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Machine Learning in Medicine

Rahul C. Deo, MD, PhD
Cardiovascular Research Institute, Department of Medicine and Institute for Human Genetics, 
University of California, San Francisco, and California Institute for Quantitative Biosciences, San 
Francisco, CA

Abstract

Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, 

computers are being asked to tackle increasingly complex learning tasks, often with astonishing 

success. Computers have now mastered a popular variant of poker, learned the laws of physics 

from experimental data, and become experts in video games – tasks which would have been 

deemed impossible not too long ago. In parallel, the number of companies centered on applying 

complex data analysis to varying industries has exploded, and it is thus unsurprising that some 

analytic companies are turning attention to problems in healthcare. The purpose of this review is to 

explore what problems in medicine might benefit from such learning approaches and use examples 

from the literature to introduce basic concepts in machine learning. It is important to note that 

seemingly large enough medical data sets and adequate learning algorithms have been available 

for many decades – and yet, although there are thousands of papers applying machine learning 

algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of 

impact stands in stark contrast to the enormous relevance of machine learning to many other 

industries. Thus part of my effort will be to identify what obstacles there may be to changing the 

practice of medicine through statistical learning approaches, and discuss how these might be 

overcome.
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Machine learning is the scientific discipline that focuses on how computers learn from 

data4,5. It arises at the intersection of statistics, which seeks to learn relationships from data, 

and computer science, with its emphasis on efficient computing algorithms. This marriage 

between mathematics and computer science is driven by the unique computational 

challenges of building statistical models from massive data sets, which can include billions 

or trillions of data points. The types of learning used by computers are conveniently 

subclassified into categories such as supervised learning and unsupervised learning. 

However, I find, in addition, that another division can be useful when considering how 

machine learning might inform the practice of medicine: distinguishing learning those tasks 
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that physicians can already do well and learning those where physicians have had only 

limited success. With these broad categories in mind, we can visit some areas in medicine 

that have benefited or might benefit from machine learning approaches.

Supervised learning

Supervised learning starts with the goal of predicting a known output or target. In machine 

learning competitions, where individual participants are judged on their performance on 

common data sets, recurrent supervised learning problems include handwriting recognition 

(such as recognizing handwritten digits), classifying images of objects (e.g. is this a cat or a 

dog?), and document classification (e.g. is this a clinical trial about heart failure or a 

financial report?). Notably, these are all tasks that a trained person can do well and so the 

computer is often trying to approximate human performance. Supervised learning focuses on 

classification, which involves choosing among subgroups to best describe a new data 

instance, and prediction, which involves estimating an unknown parameter (such as the 

temperature in San Francisco tomorrow afternoon).

What might be some examples of supervised learning in medicine? Perhaps the most 

common example seen by a cardiologist is the automated interpretation of the EKG, where 

pattern recognition is performed to select from a limited set of diagnoses (i.e. a classification 

task). In radiology, automated detection of a lung nodule from a chest X-ray would also 

represent supervised learning. In both these cases, the computer is approximating what a 

trained physician is already capable of doing with high accuracy.

Supervised learning is often used to estimate risk. The Framingham Risk Score3 for 

coronary heart disease (CHD) may in fact be the most commonly used instance of 

supervised learning in medicine. Such risk models exist across medicine, and include 

guiding antithrombotic therapy in atrial fibrillation4 and implantation of automated 

implantable defibrillators in hypertrophic cardiomyopathy5. In modeling risk, the computer 

is doing more than merely approximating physician skills but finding novel relationships not 

readily apparent to human beings.

Unsupervised learning

In contrast, in unsupervised learning, there are no outputs to predict. Instead, we are trying 

to find naturally occurring patterns or groupings within the data. This is inherently a more 

challenging task to judge and often the value of such groups learned through unsupervised 

learning is evaluated by its performance in subsequent supervised learning tasks (i.e. are 

these new patterns useful in some way?).

When might such approaches be used in medicine? Perhaps the most compelling 

opportunity represents the “precision medicine” initiative6. Frustrated by the inherent 

heterogeneity in most common diseases, there is a growing effort to redefine disease 

according to pathophysiologic mechanisms, which could, in turn, provide new paths to 

therapy. But identifying such mechanisms for complex multifactorial diseases will not be 

easy. Let us think about how one might apply unsupervised learning in cardiac disease 

towards that end, taking a heterogeneous condition like myocarditis. One can start with a 
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large group of apparently similar individuals with unexplained acute systolic heart failure. 

