

where the second line follows because |Ia(π)| =
∑

i∈I
∑

j∈J β
i
aj(π) by definition of βiaj(π), the third

line follows because
∑

j∈J(β
i
aj(π

0) − βiaj(π̄)) ≤ eia(π
0, π̄) for all i ∈ I, the fourth line follows by

applying the union bound and noting that the eia(π
0, π̄) are i.i.d. (Assumption 1), and the fifth

line follows from Lemma 6. Therefore, combining (A.32) and (A.33) produces the following bound

on the third term in (A.27) for any ε ∈ (0, 1):

Pr
(
|ωaj(π

0)− ωaj(π̄)| > ε
)
≤ 4mn(n+ 1)(1− δ1(1− δ2))n. (A.34)

Combining (A.27), (A.28), (A.29) and (A.34) and applying the union bound yields

Pr

(
|Ia(π̄)|
n
|π̄aj − ωaj(π̄)| > ε

)
≤ Pr

(
|π̄aj − π0aj | > ε/3

)
+ Pr

(
|π0aj − ωaj(π

0)| > ε/3
)
+ Pr

(
|ωaj(π

0)− ωaj(π̄)| > ε/3
)

≤ 2
(
exp(−n(ε/3)2) + (1− δ1(1− exp(−(ε/3)2)))n + 2mn(n+ 1)(1− δ1(1− δ2))n

)
. (A.35)

for any ε ∈ (0, 1) and each a ∈ A and j ∈ J . It follows that for any ε ∈ (0, 1),
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Pr(Zn(π̄) > ε) = Pr

∑
a∈A

∑
j∈J

|Ia(π̄)|
n
|π̄aj − ωaj(π̄)| > ε

 (A.36)

≤
∑
a∈A

∑
j∈J

Pr
(
|π̄aj − ωaj(π̄)| >

ε

md

)

≤ 2md(exp(−n(ε/(3md))2) +
(
1− δ1(1− exp(−(ε/(3md))2))

)n
(A.37)

+ 2mn(n+ 1)(1− δ1(1− δ2))n)). (A.38)

where the first line follows by definition of Zn(π), the second line follows from applying the union

bound over all a ∈ A and j ∈ J and noting m = |A| and d = |J |, and the third line follows from

(A.35). Note that the third term in (A.38) is dominant, which implies Pr(Zn(π̄) > ε) ≤ O(n2κn),

where κ = 1− δ1(1− δ2). Lastly, note κ ∈ (0, 1) because δ1 ∈ (0, 1) and δ2 ∈ (0, 1). □

A.5.3 Proofs of Proposition 2, Theorem 3, and Theorem 4

Proof of Proposition 2. The proof proceeds in two steps. First, we show Zn(π̃n) −→ 0.

Second, we prove the main result. Step 1. Note that for any π̄ attained at a feasible solution to

PA-D(S), 0 ≤ Zn(π̃n) ≤ Zn(π̄). Therefore, we prove the result by constructing a feasible solution

(π̄, x̄, w̄, z̄, ϕ̄) for each n ≥ 0 and showing Zn(π̄) −→ 0. Because Zn(π
0) −→ 0 by Lemma 4,

it suffices to show π̄ −→ π0. By Assumption 3, for each a ∈ A there exists s ∈ S such that

Bs ⊆ Ra(π
0). For each n ≥ 0, let (π̄, x̄, w̄, z̄, ϕ̄) be constructed as follows: for each a ∈ A, set

w̄as = 1 for s = s(a) and w̄as = 0 for all s ∈ S \ s(a). Fix w = w̄ in PA-D and let (π̄, x̄, z̄, ϕ̄) be the
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solution of the resulting subproblem. Then

Pr

(
sup
j∈J
|π̄aj − π0aj | > ε

)
≤ Pr

(
sup
j∈J
|(vs(a)j − π0aj | > ε

)

≤ Pr

sup
j∈J

∣∣∣ 1

|Is(a)|
∑

i∈Is(a)

yij − π0aj
∣∣∣ > ε


≤ 2 exp(−ε2|Is(a)|),

where the first line follows from constraint (2.13i), the second line follows by definition of vs(a), and

the third line follows from Lemma 5. Because f(r) is continuous on R (Assumption 1), |Is(a)| −→ ∞

as n −→ ∞ for all a ∈ A. Therefore, π̄n −→ π0, as desired. Step 2. Note 0 ≤ Zn(π
∗
n) ≤ Zn(π̃n)

by defintion of π∗
n. Because Zn(π̃n) −→ 0 by Step 1, it follows that Zn(π

∗
n) −→ 0. Therefore,

|Zn(π
∗
n)− Zn(π̃n)| −→ 0, as desired. □

Proof of Theorem 3. Let w̃ be obtained at an optimal solution to PA-D, and define Ṽ =

{vs ∈ V |
∑

a∈A w̃as = 1}. Let S̃ index the candidate distributions in Ṽ . Let V +
T denote the

candidate distributions at termination of Algorithm 2, with index set S+
T . For conciseness, we

suppress dependence of Ṽ , V +
T , S̃ and S+

T on n. The proof proceeds in two steps. First, we show

|Zn(π̃n) − Zn(π
+
n )| −→ 0. Second, we prove the main result. Step 1. Observe that if Ṽ ⊆ V +

T ,

then Zn(π
+
n ) ≤ Zn(π̃n). By optimality of π̃n with respect to PA-D(S), Zn(π̃n) ≤ Zn(π

+
n ). Thus

|Zn(π̃n) − Zn(π
+
n )| −→ 0 if Ṽ ⊆ V +

T . It therefore suffices to show that for any vs ∈ Ṽ , there

exists vs′ ∈ V +
T such that |vs − vs′ | −→ 0. Suppose otherwise. Then for all n ≥ 0, there exists

vs ∈ Ṽ such that vs ̸= vs′ for all vs′ ∈ V +
T . By the weak law of large numbers, for each s ∈ S

there exists νs ∈ Rd such that vs −→ νs as ns −→ ∞. It follows that for all n ≥ 0, there exists

s ∈ S̃ such that νs ̸= νs
′ for all s′ ∈ S+

T . Note vsj = ψsj/(
∑

j∈J ψsj). Then for all n ≥ 0, there
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exists s ∈ S̃ such that Hα(ψs,ψs′) < 0 and νs ̸= νs′ for all s′ ∈ S+
T . Next, it is straightforward to

verify that because the density function f(r) is continuous on R (Assumption 1), ns −→ ∞ and

ns′ −→ ∞ as n −→ ∞. Hence, Pr(Hα(ψs,ψs′) ≥ 0|νs ̸= νs
′) −→ 1, a contradiction. Therefore,

|Zn(π̃n)− Zn(π
+
n )| −→ 0. Step 2. By Step 1 of the proof of Proposition 2, we have Zn(π̃n) −→ 0.

Because |Zn(π̃n) − Zn(π
+
n )| −→ 0 from the first step of this proof, it follows that Zn(π

+
n ) −→ 0.

Following a parallel argument to the proof of Proposition 1, it can be shown that Zn(π
+
n ) −→ 0

implies |Ln(π
+
n )−Ln(π̂n)| −→ 0. Because |Ln(π̂n)−Ln(π

0)| −→ 0 from the first step of the proof

of Theorem 1, |Ln(π
+
n ) − Ln(π̂n)| −→ 0 implies |Ln(π

+
n ) − Ln(π

0)| −→ 0. The remainder of the

proof follows by a parallel argument to the second step of the proof of Theorem 1, with π+
n in place

of π̂n. □

Proof of Theorem 4. The proof proceeds in two steps. First, we show Pr(T > m) ≤ αmS.

