
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Power Efficient Scheduling for Network Applications on Multicore Architecture

Permalink
https://escholarship.org/uc/item/3jv190hf

Author
Kuang, Jilong

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3jv190hf
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Power Efficient Scheduling for Network Applications on Multicore Architecture

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Jilong Kuang

December 2011

Dissertation Committee:

Professor Laxmi Bhuyan, Chairperson
Professor Chinya Ravishankar
Professor Walid Najjar

Copyright by
Jilong Kuang

2011

The Dissertation of Jilong Kuang is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

It is my great pleasure to thank those who made this dissertation possible. I would

never have been able to finish it without the guidance of my committee members, help from

friends, and support from my family and landlord.

I would like to express my deepest gratitude to my advisor, Dr. Laxmi Bhuyan, for

his excellent guidance, caring, patience, and providing me with a pleasant atmosphere for

doing research. I would also like to thank Dr. Chinya Ravishankar and Dr. Walid Najjar

for guiding my dissertation, giving precious advice and participating in my final defense

committee.

I would like to thank my dear parents and the entire family. They were always

supporting me and encouraging me with their best wishes.

I would like to thank all members from my lab, who were always willing to help,

discuss ideas, and give helpful suggestions. It would have been a lonely lab without them.

Many thanks to all my collaborators and friends for helping me complete my Ph.D study.

Without them, it would have been difficult to write this dissertation.

Finally, I would like to thank my landlord, Gladys Deforest. She was always there

in the past five years cheering me up and stood by me through the good times and bad.

iv

ABSTRACT OF THE DISSERTATION

Power Efficient Scheduling for Network Applications on Multicore Architecture

by

Jilong Kuang

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2011

Professor Laxmi Bhuyan, Chairperson

Explosive growth of Internet high-traffic applications, such as web browsing, on-

line searching, video streaming, and gaming, requires orders-of-magnitude increase in system

throughput. The advent of commodity multicore platforms in the market has opened a new

era of computing for network applications due to their superiority in performance, availabil-

ity and programmability. Along with increased throughput, however, comes significantly

increased power consumption. Collectively, millions of servers in the global network con-

sume a great deal of power. And chip manufactures continue to increase both the number

of cores and their frequencies, substantially increasing power consumption. With higher

power consumption, energy is expected to become more expensive. Higher power consump-

tion also increases core temperature, which exponentially increases the cost of cooling and

packaging, as well incurs indirect and life-cycle costs due to reduced system performance,

circuit reliability and chip lifetime. Therefore, power efficiency has become and will con-

tinue to be a first-order design issue.

v

In this thesis, we focus on power-efficient scheduling for network applications on

multicore architectures. Our goal is to improve the performance of network applications

in terms of throughput, latency, power, energy and temperature when deployed on multi-

core servers. More specifically, we first propose a latency and throughput-aware scheduling

scheme based on parallel-pipeline topology. Then, we propose a throughput and latency

optimization scheme under given power budget for the parallel-pipeline scheduling topol-

ogy. We also present a power-optimal scheduling algorithm with regard to traffic variation

via the use of per-core Dynamic Voltage and Frequency Scaling (DVFS), power gating

and power migration. Further more, we explore temperature related issues by proposing a

predictive model-based thermal-aware scheduling scheme. We design, implement, and eval-

uate our novel schemes on real systems (e.g., Intel Xeon E5335 and AMD Opteron 2350)

with benchmark applications ranging from micro level (e.g., CRC checksum calculation and

switching table look-up) to IP level (e.g., IP forwarding, routing, and flow classification) to

application level (e.g., encryption/decryption and URL-based switching). Through exten-

sive experiments, we observe that our schemes outperform existing approaches substantially.

vi

Contents

List of Figures x

List of Tables xii

1 Introduction 1

2 Related Work 10
2.1 Parallelism in Multicore Architecture . 10
2.2 Power/Energy-aware Scheduling . 13
2.3 Thermal Management Techniques . 16

2.3.1 Reactive Approaches . 17
2.3.2 Proactive Approaches . 18

3 Latency and Throughput-Aware Scheduling 22
3.1 Introduction . 22
3.2 LATA System Design . 23

3.2.1 Program Representation . 24
3.2.2 Communication Measurement . 25
3.2.3 Problem Statement . 25
3.2.4 DAG Generation . 26

3.3 LATA Scheduling, Refinement and Mapping 27
3.3.1 List-based Pipeline Scheduling Algorithm 27
3.3.2 Search-based Refinement Process . 29
3.3.3 Cache-Aware Resource Mapping . 34

3.4 Experiment Framework . 37
3.5 Performance Evaluation . 39

3.5.1 Comparison with Parallel System . 39
3.5.2 Comparison with Three NP Systems 41
3.5.3 Latency Constraint Effect . 42
3.5.4 Scalability Performance of LATA . 43
3.5.5 Instruction Cache Size Performance 44

vii

4 Optimizing Throughput and Latency Under Power Budget 46
4.1 Introduction . 46
4.2 Preliminaries . 48

4.2.1 Application Model . 48
4.2.2 Power Model . 49
4.2.3 Problem Statement . 50

4.3 Power-Aware Scheduling Algorithm . 52
4.3.1 Optimization Model . 52
4.3.2 A Three-Step Recursive Algorithm 53
4.3.3 Practical Issues with Discrete Frequency Levels 60

4.4 Experiments and Evaluation . 60
4.4.1 Experimental Framework . 60
4.4.2 Performance Evaluation . 62
4.4.3 Power Reduction in Step One . 63
4.4.4 Power and Latency Performance in Step Two 64
4.4.5 Throughput and Latency Comparison in Step Three 66
4.4.6 Power Budget Sensitivity Performance 68

5 Power-Optimal Scheduling Under Traffic Variation 70
5.1 Introduction . 70
5.2 Traffic-aware power optimization . 72

5.2.1 System Design . 72
5.2.2 Step 1: System Service Model . 75
5.2.3 Step 2: Dynamic Power Optimization 78
5.2.4 Step 3: Static Power Optimization 86

5.3 Experimental Evaluation . 90
5.3.1 Experiment Setup . 90
5.3.2 Power Savings . 93
5.3.3 Energy Savings . 95
5.3.4 Reconfiguration Overhead . 97
5.3.5 Thermal Behavior . 98

6 Predictive Model-Based Thermal-aware Scheduling 101
6.1 Introduction . 101
6.2 Preliminaries . 104

6.2.1 System Architecture . 104
6.2.2 Core/Cache Topology . 105
6.2.3 Notations . 107
6.2.4 Problem Statement . 109

6.3 Periodic Task Thermal Model . 109
6.3.1 Single Task Thermal Model . 111
6.3.2 Periodic Task Thermal Model . 113
6.3.3 Model Thermal Properties . 115
6.3.4 Time Complexity and Accuracy . 117

viii

6.3.5 Online Model Update . 118
6.4 Predictive Thermal-aware Scheduler . 121

6.4.1 Thermal Management Techniques 121
6.4.2 Overhead Quantification . 123
6.4.3 Scheduling Algorithm . 125

6.5 Experiment and Evaluation . 128
6.5.1 Experiment Setup . 128
6.5.2 Model Verification . 133
6.5.3 Performance Evaluation . 137

7 Conclusion 145

Bibliography 149

ix

List of Figures

1.1 Illustration of traffic variation in 24 hours. 5

3.1 LATA system design flowchart. 24
3.2 Parallel pipeline scheduling from a DAG. 28
3.3 Latency hiding on node E. 30
3.4 CCP elimination. 31
3.5 CCP reduction. 31
3.6 Illustration of four decomposition techniques. 33
3.7 Illustration of cache-aware mapping. 36
3.8 Layout of two Quad-Core Intel Xeon E5335 processors. 37
3.9 LATA with parallel pipeline topology. 37
3.10 Latency of six applications by LATA, Parallel and List. 40
3.11 Throughput of six applications by LATA, Parallel and List. 40
3.12 Latency of six apps by LATA, Greedy, Random and Bipar. 41
3.13 Throughput of six apps by LATA, Greedy, Random and Bipar. 42
3.14 Latency and throughput of Flow application by LATA. 42
3.15 Latency and throughput of Route application by LATA. 44
3.16 Throughput of IPv4-trie by LATA, Greedy, Random and Bipar. 45

4.1 A parallel-pipeline scheduling from DAG. 48
4.2 Illustration of the first step of the algorithm. 53
4.3 Illustration of the second step of the algorithm. 56
4.4 Illustration of the third step of the algorithm. 57
4.5 The power-aware parallel-pipeline scheduling algorithm. 58
4.6 Experiment framework and flowchart. 61
4.7 Power of six applications after step one. 64
4.8 Power of six applications after step two. 65
4.9 Latency of six applications after step two. 65
4.10 Throughput when power budget is 75% of the initial value. 66
4.11 Latency when power budget is 75% of the initial value. 67
4.12 Throughput for IPchains when power budget varies. 68

x

4.13 Latency for IPchains when power budget varies. 69

5.1 Overview of the traffic-aware and power-efficient system. 72
5.2 A three-step power optimization scheme. 75
5.3 Throughput versus different per-core frequency combinations. 76
5.4 Throughput versus cumulative core frequency. 77
5.5 Power consumption as the number of active cores varies. 81
5.6 Power versus different per-core frequency combinations. 84
5.7 Power versus two-core frequency combinations. 85
5.8 Power versus cumulative core frequency with two cores. 85
5.9 Illustration of power migration for active cores. 87
5.10 Power savings percentage under different workloads. 94
5.11 Power consumption comparison with three other schemes. 95
5.12 Normalized energy consumption with three other schemes. 96
5.13 Reconfiguration overhead versus time in our scheme. 98
5.14 Temperature performance under different workloads. 99

6.1 Overview of the system architecture. 104
6.2 A tree-based core/cache topology on multicore architecture. 106
6.3 Temperature variation as the periodic task executes. 110
6.4 Online model update in practice. 120
6.5 Power consumption versus time on Wattch. 130
6.6 Execution time versus packet size for URL and DRR. 131
6.7 Model validation on HotSpot for single task. 133
6.8 Model validation on HotSpot for periodic tasks. 134
6.9 Model validation on real machine for single task. 135
6.10 Model validation on real machine for periodic tasks. 136
6.11 Temperature behavior of MD5 with five schedulers. 138
6.12 Thermal violation percentage for six applications. 139
6.13 Temperature variance of MD5 with five schedulers. 141
6.14 Throughput percentage for six applications. 143
6.15 Scheduling overhead per-packet for six applications. 144

xi

List of Tables

3.1 Six packet processing applications. 38

4.1 Frequency(GHz) and power(W) configuration. 62
4.2 Power and latency after step one (S1) and two (S2). 63

5.1 Six network applications from NetBench. 91
5.2 Application-specific parameters. 92
5.3 Synthetic workload for different traffic rate. 93
5.4 Per-core frequency configuration snapshot at 17:00. 97

6.1 Six network applications from NetBench. 129
6.2 Packet trace patterns. 129
6.3 Application power and time characteristics. 131
6.4 Thermal parameters from HotSpot. 133
6.5 Thermal parameters from real machine. 135

xii

Chapter 1

Introduction

The explosive growth of network bandwidth and Internet high-traffic applications,

such as web browsing, online searching, video streaming, and gaming, require orders-of-

magnitude increase in packet processing throughput. The advent of commodity multicore

platforms, such as Caviums OCTEON [2], Ciscos AON [3], and IBMs BladeCenter [6], has

opened a new era of computing for network applications to take advantage of these low-

cost machines due to their superiority in performance, availability and programmability.

More and more network packet processing systems have been developed on such platforms

ranging from general-purpose processors (e.g., Intel’s Xeon [9] and AMD’s Opteron [1])

to network processors (e.g., Intel’s IXP platform [8]) and programmable logic devices (e.g.,

NetFPGA [14]). To exploit available parallelism for better throughput, network applications

running on multicore platforms usually take one of the following three forms:

1. Spatial parallelism, where multiple concurrent packets are processed in different pro-

cessors independently. Typical examples can be found in work for TCP (Transmis-

1

sion Control Protocol) parallelism [20], scalable DPI (Deep Packet Inspection) de-

sign [42,73], flow-level packet processing [78] and parallel multimedia transcoding [55].

2. Temporal parallelism (pipelining), where multiple processors are scheduled into a

pipeline to overlap periodic executions from different threads. It has been widely

adopted in network processors, including Shangri-La [25], auto-partitioning [30], sta-

tistical approach [66] and Greedy [95].

3. Hybrid parallelism, which integrates both spatial and temporal parallelism to benefit

from the advantages of both sides. It forms a parallel pipeline core topology, where

each stage contains multiple parallel cores, such as Random [91] and Bipar [98].

Although the above approaches aim to maximize throughput, none of these systems

has considered latency reduction in packet processing because they employ coarse-grained

packet-level parallelism. As emerging latency-sensitive applications become popular, such as

online gaming, VoIP, fast IP-lookup and real-time DPI, latency plays a more important role

than throughput [74]. For example, online gaming requires very low latency, but requires

only limited throughput as low as a few kbps. The state of the players changes rapidly

and a player could be dead before knowing if the latency is high. Therefore, it is necessary

to design a packet processing system that can attain high throughput under given latency

constraints.

Traditional task scheduling schemes, such as list-based scheduling [17] and clustering-

based scheduling [94], are capable of reducing program latency by exploiting fine-grained

task-level parallelism. However, because they do not apply pipelining, they suffer from

2

significant throughput deterioration when executing periodic packet processing tasks. Pa-

pers [101] and [61] have presented some research results on reducing protocol latency for

high-speed gateways and telecommunication systems based on hybrid parallelism. Devel-

oping a packet processing system that considers both latency and throughput for multicore

architectures is both interesting and challenging. Thus, in Chapter 3, we present a latency

and throughput-aware scheduling scheme based on parallel-pipeline topology.

Along with increased throughput and reduced latency, however, comes increased

power consumption for network applications running on multicore architecture [39]. Col-

lectively, millions of servers in the global network consume a great deal of power. And

chip manufactures continue to increase both the number of cores and their frequencies,

substantially increasing both dynamic and static power consumption. Higher power con-

sumption increases costs, both directly and indirectly. Energy itself is expected to become

more expensive, especially if environmental impacts are factored into consumption. Higher

power consumption also increases core temperature, which exponentially increases the cost

of cooling and packaging [83]. Higher temperatures also increase indirect and life-cycle costs

due to reduced system performance, circuit reliability, and chip lifetime. Therefore, power

management is a first-order design issue.

At the hardware level, there are two main techniques to reduce power consumption:

either by scaling it down or by nearly powering it down altogether, at appropriate times.

The first technique, Dynamic Voltage and Frequency Scaling (DVFS), reduces or increases

processor voltage/frequency just enough to meet performance requirements. DVFS can

be either chip-wide, where the entire chip is scaled as one unit (e.g., IBM’s TPMD [36],

3

Intel’s Foxton technology [67]), or per-core, where individual cores on the chip can be scaled

at different rates (e.g., AMD’s Opteron processor [1], IBM’s POWER7 systems [7]). Per-

core DVFS adjusts the frequency of each core individually at runtime with on-chip voltage

regulators, achieving nanosecond-scale voltage switching and per-core voltage control [50].

Although it is more complex to implement, per-core DVFS achieves greater power savings

with its fine-grain control over individual cores.

The second hardware-level technique, called power gating, minimizes leakage cur-

rent when a core is inactive by powering it down almost completely. Power gating has

been introduced only recently by major chip manufacturers (e.g., Intel’s Nehalem [57]). A

power-gated core can be considered inactive with near-zero power consumption while other

cores continue to work undisturbed. The transition time to wake up a power-gated core

can be in the order of microseconds with integrated power switch [37], which is suitable for

practical use with negligible performance cost.

As we propose the parallel-pipeline scheduling on task-level, we realize that there

has been no existing work considering the power budget issues for it. Previous power-aware

algorithms either have not considered latency [51] [64], or have not explored the parallel-

pipeline topology for task scheduling [40] [44] [70]. Since power gating can not be directly

applied to task scheduling [64], we resort to DVFS to integrate power-awareness into parallel-

pipeline scheduling. In Chapter 4, we propose a throughput and latency optimization

scheme under given power budget for the parallel-pipeline scheduling based on per-core

DVFS.

4

In order to determine when to reduce power to the core, various application run-

time characteristics must be exploited, such as program phase analysis [46,47], degree of par-

allelism [60], and time slack detection [54,70,100]. We see great potential for power-saving

opportunity, in an additional application run-time characteristic: network traffic variation.

Computing power needs fluctuate dramatically with the large fluctuations in network traf-

fic. For example, Figure 1.1 shows real-time network traffic in a typical day monitored

by Equinix data center [4] at San Jose, CA. Different colors represent the breakdown of

different packet types. The traffic rate varied from 320K packets/s to 720K packets/s at

different times of the day implying that the power consumption could be greatly reduced

when traffic is low.

Figure 1.1: Illustration of traffic variation in 24 hours.

5

Several existing studies do consider traffic variation, but they are limited in the

following two ways:

1. Dynamic Power Only. They assume that dynamic power dominates total power

consumption, and that static power can be ignored [51,65,81]. However, static power

has increased dramatically with increases in device speed and chip density. According

to a projection by the International Technology Roadmap for Semiconductors, leakage

power increases its dominance of total power consumption as semiconductors progress

toward 32nm [10]. Therefore, static power can no longer be ignored in power models

for multicore servers.

2. Single Dimensional. Traffic-aware studies focus either on single-core platforms and

chip-wide DVFS [81], or adopt power gating only [51, 65]. These approaches cannot

be applied to multicore systems that support both per-core DVFS and power gating.

Much more fine level optimization is possible.

Using a combination of per-core DVFS and power gating can potentially minimize

power consumption when network traffic is low. With this approach, cores perform different

amounts of work because all cores do not run all the time, or each core may run at a

different frequency. Some cores may then be stressed more than others, and overworked

cores will generate excess heat, increasing static power consumption exponentially with

temperature [85]. It is therefore advisable to migrate active cores periodically to maintain

lower peak core temperature and less static power consumption. A software approach

called power migration can be used to achieve thermal load balancing across the cores.

6

Locations of more- and less-active cores can be dynamically changed according to some

policy while keeping the same system operating level. Given the same amount of heat

generation depending on the number of active cores and core frequency, power migration

can redistribute the generated heat, reduce peak core temperature and improve thermal

uniformity [27]. Accordingly, we present a power-optimal scheduling algorithm with regard

to traffic variation via the use of per-core DVFS, power gating and power migration in

Chapter 5.

Besides power and energy, temperature and thermal constraints also pose a sig-

nificant challenge to future system design [43]. It is known that temperature gradients

and thermal hotspots adversely affect not only system performance and leakage power, but

also circuit reliability and chip lifetime. In addition, cooling and packaging cost for heat

dissipation increases exponentially with power and peak temperature [83].

There are two different approaches to thermal management design. The reac-

tive approach refers to applying various thermal techniques (e.g., Stop&Go, hardware

toggling or throttling, dynamic frequency and voltage scaling (DVFS), power/clock-gating

and task migration [21, 26, 35, 43, 60, 71, 76, 83, 88]) to solve thermal issues based on prior

information. However, this approach can only passively respond to thermal emergencies,

which causes serious problems including long response time, performance degradation and

thermal constraint violation. The proactive approach overcomes such problems by using

thermal models (e.g., [18,19,48,56,86,89,92,93,96,97,99]) or other means (e.g., [27,58,72])

to estimate system temperature “on-the-fly” and dynamically apply appropriate thermal

management techniques.

7

Traditionally, schedulers for network applications only care about metrics such as

throughput, load balancing and real time constraint. It is up to stand-alone thermal man-

agement techniques to address thermal issues, most likely following a reactive approach. In

this paper, we choose a proactive approach for network applications by integrating thermal

awareness into the scheduler design. Our motivation comes from the following two obser-

vations: 1) Decoupling scheduling and thermal management as in traditional approaches

(reactive) will inevitably cause performance deterioration and thermal constraint violations.

2) Network applications feature in periodic packet processing that allows the scheduler to

distribute incoming tasks on different cores in a thermal-aware fashion. Unlike task mi-

gration which incurs expensive data copy and communication cost, packet migration has

negligible overhead.

There are three challenges to be addressed to design such a thermal-aware sched-

uler. First, how to dynamically obtain core temperature in a fast and accurate manner?

It is known that simulation (e.g., HotSpot [85]) is too slow and impractical for online use.

Directly reading on-chip thermal sensors suffers from coarse granularity issues (e.g., AMD’s

processor does not support per-core temperature reading and Intel’s Coretemp driver only

reads one temperature per second). Our solution is to build a verifiable thermal model to

derive core temperature. Second, how can one build a predictive thermal model for network

applications that feature periodic tasks? The existing predictive thermal models [96, 97]

are limited to a single task, whose temperature will simply rise to saturation point and

then stabilize. Building a time-based predictive thermal model for periodic tasks that can

characterize both temperature rise and fall is novel. Third, how to define a good thermal

8

behavior? Some studies set a temperature threshold [60, 76, 89, 97], whereas others focus

on thermal balancing and minimizing peak core temperature [26, 27, 71]. We factor both

aspects in our design, since otherwise the former suffers from thermal imbalance and the

latter degrades the throughput. Thus, in chapter 6, we propose a predictive model-based

thermal-aware scheduling for periodic packet processing on multicore architecture.

We design, implement and evaluate all our novel schemes on real systems (e.g.,

Intel Xeon E5335 and AMD Opteron 2350) with benchmark applications ranging from

micro level (e.g., CRC checksum calculation and switching table look-up) to IP level (e.g., IP

forwarding, routing, and flow classification) to application level (e.g., encryption/decryption

and URL-based switching). We believe that real experimental results are more convincing

that simulation results only. Through extensive experiments, we observe that our schemes

outperform existing approaches substantially.

The rest of this thesis is organized as follows. Chapter 2 presents related work

and motivation for our work. In Chapter 3, we introduce latency and throughput-aware

scheduling. In Chapter 4, we present optimization of both throughput and latency under

a given power budget. Chapter 5 focuses on traffic-aware power optimization for network

applications. We propose a predictive model-based thermal-aware scheduling scheme for

periodic packet processing in Chapter 6. Finally, Chapter 7 concludes this thesis.

9

Chapter 2

Related Work

2.1 Parallelism in Multicore Architecture

Generally speaking, there are three forms of parallelism for network applications

running on multicore architecture. The first type is spatial parallelism, which means each

core or processor independently executes packets/streams so that multiple concurrent pack-

ets/streams can be processed in parallel. Spatial parallelism can be found in many existing

works, such as [20, 42, 55, 73, 78]. More specifically, [20] presents a multiprocessor imple-

mentation for parallel protocol processing. A processor-per-message paradigm is used to

partition the work across processors. It means that any processor can process the whole

protocol stack for one message. [42] proposes a highly scalable multi-threaded DPI sys-

tem (L7-filter) for multicore servers. It explores potential connection level parallelism in

pattern matching and develops an affinity-based scheduler to enhance the scalability of mul-

tithreading. Similarly to [42], [73] proposes and implements two new DPI packet scheduling

10

algorithms. One is designed to maximize work balance and the other cache affinity. Their

observation confirms that scheduling packets for cache affinity is more important than bal-

ancing the workload. In addition, [78] presents a design of high-performance flow-level

packet processing system based on multicore network processors, which includes a high per-

formance flow classification algorithm, an efficient flow state management scheme, and two

hardware-optimized packet ordering strategies. In [55], an adaptive hash scheduler is pro-

posed for stream processing on multicore servers. In particular, it studies video transcoding

application and shows that the scheduler can achieve stream locality and load balancing at

both the stream and packet level.

The second type is temporal parallelism, which means multiple cores are orga-

nized into a pipeline to overlap periodic executions from different threads. It has been

widely adopted in network processors, including Shangri-La [25], auto-partitioning [30],

statistical approach [66] and Greedy [95]. First, [25] describes the Shangri-La compiler,

which applies a throughput-driven heuristic algorithm to merge tasks written in a C-like

high-level language into stages from bottom up. Hot code paths identified by profiling are

mapped across processing elements to maximize processor utilization. Second, [30] proposes

an auto-partitioning C compiler to automatically partition a sequential packet processing

application into coordinated pipelined parallel subtasks. Their transformation technique

ensures that packet processing tasks are balanced among pipeline stages and that data

transmission between pipeline stages is minimized. Third, in [95], they partition network

applications into different stages with the consideration of limited instruction memory of

the processing elements (PEs). They greedily pack the tasks in sequential order until the

11

code size exceeds the instruction memory size. In addition, they also develop a theoretical

approach to determine an optimal topology of the PEs via multiple pipelines to exploit the

task/packet level parallelism. Last, in [66], they rely on the inherent modular nature of the

network applications and intelligently distributes modules among different execution cores.

They selectively replicate modules to parallelize execution of tasks having longer process-

ing time based on statistical analysis of probability distribution of the execution times of

different modules.

The third type is hybrid parallelism, which integrates both spatial and temporal

parallelism to benefit from the advantages of both. It forms a parallel pipeline core topology,

where each stage contains multiple parallel cores, such as Bipar [98] and Random [91]. [98]

introduces a multilevel balancing and refining algorithm for NP program mapping. They

use a divide-and-conquer approach to recursively bipartition the task graph into disjoint

subdomains until the code of the tasks can be fit into the instruction memory of PEs, which

guarantees a minimum number of pipeline stages to keep communication cost low. Then

their algorithm iteratively refines the solution by migrating tasks from the bottleneck stage

to other stages in a hybrid pipeline topology. In [91], they present a methodology to explore

the design space for the most suitable system topology (from pipelined to multi-processor

solutions) through performance modeling, which determines the system performance and

considers the effect of on-chip communication as well as off-chip memory accesses. They

propose a random mechanism for mapping the workload optimally to an arbitrary topology

based on run-time traces. However, this approach naturally suffers from a time-consuming

search process and memory explosion.