One can then perform myocardial biopsies on them, and characterize the cellular 

composition of each sample with a technique such as immunostaining. For example, one 

would have a tally of T lymphocytes, neutrophils, macrophages, eosinophils, etc. One could 

then see if there are recurring patterns of cellular composition, which, in turn, might suggest 

mechanism and guide therapies to explore. A similar approach, albeit focused on genomics, 

led to identifying an eosinophilic subtype of asthma7, which uniquely responds to a novel 

therapy targeting the eosinophil-secreted cytokine IL-138. Note the contrast with supervised 

learning – there is no predicted outcome – we are only interested in identifying patterns in 

the data. In fact, treating this as a supervised learning problem – such as developing a model 

of mortality in myocarditis and classifying patients by risk – might miss such subgroups 

completely, thereby losing a chance to identify novel disease mechanisms.

The learning problem

Let us now define the learning problem more generally in order to understand why complex 

machine learning algorithms have had such a limited presence in actual clinical practice. I 

will focus first on supervised learning and address unsupervised learning at a later point.

We will take as our goal the prediction of MI and for simplicity treat this as a classification 

problem, with individuals who have had one or more MIs as one class and (age and gender 

matched) individuals free of MI as a second class (Figure 1A). Our assignment, then, is to 

build an accurate model to discriminate between the two classes. The first task is to come up 

with some predictors or features. Some obvious features include hypertension, diabetes and 

LDL-cholesterol level. But how did we come up with these, and how can we expand this 

pool further? A simple way would be to test candidate predictors for association with heart 

attack status and keep only those that are significant. But this will miss a great number of 

features that might be useful only within a subset of heart attack patients. Worse yet, there 

may be features that are useful in combinations (of two, three, or more) but not on their own. 

As a solution, we might be tempted to give up and throw in all possible features, but 

instinctively, we have some suspicion that this might not help or may even make things 

worse (for reasons that will become apparent later). “Feature selection” is the area of 

machine learning that focuses on this problem9.

The next challenge is to come up with a function that relates values of the features to a 

prediction of disease (class assignment). This challenge can be broken down into two steps. 

First we need to decide on which type of function we want to work with (Figure 1B–D). 

Classical statistics would have us consider the logistic regression model for this task. With 

logistic regression, a type of generalized linear model, features come into the model 

additively and linearly. But this is only one possible class of function and if we relax this 

assumption, many more choices exist. For example decision trees could be used to predict 

heart attack status, allowing the flexibility of “OR” choices (Figure 1B). A heart attack 

patient might have mutually exclusive causes such as familial hypercholesterolemia OR an 

arterial thrombotic disorder OR HIV, which would be difficult to model with logistic 

regression. Other types of machine learning models such as neural networks allow 

transformations of input features to better predict outcomes (Figure 1C). Support vector 
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machines build classification models using a transformed set of features in much higher 

dimensions10. Prototype methods, such as k-nearest neighbors do away with the idea of 

building a model, and instead make predictions based on the outcome of similar case 

examples11 (Figure 1D). The best guess for whether our patient will have a heart attack is to 

see if similar patients tend to have heart attacks.

All of these choices of functional classes have free parameters to fit. In logistic regression, 

the regression coefficients – that is the weights applied to individual features – need to be 

determined. In decision trees, one has to choose the variables at which a split is performed 

and in the case of quantitative variables, the values at which the split is made. Neural 

networks have free parameters related to the function used for feature transformation, as 

well as the function used to predict class based on these derived features. Finding optimal 

values for these free parameters is a daunting task. Machine learning algorithms represent 

computational methods to efficiently navigate the space of free parameters to arrive at a 

good model. Note the distinction between algorithms, which consist of instructions followed 

by the computer to complete a particular task, and models, which are derived from the 

application of algorithms to data.

How do we fit these free parameters? And, more importantly, how do we tell that we’re 

doing a good job? Machine learning tries to separate these tasks, focusing on a training set 

of examples to perform such tasks as feature selection and parameter fitting, and a test set to 

evaluate model performance. Using the training examples, we can try out different values for 

the free parameters and assess how similar our predicted outputs are to the known outputs – 

this is sometimes called estimating "training error” and one uses a “loss function” that is 

tailored to reflect what sort of errors are more tolerable than others. We want a model that 

minimizes training error and our chosen algorithm fits free parameters to achieve this goal.

A high-performing model requires multiple attributes for success. First of all, you need 

informative features that actually reflect how the classes are different from another. For tasks 

that we already know humans can do well, we know that we have the requisite input data. 

For example, if the goal is to approximate the ability of an expert cardiologist to read an 

ECG, we can be confident that the ECG itself includes all the features that are needed for a 

correct classification. But for more challenging classification problems, such as 

discriminating MI cases from controls, our limited understanding of disease pathogenesis 

makes it unlikely that we are collecting all of the information needed for accurate 

classification.