Second, we prove the main result. Step 1. By assumption, for each s ∈ S, there exists a ∈ A such

that Bs ⊆ Ra(π
0). In words, this means that for each ball Bs, every contract r ∈ Bs induces the

same action from the agent. Accordingly, each candidate distribution s ∈ S is mapped to exactly

one action a ∈ A. If there exists an s ∈ S+ such that s is mapped to an action a, we say that the

action a is represented in S+. For each s ∈ S−, let Es be the event that there exists s′(s) ∈ S+

such that Bs ⊆ Ra(π
0) and Bs′ ⊆ Ra(π

0); that is, Es is the event that the action a that s ∈ S−

maps to is already represented in S+. Next, pick an iteration t, and let s∗t be the cluster selected

in the tth iteration of Algorithm 2. Then Es∗t
is the event that the candidate distribution selected

in iteration t is mapped to an action that is already represented in S+. We can now write
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Pr(Es∗t
) ≤ Pr (∪s∈S− {∩s′∈S+{Hα(ψs,ψs′) ≥ 0}, Es})

≤
∑
s∈S−

Pr (∩s′∈S+{Hα(ψs,ψs′) ≥ 0}, Es)

≤
∑
s∈S−

Pr
(
∩s′∈S+{Hα(ψs,ψs′) ≥ 0}

∣∣∣Es

)
Pr(Es)

≤
∑
s∈S−

Pr
(
∩s′∈S+{Hα(ψs,ψs′) ≥ 0}

∣∣∣Es

)
, (A.39)

The first inequality follows by definition of sτ (Algorithm 2) and Es. The second inequality

follows from the union bound, the third inequality follows from conditioning on Es, and the fourth

inequality follows because Pr(Es) ≤ 1 for all s ∈ S. Next, for each s ∈ S, we have

Pr
(
∩s′∈S+ {Hα(ψs,ψs′) ≥ 0}

∣∣∣Es

)
≤ Pr

(
Hα(ψs,ψs′(s)) ≥ 0

∣∣∣Es

)
(A.40)

≤ Pr
(
Hα(ψs,ψs′(s)) ≥ 0

∣∣∣νs = νs′(s)

)
(A.41)

≤ α, (A.42)

where the first inequality follows from dropping the events {Hα(ψs,ψs′) ≥ 0} from the intersection

for all elements in S+ \ s′(s), the second inequality follows because the event νs = νs′(s) implies

the event Es, and the third inequality follows by definition of Hα(ψs, ψs′). By combining (A.39)

and (A.40) and noting |S−| ≤ |S| for all t = 1, . . . , T , it follows that Pr(Es∗t
) ≤ α|S|. Next, note

that the event {T > m} implies {∪m−1
t=0 Es∗t

} by the pigeonhole principle. Therefore, by the union

bound,
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Pr(T > m) ≤ Pr
(
∪m−1
k=0 Es∗t

)
≤

m−1∑
k=0

Pr(Es∗t
)

≤
m−1∑
k=0

α|S|

≤ αm|S|,

as desired. Step 2. Note E[T ] =
∑∞

k=0 Pr(T > k) by definition of the expectation. It follows that

∞∑
k=0

Pr(T > k) =

|S|−1∑
k=0

Pr(T > k)

=
m−1∑
k=0

Pr(T > k) +

|S|−1∑
k=m

Pr(T > k)

≤ m+

|S|−1∑
k=m

Pr(T > k),

where the first equality follows because T is bounded above by |S|, the second equality follows from

separating the summation, and the inequality follows because
∑m−1

k=0 Pr(T > k) ≤ m. Next, note

that the event T > k implies T > m for k = m, . . . , |S| − 1, and thus Pr(T > k) ≤ Pr(T > m) for

k = m, . . . , |S| − 1. Therefore,

m+

|S|−1∑
k=m

Pr(T > k) ≤ m+

|S|−1∑
k=m

Pr(T > m) = m+ Pr(T > m)(|S| −m) ≤ m[1 + α · |S| · (|S| −m)],

where the final inequality follows because Pr(T > m) ≤ αm|S| as established in Step 1. □
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A.5.4 Proofs for Sections A.3 and A.4

Proof of Corollary 1. The proof proceeds similarly to the proof of Theorem 1: First, we show

|
∑

k∈K
(
Lk
n(π̂n)− Lk

n(π
0)
)
| −→ 0. Second, we show plimn→∞π̂n = π0 if and only if Assumption

8 holds. Step 1. By Lemma 3, Lk
n(π) is lower semicontinuous for all k ∈ K. Because the sum of

lower semicontinuous functions is lower semicontinuous (Dietze and Schäuble, 1985), it follows that∑
k∈K Lk

n(π) is lower semicontinuous. Next, we show |
∑

k∈K
(
Lk
n(π̂n)− Lk

n(π
0)
)
| −→ 0. By the

triangle inequality,

∣∣∣∣∣∑
k∈K

(
Lk
n(π̂n)− Lk

n(π
0)
)∣∣∣∣∣ ≤∑

k∈K
|Lk

n(π̂n)− Lk
n(π

0)|.

By the proof of Theorem 1 and Assumption 7, we have |Lk
n(π̂n) − Lk

n(π
0)| −→ 0. Because

Lk
n(π) ≥ 0 for any π, it follows that |

∑
k∈K

(
Lk
n(π̂n)− Lk

n(π
0)
)
| −→ 0. Step 2. For each k ∈ K,

define Lk(π) =
∑

a∈A
∑

j∈J |πkaj − limn→∞ ωk
aj(π)|. Because

∑
k∈K Lk

n(π) is lower semicontinuous,

|
∑

k∈K Lk
n(π̂n)−

∑
k∈K Lk

n(π
0)| −→ 0, and Π is compact, by Theorem 5.14 of Van der Vaart (2000),

plimn→∞π̂n ∈ argmin
π∈Π

∑
k∈K

Lk(π).

Next, by parallel argument to Lemma 4, it can be shown that π0 is the unique minimizer of∑
k∈K Lk(π) if and only if Assumption 8 holds. Suppose Assumption 8 holds. It follows that

Lk(π0) = 0 and Lk(π) > 0 for π ̸= π0. Therefore, argmin
π∈Π

∑
k∈K Lk

n(π) = π0, which implies

plimn→∞π̂n = π0. Conversely, if Assumption 8 does not hold, then there exists π̃ ̸= π0 such that∑
k∈K L(π̃) =

∑
k∈K L(π0) = 0, which implies plimn→∞π̂n ̸= π0. □

Proof of Proposition 5. For convenience, let Zt(wt, εt) be the objective function value of PA-T

under (wt, εt), and let (w̄t, ε̄t) be the optimal solution to PA-T in iteration t of Algorithm 7. Let
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“−→” denote convergence in probability as T −→ ∞. The proof proceeds in four steps. We prove

useful supporting results in the first three steps: In Step 1 we show vT
s −→ π0

a(rs) for each s ∈ S;

in Step 2 we show ZT (w̄T , ε̄T ) −→ 0; in Step 3 we show Pr(w̄T
as = 1) −→ 1 for a = a(rs) and

Pr(w̄T
as = 0) −→ 1 for a ̸= a(rs), where a(rs) is the agent’s true optimal action under rs and π0. In

Step 4, we combine these results to prove the statement of Proposition 5. Step 1. Because ϵt > 0

for each t ≥ 1, by Algorithm 7 we have nTs −→ ∞ as T −→ ∞. It follows by construction of vt
s

in Algorithm 7 and by Lemma 5 that vT
s −→ π0

a(rs). Step 2. For each t ≥ 1, construct a solution

w̃ as follows: for each s ∈ S, set w̃as = 1 for a = a(rs) and w̃as = 0 for a ̸= a(rs). Note that w̃

satisfies constraints (A.13c)-(A.13e) for all t ≥ 1. Next, fix w̃ as a parameter in PA-T. Then for

each t, PA-T simplifies to the following subproblem:

minimize
ε

∑
s∈S
|εs| (A.43a)

subject to

∑
j∈J

vtsjr
s
j − ca(rs)

+ εs ≥

∑
j∈J

vts′jr
s
j − ca(rs′ )

 , s ∈ S, s′ ∈ S, (A.43b)

εs ≥ 0, s ∈ S. (A.43c)

Let ε̃t be the optimal solution to the above subproblem in round t. It follows from constraint

(A.43b) and (A.43c) that for each s ∈ S,

ε̃ts = max
s′∈S


∑

j∈J
vts′jr

s
j − ca(rs′ )

−
∑

j∈J
vtsjr

s
j − ca(rs)

 , 0

 . (A.44)

Note that
∑

j∈J π
t
a(rs′ ),j

rsj − ca(rs′ ) ≤
∑

j∈J π
t
a(rs),jr

s
j − ca(rs) for all k ∈ S and t ≥ 1, by optimality

of a(rs) with respect to contract rs. Because vT
s −→ π0

a(rs) for each s ∈ S by Step 1, it follows

from (A.44) that ε̄Ts −→ 0 for each s ∈ S. Therefore, ZT (w̃, ε̃T ) −→ 0. By optimality of (w̄t, ε̄t)

with respect to PA-T, we have Zt(w̄t, ε̄t) ≤ Zt(w̃, ε̃t) for all t ≥ 1. Therefore, ZT (w̄t, ε̄t) −→ 0.
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Step 3. For each s ∈ S and t ≥ 1, let āt(rs) be the action for which w̄t
as = 1. Suppose by way

of contradiction that Pr(āT (rs) = a(rs)) −→ 1 does not hold for each s ∈ S. Then there exists

s̃ ∈ S and a subsequence tb, b = 1, 2, . . . such that ātb(rs̃) ̸= a(rs̃) for all b ≥ 1. Next, by constraint

(A.13b), we have

εtbs̃ ≥ max
s′∈S

∑
j∈J

(vts′j − vtsj)rs̃j + cā(rs̃) − cā(rs′ ), 0


≥ max

s′∈S

∑
j∈J

(vts′j − vtsj)rs̃j + c− c̄, 0


for all b ≥ 1, where the second inequality follows by definition of c and c̄. Because vtb

s′ −→

π0
a(rs

′
)
as b −→ ∞ for all s′ ∈ S by Step 1, and by Assumption 9 there exists s′ ∈ S such that∑

j∈J(π
0
a(rs′ ),j

−π0
a(rs̃),j

)rs̃j+c−c̄ > 0, it follows that limb→∞ εtbs̃ > 0. Hence limb→∞ Ztb(w̄tb , ε̄tb) > 0,

which implies limT→∞ ZT (w̄t, ε̄t) > 0. However, by Step 2, ZT (w̄t, ε̄t) −→ 0, which yields a

contradiction. Therefore, Pr(āT (rs) = a(rs)) −→ 1 for all s ∈ S. By definition of āt(rs), this

implies Pr(w̄T
as = 1) −→ 1 for a = a(rs) and Pr(w̄T

as = 0) −→ 1 for a ̸= a(rs), as desired. Step 4.