12

All these existing studies only work on coarse-grained packet-level parallelism,

which does not allow them to reduce packet latency. In contrast, our work focuses on

fine-grained task-level parallelism with parallel pipeline core topology, which is capable of

achieving low latency as well as attaining high throughput under given latency constraints.

2.2 Power/Energy-aware Scheduling

Much work has been done on reducing power/energy consumption of computer

systems. Based on targeted application types and approaches, we can classify these works

into four categories: 1) traditional task scheduling, 2) aperiodic applications, 3) periodic

real-time/network applications, and 4) traffic-aware network applications.

The first group combines traditional task scheduling with power awareness. [41] is

based on a list-scheduling heuristic with dynamic recalculation of priorities. It minimizes en-

ergy usage by choosing the best combination of voltages for each task. [80] applies genetic list

scheduling algorithms (GLSA) to schedule and map tasks. Besides simply exploiting avail-

able slack time, it also considers the PE power profile during a refined voltage section. [49]

presents CASPER (Combined Assignment, Scheduling, and PowER-management) for task

mapping and scheduling using a genetic algorithm. It employs two power management

techniques (PDP-SPM for homogeneous system and PV-DVS for heterogeneous one) in the

fitness function of the genetic algorithm. Although these works address task scheduling,

they do not deal with parallel-pipeline topology. Thus, we are motivated to propose a so-

lution that can optimize throughput and latency performance under a given power budget

for parallel-pipeline scheduling at the task-level.

13

In the second category, research communities have extensively studied program

execution characteristics for aperiodic applications. Some works focus on differentiating

program execution phases based on different CPU/memory-bound ratios and apply Dy-

namic Voltage and Frequency Scaling (DVFS) accordingly, such as [46,47]. This is because

reducing processor frequency when the program is in the memory-bound phase will not af-

fect performance. Specifically, [46] analyzes various global power management policies using

per-core DVFS to maximize performance for a given power budget. In [47], they propose

a runtime phase predictor that works cooperatively with DVFS. [29] regulates concurrency

and changes processors/threads configuration as the program executes by hardware event-

driven profiling. [63] optimizes a parallel workload by dynamically changing the number of

active processors and the voltage/frequency levels. It applies chip-wide DVFS rather than

per-core DVFS. [89] proposes a chip-level power control algorithm that is systematically

designed based on optimal control theory. Other works in this category consider proces-

sor variation in terms of static power consumed and maximum frequency supported, such

as [87], where a variation-aware algorithm for application scheduling and power manage-

ment is proposed. In addition, there are also some works that integrate both DVFS and

power gating in their approaches, such as [60], where they optimize throughput using chip-

wide DVFS and power gating for given applications with various degree of parallelism under

power and thermal constraints. However, these works do not consider periodic packet pro-

cessing in network applications on multicore servers, nor do they take into account traffic

variation, which is an important characteristics for network applications.

14

In the third category, a wide variety of DVFS algorithms have been proposed for

periodic real-time/network applications. By exploiting deadline slack or changing work-

load demand, they can reduce power consumption without violating time constraints. [54]

proposes a novel scheduling algorithm to optimize both throughput and latency given a

power budget for network packet processing on multicore architectures. Their algorithm

addresses power-aware parallel-pipeline scheduling problem by applying per-core DVFS to

optimally adjust frequency on each core. Some works use more robust DVFS algorithms

to schedule power based on multiple future task deadlines such as cycle-conserving and

look-ahead earliest deadline first DVFS [75] and Feedback Control-based DVFS [100]. In

addition, some strategies based on static power management (SPM) on task scheduling have

been proposed in real-time community. [40] uses simple static power management (S-SPM),

which distributes global static slack proportionally to the length of the schedule. [70] pro-

poses both greedy static power management (G-SPM), where the entire global static slack

is allocated to the first task on each processor, and static power management for paral-

lelism (P-SPM), where the degree of parallelism is taken into consideration. [44] introduces

the static power management with proportional distribution and parallelism (PDP-SPM)

which exploits both global and local slack. This scheme is so far the best among other SPM

mechanisms. However, no parallel-pipeline topology is considered. Other work focuses

on multimedia applications, such as [45], which develops an integrated algorithm to con-

trol both architectural adaptation and DVFS to save energy. In contrast to this category, we

15

mainly exploit 1) parallel-pipeline scheduling at the task-level and 2) traffic variation for

potential power savings as opposed to exploring time slacks.

In the fourth category, the research focus lies in network applications with traf-

fic variation, either with or without real-time constraints. First, [51] adapts the number

of activated processors based on queuing theory. It achieves minimized total energy con-

sumption while maintaining a bounded delay. [65] proposes a dynamic power gating scheme

for network processors, which adjusts the activities of processing engines (PEs) according

to varying traffic volume. It reduces energy consumption by turning off unnecessary PEs

when traffic is light. Second, [81] proposes a DVFS policy in addition to dynamic power

management (DPM) for a single-core multimedia system to achieve larger power savings.

The adjustment of voltage/frequency is based on an M/M/1 queuing model with constant

average frame delay. However, all these works consider dynamic power only, which results in

sub-optimal power savings. On the contrary, our work proposes a new power model which

considers both dynamic and static power and applies a combination of per-core DVFS,

power gating, and power migration techniques to optimally adjust per-core frequency con-

figuration “on-the-fly”.

2.3 Thermal Management Techniques

Much work has been done in thermal-related research area. We classify related

work in this section into two groups based on their approaches in thermal management

design, namely, reactive approaches and proactive approaches. Below, we introduce past

work in each group respectively.

16

2.3.1 Reactive Approaches

Reactive approaches can be grouped into three classes [24,31]: 1) dynamical ther-

mal management (DTM), 2) migration techniques, and 3) combination of the two.

In the first class, [21] is the first paper to investigate different DTM techniques. In

this work, five response mechanisms are considered, namely, I-cache-toggling, speculation

control, decode bandwidth throttling, clock frequency scaling and a combination of clock

frequency scaling and voltage scaling. [83] applies control-theoretic techniques to control

DTM to avoid thermal emergencies while minimizing performance loss. In [90], they develop

a thermal model called Matrix Model to derive core temperature and present a novel slack

allocation algorithm using DVFS to minimize peak temperature. [43] proposes to use both

frequency scaling and task-to-core allocation schemes to optimally increase the performance

of multicore processors under thermal constraints. [60] proposes to optimize throughput

by applying both per-core power gating and DVFS to power- and thermal-constrained

multicore processors. [35] proposes a global scheduling algorithm for real-time applications

to minimize the peak temperature by deriving an ideally preferred speed for each core.

As regard to migration techniques, [76] proposes heat-and-run SMT thread assign-

ment to increase processor-resource utilization by co-scheduling threads that use comple-

mentary resources and heat-and-run CMP thread migration to migrate threads away from

overheated cores to alternate cores. [26] investigates the trade-offs between temporal and

spatial hot spot mitigation schemes and thermal time constants, workload variations and

microprocessor power distribution. By leveraging spatial and temporal heat slacks through

task migration, their thermal-aware scheduling schemes enable lowering of on-chip unit

17

temperatures. In [69], they propose and study a thread migration method that maximizes

performance under a temperature constraint, while minimizing the number of migrations

and ensuring fairness between threads. In [71], they design a lightweight thermal balancing

policy for multiprocessor stream computing platforms, which bounds on-chip temperature

gradients via task migration.

Last, [24] proposes to use combined thermal techniques to solve temperature-

related issues. In this paper, they analyze the impact of a wide range of parameters that

influence the performance of DTM for multicore designs, and study different thread migra-

tion, DVFS, and combined schemes to provide insight for thermal management on multicore

architecture.

All these works are reactive approaches. In contrast, our work based on a predictive

thermal model for periodic tasks belongs to proactive approaches.

2.3.2 Proactive Approaches

In this category, some schemes do no rely on any thermal models. [27] proposes

proactive power migration to reduce spatial and temporal temperature difference by redis-

tributing the heat generating locations. They consider a predefined migration frequency

and evaluate two migration techniques: Cyclic Multiplexing and Global Coolest Replace.

In [72], they present a convex optimization based method that proactively controls the

temperature of the cores by applying DVFS depending on current workload and current

maximum temperature on the chip. They claim to minimize the power consumption, sat-

isfy application performance constraints and guarantee that core temperatures are below

18

a user-defined threshold at all times. In [28], they propose a low-cost temperature man-

agement strategy to reduce the adverse effects of hot spots and temperature variations.

Their technique utilizes online learning to select the best policy for the current workload

characteristics among a given set of expert policies. [58] investigates the effects of various

task scheduling policies on thermal behavior based on the hypothesis that on-chip thermal

sensors are able to feed instant temperature to the scheduler in millisecond time granular-

ity. They claim that the proposed MinTemp policy provides significant alleviation on chip

temperature with minimum overhead.

For other works that use thermal models, the prediction of temperature can be

based on: 1) power consumption [89,92], 2) hardware event counters [19,56,93], 3) workload

characteristics [86] and 4) time [96,97].

1) [89] proposes a chip-level power control algorithm that is based on optimal

control theory. Their algorithm can precisely control the power of a CMP chip through

DVFS to the desired set point while maintaining per-core temperature below a specified

threshold. In [92], they present a temperature-aware scheduling algorithm for soft real-time

multicore systems. According to the core temperature and thread thermal contribution,

their scheme performs thread migration and exchange to avoid thermal saturation and to

maintain temperature equilibrium.

2) [19], [56] and [93] present event counters-based approach to estimate core tem-

perature dynamically. Given this thermal model, [19] is able to throttle execution of indi-

vidual tasks and reduce CPU time slices of “hot” processes. [56] proposes a methodology for

thermal management using both software (priority scheduling) and hardware (clock gating)

19

techniques. They lower the priority of the hot jobs and raise the priority of the cool jobs for

every new epoch. In [93], they leverage the natural discrepancies in thermal behavior among

different workloads and schedule them to keep the temperature below a given budget.

3) [86] proposes a predictive DTM algorithm that exploits certain properties of

multimedia applications. Based on different frame types, they can dynamically determine

the highest performing, thermally safe architectural configuration.

4) Both [96] and [97] use a time-based thermal model, which allows them to predict

future core temperature. Based on this prediction, [97] can maintain system temperature

below a desired level by moving the running application from the possible overheated core to

the future coolest core (migration) and reducing processor resources (priority scheduling);

whereas [96] proposes a temperature-aware scheduler to balance heat and reduce peak tem-

perature based on applications’ thermal behavior groups classified by a K-means clustering

method.

Among these works, [92], [96] and [97] are most relevant to our work because [92]

is also targeting periodic tasks and both [96] and [97] use a time-based thermal model.

However, compared to them, our work differs substantially in the following three aspects:

1) We are the first to build a predictive thermal model for periodic tasks. In contrast, [96]

and [97] only focus on single task, whereas [92] does not have a time-based thermal model.

2) We are the only one to integrate online model update to respond to incidental errors

in practical deployment. 3) Our thermal-aware scheduler can maximize throughput and

achieve thermal balancing under given temperature constraints by combining task migra-

tion and Stop&Go techniques in a cost-effective and cache-aware fashion. In contrast, [97]

20

only considers thermal constraints. Neither [96] nor [97] care about throughput. [92] has

to rely on frequent task migration to balance heat across all cores. And none of them con-

sider quantitative cost analysis regarding the impact of core/cache topology in multicore

architecture.

21

Chapter 3

Latency and Throughput-Aware

Scheduling

3.1 Introduction

In this chapter, we propose LATA, a LAtency and Throughput-Aware packet

processing system for multicore architectures. It adopts hybrid parallelism with parallel

pipeline core topology in fine-grained task level to achieve low latency and high through-

put. We accomplish the above goal through the following three steps. First, we design a

list-based pipeline scheduling algorithm from the task graph. Second, we apply a determin-

istic search-based refinement process to reduce latency and improve throughput through

local adjustment. Third, we devise a cache-aware resource mapping scheme to generate a

practical mapping onto a real machine.

22

To the best of our knowledge, LATA is the first of its kind to consider both latency

and throughput in packet processing systems. We implement LATA on an Intel machine

with two Quad-Core Xeon E5335 processors and conduct extensive experiments to show

its better performance over other systems such as Parallel [20], Greedy [95], Random [91]

and Bipar [98]. Based on six real packet processing applications chosen from NetBench [68]

and PacketBench [79], LATA exhibits an average of 36.5% reduction of latency across all

applications without substantially degrading the throughput. It shows a maximum of 62.2%

reduction of latency for URL application over Random with comparable throughput per-

formance.

The rest of this chapter is organized as follows. Section 3.2 introduces LATA

system design. Section 3.3 presents LATA scheduling, refinement and mapping algorithms.

Section 3.4 describes the experiment framework and the performance evaluation is shown

in Section 3.5.

3.2 LATA System Design

Figure 3.1 shows LATA’s system design flowchart. Given an network application,

we first generate its corresponding task graph with both computation and communication

information. Then, we proceed in a three-step procedure to schedule and map the task

graph according to our novel design. Last, we deploy the program onto a real multicore

machine to obtain its performance result.

23

Suif &

Machine

Suif

Result.c files

Halt

pass

PDG

passes
CFG PDG

Intel

multicore

machine
gcc

Instrumented

.s files
exe &

profile

Step one: list-based parallel

pipeline scheduling

Step two: deterministic

search-based refinement

Step three: cache-aware

resource mapping

Network

program
DAG generation

LATA scheduling,

refinement and mapping
Implementation

Figure 3.1: LATA system design flowchart.

3.2.1 Program Representation

We use program dependence graph (PDG) to represent a program as shown in

Figure 3.2(a). PDG can also be called task graph, which is a weighted directed acyclic

graph (DAG) defined by tuple G=(V, E, C, T), where V ={ni,i=1:v} is the set of nodes

and v=|V |, E={ei,j=<ni, nj>} is the set of communication edges and e=|E|. Each node

represents a task and each edge represents a communication from one task to the other. C

is the set of edge communication times and T is the set of node computation times. ci,j is

the communication time on edge ei,j and ti is the computation time on node ni [38].

We assume the DAG has a single starting point denoted by head node nhead and

a single ending point denoted by end node nend. For any DAG, we can always add a

head node and an end node with zero computation time and appropriate edges with zero

communication time. As an illustration in Figure 3.2(a), each node represents a basic block

or a first-level loop in the program, which constitutes the tasks to be scheduled. Although

24

the computation time for each node is easy to obtain (e.g., by inserting timers in the code),

the communication time for multicore architectures is hard to measure due to the memory

hierarchy. We address this issue in the next section.

3.2.2 Communication Measurement

We can not accurately calculate the communication time between two cores in a

multicore architecture like Figure 3.8 unless we know the exact location of the cores. In

LATA design, we use the average communication cost based on data cache access time,

as given in Equations 3.1 and 3.2. Commavg means the average communication cost to

transfer a unit data set, which can be approximated by system memory latencies (L1, L2

and main memory access time) and program data cache performances (L1 and L2 cache hit

rate). DataSize refers to the transferred data set size between two communicating tasks.

Comm = Commavg ×DataSize (3.1)

Commavg = TL1 ×HitL1 + TL2 × (1−HitL1)×HitL2

+TMEM × (1−HitL1)× (1−HitL2) (3.2)

3.2.3 Problem Statement

We define latency as the schedule length of a program and throughput as the system

throughput. The problem statement is: given the latency constraint L0, schedule a packet

processing program in parallel pipeline core topology so as to maximize the throughput Th.

25

The aim is to rearrange the tasks shown in Figure 3.2(a) into the parallel-pipeline

task graph shown in Figure 3.2(b), so that the total execution time T1 + T2 + T3 + T4 is

minimized while maintaining the throughput as high as possible. As we know, the through-

put can be calculated by the inverse of the longest stage time 1
Tmax

in pipelining. Thus, we

form our objective function in Equation 3.3, where L is the scheduled latency.

Maximize Th =
1

Tmax
(s.t. L ≤ L0) (3.3)

3.2.4 DAG Generation

As shown in Figure 3.1, LATA’s system design consists of DAG generation, LATA

scheduling, refinement and mapping, and finally implementation and evaluation. We briefly

explain the DAG generation in this section and defer other parts to the following sections.

To generate the DAG, we first convert the original C program into the SUIF control flow

graph (CFG) [16]. For the ease of dependency analysis, we include all the functions of an

application into one single file. After that, we write a Machine SUIF pass [13] to extract the

PDG following Ferrante’s algorithm based on both control and data flow information [34].

Finally, by using the Halt library in Machine SUIF to instrument source code, we profile

the program in the task level for both the computation time and communication time.

To measure the computation time, we feed the program with continuous traffic

traces to obtain the average execution time and frequency for each task. To measure the

communication time, we first use LMbench [12] to get the L1, L2 and main memory access

latencies. Then, we use SUIF/machine SUIF compilers to profile the variable liveness set

26

at the entry of each basic block to measure the transferred data set size. Finally, we

measure the program L1 and L2 data cache hit rate by PAPI [15]. After collecting all these

information, we calculate the communication time following Equation 3.2.

3.3 LATA Scheduling, Refinement and Mapping

3.3.1 List-based Pipeline Scheduling Algorithm

LATA constructs the parallel pipeline topology based on traditional list scheduling

algorithm, which is effective in both performance and complexity [59]. Given a DAG, we

define node priority based on the computation top level assuming the same unit computation

time for each node. According to [82], the computation top level of ni is the length of the

longest path ending in ni, excluding ti and all communication time. The purpose of assuming

unit computation time is to find out all task-level parallelism, since nodes in the same level

are independent and hence can be scheduled in parallel. The head node nhead belongs to

level−1. The level of a certain node depends on the highest level among its predecessors.

If its highest level predecessor belongs to level i, then that node belongs to level i+1.

We define ready nodes as those nodes whose predecessors have already been sched-

uled. Therefore, a ready node can be safely scheduled next. LATA starts off by putting the

head node into the list, and then iteratively attaches ready nodes in the task graph to the

last nodes in the list. This step guarantees that nodes in the list are sorted according to

their priorities. After the list is constructed, LATA schedules nodes with the same priority

into the same pipeline stage in parallel. Each parallel node takes up one processor and we

27

A C

F

G

B

D

E

S4S1 S3S2

T1

T2=max{tb ,tc ,td}

T4

T3=max{te ,tf}

A

B

E

C D

F

G

2

3

1

631

3

3

6

4

2

2

3

(a)

(b)

Level 0

Level 1

Level 2

Level 3

head

end

Figure 3.2: Parallel pipeline scheduling from a DAG.

finally obtain a parallel pipeline topology. In this way, latency can be reduced by hiding the

computation time of less expensive tasks. Figure 3.2(b) shows the parallel pipeline schedul-

ing from Figure 3.2(a). We ignore head node and end node in the scheduling because they

are virtual nodes.

In such a parallel pipeline topology with S stages, we denote a sequential section as

a stage with only sequential tasks, such as S1 and S4. Similarly, a parallel section refers to a

stage with parallel tasks, such as S2 and S3. We define communication critical path (CCP) as

the communication time between two stages, where CCPi=max{ci,j}(ni∈Vi and nj∈Vi+1).

The complexity of this step comes from 1) priority assignment, which is O(V +E) according

to [82], 2) a precedence order among the tasks and 3) CCP calculation. Mergesort with a

complexity of O(V logV) can be used to order the nodes. The complexity associated with

calculating CCP is simply O(S·E). In conclusion, the complexity is O(V logV +S·E).

28

3.3.2 Search-based Refinement Process

This step focuses on iteratively finding a better scheduling topology by local ad-

justment of tasks in two phases. The first phase aims at reducing latency and the second

phase aims at improving throughput. Although optimizing task scheduling problem is NP-

complete in general [33], our heuristic adopts greedy algorithm and works well in practice

with low time complexity.

Latency Reduction

Latency can be reduced by reducing either computation time or communication

time. Because computation dominates the overall execution time for most packet processing

applications running on multicore architectures, we prioritize computation reduction in

designing LATA. Hence, LATA first applies latency hiding to reduce computation time.

Then, CCP elimination and CCP reduction are used to reduce communication time.

Computation reduction: We define a critical node as the node in a pipeline

stage which dominates the computation time. Then, Latency hiding can be defined as a

technique that places a critical node from one stage to one of its adjacent stages without

violating dependencies, so that its computation time is shadowed by the other critical node

in the new stage. Backward hiding (BaH) refers to placing a critical node into its precedent

stage. Forward hiding (FoH) refers to placing a critical node into its following stage.

Figure 3.3 shows latency hiding, where the node length reflects the computation

time. For all the figures shown in this section, bold lines between two stages represent CCPs.

Figure 3.3(a) is the same as Figure 3.2(b). In Figure 3.3(b), we place E into its precedent

29

A C

F

G

B

D

E

A

A

(a)

BaH

FoH

3 3 3

C

F

G

B

D

E

(b)
3 2 3

C

F G

B

D

E

(c)
2 33

Figure 3.3: Latency hiding on node E.

stage with B, where the computation time of E is shadowed by D. In Figure 3.3(c), E is

placed into its following stage and E’s computation time is shadowed by G.

For each critical node, we test whether we can place it into one of its two adjacent

stages without violating dependencies or increasing the latency. To break the tie in some

cases, we favor the stage with more latency reduction. If both stages happen to reduce

the same amount of latency, we favor BaH over FoH. This heuristic increases chances of

more potential latency reduction in future iterations. The complexity is O(S·E2) for each

iteration, because we have to update the CCP and latency for each attempt, which results

in O(E2). The total complexity is O(V ·S·E2) after O(V) iterations in this step.

Communication reduction: There are two techniques in communication re-

duction, namely CCP elimination and CCP reduction. CCP elimination is to eliminate

communication time by combining two adjacent stages into one. If every node has only one

30

predecessor in a certain stage, we can attach nodes in that stage to their predecessors in

the precedent stage.

A C

B

D

E
3

3

3

F

A C

B

D

E
3 3

A CFG

BE

D

3

First

Elimination

Second

Elimination

(a)

(b)

(c)

G

FG

Figure 3.4: CCP elimination.

A C

F

G

B

D

E
3

3

3

A C

F

G

D

BE

3
2 3

A C

F

G

BE

D

3
2 3

(a)

(b)

(c)

BaS

FoS

2

Figure 3.5: CCP reduction.

As shown in Figure 3.4, the first elimination combines the last two stages together.

G is attached after F , since F is the only predecessor of G in Figure 3.2(a). The second

elimination shown in the figure combines the last two stages again. This time, we attach E

to B and FG to C. From Figure 3.4(c) we see that two CCPs haven been eliminated from

the original pipeline scheduling, which results in the latency reduction by 6.

CCP reduction is to reduce the CCP weight by switching a node associated with

the current CCP to one of its adjacent stages. Figure 3.5 shows two reduction techniques

BaS and FoS. Backward switch (BaS) refers to switching a node backward to its precedent

stage. Forward switch (FoS) refers to switching a node forward to its following stage. For

each CCP, we consider the two nodes associated with it. Both BaS and FoS are tested on

the task in the two nodes. If any latency reduction can be obtained, we take that action.

31

To break the tie in some cases, we favor the one with more CCP reduction. In case of equal

CCP reduction, we choose BaS rather than FoS due to the same reason as in latency hiding.

For example, in Figure 3.5(b), E is switched backward to B, so communication

time between B and E is eliminated, and communication time between C and F becomes

the new CCP with less weight. In addition, Figure 3.5(c) shows the case where B is switched

forward to E. Similarly, we see a decreased CCP between the two stages.

As we decrease the latency, it is possible that Tmax will increase, which is unfa-

vorable for the throughput according to Equation 3.3. So, for each CCP, whether we apply

CCP reduction or CCP elimination is decided by Q, a beneficial ratio defined by Q= ∆L
∆Th .

We start off by selecting the biggest CCP. Then both techniques are tested to calculate the

ratio Q. We take action on the one whose resulting Q is larger, which guarantees minimal

throughput sacrifice. This process is iteratively executed until the latency constraint is

achieved. The complexity for both techniques is O(E·V) in each iteration. Therefore, the

total complexity is O(E2·V) after O(E) iterations.

Throughput Improvement

So far, we have reduced the latency by various techniques. In this section, we

focus on improving throughput without violating the latency constraint. According to

Equation 3.3, we can improve throughput by reducing Tmax through decomposition. During

the previous latency reduction process, chances are that many nodes are comprised of several

tasks. If a node with Tmax consists of more than one task, it can be decomposed into two

separate nodes to reduce the bottleneck stage time Tmax.

32

We define decomposition as to decompose one node with multiple tasks into two

separate nodes without violating the dependencies. There are four decomposition techniques

depending on how the two decomposed nodes are located as shown in Figure 3.6, where

thick boxes indicate bottleneck nodes.

• SeD (Sequential Decomposition): Decompose two tasks from one processor into two

adjacent tasks in different processors in a sequential section.

• PaD (Parallel Decomposition): Decompose two tasks from one processor into two

parallel tasks in different processors in a parallel section.

• BaD (Backward Decomposition): Decompose two tasks from one processor into one

task in the current section and the other in the precedent section.

• FoD (Forward Decomposition): Decompose two tasks from one processor into one

task in the current section and the other in the following section.