Even if we are collecting the requisite inputs, we still need some function to combine them 

to achieve the desired task. For complex learning tasks, we might need considerable 

flexibility in how the features are used, as simple additive models are unlikely to achieve an 

effective separation between cases and not controls. One often speaks about how 

“expressive” a certain class of functions, which typically involves some transformation or 

higher order combination of features to carry out complex learning tasks.

We have described two interdependent attributes – informative features and expressive 

functions – to achieve low training error. But minimizing training error is not enough. 
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Really, what we would like to be able to do is to make excellent predictions/classifications 

for individuals we've never seen before. To assess this generalization ability, we should save 

some data that we've never looked at to evaluate our "test error”. Such test data should not 

have been used for any aspect of the machine learning process, including feature selection or 

data normalization. Ideally, we would like to feel confident that if we have built a model 

with low training error, we will have some guarantee that it also has low test error. 

Otherwise we might be falsely and perhaps dangerously impressed by our own predictive 

ability.

A considerable amount of theory exists for machine learning that establishes bounds for 

similarity between training error and test error10. Although the mathematics is elaborate, the 

message is quite simple: models that are highly complex (including those that have a large 

number of features) may do better at minimizing training error, but tend to generalize poorly 

for a given number of training samples as they tend to overfit to the data. A corollary to this 

is if you need a high amount of model complexity in order to make accurate predictions on 

your training set, you will need many, many more training examples to ensure that you 

generalize well to previously unseen individuals.

A tradeoff thus exists between complexity of the model and generalizability to new data sets. 

One solution is to simply have fewer features and a less expressive model. But in this case, 

we may be harming ourselves with a low quality model with poor accuracy on the training 

set. As an alternative, machine learning experts continue to use flexible models but penalize 

themselves for too much complexity such as having too many free parameters or allowing 

too broad a range of values for these parameters – a process known as “regularization”. This 

may mean that accuracy on the training set might suffer a little, but the benefit will be better 

performance on test data.

Given the diverse menu of machine learning algorithms and data models, can we find some 

guidance on which would work best in one situation or another? As a rule of thumb, the best 

solution would involve fitting a model that matches the underlying model that generated the 

data. Unfortunately, we typically have no idea what that underlying model is. An empiric 

solution is to try a number of algorithms, making sure to keep aside test data on which to 

evaluate performance. But that can be time consuming, especially if some approaches are 

unlikely to work well a priori. Many machine-learning practitioners have a toolkit of feature 

extraction and preprocessing approaches as well as a subset of supervised and unsupervised 

learning algorithms that they feel very comfortable with and return to. When training data is 

limited, these often include simpler models with regularization such as penalized forms of 

linear and logistic regression. These might not lead to as low training error as complex 

models (the term high bias is used) but they tend to generalize well (low variance). When 

training data are abundant and the underlying model is likely to arise from non-additivity 

and complex interactions between features, instance approaches like k-nearest neighbors or 

decision tree algorithms (such as stochastic gradient tree boosting12,13 or random forest14, 

discussed below) can work well. Some algorithms such as non-linear support vector 

machines15 can be extremely robust in a variety of situations even where the number of 

predictive features is very large compared to the number of training examples, a situation 

where over-fitting often occurs. Finally, accepting the limitations of each class of algorithms, 
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some practitioners use a process called blending, merging the outputs of multiple different 

algorithms (also discussed below).

Finally, for challenging prediction problems, it means that considerable effort needs to be 

made to amass as many training examples as possible, all characterized by the same set of 

informative features. If one examines the amount of training data that is used in image 

analysis competitions – which can include over 100,000 images – we see that the typical 

biomedical data sets fall short by two to three orders of magnitude, despite representing 

arguably a fundamentally more challenging learning task. And this deficiency in amount of 

training data does not even begin to address the fact that we typically have no idea what 

features are needed to capture the complexity of the disease process. It is primarily this 

challenge – collecting many thousands if not tens of thousands of training examples all 

characterized by a rich set of (sufficiently) informative features, that has limited the 

contribution of machine learning to complex tasks of classification and prediction in clinical 

medicine.

Illustrative examples of machine learning

To illustrate some of the points addressed here, I will focus on four examples of machine 

learning in medicine, covering a range of supervised and unsupervised approaches. Two of 

these focus on cardiovascular disease and two on cancer.