We now show π̂T −→ π0. For convenience, let Sa = {s|a(rs) = a}. Then by construction of π̂t

from Algorithm 7,

π̂taj =

∑
s∈S v

t
sjn

t
sw̄

t
as∑

s∈S n
t
sw̄

t
as

=

∑
s∈Sa

vtsjn
t
sw̄

t
as +

∑
s∈S\Sa

vtsjn
t
sw̄

t
as∑

s∈Sa
ntsw̄

t
as +

∑
s∈S\Sa

ntsw̄
t
as

,

for all (a, j). By Step 3, Pr(w̄T
as = 1) −→ 1 for s ∈ Sa and Pr(w̄T

as = 0) −→ 1 for s ∈ S \ Sa.

Further, by Step 1, vT
s −→ π0

a(rs). It follows that for each j ∈ J , vTsjw̄T
as −→ π0aj for s ∈ Sa, and

vTsjw̄
T
as −→ 0 for s ∈ S \ Sa. Therefore,

plim
T→∞

π̂Taj = plim
T→∞

∑
s∈Sa

vTsjn
T
s w̄

T
as +

∑
s∈S\Sa

vTsjn
T
s w̄

T
as∑

s∈Sa
nTs w̄

T
as +

∑
s∈S\Sa

nTs w̄
T
as

= plim
T→∞

π0aj
∑

s∈Sa
nTs∑

s∈Sa
nTs

= π0aj .
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for all (a, j). Because π̂Taj −→ π0aj for all (a, j), it follows that π̂T −→ π0. □

Proof of Corollary 2. It suffices to show |U(r̂T )−U(r∗)| −→ 0. The proof proceeds in two steps.

First, we show Û(r) −→ U(r) for any r ∈ R. Second, we prove the main result. Step 1. Note

|U(r̂)− U(r∗)| = |U(r̂)− Û(r̂) + Û(r̂)− Û(r∗) + Û(r∗)− U(r∗)|

≤ |U(r̂)− Û(r̂)|+ |Û(r̂)− Û(r∗)|+ |Û(r∗)− U(r∗)|

where the equality follows from adding and subtracting Û(r̂) and Û(r∗), and the inequality fol-

lows from the triangle inequality. Next, note that by the definitions of Û(r) (given above) and

U(r) (given in (A.11)), π̂T −→ π0 implies Û(r) −→ U(r) for any r ∈ R. Step 2. By Step 1,

|U(r̂T )− Û(r̂T )| −→ 0 and |Û(r∗)− U(r∗)| −→ 0. It remains to show that |Û(r̂T )− Û(r∗)| −→ 0.

Suppose not. Then there exists a subsequence tb, b ≥ 1 such that |Û(r̂tb)− Û(r∗)| > 0 for all b ≥ 1.

Further, because for all t ≥ 1, r̂t ∈ argmaxr∈RÛ(r) by definition, we have Û(r̂tb) > Û(r∗) for all

b ≥ 1. Letting b −→ ∞ and noting Û(r) −→ U(r) for all r ∈ R yields plimb→∞Û(r̂tb) > U(r∗). It

is straightforward to obtain a contradiction to the preceding inequality using Û(r) −→ U(r) from

Step 1, and r∗ = argmaxr∈RU(r) by definition of r∗. □
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Appendix B

Discovering Causal Models with Optimization

B.1 Finitely Many Paths

We provide here a more complete definition of paths in directed mixed graphs, which may contain

paths with repeating nodes due to cycles. In the lemma that follows, we show that such paths

can be eliminated from consideration without altering d-separation relations between nodes. This

result serves as justification for the simplified path definition given in Definition 2.

Definition 8 (Path). Given a node set V , a set of edge-types T = {→,←,↔} and an edge set

E of triples (v1, t, v2) with v1, v2 ∈ V and t ∈ T , we define a path pij from node i to node j with

i, j ∈ V, i ̸= j, as a sequence of edges pij = (e1, . . . , eℓ) such that

(i) the edges in the path are in the edge set: ek ∈ E for all 1 ≤ k ≤ ℓ,

(ii) the path starts with node i: e1 = (i, t, v) for some v ∈ V \ {i} and t ∈ T ,

(iii) the path ends with node j: eℓ = (v, t, j) for some v ∈ V \ {j} and t ∈ T ,

(iv) consecutive edges on the path are connected: for all ek, ek+1 = (v1, t, v2)(u1, t
′, u2) ∈ pij with

1 ≤ k < ℓ, we have v2 = u1.
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A directed path from i to j is a path that only has edge-type T = {→}, i.e. all edges point away

from i and towards j along the path. So, a node j is a descendant of i if there is a directed path

from i to j.

We say that an occurrence of a node v ∈ V \ {i, j} on a path pij is when v is the endpoint of

one edge and the starting point of the subsequent edge. In addition, i and j occur once at the

beginning and end of the path, respectively. A node repeats on a path if it occurs more than once

on the path. In that case the path is said to contain a cycle.

We now show that with respect to the d-separation and d-connection relations, we can ignore

cycles on a path. That is, if a path with a cycle is d-connecting, then there is a path without the

cycle that is also d-connecting.

Lemma 7. Let path pij be a path between nodes i, j ∈ V according to Definition 8. If path pij is

unblocked with respect to conditioning set C ⊆ V \{i, j} in directed mixed graph G = (V,E) and has

repeating nodes, then there exists a path p∗ij without any repeating nodes in G that is also unblocked

with respect to C.

Proof of Lemma 7. Suppose there is a path p with repeating nodes between variables i, j ∈ V in

graph G = (V,E) that is unblocked with respect to conditioning set C ⊆ V \ {i, j}. Following from

Definition 3, every collider k on the path p is in C or has a descendant in C, and no other nodes

on the path are in C. Note that since path p is unblocked with respect to C, Definition 3 implies

that the same node cannot be a collider and a noncollider at the same time on path p.

Now we show we can find a shorter path p∗ in G that is also unblocked with respect to C. Note

that path p includes the same node more than once by construction. Without loss of generality,

let node l repeat on path p more than once. Let l1 represent the first occurrence of node l on path

p and let l2 represent the last occurrence of node k on path p. Let pi−l1 represent the subpath

between i and l1 on path p. Similarly, let pl2−j represent the subpath between l2 and j on path p.
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Note that both the last node on path pi−l1 and the first node on path pl2−j are node l. Hence, we

can obtain a path p∗ where node l does not repeat by combining pi−l1 and pl2−j together.

Next we show that path p∗ is unblocked with respect to C. To do so, we need to show every

collider k on the path p∗ is in C or has a descendant in C, and no other nodes on the path p∗ are

in C by Definition 3. Notice that if node k ̸= l is a collider on path p∗, then it must be a collider

on path p by construction. Since path p is unblocked with respect to C, i.e. every collider k on

the path p is in C or has a descendant in C, it follows that every collider k ̸= l on the path p∗ is

in C or has a descendant in C. Similarly, if node k ̸= l is a noncollider on path p∗, then it is a

noncollider on path p∗ by construction. Since path p is unblocked with respect to C, i.e. none of

the noncolliders on path p is in C, it follows that if node k ̸= l is a noncollider on path p∗, then

k ̸∈ C.

Lastly, we need to consider node l. Note that node l is on path p∗ by construction. Case 1.