A FE

D

B

C

A EF

D

B

C

A FE

D

BC

SeD

AB FE

D

C

A FDE

C

B

PaD

FoD

BaD

Figure 3.6: Illustration of four decomposition techniques.

33

We proceed the refinement process by iteratively applying the decomposition on

current Tmax node until no more throughput gain can be made. During each iteration, we

first locate the node where Tmax comes from. Then, for each task within that node, we

attempt to apply the four decomposition techniques. After recording all possible decom-

position points and corresponding techniques where positive results appear, we choose the

task where the reduction of Tmax is maximized as the potential decomposition point. If the

latency constraint is not violated, we take that action.

The complexity for decomposition is O(V 2) for each iteration and there are O(V)

iterations. Hence, the overall complexity is O(V 3).

3.3.3 Cache-Aware Resource Mapping

Pre-mapping

The first step, pre-mapping, assigns a pre-defined number of virtual processors (8

in LATA) to scheduled nodes, considering both computation time balancing and commu-

nication time minimization. First, we check all parallel sections to see if we can combine

two independent parallel nodes into one without increasing the latency nor reducing the

throughput. After this, if we still end up with more scheduled nodes than real nodes, we

iteratively bipartition the pipeline into two parts with the cutting point being the minimal

CCP. This guarantees a minimal communication overhead [98]. For each bipartition step,

we assign virtual processors in proportion to the workload in each portion. With respect

to workload, we refer to the total computation time of all the tasks in that stage. At the

same time, we avoid assigning more than one virtual processor to a single task.

34

This recursive algorithm terminates when 1) there is only one virtual processor left

unmapped or 2) there is only one pipeline stage left with extra virtual processors. In the

first case, we assign all the remaining tasks into that virtual processor. In the second case,

we assign all the remaining virtual processors into that stage, with each virtual processor

taking a fair share of workload by round-robin.

Real Mapping

The second step, real mapping, addresses specific task-to-core mapping. Fig-

ure 3.7(a) shows the tree structure of the processing units (PUs) on Xeon chip. From

bottom up, a group of two cores shares the same last level cache (L2). Two of these groups

(4 cores) share the same socket (S1 or S2). Two of these sockets (8 cores) share the same

chip. Obviously, the communication cost between cores is asymmetric as illustrated by the

different thickness of the curves in Figure 3.7(a). As a result, we can take advantage of the

tree hierarchy to implement a cache-aware resource mapping.

First, we extract all the communication edges out of the scheduled topology and

sort those edges in decreasing order. Figure 3.7(b) shows a sample scheduling topology

after pre-mapping, where all the arrows represent the communication time. The thicker the

arrow, the more time-consuming the communication. Second, we start off by picking the

most time-consuming edge and then assign the two associated nodes to nodes with minimal

communication cost. In our example, A and C are picked first and are assigned to C0 and

C2, respectively. Third, we iteratively apply the same greedy algorithm until all the nodes

are mapped to real cores as shown in Figure 3.7(c). During each iteration, we just pick the

35

LATA

S1 S2

L2 L2 L2 L2

C0 C2 C4 C6 C1 C3 C5 C7

A C

F

G

B

D

E

H

Cache-aware

Mapping

C0

C4

C7

C2

C6

C1

C3 C5

A C

F

G

B

D

E

H

(a)

(b)

(c)

Figure 3.7: Illustration of cache-aware mapping.

thickest edge out of all the remaining edges and assign the unmapped nodes with the cores

that incur the least communication cost among all the unmapped cores.

In cases when the real system provides more cores than the original scheduled

topology, we simply apply real mapping first and then put extra cores to the bottleneck

stage for packet-level parallelism.

The complexity in this section is dominated by pre-mapping process. Due to

the bipartitioning, there are O(logS) iterations. For each iteration, the complexity is

simply O(V logV), which is from the sorting algorithm. Thus, the total complexity is

O(V logV ·logS) in the algorithm. Considering the first two steps in LATA system design,

we conclude that LATA has a total time complexity of O(V 3+V ·E2·S). Since LATA is

designed off-line, this complexity is acceptable for packet processing systems.

36

3.4 Experiment Framework

We implement and evaluate LATA along with four other systems (Parallel [20],

Greedy [95], Random [91] and Bipar [98]) to show its performance advantage in both latency

and throughput. Latency is measured by the average execution time of one packet in

microseconds (usec) and throughput is measured by million packets per second (mpps).

CPU 0

L2 Cache

CPU 2

CPU 4

L2 Cache

CPU 6

CPU 1

L2 Cache

CPU 3

CPU 5

L2 Cache

CPU 7

Socket 0 Socket 1

Intel Xeon Processor E5335 Clovertown

Figure 3.8: Layout of two Quad-Core Intel

Xeon E5335 processors.

CPU 0 CPU 4

CPU 3

CPU 5

CPU 2

CPU 6

CPU 1

incoming packets
LATA Packet

Processing System
outgoing packets

CPU 7

Figure 3.9: LATA with parallel pipeline

topology.

We build our LATA packet processing system on a multicore server as shown in

Figure 3.8. The target platform, an Intel Clovertown machine, consists of two sockets.

Each socket has a Quad-Core Xeon E5335 processor with two cores sharing a 4MB L2

cache. The L1, L2 and main memory access latencies turn out to be 3, 14 and 217 CPU

cycles, respectively, as measured by LMbench [12]. Figure 3.9 illustrates the overall system

design. LATA assumes a single incoming and outgoing queue. The central part consists of

an 8-core machine organized into a parallel pipeline core topology to exploit both spatial

and temporal parallelism. The hardware configuration is set by default as an 8-core machine

37

with instruction cache up to 4k instructions. The instruction cache size is an important

parameter in partitioning programs and is used when we compare LATA with other Network

Processor (NP) systems, whose processing engine has limited memory [8]. Our system is

running Linux-2.6.18 OS and we use Pthread libraries to synchronize different tasks.

Six applications are chosen from NetBench [68] and PacketBench [79], including

five IP-level programs (Flow, IPv4-trie, Route, DRR and IPchains) and one application-

level program (URL). Their functionalities and code sizes (the number of instructions)

are listed in Table 3.1. It is worth noticing that our selection of applications is based on

the following three metrics: 1) code size must be large enough; 2) applications must be

representative; and 3) applications must expose relatively more parallelization potential.

The packet trace is from NetBench with 10, 000 packets. The routing table used for IPv4-

trie is MAE-WEST [79] and the routing table size for DRR, IPchains and Route is set to

128 by default. We scale URL’s results by a factor of 0.01 due to figure space limitations.

For LATA, we assume the latency constraint is 75% of the sequential execution time for

each application.

Table 3.1: Six packet processing applications.

Application Functionality Code Size
URL URL-based switching 1428
Flow Flow classification 3190

IPv4-trie IPv4 routing based on trie 4596
Route IPv4 routing based on radix 6600
DRR Deficit-round robin scheduling 7633

IPchains Firewall based on IP source 14735

38

We classify the four systems into two groups according to the form of parallelism.

In the first group, LATA is compared with Parallel system (spatial parallelism), where ev-

ery processor independently executes different packets in parallel as in [20]. No memory

constraint is considered in this group. We also implement a list scheduling algorithm (List)

called HLFET (Highest Levels First with Estimated Times) [17] as a reference for the best

achievable latency. In the second group, we compare LATA with three NP systems based

on pipelining (temporal parallelism) as in Greedy [95] and parallel pipelining (hybrid paral-

lelism) as in Random [91] and Bipar [98]. These systems have limited memory constraints

for each processor.

3.5 Performance Evaluation

3.5.1 Comparison with Parallel System

Figures 3.10 and 3.11 show the latency and throughput for six applications by

LATA, Parallel and List. We observe that Parallel suffers from high latency due to its

sequential execution of tasks. Compared with Parallel, LATA reduces the latency by an

average of 34.2%. Particulary, for URL, LATA achieves the maximal latency reduction of

62.2%. In addition, LATA’s throughput is close to that of Parallel in spite of the 75%

latency constraint. This is because LATA is capable of optimizing its parallel pipeline core

topology to produce good throughput. With respect to List, which is designed to produce

the lowest latency, LATA actually matches its latency performance in most cases by

39

aggressively exploiting task-level parallelism. Furthermore, LATA outperforms List in

throughput by an average of 41.0% and a maximum of 56.7% for Route.

0

2

4

6

8

10

12

14

16

18

20

URL Flow IPv4-trie Route DRR Ipchains

L
a
te
n
c
y
 (
u
s
e
c
)

LATA Parallel List

Figure 3.10: Latency of six applications by LATA, Parallel and List.

0

0.5

1

1.5

2

2.5

3

URL Flow IPv4-trie Route DRR Ipchains

T
h
ro
u
g
h
p
u
t
(m
p
p
s
)

LATA Parallel List

Figure 3.11: Throughput of six applications by LATA, Parallel and List.

40

3.5.2 Comparison with Three NP Systems

Figures 3.12 and 3.13 exhibit the latency and throughput for the three NP sys-

tems. Except LATA, all other systems adopt packet-level parallelism, which suffer from

high latency. The slightly lower latency by Bipar and Greedy over Random comes from

less communication overhead due to shorter pipeline length. LATA, on the other hand,

exposes a substantial latency decrease by an average of 37.3% and maximum of 62.2% for

URL compared with Random. Considering the throughput, we observe that LATA catches

up with other systems in 5 out of 6 applications in spite of the 75% latency constraint,

except the Flow application. However, the average of 30.4% throughput loss in Flow is

compensated by 26.0% performance gain in latency reduction. This tradeoff once again

proves LATA’s uniqueness in satisfying the stringent latency constraint while attaining a

comparable throughput.

0

2

4

6

8

10

12

14

16

18

20

URL Flow IPv4-trie Route DRR Ipchains

L
a
te
n
c
y
 (
u
s
e
c
)

LATA Random

Bipar Greedy

Figure 3.12: Latency of six apps by LATA, Greedy, Random and Bipar.

41

0

0.5

1

1.5

2

2.5

3

URL Flow IPv4-trie Route DRR Ipchains

T
h
ro
u
g
h
p
u
t
(m
p
p
s
)

LATA Random

Bipar Greedy

Figure 3.13: Throughput of six apps by LATA, Greedy, Random and Bipar.

3.5.3 Latency Constraint Effect

0

0.5

1

1.5

2

2.5

3

75% 80% 85% 90% 95% 100%

Latency Constraint

T
h
ro
u
g
h
p
u
t
(m
p
p
s
)

0

0.5

1

1.5

2

2.5

3

3.5

L
a
te
n
c
y
 (
u
s
e
c
)

Throughput Latency

Figure 3.14: Latency and throughput of Flow application by LATA.

In this section, we show how the latency constraint affects the throughput of LATA

by alleviating the latency constraint from 75% to 100%. We choose the Flow application as

an example because its throughput by LATA is the worst in Figure 3.13. From Figure 3.14,

42

we observe that as the latency constraint becomes less stringent, the throughput improves

accordingly. In fact, when there is no constraint (at the point of 100%), LATA produces

the same throughput as other systems do. This is because LATA spares nodes from parallel

sections to help reduce the bottleneck stage time by applying decomposition. Originally,

those nodes are used to satisfy latency constraints, causing many tasks from sequential

sections to be fed into few nodes, which deteriorates the throughput with large Tmax. This

figure also shows the latency performance at each point with an increasing trend, which

follows the changing latency constraint. In a word, not only can LATA achieve low latency

without substantial throughput loss when the latency constraint is stringent, but also it can

attain high throughput when the latency constraint is light.

3.5.4 Scalability Performance of LATA

We evaluate LATA’s scalability by varying the number of cores. Figure 3.15

demonstrates the latency and throughput for Route. As the number of cores increases,

we observe a decreasing trend of latency, which reflects the fact that LATA exploits task-

level parallelism to reduce program execution time. When the core resource is not plenty

(less than 3), no task-level parallelism can be exploited. When the number of cores increases

from 3 to 6, task-level parallelism gradually takes effect and an obvious time decrease can

be observed. As the core resource continues to increase (more than 6), we notice that the

latency has reached the lower bound.

In addition, the increasing bars show that the throughput improves with more

cores. From this figure, we can make two interesting observations. First, there is a slight

43

throughput decrease when the number of cores increases from 2 to 3. This seemingly

contradictory result can be explained by the fact that LATA prioritizes latency reduction

when the latency constraint has not been satisfied. In this case, the extra core is used to

reduce latency rather than improve throughput. We can clearly see the latency reduction

during that period from the latency curve. Second, while the latency becomes saturated

after 6 cores, the throughput continues to improve. This is because that extra cores can

reduce bottleneck stage workload, which results in better throughput for the whole system.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8

Number of Cores

T
h
ro
u
g
h
p
u
t
(m
p
p
s
)

0

1

2

3

4

5

6

7

L
a
te
n
c
y
 (
u
s
e
c
)

Throughput Latency

Figure 3.15: Latency and throughput of Route application by LATA.

3.5.5 Instruction Cache Size Performance

Lastly, we analyze the effect of the instruction cache size for IPv4-trie. Figure 3.16

shows the throughput when the cache size varies. As the cache size increases, we observe an

increasing trend of throughput. Bipar produces the best throughput in most cases due to its

minimal communication cost and balanced workload assignment. Greedy, which performs

44

the worst, suffers from imbalanced task assignment, especially when the cache size is 4k.

LATA and Random sit between Bipar and Greedy. However, LATA has the least cache

requirement compared to other systems. When the cache size is as small as 1k, LATA

produces the best throughput. Its throughput slowly grows as the cache size increases from

2k to 4k. After that, LATA’s performance catches the best. Since the code size is less

than 5k for IPv4-trie, all systems produce the same best throughput at 5k point. The

corresponding latency performance is similar to that of Figure 3.12 and hence, we omit it

due to space limitations.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1K 2K 3K 4K 5K

Cache Size (insn)

T
h
ro
u
g
h
p
u
t
(m
p
p
s
)

LATA Random Bipar Greedy

Figure 3.16: Throughput of IPv4-trie by LATA, Greedy, Random and Bipar.

45

Chapter 4

Optimizing Throughput and

Latency Under Power Budget

4.1 Introduction

In the previous chapter, we introduce the novel parallel-pipeline scheduling on

task-level for network applications that can attain high throughput under given latency

constraints [53]. In this chapter, we address the power budget issue for this scheduling

paradigm for network packet processing. We aim at optimizing both throughput and latency

under given power budget by appropriately applying per-core DVFS.

We propose a three-step solution to achieve our goal. The algorithm works as

follows. In the first step, we reduce power by lowering the frequency on parallel nodes

without compromising throughput or latency. This goal can only be achieved for parallel-

pipeline topology. If the resulting power consumption still exceeds the power budget, we

46

go to step two. In the second step, we reduce the power with throughput unchanged and

minimal latency increase by optimally adjusting the frequency on each core. If both step

one and step two can not satisfy the power constraint, we go to step three. In the third

step, we reduce the power with minimal throughput and latency performance loss adopting

similar approach as in step two. Step three and step two are recursively executed until the

power budget is finally met.

It is also important to note that this algorithm is generally applicable to any

type of multicore packet processing systems ranging from general-purpose processors to

network processors and programmable logic devices as long as per-core DVFS is available.

In addition, the scheduling granularity can also vary from fine-grain (e.g., basic block) to

course-grain (e.g., loop, function, task) in practice. We implement our algorithm as well as

five other conventional algorithms for six real packet processing applications chosen from

NetBench [68] and PacketBench [79] on an AMD machine with two Quad-Core Opteron

2350 processors [1]. The five chosen algorithms are Clock Gating (CG) [64] in PM category,

and S-SPM [40], PDP-SPM [44], G-SPM [70] and P-SPM [70] in DVFS category. Compared

to existing algorithms given the same power budget, our algorithm exhibits substantially

better throughput and latency by an average of 64.6% and 25.2%, respectively.

The rest of this chapter is organized as follows. Section 4.2 introduces prelim-

inaries, including the application model, the power model and the problem statement.

Section 4.3 presents the optimization model and the three-step power-aware scheduling

algorithm in detail. Section 4.4 describes the experimental framework and shows the per-

formance evaluation.

47

4.2 Preliminaries

4.2.1 Application Model

We define a task graph as a weighted DAG by tuple G=(V, E, C, T), where V ={ni,

i=1:v} is the set of nodes and v=|V |, E={ei,j=<ni, nj>} is the set of communication edges

and e=|E|. C is the set of edge communication times and T is the set of node computation

times. ci,j is the communication time on edge ei,j and ti is the computation time on node

ni. Figure 4.1 (a) gives a DAG example.

A C

F

G

B

D

E

S4S1 S3S2

T1

T2=max{tb ,tc ,td}

T4

T3=max{te ,tf}

A

B

E

C D

F

G

2

3

1

6

3
1

3

3

6

4

2

2

3

(a) (b)

Level 0

Level 1

Level 2

Level 3

Figure 4.1: A parallel-pipeline scheduling from DAG.

We assume the application is scheduled into a parallel-pipeline topology from the

DAG based on a static scheduling policy. Suppose there are N nodes running on N pro-

cessors with S pipeline stages and Mi parallel nodes in stage Si. The stage time Ti is

the maximal node computation time in Si. Figure 4.1 (b) illustrates an example of such

scheduling. In addition, we can label each node in the parallel pipeline scheduling as node

48

Ni,j , where i refers to the stage number and j refers to the node order within a certain

stage starting from the top.

We then define the two objective metrics in this chapter: throughput and latency.

In pipeline topology, throughput is calculated by the inverse of the longest stage time 1
Tmax

,

where Tmax = Max{Ti}, and latency is computed as the sum of stage time Ti, i = 1, 2, ..., S.

We ignore communication time in this chapter without losing validation because it can be

considered constant in DVFS scheme [70].

4.2.2 Power Model

Consider that task T consists of C clock cycles on processor P , which runs at

voltage V and frequency f . We assume that C does not change with different V and f .

For a given voltage V , processor P has an average power consumption Pow. It is known

that processor power consumption is dominated by dynamic power dissipation given by:

Pow = Ka · f · V 2, where Ka is a task/processor dependent factor determined by the

switched capacitance.

The energy consumed by executing task T on processor P is computed as: E =

C · Pow
f . We can rewrite it as: E = C · Ef,V = C · Ka · V 2, where Ef,V is the average

cycle energy. From this we can see that lowering the voltage would yield a drastic decrease

in energy consumption. The frequency f is almost linearly related to the voltage: f =

Kb · (V−VT)2

V , where VT is the threshold voltage and Kb is a constant. For a sufficiently

small threshold voltage, the frequency is approximated to Kb · V .

49

4.2.3 Problem Statement

Assume the initial parallel-pipeline scheduling with the highest frequency produces

the best throughput and latency, which defines the upper bound for throughput and the

lower bound for latency. Under such assumption, we give the problem statement as fol-

lows: Given the parallel-pipeline scheduling and power budget, how to optimize the per-core

frequency to maximize the throughput and minimize the latency for multicore architectures.

The problem we want to optimize is: given a set of N cores P1...N that can each

run at Q different frequency levels F1...Q, find the best selection of frequency levels for all the

cores that maximizes the throughput and minimize the latency, subject to the constraint

that the total power is less than or equal to POWbudget.

We start with the objective functions for throughput and latency in Equation 4.1

and 4.2.

Maximize Th =
1

Tmax
(4.1)

Minimize L = T1 + T2 + ... + TS (4.2)

The execution time of each node ti can be calculated as ti = Ci
fi

, where Ci is the

clock cycles of task ni and fi is the frequency on that core. f1..N are the set of frequency

levels we are trying to find. Thus, throughput Th and latency L can be rewritten in

Equation 4.3 and 4.4.

50

Th =
1

Tmax
=

1
Max{Ci

fi
} = Min{ fi

Ci
} (4.3)

L = T1 + T2 + ... + TS

= (
C1

f1
+

C2

f2
+ ... +

CS

fS
) (4.4)

Next, we define the constraint, which specifies that the total power is less than or

equal to POWbudget. According to [87], we can linearly approximate the power equation as

pi = bifi + ci, where bi and ci can be obtained by the linear approximation of the power

dependence on frequency [87]. The constraint equation can then be written in Equation 4.5,

where all the c1..N constraints are folded into c:

b1f1 + b2f2 + ... + bNfN + c ≤ POWbudget (4.5)

However, combining Equation 4.3 and 4.4 with Equation 4.1 and 4.2, we can see

that these objective functions are not linearly solvable by the conventional Linear Program-

ming (LP) as in [87]. The two reasons are: 1) The total throughput in parallel-pipeline

scheduling is not just a linear summation of the partial throughput from all processors.

Instead, it only depends on the inverse of the longest stage time. 2) The latency from each

stage is inversely proportional to the frequency, which is also non-linear. As a result, we

form a new optimization model to this problem in Section 4.3 and propose a novel algorithm

to address that model.

51

4.3 Power-Aware Scheduling Algorithm

In this section, we address the power-aware scheduling algorithm that is capable of

optimizing both throughput and latency for parallel-pipeline topology. We first introduce

the optimization model, followed by the three-step recursive algorithm in detail. Then, we

address the practical issues with discrete frequency levels.

4.3.1 Optimization Model

As mentioned in Section 4.2, we assume the initial parallel-pipeline scheduling

with the highest frequency sets the upper bound for throughput and the lower bound for

latency. Therefore, if the initial power consumption is already less than or equal to the

power budget, the initial scheduling itself is acceptable.

Otherwise, we can reduce the frequency on each core to satisfy the power con-

straint. Hence, we express the optimization problem as follows: given the initial throughput

Th0 and latency L0 with the highest frequency and power budget, minimize the throughput

and latency performance loss by optimally adjusting the frequency on each core.

Equation 4.6 and 4.7 show the two new objective functions. They are inherently

equivalent to the one introduced in Section 4.2 (Equation 4.1 and 4.2) but expressed from

the complementary direction. We prioritize throughput to latency in our model because:

1) Throughput is still the most important metric for current network packet processing sys-

tems. 2) Latency is only required to meet the deadline requirement instead of minimization

for most systems.

52

Minimize ∆Th = Th0 − Th (4.6)

Minimize ∆L = L− L0 (4.7)

4.3.2 A Three-Step Recursive Algorithm

Step One: In the first step, we reduce the power without compromising through-

put or latency by keeping the pipeline stage time Ti, i = 1, 2, ..., S unchanged. We define a

critical node as the node in a pipeline stage that dominates the computation time. There-

fore, the computation time of a critical node is equal to the pipeline stage time (ti = Ti).

For each stage Si, we increase the computation time of non-critical nodes in that stage to

the length of Ti. Since all stage times remain the same, the throughput and the latency will

also keep unchanged during this step.

A C

F

G

B

D

E

A

(a)

C

F

G

B

D

E

(b)

tb<tc<td

tb=tc=td

tf<te

tf=te

Step 1

Figure 4.2: Illustration of the first step of the algorithm.

53

Figure 4.2 illustrates the first step, where the length of a node represents its

computation time and grey area represents the extension of computation time. Figure 4.2

(a) is the same as Figure 4.1 (b). In Figure 4.2 (b), we can see that node B and node C

are extended to the length of node D in that stage. Similarly, node F is extended to match

node E in the next stage. Because increasing computation time and lowering frequency

essentially refer to the same meaning [87], we use them interchangeably. As a result, power

consumption is reduced by lowering the frequency on nodes B, C and F .

To quantify the power savings in the first step, we derive the formula in Equa-

tion 4.8 to calculate ∆P . For each node Ni,j , ∆tNi,j represents the difference of computation

time.

∆P = ∆P1 + ∆P2 + ... + ∆PN

=
S∑

i=1

Mi∑

j=1

∆PNi,j

=
S∑

i=1

Mi∑

j=1

(bNi,j · (f − fnew))

=
S∑

i=1

Mi∑

j=1

(bNi,j · (
CNi,j

tNi,j

− CNi,j

Ti
))

=
S∑

i=1

Mi∑

j=1

(bNi,j · CNi,j ·
∆tNi,j

Ti · tNi,j

) (4.8)

If the resulting power consumption after step one is still larger than power budget,

we proceed to step two.

Step Two: In the second step, we reduce the power with throughput unchanged

and minimal latency increase. This is achieved by keeping the longest stage time Tmax

54

unchanged while we increase the stage time of other stages. We denote the stage with Tmax

as the bottleneck stage in the pipeline. Thus, all other stages are non-bottleneck stages.

We define ∆T as the shortest time period by which we can increase the latency.

To minimize the latency increase, we iteratively increase the latency by ∆T until the power

budget is satisfied or all the stages reach Tmax. If the former comes true, the algorithm

returns and the resulting scheduling guarantees the minimal latency increase, which will be

proved shortly. Otherwise, if the latter comes true, we proceed to step three.

In each iteration, we optimally choose a non-bottleneck stage to increase its time

from Ti to Ti+∆T . The candidate stage is chosen by comparing the potential power savings

from all non-bottleneck stages. The stage with the largest power reduction will be selected.

Because ∆T is the shortest time period that can be increased, and the corresponding power

reduction is the largest during each iteration, The algorithm therefore guarantees optimality.

∆Pi = ∆P1 + ∆P2 + ... + ∆PMi

=
Mi∑

i=1

(bi · (f − fnew))

=
Mi∑

i=1

(bi · (Ci

Ti
− Ci

(Ti + ∆T)
))

=
Mi∑

i=1

(bi · Ci · ∆T

Ti · (Ti + ∆T)
) (4.9)

Intuitively, a stage with more parallel nodes will be a good candidate because more

power savings will be available in that stage. In fact, besides the degree of parallelism, other

parameters also matter. For a given latency increase ∆T , the potential power savings of

stage Si can be obtained from Equation 4.9.