Supervised learning – learning from forests and trees

Although a tremendous number of supervised learning algorithms have been developed, 

their goals are shared: to provide sufficient flexibility to minimize training error but at the 

same time allow generalization to new data sets, all in a computationally efficient way. I 

highlight one of these methods – random forests – as an example of an innovative and highly 

effective algorithm.

The random forests algorithm, developed nearly 15 years ago14, is touted as one of the best 

“off-the-shelf” algorithms for classification available. As their name would suggest, random 

forests are constructed from trees – more specifically decision trees. Let us assume that the 

goal is to classify individuals into two groups – such as statin responders or non-responders. 

We start with a group of training examples consisting of known statin responders and non-

responders, each characterized by a set of features, such as age, sex, and smoking and 

diabetes status. Often hundreds or thousands of features may be available. We build a series 

(“ensemble”) of decision trees that each seek to use these predictive features to discriminate 

between our two groups. At each node in each tree, one feature is selected that most 

effectively achieves this split. Since it is unlikely that a single variable will be sufficient, 

subsequent nodes are then needed to achieve a more perfect separation. A notable difference 

between each tree is that each only has access to a subset of training examples – a concept 

known as “bagging”16. Furthermore, at each node, only a subset of features is considered. 

The resulting stochasticity allows each tree to cast an independent vote on a final 

classification and serves as a means of regularization. Even though each tree is unlikely to be 

accurate on its own, the final majority vote across hundreds of trees is remarkably accurate.
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Random forests have had incredible success across a variety of learning disciplines and have 

fared well in machine learning competitions. Ishwaran, Lauer and colleagues adapted 

random forests to the analysis of survival data – and aptly termed their approach “random 

survival forests (RSF)”17. They used a binary variable for death and applied their method to 

a variety of problems, including prediction of survival in systolic heart failure18 and in 

postmenopausal women19. In the latter example they looked at 33,144 women in the 

Women’s Health Initiative Trials and considered conventional clinical and demographic 

variables as well as 477 ECG biomarkers. They used RSF to build a survival model – and 

identified 20 variables predictive of long-term mortality, including 14 ECG biomarkers. 

Models constructed using this reduced subset of features demonstrated improved 

performance, both on training data and on a held out test set. Interestingly, once the subset of 

20 variables were selected, a simple additive model (a regularized version of the Cox 

proportional hazards model) performed just as well as RSF in patient classification, 

suggesting that one of the main merits of RSF was in feature selection. Many of these 

variables had in fact never before been implicated in predicting mortality.

Why hasn’t this approach been replicated and incorporated into prevalent risk models? The 

primary reason may be that the RSF performance was actually inferior to that typically seen 

with the commonly used Framingham Risk Score, despite the fact that the latter involves 

fewer variables and a simpler model20. How could that be? Although the large sample size 

was enviable compared to most epidemiological studies, it came at a price. Many variables 

were by self-report and most blood biomarkers were absent, presumably because the cost of 

performing detailed phenotyping on such a large cohort would be prohibitive. Notably 

absent were cholesterol measures, including total cholesterol and LDL-cholesterol. The 

authors were also unable to find an external data set for replication, because few cohorts had 

the same quantitative ECG variables measured. Thus despite representing a novel 

application of a superb algorithm, the study’s benefits were limited by not having training 

and test data sets with a common comprehensive set of informative features, including all 

those previously found to be important for this prediction task.

C-Path: an automated pathologist and the importance of feature extraction

As highlighted above, feature selection is central to machine learning. Without adequate 

informative predictors, we are unlikely to make progress, despite sophisticated algorithms. A 

recent example from the field of breast cancer pathology is particularly illustrative of when 

machine learning approaches might succeed and when they are unlikely to add benefit to 

current conventional clinical practices.

Koller and colleagues at Stanford University focused on improving identification of high 

risk breast cancer cases using pathological specimens – developing a tool called C-Path21 

(Figure 2). Many of the unfavorable histologic properties of tumors used today such as 

tubules and atypical nuclei had been identified decades ago. However, rather than simply 

combine these using new algorithms, C-Path took a further step back and focused on 

identifying new features using automated image processing. C-Path first developed a 

classifier that could robustly differentiate between the epithelial and stromal portions of the 

tumor (Figure 2A–B). It then derived a rich quantitative feature set of 6642 predictors from 
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these regions examined separately and together, highlighting epithelial and stromal “objects” 

and their relationships, such as properties of nuclei (size, location, spacing) and relationships 

between nuclei and cytoplasm in epithelium and stroma (Figure 2C). These features were 

then used to construct a model to predict survival, which demonstrated excellent 

performance on two independent test data sets, superior to that achieved by community 

pathologists. Furthermore, the C-Path scores were significantly associated with 5-year 

survival above and beyond all established clinical and molecular factors (Figure 2D).