Node l is a collider on both path p and p∗. If node l is a collider on path p, then l is in C or

has a descendant in C. Therefore, having node l as a collider on path p∗ does not block path

p∗. Case 2. Node l is a noncollider on both path p and p∗. If node l is a noncollider on path

p, then l is not in C. Therefore, having node l as a noncollider on path p∗ does not block path

p∗. Case 3. Node l is a collider on path p and a noncollider on path p∗. If node l is a collider

on path p, then path p must have the following form: i · · · ∗ → l ← ∗ · · · ∗ → l ← ∗ . . . j, where ∗

represents that an edge can have an arrow end or a tail end. This implies that path p∗ must have

the following form i · · · ∗ → l ← ∗ . . . j, hence l cannot be a noncollider on path p∗. Case 4. Node

l is a noncollider on path p and a collider on path p∗. Then path p must have the following form:

i · · · ∗ → l → · · · ∗ ← l ← ∗ . . . j. This path must contain a collider between the instances of l. Let

node c be this collider on path p. Note that it follows that c is a descendant of l. Since node c is a

collider on path p and since path p is unblocked with respect to conditioning set C, then it follows
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either (i) c ∈ C or c has a descendant in C. Using this, we now show p∗ is unblocked with respect

to C. By construction, p∗ has the following forms: i · · · ∗ → l← ∗ . . . j. Since l is a collider on path

p∗ and c is a descendant of l, following from (i) and (ii), C includes a descendant of l. Therefore,

having node l as a collider on path p∗ does not block path p∗. If there is more than one collider

between the instances of l in p, this reasoning can be repeated for each collider.

Similarly, we can repeat the above procedure until there are no repeating nodes. Hence it fol-

lows we can construct a path p∗ without any repeating nodes between (i, j) in G such that p∗ is

unblocked with respect to C. □

Lemma 7 shows that in order to establish d-separation and d-connection relations in a graph it

is sufficient to consider paths without cycles as specified in Definition 2, but one still has to account

for the descendants of colliders on such paths.

Definition 9 (appendage). Given a path p from i to j defined according to Definition 2, let colp

store the colliders on path p. An appendage of p is a directed path without repeated nodes from a

collider c ∈ colp to another node k ∈ V \ {i, j, c}.

We only need to consider directed paths as appendages because the definition of blocked paths

only considers descendants of colliders.

In order to capture d-connections due to conditioning on descendants of a collider, we define

the notion of an extended path.

Definition 10 (extended path). Let path p be a path generated according to Definition 2. We

define an extended path to be the combination of path p with at least one of p’s appendages.

Consequently, we capture all d-connections by considering paths p without repeating nodes of

at most |V | − 1 edges and at most |V | − 2 colliders. Since the length of an appendage can at
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most be |V | − 3 edges (the appendage cannot include nodes i, j and c), we can for any pair of

variables ensure that the set of extended paths Pij(Ẽ) between nodes i and j given an edge set Ẽ

is finite, that the extended paths it contains are of finite length and that it captures all possible

d-connections between i and j.

B.2 Enforcing Acyclicity and Causal Sufficiency

Our main formulation presented in Chapter 3 assumes the presence of latent confounders and

feedback cycles. However, we can naturally assume causal sufficiency or exclude cycles within our

modeling framework. Let Es = {i ← j, i → j, ∀i, j ∈ V : i ̸= j} be the set of all possible

directed edges under the assumption of causal sufficiency (i.e., no bi-directed edges). Then solving

CausalIP(Es) ensures that unobserved confounders are not allowed.

To exclude cycles, we follow the constraints provided in Cussens (2012) and Jaakkola et al.

(2010). These constraints are based on the observation that if cycles are not permitted, any subset

of vertices in a graph must contain at least one node that has no parent in that subset. Let

Ri = {C | C ⊆ V \ i} be all possible subsets of V that exclude i. Let Rk
i be the kth set in Ri, and

let Ki index the sets in Ri. Note that exactly one set in Ri must be the set of parent nodes of

i. Accordingly, let wk
i be a binary decision variable where wk

i = 1 if Rk
i ∈ Ri is the parent set of

node i, and wk
i = 0 otherwise. Next, let Ek

i be the set of all incoming edges to i from nodes in Rk
i ,

and let ρki be the number of nodes in Rk
i . Then, we can eliminate cycles by adding the following

constraints to CausalIP:

169



wk
i ≤ xe, e ∈ Ek

i , k ∈ Ki, i ∈ V, (B.1a)

wk
i ≥

∑
e∈Ek

i

xe −
∑

e′∈E\Ek
i

xe′ − ρki + 1, i ∈ V, k ∈ Ki, (B.1b)

∑
k∈Ki

wk
i = 1, i ∈ V, (B.1c)

∑
i∈C

∑
k∈Ki:

Rk
i ∩C=∅

wk
i ≥ 1, C ⊆ V. (B.1d)

Constraint (B.1a) ensures Rk
i can only be the parent set of i if the edge j → i is present for each

j ∈ Rk
i . Constraint (B.1b) ensures that if j → i is present for all j ∈ Rk

i and if j → i is not present

for all j such that j ̸∈ Rk
i , then R

k
i must be the set of parents of node i. Constraint (B.1c) ensures

that only one set in Ri can be the parent set of node i ∈ V . Constraint (B.1d) is the directed cycle

elimination constraint, which ensures that all subsets of V must contain at least one node who has

no parent in that subset.

Our formulation also allows for integrating background knowledge; the presence or absence

of specific edges or paths can be easily encoded via constraints on the x variable. Furthermore,

sparsity constraints, such as maximum degree of nodes (see Claassen et al. (2013) for an example)

can be easily incorporated into the model. This flexibility may be especially useful in applications

where significant domain knowledge is available.

B.3 Characterization of Markov Blankets with Latent Confounders

For DAGs that satisfy the causal Markov and faithfulness conditions, the Markov blanket of target

variable T is given by the union of its parents, children, and spouses, which are the parents of the

children of T (Pearl, 2000) – see Figure B.1(a) for an example. Here we provide a characterization
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of Markov blankets that generalizes to DMGs, which allow for both cycles and confounders. We

first require the following definition.

Definition 11 (Collider paths). A path p between nodes i, j ∈ V is a collider path if every variable

on the path p excluding i and j is a collider.

For example, in Figure B.1(b), the path T → n↔ o↔ p is a collider path. This definition also

subsumes paths with length 1, so that all children and parents of T also form collider paths with

T . Using Definition 11, we can now characterize the Markov blanket for DMGs:

Proposition 6 (Markov blankets for directed mixed graphs). For a target variable T in a DMG

G, the Markov blanket MB(T ) is given by the set of all nodes that form a collider path with T .

Proposition 6 can be shown to be equivalent to the characterization of Markov blankets provided

by Pellet and Elisseeff (2008), who focus on an acyclic setting. Our result confirms that this

characterization extends to DMGs as well. In the case of DAGs, only parents, children, and

spouses of T can form a collider path with T , which makes Proposition 6 specialize to the standard

description of Markov blankets for DAGs. Figure B.1(b) provides an illustrative example, where

the Markov blanket of T is given by the shaded nodes. The proof of Proposition 6 follows.

Figure B.1: Example Markov blankets: (a) A DAG where the Markov blanket of T consists of nodes k, l, n and o.
(b) A DMG where the Markov blanket of T consists of nodes k, l, n, o and p.

Proof of Proposition 6. Let MB(T ) be a set that includes all nodes that form a collider path

with the target variable T . Note that by Remark 1, variables i and j are conditionally independent
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(dependent) with respect to C if and only if nodes i and j in the graph are d-separated (d-connected)

with respect to C. To prove MB(T ) is a Markov blanket of T , it suffices to show that MB(T ) is

the smallest set that satisfies

i⊥ T |MB(T ), i ∈ V \ {MB(T ), T}. (B.2)

The proof proceeds in two steps. First, we showMB(T ) satisfies (B.2). Second, we show that there

is no set strictly smaller than MB(T ) that satisfies (B.2). Step 1. Pick any i ∈ V \ {MB(T ), T}.

We consider two cases: If there is no path between i and T , and if there is a path between i and

T . First, if there is no path between i and T , then i⊥ T |MB(T ) holds trivially. Next, suppose

there is at least one path p between i and T . Because i ̸∈MB(T ), by construction of MB(T ), i is

not adjacent to T , and there are no collider paths between i and T . Therefore any path between

i and T must include a non-collider. Let p be any such path. Next, to prove i ⊥ T |MB(T ), it

remains to show that path p is blocked with respect to MB(T ) (Definition 4). Let node j be the

non-collider closest to T on path p. To show path p is blocked with respect toMB(T ), it suffices to

show j ∈ MB(T ) (Definition 3). Let pT−j represent the subpath between nodes T and j on path

p. If pT−j is of length one, then j is adjacent to T , or there is a bi-directed edge between j and T .