55

Figure 4.3 illustrates the process of this step. Figure 4.3 (a) comes from the end

of step one as shown in Figure 4.2 (b). In Figure 4.3 (b), we extend nodes A, E and F

to the length of 6, respectively, to further reduce the power consumption. Now we end up

with a scheduling which consists of equal-length pipeline stages.

In fact, Figure 4.3 shows the maximum power savings by step two, which results

in maximal latency increase. Chances are that the actual latency would be lower than what

we have seen here if the power budget is less stringent, in which case the algorithm would

return earlier before every stage reaches Tmax. According to Equation 4.8, we can also

obtain the exact power savings in this step.

A

Step 2

A C

F

G

B

D

E

(a)

T2=6T1=2 T3=4 T4=6

F

E

C

B

D

G (b)

T2=6T1=6 T3=6 T4=6

Figure 4.3: Illustration of the second step of the algorithm.

Step Three: In the third step, we reduce the power by minimizing both the

throughput and the latency performance loss. Remember that after step two, every stage

has the same stage time Tmax. Following the same rule of choosing a candidate stage in step

56

two, we optimally choose a stage to further increase its stage time by ∆T . Since the original

Tmax is increased, the throughput is compromised accordingly. However, our algorithm is

able to guarantee a minimal performance loss in this scenario.

To optimally choose the candidate stage, we follow the same formula in Equa-

tion 4.9. The only difference is that we need to substitute Ti with Tmax in the equation.

The proof of optimality is in line with that in step two, where the minimal time period

increment guarantees that when we satisfy the power budget constraint, the performance

loss is minimal.

Figure 4.4 demonstrates step three. Figure 4.4 (a) is the result of step two as

shown in Figure 4.3 (b). Suppose the candidate stage at the moment is stage two. We then

increase the stage time from 6 to 6+∆T for that stage. Notice that all other stages remain

unchanged as shown in Figure 4.4 (b).

A

Step 3

(a)

F

E

C

B

D

G (b)

T2=6+∆TT1=6 T3=6 T4=6

A

F

E

C

B

D

G

T2=6T1=6 T3=6 T4=6

Figure 4.4: Illustration of the third step of the algorithm.

57

After increasing the original Tmax to Tmax + ∆T , we go back to step two with

the updated Tmax if further power reduction is needed. The algorithm then recursively

executes step two and step three until the power budget is finally met as shown in Figure 4.5.

Algorithm 1 gives the pseudocode for the entire algorithm.

Step 1: P=P-∆P1

P≤POWbudget ?

Th:unchanged

L: unchanged

Initial

scheduling

with P

Th: unchanged

L: minimal increase

Th: minimal decrease

L: minimal increase

Step 2: P=P-∆P2

P≤POWbudget ?

Step 3: P=P-∆P3

P≤POWbudget ?

yes

no

yes

yes

no no

Returned

scheduling

Returned

scheduling

Returned

scheduling

yes

w/o step 3

w/ step 3

Figure 4.5: The power-aware parallel-pipeline scheduling algorithm.

With respect to the complexity, we conclude that step one has a complexity of

O(N), step two has a complexity of O(Tmax−Tmin
∆T · S2 ·N) and step three has a complexity

of O(m · Tmax−Tmin
∆T ·S2 ·N). Tmax−Tmin

∆T is the maximal number of iterations in step two and

m is the maximal recursive times in step three. Because both ∆T and m depend on the

number of discrete frequency levels in practice and are thus constant, the total complexity

for our algorithm is O(S2 · N). Therefore, our algorithm will terminate if 1) the power

constraint is met or 2) the maximal number of updates is exceeded in either step two or

step three. There will be no oscillations occurring in the updates within the while loop as

shown in Algorithm 1, which guarantees the convergence of our algorithm.

58

Algorithm 1 1: if POW ≤ POWbudget then return

2: for each stage Si do /* Step 1 */

3: for each parallel task nj do

4: tj ← Ti

5: if POW ≤ POWbudget then return

6: while Tmax unchanged do /* Step 2 */

7: for each stage Si except Tmax stage do

8: calculate ∆Pi according to Equation 9

9: choose stage Si with Max{∆Pi}

10: for each parallel task nj in Si do

11: tj←tj+∆T

12: update POW

13: if POW ≤ POWbudget then return

14: while POW > POWbudget do /* Step 3 */

15: for each stage Si do

16: calculate ∆Pi according to Equation 9

17: choose stage Si with Max{∆Pi}

18: for each parallel task nj in Si do

19: tj←tj+∆T

20: update POW and Tmax

21: if POW ≤ POWbudget then return else goto 6

59

4.3.3 Practical Issues with Discrete Frequency Levels

So far, we only address the ideal case where the frequency levels are continuous.

However, in practice, those values are discrete, which requires some minor corrections in

our algorithm.

The essential problem is about the shortest time period ∆T . In practice, the value

of ∆T is determined by Equation 4.10, assuming f1 and f2 are two contiguous frequency

levels and their difference is ∆f . As a result, ∆T depends on the clock cycles Ci running

on that processor and the current frequency on that processor.

∆Ti =
Ci

f1
− Ci

f2
= Ci · ∆f

f1 · f2
(4.10)

Thus, the following two changes are necessary in practice. First, in step one,

we increase the computation time of non-critical nodes for each stage as much as possible

without violating the initial stage time. We do not require that all non-critical nodes be

increased to the same length of the critical node in that stage as in ideal case. Second, in

step two and step three, we use the practical ∆T value obtained from Equation 4.10 when

calculating the potential power savings for each stage.

4.4 Experiments and Evaluation

4.4.1 Experimental Framework

Figure 4.6 shows our experimental framework and flowchart, which consists of two

steps. In the first step, we generate the program dependency graph (PDG) with profile

60

information by SUIF/Machine SUIF compilers [13] [16], partition and map the application

on an AMD machine with two Quad-Core Opteron 2350 processors [1].

More specifically, the original C program is first converted to the control flow graph

(CFG). For the ease of dependency analysis, we include all the functions of an application

into one single file. After that, we write a Machine SUIF pass to extract the PDG based on

both control and data flow information [34]. Finally, by using the Halt library in Machine

SUIF, we profile the program in the basic block level with continuous traffic traces to obtain

the average execution time and execution frequency. At last, we schedule the program onto

the real machine based on the application model presented in Section 4.2.

Suif &

Machine

Suif

Result

.c files

Halt

pass

PDG

passes
CFG Partition

& Map
PDG

AMD

Opteron

machine

gcc
Instrumented

.s files
exe &

profile

Power-aware

task scheduling

algorithm

Power analyzer

Figure 4.6: Experiment framework and flowchart.

In the second step, we apply our power-aware task scheduling algorithm and five

other existing algorithms on the initial parallel pipeline scheduling. The predefined fre-

quency levels of the Opteron 2350 processor are shown in Table 4.1. Meanwhile, the default

power for each corresponding frequency is also listed in that table (default power refers to

the power consumption when the system is not running our experimental applications). We

use the EXTECH power analyzer (model 380801 [5]) to get the whole system power.

61

Table 4.1: Frequency(GHz) and power(W) configuration.

Frequency Level 1.0 1.2 1.4 1.7 2.0
Default Power 133.0 134.5 137.0 141.2 142.5

The hardware configuration is set by default as an 8-core machine with the instruc-

tion cache size up to 4k instructions. Six network applications are chosen from NetBench [68]

and PacketBench [79]. Their functionalities and code sizes are listed in Table 3.1. For the

code size, we measure them in terms of the number of instructions. The packet trace is

from NetBench itself, which contains 10, 000 packets. The routing table used for IPv4-trie

is MAE-WEST [79] and the routing table size for DRR, IPchains and Route is set to 128

by default. The input file for URL contains 100 lines of rules.

4.4.2 Performance Evaluation

We compare our algorithm with five other conventional algorithms to show its per-

formance advantage in optimizing throughput and latency given the same power budget.

Latency refers to the average execution time of one packet in microseconds (usec). Through-

put is measured by million packets per second (mpps). Power consumption is measured by

watts (w) and we use the net power consumed exclusively by our experimental applications

as the metric.

In the PM category, we choose Clock Gating (CG) [64] since it also addresses the

energy reduction issue in packet processing for network processors. As regard to DVFS, we

choose four different static power management schemes for comparison, namely S-SPM [40],

62

PDP-SPM [44], G-SPM [70] and P-SPM [70]. The reason why we compare with them is

that their power-aware schemes are all built on top of task scheduling, which are inline with

our algorithm. We briefly introduce them as follows:

• CG (Clock Gating): reduces power consumption by turning off processors.

• S-SPM (Simple SPM): distributes global static slack proportionally to the length of

the schedule.

• G-SPM (Greedy SPM): allocates global static slack to the first task on each processor.

• P-SPM (Parallel SPM): distributes global static slack according to the degree of par-

allelism.

• PDP-SPM (Proportional Distribution and Parallelism SPM): distributes global static

slack according to the degree of parallelism and exploits the local slack.

4.4.3 Power Reduction in Step One

Table 4.2: Power and latency after step one (S1) and two (S2).

URL Flow IPv4-trie Route DRR Ipchains Avg
Power reduction after S1 0.0% 23.1% 11.2% 9.0% 19.8% 0.0% 10.5%
Power reduction after S2 9.8% 34.5% 28.0% 23.8% 31.7% 16.5% 24.1%
Latency increase after S2 18.5% 28.9% 29.9% 19.0% 29.9% 20.9% 24.5%

Figure 4.7 and Table 4.2 show the power reduction after step one for six appli-

cations compared with the initial power consumption. Four applications have lowered the

63

power by an average of 10.5% and a maximum of 23.1% in Flow. These power savings come

from the reduced frequency for non-critical parallel tasks as shown in Figure 4.2. URL and

IPchains consume the same power because their scheduling can not benefit from step one.

Notice that during this process, both throughput and latency keep unchanged, which means

the power savings come at no cost.

0

10

20

30

40

50

60

70

80

90

100

URL Flow IPv4-trie Route DRR Ipchains

P
o
w
e
r
(W
)

Initial Power

Power after Step One

Figure 4.7: Power of six applications after step one.

4.4.4 Power and Latency Performance in Step Two

Figure 4.8, Figure 4.9 and Table 4.2 exhibit the power and latency after step two

for six applications compared with the initial results. From Figure 4.8 we observe that all

six applications have enjoyed power savings by an average of 24.1% through the frequency

adjustment for tasks in non-bottleneck stages corresponding to Figure 4.3. More specifi-

cally, Flow achieves the maximum of 34.5% power reduction in this step due to its vastly

differing stage times.

64

0

10

20

30

40

50

60

70

80

90

100

URL Flow IPv4-trie Route DRR Ipchains

P
o
w
e
r
(W
)

Initial Power

Power after Step Two

Figure 4.8: Power of six applications after step two.

0

5

10

15

20

25

30

URL Flow IPv4-trie Route DRR Ipchains

L
a
te
n
c
y
 (
u
s
e
c
)

Initial Latency

Latency after Step Two

Figure 4.9: Latency of six applications after step two.

From Figure 4.9 we can see that the latency increase ranges from 18.5% in URL

to 29.9% in DRR and IPv4-trie with an average of 24.5%. Although we trade latency

with power on the same percentage scale, our algorithm guarantees the minimal latency

increase while maintaining the throughput unchanged in this step. Moreover, because we

65

demonstrate the maximal possible power reduction and latency increase in step two, chances

are that actual latency performance would be even better if the real power budget is less

than what we have achieved here.

4.4.5 Throughput and Latency Comparison in Step Three

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

URL Flow IPv4-trie Route DRR Ipchains

T
h
ro
u
g
h
p
u
t
(m
p
p
s
)

Our Alg. CG S-SPM

G-SPM P-SPM PDP-SPM

Figure 4.10: Throughput when power budget is 75% of the initial value.

We set the power budget to be 75% of the initial power consumption, so that all

three steps in our algorithm will be required to satisfy the power budget constraint. The

resulting throughput and latency of six different algorithms are shown in Figure 4.10 and

Figure 4.11. With respect to throughput, our algorithm outperforms all others uniformly,

with an average improvement of 64.6% compared to the lowest throughput for each appli-

cation. The maximum increase appears in IPv4-trie where we observe a 100.6% improve-

ment. The other five algorithms exhibit fluctuating performance for different applications

as shown in Figure 4.10. This is because each of them has its own shortcoming. For CG,

66

the reduction of active cores results in increased longest stage time, which adversely affects

the throughput. For other SPM algorithms, they do not differentiate the bottleneck stage

in parallel-pipeline scheduling. Therefore, they can not produce optimal throughput. Our

algorithm is capable of achieving better throughput by optimally adjusting the frequency

on each core during each step.

0

5

10

15

20

25

30

35

40

45

URL Flow IPv4-trie Route DRR Ipchains

L
a
te
n
c
y
 (
u
s
e
c
)

Our Alg. CG S-SPM

G-SPM P-SPM PDP-SPM

Figure 4.11: Latency when power budget is 75% of the initial value.

In terms of latency, we also observe the advantage of our algorithm from Fig-

ure 4.11. Compared with the highest latency for each application, our algorithm results an

average of 25.2% latency reduction and the maximum reduction of 33.2% in Flow. PDP-

SPM and P-SPM are the best among other SPM algorithms to produce low latency due to

their consideration of parallelism. However, they still suffer from longer latency compared

to our algorithm in most cases. Our strength lies in the fact that we iteratively apply step

three and step two to guarantee the minimal latency increase, whereas PDP-SPM and P-

SPM only greedily reduce frequency in parallel stages. On the other hand, we notice that

67

CG performs better in terms of latency for four applications than our algorithm because

it maintains the highest frequency all the time. However, its better latency performance

actually comes at the cost of substantial throughput deterioration.

4.4.6 Power Budget Sensitivity Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 7/8 6/8 5/8 4/8

Power budget ratio

T
h
ro
u
g
h
p
u
t
(m
p
p
s
)

Our Alg. CG S-SPM

G-SPM P-SPM PDP-SPM

Figure 4.12: Throughput for IPchains when power budget varies.

Lastly, we analyze the effect of varying power budget on throughput and latency.

We study a representative application IPchains for six algorithms by changing the power

budget ratio from 1 to 4/8 of the initial power consumption. From Figure 4.12 we can see

that our algorithm always produces the best throughput. As the power budget decreases,

G-SPM suffers most because it always reduces frequencies from the first stage, which hap-

pens to be the bottleneck stage in this application. The other four algorithms also follow

the same decreasing trend. Although their throughput plummets with different speeds, all

of them fall behind our algorithm. On an average, our algorithm exhibits 55.8% improve-

68

ment on throughput compared to the worst algorithm for each application. The maximum

improvement appears to be 100.0% over G-SPM when the power budget ratio is 7/8.

0

1

2

3

4

5

6

7

8

9

1 7/8 6/8 5/8 4/8

Power budget ratio

L
a
te
n
c
y
 (
u
s
e
c
)

Our Alg. CG S-SPM

G-SPM P-SPM PDP-SPM

Figure 4.13: Latency for IPchains when power budget varies.

Figure 4.13 illustrates the increasing trend in latency for six algorithms when

the power budget decreases. Compared to the highest latency for each application, our

algorithm shows an average of 13.0% reduction of latency with a maximum of 20.3% over

G-SPM when the power budget ratio is 6/8. We observe that P-SPM and PDP-SPM

perform better than S-SPM and G-SPM in general, because both P-SPM and PDP-SPM

take into consideration the degree of parallelism. However, these two still attain higher

latency due to the lack of specialized optimization for parallel-pipeline topology. CG, on

the other hand, has slightly lower latency in some scenarios, for it never reduces frequency.

However, as shown in Figure 4.12, CG’s throughput deteriorates substantially in those

scenarios. Therefore, our algorithm once again proves its advantage in both throughput

and latency due to its optimal adjustment of frequency on each core.

69

Chapter 5

Power-Optimal Scheduling Under

Traffic Variation

5.1 Introduction

In the previous two chapters, we address the task-level scheduling for network

applications and its associated power-aware optimization scheme. From this chapter on,

we focus on packet-level scheduling for network applications. In particular, we take net-

work traffic variation into account in this chapter as power saving potentials. Accordingly,

this chapter describes a power-efficient multicore system for network applications which

dynamically adjusts system operating level and per-core frequency configuration based on

incoming traffic rate. Our on-line algorithm optimizes a novel power model that considers

both dynamic and static power. The dynamic per-core frequency configuration is achieved

through a combination of per-core DVFS, power gating, and power migration.

70

We first derive a formula to translate traffic arrival rate to required cumulative core

frequency. Then, based on our power model, we derive the optimal system operating level to

maintain sufficient system throughput for the current traffic while using minimal dynamic

power. Lastly, because each core may be configured at a different operating frequency, we

migrate active cores in the system periodically to achieve thermal balancing and reduce

peak core temperature. To the best of our knowledge, we are the first to target power

optimization considering both dynamic and static power for network applications running

on multicore servers.

To verify our design, we implement our approach on a multicore server system

with varying traffic loads, running six real network applications from NetBench [68]. Our

approach reduces power consumption by an average of 41.0% compared to running with

full capacity without any reduction in throughput. Our approach also outperformed three

other approaches: chip-wide DVFS [81], power gating [65], and a hybrid combination of

chip-wide DVFS and power gating [60].

In summary, this chapter presents the following contributions:

• Proposes a traffic-aware and power-efficient multicore system for network applications

by translating incoming traffic rate to optimal per-core frequency configuration.

• Establishes a new power model considering both dynamic and static power and opti-

mizes the power model to manage processor power under varying network traffic.

• Applies per-core DVFS, power gating, and power migration techniques to minimize

both dynamic and static power consumption for multicore servers.

71

• Implements our approach on a multicore server for real network applications and

shows substantial improvement in power savings over existing approaches.

The rest of this chapter is organized as follows: Section 5.2 presents our system

design which includes the traffic-aware power optimization scheme in a three-step approach.

Section 5.3 presents our implementation and performance evaluation.

5.2 Traffic-aware power optimization

5.2.1 System Design

scheduler

C0

… …

packet arrival

global queue

local queue

1

3

4

…

.

.

.

.

.

.

.

.

.

system

operating

level

cumulative

core

frequency

of active

cores

arrival

rate

.

.

.

1λ 1N
11 2(, ,...,)Nf f f

2λ 2F
2

' ' '

1 2(, ,...,)Nf f f

3λ 3F
3

'' '' ''

1 2(, ,...,)Nf f f

2
system operating level table

.

.

.

C1

C2

C6

C7

processing core

system manager

traffic monitoring

core configuring

power managing

task scheduling

core_0

core status table
(per-core frequency configuration)

core_1 core_2 … core_7

…0freq 1freq 2freq 7freq

1F

2N

3N

Figure 5.1: Overview of the traffic-aware and power-efficient system.

The typical application supported by this work runs on a multicore server and pro-

cesses a stream of network requests. Figure 5.1 shows the system overview, where incoming

packets from the network are first stored in a global FIFO queue and then scheduled to

72

proper cores for packet processing. The core component is system manager, which consists

of four functional modules: traffic monitoring, power managing, core configuring, and task

scheduling. We briefly describe the function of each module based on the system manager’s

operational order.

1. Traffic monitoring module tracks packet inter-arrival times to obtain the

packet arrival rate and detect the rate change point whenever the traffic rate varies. We

monitor the traffic and detect the rate change point by using the sampling technique based

on maximum likelihood ratio [77, 81], which is particularly useful for server/router deploy-

ment where traffic changes can be predicted only based on prior information.

2. Power managing module manages two runtime tables, a system operating

level table, which caches optimal system operating level for a given traffic arrival rate, and

a core status table, which tracks the actual per-core frequency configuration. The sys-

tem operating level is represented by tuple (f1, f2, ..., fN) throughout this chapter1, where

f1 ≥ f2 ≥ ... ≥ fN . This tuple indicates that N cores are active running and the ith core

has the frequency fi (1 ≤ i ≤ N). Given a certain arrival rate, the power managing mod-

ule appropriately derives the optimal system operating level based on our dynamic power

optimization scheme. In addition, it also initializes the core status table at each traffic rate

change point, and periodically updates the core status table to enable power migration for

active cores between two consecutive traffic rate change points based on our static power

optimization scheme.

1The system operating level does not physically specify which frequency goes to which particular core.
It only virtually contains an array of core frequencies optimized for a given traffic rate.

73

3. Core configuring module adjusts the frequency level of each core based on

the information from the core status table managed by the power managing module. At

each configuration point, it applies power gating to cores labeled as inactive as soon as

their local queues become empty, and applies per-core DVFS for cores labeled as active

and adjusts their frequencies according to their respective configurations chosen from one

of the five frequency levels, namely 1GHz, 1.2GHz, 1.4GHz, 1.7GHz and 2GHz. The core

configuring module is critical in the system because it is where the three applied power

techniques are actually enabled.

4. Task scheduling module appropriately schedules packets in the global queue

to active cores in our system. As there is no inter-packet dependency for network applica-

tions, every packet can be independently dispatched to any active core. When the per-core

frequency configuration updates, the scheduler stops sending packets to power-gated cores.

For active cores with different core frequencies, the scheduler distributes the workload,

which is determined by the number of packets, per-packet size, and application type, in

proportion to the core frequency. This approach achieves weighted load balancing across

cores under varying traffic rate and avoids loss of system throughput due to the change of

system operating level and update of per-core frequency configuration.

As we focus on the power managing module in this chapter, we propose a three-step

approach as shown in Figure 5.2 to solve the power optimization problem.

74

5.2.2 Step 1: System Service Model

The system service model translates the traffic arrival rate to required cumula-

tive core frequency in the multicore system. As traffic rate varies, an ideal cumulative

core frequency should be just sufficient to satisfy the demand without over-provisioning.

To quantitatively establish the relationship between arrival rate and cumulative core fre-

quency, we use service rate, which is the aggregated service capability from all cores, as an

intermediate. Thus, our system service model involves two parts: 1) relationship between

arrival rate and required service rate and 2) relationship between service rate and required

cumulative core frequency.

traffic

arrival

rate

system

operating

level

per-core

frequency

configuration

dynamic power

optimization

static power

optimization

step 1

input: varying

network traffic

output: minimal

power consumption

cumulative

core

frequency

system service

model

power managing module

step 2 step 3

Figure 5.2: A three-step power optimization scheme.

In the first part, we let service rate equal arrival rate whenever the network traffic

varies. This simple but effective design choice is based on the following observations. First,

to guarantee a stabilized system without packet overflow, service rate should be no less than

75

arrival rate. Second, to avoid over-provisioning and achieve power efficiency, service rate

should be no greater than arrival rate. Considering both constraints, we let service rate be

the same as arrival rate.

In the second part, [45,81] have shown that the service rate is linearly proportional

to the CPU frequency for a single-core system. However, because we target multicore

architectures where different cores may run at different frequencies, it is necessary to re-

think and justify the relationship between the service rate and cumulative core frequency.

We, therefore, conduct two empirical trace-driven studies with 6 chosen network applications

from NetBench on our multicore machine to help establish the relationship.

(2) (1,1)

(2,2) (1,1,1,1)

(2,2,2) (1.7,1.7,1.4,1.2) (1,1,1,1,1,1)

(1,1,1,1,1,1,1,1)(1.7,1.7,1.4,1.2,1,1)(2,2,2,2)

0

2000

4000

6000

8000

10000

12000

14000

16000

case 1 case 2 case 3

Per-core frequency combinations

T
h
ro
u
g
h
p
u
t
(p
a
c
k
e
ts
/s
e
c
)

2 GHz 4 GHz 6 GHz 8 GHz

Figure 5.3: Throughput versus different per-core frequency combinations.

First, we examine the effect of various per-core frequency combinations versus

throughput given the same cumulative core frequency. Figure 5.3 shows the results of the

URL application when we vary the cumulative core frequency from 2GHz to 8GHz. For

each cumulative core frequency, we change the per-core frequency combinations. From this

76

figure, we observe that the throughput (service rate) only depends on cumulative core fre-

quency, regardless of per-core frequency combinations. In fact, this observation is obvious

for network applications with packet-level parallelism running on multicore servers using

weighted load-balanced task scheduling. When incoming packets are independently pro-

cessed on multiple cores with different service rates due to different frequencies, we can

equivalently treat this multicore server as a single-core system with the aggregated service

rate equal to the sum of per-core service rate, regardless of per-core frequency combinations.

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cumulative core frequency (GHz)

T
h
ro
u
g
h
p
u
t
(p
a
c
k
e
ts
/s
e
c
)

Throughput

Fitted Line

Figure 5.4: Throughput versus cumulative core frequency.

Second, we build the relationship between the service rate and cumulative core

frequency in our system. We vary the cumulative core frequency from the minimum (1GHz)

to the maximum (16GHz) and record the system throughput. The results show that for our

multicore server, the throughput (service rate) is also linearly proportional to the cumulative

core frequency. Figure 5.4 illustrates both the experiment result and the fitted line for the

URL application (Other applications have the similar results with different parameters and

coefficients). Therefore, our system service model for the URL application is given by

77

the linear function in Equation 5.1, where X represents cumulative core frequency and Y

represents the service rate, or the arrival rate in our case.