The C-Path experience was instructive for several reasons. Perhaps the most important 

lesson was that novel learned features were essential to improved performance – one could 

not simply dress up established features in a new algorithmic packaging and expect superior 

classification. Moreover, many of the predictive features learned by C-Path were entirely 

novel despite decades of examination of breast cancer slides by pathologists. Thus one of the 

main contributions of machine learning is to take an unbiased approach to identify 

unexpected informative variables. The second lesson to be learned is that the final algorithm 

used for classification, a regularized form of logistic regression called “lasso”22, was 

actually quite simple but still generated excellent results. Simple algorithms can perform just 

as well as more complex ones in two circumstances: when the underlying relationship 

between features and output is simple (e.g. additive) or when the number of training 

examples is low, and thus more complex models are likely to overfit and generalize poorly. 

If one truly needs the benefits of more complex models such as those capturing high-

dimensional interactions, one should focus on amassing sufficient and diverse training data 

to have any hope of building an effective classifier. Finally, the C-Path authors found that the 

success of their model crucially depended on being able to first differentiate epithelium and 

stroma. As it is unlikely that a machine would arrive at the need for this step on its own, this 

highlights the need for domain-specific human expertise to guide the learning process.

Although analysis of pathology samples plays a limited role in clinical cardiology, one can 

imagine extrapolating this approach of data-driven feature extraction to other information 

rich types, such as cardiac MRI images or electrograms.

Attractor metagenes in cancer and bake-offs in machine learning

A second machine learning example in cancer biology is illustrative of the interplay between 

unsupervised and supervised learning and introduces the concept of “blending” to improve 

predictive models.

Given the abundance of learning algorithms and the fact that some approaches are more 

suited to particular problems, the machine learning community has embraced the idea of 

competitions. In these algorithm “bake-offs”, multiple individuals or groups are given the 

same training data and asked to develop predictive models, which in turn are evaluated on an 

independent test set. A particularly high profile version of this was the $1,000,000 Netflix 

Grand Prize23,24, where money was awarded to the group that could most improve the 

prediction of movie preferences based on past ratings. Such competitions have had a 

tremendously beneficial impact on the machine learning field, including ensuring 

transparency and reproducibility, encouraging sharing of methods, and avoiding the danger 
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of investigators retrospectively “adjusting” an analysis to arrive at the desired result. Similar 

competitions have appeared within the biology community25 – but are rare in medical 

research, where data sets and methods are not routinely shared.

The recent Sage Bionetworks-DREAM Breast Cancer Prognosis Challenge (BCC) 

exemplifies the promise of this type of approach for clinical medicine26. BCC represented an 

open challenge to build predictive models for breast cancer based on genomic, clinical, and 

survival outcome data from nearly 2000 patients. Over 350 groups from 35 countries 

participated and generated predictive models for survival outcomes, which were evaluated 

on a newly generated validation set of 184 patients. Interestingly, the winning model27 was 

built in part from genomic features identified through applying unsupervised learning to 

completely unrelated cancers. The authors had previously developed an algorithm known as 

“attractor metagenes”28, which identified clusters of genes that shared similarity across 

multiple tumor samples. Many of these clusters happened to correspond to biological 

processes essential for cancer progression such as “chromosomal instability” and 

“mesenchymal transition”. The authors incorporated the presence or absence of these 

features along with other clinical variables into various predictive models for breast cancer 

outcomes. Since different learning algorithms may be more or less effective for predicting 

outcomes for specific types of patients, the authors used several different supervised learning 

algorithms and performed a blending of each algorithm’s output into a final prediction of 

survival outcomes (Figure 3).

Several instructive aspects emerged from this competition. The first is that unsupervised 

learning can be seen as a means of feature selection, as it can allow discovery of robust 

biological descriptors, which can then be used in a supervised model for disease prediction. 

The second lesson is that an ensemble of different learning algorithms was able to produce a 

superior prediction than any single one alone. Thirdly, models using both genomic and 

clinical variables ended up surpassing either data type alone. Finally, learning benefited from 

having nearly 2000 data sets for training and validation as well as a transparent framework 

that allowed sharing of code and gave participants constant feedback on their performance.

Unsupervised learning in HFpEF: towards precision medicine?