In all three cases, j forms a collider path with T , and thus j ∈ MB(T ). Now suppose the length

of pT−j is at least two. Then, because j is the closest non-collider to T , every node between T

and j on pT−j must be a collider. Therefore, pT−j is a collider path between T and j, which again

implies j ∈MB(T ). Because j is a non-collider on path p and j ∈MB(T ), by Definition 3 path p

is blocked with respect to MB(T ), as desired. Step 2. We now prove that there is no set strictly

smaller than MB(T ) that satisfies (B.2). To do so, we show that any set that satisfies (B.2) must

also contain all nodes that form a collider chain with T . Let MB′(T ) be a set that satisfies (B.2).
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The proof proceeds in two steps: First, we show that all nodes that are adjacent to T must be in

MB′(T ), and second, that all nodes that form a collider chain with T of length at least 2 must be in

MB′(T ). Step 2.1. Note that for any node i adjacent to T , we have i⊥̸ T |C for any conditioning

set C. Therefore, because MB′(T ) satisfies (B.2), all nodes adjacent to T must be included in

MB′(T ). Step 2.2. We now show that all nodes that form a collider path with T of length at least

2 must be in MB′(T ). By Definition 11, it suffices to show that for any node i such that there is

a collider path between i and T , i ∈ MB′(T ). Pick any such i, let p be the collider path, and let

ℓ be its length. We shall prove the result by induction, using ℓ = 2 as the base case. Base case.

By way of contradiction, suppose i /∈ MB′(T ). Because ℓ = 2, there exists a single collider j that

is adjacent to T on path p. Because j is adjacent to T , it follows from Step 1 that j ∈ MB′(T ).

Because j ∈ MB′(T ), it follows that path p is unblocked with respect to MB′(T ) (Definition 3),

and thus i ⊥̸ T |MB′(T ) (Definition 4). However, because i /∈ MB′(T ), i ̸⊥ T |MB′(T ) implies

that MB′(T ) does not satisfy (B.2) – a contradiction. It follows that i ∈MB′(T ). Induction step.

For the induction hypothesis, assume i ∈ MB′(T ) where p has length less than or equal to ℓ.

Next, suppose by way of contradiction that i /∈ MB′(T ) when p has length ℓ + 1. Let j be any

non-endpoint node on path p. Let pTj represent the subpath between nodes T and j on path p.

Since p is a collider path by assumption, it follows that pTj is also a collider path with a length

less than ℓ. It follows from the induction hypothesis that j ∈ MB′(T ). Let Vp and V̄p be the sets

of colliders and non-colliders on path p. Using the same argument, it is straightforward to show

Vp ⊆ MB′(T ). Since V̄p = ∅, following from p being a collider path, and Vp ∈ MB′(T ), we have

i ̸⊥ T |MB′(T ) (Definition 3). However, because i /∈MB′(T ), i ̸⊥ T |MB′(T ) implies that MB′(T )

does not satisfy (B.2), a contradiction. We conclude i ∈ MB′(T ). We have established that for

any MB′(T ) that satisfies (B.2), MB′(T ) must contain all nodes that form a collider path with T .

Therefore, there is no set strictly smaller than MB(T ) that satisfies (B.2). □
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B.4 Proofs

B.4.1 Proof of Proposition 3

Lemma 8. Let (x,y) be a solution to the inequalities (3.4) for any Ẽ, and let G(x) = (V,E) be

the graph encoded by x. Then for each p ∈ P(Ẽ), yp = 1 if and only if p ∈ P(E).

Proof of Lemma 8. Because G(x) is the graph corresponding to x, for all e ∈ Ẽ we have xe = 1

if and only if e ∈ E. For each p ∈ P(Ẽ), let Ep ⊆ Ẽ be the set of edges on path p, and note

ℓp = |Ep|. Next, pick any p ∈ P(Ẽ). We first show that yp = 1 implies p ∈ P(E). By inequality

(3.4b), |Ep| ≤
∑

e∈Ẽ ϕpexe. Because ϕpe = 1 if and only if e ∈ Ep, we have
∑

e∈Ẽ ϕpexe =
∑

e∈Ep
xe.

Then inequality (3.4b) can be re-written as |Ep| ≤
∑

e∈Ep
xe. It follows that xe = 1 for all e ∈ Ep,

which implies Ep ⊆ E. Because Ep ⊆ E, it follows that p ∈ P(E). Next, we show p ∈ P(E)

implies yp = 1. By again noting that
∑

e∈Ẽ ϕpexe =
∑

e∈Ep
xe, we can re-write inequality (3.4a) as

yp ≥
∑

e∈Ep
xe− (|Ep| − 1). Because p ∈ P(E), and e ∈ E if and only if xe = 1, we have xe = 1 for

all e ∈ Ep. We can then simplify inequality (3.4a) further to yp ≥ |Ep| − (|Ep| − 1), which implies

yp = 1. □

Lemma 9. Suppose Assumption 6 holds. Then there exists a solution (x̃, ỹ, z̃) to CausalIP(Ec)

such that
∑

i,j∈V
∑

n∈Nij
z̃nij = 0.

Proof of Lemma 9. Our approach is to construct a solution (x̃, ỹ, z̃) such that the following

two conditions are satisfied: (i)
∑

i,j∈V
∑

n∈Nij
z̃nij = 0, and (ii) (x̃, ỹ, z̃) is a feasible solution for

CausalIP(Ec). The proof proceeds in two steps. First, we construct (x̃, ỹ, z̃). Second, we show

it satisfies conditions (i) and (ii) above. Step 1. Let GT = (V,ET ) be the true graph. First,

construct x̃ so that for all e ∈ Ec, x̃e = 1 if and only if e ∈ ET . It follows that G(x̃) = GT . Next,

it is straightforward to show using a similar argument to the proof of Lemma 8 that for any fixed
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x, there exists a solution to the inequalities (3.4) over y that satisfies y ∈ {0, 1}|P (Ec)|. Let ỹ be

a solution to (3.4) under x̃. Lastly, let z̃nij = 0 for all n ∈ Nij , i, j ∈ V . Step 2. Note (x̃, ỹ, z̃)

trivially satisfies condition (i) above. It remains to show that (x̃, ỹ, z̃) is feasible to CausalIP(Ec).

By construction (x̃, ỹ, z̃) satisfies the constraints (3.4) as well as the constraints that x, y and z

are all binary-valued. It remains to show that (x̃, ỹ, z̃) satisfies constraints (3.5) and (3.6). To see

that (x̃, ỹ, z̃) satisfies (3.5), pick any n ∈ N I
ij , p ∈ Pij(E

c) and i, j ∈ V . Because n ∈ N I
ij and

Assumption 6 holds, we have i ⊥ j|Cn
ij in graph GT . Because p is a path from i to j, i ⊥ j|Cn

ij

implies that p must be blocked with respect to Cn
ij ∈ Iij (Definition 4). It follows that αn

ijp = 0,

which implies (x̃, ỹ, z̃) satisfies (3.5). Next, we show (x̃, ỹ, z̃) satisfies (3.6). Pick any n ∈ ND
ij

and i, j ∈ V . Note that by Lemma 8, because G(x) = GT , for all p ∈ P(Ec), we have ỹp = 1

if and only if p ∈ P(ET ). It follows that the left hand side of constraint (3.6) can be re-written

as
∑

p∈Pij(Ec) α
n
ijpỹp =

∑
p∈Pij(ET ) α

n
ijp. Because znij = 0, it remains to show

∑
p∈Pij(ET ) α

n
ijp ≥ 1.

Because Assumption 6 holds, n ∈ ND
ij implies that i ̸⊥ j|Cn

ij in GT . It follows from Definition 4

that there must exist at least one path between i and j that is unblocked with respect to Cn
ij . By

definition of αn
ijp, it follows that there exists at least one p ∈ Pij(ET ) such that αn

ijp = 1, which

implies
∑

p∈Pij(ET ) α
n
ijp ≥ 1, as desired. □

Proof of Proposition 3. It follows immediately from Assumption 6 that GT minimizes the

objective in (3.3), which implies that any graph G ∼ GT also minimizes (3.3). Therefore, under

Assumption 6, statement (i) follows directly from (ii). It therefore suffices to show that (ii) holds.