Y = 1496 ·X + 628 (5.1)

5.2.3 Step 2: Dynamic Power Optimization

The dynamic power optimization scheme takes cumulative core frequency as input

and produces the optimal system operating level as output. More specifically, it answers

the following three questions: Q1) what is the theoretically optimal number of active cores

from our power model? Q2) what is the actual number of active cores considering the

integer constraint? and Q3) what is the frequency assignment for active cores considering

the discrete frequency levels?

Power Model

Consider a network application running on a core at voltage v and frequency f .

The dynamic power consumption is given by: Pdynamic = Ka ·f ·v2, where Ka is a task/core

dependent factor determined by the switched capacitance. Besides, the frequency f is

almost linearly related to the voltage v : f = Kb · (v − vt)2/v, where vt is the threshold

voltage and Kb is a constant. For a sufficiently small threshold voltage, the frequency is

approximated to Kb · v. Therefore, we assume the dynamic power consumption is cubic to

the frequency as shown in Equation 5.2, where K = Ka/K2
b .

78

Pdynamic = K · f3 (5.2)

With respect to static power, we assume that for power-gated cores, they consume

zero static power. For active cores, static power consumption is exponential to core tem-

perature [85]. However, as this step focuses on dynamic power optimization, we ignore the

temperature effect and assume the static power of each active core is constant, Ps. Detailed

discussion for static power consumption is given later because it is related to thermal bal-

ancing and power migration. Thus, the total power consumption of an active core is given

by Equation 5.3:

Pcore = Pstatic + Pdynamic = Ps + K · f3 (5.3)

In a multicore system with N active cores, suppose fi is the frequency on core i and

P (f1, f2, ..., fN) is the total system power consumption as a function of system operating

level denoted as (f1, f2, ..., fN). We have the following:

P (f1, f2, ..., fN) = N · Ps + K · (f3
1 + f3

2 + ... + f3
N) (5.4)

Now we formulate the objective function for our power optimization problem as

shown in Equation 5.5, assuming F is the required cumulative core frequency.

Minimize P (f1, f2, ..., fN); (5.5)

s.t. f1 + f2 + ... + fN ≥ F

79

In the following, we focus on answering Q1 in a quantitative approach under the

assumption that the core frequency is continuous. Later on, to answer Q3, we will relax

this constraint in practical scenario with discrete frequency levels.

Suppose we have x active cores to handle cumulative core frequency F . As the

dynamic power is proportional to the cube of core frequency, we know that when every

active core is running at the same frequency of F/x, the total dynamic power consumption

reaches minimum. Thus, from Equation 5.4, we can derive the total power consumption as

follows.

P = P (f1, f2, ..., fx) = x · Ps + K · (f3
1 + f3

2 + ... + f3
x) (5.6)

≥ x · Ps + x ·K · (F/x)3 = x · Ps +
K · F 3

x2

This function (P = x·Ps+ K·F 3

x2) is a unimodal function and has a global minimum

as illustrated in an example in Figure 5.5. This curve is drawn for the URL application when

we set Ps = 5.8, K = 1.6 and F = 3. More details about the parameters can be found in

Section 5.3. It shows that starting from a single active core (x = 1), increasing the number

of active cores will reduce the total power consumption while satisfying the cumulative core

frequency requirement, until the number of active cores increases past a certain threshold

value. We call this value x∗, which is the optimal number of active cores that strikes a good

balance between static and dynamic power. In fact, from the classic algebra inequality as

shown in Equation 5.7, we can easily solve the problem in Equation 5.8.

80

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

Number of active cores

P
o
w
e
r
(w
a
tt
)

X*

Figure 5.5: Power consumption as the number of active cores varies.

a + b + c

3
≥ 3
√

a · b · c (5.7)

when a=b=c, left side reaches minimum.

P = x · Ps +
K · F 3

x2
=

x · Ps

2
+

x · Ps

2
+

K · F 3

x2
(5.8)

≥ 3 · 3

√
P 2

s ·K · F 3

4

In addition, the minimal power consumption is achieved if and only if Equation 5.9

is satisfied.

x · Ps

2
=

K · F 3

x2
⇒ x∗ = 3

√
2K · F 3

Ps
(5.9)

81

Integer Constraint

In answering Q1, we allow the fractional number of cores and do not consider the

boundary conditions in the previous section. However, in practice, the number of active

cores must be an integer between 1 and Cmax, the max number of cores in the system.

Now, we address Q2 in consideration of this constraint. Suppose x∗ from Equation 5.9 is

the theoretically-derived optimal number of active cores. Firstly, if x∗ < 1, we choose 1

active core, and if x∗ > Cmax, we choose Cmax active cores.

Secondly, we discuss the scenario when 1 < x∗ < Cmax. From Equation 5.6 we

know that the power function is monotonically decreasing when x < x∗ and monotonically

increasing when x > x∗. Therefore, the nearest integers of x∗, floor(x∗) and ceiling(x∗),

will be candidates for the practical number of active cores with minimal power consumption.

For example, in Figure 5.5, when x∗ has a value of 2.5, we can either use 2 active cores

with higher per-core frequency or 3 active cores with lower per-core frequency to satisfy the

throughput demand.

To choose between floor(x∗) and ceiling(x∗), we can simply calculate their re-

spective power consumption based on Equation 5.4 and select the one with lower value.

If floor(x∗) is chosen, Equation 5.10 has to be satisfied.

floor(x∗) · Ps +
K · F 3

floor(x∗)2
≤ ceiling(x∗) · Ps +

K · F 3

ceiling(x∗)2
(5.10)

Let floor(x∗) = X and ceiling(x∗) = X + 1, we have:

82

X · Ps +
K · F 3

X2
≤ (X + 1) · Ps +

K · F 3

(X + 1)2
(5.11)

By solving Equation 5.11, we conclude that if F ≤ 3

√
Ps
K · X2·(X+1)2

2X+1 , we choose

floor(x∗) as the best integer number of active cores. Otherwise, we choose ceiling(x∗).

Frequency Assignment

After obtaining the optimal number of active cores, we address Q3, the frequency

assignment problem to appropriately assign frequency to each active core considering the

discrete frequency levels. We propose two rules to guide the frequency assignment.

• Rule 1: Always provide the minimal cumulative core frequency that satisfies the traffic

demand.

• Rule 2: For a given cumulative core frequency, the per-core frequency combination

with the least standard deviation consumes the least power.

To demonstrate the two rules, we carry out two empirical studies with the same

settings as in Section 5.2.2. In the first study, we vary the cumulative core frequency from

2GHz to 8GHz. For a given cumulative core frequency, we vary the per-core frequency

combinations and record the net power consumption (load power minus idle power). Fig-

ure 5.6 shows the results for the URL application. From this figure, we observe that power

consumption varies substantially, as much as 114% when comparing (2, 2) to (1, 1, 1, 1),

with different per-core frequency combinations, which indicates that a proper frequency

83

assignment is very necessary for multicore servers supporting per-core DVFS and power

gating.

(1,1)

(2)

(1,1,1,1)

(2,2)

(1.7,1.7,1.4,1.2)

(1,1,1,1,1,1)

(2,2,2)

(1.7,1.7,1.4,1.2,1,1)

(1,1,1,1,1,1,1,1)

(2,2,2,2)

0

10

20

30

40

50

60

case 1 case 2 case 3

Per-core frequency combinations

P
o
w
e
r
(w
a
tt
)

2 GHz 4 GHz 6 GHz 8 GHz

Figure 5.6: Power versus different per-core frequency combinations.

In the second study, we take two cores and change the frequency in all possible

combinations and record the power consumption. Figure 5.7 shows the 3D plot for the

results with the URL application, where each black point represents a per-core frequency

combination and its corresponding power consumption. In addition, based on Figure 5.7, we

also plot Figure 5.8 illustrating the power consumption versus cumulative core frequency.

When a certain cumulative core frequency corresponds to multiple power consumptions,

we take the minimal one. From these two figures, we notice: 1) If we only consider the

minimal power consumption for a given cumulative core frequency as shown in Figure 5.8,

we see higher cumulative core frequency corresponds to higher power consumption. 2)

For the same cumulative core frequency, the more evenly-distributed per-core frequency

combination results in less power consumption as shown in Figure 5.7. For example, point

84

0

1
1.2

1.4
1.7

2

0

1
1.2

1.4

1.7

2
0

5

10

15

20

25

30

35

40

45

50

P
ow

er
 (

w
at

t)

Core 0 Frequency (GHz)Core 1 Frequency (GHz)

(1.7, 1.7)

(1.2, 1.2)

(1.4, 1)

(2, 1.4)

Figure 5.7: Power versus two-core frequency combinations.

0

5

10

15

20

25

30

35

40

45

50

1 1.2 1.4 1.7 2 2.2 2.4 2.6 2.7 2.8 2.9 3 3.1 3.2 3.4 3.7 4

Cumulative core frequency (GHz)

P
o
w
e
r
(w
a
tt
)

Power

Figure 5.8: Power versus cumulative core frequency with two cores.

85

(1.7, 1.7) is lower than point (2, 1.4) and point (1.2, 1.2) is lower than point (1.4, 1), although

they have the same cumulative core frequency in both cases. In summary, this exhaustive

study empirically validates our two rules.

5.2.4 Step 3: Static Power Optimization

The static power optimization scheme takes system operating level as input, which

virtually contains an array of core frequencies optimized for a given traffic rate, and produces

as output the actual per-core frequency configuration that is dynamically updated for power

migration. This step focuses on the power migration design for active cores to achieve

thermal balancing and reduce peak core temperature that effectively reduces static power

consumption.

Design Overview

While keeping the system operating level constant, we appropriately vary the

physical location for active cores so that thermal balancing is achieved across all cores.

If the time interval between two migration points is small enough, we can minimize peak

core temperature and effectively reduce static power consumption. Figure 5.9 illustrates

the overview of our power migration scheme with varying network traffic rate. At each

traffic change point (Ti), we apply the dynamic power optimization scheme to obtain the

optimal system operating level. Because the number of active cores may be less than the

total number of cores, and per-core frequency is heterogeneous, we periodically redistribute

the power dissipation at each migration point (ti) among all cores. In Figure 5.9, color

86

squares represent active cores with different frequency levels (the darker the color, the

higher the frequency), whereas white squares represent power-gated cores. In this example,

the migration process happens among core pairs (C1, C2), (C6, C4), and (C5, C3), where

the highest frequency cores C1, C6 and C5 are swapped with the lowest frequency cores

C2, C4 and C3.

time

T1 T2 Tn

……

t1 t2 t3 t4 tm

…………

c0 c1

c2 c3

c4 c5

c6 c7

c0

c2

c1

c5

c6

c3

c4

c7
T

t

high freq

medium freq

low freq

power-gated

traffic change point

migration point

Figure 5.9: Illustration of power migration for active cores.

As mentioned earlier, the power managing module periodically updates the core

status table to guide power migration in the system. For network applications that feature

in periodic packet processing, power migration only involves the swapping of operating

frequency among cores (through per-core DVFS and/or power gating). The task scheduling

module will redistribute future workload based on updated core status table accordingly.

Therefore, there is no actual data/state transfer between two cores, avoiding substantial

migration overhead.

87

Migration Policy

The policy of our power migration consists of both long-term update and short-

term update of core status table. The long-term update refers to the initialization of core

status table at each traffic change point, which is on the order of minutes based on network

traffic studies in [51, 65, 81]. The short-term update refers to the periodic update of core

status table at each migration point between two consecutive traffic change points. Consid-

ering core thermal behavior, packet processing time and system reconfiguration overhead,

we find an update frequency of 1 second to be a good value for short-term update in our

system.

Long-term update: The long-term update should be based on previous history in

the core status table for thermal balancing. At the traffic change point, because the system

operating level will change in terms of the number of active cores and core frequency, we

want every core to have even power dissipation over a period of time. For example, to

evenly distribute the power consumption from the highest frequency core in the previous

configuration, we should initially make it power-gated or assign the lowest frequency to it.

Therefore, our long-term update can be described as follows:

General policy: Given the current system operating level (f1, f2, ..., fN), we first

sort the per-core frequency configuration in the previous core status table according to the

frequency level from the lowest to highest. Then, we assign frequency f1 to the first core in

that list and frequency f2 to the second core in that list and so on. For cores that are not

assigned a frequency level, we leave them to be power-gated.

88

We have one exception for the above-mentioned long-term update. As we target

servers with multicore processors, we should use as few processors as possible while satisfying

traffic demand. Thus, when all active cores can fit into one processor, we should always use

only one processor. Considering the general policy, we add the following exception rule:

Exception: If all active cores can fit into one processor, we choose the processor

which contains the core that is assigned the frequency f1.

Short-term update: The short-term update aims to achieve thermal balancing

across all cores in the system through power migration. However, we can not adopt a

simple round-robin or random migration policy because system operating level changes

over time. We argue that the migration policy has to be temperature-aware to guarantee

thermal balancing during two consecutive short-term updates. Because core frequency is

directly related to core temperature and per-core frequency is easy to obtain, we propose a

frequency-aware migration policy to guide the short-term update as follows:

General policy: We sort the per-core frequency configuration in the current core

status table according to the frequency level from the lowest to highest. Then, we swap the

frequency between the first core in the list and the last core, and between the second core

and the last but one core, and so on.

This strategy lets the power dissipation be evenly distributed across all cores during

two consecutive short-term updates; thus overall thermal balancing will be achieved as

expected. In the exceptional case where only one processor is used, we apply the following

rule:

89

Exception: If all active cores can fit into one processor, we switch the processor at

every migration point and copy the same per-core frequency configuration within a processor

from one to the other. However, at every other migration point, we update the per-core

frequency configuration within a processor following the short-term update general policy.

This exception rule ensures we will keep the frequency assignment to one processor

when it is possible. Using the regular short-term policy without this exception will likely

split the frequency assignment across multiple processors.

5.3 Experimental Evaluation

5.3.1 Experiment Setup

We implement our scheme along with three other schemes on an AMD server

with two Quad-Core Opteron 2350 processors, running Linux-2.6.35 kernel. For power

measurement, we use a power analyzer (model EXTECH 380801 [5]) to obtain the real-time

whole system power. We use the net power consumed exclusively by network applications as

the metric for fair comparison. Net power is obtained by subtracting idle power (measured

when no application is executing) from load power (measured when network application is

executing on partial or all cores).

In our experiment, per-core DVFS is achieved by setting the core frequency to one

of the five predefined frequency levels: 1GHz, 1.2GHz, 1.4GHz, 1.7GHz and 2GHz. We

rely on the Linux kernel CPUfreq subsystem to implement the frequency scaling. Power

gating is achieved by removing cores from active working set based on kernel’s built-in

90

CPU “hotplug” support, which mimics precisely the behavior of power gating [62]. Task

scheduling module achieves power migration by dynamically scheduling incoming packets

to active cores (as discussed in Section 5.2.1).

Table 5.1: Six network applications from NetBench.

Name Functionality Category
CRC CRC-32 checksum calculation Micro level
TL Radix-tree table lookup routine Micro level

Route IPv4 routing based on radix IP level
DRR Deficit-round robin scheduling IP level
URL URL-based switching Application level
MD5 Message digest algorithm Application level

We parallelize six network applications from NetBench [68] (as listed in Table 5.1)

and execute them in a multi-threaded fashion with packet-level parallelism. To guaran-

tee each active core is running a thread, we enforce thread-to-core binding by setting

thread affinity. We select two applications from each category (i.e., Micro-level, IP-level

and Application-level). The packet trace is from NetBench with 10, 000 packets, which are

repeatedly processed in our experiment. The packet size ranges from 40 bytes to 1500 bytes

with an average of 723 bytes. The routing table size for TL, Route and DRR is 128, and

we use the small input file for URL.

Table 5.2 shows application-specific parameters. We profile each application and

obtain their system service model, where X represents the cumulative core frequency and

Y represents the service rate (packets/sec), equivalent to the arrival rate. To quantify the

workload for weighted load balancing scheduling, we also obtain the per-packet latency for

91

each application when running on a single core with 2GHz frequency. We observe that

the packet processing time is either constant or linear with respect to the packet size.

We derive the dynamic power parameter K for each application based on Equation 5.2

and Equation 5.3 by substituting known frequency and measured power consumption. In

addition, to calculate the static power Ps, we refer to AMD Opteron 2350 specification, and

use Vdd ∈ (1.06V, 1.35V) and Ileak ∈ (4.2A, 5.3A) as the 65nm technology parameters [62].

Hence, we take the average of 5.8W as the input for our power model.

Table 5.2: Application-specific parameters.

App. System Service Model Latency (µs) K
CRC Y = 81109 ·X + 26662 0.008·size+0.3 1.5
TL Y = 571389 ·X + 328743 0.8 1.4

Route Y = 253707 ·X + 87975 1.8 1.4
DRR Y = 74965 ·X + 54945 5.5 1.4
URL Y = 1496 ·X + 628 0.131·size+73.2 1.6
MD5 Y = 76016 ·X + 35024 0.005·size+3.2 1.8

To achieve traffic variation, we experiment with both synthetic and real-world

workloads. For synthetic workload, we set the required cumulative core frequency (F) for

incoming traffic to be one of the following five cases (as shown in Table 5.3). For real-world

workload, we take the 24-hour traffic as shown in Figure 1.1. We consider the total volume

as the arrival traffic for packet processing (i.e., traffic rate varies between 320K packets/sec

and 720K packets/sec), and sample 24 different average traffic rates at each hour to obtain

the required cumulative core frequency. Without loss of generality, the cumulative core

frequency is then scaled according to our system capacity from 1GHz to 16GHz. For both

92

workloads, we change the traffic rate every minute and set the power migration frequency

to be 1 second.

Table 5.3: Synthetic workload for different traffic rate.

Traffic Rate extra low low medium high extra high
F 1GHz 4GHz 8GHz 12GHz 16GHz

In the experiment, we first compare our scheme to a native system without power

management. Since the native system always runs with full capacity, our scheme can sub-

stantially outperform it in terms of power savings without throughput reduction. In addi-

tion, we compare our scheme with three other power-aware schemes, i.e., PG [65], which

turns off cores when traffic is light using power gating, C-DVFS [81], which assumes a uni-

fied frequency adjustment across all cores using chip-wide DVFS, and C-Hybrid [60], which

combines both chip-wide DVFS and power gating. Again, compared to these schemes, our

scheme can achieve more power savings.

5.3.2 Power Savings

Figure 5.10 shows power savings percentage for our scheme under different syn-

thetic workloads compared to a native system. We observe that our scheme can achieve

power savings in four out of five rates ranging from 18.0% for the CRC application in high

traffic rate, to as high as 90.0% for the URL application in extra low traffic rate. The only

exception is the extra high traffic rate, where all the cores must be running at the maximal

2GHz and no power-saving potentials can be explored. Overall, our scheme reduces an aver-

age of 41.0% power consumption for the six applications and their five different workloads.

93

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 (extra low) 4 (low) 8 (medium) 12 (high) 16 (extra high)

Cumulative Core Frequency (GHz)

P
o
w
e
r
S
a
v
in
g
s
 P
e
rc
e
n
ta
g
e
 (
%
)

CRC TL

Route DRR

URL MD5

Figure 5.10: Power savings percentage under different workloads.

In addition, we find our scheme especially useful when the traffic is light, e.g., in medium,

low and extra low cases. This is because under light load we have more potential to apply

per-core DVFS, power gating and power migration to achieve power savings.

Figure 5.11 shows the average power consumption for different applications com-

paring our scheme with three other schemes for the five different synthetic workloads. We

observe that our scheme performs the best across all applications with an average of 35.2%

power savings over C-DVFS, 24.3% over PG and 10.5% over C-Hybrid.

C-DVFS performs the worst due to significant over-provisioning and excessive

static power consumption, as it always keeps all the cores actively running. PG improves

upon C-DVFS by turning off unnecessary cores to mitigate over-provisioning and save static

power. However, without frequency scaling, it still suffers from excessive power consumption

during extra low traffic. C-Hybrid outperforms both C-DVFS and PG due to its more

flexible power management scheme using both chip-wide DVFS and power gating. But,

C-Hybrid fails to achieve the best power savings because it does not consider static power

94

or support more advanced per-core DVFS and power migration. Our scheme outwins all

other schemes by providing the optimal system operating level and dynamically changing

the per-core frequency configuration.

In addition, to emphasize the importance of power migration, we also experiment

with our scheme without migration. Our scheme with power migration achieves an addi-

tional 2.5W reduction of power on average over our scheme without power migration. This

highlights the advantage of including power migration in our power optimization scheme. In

particular, when the traffic rate is extra low, low and medium, power migration can signifi-

cantly reduce peak core temperature and hence effectively reduce static power consumption.

We will present our study of processor thermal behavior in Section 5.3.5.

0

10

20

30

40

50

60

70

CRC TL Route DRR URL MD5

Network Applications

P
o
w
e
r
(w
a
tt
)

PG C-DVFS C-Hybrid Our scheme w/o migration Our scheme

Figure 5.11: Power consumption comparison with three other schemes.

5.3.3 Energy Savings

Figure 5.12 shows normalized energy consumption compared to a native system

for different schemes using the real-world workload as input (24-hour traffic as shown in

95

Figure 1.1). We observe that all four scheme are able to achieve energy savings, ranging

from the least energy consumption of 0.45 for the URL application with our scheme, to the

most energy consumption of 0.71 for the Route and DRR application with C-DVFS scheme.

However, upon averaging out all six applications over the 24-hour period, we still find our

scheme outperforms PG, C-DVFS and C-Hybrid by 22.0%, 19.1% and 8.4%, respectively.

The poor performance of PG and C-DVFS is due to the following two reasons: 1) PG always

lets the cores run at full speed without frequency scaling, and 2) C-DVFS always has all

8 cores actively running without power gating. Compared to PG and C-DVFS, C-Hybrid

improves the energy performance by combining both chip-wide DVFS and power gating.

However, because C-Hybrid is unable to provide the optimal system operating level and

ignores static power, it often fails to achieve the best energy savings.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CRC TL Route DRR URL MD5

Network Applications

N
o
rm
a
li
z
e
d
 E
n
e
rg
y
 C
o
n
s
u
m
p
ti
o
n

PG C-DVFS C-Hybrid Our scheme

Figure 5.12: Normalized energy consumption with three other schemes.

Table 5.4 shows the snapshot of per-core frequency configuration and the provided

cumulative core frequency at time 17:00 for different schemes. From this table, we can

96

visualize the exact system operating level and frequency combinations at that moment. As

the required cumulative core frequency is only 8.5GHz based on Figure 1.1, we see clearly

that Native, PG and C-DVFS suffer from substantial over-provisioning by providing “more-

than-needed” cumulative core frequency. Both C-Hybrid and our scheme provide “just-

enough” cumulative core frequency. However, C-Hybrid consumes much higher dynamic

power without a proper frequency assignment. Our scheme, on the other hand, maintains

a good balance between dynamic and static power with the optimal number of active cores

and appropriate per-core frequency configuration.

Table 5.4: Per-core frequency configuration snapshot at 17:00.

f0 f1 f2 f3 f4 f5 f6 f7 F
Native 2 2 2 2 2 2 2 2 16

PG 2 2 2 2 2 0 0 0 10
C-DVFS 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 9.6
C-Hybrid 1.7 1.7 1.7 1.7 1.7 0 0 0 8.5

Our scheme 1.4 1.2 1.2 1.2 1.2 1.2 1.2 0 8.6

5.3.4 Reconfiguration Overhead

As our scheme involves periodic reconfiguration of core status, we also investigate

the overhead associated with our scheme. First, we individually measure the overhead for

DVFS and power gating. For DVFS, it takes 0.008 seconds to change the per-core frequency

level. For power gating, it takes 0.11 seconds to turn off a core and 0.08 seconds to turn

on a core. In addition, we notice that in power gating, turning off a core does not add

overhead as that power-gated core will be inactive in the next second. Also, not every core

changes status every second. Therefore, we measure the average per-core reconfiguration

97

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4
:0
0

5
:0
0

6
:0
0

7
:0
0

8
:0
0

9
:0
0

1
0
:0
0

1
1
:0
0

1
2
:0
0

1
3
:0
0

1
4
:0
0

1
5
:0
0

1
6
:0
0

1
7
:0
0

1
8
:0
0

1
9
:0
0

2
0
:0
0

2
1
:0
0

2
2
:0
0

2
3
:0
0

0
:0
0

1
:0
0

2
:0
0

3
:0
0

Time

R
e
c
o
n
fi
g
u
ra
ti
o
n
 O
v
e
rh
e
a
d
 (
%
)

Figure 5.13: Reconfiguration overhead versus time in our scheme.

overhead over the 24-hour traffic periodic at each hour as shown in Figure 5.13. This figure

shows the result for TL, Route and DRR, which have the same system operating level with

the same K value. The other three applications, CRC, URL and MD5 have very similar

performance. Every second, we count the invoked number of DVFS and power gating for all

the cores and divide the aggregated total overhead by 8. From this figure, we observe that

the overhead ranges between 0.2% and 3.3% with an average of 1.7%, which is negligible.

It is also easy to see that during low traffic hours (i.e., 8:00-14:00 and 17:00-23:00), the

overhead is higher due to more frequent power migrations.

5.3.5 Thermal Behavior

Finally, to demonstrate the effectiveness of power migration in reducing peak core

temperature, we conduct in-depth study of processor thermal behavior when running net-

work applications with different schemes. We use IPMItool utility to read processor thermal

sensor and obtain the temperature for each processor every second. As there is no per-core

98

thermal sensor available in our system, we approximately regard the processor temperature

as the peak core temperature in that processor. Figure 5.14 shows the maximal temperature

increase at extra low (XL), low (L) and medium (M) traffic rate, where power migration

is playing a significant role. Since all the starting temperatures are the same, we can see

our scheme has the minimal peak core temperature in all cases. In this figure, DVFS repre-

sents DVFS-based schemes, including both C-DVFS and C-Hybrid, as they have the same

thermal behavior.