Heart failure with preserved ejection fraction (HFpEF) is a highly heterogeneous condition 

with no proven therapies29. One possibility for the lack of successful clinical trials in HFpEF 

is that enrolled patients reflect multiple dominant pathophysiologic processes, not all of 

which would respond to the same agent. Can such processes be identified? Although some 

have suggested using genetics for precise redefinition of diseases, genetic variation is 

unlikely to help classify complex conditions like HFpEF, where it is most probable that 

hundreds of weak genetic factors interact with each other and the environment in an 

unpredictable way to elicit disease phenotypes.

We focused on using unsupervised learning for classifying HFpEF patients. As mentioned 

above, unsupervised learning seeks to find internal structure in the data. It starts from a 

similar framework as supervised learning, with instances (patients in this case) each 

characterized by a feature vector, where values are given for particular attributes such as 
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height, sex and age. These data can be conveniently represented by a matrix (Figure 1A). 

But instead of using this matrix to learn a model relating features to outcomes, we instead 

use it to find group of patients that are similar to one another. Multiple algorithms can be 

used for this purpose. Perhaps the simplest is agglomerative hierarchical clustering, which 

first groups together individuals that are most similar to one another, and then merges 

together similar pairs, and so on and so on. Another class of unsupervised learning 

algorithms, including principal component analysis and non–negative matrix factorization30, 

performs a matrix decomposition, converting the patient-feature matrix into a product of two 

matrices: one which groups together similar features into super-features (we call this 

dimensionality reduction) and a second which describes each patient by a vector of weights 

applied to these super-features. Patients would then be grouped based on similarity of their 

weight vectors. Another set of unsupervised learning methods such as k-medoids 

clustering31 and the attractor metagenes algorithm28 try to find distinct training examples (or 

a composite) around which to group other data instances. Examples within a cluster should 

be more similar to each other than to those of other clusters.

Sparse coding represents a recent advance to the field of unsupervised learning. It was 

originally devised to assist in the field of computer vision32, which involves the automated 

acquisition, processing and interpretation of images, and focuses on such tasks as facial 

recognition and the interpretation of handwritten text. Sparse coding is believed to reflect the 

way in which the visual cortex responds to stimuli. Rather than have a large number of 

cortical neurons activated by every image, the principle of sparsity instead has a very small 

number of neurons attuned to a much more specific, higher order aspect of the image, such 

as the edge of an object oriented in a particular direction. Algorithmic improvements allow 

computers to learn a set of such higher order features from training images and then interpret 

test images as a composite of these features33. With enough training data, computers can 

perform such complex tasks as distinguishing between different food types (https://

www.metamind.io/vision/food). In addition to image recognition, sparse coding has been 

applied successfully to natural language processing34. We will later discuss if such 

approaches might be of use in patient classification for the purposes of precision medicine.

In our analysis of HFpEF, we were interested in grouping patients on the basis of 

quantitative echocardiographic and clinical variables35. Starting with 67 diverse features, we 

removed highly correlated features to leave 46 minimally redundant predictors (Figure 4A). 

We used a regularized form of model-based clustering, where multivariate Gaussian 

distributions were used to define each patient cluster on the basis of the means and standard 

deviation assigned to each feature. To achieve parsimony, regularization was used to select 

the optimal number of patient clusters as well as the number of free parameters fit in 

defining each cluster (Figure 4B). Patients were assigned to clusters based on computing a 

joint probability across all features and choosing the cluster with the highest probability of 

membership for each patient. Comparison of the resulting groups demonstrated differences 

across a wide range of phenotypic variables. Similar to the BCC prize winner, we used our 

phenotypic clusters as features in a supervised learning model to predict survival of HFpEF 

patients and found that they improved upon the clinical models commonly used for risk 

assessment, both within our training set and in an independent test set (Figure 4C).
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Needless to say this is only a start. Utility of any such classification should be validated in 

survival models in other cohorts, especially because cluster definitions are all too dependent 

on which features are chosen and which learning algorithm is used. More importantly, we 

would like to use such classification to revisit failed clinical trials in HFpEF such as 

TOPCAT36 to see if any of the groups we defined would identify a subclass of patients who 

might benefit from specific therapies.

Discussion

Based on the above examples it is obvious that machine learning – both supervised and 

unsupervised – can be applied to clinical data sets for the purpose of developing robust risk 

models and redefining patient classes. This is unsurprising, as problems across a broad range 

of fields, from finance to astronomy to biology13, can be readily reduced to the task of 

predicting outcome from diverse features or finding recurring patterns within 

multidimensional data sets. Medicine should not be an exception. However, given the limited 

clinical footprint of machine learning, some obstacles must be standing in the way of 

translation.