Let (xc,yc, zc) be an optimal solution to CausalIP(Ec), where Gc := G(xc) is the corresponding

graph. Our approach will be to show that Gc satisfies the following two conditions for all pairs

(i, j) such that i ̸= j: (a) for each C ∈ Dij , the nodes i and j are d-connected with respect to C

in Gc, and (b) for each C ∈ Iij , nodes i and j are d-separated with respect to C in Gc. Note that
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if these two conditions hold, then it follows immediately from Assumption 6 that Gc and GT are

Markov equivalent. Pick any (i, j), and let it be fixed in the remainder of the proof. We first prove

condition (a) holds. Note i and j are d-connected with respect to a conditioning set C if and only

if there exists an unblocked path from i to j with respect to C (Definition 4). Suppose by way of

contradiction that there exists a conditioning set C n̄
ij ∈ Dij such that all paths between i and j in

Gc are blocked with respect to C n̄
ij . Then by definition, αn̄

ijp = 0 for all p ∈ Pij(E
c). It follows that∑

p∈Pij(Ec) α
n̄
ijpy

c
p = 0. Next, note n̄ ∈ ND

ij because C n̄
ij ∈ Dij . Because

∑
p∈Pij(Ec) α

n̄
ijpy

c
p = 0, it

follows from constraint (3.6) that zn̄cij = 1, and thus
∑

i,j∈V
∑

n∈Nij
zncij > 0. However, by Lemma

9, there exists a solution (x̃, ỹ, z̃) to CausalIP(Ec) such that
∑

i,j∈V
∑

n∈Nij
z̃nij = 0, which yields

a contradiction. We conclude that condition (a) holds. We now prove condition (b) holds. Pick

any conditioning set C n̄
ij ∈ Iij . It suffices to show that all paths between i and j are blocked with

respect to C n̄
ij in Gc. By definition, αn̄

ijp = 1 for all paths p ∈ Pij(E
c) that are unblocked with

respect to C n̄
ij . Therefore, it remains to show αn̄

ijpy
c
p = 0 for all p ∈ Pij(E

c). Note n̄ ∈ N I
ij because

C n̄
ij ∈ Iij . Because n̄ ∈ N I

ij , it follows from constraint (3.5) that αn̄
ijpy

c
p ≤ zn̄cij for all p ∈ Pij(E

c).

Further, it follows from the proof of condition (a) above that zn̄cij = 0 for all p ∈ Pij(E
c), which

implies αn̄
ijpy

c
p = 0 for all p ∈ Pij(E

c). It follows that every path between i and j in Gc is blocked

with respect to C n̄
ij , as desired. Because conditions (a) and (b) both hold, we conclude Gc ∼ GT . □

B.4.2 Proof of Lemma 1

Lemma 10. Suppose G ∼ GT and Assumption 6 holds. For each i, j ∈ V , if G contains an edge

between (i, j), then Iij = ∅.

Proof of Lemma 10. We show that if Iij ̸= ∅, then G cannot contain an edge between (i, j).

Suppose by way of contradiction that it does. This edge is also a path – call it path p. Next, pick

any conditioning set C ∈ Iij . Because p does not contain any colliders or non-colliders, the path

176



p is unblocked with respect to C (Definition 3). Then by Definition 4, the path p is d-connected

with respect to C. Because G ∈ M and the path p is d-connected with respect to C, it follows

that i̸⊥⊥j|C (Remark 1). However, because C ∈ Iij , by definition of Iij we have i ⊥⊥ j|C – a

contradiction. The result follows. □

Proof of Lemma 1. We prove the statements in order. (i). If (i, j, k) forms a collider chain,

then the pairs (i, j) and (j, k) both contain an edge. It follows from Lemma 10 that Iij = Ijk = ∅.

We now show that if (i, j, k) form a collider chain, then j /∈ C for all C ∈ Iik. Suppose by way of

contradiction that (i, j, k) form a collider chain and there exists C ∈ Iik such that j ∈ C. Because

node j is the only collider on the chain, and j ∈ C, the path from i to k is unblocked with respect to

C (Definition 3), which implies i and k are d-connected with respect to C (Definition 4). Because

the chain is d-connected with respect to C, and G ∼ GT , by Assumption 6 we have C ∈ Dik.

However, this is a contradiction because C ∈ Iik. (ii). The result follows by parallel argument to

(i), where (i, j, k) form a non-collider chain instead of a collider chain, and j /∈ C is used in place

of j ∈ C. □

B.4.3 Proof of Proposition 4

Lemma 11. Suppose G ∼ GT and Assumption 6 holds. Let e be an edge between a pair (i, j) in G.

If e /∈ Ẽ0, then there exists k ∈ V \ {i, j} such that G contains an edge between at least one of (i, k)

or (j, k).

Proof of Lemma 11. Because e connects (i, j), Iij = ∅ by Lemma 10. Because e ̸∈ Ẽ0, it follows

that there exists k′ ∈ V \ {i, j} such that at least one of Dik′ ̸= ∅ or Djk′ ̸= ∅ holds. Suppose

Dik′ ̸= ∅. By definition of Dik′ there exists C ∈ Dik′ such that i and k′ are d-connected with respect

to k′, which implies that G contains a path from i to k′. Let p denote this path. We now consider

177



two cases: either the path p contains j or does not contain j. Suppose p contains j, and let p′ be

the subpath from j to k′. If (j, k′) contains an edge, the proof is complete. If not, then the path p′

must contain a different node k ∈ V \{i, j} such that (j, k) contains an edge. If the path p does not

contain j, then either (i, k′) contains an edge, or there exists k ∈ V \ {i, j} such that (i, k) contains

an edge. Therefore, Dik′ ̸= ∅ implies that at least one of (i, k) or (j, k) contains an edge. The proof

for the case where Djk′ ̸= ∅ follows by parallel argument. □

Lemma 12. The sets R(z) and R̄(z) constructed in UpdateEdges satisfy R(z) ∪ R̄(z) ̸= ∅.

Proof of Lemma 12. By Algorithm 2, R(z) ̸= ∅ if and only if there exists (i, j, k) ∈ S such that

Eijk ̸⊂ Ẽ, and R̄(z) ̸= ∅ if and only if there exists (i, j, k) ∈ S̄ such that Ēijk ̸⊂ Ẽ. Suppose by way

of contradiction that R(z) = R̄(z) = ∅. It follows that Eijk ⊂ Ẽ for all (i, j, k) ∈ S and Ēijk ⊂ Ẽ

for all (i, j, k) ∈ S̄. Next, because UpdateEdges is called, we must have Ẽ ̸= Ec by Algorithm

1. It follows that there exists an edge ē ∈ Ec such that ē /∈ Ẽ. Because ē ̸∈ Ẽ, we have ē ̸∈ Eijk

for all (i, j, k) ∈ S and e ̸∈ Ēijk for all (i, j, k) ∈ S̄. Next, let (i, j) be the pair of nodes that edge e

connects. Because e /∈ Ẽ and Ẽ0 ⊆ Ẽ by Algorithm 1, we have e /∈ Ẽ0. It follows from Lemma 11

that there exists a node k ∈ V \ {i, j} such that G contains an edge between at least one of (i, k)

or (j, k). Suppose without loss of generality that (j, k) contains an edge. Because (i, j) and (j, k)

both contain an edge, the triple (i, j, k) forms a chain. We now have two cases to address: either

j is a collider or j is a non-collider. Suppose j is a collider. Then (i, j, k) ∈ S by Lemma 1. It

follows that e ∈ Eijk. Because Eijk ⊂ Ẽ by assumption, we have e ∈ Ẽ – a contradiction. The

case where j is a non-collider also yields a contradiction by a similar argument. We conclude that

R(z) ∪ R̄(z) ̸= ∅. □

Lemma 13. NewEdgesIP is always feasible when called by UpdateEdges.

Proof of Lemma 13. The formulation NewEdgesIP is called in two cases: S(z)∪S(z) ̸= ∅ and
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S(z) ∪ S(z) = ∅. The proofs for the second case is identical to the first, where R(z) and R̄(z) is

used in place of S(z) and S̄(z). We therefore focus on the case where S(z) ∪ S(z) ̸= ∅. To prove

the result, it suffices to construct a solution w̃ that satisfies each constraint in NewEdgesIP.

Accordingly, let w̃t
ij = 1 − λtij for all i, j ∈ V and t ∈ {1, 2, 3}. With a slight abuse of notation,

let etij be the edge corresponding to the variable wt
ij . The proof proceeds in three steps. First,

we show w̃ satisfies constraints (3.16a)–(3.16c); second, that it satisfies (3.17a)–(3.17d); and third,

(3.18a)–(3.18c). Step 1. We first show that w̃ satisfies constraints (3.16a)–(3.16c). If S(z) = ∅,

the result holds trivially. Suppose S(z) ̸= ∅. Note w̃t
ij +λ

t
ij = 1 for all t ∈ {1, 2, 3} by construction.