0

2

4

6

8

10

12

14

16

18

20

P
G

D
V
F
S

O
u
r

P
G

D
V
F
S

O
u
r

P
G

D
V
F
S

O
u
r

P
G

D
V
F
S

O
u
r

P
G

D
V
F
S

O
u
r

P
G

D
V
F
S

O
u
r

P
G

D
V
F
S

O
u
r

P
G

D
V
F
S

O
u
r

P
G

D
V
F
S

O
u
r

P
G

D
V
F
S

O
u
r

P
G

D
V
F
S

O
u
r

P
G

D
V
F
S

O
u
r

P
G

D
V
F
S

O
u
r

P
G

D
V
F
S

O
u
r

P
G

D
V
F
S

O
u
r

P
G

D
V
F
S

O
u
r

P
G

D
V
F
S

O
u
r

P
G

D
V
F
S

O
u
r

XL L M XL L M XL L M XL L M XL L M XL L M

CRC TL Route DRR URL MD5

M
a
x
im
a
l
T
e
m
p
e
ra
tu
re
 I
n
c
re
a
s
e
 (
°C
)

Figure 5.14: Temperature performance under different workloads.

More specifically, we see that PG causes the highest temperature increase (up to 19

degree for the Route application in medium traffic rate) because it lets all the cores run at

the maximal frequency all the time. DVFS-based schemes, on the other hand, achieve better

thermal behavior with frequency scaling, especially in extra low traffic rate. However, it still

suffers from 1 degree to 3 degree higher peak core temperature compared to our scheme

when the traffic rate is low or medium, as it always stresses the same active cores. We

observe that our scheme on average reduces peak core temperature by 6 degree compared

99

to PG in all traffic rates and by 2 degree compared to DVFS in low and medium traffic

rate. This observation clearly shows that our scheme is able to achieve thermal balancing

and keep a lower peak core temperature through power migration.

100

Chapter 6

Predictive Model-Based

Thermal-aware Scheduling

6.1 Introduction

As can be seen from the previous chapter, power and temperature are closely

related to each other. On one hand, higher power consumption generates more heat and

increases temperature. On the other hand, higher temperature leads to higher static power

consumption and exacerbates the problem. Thus, in this chapter, we focus on thermal-aware

scheduling of network applications on multicore architecture.

we first establish a novel predictive thermal model for generic periodic tasks run-

ning on a single core. Our model is based on verification through both the HotSpot simula-

tor [85] and a real Linux machine with six Netbench applications [68]. Simulation is used to

verify the temperature rise and fall during a packet execution because the time is too small

101

to be measured through an on-chip thermal sensor. Measurement is used for verification of

the behavior over long term. Both simulation results and machine measurement show that

our model can accurately predict the core temperature. Then, we propose an online model

update to respond to incidental errors in practical use. Finally, by combining the thermal

model and the online update, we design, implement and evaluate a predictive model-based

thermal-aware scheduler for network applications on multicore architecture. To the best

of our knowledge, we are the first to integrate thermal awareness into scheduler design for

periodic tasks based on a predictive thermal model.

With regard to the online model update, we use on-chip thermal sensors to do

model sanity check periodically. We compare the sensor temperature with model temper-

ature and if the difference is larger than certain predefined threshold, we appropriately

update model parameters “on-the-fly”. Lastly, our thermal-aware scheduler strives to max-

imize throughput and achieve thermal balancing across all cores without violating thermal

constraint by combining task migration and Stop&Go techniques in a cost-effective and

cache-aware fashion. It always places the current task to an idle core with the lowest

temperature, which not only guarantees thermal balancing but also contributes to high

throughput due to no waiting time. To avoid thermal emergency, the scheduler will make

an appropriate decision based on cache-aware cost analysis, either migrating the task to

another core with lower temperature (task migration) or letting the hot core cool down and

resume it on the same core (Stop&Go).

We implement our thermal-aware scheduler along with four existing techniques

(a load balancing scheduling scheme called Least Load First (LLF), LLF with thermal-

102

awareness (LLF+), and two thermal-aware scheduling schemes, Greedy [92] and Coldest

Core First (CCF) [97]) on an Intel server with two Quad-Core Xeon E5335 processors.

Through extensive experiment, we observe that our scheduler achieves higher throughput,

lower temperature and better thermal balancing with negligible scheduling overhead and

no thermal constraint violation.

Our contribution can be summarized as follows.

• We establish a predictive thermal model for generic periodic tasks, which can char-

acterize both temperature rise and fall and dynamically derive the core temperature

quickly and accurately.

• We propose an online model update using on-chip thermal sensors, which can correct

incidental errors by adjusting model parameters “on-the-fly”.

• We design a predictive model-based thermal-aware scheduler for network applications

on multicore architecture, which combines both task migration and Stop&Go tech-

niques in a cost-effective and cache-aware fashion.

• We verify our model and evaluate the scheduler through extensive simulations and

machine measurements using real benchmark applications.

The rest of this chapter is organized as follows. Section 6.2 introduces background

information. In Section 6.3, we build the periodic task thermal model and describe the online

model update. Then, we propose our predictive model-based thermal-aware scheduler in

Section 6.4. We present experiment results and performance evaluation in Section 6.5.

103

6.2 Preliminaries

6.2.1 System Architecture

Figure 6.1 shows an overview of the targeted system architecture consisting of

multiple cores with local queues of tasks. Incoming packets are first stored in a global FIFO

queue. The execution time of a packet can be obtained based on its application type and

packet size, but the packet inter-arrival time can vary. The scenario represents a periodic

task, where the execution takes place when a packet arrives. The scheduler consists of two

functional modules, namely packet dispatcher and thermal manager. In each scheduling

cycle, the packet dispatcher fetches the next available packet from the global queue, makes

the scheduling decision, and then dispatches the packet into the appropriate core. Each

core runs a packet processing thread, which iteratively fetches a packet from its local queue

and executes the task.

core core core core…

local

queue

global

queue

incoming

packets

packet

processing

packet

(minimal scheduling unit)

packet

dispatcher

thermal

manager

scheduler

core

Figure 6.1: Overview of the system architecture.

104

The thermal manager monitors the thermal behavior of each core. We assume

each core has two states: busy and idle. In the busy state, the core is executing a packet

and the temperature will rise unless it is saturated; whereas in the idle state, the core is

idle and the temperature will fall unless it has already reached the ambient temperature.

The two states interleave with each other and cause the temperature variation. Based on

our predictive thermal model, the thermal manager knows if a core will reach its critical

temperature. If such thermal emergency happens, the thermal manager will pause the hot

core and make an appropriate decision, either migrating the remaining task to another core

with lower temperature (task migration) or letting the hot core cool down and resume its

execution on the same core after certain amount of cool-down interval (Stop&Go).

6.2.2 Core/Cache Topology

As task migration involves data transfer between two cores and potential loss

of cached states, the communication cost and cache performance are major concerns in

overhead analysis and destination core selection. For multicore architecture, the inter-core

communication cost is heterogenous due to hierarchical core/cache topology (e.g., cores

sharing the last level cache have much less communication time compared to cores located

on different sockets). As a result, the core/cache topology factor has to be carefully consid-

ered, since cache-awareness is critical in avoiding expensive communication overhead and

unnecessary cache misses.

For example, Figure 6.2 shows a typical multicore architecture and its core/cache

topology. The Intel Xeon E5335 has a tree-based hierarchy. From bottom up, a group of

105

two cores share the same L2 cache. Two of these groups (4 cores) share the same core

socket (S0 and S1). And the processor contains 2 such sockets that communicate through

main memory. It is obvious to see that the communication cost between two cores is vastly

different as illustrated by the arrow thickness (C(C0,C2)<C(C0,C6)<C(C0,C1)).

L2 cache

TS

Core 6

TS

Core 4

L2 cache

TS

Core 2

TS

Core 0

L2 cache

TS

Core 7

TS

Core 5

L2 cache

TS

Core 3

TS

Core 1

Socket 1Socket 0

Intel Xeon Processor E5335 Clovertown

S0 S1

L2 L2 L2 L2

C0 C2 C4 C6 C1 C3 C5 C7

C(C0,C2)

C(C0,C6) C(C0,C1)

Processor

Figure 6.2: A tree-based core/cache topology on multicore architecture.

To achieve cache-awareness in task migration, we differentiate the migration over-

head according to the communication time between two cores, which is further dependent

on their inter-core relationship. For instance, in Figure 6.2, we can see three different

inter-core relationships as indicated by the three arrows. We use Utt to denote the time to

transfer a unit data between two closest cores, and C(Cj1
,Cj2

) to represent the normalized

communication cost between core Cj1 and core Cj2 for a unit data. If Cj1 and Cj2 are

the two closest cores, C(Cj1
,Cj2

) = 1. Otherwise, C(Cj1
,Cj2

) is the ratio defined as the real

communication time between Cj1 and Cj2 divided by Utt, which is always greater than 1.

106

6.2.3 Notations

We consider a multicore system with M homogeneous cores, {C1, C2, ..., CM}; a

set of N periodic tasks, {τ1, τ2, ..., τN}; and K application types, {α1, α2, ..., αK}. The com-

munication cost between two cores is heterogenous due to hierarchical core/cache topology.

Each task τi(0 < i ≤ N) has its own timing and temperature information. The notations re-

garding the system and timing/temperature-related properties of a given task τi(0 < i ≤ N),

application type αk(0 < k ≤ K) and core Cj(0 < j ≤ M) are defined as follows:

• Core state (Statet
j): the state of core Cj at time t, either busy or idle.

• Core temperature (T t
j): the temperature of core Cj at time t. T 0

j represents the initial

value.

• Scheduled core (Corei): the core where task τi is scheduled.

• Arrival time (Ai): the time when task τi arrives.

• Starting time (Si): the time when task τi starts.

• Waiting time (Wi): the time difference between Ai and Si. Si = Ai + Wi.

• Execution time (Ei): the elapsed time to execute task τi.

• Overhead time (Oi): the wasted time of task τi during its execution due to migration

or cooling.

• Finish time (Fi): the time when task τi finishes. Fi = Si + Ei + Oi.

107

• Remaining time (Ri): the remaining execution time of task τi when the core reaches

Tcritical.

• Transferred data size (Dsize): the size of transferred data in task migration.

• Unit transfer time (Utt): the time to transfer a unit data between two closest cores.

• Normalized communication time (C(Cj1
,Cj2

)): the normalized communication cost to

transfer a unit data from core Cj1 to core Cj2 .

• Task migration overhead (M(Cj1
,Cj2

)): the time overhead when task migrates from

core Cj1 to core Cj2 .

• Steady-state temperature (T k
ss): The temperature saturation point for application

type αk.

• Ambient temperature (Tam): The lowest core temperature when there is no task

running.

• Critical temperature (Tcritical): The given temperature constraint that should never

be violated.

• Safe temperature (Tsafe): The highest temperature that allows a core to finish its

remaining task without reaching Tcritical again.

• Cooling time (Li): The time overhead for the core to cool from Tcritical to Tsafe.

• Trigger temperature (Ttrigger): Thermal management is triggered when the core tem-

perature rises to Ttrigger.

108

6.2.4 Problem Statement

We consider two objectives when designing our thermal-aware scheduler. First,

we aim at maximizing throughput measured by the number of packets processed per unit

time. Second, we strive to achieve thermal balancing across all cores and guarantee that the

given thermal constraint will be satisfied at any time. As discussed earlier, only a proactive

approach based on predictive thermal model can potentially achieve these two objectives.

Therefore, we define the problem statement as follows: For network applications running on

multicore architecture, how can one model the thermal behavior of periodic tasks and apply

the predictive thermal model to appropriately schedule packets, so that system throughput is

maximized, thermal balancing is achieved and temperature constraint is satisfied?

6.3 Periodic Task Thermal Model

The periodic task execution is a continuous flow consisting of interleaved temper-

ature rising and falling phases. The phase change corresponds to the change of CPU states

between busy and idle. Figure 6.3 sketches the thermal profile of the core as the periodic

task executes. The temperature increases when the task is executing and it decreases during

idle periods. Figure 6.3 only shows the temperature variation for the first three tasks with

their starting time and finish time.

Specifically, at time S0, the core starts out at temperature T0. In the interval

[S0,S1], the core temperature increases to T ′0 and cools down to T1. In the interval [S1,S2],

the temperature rises to T ′1 when the second task finishes and then cools down to T2. More

109

generally, suppose at time Sk, the core is at temperature Tk. Then, the temperature rises

to T ′k when the kth task finishes and it cools down to Tk+1 by time Sk+1. Ideally, if the busy

time and idle time are constant, we can easily show that T ′0 ≤ T ′1 ≤ T ′2 ≤ · · · ≤ T ′k ≤ · · ·

and T0 ≤ T1 ≤ T2 ≤ · · · ≤ Tk ≤ · · · . We will prove that the two non-decreasing sequences

of temperatures eventually converge in this case.

20

40

60

80

100

Time

T
e
m
p
e
ra
tu
re
 (
°C
)

T0

T0
'

T1

T1
'

T2
'

T2 T3

S2 F2 S3F1S0 F0 S1

Figure 6.3: Temperature variation as the periodic task executes.

From Figure 6.3, we can apply a recursive approach to dynamically derive the

current temperature from the most recent temperature history (e.g., the temperature when

the previous task finishes) given the timing information. Hence, in this section, we first

model the rising and falling edges separately. Then, we derive the recursive model for

periodic tasks. Finally, we discuss model thermal properties and analyze its time complexity

and accuracy.

110

6.3.1 Single Task Thermal Model

Temperature Rising

When a core is in busy state, its temperature will rise and will eventually stabilize

at a thermal saturation point Tss. At this point, the heat generation rate will equal to the

heat dissipation rate, thus thermal equilibrium is achieved. The classic heat transfer equa-

tions model Tss in a system with heat sources [52]. It has been proved that the temperature

changes exponentially to Tss starting from any initial temperature. In another word, the

rate of temperature change is proportional to the difference between the current tempera-

ture and Tss. In this chapter, we assume Tss of a certain application type is known from

offline profiling without thermal management. Let T (t) represent the temperature at time

t and let Tinit be the temperature when a task starts execution (T (0) = Tinit). According

to [52], we have:

dT (t)
dt

= β × (Tss − T (t)) (6.1)

By solving Equation 6.1 with T (0) = Tinit and T (∞) = Tss, we can derive the

following equation:

T (t) = Tss − (Tss − Tinit)× e−βt (6.2)

β is a processor/application-specific constant, whose value can be determined by

fitting temperature rising curve using least square method. With Equation 6.2, we can

111

predict the rising temperature after time t when a task gets started given its initial tem-

perature.

Temperature Falling

When a core is in idle state, its temperature will fall and will finally reach ambient

temperature Tam. At this point, the core enters thermal equilibrium state due to no more

heat loss from itself to its surroundings. This cooling process can be described by Newton’s

law of cooling [23], which states that the temperature change rate of an object is proportional

to the difference between its own temperature and the ambient temperature. Newton’s law

makes a statement about an instantaneous rate of change of the temperature, which can be

translated into a differential equation similar to Equation 6.1. Let Tinit be the temperature

when a task just finishes execution (T (0) = Tinit). Equation 6.3 represents the temperature

change rate according to Newton’s cooling law.

dT (t)
dt

= −ρ× (T (t)− Tam) (6.3)

By solving Equation 6.3 with T (0) = Tinit and T (∞) = Tam, we can derive the

following equation:

T (t) = Tam + (Tinit − Tam)× e−ρt (6.4)

112

ρ is a processor specific constant irrespective of running applications. We can use

the same least square method as in temperature rising phase to obtain ρ. With Equation 6.4,

we can predict the temperature after time t when a task finishes given its initial temperature.

6.3.2 Periodic Task Thermal Model

In order to represent generic periodic tasks, we allow both busy time and idle time

to be arbitrary. We consider two scenarios in deriving the thermal model for periodic tasks.

On one hand, if the core is in idle state at time t, the core temperature is only determined

by the temperature when the previous task finishes and the elapsed time since then. It

is because the most recent temperature history already reflects the effect of all past task

executions and temperature variations. Thus, we only keep record of the temperature when

the previous task finishes. Suppose the previous task is τn−1 and its finish time is Fn−1.

Then, based on Equation 6.4 we have the following:

T (t) = Tam + (TFn−1 − Tam)× e−ρ(t−Fn−1) (6.5)

On the other hand, if the core is in busy state at time t, the core temperature is

dependent on the temperature when the current task started and the elapsed time since

then. Suppose the current task is τn and its starting time is Sn. Based on Equation 6.2 we

have:

T (t) = Tss − (Tss − TSn)× e−β(t−Sn) (6.6)

113

As we only keep record of TFn−1 , the temperature when the previous task finished,

we can use Equation 6.5 to derive TSn from TFn−1 as shown in Equation 6.7.

TSn = Tam + (TFn−1 − Tam)× e−ρ(Sn−Fn−1) (6.7)

Now we can recursively derive the core temperature at any time from previous

equations. We show how to get TFn from TSn as another example1:

TFn = Tss − (Tss − TSn)× e−β(Fn−Sn) (6.8)

Based on previous equations we present our periodic task thermal model in Equa-

tion 6.9. Suppose the first task starts out at time 0 and at temperature Tam.

T (t) =

Tam + (TFn−1 − Tam)× e−ρ(t−Fn−1), idle

Tss − (Tss − TSn)× e−β(t−Sn), busy

(6.9)

where

TSn = Tam + (TFn−1 − Tam)× e−ρ(Sn−Fn−1)

TF1 = Tss − (Tss − Tam)× e−βF1

1If thermal constraint is enforced, T Fn will be Tcritical in case of thermal emergency.

114

6.3.3 Model Thermal Properties

Upper/Lower Bound

For generic periodic tasks (i.e., arbitrary busy time and idle time), the temperature

variation is upper-bounded by Tss and lower-bounded by Tam at any time.

proof : Given any time t during periodic task execution, it is either in temperature

rising phase or temperature falling phase. Equation 6.2 characterizes the temperature rising

phase. Given this exponential equation, the temperature T (t) will always be smaller than

Tss. Only when t is infinity will T (t) be equal to the upper bound Tss as per Equation 6.10.

T (t) = Tss − (Tss − Tinit)× e−βt ≤ Tss (6.10)

limt→∞T (t) = Tss

Equation 6.4 models the thermal behavior of temperature falling phase. Similarly,

whatever the starting temperature Tinit is, the temperature T (t) will always be larger than

Tam while decreasing. In this case, only when t equals to infinity will T (t) reach the lower

bound Tam as shown in Equation 6.11.

T (t) = Tam + (Tinit − Tam)× e−ρt ≥ Tam (6.11)

limt→∞T (t) = Tam

115

Thermal Equilibrium

For ideal periodic tasks (i.e., constant busy time and idle time), their temperature

variation will eventually converge to thermal equilibrium between Tmin and Tmax. In each

period, the temperature increases from Tmin to Tmax, and then decreases from Tmax to

Tmin.

proof : First, we know Tam < Tmin < Tmax < Tss from the previous proof. Second,

from the definition of ideal periodic tasks, we know the task inter-arrival time is constant

(S1 − S0 = S2 − S1 = · · · = Sk+1 − Sk = · · ·) and the execution time of each task is also

constant (E0 = E1 = E2 = · · · = Ek = · · ·). Third, we assume the task execution starts

from Tam without loss of generality. Relating to Figure 6.3, we have T0 = Tam. It is also

true that T ′0 ≤ T ′1 ≤ T ′2 ≤ · · · ≤ T ′k ≤ · · · and T0 ≤ T1 ≤ T2 ≤ · · · ≤ Tk ≤ · · · , since

both busy time and idle time are invariants. Now we demonstrate the two non-decreasing

sequences of temperatures converge to Tmax and Tmin, respectively.

We let ∆k represent the temperature increase while the kth task is executing

(∆k = T ′k − Tk), and ∆′
k represent the temperature decrease after the kth task finishes

(∆′
k = T ′k − Tk+1). Based on Equation 6.2, from the property of exponential equation2,

we know that given the same execution time, if the starting temperature is higher, the

temperature increase will be smaller. Thus, from T0 ≤ T1 ≤ T2 ≤ · · · ≤ Tk ≤ · · · , we have

the following: ∆0 ≥ ∆1 ≥ ∆2 ≥ · · · ≥ ∆k ≥ · · · . Similarly, based on Equation 6.4, we know

that given the same cooling time, if the starting temperature is higher, the temperature

decrease will be bigger. Thus, from T ′0 ≤ T ′1 ≤ T ′2 ≤ · · · ≤ T ′k ≤ · · · , we have the following:

2The slope of the curve decreases over time.

116

∆′
0 ≤ ∆′

1 ≤ ∆′
2 ≤ · · · ≤ ∆′

k ≤ · · · . As a result, the non-increasing sequence of ∆k will

eventually merge with the non-decreasing sequence of ∆′
k at the equilibrium point, since

their initial values satisfy ∆0 ≥ ∆′
0 (because T0 ≤ T1, we have ∆0 = T ′0−T0 ≥ T ′0−T1 = ∆′

0).

From that point onward, both ∆k and ∆′
k will be equal to Tmax − Tmin, and we have

limk→∞Tk = Tmin and limk→∞T ′k = Tmax in thermal equilibrium state.

As a matter of fact, we can obtain the value of Tmin and Tmax by solving Equa-

tion 6.12 that characterizes the temperature variation in thermal equilibrium state. Suppose

the busy time constant and idle time constant are tbusy and tidle, respectively.

Tmin = Tam + (Tmax − Tam)× e−ρtidle , idle state

Tmax = Tss − (Tss − Tmin)× e−βtbusy , busy state

(6.12)

⇒

Tmin = Tam(1−P)+Tss(1−Q)P
1−PQ

Tmax = Tss(1−Q)+Tam(1−P)Q
1−PQ

where

P = e−ρtidle

Q = e−βtbusy

6.3.4 Time Complexity and Accuracy

The two criteria of an online thermal model are fast response time and accuracy.

We expect to apply our model to network applications with periodic packet processing in

the magnitude of microseconds. If the model takes very long to compute the temperature, it

will simply fail to function. Our model, as presented in Equation 6.9, however, has very fast

response time. It only takes timing information and one history temperature to derive the

117

current temperature from an exponential equation. Experiments on a real Linux machine

with 2GHz frequency show that our model takes only 0.1µs to compute the temperature.

The accuracy of our model is also guaranteed by comparing with both well-known

simulator and real Linux machine. Because the thermal behavior of the packet (Figure 6.3)

is valid at micro second level, it is impossible to get measurement results at that low granu-

larity. The current temperature sensors measure the core temperatures only at one second

interval. Thus, we have verified our thermal model by running six network applications

chosen from NetBench on HotSpot simulator with different packet traces. HotSpot simula-

tor [85] is best known for its accuracy and credibility in architectural studies. Simulation

results show that our model can closely match the temperature curve drawn by HotSpot sim-

ulator. In addition,we also validate the model by comparing it with actual measurements

in a Linux box to show that the mathematical model adequately represents the thermal

characteristics at a large time interval. Detailed results regarding model verification can be

found in Section 6.5.

6.3.5 Online Model Update

Although our mathematical model can adequately represent the thermal charac-

teristics of periodic tasks, its robustness and soundness can still be compromised due to

incidental errors.

First, the model is vulnerable to unpredictable dynamics in practical online use,

such as changing ambient temperature, abnormal application behavior, hardware malfunc-

tion, interference from other threads or heat dissipation from other cores. All these random

118

events/conditions can result in model failure. Second, the model is error-prone by its re-

cursive nature as the error may propagate at each calculation. From Equation 6.9 we know

that our thermal model is based on four constant parameters (i.e., processor/appli-cation-

specific parameters Tss and β, processor-specific parameters Tam and ρ), timing information

(i.e., t, Fn−1 and Sn) and the most recent temperature history TFn−1 . For the four constant

parameters, their values will not change for a given application and core. This is because 1)

all the applications consume the constant stable power as can be seen in Figure 6.5 without

much fluctuation; and 2) the heat dissipation of a core in idle state only depends on its

hardware physical properties, which will not change over time. Thus, there is no need to

update them periodically. In addition, timing information (which is converted from CPU

cycles or obtained through system call) can be also considered trustworthy. Thus, only

the value of TFn−1 , which is derived each time from the model itself, may not always be

accurate. Given the recursive nature of our thermal model, it is possible for a faulty TFn−1

with tiny little error to cause catastrophe in the long run.

We propose an online model update as shown in Figure 6.4 to make the model

more robust and sound. This update strategy can effectively correct incidental errors by

appropriately adjusting the model parameter TFn−1 “on-the-fly”.

More specifically, our update strategy relies on on-chip temperature sensors to do

model sanity check (i.e., automatic calibration), as modern CPUs equipped with tempera-

ture sensors are capable of periodically reporting their own internal temperature. Figure 6.4

illustrates the framework of our online model update based on per-core temperature sen-

sor. For our system (i.e., an Intel server with two Quad-Core Xeon E5335 processors),

119

the temperature sensor sampling interval is 1 second. Thus, every second we feed the real

core temperature to an online model adjustor. In the meantime, our thermal model also

sends its predicted model temperature to the adjustor every second. Then, the adjustor

compares the two values and if the difference is larger than certain predefined threshold, it

will appropriately compute a new TFn−1 , the most recent temperature history, to replace

the old value. By this update, all the future temperatures derived from the thermal model

will be trustworthy based on the updated TFn−1 .