Some of these may relate to pragmatic issues relevant to the medical industry, including 

reimbursement and liability. For example, our health system is reluctant to completely 

entrust a machine with a task that a human can do at higher accuracy, even if there is 

substantial cost savings. For machine learning to be incorporated in areas where it cannot 

promise as high accuracy as that of a human expert, there must be ways for physicians to 

interact with computer systems to maintain accuracy and yet increase throughput and reduce 

cost. For example, one can imagine an automated system that errs on the side of very high 

sensitivity and uses human over-reading to increase specificity. A new reimbursement model 

for such an integrated man-and-machine approach will be needed. And physicians will need 

to become comfortable with the risks of medical error – which may be no greater than in 

other clinical circumstances – but nonetheless may feel different because of the “black box” 

nature of the automated system. On-site evaluation with local data for a sufficiently long 

trial period may alleviate some of those concerns. And if we place increasing reliance on 

stand-alone highly accurate expert systems to lower medical costs, will the makers of these 

systems assume any liability?

An unrelated challenge is whether an FDA clinical indication will be granted to a drug for a 

subgroup of patients that has been defined in a manner unrelated to the mechanism of action 

of that drug. While it is straightforward to target a specific kinase inhibitor towards cancer 

patients with an activating driver mutation in that same kinase, it is not clear how, for 

example, we could justify matching our HFpEF classes with a particular type of drug, no 

matter how phenotypically homogeneous the group may be. Empirical evidence of 

disproportionate therapeutic benefit in one class over another would be necessary – but is it 

sufficient? I suspect this inability to justify matching a patient subgroup to a drug on a 

biological basis will represent an inherent challenge to the reclassification of most complex 

diseases, as these typically cannot be defined by genetics alone or an obvious biomarker 

linked to the drug’s therapeutic mechanism. As a solution, clinical trials could be adequately 
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powered for all predefined subgroups but it remains to be seen what evidence would be 

needed for a subgroup-selective drug approval.

Some difficulties in the adoption of machine learning in medicine may also be related to 

actual statistical challenges in learning. Towards that point, we can extract a number of 

useful lessons from the examples I highlighted as well as the broader experiences of the 

machine learning community. First of all, novel informative features will be needed to build 

improved models in medicine, particularly in learning situations where the computer is not 

simply approximating the physician’s performance. Merely using the same predictors with 

more innovative algorithms is unlikely to add much value. In the case of C-Path, features 

were derived through automated image analysis, while in the attractor metagenes algorithm, 

they arose from genomic analyses of tumors. In both cases, the potential pool of new 

features was in the tens of thousands.

For cardiovascular disease, where the tissue of interest is not readily accessible, it will be 

challenging to find large unbiased sources of phenotypic data with sufficient informativeness 

to characterize the disease process. In our study of the HFpEF patients, we used 

echocardiographic data. Likewise other features could come from noninvasive 

characterization of myocardial tissue and vascular beds. Some even hope that mobile devices 

may offer a lower cost, detailed phenotypic characterization of patients37. It remains to be 

seen if the information content of data from imaging or mobile recording modalities will 

match that of genomic (or proteomic or metabolomic) data, with the caveat that, in the case 

of cardiac patients, such ‘omic data may have to come from peripheral blood and not from 

the myocardium or vasculature. In this regard, we are at a disadvantage relative to oncology. 

It is difficult to see a path forward for deriving biologically rich features in the absence of 

obtaining cardiac or vascular tissue, unless, we can somehow develop safe perturbational 

agents to probe specific pathway activities within these inaccessible organs, which can then 

be quantified through imaging38.

To be in a position to extract novel features, we must somehow find the appetite to collect 

large amounts of unbiased data on many thousands of individuals without knowing that such 

an effort will actually be useful. And it won’t be enough to collect such data on the training 

cohort alone. As the RSF experience demonstrated, it is essential that the same informative 

features in any promising model be collected on multiple independent cohorts for them to 

serve as test sets. Unfortunately, such biologically informative features are likely to be costly 

to acquire (unlike the tens of thousands of digital snapshots of cats used as training data in 

image processing applications39).