It immediately follows that (3.16a) and (3.16b) are satisfied for all (i, j, k) ∈ S(z). Next we show

w̃ satisfies (3.16c). Pick any (i, j, k) ∈ S(z). Note (i, j, k) ∈ S(z) implies there exists e ∈ Eijk

such that e /∈ Ẽ. By definition of Eijk, we must have either e = etij for some t ∈ {1, 3} or e = etjk

for some t ∈ {2, 3}. Suppose e = etij for some t ∈ {1, 3}. Because e /∈ Ẽ, at least one of λ1ij = 0

or λ3ij = 0 must hold. By construction of w̃, it follows that at least one of w̃1
ij = 1 or w̃3

ij = 1

must hold. Therefore,
∑

t∈{1,3}w
t
ij ≥ 1, which implies constraint (3.16c) is satisfied by w̃. The

case where e = etjk for some t ∈ {2, 3} follows by parallel argument. Step 2. We now show w̃

satisfies constraints (3.17a)–(3.17d). If S̄(z) = ∅, the result holds trivially. Suppose S̄(z) ̸= ∅.

It is straightforward to verify that constraints (3.17a)– (3.17c) are immediately satisfied because

wt
ij + λtij = 1 for all i, j ∈ V and t ∈ {1, 2, 3}. We now show w̃ satisfies constraint (3.17d). Pick

any (i, j, k) ∈ S̄(z). By definition of S̄(z), (i, j, k) ∈ S̄(z) implies there exists e ∈ eijk such that

e /∈ Ẽ. By definition of Ēijk, we must have either e = etij or e = etjk for some t ∈ {1, 2, 3}. Suppose

e = etij for some t ∈ {1, 2, 3}. Because e /∈ Ẽ, at least one of λ1ij = 0, λ2ij = 0, or λ3ij = 0 must hold.

It follows that at least one of w̃1
ij = 1, w̃2

ij = 1, or w̃3
ij = 1 must hold. Therefore,

∑
t∈{1,2,3}w

t
ij ≥ 1,

which implies constraint (3.17d) is satisfied by w̃. The case where e = etjk for some t ∈ {1, 2, 3}

follows by parallel argument. Step 3. Constraints (3.18a)–(3.18c) hold because w̃t
ij + λtij = 1 by
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construction of w̃, and λ1ij = λ2ji and λ
3
ij = λ3ji by definition of λtij , for all i, j ∈ V and t ∈ {1, 2, 3}. □

Proof of Proposition 4. By Lemma 13, NewEdgesIP is always feasible when called in Up-

dateEdges. Because each decision variable wt
ij is binary (and thus bounded), it follows that

NewEdgesIP always produces an optimal solution, w∗. Let etij be the edge in Ec corresponding

to the variable wt
ij . Then Enew = {etij ∈ Ec|wt∗

ij = 1}. The remainder of the proof proceeds in

two steps. First, we show that the set Enew constructed in UpdateEdges satisfies Enew ̸= ∅ and

Enew ∩ Ẽ = ∅. Second, we prove the main result. Step 1. We first show Enew ̸= ∅. By defi-

nition of Enew, it suffices to show there exists i, j ∈ V and t ∈ {1, 2, 3} such that wt∗
ij = 1. We

consider three cases: S(z) ̸= ∅, S̄(z) ̸= ∅, and S(z) = S̄(z) = ∅. Note that in the first two cases,

UpdateEdges calls NewEdgesIP(S(z), S̄(z)) to construct Enew (Algorithm 2). If S(z) ̸= ∅,

by constraint (3.16c) there exists (i, j, k) ∈ S(z) such that
∑

t∈{1,3}w
t∗
ij +

∑
t∈{2,3}w

t∗
jk ≥ 1, and

the result follows. Similarly, if S̄(z) ̸= ∅, by constraint (3.17d) there exists (i, j, k) ∈ S̄(z) such

that
∑

t∈{1,2,3}(w
t∗
ij + wt∗

jk) ≥ 1, and the result follows. Lastly, suppose S(z) = S̄(z) = ∅. Then

UpdateEdges calls NewEdgesIP(R(z), R̄(z)) to construct Enew. By Lemma 12, we must have

either R(z) ̸= ∅ or R̄(z) ̸= ∅. If R(z) ̸= ∅, the result immediately follows from constraint (3.16c);

if R(z) ̸= ∅, the result follows from constraint (3.17d). We conclude Enew ̸= ∅. Next, to see that

Enew ∩ Ẽ = ∅, note that by constraint (3.18a), wt∗
ij = 1 implies λtij = 0. Because λtij = 1 if and only

if etij ∈ Ẽ by definition, it follows that wt∗
ij = 1 implies etij ̸∈ Ẽ. Because etij ∈ Enew if and only if

wt∗
ij = 1, we have Enew ∩ Ẽ = ∅, as desired. Step 2. We now prove the statement in Proposition 4.

Let Ẽt be the set of edges in iteration t of EdgeGen. We wish to show that there exists t′ < ∞

such that CausalIP(Ẽt′) has an optimal objective value of 0. By Lemma 9, CausalIP(Ec) has

an optimal objective value of 0. Therefore, it suffices to show that there exists t′ < ∞ such that

Ẽt′ = Ec. Note Ẽt = Ẽt−1 ∪ Ẽnew by Algorithm 2. Further, Enew ̸= ∅ and Enew ∩ Ẽ = ∅ by Step 1.
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It follows that Ẽt ⊂ Ẽt+1 for all t > 0. Because Ẽt ⊂ Ẽt+1 and Ẽt ⊆ Ec for all t > 0, there must

exist t′ <∞ such that Ẽt′ = Ec. □

B.4.4 Proof of Theorem 5

Proof of Theorem 5. By a parallel argument to the proof of Proposition 3, statement (ii) implies

(i) under Assumption 6. Therefore, it remains to prove (ii). For any graph G = (V,E), define x(G)

such that for all e ∈ Ec, xe(G) = 1 if and only if e ∈ E. By Proposition 3, Gc ∼ GT for any graph

Gc attained at an optimal solution to CausalIP(Ec). Therefore, to show that G∗ ∼ GT , it suffices

to construct (x̄, ȳ, z̄) such that the following two conditions hold: (a) (x̄, ȳ, z̄) satisfies x̄ = x(G∗),

and (b) (x̄, ȳ, z̄) is an optimal solution to CausalIP(Ec). The proof proceeds in two steps. First,

we construct the solution (x̄, ȳ, z̄). Second, we show that it satisfies conditions (a) and (b). Step

1. Let Ẽ ⊆ Ec be the set of candidate edges at termination of Algorithm 1, and let (x̃, ỹ, z̃) be the

optimal solution to CausalIP(Ẽ). Construct (x̄, ȳ, z̄) as follows. Set x̄e = x̃e for e ∈ Ẽ; otherwise,

set x̄e = 0. Set ȳp = ỹp if p ∈ P(E); otherwise, set ȳp = 0. Set z̄ = z̃. Step 2. Note that

condition (a) is satisfied by construction. It remains to show that (x̄, ȳ, z̄) satisfies condition (b).

By Proposition 4, the optimal solution (x̃, ỹ, z̃) at termination of Algorithm 1 satisfies z̃nij = 0 for

all n ∈ Nij , i, j ∈ V . It follows that z̄nij = 0 for all n ∈ Nij , i, j ∈ V . Because (x̄, ȳ, z̄) attains the

optimal objective value of 0, it remains to show that (x̄, ȳ, z̄) is feasible to CausalIP(Ec). Note

(x̄, ȳ, z̄) satisfies the binary constraints in CausalIP(Ec) by construction. In the remainder of the

proof, we show that (x̄, ȳ, z̄) satisfies the constraints (3.4)–(3.6) inCausalIP(Ec), in order. We first

show (x̄, ȳ, z̄) satisfies constraints (3.4a) and (3.4b) in CausalIP(Ec). For the paths p ∈ P(Ẽ), the

constraints (3.4a) and (3.4b) in CausalIP(Ec) are immediately satisfied, because those constraints

also appear in CausalIP(Ẽ). We now show (3.4a) and (3.4b) are satisfied for p ∈ P(Ec) \ P(Ẽ).
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Note that (x̄, ȳ, z̄) trivially satisfies constraint (3.4b) for p ∈ P (Ec) \ P(Ẽ), because we set ȳp = 0

for those paths. We now show constraint (3.4a) is satisfied for all p ∈ P(Ec) \ P(Ẽ). Pick any

p ∈ P(Ec) \ P(Ẽ). Then for the right hand side of the constraint (3.4a) for p,

∑
e∈Ec

hpex̄e − (lp − 1) =
∑
e∈Ẽ

hpex̄e +
∑

e∈Ec\Ẽ

hpex̄e − (lp − 1)

=
∑
e∈Ẽ

hpex̄e − (lp − 1),

where the first line follows from separating the summation over Ec, and the second line follows

because we set x̄e = 0 for all e ̸∈ Ẽ. Because ȳp ≥ 0, it remains to show that
∑

e∈Ẽ hpex̄e−(lp−1) ≤

0. By definition, hpe = 1 if and only if edge e is on path p, which implies
∑

e∈Ec hpe = lp. Because

p /∈ Pij(Ẽ), there must exist an edge e on path p such that e ̸∈ Ẽ. It follows that
∑

e∈Ẽ hpe < ℓp.