L2 cache

TS

core

TS

core

L2 cache

TS

core

TS

core

Temperature

Sensor

scheduler
thermal

model

online model

adjustor

real core

temperature

model

temperature

model

temperature

model

update

Figure 6.4: Online model update in practice.

TFn−1 is updated as follows. Suppose the update point is time t and the temper-

ature derived from the model is T (t). First, we use the real core temperature to replace

T (t) in Equation 6.9 using the same equation as the original T (t) is derived depending on

the core status at time t. Second, we regard TFn−1 as an unknown variable and solve that

equation to obtain the updated TFn−1 . Equation 6.13 shows the calculation of updated

TFn−1 in both idle and busy states. In Section 6.5 we will show the implementation details

120

of the proposed update strategy and highlight its advantage in improving model accuracy

through real machine experiments.

TFn−1 =

Tam + T (t)−Tam

e−ρ(t−Fn−1) , idle state

Tam +
Tss− Tss−T (t)

e−β(t−Sn)
−Tam

e−ρ(Sn−Fn−1) , busy state

(6.13)

6.4 Predictive Thermal-aware Scheduler

Our thermal management algorithm differs from previous work in the following two

ways: 1) algorithms that handle periodic tasks do not use time-based predictive thermal

model. Instead, they either do not have thermal model (i.e., reactive approaches) [35, 88]

or rely on power estimation from history data [92, 93]; 2) algorithms that use time-based

predictive thermal model only handle single task execution, whose temperature will simply

rise to saturation point and then stabilize. They can not be extended to handle periodic

tasks that involve both temperature rise and fall because they do not model the falling

phase [96,97].

6.4.1 Thermal Management Techniques

We adopt two thermal management techniques, task migration and Stop&Go, to

guarantee that the thermal constraint is never violated.

Task migration means migrating current task from an overheated core to a cooler

core. By doing so, the hot core will switch to the idle state and its temperature will cool

121

down. The new core will continue executing the remaining task without much delay. Hence,

task migration can effectively avoid thermal emergency with little throughput degradation.

There are two conditions that have to be satisfied in task migration. First, the core running

the current task will reach Tcritical before it finishes. This information can be obtained

from our thermal model. Second, there exists at least one idle core where the task can be

migrated. To retrieve this information, we can refer to the core state (Statet
j). Other issues

concerning task migration include its cost analysis (e.g., data transfer) and the selection

of the best destination core. We will address them shortly as they are closely related to

core/cache topology of the underlying architecture.

Stop&Go refers to temporarily suspending the running task, letting the hot core

cool down for some time and then resuming its execution. In Stop&Go, when to suspend

the task and when to resume its execution are two design choices.

On one hand, as the core thermal behavior is modeled by exponential equations,

we know the temperature decreases faster when the initial temperature is higher in the

falling phase. This property is also self-explanatory due to the fact that the temperature

change rate is proportional to the difference between the current temperature and Tam.

Hence, we should first heat up the core to Tcritical, the highest possible temperature, and

let it cool down to determine the first design choice. This strategy will result in larger

temperature decrease given the same cool-down interval and contribute to better thermal

and throughput performance.

If the cool-down interval is too small, the core may not have enough time to cool

down. In this case, the core will most likely to reach Tcritical again before finishing the

122

remaining task, triggering another Stop&Go with extra system overhead. On the contrary,

if the cool-down interval is too long, the task waiting time is significant, which may result

in substantial throughput degradation. In our design, the core will resume task execution

as soon as its temperature falls down to Tsafe, the highest temperature that allows a core

to finish its remaining task without reaching Tcritical again. In this way, throughput is

maximized due to minimal waiting time and system overhead is minimized because Stop&Go

will not be triggered more than once for every task. We will address how to derive Tsafe

and cool-down interval in the next section.

The major differences between task migration and Stop&Go lie in the following

four aspects: 1) In task migration, the new core will immediately start executing the re-

maining task. In Stop&Go, the task will not be resumed unless the temperature falls to

Tsafe. 2) The overhead cost in Stop&Go is caused by cool-down interval, whereas the over-

head cost in task migration is caused by data transfer and potential loss of cached states.

3) Stop&Go does not care about the status of other cores; whereas task migration requires

at least one idle core. 4) A task will experience only one Stop&Go. But it may experience

several task migrations if the migrated core reaches Tcritical again before the task finishes.

6.4.2 Overhead Quantification

For Stop&Go, the overhead time is equal to the cool-down interval (Li), which

depends on how long it takes for the core’s temperature to decrease from Tcritical to Tsafe.

Although Tcritical is a predefined constant (i.e., given temperature constraint), Tsafe depends

123

on application type and the size of the remaining task. Thus, we need to first obtain

Tsafe, and then derive Li.

To compute Tsafe, we rely on the thermal model to backtrace its value. More

specifically, we first obtain the remaining execution time of the task, Ri, which is the

total execution time minus the time already spent on executing the task. Then, we use

Equation 6.9 in the case of busy state to derive Tsafe by substituting T (t) with Tcritical, TSn

with Tsafe, and (t− Sn) with Ri. Equation 6.14 shows the derivation of Tsafe.

Tcritical = Tss − (Tss − Tsafe)× e−βRi (6.14)

Tsafe = Tss − Tss − Tcritical

e−βRi

After both Tsafe and Tcritical are available, we can easily derive Li by solving

Equation 6.15, which is based on Equation 6.9 in the case of idle state.

Tsafe = Tam + (Tcritical − Tam)× e−ρLi (6.15)

Li =
ln Tsafe−Tam

Tcritical−Tam

−ρ

With respect to task migration, we consider two cases. In the first case, one

migration is enough to safely finish the task. In the second case, the migrated core will

again reach Tcritical before the task finishes. In such a case, another thermal technique will

be triggered, either task migration or Stop&Go. In fact, we know which case to happen

from our thermal model before task migration occurs. In addition, if case two is to occur,

124

we also know how soon the migrated core will reach Tcritical again and what is the remaining

execution time. For the overhead quantification for the second case, we assume Stop&Go

will be triggered in case of thermal emergency3. Thus, the associated overhead in task

migration consists of two parts. The first part is the migration overhead, and the second

part is potential Stop&Go overhead on the destination core, Li. To compute the first part,

we need to obtain Dsize, which is equal to the packet size in network applications. Then,

based on C(Cj1
,Cj2

) and Utt, we can obtain the overhead time. To compute the second

part, we can simply follow Equation 6.15. Finally, Equation 6.16 shows the calculation of

M(Cj1
,Cj2

).

M(Cj1
,Cj2

) =

C(Cj1
,Cj2

) · Utt ·Dsize, case 1

C(Cj1
,Cj2

) · Utt ·Dsize + Li, case 2

(6.16)

6.4.3 Scheduling Algorithm

Our scheduling scheme has three objectives: throughput maximization, thermal

balancing, and thermal constraint agreement. Our algorithm is based on a predictive ther-

mal model for periodic tasks and two thermal management techniques, namely, task mi-

gration and Stop&Go. When a task τi with application type αk is to be scheduled, the

scheduling algorithm is described below.

1. Scan all the idle cores and select one with the lowest temperature. Schedule τi on this

core (Corei). If all the cores are busy, wait for the first idle core. (line 1-4)
3Because it is impossible to know the future core state information at this moment, Stop&Go is the only

choice for fair comparison.

125

2. If the steady state temperature of task τi is less than the critical temperature Tcritical,

we are done. (line 5)

3. If the estimated temperature when task τi completes, TSi+Ei
Corei

, is less than the critical

temperature Tcritical, we are done. (line 6-7)

4. Otherwise, when the core temperature rises to Ttrigger, calculate and compare the

overhead for Stop&Go on Corei (Equation 6.15) and task migration on all other

idle cores (Equation 6.16). Then, choose the core with the least overhead and take

appropriate action. (line 8-15)

5. If Stop&Go is triggered, wait until Corei cools down to Tsafe and resume its execution

on the same core. If task migration is triggered, migrate τi to the destination core and

continue its execution on the new core. Then go back to step 3 with updated timing

variables.4 (line 16-22)

Algorithm 2 presents the pseudocode. Although we only present the algorithm for

one periodic task, the algorithm should continuously run for every incoming task following

the same routine.

Algorithm 2 Input: task τi with application type αk

1: if all cores are busy then

2: Corei←first idle core

3: else

4: Corei←idle core with the lowest temperature
4Task migration may still cause the new core to overheat again.

126

5: if T k
ss≤Tcritical then return

6: calculate TSi+Ei
Corei

7: if TSi+Ei
Corei

≤Tcritical then return

8: t ← current time

9: when T t
Corei

≥Ttrigger, execute the following:

10: for each Cj do /* Cj∈{Corei+all idle cores} */

11: if Cj = Corei then

12: compute Tsafe and Li for Cj

13: else

14: compute M(Corei,Cj) for Cj

15: choose the Cj with the least overhead, Corej

16: if Corej = Corei then

17: trigger Stop&Go

18: return

19: else

20: trigger task migration to Corej

21: update timing variables

22: goto line 6

127

6.5 Experiment and Evaluation

6.5.1 Experiment Setup

We have done extensive experiments in 1) model verification and 2) performance

evaluation. For model verification, we use both the HotSpot simulator [85] and a real Linux

machine to run six network applications chosen from NetBench [68]. For performance

evaluation, we implement our scheduling scheme along with four alternatives on an Intel

server with two Quad-Core Xeon E5335 processors to compare their performance. The four

compared schemes are described below.

• Least Load First (LLF): Schedule the packet to the least-loaded core. There is no

thermal management.

• Thermal-aware Least Load First (LLF+): Schedule the packet to the least-loaded

core. Use Stop&Go in case of thermal emergency based on thermal sensor readings.

• Greedy: Schedule the packet to the first non-overheated idle core [92].

• Coldest Core First (CCF): Schedule the packet to the coldest idle core [97].

The last two schemes are thermal-aware, and simple task migration is adopted in

case of thermal emergency based on our thermal models5 (always migrate to the coldest

core). However, if there is no available idle core for migration, Stop&Go is used instead and

the cooling time is fixed to be 1 second.
5As we are the first to propose predictive model-based thermal management for periodic tasks, there are

no more suitable schemes other than the two we select for comparison.

128

Table 6.1 lists the six applications. We select two applications from each category

(i.e., Micro-level, IP-level and Application-level) to make them representative. The packet

trace is from NetBench with 10000 packets. The packet size ranges from 40 bytes to 1500

bytes with an average of 723 bytes. For thermal behavior purpose, we repeatedly execute

each packet for 1000 times and manually insert packet inter-arrival time in three different

ways assuming the network bandwidth is 1Gbps per core: Fixed Gap (FG), Random Dis-

tribution (RD), and Simulated Distribution (SD), as shown in Table 6.2. The routing table

size for Route and DRR is 128, and we use the small input file for URL.

Table 6.1: Six network applications from NetBench.

Name Functionality Category
CRC CRC-32 checksum calculation Micro level
TL Radix-tree table lookup routine Micro level

Route IPv4 routing based on radix IP level
DRR Deficit-round robin scheduling IP level
URL URL-based switching Application level
MD5 Message digest algorithm Application level

Table 6.2: Packet trace patterns.

Pattern Inter-arrival description
FG 0.75ms

RD randomly chosen from 0 to 1.5ms

SD idle time is one half of busy time

We use HotSpot simulator to verify the model because the real temperature sensors

can not measure in less than a second interval. The periodic tasks of packet executions vary

in microsecond level. The HotSpot simulator needs the following input: 1) functional blocks

of the simulated core, 2) floor plan of the simulated core and 3) the power trace during

execution. For the first two inputs, we take the Alpha EV6 processor as a representative

129

example, which is the default setting in HotSpot simulator as used in [84]. It is worth

noting that our interest lies in the model verification other than investigating a particular

core architecture. Thus, using a different core architecture will at most produce different

parameters for our thermal model but it will not affect our model verification.

For the third input, to obtain the busy state power trace needed by HotSpot for

each functional block, we use Wattch [22] with default settings to profile each application

without inter-arrival time. Figure 6.5 shows the average total power consumption over time

for all six applications running on Wattch, where each time unit represents 500 CPU cycles.

From this figure, we see that after a short period of warm-up phase, every application has

constant stable power consumption. Thus, we use their constant stable power consumption

as busy state power in HotSpot as shown in Table 6.3. For idle state power, we assume

zero power consumption as in power-gated case. Using other non-zero value will slow the

temperature drop, which will only adjust the model parameter ρ but will also not affect the

model verification. In addition, as HotSpot outputs the thermal profile for each functional

block, we take the highest temperature among all blocks to represent the core temperature.

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time

P
o
w
e
r
(w
a
tt
)

crc tl route

drr url md5

Figure 6.5: Power consumption versus time on Wattch.

130

For real machine measurement, we use one core of the Intel Xeon E5335 server

with 2GHz core frequency to run benchmark applications. We bind the running thread

on the fixed core and use lm-sensors [11] to read the core temperature every second. Lm-

sensors is a Linux hardware monitoring tool, which can access Intel’s Coretemp driver to

get per-core temperature information. In addition, we also implement the online model

adjustor to demonstrate the practicability and advantage of online model update. We let

the update take place whenever there is 0.5 degree difference between model temperature

and real temperature.

Table 6.3: Application power and time characteristics.

App. Power(watt) Power(watt) Ei(µs)
(busy state) (idle state)

CRC 22.8 0 0.008×pkt size+0.3353
TL 24.8 0 0.8050

Route 21.3 0 1.7721
DRR 22.2 0 5.5501
URL 20.9 0 0.1369×pkt size+75.499
MD5 16.6 0 0.0054×pkt size+3.5355

y = 0.1369x + 75.499

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400 1600

Pkt_size (byte)

T
im
e
 (
µ
s
)

URL

DRR

Linear (URL)

Figure 6.6: Execution time versus packet size for URL and DRR.

131

For performance evaluation, we implement our scheme with online model update

and four others on an Intel server with two Quad-Core Xeon E5335 processors using the

same settings as in real machine measurement. We create 8 parallel threads and bind each

running thread to one core. We use sleep function calls in Linux to mimic the behavior

of suspending a running task. All the model-related parameters, such as Tam, Tss, β and

ρ, are obtained offline from running benchmark applications on the real machine without

enforcing thermal management as shown in Table 6.5. In particular, we also measure Utt

to be 7.3ns and C(Cj1
,Cj2

) to be 1, 1.7 and 3.1, respectively, depending on the inter-core

distance between Cj1 and Cj2 as shown in Figure 6.2. The two thermal threshold parameters,

Tcritical and Ttrigger, are set to be 38 degree and 37.9 degree, respectively. In addition, to

obtain the task execution time Ei for each packet, we profile the packet trace for each of

the six applications and observe that Ei is either constant or linear to the packet size. The

numerical results are listed in Table 6.3. For clarity we only show two typical applications

(URL and DRR) in Figure 6.6 as an example of execution time versus packet size. As this

chapter only focuses on single application execution, we repeatedly run the 10000-packet

trace for multiple times for each application until its thermal behavior stabilizes, usually 1

to 2 minutes. During each time, we randomly enforce one of the three packet trace patterns

as shown in Table 6.2. We start each application run only after the core temperature drops

to its minimum, Tam, which we measure to be 35 degree from reading on-chip thermal

sensor.

132

6.5.2 Model Verification

HotSpot Simulation

Table 6.4: Thermal parameters from HotSpot.

Application Tam Tss β ρ

CRC 35 degree 116.7 degree 0.006051 0.006126
TL 35 degree 122.8 degree 0.006049 0.006126

Route 35 degree 120.7 degree 0.006058 0.006126
DRR 35 degree 117.3 degree 0.006054 0.006126
URL 35 degree 105.3 degree 0.006063 0.006126
MD5 35 degree 94.3 degree 0.006071 0.006126

0

20

40

60

80

100

120

140

0 500 1000 1500 2000 2500 3000 3500

Time

T
e
m
p
e
ra
tu
re
 (
 °
C
)

MD5 MD5_model

TL TL_model

MD5: T(t)=94.3-59.3*e
-0.006071t

TL: T(t)=122.8-87.8*e
-0.006049t

TL: T(t)=35+87.8*e
-0.006126(t-1500)

MD5: T(t)=35+59.3*e
-0.006126(t-1500)

Figure 6.7: Model validation on HotSpot for single task.

In this section, we verify our model by running six applications on HotSpot and

compare the HotSpot temperature with model temperature. Table 6.4 shows the model-

related parameters derived from HotSpot simulator for all six applications. From this table

we see that Tam and ρ are constant irrespective of applications, whereas Tss and β are

application specific, with Tss ranging from 94.3 degree for MD5 to 122.8 degree for TL.

133

Figure 6.7 exhibits the model validation for single task in both temperature rising

and falling phases. We show two applications with the highest Tss (TL) and the lowest Tss

(MD5). Model equations are added next to their respective curves. For each application,

we let it run until Tss is reached, and then let the core cool down to Tam. Every time

unit is equal to HotSpot sampling interval (3.333µs), which is used throughout this section.

From this figure, we observe that the single task thermal model can accurately predict the

temperature in both phases for real applications, with the average error being less than 1

degree.

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500 4000

Time

T
e
m
p
e
ra
tu
re
 (
 °
C
)

HotSpot

Model

Figure 6.8: Model validation on HotSpot for periodic tasks.

Figure 6.8 shows the model verification for periodic tasks in a typical run with

mixed workload and Simulated Distribution. For visualization purpose, we scale up the

busy time and idle time in this way: we randomly pick one application and let it run for

100 time units and then cool down for 50 time units. we compare the HotSpot temperature

and model temperature for the first 3600 time units, where 24 temperature rising phases and

134

24 temperature falling phases interleave with each other. From this figure, we see that the

model temperature matches HotSpot temperature very well with only 0.8 degree difference

on average.

Machine Measurement

Table 6.5: Thermal parameters from real machine.

Application Tam Tss β ρ

CRC 35 degree 39 degree 1.4904 0.2517
TL 35 degree 44 degree 0.2547 0.2517

Route 35 degree 40 degree 0.4091 0.2517
DRR 35 degree 39 degree 1.4904 0.2517
URL 35 degree 39 degree 0.4318 0.2517
MD5 35 degree 42 degree 0.6213 0.2517

33

35

37

39

41

43

45

0 10 20 30 40 50 60 70

Time (sec)

T
e
m
p
e
ra
tu
re
 (
 °
C
)

TL TL_model

MD5 MD5_model

TL: T(t)=44-9*e
-0.2547t

MD5: T(t)=42-7*e
-0.6213t

TL: T(t)=35+9*e
-0.2517(t-30)

MD5: T(t)=35+7*e
-0.2517(t-30)

Figure 6.9: Model validation on real machine for single task.

In addition to HotSpot, we further conduct machine measurement to validate our

model via running benchmark applications on a single core of the Intel Xeon E5335 server.

Table 6.5 shows the model-related parameters obtained from real machine for each of the

six applications. Compared to Table 6.4, we find out that Tss on a real machine is far less

135

34

35

36

37

38

39

40

0 10 20 30 40 50 60 70 80

Time (sec)

T
e
m
p
e
ra
tu
re
 (
 °
C
)

Model_update Sensor Model

Figure 6.10: Model validation on real machine for periodic tasks.

than what we observe on HotSpot due to enforced cooling mechanism and different core

architecture/technology. The range of Tss on a real machine is from the lowest 39 degree

for CRC, DRR and URL to the highest 44 degree for TL.

Figure 6.9 shows the temperature profile from both sensor reading and model

prediction when running the same TL and MD5 as in Figure 6.7. We set the busy time

and idle time to be 30 seconds each, so that Tss will be reached during temperature rising

phase and Tam will be reached during temperature falling phase. From this figure, we see

that the mathematical model adequately represents the thermal characteristics for single

task in both phases. Although the temperature sensor only returns discrete integer values,

we still observe that the average difference is only 0.1 degree for MD5 and 0.2 degree for

TL. In the worst case, the maximal differences for MD5 and TL are just 1.1 degree and 1.4

degree, respectively.

Figure 6.10 demonstrates model verification for periodic tasks and highlights the

advantage of online model update. We run URL for 80 seconds in this experiment. For the

136

sensor to capture the temperature variation, we repeat 10000 times for each packet and scale

the packet interval according to Random Distribution. The sensor reads core temperature

once a second and our model calculates temperature three times faster. Compared to sensor

temperature, our model can nicely predict the temperature rising and falling phases. The

real temperature values fall closely to the curve drawn from our model with the largest

difference being 0.8 degree. However, this relatively large error, which is 20% of the 4

degree temperature fluctuation, is because we run this simulation without our automatic

calibration.

When we add our online model update, we can improve the model accuracy as

shown by Model update curve. Because the sensor reading is rounded off to the integer, we

set 0.5 degree as the threshold to apply update. In the experiment, we notice that there

are 6 occurrences of underestimation and 12 occurrences of overestimation. After applying

online update, the largest difference between model temperature and sensor temperature

reduces to only 0.4 degree. With our online model update doing automatic calibration, we

can hold the error to be within 0.5 degree even if there is larger temperature fluctuation.

6.5.3 Performance Evaluation

Temperature Behavior

In this section, we address the effectiveness of our scheduling scheme in achieving

good thermal behavior of network applications by comparing with real-time core tempera-

ture. Figure 6.11 shows the temperature behavior on a randomly-selected core for different

schemes for the first 25 seconds when executing MD5, whose Tss is 42 degree and Tcritical is

137

35

36

37

38

39

40

41

42

0 5 10 15 20 25

Time (sec)

T
e
m
p
e
ra
tu
re
 (
 °
C
)

CCF Greedy
LLF+ LLF
Our Scheme

Figure 6.11: Temperature behavior of MD5 with five schedulers.

38 degree. From this figure, we observe that LLF suffers from the highest temperature at

all times without thermal management. Its temperature varies around 41.7 degree, which

is very close to Tss and violates the given temperature constraint. By adding temperature

control, LLF+ brings down the temperature but we see a zig-zag pattern across 38 degree.

Although better than LLF, its drawbacks are obvious: 1) significant number of violations to

temperature constraint occur, because temperature sensor is unable to respond to thermal

emergency soon enough; and 2) a long cool-down interval (at least 1 second) that deteri-

orates throughput. Compared with LLF+, thermal-aware scheduling schemes Greedy and

CCF achieve lower core temperature and they can quickly detect thermal emergency, sub-

stantially reducing the thermal constraint violations. However, once they apply Stop&Go

when task migration is not available (e.g., system is heavily-loaded and there is no idle core),

they still suffer from unnecessarily long cooling time (1 second). Our scheme, nevertheless,

outperforms all others in the following three aspects: 1) it never violates Tcritical because of

the predictive thermal model; 2) its temperature rising is similar to CCF, which is slower

138

than the other three since it is more thermally-balanced among cores; and 3) it avoids wide

temperature fluctuation due to minimal cool-down interval (Li) in Stop&Go. We can see

that the temperature stays close to Tcritical, which contributes to higher CPU utilization

and better throughput. Results from other applications show similar temperature behavior.

Thermal Violation

0%

20%

40%

60%

80%

100%

120%

CRC TL Route DRR URL MD5

Applications

P
e
rc
e
n
ta
g
e
 (
%
)

LLF

LLF+

Greedy

CCF

Our Scheme

Figure 6.12: Thermal violation percentage for six applications.

We define the term thermal violation percentage as the time duration when the

core temperature is over Tcritical divided by the total execution time on that core, repre-

senting how frequently the given temperature constraint is violated. Figure 6.12 shows the

performance comparison for six applications in terms of thermal violation percentage on a

randomly-selected core. From Figure 6.12, we observe that our scheme never violates the

constraint at any time because, based on our predictive thermal model, it can proactively

apply task migration or Stop&Go before thermal emergency occurs. In addition, the other

two thermal-aware schemes, Greedy and CCF, also demonstrate negligible violations. Since

139

both of them rely on our thermal model as opposed to thermal sensor for temperature

monitoring, they can respond to thermal emergency fast enough. In contrast, LLF has

the highest thermal violation percentage due to the lack of thermal management. Its tem-

perature stays 100% over Tcritical except for TL (52.4%) and Route (72.1%), as both TL

and Route have very fast per-packet execution time and thus naturally benefit from longer

cool-down interval between packets. With respect to LLF+, although it applies Stop&Go

in case of thermal emergency based on thermal sensor readings, it still exhibits substantial

thermal violations ranging between 21.0% for URL and 47.6% for CRC. This is because 1)

it can only passively react to thermal emergency after Tcritical is exceeded, and 2) its slow

sampling rate fails to capture the thermal emergency immediately.

Thermal Balancing

We keep track of the largest real-time temperature difference between the highest

and the lowest after the thermal behavior stabilizes during execution. Figure 6.13 shows

the temperature variance of MD5 with different schedulers. From this figure, we observe

that LLF, LLF+ and Greedy suffer the most as none of them consider thermal balancing

in their schemes. Chances are that 1) some cores are heated up more frequently, and 2)

some cores are sitting idle most of the time. We see at least one core with the ambient

temperature (35 degree) in all three schemes. More specifically, LLF performs the worst with

temperature ranging between 35 degree and 41.7 degree at certain time point. With sensor-

based thermal management, LLF+ can reduce the top temperature to 38.9 degree, which

mitigates the thermal imbalance problem to some degree compared LLF. Lastly, Greedy

140

further improves thermal balancing among cores by limiting the highest temperature to

38 degree. Compared to these three schemes, CCF and our scheme have much better

thermal balancing performance. CCF’s temperature spans a short range between 36.7

degree and 38 degree, as it always schedules the next packet to the coldest core. However,

it still suffers from the fixed cool-down interval (1 second), which unnecessarily increases

the temperature variance among cores. Our scheme, nevertheless, is able to minimize the

worst case temperature difference to only 0.4 degree (between 37.6 degree and 38 degree)

among all 8 cores. This is because 1) we always schedule the next packet to the coldest

idle core and 2) we use the minimal cool-down interval derived from our thermal model in

Stop&Go. It is worth noting that similar observations also apply to other applications.