The final lesson is a technical one, related to the interplay of unsupervised and supervised 

forms of learning. Deep learning, with stacked layers of increasingly higher order 

representations of objects, has taken the machine learning world by storm40. Deep learning 

uses unsupervised learning to first find robust features, which can then be refined, and 

ultimately used as predictors in a final supervised model. Our work35 and that involving 

attractor metagenes27 both suggest that such techniques might be useful for patient data. In a 

deep learning representation of human disease, lower layers could represent clinical 

measurements (such as ECG data or protein biomarkers), intermediate layers could represent 
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aberrant pathways (which may simultaneously impact many biomarkers), and top layers 

could represent disease subclasses (which arise from the variable contributions of one or 

more aberrant pathways). Ideally such subclasses would do more than stratify by risk, and 

actually reflect the dominant disease mechanism(s). This raises a question about the 

underlying pathophysiologic basis of complex disease in any given individual: is it sparsely 

encoded in a limited set of aberrant pathways, which could be recovered by an unsupervised 

learning process (albeit with the right features collected and a large enough sample size), or 

is it a diffuse, multifactorial process with hundreds of small determinants combining in a 

highly variable way in different individuals? In the latter case, the concept of “precision 

medicine” is unlikely to be of much utility. However, in the former situation, unsupervised 

and perhaps deep learning might actually realize the elusive goal of reclassifying patients 

according to more homogenous subgroups, with shared pathophysiology, and the potential 

of shared response to therapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Machine learning overview. A. Matrix representation of the supervised and unsupervised 

learning problem. We are interested in developing a model for predicting myocardial 

infarction (MI). For training data, we have patients, each characterized by an outcome 

(positive or negative training examples), denoted by the circle in the right-hand column, as 

well as by values of predictive features, denoted by blue to red coloring of squares. We seek 

to build a model to predict outcome using some combination of features. Multiple types of 

functions can be used for mapping features to outcome (B–D). Machine learning algorithms 

are used to find optimal values of free parameters in the model in order to minimize training 

error as judged by the difference between predicted values from our model and actual 
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values. In the unsupervised learning problem, we are ignoring the outcome column, and 

grouping together patients based on similarities in the values of their features. B. Decision 

trees map features to outcome. At each node or branch point, training examples are 

partitioned based on the value of a particular feature. Additional branches are introduced 

with the goal of completely separating positive and negative training examples. C. Neural 

networks predict outcome based on transformed representations of features. A hidden layer 

of nodes integrates the value of multiple input nodes (raw features) to derive transformed 

features. The output node then uses values of these transformed features in a model to 

predict outcome. D. The k-nearest neighbor algorithm assigns class based on the values of 

the most similar training examples. The distance between patients is computed based on 

comparing multidimensional vectors of feature values. In this case, where there are only two 

features, if we consider the outcome class of the three nearest neighbors, the unknown data 

instance would be assigned a “no MI” class.

Deo Page 17

Circulation. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Overview of the C-Path image processing pipeline and prognostic model building procedure. 

A. Basic image processing and feature construction. B. Building an epithelial-stromal 

classifier. The classifier takes as input a set of breast cancer microscopic images that have 

undergone basic image processing and feature construction and that have had a subset of 

superpixels hand-labeled by a pathologist as epithelium(red) or stroma (green). The 

superpixel labels and feature measurements are used as input to a supervised learning 

algorithm to build an epithelial-stromal classifier. The classifier is then applied to new 
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images to classify superpixels as epithelium or stroma. C. Constructing higher-level 

contextual/relational features. After application of the epithelial stromal classifier, all image 

objects are subclassified and colored on the basis of their tissue region and basic cellular 

morphologic properties. (Left panel) After the classification of each image object, a rich 

feature set is constructed. D. Learning an image-based model to predict survival. Processed 

images from patients alive at 5 years after surgery and from patients deceased at 5 years 

after surgery were used to construct an image-based prognostic model. After construction of 

the model, it was applied to a test set of breast cancer images (not used in model building) to 

classify patients as high or low risk of death by 5 years. From Beck et al, Sci Transl Med. 

2011;3:108ra113. Reprinted with permission from AAAS.

Deo Page 19

Circulation. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Schematic of model development for breast cancer risk prediction. Shown are block 

diagrams that describe the development stages for the final ensemble prognostic model. 

Building a prognostic model involves derivation of relevant features, training submodels and 

making predictions, and combining predictions from each submodel. The model derived the 

attractor metagenes using gene expression data, combined them with the clinical information 

through Cox regression, gradient boosting machine, and k-nearest neighbor techniques, and 
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eventually blended each submodel’s prediction. From Cheng et al, Sci Transl Med. 

2013;5:181ra50. Reprinted with permission from AAAS.
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Figure 4. 
Application of unsupervised learning to HFpEF. A. Phenotype heat map of HFpEF. Columns 

represent individual study participants; rows, individual features. B. Bayesian information 

criterion analysis for the identification of the optimal number of phenotypic clusters (pheno-

groups). C. Survival free of cardiovascular (CV) hospitalization or death stratified by 

phenotypic cluster. Kaplan-Meier curves for the combined outcome of heart failure 

hospitalization, cardiovascular hospitalization, or death stratified by phenotypic cluster.
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