Because x̄e ≤ 1 and ℓp is integer-valued,
∑

e∈Ẽ hpe < ℓp implies
∑

e∈Ẽ hpex̄e − (ℓp − 1) ≤ 0, as

desired. Next, we show (x̄, ȳ, z̄) satisfies constraint (3.5) in CausalIP(Ec). Note that for each

n ∈ ND
ij and i, j ∈ V , the left hand side of the constraint is (3.5) is

∑
p∈Pij(Ec)

αn
ijpȳp =

∑
p∈Pij(Ẽ)

αn
ijpȳp +

∑
p∈Pij(Ec)\Pij(Ẽ)

αn
ijpȳp,

=
∑

p∈Pij(Ẽ)

αn
ijpȳp,

where the first line follows by separating the summation over Pij(E
c), and the second line follows

because ȳp = 0 for p /∈ Pij(Ẽ) by construction. Therefore, (x̄, ȳ, z̄) satisfies constraint (3.5) in

CausalIP(Ec) if and only if

∑
p∈Pij(Ẽ)

αn̄
ijpȳp ≤ 1− z̃n̄ij , n ∈ ND

ij , i, j ∈ V. (B.5)
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Note that inequality (B.5) is equivalent to constraint (3.5) in CausalIP(Ẽ). Because ȳp = y∗p for

p ∈ Pij(Ẽ), z̄ = z̃, and (x̃, ỹ, z̃) satisfies constraint (3.5) in CausalIP(Ẽ), inequality (B.5) holds.

We conclude (x̄, ȳ, z̄) satisfies constraint (3.5) in CausalIP(Ec). Lastly, we show (x̃, ỹ, z̃) satisfies

constraint (3.6) in CausalIP(Ec). Note that this constraint can be separated into the following

two subsets of constraints:

αn
ijpyp ≤ znij , p ∈ Pij(E

c) \ Pij(Ẽ), n ∈ N I
ij , i, j ∈ V, (B.6a)

αn
ijpyp ≤ znij , p ∈ Pij(Ẽ), n ∈ N I

ij , i, j ∈ V. (B.6b)

It suffices to show (x̄, ȳ, z̄) satisfies both (B.6a) and (B.6b). Note (B.6a) is satisfied by (x̄, ȳ, z̄)

because ȳp = 0 for p /∈ Pij(Ẽ) by construction, and z̄nij ≥ 0 for all n ∈ N I
ij , i, j ∈ V . Next, note that

(B.6b) is constraint (3.6) in CausalIP(Ẽ). Because ȳp = ỹp for p ∈ Pij(Ẽ), z̄ = z∗, and (x̃, ỹ, z̃)

satisfies constraint (3.6) in CausalIP(Ẽ), (x̄, ȳ, z̄) satisfies (B.6b) as well. □

B.4.5 Proof of Theorem 6

Lemma 14. Let (m∗,v∗, ξ∗) be an optimal solution to BlanketIP. Under Assumption 6, if

λ ∈ (0, 1/|V |), then ξ∗i = 0 for all i ∈ V \ {T}.

Proof of Lemma 14. Let (m∗,v∗, ξ∗) be an optimal solution to BlanketIP, and suppose by

way of contradiction that ξ∗i = 1 for some i ∈ V \{T}. Then, trivially, the objective of BlanketIP

is at least 1 − λ. We obtain a contradiction by constructing a feasible solution with an objective

strictly less than 1−λ. Construct a solution (m̃, ṽ, ξ̃) where for all i ∈ V \{T} : m̃i = 1 if and only

if i ∈MB(T ), vni = 1 if and only if Cn
Ti =MB(T ) for all n ∈ NT i, and ξ

∗
i = 0. It is straightforward

to verify that under Assumption 6, the solution (m̃, ṽ, ξ̃) satisfies constraints (3.21) and (3.23), and
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is thus feasible to BlanketIP. Further, by construction, (m̃, ṽ, ξ̃) attains an objective of

∑
i∈V \{T}

((1− λ) · ξ̃i + λ · m̃i) <
1

|V |
∑

i∈V \{T}

m̃i ≤
1

|V |
(|V | − 1),

where the first inequality follows because ξ̃i = 0 for all i ∈ V \ {T} and λ < 1/|V |, and the second

follows because
∑

i∈V \{T} m̃i ≤ |V |−1. Finally, it follows from λ < 1/|V | that 1
|V |(|V |−1) < 1−λ,

which contradicts the optimality of (m∗,v∗, ξ∗). The result follows. □

Proof of Theorem 6. It follows from Lemma 14 that the optimal objective is
∑

i∈V \{T} λ ·m∗
i ,

which is the fewest number of selected nodes that satisfy constraints (3.21)–(3.23). Then by Propo-

sition 6 in Appendix B.3, it suffices to show that every solution to (3.21)–(3.23) such that ξi = 0,

i ∈ V \ {T} corresponds to a set V (T ) containing all nodes that form a collider chain with T . Let

W1 be the set of nodes that form a collider chain of length 1 with T – in other words, nodes that

are adjacent to T . Let W2 be the set of nodes that form a collider chain of length at least 2 with T .

The proof proceeds in three steps. First, we prove the following supporting result: If i and T are

d-connected with respect to V (T ), then i ∈ V (T ). Second, we show W1 ⊆ V (T ) for any feasible

V (T ), and third, we show W2 ⊆ V (T ) for any feasible V (T ). Step 1. If i and T are d-connected

with respect to V (T ), then i̸⊥⊥T |V (T ) (by Remark 1). Because i̸⊥⊥T |V (T ) and Assumption 6 holds,

by definition of IT i it follows that V (T ) /∈ IT i. Next, it is straightforward to verify using the defini-

tion of θnij and constraints (3.21a) and (3.21b) that vni = V (T ) if and only if Cn
Ti = V (T ) for some

conditioning set Cn
Ti. Because V (T ) /∈ IT i, it follows that v

n
i = 0 for all n ∈ N I

T i. Then constraint

(3.23) simplifies to mi+
∑

n∈NI
Ti
vni = mi ≥ 1, which implies mi = 1. By definition of V (T ), mi = 1

implies i ∈ V (T ), as desired. Step 2. Because i is adjacent to T for each i ∈ W1 by construction,

by definition of IT i and Assumption 6 we have IT i = ∅ for i ∈W1. This implies N I
T i = ∅ for i ∈W1.
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It follows that constraint (3.23) simplifies to mi +
∑

n∈NI
Ti
vni = mi ≥ 1, for all i ∈ W1. Because

V (T ) = {i ∈ V |mi = 1} by definition, we concludeW1 ⊆ V (T ). Step 3. We now showW2 ⊆ V (T ).

Let W ℓ
2 store all nodes that form collider paths of length less than or equal to ℓ with T , where

ℓ ∈ {2, . . . , |V | − 1} (for paths of length ℓ = 1, the node is adjacent to T , which is addressed in

Step 1). Note W 2
2 ⊆ . . . ⊆W

|V |−1
2 =W2. We prove the result by induction, using ℓ = 2 as the base

case. Base case. Pick any node i ∈W 2
2 . It suffices to show i ∈ V (T ). By definition of W 2

2 , there is

a collider path of length 2 – call it p – from i to T . Let j be the collider on this path. Note that

because ℓ = 2, the collider j must be adjacent to T . Therefore, j ∈ V (T ) by Step 1. Because j is

the only collider on path p and j ∈ V (T ), the path p is unblocked with respect to V (T ) (Definition

3). Therefore, i and T are d-connected with respect to V (T ) (Definition 4). It follows from Step 1

that i ∈ V (T ). Induction step. For the induction hypothesis, assume W l
2 ⊆ V (T ) holds. We now

show W l+1
2 ⊆ V (T ) holds, by showing i ∈ V (T ) for any i ∈W l+1

2 . Pick any i ∈W l+1
2 , and let p be

the collider path i forms with T . Because p is a collider path of length ℓ + 1, every non-endpoint

node in p forms a collider path of length less than or equal to ℓ with T . Because W l
2 ⊆ V (T ) by

the induction hypothesis, it follows that every collider on path p is in V (T ). Therefore, path p is

unblocked with respect to V (T ) (Definition 3), which implies i and T are d-connected with respect

to V (T ). It follows from Step 1 that i ∈ V (T ), and thus W l+1
2 ⊆ V (T ). □
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