34

35

36

37

38

39

40

41

42

LLF LLF+ Greedy CCF Our Scheme

T
e
m
p
e
ra
tu
re
 (
 °
C
)

Max Min

Figure 6.13: Temperature variance of MD5 with five schedulers.

Throughput Performance

We define throughput percentage as the normalized throughput in comparison to

baseline LLF (100%). Except LLF, all other schemes suffer from throughput degradation

141

to some extent due to enforced thermal constraint. However, as shown in Figure 6.14, we

still see that our scheme outperforms the other three schedulers, namely, LLF+, Greedy

and CCF for all six applications with an average of 28.1% throughput improvement and a

maximum of 65.4% for MD5. As LLF+, Greedy and CCF achieve similar load balancing and

have the same cool-down interval while applying Stop&Go, their throughput are more or

less the same. Compared to them, the superior performance of our scheme results from the

appropriate combination of task migration and Stop&Go in a cost-effective and cache-aware

fashion due to our predictive thermal model. In case of task migration, we prefer to migrate

current task to a nearby core with less communication overhead. In case of Stop&Go, we

guarantee the minimal cool-down interval to maximize overall throughput. Our scheme has

higher CPU utilization with runtime temperature maintained at near the threshold level

(Figure 6.11), which also leads to higher throughput. In addition, we observe that our

scheme does not cause substantial throughput degradation in four out of six applications

compared to LLF. The average performance loss for Route, DRR, URL and MD5 is only

7.8% in our scheme, as opposed to an average loss of 36.5% for the other three schemes.

Our scheduler is more suitable for applications that require longer execution time (IP level

or Application level as classified in Table 6.1), where thermal management overhead only

takes a small portion of the total processing time.

Scheduling Overhead

We first compare the absolute time to obtain one temperature value from the

model and sensor. Experiments show that our model takes only 0.1µs to compute one

142

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

CRC TL Route DRR URL MD5

Applications

P
e
rc
e
n
ta
g
e
 (
%
)

LLF

LLF+

Greedy

CCF

Our Scheme

Figure 6.14: Throughput percentage for six applications.

temperature, whereas it takes 8300µs for one reading from on-chip thermal sensor. This is

because our scheme is completely integrated into a user-level program. It takes the timing

information and one history temperature to calculate the current temperature from an

exponential equation that does not need many CPU cycles. On the contrary, LLF+ relies

on a monitoring tool (i.e., lm-sensors) to call Intel’s Coretemp driver to access on-chip

thermal sensors, which involves expensive system calls, interrupts, and mode switches, thus

incurring significant time overhead.

We next compare the scheduling overhead of our scheme with respect to packet

execution time for six applications and show the minimal, average, and maximal overhead

in Figure 6.15. In our experiment, the model will be invoked at least once for each incoming

packet (line 6 in Algorithm 2). If thermal emergency occurs while executing this packet,

extra time will be spent on calculating and comparing the overhead for Stop&Go and task

migration (line 8-15 in Algorithm 2). In such a case, the task migration overhead or the

cool-down interval for Stop&Go take much longer time. Therefore, we only consider one

143

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

CRC TL Route DRR URL MD5

Applications

P
e
rc
e
n
ta
g
e
 (
%
)

Min Avg Max

Figure 6.15: Scheduling overhead per-packet for six applications.

model invocation per packet as scheduling overhead. From Figure 6.15 we observe that the

average overhead ranges from 0.06% for URL to 12.42% for TL, and the worst case happens

when CRC is executing a 1500-byte packet (15.38%). We also see that TL, Route and

DRR have constant overhead (12.42%, 5.64% and 1.80%) since their packet execution time

is independent of packet size, and CRC, URL and MD5 exhibit varying overhead from the

lowest 0.04% (URL for 40-byte packet) to the highest 15.38% (CRC for 1500-byte packet).

In summary, our thermal-aware scheduler does not cause significant overhead and is suitable

for network applications.

144

Chapter 7

Conclusion

The multicore architecture has prevailed in every aspect of computing platforms

including desktops, servers, and embedded systems. The superiority of multicore systems

comes from high performance, low cost, and good programmability. Accordingly, in the do-

main of network applications, we see a shift from single-core system, to multicore servers to

accommodate high traffic volume with computationally intensive applications. Along with

increased throughput, however, comes significantly increased power consumption. Higher

power consumption also increases core temperature, which exponentially increases the cost

of cooling and packaging, as well incurs indirect and life-cycle costs due to reduced system

performance, circuit reliability, and chip lifetime. Therefore, it is critical to run such appli-

cations in a power efficient manner, which naturally gives rise to research on “intelligent”

scheduling.

145

In this thesis, we focused on power-efficient scheduling for network applications on

multicore architecture. Our goal is to improve the performance of network applications not

only in throughput, but also in latency, power, energy, and temperature.

In Chapter 3, we designed, implemented and evaluated LATA, a latency and

throughput-aware packet processing system. By adopting hybrid parallelism with parallel

pipeline core topology in fine-grained task level, LATA is able to achieve both low latency

and high throughput. LATA consists of a list-based pipeline scheduling algorithm, a de-

terministic search-based refinement process, and a cache-aware resource mapping scheme.

Compared with other approaches (Parallel, Greedy, Random and Bipar) for six real network

applications, LATA exhibits an average of 36.5% reduction in latency across all applications

and a maximum of 62.2% reduction in latency for URL application over Random with com-

parable throughput performance.

Secondly, we proposed a novel algorithm to optimize both throughput and latency

given a power budget for network packet processing on multicore architectures in Chapter 4.

This algorithm addresses the power-aware parallel-pipeline scheduling problem by applying

per-core DVFS to optimally adjust frequency on each core. We implemented our algorithm

in addition to five other conventional algorithms on an AMD machine with two Quad-

Core Opteron 2350 processors. Compared to existing algorithms and given the same power

budget for six real packet processing applications, our algorithm exhibits substantially better

throughput and latency by an average of 64.6% and 25.2%, respectively.

Thirdly, in Chapter 5, we designed a traffic-aware and power-efficient multicore

server system that appropriately changes the system operating level according to varying

146

traffic rate and dynamically adjusts the per-core frequency configuration using a combina-

tion of per-core DVFS, power gating, and power migration techniques to minimize power

consumption. The system optimally configures the number of active cores and per-core

frequency in real-time to handle traffic variation based on our power model that considers

both dynamic and static power consumption of all cores. Our experimental results show

that, on an average, our system saves 41.0% power compared to a native system. It also

consumes less power than three other approaches, C-DVFS [81], PG [65], and C-Hybrid [60],

by 35.2%, 24.3%, and 10.5% respectively.

Lastly, we explored temperature related issues by proposing a predictive model-

based thermal-aware scheduling scheme in Chapter 6. This scheduling scheme is based

on 1) a novel predictive thermal model for generic periodic tasks, which can dynamically

derive the core temperature at any time, and 2) an online model update, which uses on-

chip thermal sensors to effectively correct incidental errors by adjusting model parameters

dynamically. Our scheduler is capable of maximizing throughput and achieving thermal

balancing without violating thermal constraint by appropriately combining task migration

and Stop&Go techniques in a cost-effective and cache-aware fashion. To verify the model

and evaluate the scheduler, we used both the HotSpot simulator and a real Linux multicore

server to run six network applications chosen from NetBench. Extensive results showed

that our model can predict real temperature quickly and accurately, while achieving higher

throughput, lower temperature and better thermal balancing with negligible scheduling

overhead and no thermal constraint violation compared with other schemes.

147

Some potential future research directions are listed below. First, this thesis only

focused on single application, but concurrent execution of multiple applications should be

studied in future. It will be challenging to extend the single application techniques to

multiple applications with minimal changes. Second, while we are concerned with metrics

such as throughput, power and temperature, we have not yet considered quality of service

(QoS) for different packet streams. QoS should be considered when developing scheduling

schemes for network applications. Third, it would be interesting to make task-level schedul-

ing schemes presented in Chapter 3 and Chapter 4 dynamic, as the task execution time

may vary significantly with different packet sizes. The existing static approaches can only

handle packets with fixed or bounded execution time.

148

Bibliography

[1] Amd opteron machine. http://www.amd.com/opteron.

[2] Cavium octeon processor family. http://www.caviumnetworks.com/
OCTEON MIPS64.html.

[3] Cisco AON Technology. http://www.cisco.com/en/US/products/ps6692/Products
Sub Category Home.html.

[4] Equinix-sanjose Internet Monitor. http://www.caida.org/data/monitors/passive-
equinix-sanjose.xml.

[5] Extech power analyzer. http://extech.com/instruments/.

[6] IBM BladeCenter System. http://www-03.ibm.com/systems/bladecenter/.

[7] IBM POWER7 Systems. http://www-03.ibm.com/systems/power/.

[8] Intel ixp2xxx product line of network processors.
http://intel.com/design/network/products/npfamily/index.htm.

[9] Intel xeon machine. http://www.Intel.com/Xeon.

[10] International Technology Roadmap for Semiconductors. http://public.itrs.net.

[11] Lm-Sensors. http://lm-sensors.org/.

[12] Lmbench. http://www.bitmover.com/lmbench/index.html.

[13] Machine-suif, harvard university. http://eecs.harvard.edu/hube/software/nci/
overview.html.

[14] Netfpga. http://www.netfpga.org/.

[15] Papi. http://icl.cs.utk.edu/papi/.

[16] Suif compiler system. http://suif.stanford.edu/.

149

[17] T.L. Adam, K.M. Chandy, and J.R. Dickson. A comparison of list schedules for
parallel processing systems. Communications of the ACM, 1974.

[18] Min Bao, Alexandru Andrei, Petru Eles, and Zebo Peng. Temperature-aware idle
time distribution for energy optimization with dynamic voltage scaling. In Proc. of
DATE ’10, 2010.

[19] Frank Bellosa, Simon Kellner, Martin Waitz, and Andreas Weissel. Event-driven
energy accounting for dynamic thermal management. In Proc. of COLP ’03, 2003.

[20] Mats Bjorkman and Per Gunningberg. Locking effects in multiprocessor implemen-
tations of protocols. In Proc. of SIGCOMM ’93, 1993.

[21] David Brooks and Margaret Martonosi. Dynamic thermal management for high-
performance microprocessors. In Proc. of HPCA ’01, 2001.

[22] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. In Proc. of ISCA ’00, 2000.

[23] Louis Burmeister. Convective Heat Transfer. John Wiley & Sons, New York, NY,
1993.

[24] Pedro Chaparro, Jose Gonzalez, Grigorios Magklis, Qiong Cai, and Antonio Gonzalez.
Understanding the thermal implications of multicore architectures. IEEE Transac-
tions on Parallel and Distributed Systems, 2007.

[25] Michael Chen, Xiao Feng Li, Ruiqi Lian, Jason Lin, Lixia Liu, Tao Liu, and Roy Ju.
Shangri-la: Achieving high performance from compiled network applications while
enabling ease of programming. In Proc. of PLDI ’05, 2005.

[26] Jeonghwan Choi, Chen-Yong Cher, Hubertus Franke, Hendrik Hamann, Alan Weger,
and Pradip Bose. Thermal-aware task scheduling at the system software level. In
Proc. of ISLPED ’07, 2007.

[27] M. Chol, N. Sathe, M. Gupta, S. Kumar, S. Yalamanchilli, and S. Mukhopad-
hyay. Proactive power migration to reduce maximum value and spatiotemporal non-
uniformity of on-chip temperature distribution in homogeneous many-core processors.
In Proc. of SEMI-THERM ’10, 2010.

[28] Ayse Kivilcim Coskun, Tajana Simunic Rosing, and Kenny C. Gross. Temperature
management in multiprocessor socs using online learning. In Proc. of DAC ’08, 2008.

[29] Matthew Curtis-Maury, James Dzierwa, Christos D. Antonopoulos, and Dimitrios S.
Nikolopoulos. Online power-performance adaptation of multithreaded programs using
hardware event-based prediction. In Proc. of ICS ’06, 2006.

[30] Jinquan Dai, Bo Huang, Long Li, and Luddy Harrison. Automatically partitioning
packet processing applications for pipelined architectures. In Proc. of PLDI ’05, 2005.

150

[31] James Donald and Margaret Martonosi. Techniques for multicore thermal manage-
ment: Classification and new exploration. In Proc. of ISCA ’06, 2006.

[32] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu, M. Braganza,
S. Meyers, E. Fang, and R. Kumar. An integrated quad-core opteron processor. In
Proc. of ISSCC ’07, 2007.

[33] Hesham El-Rewini, Hesham Ali, and Ted Lewis. Task scheduling in multi-processing
systems. IEEE Transactions on Computers, 1995.

[34] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming Languages
and Systems, 1987.

[35] N. Fisher, J.-J Chen, S. Wang, and L. Thiele. Thermal-aware global real-time schedul-
ing on multicore systems. In Proc. of RTAS ’09, 2009.

[36] M. S. Floyd, S. Ghiasi, T. W. Keller, K. Rajamani, F. L Rawson, J. C. Rubio, and
M. S. Ware. System power management support in the ibm power6 microprocessor.
IBM Journal of Research and Development, 2007.

[37] Johan De Gelas. Dynamic power management: A quantitative approach. AnandTech
IT Computing, 2010.

[38] Apostolos Gerasoulis and Tao Yang. On the granularity and clustering of directed
acyclic task graphs. IEEE Transactions on Parallel and Distributed Systems.

[39] Kate Greene. Data centers’ growing power demands. MIT Technology Review, 2007.

[40] Flavius Gruian. System-level design methods for low-energy architectures containing
variable voltage processors. In Proc. of PACS ’00, 2000.

[41] Flavius Gruian and Krzysztof Kuchcinski. Lenes: Task scheduling for low-energy
systems using variable supply voltage processors. In Proc. of ASP-DAC ’01, 2001.

[42] Danhua Guo, Guangdeng Liao, Laxmi Bhuyan, Bin Liu, and Jianxun Jason Ding. A
scalable multithreaded l7-filter design for multi-core servers. In Proc. of ANCS ’08,
2008.

[43] Vinay Hanumaiah, Ravishankar Rao, Sarma Vrudhula, and Karam Chatha. Through-
put optimal task allocation under thermal constrains for multi-core processors. In
Proc. of DAC ’09, 2009.

[44] Shaoxiong Hua and Gang Qu. Power minimization techniques on distributed real-time
systems by global and local slack management. In Proc. of ASP-DAC ’05, 2005.

[45] Christopher Hughes, Jayanth Srinivasan, and Sarita Adve. Saving energy with ar-
chitectural and frequency adaptations for multimedia applications. In Proc. of Micro
’01, 2001.

151

[46] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose, and Margaret
Martonosi. An analysis of efficient multi-core global power management policies:
Maximizing performance for a given power budget. In Proc. of Micro ’06, 2006.

[47] Canturk Isci, Gilberto Contreras, and Margaret Martonosi. Live, runtime phase moni-
toring and prediction on real systems with application to dynamic power management.
In Proc. of Micro ’06, 2006.

[48] Ramkumar Jayaseelan and Tulika Mitra. Temperature aware task sequencing and
voltage scaling. In Proc. of ICCAD ’08, 2008.

[49] Vida Kianzad, Shuvra S. Bhattacharyya, and Gang Qu. Casper: An integrated
energy-driven approach for task graph scheduling on distributed embedded systems.
In Proc. of ASAP ’05, 2005.

[50] W. Kim, M. Gupta, G. Y. Wei, and D. Brooks. System level analysis of fast, per-core
dvfs using on-chip switching regulators. In Proc. of HPCA ’08, 2008.

[51] Ravi Kokku, Upendra B. Shevade, Nishit S. Shah, Mike Dahlin, and Harrick M. Vin.
Energy-efficient packet processing. University of Texas at Austin Technical Report
TR04-04, 2004.

[52] Frank Kreith, Raj Manglik, and Mark Bohn. Principles of Heat Transfer. Cengage
Learning, Stamford, CT, 2003.

[53] Jilong Kuang and Laxmi Bhuyan. Lata: A latency and throughput-aware packet
processing system. In Proc. of DAC ’10, 2010.

[54] Jilong Kuang and Laxmi Bhuyan. Optimizing throughput and latency under given
power budget for network packet processing. In Proc. of INFOCOM ’10, 2010.

[55] Jilong Kuang, Laxmi Bhuyan, Haiyong Xie, and Danhua Guo. E-ahrw: An energy-
efficient adaptive hash scheduler for stream processing on multi-core servers. In Proc.
of ANCS ’11, 2011.

[56] Amit Kumar, Li Shang, Li-Shiuan Peh, and Niraj Jha. Hybdtm: A coordinated
hardware-software approach for dynamic thermal management. In Proc. of DAC ’06,
2006.

[57] R. Kumar and G. Hinton. A family of 45nm ia processors. In Proc. of ISSCC ’09,
2009.

[58] Eren Kursun, Chen-Yong Cher, Alper Buyuktosunoglu, and Pradip Bose. Investi-
gating the effects of task scheduling on thermal behavior. In Proc. of TACS ’06,
2006.

[59] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating di-
rected task graphs to multiprocessors. ACM Computing Surveys, 1999.

152

[60] Jungseob Lee and Nam Sung Kim. Optimizing throughput of power- and thermal-
constrained multicore processors using dvfs and per-core power-gating. In Proc. of
DAC ’09, 2009.

[61] Stefan Leue and Philippe A. Oechslin. On parallelizing and optimizing the implemen-
tation of communication protocols. IEEE Transactions on Networking, 1996.

[62] Jacob Leverich, Matteo Monchiero, Vanish Talwar, Partha Ranganathan, and Chris-
tos Kozyrakis. Power management of datacenter workloads using per-core power
gating. HP Labs Technical Report HPL-2009-326, 2009.

[63] Jian Li and Jose F. Martinez. Dynamic power-performance adaptation of parallel
computation on chip multiprocessors. In Proc. of HPCA ’06, 2006.

[64] Yan Luo, Jia Yu, Jun Yang, and Laxmi Bhuyan. Low power network processor design
using clock gating. In Proc. of DAC ’05, 2005.

[65] Yan Luo, Jia Yu, Jun Yang, and Laxmi Bhuyan. Conserving network processor power
consumption by exploiting traffic variability. ACM Transactions on Architecture and
Code Optimization, 2007.

[66] Arindam Mallik, Yu Zhang, and Gokhan Memik. Automated task distribution in
multicore network processors using statistical analysis. In Proc. of ANCS ’07, 2007.

[67] Rich McGowen, Christopher A. Poirier, Chris Bostak, Jim Ignowski, Mark Millican,
Warren H. Parks, and Samuel Naffziger. Power and temperature control on a 90-nm
itanium family processor. IEEE Journal of Solid-State Circuits, 2006.

[68] Gokhan Memik, William Mangione-Smith, and Wendong Hu. Netbench: A bench-
marking suite for network processors. In Proc. of ICCAD ’01, 2001.

[69] Pierre Michaud, Andre Seznec, Damien Fetis, Yiannakis Sazeides, and Theofanis
Constantinou. A study of thread migration in temperature-constrained multicores.
ACM Transactions on Architecture and Code Optimization, 2007.

[70] Ramesh Mishra, Namrata Rastogi, and Dakai Zhu. Energy aware scheduling for
distributed real-time systems. In Proc. of IPDPS ’03, 2003.

[71] Fabrizio Mulas, David Atienza, Andrea Acquaviva, Salvatore Carta, Luca Benini, and
Giovanni De Micheli. Thermal balancing policy for multiprocessor stream computing
platforms. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2009.

[72] Srinivasan Murali, Almir Mutapcic, David Atienza, Rajesh Gupta, Stephen Boyd,
Luca Benini, and Giovanni De Micheli. Temperature control of high-performance
multi-core platforms using convex optimization. In Proc. of DATE ’08, 2008.

[73] Terry Nelms and Mustaque Ahamad. Packet scheduling for deep packet inspection
on multi-core architectures. In Proc. of ANCS ’10, 2010.

153

[74] nVIDIA. Firstpacket technology improved system performance. nVIDIA Technical
Brief TB-02434-001 v01, 2006.

[75] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage scaling for low-
power embedded operating systems. In Proc. of SOSP ’01, 2001.

[76] Michael Powell, Mohamed Gomaa, and T. Vijaykumar. Heat-and-run: Leveraging
smt and cmp to manage power density through the operating system. In Proc. of
ASPLOS ’04, 2004.

[77] John W. Pratt. F. y. edgeworth and r. a. fisher on the efficiency of maximum likelihood
estimation. The Annals of Statistics, 1976.

[78] Yaxuan Qi, Bo Xu, Fei He, Baohua Yang, Jianming Yu, and Jun Li. Towards high-
performance flow-level packet processing on multi-core network processors. In Proc.
of ANCS ’07, 2007.

[79] Ramaswamy Ramaswamy and Tilman Wolf. Packetbench: A tool for workload char-
acterization of network processing. In Proc. of WWC ’03, 2003.

[80] Marcus T. Schmitz, Bashir M. Al-Hashimi, and Petru Eles. Iterative schedule opti-
mization for voltage scalable distributed embedded systems. ACM Transactions on
Embedded Computing Systems, 2004.

[81] Tajana Simunic, Luca Benini, Andrea Acquaviva, Peter Glynn, and Giovanni De
Micheli. Dynamic voltage scaling for portable systems. In Proc. of DAC ’01, 2001.

[82] Oliver Sinnen. Task Scheduling For Parallel Systems. John Wiley & Sons, Inc.,
Hoboken, New Jersey, 2007.

[83] Kevin Skadron, Tarek Abdelzaher, and Mircea Stan. Control-theoretic techniques
and thermal-rc modeling for accurate and localized dynamic thermal management. In
Proc. of HPCA ’02, 2002.

[84] Kevin Skadron, Mircea Stan, Wei Huang, Sivakumar Velusamy, Karthik Sankara-
narayanan, and David Tarjan. Temperature-aware microarchitecture. In Proc. of
ISCA ’03, 2003.

[85] Kevin Skadron, Mircea Stan, Karthik Sankaranarayanan, Wei Huang, Sivakumar
Velusamy, and David Tarjan. Temperature-aware microarchitecture: Modeling and
implementation. ACM Transactions on Architecture and Code Optimization, 2004.

[86] Jayanth Srinivasan and Sarita Adve. Predictive dynamic thermal management for
multimedia applications. In Proc. of ICS ’03, 2003.

[87] Radu Teodorescu and Josep Torrellas. Variation-aware application scheduling and
power management for chip multiprocessors. In Proc. of ISCA ’08, 2008.

154

[88] Shengquan Wang and Riccard Bettati. Delay analysis in temperature-constrained
hard real-time systems with general task arrivals. In Proc. of RTSS ’06, 2006.

[89] Yefu Wang, Kai Ma, and Xiaorui Wang. Temperature-constrained power control for
chip multiprocessors with online model estimation. In Proc. of ISCA ’09, 2009.

[90] Zhe Wang and Sanjay Randa. A simple thermal model for multi-core processors and
its application to slack allocation. In Proc. of IPDPS ’10, 2010.

[91] Ning Weng and Tilman Wolf. Pipelining vs multiprocessors-choosing the right network
processor system topology. In Proc. of ANCHOR’04, 2004.

[92] Guowei Wu and Zichuan Xu. Temperature-aware task scheduling algorithm for soft
real-time multi-core systems. Journal of Systems and Software, 2010.

[93] Jun Yang, Xiuyi Zhou, Marek Chrobak, Youtao Zhang, and Lingling Jin. Dynamic
thermal management through task scheduling. In Proc. of ISPASS ’08, 2008.

[94] Tao Yang and Apostolos Gerasoulis. Dsc: Scheduling parallel tasks on an unbounded
number of processors. IEEE Transactions on Parallel and Distributed Systems, 1994.

[95] Jingnan Yao, Yan Luo, Laxmi Bhuyan, and Ravishankar Iyer. Optimal network
processor topologies for efficient packet processing. In Proc. of Globecom ’05, 2005.

[96] Inchoon Yeo and Eun Jung Kim. Temperature-aware scheduler based on thermal
behavior grouping in multicore systems. In Proc. of DATE ’09, 2009.

[97] Inchoon Yeo, Chih Chun Liu, and Eun Jung Kim. Predictive dynamic thermal man-
agement for multicore systems. In Proc. of DAC ’08, 2008.

[98] Jia Yu, Jingnan Yao, Laxmi Bhuyan, and Jun Yang. Program mapping onto network
processors by recursive bipartitioning and refining. In Proc. of DAC ’07, 2007.

[99] Sushu Zhang and Karam Chatha. System-level thermal aware design of applications
with uncertain execution time. In Proc. of ICCAD ’08, 2008.

[100] Yifan Zhu and Frank Mueller. Feedback edf scheduling exploiting dynamic voltage
scaling. In Proc. of RTAS ’04, 2004.

[101] Martina Zitterbart. A multiprocessor architecture for high speed network intercon-
nections. In Proc. of INFOCOM ’89, 1989.

155

